Science.gov

Sample records for advanced limiter-divertor plasma-facing

  1. Recent Advances on Hydrogenic Retention in ITER's Plasma-Facing Materials: BE, C, W.

    SciTech Connect

    Skinner, C H; Alimov, Kh; Bekris, N; Causey, R A; Clark, R.E.H.; Coad, J P; Davis, J W; Doerner, R P; Mayer, M; Pisarev, A; Roth, J

    2008-03-29

    Management of tritium inventory remains one of the grand challenges in the development of fusion energy and the choice of plasma-facing materials is a key factor for in-vessel tritium retention. The Atomic and Molecular Data Unit of the International Atomic Energy Agency organized a Coordinated Research Project (CRP) on the overall topic of tritium inventory in fusion reactors during the period 2001-2006. This dealt with hydrogenic retention in ITER's plasma-facing materials, Be, C, W, and in compounds (mixed materials) of these elements as well as tritium removal techniques. The results of the CRP are summarized in this article together with recommendations for ITER. Basic parameters of diffusivity, solubility and trapping in Be, C and W are reviewed. For Be, the development of open porosity can account for transient hydrogenic pumping but long term retention will be dominated by codeposition. Codeposition is also the dominant retention mechanism for carbon and remains a serious concern for both Be and C containing layers. Hydrogenic trapping in unirradiated tungsten is low but will increase with ion and neutron damage. Mixed materials will be formed in a tokamak and these can also retain significant amounts of hydrogen isotopes. Oxidative and photon-based techniques for detritiation of plasma-facing components are described.

  2. One-dimensional transport code modelling of the limiter-divertor region in tokamaks

    SciTech Connect

    Ogden, J.M.; Post, D.E.; Jensen, R.V.; Seidl, F.G.P.

    1980-02-01

    A model of the limiter-divertor scrape-off region has been incorporated into the BALDUR one-dimensional tokamak transport code. Simulations of PDX and ALCATOR have been carried out for ohmic and neutral beam heated cases. In particular, we have studied how the edge conditions and energy loss mechanisms of PDX depend upon plasma density, and compared our results with analytic estimates. The sensitivity of the results to changes in the transport coefficients and scrape-off model is also discussed.

  3. Tritium Removal from Carbon Plasma Facing Components

    SciTech Connect

    C.H. Skinner; J.P. Coad; G. Federici

    2003-11-24

    Tritium removal is a major unsolved development task for next-step devices with carbon plasma-facing components. The 2-3 order of magnitude increase in duty cycle and associated tritium accumulation rate in a next-step tokamak will place unprecedented demands on tritium removal technology. The associated technical risk can be mitigated only if suitable removal techniques are demonstrated on tokamaks before the construction of a next-step device. This article reviews the history of codeposition, the tritium experience of TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) and the tritium removal rate required to support ITER's planned operational schedule. The merits and shortcomings of various tritium removal techniques are discussed with particular emphasis on oxidation and laser surface heating.

  4. Tungsten-microdiamond composites for plasma facing components

    NASA Astrophysics Data System (ADS)

    Livramento, V.; Nunes, D.; Correia, J. B.; Carvalho, P. A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-09-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  5. Free surface stability of liquid metal plasma facing components

    NASA Astrophysics Data System (ADS)

    Fiflis, P.; Christenson, M.; Szott, M.; Kalathiparambil, K.; Ruzic, D. N.

    2016-10-01

    An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh-Taylor-like and Kelvin-Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasma-facing structures (TELS) chamber at the University of Illinois at Urbana-Champaign. To probe the stability boundary, plasma currents and velocities were first characterized with a flush probe array. Subsequent observations of lithium ejection under exposure in the TELS chamber exhibited a departure from previous theory based on linear perturbation analysis. The stability boundary is mapped experimentally over the range of plasma impulses of which TELS is capable to deliver, and a new theory based on a modified set of the shallow water equations is presented which accurately predicts the stability of the lithium surface under plasma exposure.

  6. Candidate plasma-facing materials for EUV lithography source components

    NASA Astrophysics Data System (ADS)

    Hassanein, Ahmed; Burtseva, Tatiana; Brooks, Jeff N.; Konkashbaev, Isak K.; Rice, Bryan J.

    2003-06-01

    Material selection and lifetime issues for extreme ultraviolet (EUV) lithography are of critical importance to the success of this technology for commercial applications. This paper reviews current trends in production and use of plasma-facing electrodes, insulators, and wall materials for EUV type sources. Ideal candidate materials should be able to: withstand high thermal shock from the short pulsed plasma; withstand high thermal loads without structural failure; reduce debris generation during discharge; and be machined accurately. We reviewed the literature on current and proposed fusion plasma-facing materials as well as current experience with plasma gun and other simulation devices. Both fusion and EUV source materials involve issues of surface erosion by particle sputtering and heat-induced evaporation/melting. These materials are either bare structural materials or surface coatings. EUV materials can be divided into four categories: wall, electrode, optical, and insulator materials. For electric discharge sources, all four types are required, whereas laser-produced plasma EUV sources do not require electrode and insulator materials. Several types of candidate alloy and other materials and methods of manufacture are recommended for each component of EUV lithography light sources.

  7. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  8. On temperature bifurcation of beryllium and lithium plasma facing components

    SciTech Connect

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.

    2009-12-15

    The mechanism of temperature bifurcation of plasma contacting surfaces due to recycling of the ionized surface material vapor is considered. It is shown that this mechanism can lead to overheating of beryllium and lithium plasma facing components (in particular, in fusion devices) prior to the thermionic electron emission mechanism. The surface temperatures and the plasma parameters, at which the considered mechanism triggers the local overheating of beryllium and lithium components, are evaluated. The increase in the surface heat load due to secondary electron emission is also considered. It is shown that the combined effects of energy and impact angle distributions of the plasma electrons can increase the averaged secondary electron emission yield to values higher than unity and can lower the average electron energy, at which such yields are achieved.

  9. Modeling of Erosion and Deposition on Plasma Facing Walls

    SciTech Connect

    Ohya, K.

    2010-05-20

    The unavoidable contact of plasmas with surrounding walls results in plasma-surface interactions (PSIs) that are strongly interlinked and cannot be studied separately. Computer modeling has become increasingly important in understanding mechanisms of PSIs in present devices, ITER and beyond. Modeling of erosion and deposition requires self-consistent calculations of (1) erosion of the wall surface, (2) transport of eroded impurities in the plasma above the surface, (3) redeposition of returning impurities on the surface and (4) resultant material mixing below the surface. In addition, it is necessary to use exact rate coefficients for collision reactions in the plasma and related data for the surface reactions on plasma-facing walls. This chapter describes modeling codes in terms of such PSI issues and the physical and chemical bases of the interactions.

  10. Modeling hydrogen isotope behavior in fusion plasma-facing components

    NASA Astrophysics Data System (ADS)

    Hu, Alice; Hassanein, Ahmed

    2014-03-01

    In this work, we focus on understanding hydrogen isotope retention in plasma-facing materials in fusion devices. Three common simulation methods are usually used to study this problem that includes Monte Carlo, molecular dynamics, and numerical/analytical methods. A system of partial differential equations describing deuterium behavior in tungsten under various conditions is solved numerically to explain recent data compared to other methods. The developed model of hydrogen retention in metals includes classic, intercrystalline and trapped-induced Gorsky effects. The bombardment and depth profile of 200 eV deuterium in single crystal tungsten are simulated and compared with recent work. The total deuterium retention at various temperatures and fluences are also calculated and compared with available data. The results are in reasonable agreement with data and therefore, this model can be used to estimate deuterium inventory and recovery in future fusion devices.

  11. Graphite as a plasma-facing material in fusion experiments

    SciTech Connect

    Langley, R.A. )

    1989-01-01

    Graphite is now used extensively in most of the major fusion experiments in the world and will be used more extensively in future devices. In addition to its excellent tolerance of high heat fluxes, graphite has many unusual characteristics that pertain to its use as a plasma-facing material; these are its propensity for releasing gases when heated and when exposed to ion fluxes, its ability to absorb copious quantities of hydrogen during hydrogen bombardment, and its ability to pump hydrogen after noble gas bombardment. The graphite used in existing machines and considered for use in future machines is isotropic on a macroscopic scale and anisotropic on a microscopic scale; it has a large open porosity, up to 20%. This leads to enormous internal surface areas for adsorption and desorption of gases. Most early hydrogen-graphite interaction experiments were incorrectly analyzed because of this property. In addition, interaction of energetic hydrogen ions with graphite can lead to erosion, with concomitant deposition of carbon films with high hydrogen content on chamber surfaces. These effects are observed experimentally and have been modeled with some success. This paper presents experimental data dealing with these topics and their influences on present-day plasma operations and on graphite use in future machines. 34 refs., 8 figs., 1 tab.

  12. Tritium retention in fusion reactor plasma facing components

    SciTech Connect

    Langley, R.A.

    1995-03-01

    The IAEA has proposed a coordinated research program to address tritium retention and release in fusion reactor plasma facing components. This program will address materials which are mainly of interest to the design and construction of ITER, namely beryllium, carbon based materials and medium and high-Z metals, e.g. tungsten, vanadium and molybdenum, but will not be limited to these materials. Experimental data are needed for: recycling models, tritium inventory estimates, tritium permeation calculations and hydrogen embrittlement characterization. The ultimate use of the data would be to influence the formation of models for use by fusion reactor designers. Judicious material choices must be made by the designers and accurate predictive codes are required in order to make these choices. The proposed coordinated research program will provide a forum for discussions between experimentalists, theoreticians, modelers and reactor designers, provide financial support for relevant research projects and collect and evaluate experimental and theoretical data. This paper briefly reviews existing data, addresses the data gaps and points out experiments designed to obtain the needed data. 18 refs., 3 figs., 1 tab.

  13. Plasma Facing Components Generic Facilities Review Panel (PFC-GFRP): Final report

    SciTech Connect

    McGrath, R.; Allen, S.; Hill, D.; Brooks, J.; Mattas, R.; Davis, J.; Lipschultz, B.; Ulrickson, M.

    1993-10-01

    The Plasma Facing Components (PFC) Facilities Review Panel was chartered by the US Department of Energy, Office of Fusion Energy, ITER (International Thermonuclear Experimental Reactor) and Technology Division, to outline the program plan and identify the supporting test facilities that lead to reliable, long-lived plasma facing components for ITER. This report summarizes the panel`s findings and identifies the necessary and sufficient set of test facilities required for ITER PFC development.

  14. Lithium As Plasma Facing Component for Magnetic Fusion Research

    SciTech Connect

    Masayuki Ono

    2012-09-10

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main

  15. FOREWORD: 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications

    NASA Astrophysics Data System (ADS)

    Kreter, Arkadi; Linke, Jochen; Rubel, Marek

    2009-12-01

    knowledge is still limited, especially in relation to the behaviour of these metals in environments containing multiple species. There are many appealing issues related to material mixing and fuel retention that call for robust and comprehensive studies. In this sense, the aim of the workshop is not only to discuss hot topics, but also to identify the most important research areas and those that need urgent solutions. Another topic of foremost relevance to ITER is the development of plasma-facing components that are able to withstand extreme power fluxes, in particular, those during transient phases. Materials and production methods for high-heat-flux components have to be further developed and industrialized. A key requirement in this field is the development of non-destructive testing methods for the qualification of methods and quality assessment during production. Invited talks and contributed presentations therefore dealt with aspects of fundamental processes, experimental findings, advanced modelling and the technology of fusion reactor components. Several areas were selected as the major topics of PFMC-12: materials for the ITER-divertor (erosion, redeposition, fuel retention) carbon-based materials tungsten and tungsten coatings beryllium mixed materials (intentional and non-intentional) the ITER-Like Wall Project materials under high-heat-flux loads including transients (ELMs, disruptions) technology and testing of plasma-facing components neutron effects in plasma-facing materials. 26 invited lectures and oral contributions, and 131 posters were presented by participants from research laboratories and industrial companies. 210 researchers from 24 countries from all over the world participated in a lively and intense exchange of knowledge and ideas. The workshop was hosted by Forschungszentrum Jülich (FZJ), a centre where the integration of science and technology for fusion reactor materials has been a focus for decades. This is reflected by the operation of

  16. Ultrahigh heat flux plasma-facing components for magnetic fusion energy

    SciTech Connect

    Youchison, D. L.

    2012-03-01

    Sandia and Ultramet partnered to design and test refractory metal plasma-facing components and heat exchangers for advanced, high-temperature power conversion systems. These devices consisted of high-temperature helium-to-helium and lithium-to-helium heat exchangers that operate with high efficiency due to the porous foam inserts used in the gas stream, which promote turbulence and provide extended surface area for enhanced convection. Single- and multi-channel helium panels and the Li-He heat exchanger were fabricated from either pure molybdenum, TZM, or tungsten. The design was carried out through an Ultramet subcontractor. The flow path was carefully tailored to minimize the pressure drop while maximizing the heat transfer. The single- and multi-channel helium panels were tested at Sandia's PMTF using an electron beam system and the closed helium flow loop. In 2006, a single-channel tungsten tube was successfully tested to an average heat flux of 14 MW/m{sup 2} with a localized peak of 22 MW/m{sup 2} along the axial centerline at the outer radius. Under this CRADA, multiple square-channel molybdenum components were successfully tested to heat flux levels approaching 8.5 MW/m{sup 2}. The three multi-channel prototypes experienced mechanical failure due to issues related to the design of the large unsupported span of the heated faceplates in combination with prototype material and braze selection. The Li-He heat exchanger was both designed and partially tested at the PMTF for helium and lithium flow.

  17. New electron beam facility for irradiated plasma facing materials testing in hot cell

    SciTech Connect

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  18. Experiment attributes to establish tube with twisted tape insert performance cooling plasma facing components

    SciTech Connect

    Clark, Emily; Ramirez, Emilio; Ruggles, Art E.; Griffard, Cory

    2015-08-18

    The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasma facing components are identified and attributes of an experiment to close those gaps are presented.

  19. Microscopic Motion of Liquid Metal Plasma Facing Components In A Diverted Plasma

    SciTech Connect

    Jaworski, M A; Morley, N B; Abrams, T; Kaita, R; Kallman, J; Kugel, H; Majeski, R

    2010-09-22

    Liquid metal plasma facing components (PFCs) have been identified as an alternative material for fusion plasma experiments. The use of a liquid conductor where significant magnetic fields are present is considered risky, with the possibility of macroscopic fluid motion and possible ejection into the plasma core. Analysis is carried out on thermoelectric magnetohydrodynamic (TEMHD) forces caused by temperature gradients in the liquid-container system itself in addition to scrape-off-layer currents interacting with the PFC from a diverted plasma. Capillary effects at the liquid-container interface will be examined which govern droplet ejection criteria. Stability of the interface is determined using linear stability methods. In addition to application to liquidmetal PFCs, thin film liquidmetal effects have application to current and future devices where off-normal events may liquefy portions of the first wall and other plasma facing components.

  20. Digital Holography for in Situ Real-Time Measurement of Plasma-Facing-Component Erosion

    SciTech Connect

    ThomasJr., C. E.; Granstedt, E. M.; Biewer, Theodore M; Baylor, Larry R; Combs, Stephen Kirk; Meitner, Steven J; Hillis, Donald Lee; Majeski, R.; Kaita, R.

    2014-01-01

    In situ, real time measurement of net plasma-facing-component (PFC) erosion/deposition in a real plasma device is challenging due to the need for good spatial and temporal resolution, sufficient sensitivity, and immunity to fringe-jump errors. Design of a high-sensitivity, potentially high-speed, dual-wavelength CO2 laser digital holography system (nominally immune to fringe jumps) for PFC erosion measurement is discussed.

  1. Dynamic behavior of plasma-facing materials during plasma instabilities in tokamak reactors

    SciTech Connect

    Hassanein, A.; Konkashbaev, I.

    1997-09-01

    Damage to plasma-facing and nearby components due to plasma instabilities remains a major obstacle to a successful tokamak concept. The high energy deposited on facing materials during plasma instabilities can cause severe erosion, plasma contamination, and structural failure of these components. Erosion damage can take various forms such as surface vaporization, spallation, and liquid ejection of metallic materials. Comprehensive thermodynamic and radiation hydrodynamic codes have been developed, integrated, and used to evaluate the extent of various damage to plasma-facing and nearby components. The eroded and splashed materials will be transported and then redeposited elsewhere on other plasma-facing components. Detailed physics of plasma/solid-liquid/vapor interaction in a strong magnetic field have been developed, optimized, and implemented in a self-consistent model. The plasma energy deposited in the evolving divertor debris is quickly and intensely reradiated, which may cause severe erosion and melting of other nearby components. Factors that influence and reduce vapor-shielding efficiency such as vapor diffusion and turbulence are also discussed and evaluated.

  2. Progress of research on plasma facing materials in University of Science and Technology Beijing

    NASA Astrophysics Data System (ADS)

    Ge, Chang-Chun; Zhou, Zhang-Jian; Song, Shu-Xiang; Du, Juan; Zhong, Zhi-Hong

    2007-06-01

    In this paper, we report some new progress on plasma facing materials in University of Science and Technology Beijing (USTB), China. They include fabrication of tungsten coating with ultra-fine grain size by atmosphere plasma spraying; fabrication of tungsten with ultra-fine grain size by a newly developed method named as resistance sintering under ultra-high pressure; using the concept of functionally graded materials to join tungsten to copper based heat sink; joining silicon doped carbon to copper by brazing using a Ti based amorphous filler and direct casting.

  3. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  4. Effects of Lithium Plasma-Facing Surfaces on Particle Confinement in CDX-U

    NASA Astrophysics Data System (ADS)

    Gray, T.; Soukhanovskii, V.; Maingi, R.

    2005-10-01

    Recent experiments on the CDX-U spherical torus have successfully achieved a significant reduction in recycling with large-area liquid lithium plasma-facing surfaces. The effects of a liquid lithium toroidal limiter and evaporative lithium coatings on overall density and τp^* will be presented. Such conditions have also demonstrated the need to improve plasma fueling. To address this challenge, a supersonic gas injector, based on a Mach 8 Laval nozzle design,[1] has been installed on CDX-U. The fueling efficiency of the nozzle compared to standard gas puffing will be compared. [1] M. Baumgartner, Ph. D. thesis, Princeton University (1997)

  5. Analysis of the thermal response of plasma facing components during a runaway electron impact

    NASA Astrophysics Data System (ADS)

    Ward, Robert Cameron

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10--300 MeV, and may potentially cause extensive damage to plasma facing components through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of plasma facing components to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts which control the operation of an electron-photon monte carlo code to calculate the interaction of the runaway electrons with the plasma facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials using the modified heat conduction equation; a code to process, scale, transform, and convert the electron monte carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and post-processing of the data. The electron-photon monte carlo code used was the Electron-Gamma-Shower (EGS) code, developed and maintained by the National Research Center of Canada. The other codes were written in C++ for this study. The thermal code, called QTTN, solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system was validated using a series of analytical solutions and simulations of experiments. QTTN and EPQ was verified and validated as able to calculate the temperature distribution, phase change, and surface erosion successfully. EPQ was then employed in a parametric study to simulate a typical runaway electron disruption impact on the FIRE design's plasma facing components. The results of the FIRE parametric study

  6. Thermal ablation of plasma-facing surfaces in tokamak disruptions: Sensitivity to particle kinetic energy

    SciTech Connect

    Ehst, D.A.; Hassanein, A.

    1996-02-01

    Ablation damage to solid targets with high heat flux impulses is generally greater high-energy electron beam heat sources compared to low-energy plasma guns. This sensitivity to incoming particle kinetic energy is explored with computer modelling; a fast-running routine (DESIRE) is developed for initial scoping analysis and is found to be in reasonable agreement with several experiments on graphite and tungsten targets. If tokamak disruptions are characterized by particle energies less than {approximately}1 keV, then we expect plasma guns are a better analogue than electron beams for simulating disruption behavior and testing candidate plasma-facing materials.

  7. Proceedings of the 4th International Workshop on Tritium Effects in Plasma Facing Components

    SciTech Connect

    R. A. Causey

    1999-02-01

    The 4th International Workshop on Tritium Effects in Plasma Facing Components was held in Santa Fe, New Mexico on May 14-15, 1998. This workshop occurs every two years, and has previously been held in Livermore/California, Nagoya/Japan, and the JRC-Ispra Site in Italy. The purpose of the workshop is to gather researchers involved in the topic of tritium migration, retention, and recycling in materials used to line magnetic fusion reactor walls and provide a forum for presentation and discussions in this area. This document provides an overall summary of the workshop, the workshop agenda, a summary of the presentations, and a list of attendees.

  8. High-speed surface temperature measurements on plasma facing materials for fusion applications

    SciTech Connect

    Araki, M.; Kobayashi, M.

    1996-01-01

    For the lifetime evaluation of plasma facing materials in fusion experimental machines, it is essential to investigate their surface behavior and their temperature responses during an off-normal event such as the plasma disruptions. An infrared thermometer with a sampling speed as fast as 1{times}10{sup {minus}6} s/data, namely, the high-speed infrared thermometer (HSIR), has been developed by the National Research Laboratory of Metrology in Japan. To evaluate an applicability of the newly developed HSIR on the surface temperature measurement of plasma facing materials, high heat flux beam irradiation experiments have been performed with three different materials under the surface heat fluxes up to 170 MW/m{sup 2} for 0.04 s in a hydrogen ion beam test facility at the Japan Atomic Energy Research Institute. As for the results, HSIR can be applicable for measuring the surface temperature responses of the armor tile materials with a little modification. It is also confirmed that surface temperatures measured with the HSIR thermometer show good agreement with the analytical results for stainless steel and carbon based materials at a temperature range of up to 2500{degree}C. However, for aluminum the HSIR could measure the temperature of the high dense vapor cloud which was produced during the heating due to lower melting temperature. Based on the result, a multichannel arrayed HSIR thermometer has been designed and fabricated. {copyright} {ital 1996 American Institute of Physics.}

  9. Tritium recycling and inventory in eroded debris of plasma-facing materials

    SciTech Connect

    Hassanein, A.

    1999-10-18

    Damage to plasma-facing components (PFCs) and structural materials due to loss of plasma confinement in magnetic fusion reactors remains one of the most serious concerns for safe, successful, and reliable tokamak operation. High erosion losses due to surface vaporization, spallation, and melt-layer splashing are expected during such an event. The eroded debris and dust of the PFCs, including trapped tritium, will be contained on the walls or within the reactor chamber therefore, they can significantly influence plasma behavior and tritium inventory during subsequent operations. Tritium containment and behavior in PFCS and in the dust and debris is an important factor in evaluating and choosing the ideal plasma-facing materials (PFMs). Tritium buildup and release in the debris of candidate materials is influenced by the effect of material porosity on diffusion and retention processes. These processes have strong nonlinear behavior due to temperature, volubility, and existing trap sites. A realistic model must therefore account for the nonlinear and multidimensional effects of tritium diffusion in the porous-redeposited and neutron-irradiated materials. A tritium-transport computer model, TRAPS (Tritium Accumulation in Porous Structure), was developed and used to evaluate and predict the kinetics of tritium transport in porous media. This model is coupled with the TRICS (Tritium In Compound Systems) code that was developed to study the effect of surface erosion during normal and abnormal operations on tritium behavior in PFCS.

  10. Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak

    NASA Astrophysics Data System (ADS)

    Labate, C.; Di Gironimo, G.; Renno, F.

    2015-09-01

    Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.

  11. Using the Tritium Plasma Experiment to evaluate ITER PFC safety. [Plasma-Facing Components

    SciTech Connect

    Longhurst, G.R.; Anderl, R.A. ); Bartlit, J.R. ); Causey, R.A. ); Haines, J.R. )

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 [times] 10[sup 19] ions/cm[sup 2] [center dot] s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment.

  12. Protection of tokamak plasma facing components by a capillary porous system with lithium

    NASA Astrophysics Data System (ADS)

    Lyublinski, I.; Vertkov, A.; Mirnov, S.; Lazarev, V.

    2015-08-01

    Development of plasma facing material (PFM) based on the Capillary-Porous System (CPS) with lithium and activity on realization of lithium application strategy are addressed to meet the challenges under the creation of steady-state tokamak fusion reactor and fusion neutron source. Presented overview of experimental study of lithium CPS in plasma devices demonstrates the progress in protection of tokamak plasma facing components (PFC) from damage, stabilization and self-renewal of liquid lithium surface, elimination of plasma pollution and lithium accumulation in tokamak chamber. The possibility of PFC protection from the high power load related to cooling of the tokamak boundary plasma by radiation of non-fully stripped lithium ions supported by experimental results. This approach demonstrated in scheme of closed loops of Li circulation in the tokamak vacuum chamber and realized in a series of design of tokamak in-vessel elements.

  13. TOPICAL REVIEW: Tritium inventory in ITER plasma-facing materials and tritium removal procedures

    NASA Astrophysics Data System (ADS)

    Roth, Joachim; Tsitrone, Emmanuelle; Loarer, Thierry; Philipps, Volker; Brezinsek, Sebastijan; Loarte, Alberto; Counsell, Glenn F.; Doerner, Russell P.; Schmid, Klaus; Ogorodnikova, Olga V.; Causey, Rion A.

    2008-10-01

    Interactions between the plasma and the vessel walls constitute a major engineering problem for next step fusion devices, such as ITER, determining the choice of the plasma-facing materials. A prominent issue in this choice is the tritium inventory build-up in the vessel, which must be limited for safety reasons. The initial material selection, i.e. beryllium (Be) on the main vessel walls, tungsten (W) on the divertor upper baffle and dome, and carbon fibre composite around the strike points on the divertor plates, results both from the attempt to reduce the tritium inventory and to optimize the lifetime of the plasma-facing components. In the framework of the EU Task Force on Plasma-Wall Interaction (PWI TF), the many physics aspects governing the tritium inventory are brought together. Together with supporting information from international experts represented by the ITPA SOL/DIV section, this paper describes the present status of knowledge of the in-vessel tritium inventory build-up. Firstly, the main results from present fusion devices in this field are briefly reviewed. Then, the processes involved are discussed: implantation, trapping and diffusion in plasma-facing materials are considered as well as surface erosion and co-deposition of tritium with eroded material. The intermixing of the different materials and its influence on hydrogen retention and co-deposition is a major source of uncertainty on present estimates and is also addressed. Based on the previous considerations, estimates for the tritium inventory build-up are given for the initial choice of ITER materials, as well as for alternative options. Present estimates indicate a build-up of the tritium inventory to the administrative limit within a few hundred nominal full power D : T discharges, co-deposition with carbon being the dominant process. Therefore, tritium removal methods are also an active area of research within the EU PWI TF, and are discussed. An integrated operational scheme to slow

  14. FOREWORD: 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications

    NASA Astrophysics Data System (ADS)

    Kreter, Arkadi; Linke, Jochen; Rubel, Marek

    2009-12-01

    knowledge is still limited, especially in relation to the behaviour of these metals in environments containing multiple species. There are many appealing issues related to material mixing and fuel retention that call for robust and comprehensive studies. In this sense, the aim of the workshop is not only to discuss hot topics, but also to identify the most important research areas and those that need urgent solutions. Another topic of foremost relevance to ITER is the development of plasma-facing components that are able to withstand extreme power fluxes, in particular, those during transient phases. Materials and production methods for high-heat-flux components have to be further developed and industrialized. A key requirement in this field is the development of non-destructive testing methods for the qualification of methods and quality assessment during production. Invited talks and contributed presentations therefore dealt with aspects of fundamental processes, experimental findings, advanced modelling and the technology of fusion reactor components. Several areas were selected as the major topics of PFMC-12: materials for the ITER-divertor (erosion, redeposition, fuel retention) carbon-based materials tungsten and tungsten coatings beryllium mixed materials (intentional and non-intentional) the ITER-Like Wall Project materials under high-heat-flux loads including transients (ELMs, disruptions) technology and testing of plasma-facing components neutron effects in plasma-facing materials. 26 invited lectures and oral contributions, and 131 posters were presented by participants from research laboratories and industrial companies. 210 researchers from 24 countries from all over the world participated in a lively and intense exchange of knowledge and ideas. The workshop was hosted by Forschungszentrum Jülich (FZJ), a centre where the integration of science and technology for fusion reactor materials has been a focus for decades. This is reflected by the operation of

  15. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    NASA Astrophysics Data System (ADS)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  16. Thermal shock tests to qualify different tungsten grades as plasma facing material

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Uytdenhouwen, I.

    2016-02-01

    The electron beam device JUDITH 1 was used to establish a testing procedure for the qualification of tungsten as plasma facing material. Absorbed power densities of 0.19 and 0.38 GW m-2 for an edge localized mode-like pulse duration of 1 ms were chosen. Furthermore, base temperatures of room temperature, 400 °C and 1000 °C allow investigating the thermal shock performance in the brittle, ductile and high temperature regime. Finally, applying 100 pulses under all mentioned conditions helps qualifying the general damage behaviour while with 1000 pulses for the higher power density the influence of thermal fatigue is addressed. The investigated reference material is a tungsten product produced according to the ITER material specifications. The obtained results provide a general overview of the damage behaviour with quantified damage characteristics and thresholds. In particular, it is shown that the damage strongly depends on the microstructure and related thermo-mechanical properties.

  17. Experiment attributes to establish tube with twisted tape insert performance cooling plasma facing components

    DOE PAGES

    Clark, Emily; Ramirez, Emilio; Ruggles, Art E.; Griffard, Cory

    2015-08-18

    The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasmamore » facing components are identified and attributes of an experiment to close those gaps are presented.« less

  18. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials

    SciTech Connect

    Wurster, S.; Baluc, N.; Battabyal, M.; Crosby, T.; Du, J.; Garcia-Rosales, C.; Hasegawa, Akira; Hoffmann, A.; Kimura, A.; Kurishita, Hiroaki; Kurtz, Richard J.; Li, H.; Noh, S.; Reiser, J.; Riesch, J.; Rieth, Michael; Setyawan, Wahyu; Walter, M.; You, J. H.; Pippan, R.

    2013-03-13

    Tungsten materials are candidates for plasma facing components for ITER and DEMO because of their superior thermophysical properties. Knowledge and strategies to improve properties of tungsten-based materials are still under development, as they are not a common structural material such as steel. Consequently, several activities have started in Europe, Japan, USA and China. Research is directed towards manufacturing of new materials based on alloying, microstructure stabilizing and composite formation involving improved processing steps. Beside experimental analyses, work also focuses on computational treatment of open questions, supporting the development of better tungsten materials. Assuming the availability of an ideal material that is ready to use, there remain the questions of inherent safety, the joining of tungsten to steel and the influence of radiation damage. These are topics of increasing interest when the material comes to application.

  19. Hydrodynamic effects of eroded materials on response of plasma-facing component during a tokamak disruption

    SciTech Connect

    Hassanein, A.; Konkashbaev, I.

    1999-10-25

    Loss of plasma confinement causes surface and structural damage to plasma-facing materials (PFMs) and remains a major obstacle for tokamak reactors. The deposited plasma energy results in surface erosion and structural failure. The surface erosion consists of vaporization, spallation, and liquid splatter of metallic materials, while the structural damage includes large temperature increases in structural materials and at the interfaces between surface coatings and structural members. Comprehensive models (contained in the HEIGHTS computer simulation package) are being used self-consistently to evaluate material damage. Splashing mechanisms occur as a result of volume bubble boiling and liquid hydrodynamic instabilities and brittle destruction mechanisms of nonmelting materials. The effect of macroscopic erosion on total mass losses and lifetime is evaluated. The macroscopic erosion products may further protect PFMs from severe erosion (via the droplet-shielding effect) in a manner similar to that of the vapor shielding concept.

  20. Nitrogen removal from plasma-facing components by ion cyclotron wall conditioning in TEXTOR

    NASA Astrophysics Data System (ADS)

    Carrasco, A. G.; Wauters, T.; Petersson, P.; Drenik, A.; Rubel, M.; Crombé, K.; Douai, D.; Fortuna, E.; Kogut, D.; Kreter, A.; Lyssoivan, A.; Möller, S.; Pisarek, M.; Vervier, M.

    2015-08-01

    The efficiency of ion cyclotron wall conditioning (ICWC) in the removal of nitrogen from plasma-facing components in TEXTOR was assessed. In two experiments the wall was loaded with nitrogen and subsequently cleaned by ICWC in deuterium and helium. The retention and removal of nitrogen was studied in-situ by means of mass spectrometry, and ex-situ by surface analysis of a set of graphite, tungsten and TZM plates installed on test limiter systems. 15N rare isotope was used as a marker. The results from the gas balance showed that about 25% of the retained nitrogen was removed after ICWC cleaning, whereas surface analysis of the plates based on ToF-HIERDA showed an increase of the deposited species after the cleaning. This indicates that during ICWC operation on carbon devices, nitrogen is not only pumped out but also transported to other locations on the wall. Additionally, deuterium surface content was studied before and after ICWC cleaning.

  1. Selection of materials for tokamak plasma facing elements based on a liquid tin capillary pore system

    NASA Astrophysics Data System (ADS)

    Lyublinski, I. E.; Vertkov, A. V.; Zharkov, M. Yu; Sevryukov, O. N.; Dzhumaev, P. S.; Shumskiy, V. A.; Ivannikov, A. A.

    2016-09-01

    Capillary-Pore Systems (CPS) filled by liquid metals are considered as an alternative solution of materials choice for plasma facing component of tokamak reactor. Tin is viewed as one of the candidates for CPS because it has lower corrosiveness than gallium and lower saturated vapour pressure compared to lithium. The corrosion resistance of Mo, Nb and W in pure liquid tin was investigated. The corrosion tests were carried out in the static isothermal conditions at a temperature up to 1050°C. As a result of the corrosion study, it was found that Mo does not corrode in liquid Sn, as opposed to Nb and is compatible with liquid tin in temperatures of up to approx. 1000°C. This allows considering Mo as an alloy base material of the in-vessel tokamak elements based on liquid tin capillary pore systems.

  2. Plasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX

    SciTech Connect

    Kaita, R; Kugel, H; Bell, M G; Bell, R; Boedo, J; Bush, C; Ellis, R; Gates, D; Gerhardt, S; Gray, T; Kallman, J; Kaye, S; LeBlanc, B; Majeski, R; Maingi, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, S H; Soukhanovskii, V; Stevenson, T; Stotler, D; Timberlake, J; Zakharov, L; Ahn, J; Allain, J P; Wampler, W R

    2009-01-08

    Lithium as a plasma-facing material has many attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Recent NSTX experiments have shown, for the first time, significant and recurring benefits of lithium coatings on plasma-facing components (PFC's) to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. They included decreases in the plasma density and inductive flux consumption, and increases in the electron temperature, ion temperature, energy confinement time, and DD neutron rate. Extended periods of MHD quiescence were also achieved, and measurements of the visible emission from the lower divertor showed a reduction in the deuterium, carbon, and oxygen line emission. Other salient results with lithium evaporation included a broadening of the electron temperature profile, and changes in edge density gradients that benefited electron Bernstein wave coupling. There was also a reduction in ELM frequency and amplitude, followed by a period of complete ELM suppression. In general, it was observed that both the best and the average confinement occurred after lithium deposition and that the increase in WMHD occurs mostly through an increase in We. In addition, a liquid lithium divertor (LLD) is being installed on NSTX this year. As the first fully-toroidal liquid metal divertor target, experiments with the LLD can provide insight into the behavior of metallic ITER PFC's should they liquefy during high-power divertor tokamak operations. The NSTX lithium coating and LLD experiments are important near-term steps in demonstrating the potential of liquid lithium as a solution to the first-wall problem for both magnetic and inertial fusion reactors.

  3. Plasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX

    SciTech Connect

    Kaita, R., et. al.

    2008-09-29

    Lithium as a plasma-facing material has many attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Recent NSTX experiments have shown, for the first time, significant and recurring benefits of lithium coatings on plasma-facing components (PFC's) to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. They included decreases in the plasma density and inductive flux consumption, and increases in the electron temperature, ion temperature, energy confinement time, and DD neutron rate. Extended periods of MHD quiescence were also achieved, and measurements of the visible emission from the lower divertor showed a reduction in the deuterium, carbon, and oxygen line emission. Other salient results with lithium evaporation included a broadening of the electron temperature profile, and changes in edge density gradients that benefited electron Bernstein wave coupling. There was also a reduction in ELM frequency and amplitude, followed by a period of complete ELM suppression. In general, it was observed that both the best and the average confinement occurred after lithium deposition and that the increase in WMHD occurs mostly through an increase in We. In addition, a liquid lithium divertor (LLD) is being installed on NSTX this year. As the first fully-toroidal liquid metal divertor target, experiments with the LLD can provide insight into the behavior of metallic ITER PFC's should they liquefy during high-power divertor tokamak operations. The NSTX lithium coating and LLD experiments are important near-term steps in demonstrating the potential of liquid lithium as a solution to the first-wall problem for both magnetic and inertial fusion reactors.

  4. Materials analysis and particle probe: A compact diagnostic system for in situ analysis of plasma-facing components (invited)

    SciTech Connect

    Taylor, C. N.; Heim, B.; Gonderman, S.; Allain, J. P.; Yang, Z.; Kaita, R.; Roquemore, A. L.; Skinner, C. H.; Ellis, R. A.

    2012-10-15

    The objective of the materials analysis particle probe (MAPP) in NSTX is to enable prompt and direct analysis of plasma-facing components exposed to plasma discharges. MAPP allows multiple samples to be introduced to the level of the plasma-facing surface without breaking vacuum and analyzed using X-ray photoelectron spectroscopy (XPS), ion-scattering and direct recoil spectroscopy, and thermal desorption spectroscopy (TDS) immediately following the plasma discharge. MAPP is designed to operate as a diagnostic within the {approx}12 min NSTX minimum between-shot time window to reveal fundamental plasma-surface interactions. Initial calibration demonstrates MAPP's XPS and TDS capabilities.

  5. Spatial Resolution Measurements of C, Si and Mo Using LIBS for Diagnostics of Plasma Facing Materials in a Fusion Device

    NASA Astrophysics Data System (ADS)

    Li, Cong; Zhao, Dongye; Wu, Xingwei; Ding, Hongbin

    2015-08-01

    Recently, a laser-induced breakdown spectroscopic (LIBS) system has been developed for in situ measurements of the chemical compositions of plasma facing materials (PFMs) in the Experimental Advanced Superconducting Tokamak (EAST). In this study, a LIBS system, which was used in a similar optical configuration to the in situ LIBS system in EAST, has been developed to investigate the spatial distribution of PFM elements at 10-4 Pa. The aim of this study was to understand the nature of the spatial distribution of atoms or ions of different elements in the plasma plume and optimize the signal to background ratio for the in situ LIBS diagnosis in EAST. The spatial profiles of the LIBS signals of C, Si, Mo and the continuous background were measured. Moreover, the influence of laser spot size and laser energy density on the LIBS signals of C, Si, Mo and H was also investigated. The results show that the distribution of the C, Si and Mo peaks' intensities first increased and then decreased from the center to the edge of the plasma plume. There was a maximum value at R ≈ 1.5 mm from the center of the plasma plume. This work aims to improve the understanding of ablating plasma dynamics in very low pressure environments and give guidance to optimize the LIBS system in the EAST device. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2013GB109005), National Natural Science Foundation of China (Nos. 11175035, 11475039), Chinesisch-Deutsches Forschungs Project (GZ768) and the Fundamental Research Funds for the Central Universities of China (Nos. DUT12ZD(G)01, DUT14ZD(G)04)

  6. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    NASA Astrophysics Data System (ADS)

    García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-04-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  7. Overview of Final CDX-U Experiments with Lithium Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Majeski, R.; Gray, T.; Kugel, H.; Mansfield, D.; Spaleta, J.; Timberlake, J.; Zakharov, L.; Doerner, R.; Lynch, T.; Maingi, R.; Soukhanovskii, V.

    2006-10-01

    The final phase of Current Drive eXperiment Upgrade (CDX-U) research involved plasma-facing surfaces nearly completely coated with lithium. The CDX-U device is a spherical tokamak with the following typical parameters: R=34 cm, a=22 cm, Bt=2 kG, Ip=100 kA, Te(0)=100 eV, and ne(0)=5x10^19 m-3. Electron beam-induced evaporation from a lithium target and vapor deposition from a lithium-filled oven created lithium coatings. Convective flows for highly-efficient power dissipation were observed in the lithium with electron beam heating. Lithium layers up to 100 nm thick between were deposited between discharges. These coatings reduced global recycling coefficients to as low as 0.3, a record for magnetically-confined hydrogen plasmas. New magnetic diagnostics constrained equilibrium reconstructions that were used to determine energy confinement times. With lithium coatings, plasmas had the largest global confinement enhancement ever achieved in an Ohmically-heated tokamak, exceeding ITER98P(y,1) scaling by up to a factor of three.

  8. Maximizing power dissipation by impurity seeding on JET with metal plasma facing components

    NASA Astrophysics Data System (ADS)

    Wischmeier, Marco; Huber, Alexander; Lowry, Christopher; Maggi, Costanza; Reinke, Matthew; JET contributors Team

    2015-11-01

    A reactor such as DEMO will operate at considerably higher total heating power even when compared to ITER. This will require mitigating a much higher power flux density in the Scrape-Off Layer. A highly detached divertor will be required for maximizing the lifetime of the eroding plasma facing components, PFCs, in the divertor as well as for operating within the engineering limits expected for the power handling components. A dissipation of ~ 95% of the total heating power will be needed, with more than 70% being radiation on closed field lines. On JET with metal PFCs highly radiative conditions with N2, Ne, both combined and Ar as radiators were approached in H-mode plasmas. For all seeding species radiative power fractions larger than 70% were achieved under stable discharge conditions with a concentration of the radiation in the X-point region. Detachment along both divertor plates was complete. A degradation of the pedestal profile was compensated by steeper core profiles. See the Appendix of F. Romanelli et al., 25th FEC 2014, Russia, Supported by EUROfusion No 633053.

  9. Boron carbide-based coatings on graphite for plasma facing components

    SciTech Connect

    Valentine, P.G.; Trester, P.W.; Winter, J.; Linke, J.; Duwe, R.; Wallura, E.; Philipps, V.

    1994-01-01

    In the effort to evaluate boron-rich coatings as plasma facing surfaces in fusion devices, a new process for applying boron carbide (B{sub 4}C) coatings to graphite was developed. The process entails eutectic melting of the carbon (C) substrate surface with a precursor layer of B{sub 4}C particles. Adherent coatings were achieved which consisted of two layers: a surface layer and a graded penetration zone in the outer portion of the substrate. The surface-layer microstructure was multiphase and ranged from reaction-sintered structures of sintered B{sub 4}C particles in an eutectic-formed matrix to that of hypereutectic carbon particles in a B{sub 4}C-C eutectic matrix. Because of high surface energy, the coating generally developed a nonuniform thickness. Quantitative evaluations of the coating were performed with limiters in the TEXTOR fusion device and with coupons in electron beam tests. Test results revealed the following: good adherence of the coating even after remelting; and, during remelting, diagnostics detected a corresponding interaction of boron with the plasma.

  10. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    SciTech Connect

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ~ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  11. Simulation of the Vapor Shield Effect on Plasma Facing Materials under Tokomak-Like Disruption Conditions

    NASA Astrophysics Data System (ADS)

    Almousa, Nouf; Bourham, Mohamed

    2014-10-01

    Hard disruptions are expected in large tokomaks, where plasma-facing components (PFCs) receive radiant high heat fluxes resulting in surface melting and evaporation. The boundary layer at the ablating/melting surfaces absorbs a fraction of the heat flux and a vapor shield effect protects the PFCs from further erosion. The energy transmission factor through the vapor shield fvs is modeled in a 1-D, time dependent code to calculate the erosion under disruption-like conditions of 55 GW/m2 over 150 μs. The fvs value was found to be strongly dependent on materials properties, plasma pressure, and density, but weakly dependent on the plasma internal and kinetic energies. Calculations of fvs at each time step and mesh point are used to predict the ablated mass. The code predictions are used to estimate the erosion rate and erosion thickness for varies PFMs. It has been found that high-Z PFMs suffer higher ablation rate as compared to low-Z PFMs. However, the erosion in units of material thickness indicates that the erosion thickness of the highest Z PFMs (tungsten) is less than that of the lowest Z PFMs (beryllium). Detailed comparisons of the erosion behavior and properties of PFMs are presented.

  12. Plans for Conditioning Plasma-Facing Components at Initiation of NSTX-U Operations

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Blanchard, W.; Cai, D.; Gerhardt, S.; Jaworski, M. A.; Lucia, M.; Rossi, S.; Skinner, C. H.; Allain, J.-P.; Bedoya, F.

    2014-10-01

    The conditioning of plasma-facing components (PFCs) has been critical to the achievement of high performance plasmas in fusion devices. The NSTX-U PFCs will initially consist of graphite. Well-established PFC conditioning will be applied, including high temperature bakeout and glow discharge cleaning (GDC). As in NSTX, the center stack (CS) will be electrically-isolated from the outer vacuum vessel in NSTX-U for coaxial helicity injection (CHI), and this also permits high currents to pass through the CS for baking. Other conditioning techniques are required to further reduce the dominant impurities, which are expected to be carbon and oxygen. Boronization will first be performed, where helium glow discharge cleaning (GDC) is followed by GDC with a mixture of 95% helium and 5% deuterated trimethyl boron (TMB), and another period of helium GDC. This is to be compared with lithiumization, where lithium vapor is evaporated directly on PFC surfaces. The effectiveness of both conditioning techniques has been inferred from plasma measurements subsequent to their application, but the link between them and actual PFC conditions has not been made. The new Materials Analysis and Particle Probe (MAPP) is intended to do this with in situ analysis of PFC samples exposed to NSTX-U plasmas. Work supported by DOE Contract No. DE-AC02-09CH11466 and DE-SC0010717.

  13. Manufacturing and characterization of PIM-W materials as plasma facing materials

    NASA Astrophysics Data System (ADS)

    Pintsuk, G.; Antusch, S.; Rieth, M.; Wirtz, M.

    2016-02-01

    Powder injection molding (PIM) was used to produce pure and particle reinforced W materials to be qualified for the use as plasma facing material. As alloying elements La2O3, Y2O3, TiC, and TaC were chosen with a particle size between 50 nm and 2.5 μm, depending on the alloying element. The fabrication of alloyed materials was done for different compositions using powder mixtures. Final sintering was performed in H2 atmosphere at 2400 °C resulting in plates of 55 × 22 × 4 mm3 with ˜98% theoretical density. The qualification of the materials was done via high heat flux testing in the electron beam facility JUDITH-1. Thereby, ELM-like 1000 thermal shock loads of 0.38 GW m-2 for 1 ms and 100 disruption like loads of 1.13 GW m-2 for 1 ms at a base temperature of 1000 °C were applied. The obtained damage characteristics, i.e. surface roughening and crack formation, were qualified versus an industrially manufactured pure reference tungsten material and linked to the material’s microstructure and mechanical properties.

  14. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    SciTech Connect

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. . Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. ); Croessmann, D.; Whitley, J. ); Holland, D.; Smolik, G. ); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  15. Nitrogen retention mechanisms in tokamaks with beryllium and tungsten plasma-facing surfaces

    NASA Astrophysics Data System (ADS)

    Oberkofler, M.; Meisl, G.; Hakola, A.; Drenik, A.; Alegre, D.; Brezinsek, S.; Craven, R.; Dittmar, T.; Keenan, T.; Romanelli, S. G.; Smith, R.; Douai, D.; Herrmann, A.; Krieger, K.; Kruezi, U.; Liang, G.; Linsmeier, Ch; Mozetic, M.; Rohde, V.; the ASDEX Upgrade Team; the EUROfusion MST1 Team; Contributors, JET

    2016-02-01

    Global gas balance experiments at ASDEX Upgrade (AUG) and JET have shown that a considerable fraction of nitrogen injected for radiative cooling is not recovered as N2 upon regeneration of the liquid helium cryo pump. The most probable loss channels are ion implantation into plasma-facing materials, co-deposition and ammonia formation. These three mechanisms are investigated in laboratory and tokamak experiments and by numerical simulations. Laboratory experiments have shown that implantation of nitrogen ions into beryllium and tungsten leads to the formation of surface nitrides, which may decompose under thermal loads. On beryllium the presence of nitrogen at the surface has been seen to reduce the sputtering yield. On tungsten surfaces it has been observed that the presence of nitrogen can increase hydrogen retention. The global nitrogen retention in AUG by implantation into the tungsten surfaces saturates. At JET the steady state nitrogen retention is increased by co-deposition with beryllium. The tokamak experiments are interpreted in detail by simulations of the global migration with WallDYN. Mass spectrometry of the exhaust gas of AUG and JET has revealed the conversion of nitrogen to ammonia at percent-levels. Conclusions are drawn on the potential implications of nitrogen seeding on the operation of a reactor in a deuterium-tritium mix.

  16. NSTX-U Research Goals and Plans for Materials and Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Capece, A. M.; Jaworski, M. A.; Koel, B. E.; Roszell, J. P.; Skinner, C. H.; Stotler, D. P.; NSTX Team

    2013-10-01

    A major need for NSTX-U is plasma facing components (PFCs) that can survive heat and particle fluxes that result from increasing the maximum heating power to 19.2 MW, which leads to one of highest divertor PFC power densities in the world. This is expressible as the ratio of heating power to major radius of about 21 MW/m, which NSTX-U PFCs are expected to withstand for five to eight seconds. From the perspective of materials and PFCs, this challenge is being addressed through research in three major areas. 1) Understanding why lithium is effective for PFC conditioning, and determining its suitability for long-pulse discharges. Surface analytic techniques are thus being applied to study the complexes that are formed when lithium is deposited various substrates. 2) Investigating erosion and re-deposition of PFCs, including research on lithium-conditioned materials in linear plasma devices that simulate particle fluxes to tokamak walls. 3) Developing techniques for mitigating plasma-surface responsible for reducing wall lifetimes, such as continuous vapor shielding. Present plans are to change NSTX-U PFCs gradually from low-Z carbon to high-Z metallic PFCs. Liquid metals may provide the only long-term PFC solution, and a program to develop flowing lithium PFCs has been initiated. Work supported by DOE Contract No. DE-AC02-09CH11466.

  17. A penalization technique to model plasma facing components in a tokamak with temperature variations

    SciTech Connect

    Paredes, A.; Bufferand, H.; Ciraolo, G.; Schwander, F.; Serre, E.; Ghendrih, P.; Tamain, P.

    2014-10-01

    To properly address turbulent transport in the edge plasma region of a tokamak, it is mandatory to describe the particle and heat outflow on wall components, using an accurate representation of the wall geometry. This is challenging for many plasma transport codes, which use a structured mesh with one coordinate aligned with magnetic surfaces. We propose here a penalization technique that allows modeling of particle and heat transport using such structured mesh, while also accounting for geometrically complex plasma-facing components. Solid obstacles are considered as particle and momentum sinks whereas ionic and electronic temperature gradients are imposed on both sides of the obstacles along the magnetic field direction using delta functions (Dirac). Solutions exhibit plasma velocities (M=1) and temperatures fluxes at the plasma–wall boundaries that match with boundary conditions usually implemented in fluid codes. Grid convergence and error estimates are found to be in agreement with theoretical results obtained for neutral fluid conservation equations. The capability of the penalization technique is illustrated by introducing the non-collisional plasma region expected by the kinetic theory in the immediate vicinity of the interface, that is impossible when considering fluid boundary conditions. Axisymmetric numerical simulations show the efficiency of the method to investigate the large-scale transport at the plasma edge including the separatrix and in realistic complex geometries while keeping a simple structured grid.

  18. A penalization technique to model plasma facing components in a tokamak with temperature variations

    NASA Astrophysics Data System (ADS)

    Paredes, A.; Bufferand, H.; Ciraolo, G.; Schwander, F.; Serre, E.; Ghendrih, P.; Tamain, P.

    2014-10-01

    To properly address turbulent transport in the edge plasma region of a tokamak, it is mandatory to describe the particle and heat outflow on wall components, using an accurate representation of the wall geometry. This is challenging for many plasma transport codes, which use a structured mesh with one coordinate aligned with magnetic surfaces. We propose here a penalization technique that allows modeling of particle and heat transport using such structured mesh, while also accounting for geometrically complex plasma-facing components. Solid obstacles are considered as particle and momentum sinks whereas ionic and electronic temperature gradients are imposed on both sides of the obstacles along the magnetic field direction using delta functions (Dirac). Solutions exhibit plasma velocities (M=1) and temperatures fluxes at the plasma-wall boundaries that match with boundary conditions usually implemented in fluid codes. Grid convergence and error estimates are found to be in agreement with theoretical results obtained for neutral fluid conservation equations. The capability of the penalization technique is illustrated by introducing the non-collisional plasma region expected by the kinetic theory in the immediate vicinity of the interface, that is impossible when considering fluid boundary conditions. Axisymmetric numerical simulations show the efficiency of the method to investigate the large-scale transport at the plasma edge including the separatrix and in realistic complex geometries while keeping a simple structured grid.

  19. Development of an analytical hydrogen isotope exchange model in fusion relevant plasma facing components

    NASA Astrophysics Data System (ADS)

    Barton, Joseph; Wang, Yongquang; Doerner, Russell; Tynan, George

    2014-10-01

    A simple model for H isotope retention depth profiles in W is developed, which can easily be extended to other plasma facing components (PFCs). This retention model is subsequently used to model how the depth profile changes after H isotope exchange. We calculate how trapping defects in W trap D (or H) inventory as W is being exposed to plasma. The model characterizes each trapping site by a trapping rate and a release rate, where the only free parameters are the distribution of these trapping sites in the material. The filled trap concentrations for each trap type are modeled as a diffusion process because post-mortem D depth profiles indicate that traps are filled well beyond the ion implantation zone (3--4 nm with 100 eV ions). Using this retention model, an isotope exchange rate is formulated. The retention model and isotope exchange rate are compared to low temperature (100 °C) isotope exchange experiments in W with good agreement. Experimental retention profiles were measured using the D(3He,p) α nuclear reaction after plasma treatment. We additionally discuss how a uniform damage profile up to 1 micron in W induced by Cu ions using incident energies of 0.5, 2, and 5 MeV affect retention in W and the retention model.

  20. Numerical simulation of strong evaporation and condensation for plasma-facing materials

    SciTech Connect

    Kunugi, T.; Yasuda, H.

    1994-12-31

    The thermal response of the divertor plate to the hard plasma disruptions had been analyzed numerically by the two dimensional transient heat transfer code. There are several studies of the vapor shielding effects on the thermal response to the plasma disruption. However, it was pointed out some discrepancies among the numerical results calculated by U.S., EC and Japan for the same disruption conditions by van der Laan. One of the authors studied the sensitivity of some parameters (i.e., the temperature dependency of the thermal properties, an evaporation coefficient and a saturated condensation ratio) of disruption erosion analysis. Though the authors expected that the variations in evaporation models lead to the large variety of the erosion, they gave no significant effects on the surface temperature, the evaporation and melt-layer thickness. In this paper, the authors will describe the development of the numerical simulation codes for the strong evaporation and condensation from the plasma facing materials (PFMs) such as carbon, tungsten and beryllium.

  1. Tracer techniques for the assessment of material migration and surface modification of plasma-facing components

    NASA Astrophysics Data System (ADS)

    Rubel, M.; Weckmann, A.; Ström, P.; Petersson, P.; Garcia-Carrasco, A.; Brezinsek, S.; Coenen, J.; Kreter, A.; Möller, S.; Wienhold, P.; Wauters, T.; Fortuna-Zaleśna, E.

    2015-08-01

    Tracer techniques were used in the TEXTOR tokamak to determine high-Z metal migration and the deposition of species used for plasma edge cooling or wall conditioning under different types of operation conditions. Volatile molybdenum hexa-fluoride, nitrogen-15 and oxygen-18 were used as markers in tokamak or ion cyclotron wall conditioning discharges (ICWC). The objective was to obtain qualitative and quantitative of a global and local deposition pattern and material mixing effects. The deposition and retention was studied on plasma-facing components, collector probes and test limiters. Optical spectroscopy and ex-situ analysis techniques were used to determine the plasma response to tracer injection and the modification of surface composition. Molybdenum and light isotopes were detected on all types of limiters and short-term probes retrieved from the vessel showing that both helium and nitrogen are trapped following wall conditioning and edge cooling. Only small amounts below 1 × 1019 m-2 of 18O were detected on surfaces treated by oxygen-assisted ICWC.

  2. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  3. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  4. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE PAGES

    Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; Kulcinski, Gerald L.; Santarius, John F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  5. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Rokusek, D. L.; Harilal, S. S.; Nieto-Perez, M.; Skinner, C. H.; Kugel, H. W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-06-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  6. ICRF performance with Metallic Plasma Facing Components: Revenge of the Sheath

    NASA Astrophysics Data System (ADS)

    Wukitch, Stephen

    2007-11-01

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are envisioned. The advantages of ICRF heating is the availability of relatively inexpensive high power sources and it can directly heat ions. For coupling, the antenna needs to be close to the plasma and antenna operation can be limited by compatibility (impurity generation, density production and erosion). Utilizing high Z PFCs, control of ICRF generated impurities becomes more important because the acceptable fractional high Z material concentration in the plasma is of order 1000 times less than low Z materials. In addition, low Z coatings applied in-situ, ie boronization, is often utilized to mitigate the high Z impurities in the plasma. However, erosion of these typically thin, low Z coatings will limit their effective lifetime. In Alcator C-Mod, we have investigated the compatibility of high power ICRF heating with high performance plasmas and high-Z PFCs with and without boronization. With boronization, record C-Mod stored energy and world record plasma pressures were achieved with 5.25 MW of injected ICRF power. However, impurity control through boronization is temporary and boronization appears to erode 3-5 times faster with ICRF compared with Ohmic H-modes. Experimental evidence suggests that RF-enhanced sheaths on open field lines are responsible for enhanced erosion and impurity influx. Utilizing localized boronization, we have determined that the primary impurity source is outside the divertor and we demonstrated that the erosion location is linked to the active antenna. Furthermore, we observed that erosion rate associated with ICRF heating was unaffected by the heating scenario's single pass absorption. Using a 3-D antenna code coupled to a full wave solver we will present the influence antenna geometry has upon sheaths and possible mitigation strategies.

  7. Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Matthes, Christopher Stanley Rutter

    A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also

  8. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials. PMID:27587118

  9. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    SciTech Connect

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-02-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ``spike`` of 750{degree}C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m{sup 2}. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP`d spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe{sub 12}. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis.

  10. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin

  11. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    NASA Astrophysics Data System (ADS)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  12. Analysis of heat transfer and erosion effects on ITER divertor plasma facing components induced by slow high-power transients

    SciTech Connect

    Federici, G.; Raffray, A.R.; Chiocchio, S.; Esser, B.; Dietz, J.; Igitkhanov, Y.; Janeschitz, G.; Pacher, H.D.; Smid, I.

    1995-12-31

    This paper presents the results of an analysis carried out to investigate the thermal response of ITER divertor plasma facing components (PFC`s) clad with Be, W, and CFC, to high-recycling, high-power thermal transients (i.e. 10--30 MW/m{sup 2}) which are anticipated to last up to a few seconds. The armour erosion and surface melting are estimated for the different plasma facing materials (PFM`s) together with the maximum heat flux to the coolant, and armour/heat-sink interface temperature. The analysis assumes that intense target evaporation will lead to high radiative power losses in the plasma in front of the target which self-protects the target. The cases analyzed clarify the influence of several key parameters such as the plasma heat flux to the target, the loss of the melt layer, the duration of the event, the thickness of the armour, and comparison is made with cases without vapor shielding. Finally, some implications for the performance and lifetime of divertor PFC`s clad with different PFM`s are discussed.

  13. Unraveling wall conditioning effects on plasma facing components in NSTX-U with the Materials Analysis Particle Probe (MAPP)

    NASA Astrophysics Data System (ADS)

    Bedoya, F.; Allain, J. P.; Kaita, R.; Skinner, C. H.; Buzi, L.; Koel, B. E.

    2016-11-01

    A novel Plasma Facing Components (PFCs) diagnostic, the Materials Analysis Particle Probe (MAPP), has been recently commissioned in the National Spherical Torus Experiment Upgrade (NSTX-U). MAPP is currently monitoring the chemical evolution of the PFCs in the NSTX-U lower divertor at 107 cm from the tokamak axis on a day-to-day basis. In this work, we summarize the methodology that was adopted to obtain qualitative and quantitative descriptions of the samples chemistry. Using this methodology, we were able to describe all the features in all our spectra to within a standard deviation of ±0.22 eV in position and ±248 s-1 eV in area. Additionally, we provide an example of this methodology with data of boronized ATJ graphite exposed to NSTX-U plasmas.

  14. Predicting hydrogen isotope inventory in plasma-facing components during normal and abnormal operations in fusion devices

    NASA Astrophysics Data System (ADS)

    Hu, Alice; Hassanein, Ahmed

    2015-10-01

    Hydrogen isotope behavior and inventory in plasma-facing components (PFCs) of fusion devices are key concerns for safe, reliable, and economical operation. To accurately estimate hydrogen isotope retention and recovery in tungsten (the current leading candidate as a PFC), we have developed a model that was recently benchmarked against isotope depth profile and retention level in a tungsten target under various conditions and compared with both experimental data and simulation results. In this research, we have extended the model to include details of transient events. Therefore, one can use this model to estimate hydrogen isotope retention behavior in tungsten and potential other PFC candidates during normal operational pulse, effects of edge-localized modes (ELMs), and a possible cleaning processes scenario.

  15. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    SciTech Connect

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  16. The EPQ Code System for Simulating the Thermal Response of Plasma-Facing Components to High-Energy Electron Impact

    SciTech Connect

    Ward, Robert Cameron; Steiner, Don

    2004-06-15

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10 to 300 MeV, and may potentially cause extensive damage to plasma-facing components (PFCs) through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of PFCs to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts that control the operation of an electron-photon Monte Carlo code to calculate the interaction of the runaway electrons with the plasma-facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials; a code to process, scale, transform, and convert the electron Monte Carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and postprocessing of the data. The electron-photon Monte Carlo code used was Electron-Gamma-Shower (EGS), developed and maintained by the National Research Center of Canada. The Quick-Therm-Two-Dimensional-Nonlinear (QTTN) thermal code solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system is validated using a series of analytical solutions and simulations of experiments. The verification of the QTTN thermal code with analytical solutions shows that the code with the Quickest method is better than 99.9% accurate. The benchmarking of the EPQ code system and QTTN versus experiments showed that QTTN's erosion tracking method is accurate within 30% and that EPQ is able to predict the occurrence of melting within the proper time constraints. QTTN and EPQ are verified and validated as able

  17. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  18. Erosion products of plasma facing materials formed under ITER-like transient load and deuterium retention in them

    SciTech Connect

    Putrik, A. B. Klimov, N. S.; Gasparyan, Yu. M. Efimov, V. S.; Barsuk, V. A.; Podkovyrov, V. L. Zhitlukhin, A. M. Yarochevskaya, A. D.; Kovalenko, D. V.

    2015-12-15

    Erosion of the plasma-facing materials in particular evaporation of the materials in a fusion reactor under intense transient events is one of the problems of the ITER. The current experimental data are insufficient to predict the properties of the erosion products, a significant part of which will be formed during transient events (edge-localized modes (ELMs) and disruptions). The paper concerns the experimental investigation of the graphite and tungsten erosion products deposited under pulsed plasma load at the QSPA-T: heat load on the target was 2.6 MJ/m{sup 2} with 0.5 ms pulse duration. The designed diagnostics for measuring the deposition rate made it possible to determine that the deposition of eroded material occurs during discharge, and the deposition rate is in the range (0.1–100) × 10{sup 19} at/(cm{sup 2} s), which is much higher than that for stationary processes. It is found that the relative atomic concentrations D/C and D/(W + C) in the erosion products deposited during the pulse process are on the same level as for the stationary processes. An exposure of erosion products to photonic energy densities typical of those expected at mitigated disruptions in the ITER (pulse duration of 0.5–1 ms, integral energy density of radiation of 0.1–0.5 MJ/m2) significantly decreases the concentration of trapped deuterium.

  19. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    SciTech Connect

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  20. Proposal for secondary enclosure setup for experiments to expose plasma facing materials to tritiated plasma in VISIONI

    SciTech Connect

    Broeckx, W.E.K.; Dylst, K.; Bornea, A.; Zamfirache, M.

    2015-03-15

    VISIONI is an equipment at SCK-CEN that allows the exposure of candidate plasma facing materials to tritium - deuterium plasmas at ITER first wall conditions. VISIONI itself, being a vacuum setup, acts as primary confinement. To protect operators against exposure to a tritiated atmosphere VISIONI must be placed in a secondary confinement. The current Tritium lab at SCK-CEN has a walk-in process cell which can be used to enclose the plasma chamber and diagnostics of the VISIONI setup, which have a limited tritium inventory. This allows easy accessibility to the setup in a well-ventilated environment. Routine operations should be conducted from outside the process cell and maintenance operations can be conducted from within the process cell with proper protections. The tritium storage and supply can be enclosed in a glove box with a dedicated air detritiation system which is activated during an experiment or in case of an incident. The detritiation system will oxidize tritium and capture it on molecular sieves. By using this confinement approach it is possible to expose materials to a tritiated plasma while maintaining good accessibility of the VISIONI setup. This paper describes the proposed confinement system and compares it to the most common approach where the entire system is enclosed into one large glovebox.

  1. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  2. Study of plasma-facing components in the Lithium Tokamak Experiment with the Materials Analysis and Particle Probe

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Boyle, D. P.; Granstedt, E. M.; Jacobson, C. M.; Schmitt, J. C.; Allain, J. P.; Bedoya, F.; Gonderman, S.

    2013-10-01

    The Lithium Tokamak Experiment (LTX) is a spherical torus designed to accommodate solid or liquid lithium as the primary plasma-facing component (PFC). We present initial results from the implementation on LTX of the Materials Analysis and Particle Probe (MAPP) diagnostic, a collaboration among PPPL, Purdue University, and the University of Illinois. MAPP is a compact in vacuo surface science diagnostic, and its operation on LTX will provide the first ever in situ surface measurements of a tokamak first wall environment. With MAPP's analysis techniques, we will study the evolution of the surface chemistry of LTX's first wall as a function of varied temperature and lithium coating. During its 2013 run campaign, LTX will use an electron beam to evaporate lithium onto the first wall from an in-vessel reservoir. We will use two quartz crystal microbalances to estimate thickness of lithium coatings thus applied to the MAPP probe. We have recently installed a set of triple Langmuir probes on LTX, and they will be used to relate LTX edge plasma parameters to MAPP results. We will combine data from MAPP and the triple probes to estimate the local edge recycling coefficient based on desorption of retained hydrogen. This work was supported by U.S. DOE contract DE-AC02-09CH11466.

  3. Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation

    SciTech Connect

    Kugel, H. W.; Bell, M. G.; Maingi, R.

    2010-01-01

    NSTX high power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following the wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a liquid lithium divertor surface on the outer part of the lower divertor.

  4. Response of plasma facing components in Tokamaks due to intense energy deposition using Particle-In-Cell (PIC) methods

    NASA Astrophysics Data System (ADS)

    Genco, Filippo

    Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving

  5. A study of hydrogenic retention in a tokamak with reactor-like plasma-facing surfaces; Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lipschultz, Bruce

    2008-11-01

    Tritium retention is an important safety concern for ITER; Operation for 1000 discharges without a major stoppage will require the fraction of ion fluence to Plasma Facing Components (PFCs) that is retained, R, to be < 0.001%. One year operation of a reactor, where tungsten (W) PFCs are envisioned, requires R to be 100x smaller! Co-deposition of H with carbon projects to unacceptably high T retention in ITER. We present the results of the first in-depth study of fuel retention for high-Z PFCs with ITER divertor ne, Te, particle and heat fluxes. We utilize molybdenum (Mo, with a small fraction of W), which is very similar to tungsten in terms of hydrogenic retention. The retention observed in a series of disruption-free C-Mod discharges is high, R˜1%, 1000x than expected from inherent Mo properties. These retention characteristics are exhibited regardless if the Mo surfaces are bare or partially covered by B films; D co-deposition with B is not contributing significantly to retention. Retention appears linear in fluence up to the limit of the discharge sequence, ˜20s, approaching one ITER discharge. Comparison of He- and D-fueled discharges gives support to a model of retention site creation in the lattice (`traps') due to D neutral buildup and accompanying lattice distortion driven by recombination-limited release (D->D2) from the front surface. Disruptions can be used to rapidly heat surfaces, releasing the H/D for recovery, potentially applicable to ITER. Naturally-occurring disruptions appear to balance single-discharge retention reducing the campaign-integrated retention by at least 100. Comparisons to laboratory-based retention studies indicate that the tokamak environment leads to additional enhancements of retention. This work is supported by U.S. Dept. of Energy Coop. Agreement DE-FC02-99ER54512.

  6. Achievement of Low Recycling and High Power Density Handling in CDX-U with Lithium Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Kaita, Robert

    2006-10-01

    The CDX-U spherical tokamak research program has focused on lithium as a large area plasma-facing component (PFC). The CDX-U experiments have used a toroidal lithium limiter and evaporated lithium wall coatings up to 100 nm thick. Under these conditions, a particle pumping rate of 1 - 2 x 10^21 particles/second was achieved from an active wall area of 0.4 m^2. The energy confinement times deduced from plasma equilibrium reconstructions showed a nearly six-fold improvement over discharges without lithium PFC's. This was an increase of up to a factor three over ITER98P(y,1) scaling, and reflect the largest enhancement in confinement ever seen in Ohmic plasmas. Recycling coefficients (R) of 0.3 or below were deduced from spectroscopic measurements. These are the lowest values of R observed to date in magnetically-confined plasmas, and for the first time, the wall was not the dominant source of fueling. The process of generating lithium evaporative coatings also showed the effectiveness of liquid lithium in redistributing heat loads at extremely high power densities. An electron beam was used to deposit about 1.5 kW of power on a 6 mm spot on the toroidal lithium limiter. Lithium evaporation was not localized to this spot, but occurred only after the entire volume of lithium was raised to the evaporation temperature. Infrared camera images showed that even with a lithium depth of 3 mm, convection due to the Marangoni effect was able to distribute a heat load of about 50 MW/m^2 for the 240 second duration of the electron beam pulse. This could have significant consequences for PFC's in burning plasma devices, where high power densities are a concern.

  7. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    SciTech Connect

    Hammond, Karl D.; Wirth, Brian D.

    2014-10-14

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  8. High heat flux testing of divertor plasma facing materials and components using the HHF test facility at IPR

    NASA Astrophysics Data System (ADS)

    Patil, Yashashri; Khirwadkar, S. S.; Belsare, Sunil; Swamy, Rajamannar; Tripathi, Sudhir; Bhope, Kedar; Kanpara, Shailesh

    2016-02-01

    The High Heat Flux Test Facility (HHFTF) was designed and established recently at Institute for Plasma Research (IPR) in India for testing heat removal capability and operational life time of plasma facing materials and components of the ITER-like tokamak. The HHFTF is equipped with various diagnostics such as IR cameras and IR-pyrometers for surface temperature measurements, coolant water calorimetry for absorbed power measurements and thermocouples for bulk temperature measurements. The HHFTF is capable of simulating steady state heat load of several MW m-2 as well as short transient heat loads of MJ m-2. This paper presents the current status of the HHFTF at IPR and high heat flux tests performed on the curved tungsten monoblock type of test mock-ups as well as transient heat flux tests carried out on pure tungsten materials using the HHFTF. Curved tungsten monoblock type of test mock-ups were fabricated using hot radial pressing (HRP) technique. Two curved tungsten monoblock type test mock-ups successfully sustained absorbed heat flux up to 14 MW m-2 with thermal cycles of 30 s ON and 30 s OFF duration. Transient high heat flux tests or thermal shock tests were carried out on pure tungsten hot-rolled plate material (Make:PLANSEE) with incident power density of 0.49 GW m-2 for 20 milliseconds ON and 1000 milliseconds OFF time. A total of 6000 thermal shock cycles were completed on pure tungsten material. Experimental results were compared with mathematical simulations carried out using COMSOL Multiphysics for transient high heat flux tests.

  9. Application of Analytical Model of the Electric Potential Distribution for Calculation of Charged Particle Dynamics in a Near-Wall Layer and Sputtering of the Plasma Facing Surfaces

    NASA Astrophysics Data System (ADS)

    Borodkina, I. E.; Komm, M.; Tsvetkov, I. V.

    2015-08-01

    Simple analytical formulas are derived for calculation of the electric field potential distribution in the magnetic pre-layer and the Debye layer near the plasma facing surfaces. It is shown that the calculated potential profiles are in good agreement with the dependences of the potential distribution on the magnetic field inclination obtained by solving the magnetic hydrodynamic (MHD) equations and modeling using the PIC code SPICE2. Dependences of the angular distribution of ions incident on the surface of plasma facing elements on the magnetic field inclination are obtained. Results of calculations demonstrate that the surface areas, on which the magnetic field is incident at sliding angles, are critical from the viewpoint of the increase of sputtering.

  10. In-situ erosion and deposition measurements of plasma-facing surfaces in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.

    2014-10-01

    The Accelerator Based In-situ Materials Surveillance (AIMS) diagnostic was recently developed to demonstrate the novel application of ion beam analysis (IBA) to in-vessel studies of plasma materials interactions in Alcator C-Mod. The AIMS diagnostic injects a 900 keV deuterium ion beam into the tokamak's vacuum vessel between plasma discharges while magnetic fields are used to steer the ion beam to plasma facing component (PFC) surfaces. Spectroscopic analysis of neutrons and gamma rays from the induced nuclear reactions provides a quantitative, spatially resolved map of the PFC surface composition that includes boron (B) and deuterium (D) content. Since AIMS is sensitive to low-Z elements and C-Mod regularly boronizes PFCs, the evolution of B and D on PFCs can be used to directly study erosion, deposition, and fuel retention in response to plasma operations and wall conditioning processes. AIMS analysis of 18 lower single null I-mode discharges show a net boron deposition rate of 6 +/- 2 nm/s on the inner wall while subsequent inner wall limited discharges and a disruption did not show significant changes in B. Measurements of D content showed relative changes of >2.5 following a similar trend. This suggests high D retention rates and net B deposition rates of ~18 cm/year of plasma exposure are possible and depend strongly on the plasma conditions. Ex-situ IBA was also performed on the same PFCs after removal from C-Mod, successfully validating the AIMS technique. These IBA measurements also show that the B content on the inner wall varied toroidally and poloidally from 0 to 3000 nm, demonstrating the importance of the spatial resolution provided by AIMS and the sensitivity of PFCs to B-field alignment. AIMS upgrades are underway for operation in 2014 and we anticipate new measurements correlating the evolution of PFC surfaces to plasma configuration, RF heating, and current drive scenarios. This work is supported by U.S. DOE Grant No. DE-FG02-94ER54235 and

  11. Evaluation of observable phase space by fast ion loss detector by calculating particle orbits in consideration of plasma facing components and three dimensional magnetic field

    NASA Astrophysics Data System (ADS)

    Shinohara, Kouji; Kim, Junghee; Kim, Jun Young; Rhee, Tongnyeol

    2016-11-01

    The orbits of lost ions can be calculated from the information obtained by a fast ion loss detector (FILD). The orbits suggest a source of the lost fast ions in a phase space. However, it is not obvious whether an observable set of orbits, or phase space, of a FILD appropriately covers the region of interest to be investigated since the observable phase space can be affected by plasma facing components (PFCs) and a magnetic configuration. A tool has been developed to evaluate the observable phase space of FILD diagnostic by calculating particle orbits by taking the PFCs and 3D magnetic field into account.

  12. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    NASA Astrophysics Data System (ADS)

    Stork, D.; Agostini, P.; Boutard, J. L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; Li Puma, A.; Marbach, G.; Morris, P. F.; Packer, L. W.; Raj, B.; Rieth, M.; Tran, M. Q.; Ward, D. J.; Zinkle, S. J.

    2014-12-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ⩾2 MW yr m-2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m-2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290-320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200-350 °C) that could be realised, as a baseline-concept, using tungsten on a copper

  13. Laser-induced removal of co-deposits from graphitic plasma-facing components: Characterization of irradiated surfaces and dust particles

    NASA Astrophysics Data System (ADS)

    Gąsior, P.; Irrek, F.; Petersson, P.; Penkalla, H. J.; Rubel, M.; Schweer, B.; Sundelin, P.; Wessel, E.; Linke, J.; Philipps, V.; Emmoth, B.; Wolowski, J.; Hirai, T.

    2009-06-01

    Laser-induced fuel desorption and ablation of co-deposited layers on limiter plates from the TEXTOR tokamak have been studied. Gas phase composition was monitored in situ, whereas the ex situ studies have been focused on the examination of irradiated surfaces and broad analysis of dust generated by ablation of co-deposits. The size of the dust grains is in the range of few nanometers to hundreds of micrometers. These are fuel-rich dust particles, as determined by nuclear reaction analysis. The presence of deuterium in dust indicates that not all fuel species are transferred to the gas phase during irradiation. This also suggests that photonic removal of fuel and the ablation of co-deposit from plasma-facing components may lead to the redistribution of fuel-containing dust to surrounding areas.

  14. Simulation experiment of interaction of plasma facing materials and transient heat loads in ITER divertor by use of magnetized coaxial plasma gun

    NASA Astrophysics Data System (ADS)

    Nakatsuka, M.; Ando, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    Interaction of plasma facing materials and transient head loads such as type I ELMs is one of the critical issues in ITER divertor. The heat load to the ITER divertor during type I ELMs is estimated to be 0.5-3 MJ/m^2 with a pulse length of 0.1-0.5 ms. We have developed a magnetized coaxial plasma gun (MCPG) for the simulation experiment of transient heat load during type I ELMs in ITER divertor. The MCPG has inner and outer electrodes made of stainless steel 304. In addition, the inner electrode is covered with molybdenum so as to suppress the release of impurities from the electrode during the discharge. The diameters of inner and outer electrodes are 0.06 m and 0.14 m, respectively. The power supply for the MCPG is a capacitor bank (7 kV, 1 mF, 25 kJ). The plasma velocity estimated by the time of flight measurement of the magnetic fields was about 50 km/s, corresponding to the ion energy of 15 eV (H) or 30 eV (D). The absorbed energy density of the plasma stream was measured a calorimeter made of graphite. It was found that the absorbed energy density was 0.9 MJ/m^2 with a pulse width of 0.5 ms at the distance of 100 mm from the inner electrode. In the conference, experimental results of plasma exposure on the plasma facing materials in ITER divertor will be shown.

  15. Be/W and W/Be bilayers deposited on Si substrates with hydrogenated Fe-Cr and Fe-Cr-Al interlayers for plasma facing components

    NASA Astrophysics Data System (ADS)

    Greculeasa, S. G.; Palade, P.; Schinteie, G.; Lungu, G. A.; Porosnicu, C.; Jepu, I.; Lungu, C. P.; Kuncser, V.

    2016-12-01

    Be/W and W/Be bilayers, of interest in regard to the specific behavior of plasma facing components (PFCs) were deposited on Si substrates by thermionic vacuum arc, with Fe, Fe-Cr and Fe-Cr-Al interlayers. The interlayers, with compositions approaching the one of the reduced activation steels used in supporting PFCs, were subsequently annealed in hydrogen atmosphere. The multilayers were characterized with respect to morphologic, structural, diffusional and atomic intermixing aspects via XRD, XRR, X-ray photoemission spectroscopy and Mössbauer spectroscopy. All as-prepared samples present partially amorphous structures. A main α-Fe phase is observed, as well as (superparamagnetic) secondary Fe oxides, metallic Fe with Si, Cr, W and Be neighbors, Be-rich Fe-Be and Fe-Si phases. High amounts of tungsten and tungsten oxides were also evidenced in the Fe layer. The strong atomic intermixing of W and Be layers was indirectly supported by the unusual densities of W and Be layers and 57Fe Mössbauer spectroscopy results.

  16. Crystal orientation effects on implantation of low-energy hydrogen, helium and hydrogen/helium mixtures in plasma-facing tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Linn, Brian C.

    The development of plasma-facing materials (PFM) is one of the major challenges in. realizing fusion reactors. Materials deployed in PFMs must be capable of withstanding the high-flux of low-energy hydrogen and helium ions omitted from the plasma. while not hindering the plasma. Tungsten is considered a promising candidate material due to desirable material properties including its high melting temperature, good thermal conductivity and relatively low physical and chemical sputtering yields. This thesis uses molecular dynamic simulations to investigate helium and hydrogen bombardment of tungsten and the underlying physical effects (e.g. sputtering, erosion, blistering). Non-cumulative and cumulative bombardment simulations of helium, hydrogen, and hydrogen/helium bombardment of tungsten were modeled using the molecular dynamics code LAMMPS. Two orientations of monocrystalline bcc tungsten surfaces were considered, (001) and (111). Simulations were performed for temperatures ranging from 600K up to 1500K and helium / hydrogen incident energies of 20eV to 100eV . The results of these simulations showed the effect of temperature and incident particle energy on retention rates and implantation/deposition profiles in tungsten.

  17. Experimental Study of the Effects of Lithium Coated Plasma Facing Components on Energy Confinement Time in the CDX-U Device

    NASA Astrophysics Data System (ADS)

    Spaleta, Jeffrey; Zakharov, Leonid; Majeski, Richard; Kaita, Robert; Gray, Timothy

    2006-10-01

    The first ever measurements of energy confinement time for spherical tokamak plasmas in the presence of lithium coated plasma facing components (PFC's) have been made in the CDX-U device. The energy confinement time, as derived from power balance considerations using parameters calculated from plasma equilibria, was as large as 6 milliseconds for Ohmic plasmas in the presence of both solid and liquid lithium PFC's. This represents a significant improvement over baseline plasmas, which typically had energy confinement times of 1 millisecond or less. The energy confinement for plasmas with lithium PFC's also showed an improvement over that expected from the ITER98(y,1) confinement scaling. The improvement in confinement over this scaling correlates with the observed increase in density ``pump-out'', which is indicative of low wall-recycling. Plasma equilibria were calculated using a modified version of the Equilibrium and Stability Code (ESC), and were constrained by measurements made from a collection of magnetic field diagnostics. The ESC was modified to incorporate the first ever implementation of a novel response function technique for in-situ magnetic field diagnostic calibration that is insensitive to toroidal asymmetries and vessel wall currents.

  18. The Effects of Temperature and Oxidation on Deuterium Retention in Solid and Liquid Lithium Films on Molybdenum Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Capece, Angela

    2014-10-01

    Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.

  19. Experimental study of the effects of lithium coated plasma facing components on energy confinement time in the CDX-U device

    NASA Astrophysics Data System (ADS)

    Spaleta, Jeffrey Dario

    Experimentally constrained equilibrium reconstructions are an important analysis tool used to understand the physics of magnetically confined plasmas. This thesis describes the first ever calculations of equilibrium reconstructions for spherical tokamak plasmas in the presence of lithium coated plasma facing components (PFC's) in the Current Drive eXperiment - Upgrade (CDX-U) device. Equilibria were calculated using a modified version of the Equilibrium and Stability Code (ESC), and were constrained by measurements made from a collection of magnetic field diagnostics. The ESC was modified to incorporate the first ever implementation of a novel response function technique for magnetic field diagnostic calibration. The technique is well suited for situations where the assumption of toroidal symmetry of the magnetic field is invalid, or when wall eddy currents are too large to neglect. Also included is a detailed discussion of the calculation of energy confinement time from power balance arguments, using parameters obtained from equilibrium reconstructions. The energy confinement time, as derived from plasma equilibria, was as large as 6 milliseconds for plasmas in the presence of both solid and liquid lithium PFC's. This represents a significant improvement over baseline plasmas, which typically had energy confinement times of 1 millisecond or less. The energy confinement for plasmas with lithium PFC's also showed an improvement over that expected from the ITER98y1 confinement scaling, which is derived from a database of earlier tokamak results. The improvement in confinement over this scaling correlates with the observed increase in density "pump-out", which is indicative of low wall-recycling. Traditionally, plasma fueling has been dominated by wall-recycling, with 90% or more of the fuel coming from recycling sources instead of externally controlled means, such as gas puffing or pellet injection. Previous lithium wall coating experiments on the Tokamak Fusion Test

  20. A comparison between finite element modeling and various thermographic non-destructive testing techniques for the quantification of the thermal integrity of macro-brush plasma facing components used in a tokamak.

    PubMed

    Pandya, Santosh P; Pandya, Shwetang N; Patil, Yashashri V; Krishnan, Deepu S; Murugesan, Menaka; Sharath, D; Singh, K Premjit; Khan, Md Shoaib; Arafat, M; Biju, N; Khirwadkar, Samir S; Govidarajan, Jagannathan; Venkatraman, B; Balasubramaniam, Krishnan

    2016-02-01

    The plasma facing components (PFCs) inside a tokamak are typically exposed to extremely high heat flux of the order of MW/m(2). The brazing quality between the plasma facing materials (PFMs) and the heat sink will determine the structural integrity and hence the effective service life of these PFCs. Suitable non-destructive testing (NDT) techniques for the pre-qualification of these components are thus essential to evaluate their structural integrity at various stages of their service life. Macro-brush type mockups of prototype PFCs with graphite as PFM have been inspected for their brazing quality using different active Infrared (IR)-thermographic NDT techniques. The results obtained from these techniques are compared and discussed. The brazing quality was quantified by establishing a comparison between the experimental results and the results from Finite Element Analysis (FEA). The percentage of contact between the PFM and the substrate was varied in FEA. FEA results when compared with experiments shows that tiles have different amounts of contact with the substrate ranging between 10% and 80%. PMID:26931878

  1. A comparison between finite element modeling and various thermographic non-destructive testing techniques for the quantification of the thermal integrity of macro-brush plasma facing components used in a tokamak

    NASA Astrophysics Data System (ADS)

    Pandya, Santosh P.; Pandya, Shwetang N.; Patil, Yashashri V.; Krishnan, Deepu S.; Murugesan, Menaka; Sharath, D.; Singh, K. Premjit; Khan, Md. Shoaib; Arafat, M.; Biju, N.; Khirwadkar, Samir S.; Govidarajan, Jagannathan; Venkatraman, B.; Balasubramaniam, Krishnan

    2016-02-01

    The plasma facing components (PFCs) inside a tokamak are typically exposed to extremely high heat flux of the order of MW/m2. The brazing quality between the plasma facing materials (PFMs) and the heat sink will determine the structural integrity and hence the effective service life of these PFCs. Suitable non-destructive testing (NDT) techniques for the pre-qualification of these components are thus essential to evaluate their structural integrity at various stages of their service life. Macro-brush type mockups of prototype PFCs with graphite as PFM have been inspected for their brazing quality using different active Infrared (IR)-thermographic NDT techniques. The results obtained from these techniques are compared and discussed. The brazing quality was quantified by establishing a comparison between the experimental results and the results from Finite Element Analysis (FEA). The percentage of contact between the PFM and the substrate was varied in FEA. FEA results when compared with experiments shows that tiles have different amounts of contact with the substrate ranging between 10% and 80%.

  2. A comparison between finite element modeling and various thermographic non-destructive testing techniques for the quantification of the thermal integrity of macro-brush plasma facing components used in a tokamak.

    PubMed

    Pandya, Santosh P; Pandya, Shwetang N; Patil, Yashashri V; Krishnan, Deepu S; Murugesan, Menaka; Sharath, D; Singh, K Premjit; Khan, Md Shoaib; Arafat, M; Biju, N; Khirwadkar, Samir S; Govidarajan, Jagannathan; Venkatraman, B; Balasubramaniam, Krishnan

    2016-02-01

    The plasma facing components (PFCs) inside a tokamak are typically exposed to extremely high heat flux of the order of MW/m(2). The brazing quality between the plasma facing materials (PFMs) and the heat sink will determine the structural integrity and hence the effective service life of these PFCs. Suitable non-destructive testing (NDT) techniques for the pre-qualification of these components are thus essential to evaluate their structural integrity at various stages of their service life. Macro-brush type mockups of prototype PFCs with graphite as PFM have been inspected for their brazing quality using different active Infrared (IR)-thermographic NDT techniques. The results obtained from these techniques are compared and discussed. The brazing quality was quantified by establishing a comparison between the experimental results and the results from Finite Element Analysis (FEA). The percentage of contact between the PFM and the substrate was varied in FEA. FEA results when compared with experiments shows that tiles have different amounts of contact with the substrate ranging between 10% and 80%.

  3. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    SciTech Connect

    Maurya, Gulab Singh; Kumar, Rohit; Rai, Awadhesh Kumar; Kumar, Ajai

    2015-12-15

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as “back collection method” to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  4. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    NASA Astrophysics Data System (ADS)

    Maurya, Gulab Singh; Kumar, Rohit; Kumar, Ajai; Rai, Awadhesh Kumar

    2015-12-01

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as "back collection method" to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  5. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak.

    PubMed

    Maurya, Gulab Singh; Kumar, Rohit; Kumar, Ajai; Rai, Awadhesh Kumar

    2015-12-01

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as "back collection method" to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  6. Tritium permeation model for plasma facing components

    SciTech Connect

    Longhurst, G.R.

    1992-12-01

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included.

  7. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST. PMID:25725839

  8. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    PubMed

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-01

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  9. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  10. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  11. Neutron computed tomography of plasma facing components for fusion experiments

    NASA Astrophysics Data System (ADS)

    Schillinger, B.; Greuner, H.; Linsmeier, Ch.

    2011-09-01

    In nuclear fusion experiments, divertor plates are used to remove energy and particles from the plasma. These divertor plates can be made of water-cooled copper heat sinks covered by carbon fiber composite (CFC) protection tiles. During operation, surface temperatures in excess of 1000 °C are reached for typical heat loads of 10 MW/m 2. The large mismatch in the coefficients of thermal expansion for CFC and Cu causes high stresses and possibly bonding defects. Growing joint defects, which lead to unacceptable overheating of the protection tiles, are critical for the lifetime of the components. A prototype component was subjected to 10,000 cycles at 10 MW/m 2 to study the crack growth mechanism. Neutron computed tomography offers the possibility to analyze such structures on centimeter-sized samples non-destructively with a high spatial resolution. At the ANTARES neutron imaging facility of the FRM II reactor, the samples were loaded with a contrast agent and examined with neutron computed tomography.

  12. He cluster dynamics in fusion related plasma facing materials

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Smirnov, R. D.

    2015-07-01

    The theoretical model describing spatiotemporal dynamics of He clusters in tungsten, which takes into account He trap generation associated with the growth of He clusters, is presented. This model is characterized by only one fitting dimensionless parameter γ, which describes the number of new He traps generated per one He atom absorbed in existing traps. Application of this model to the formation of the layer of nano-bubbles underneath of the surface of thick He irradiated sample before surface morphology starts to change gives a very good agreement with all available experimental data: (i) surface modification starts to be visible when He ion fluence exceeds the critical value ˜2 - 3 × 1020cm-2, which does not depend on the magnitude of He ion flux to the surface; (ii) the thickness of the layer ˜30 nm (iii) the characteristic size of nano-bubbles in the layer is ˜2 nm and remains the same within the whole layer. All these parameters were fitted simultaneously with a reasonable value γ ˜ 10-3.

  13. Progress in modeling erosion and redeposition on plasma facing materials

    NASA Astrophysics Data System (ADS)

    Ohya, Kaoru

    2011-08-01

    The unavoidable contact of plasmas with surrounding walls results in plasma-surface interactions (PSIs). Computer modeling has become increasingly important in understanding PSI mechanisms within current fusion devices, ITER, and those beyond. This paper describes recent modeling codes covering various PSI themes and their physical and chemical bases. Particular emphasis is placed on physical and chemical sputtering of wall surfaces, transport of impurities released in the plasma, redeposition of returning impurities and resultant material mixing. Calculation results, such as those corresponding to light emission patterns above surfaces and deposition/erosion distributions on surfaces, are used for comparison with experimental observations made with small test limiters and tracing gas injections. Although the given profiles of various plasma parameters are taken from measurements or plasma code simulations, direct coupling to a plasma code is under development for the express purpose of better understanding local and global features of erosion and redeposition in fusion devices.

  14. Ductile-Phase-Toughened Tungsten for Plasma-Facing Materials

    NASA Astrophysics Data System (ADS)

    Cunningham, Kevin Hawkins

    A variety of processing approaches were employed to fabricate ductile-phase-toughened (DPT) tungsten (W) composites. Mechanical testing and analytical modeling were used to guide composite development. This work provides a basis for further development of W composites to be used in structural divertor components of future fusion reactors. W wire was tested in tension, showing significant ductility and strength. Coatings of copper (Cu) or tungsten carbide (WC) were applied to the W wire via electrodeposition and carburization, respectively. Composites were fabricated using spark plasma sintering (SPS) to consolidate W powders together with each type of coated W wire. DPT behavior, e.g. crack arrest and crack bridging, was not observed in three-point bend testing of the sintered composites. A laminate was fabricated by hot pressing W and Cu foils together with W wires, and subsequently tested in tension. This laminate was bonded via hot pressing to thick W plate as a reinforcing layer, and the composite was tested in three-point bending. Crack arrest was observed along with some fiber pullout, but significant transverse cracking in the W plate confounded further fracture toughness analysis. The fracture toughness of thin W plate was measured in three-point bending. W plates were brazed with Cu foils to form a laminate. Crack arrest and crack bridging were observed in three-point bend tests of the laminate, and fracture resistance curves were successfully calculated for this DPT composite. An analytical model of crack bridging was developed using the basis described by Chao in previous work by the group. The model uses the specimen geometry, matrix properties, and the stress-displacement function of a ductile reinforcement ("bridging law") to calculate the fracture resistance curve (R-curve) and load-displacement curve (P-D curve) for any test specimen geometry. The code was also implemented to estimate the bridging law of an arbitrary composite using R-curve data. Finally, a parametric study was performed to quantitatively determine the necessary mechanical properties of useful toughening reinforcements for a DPT W composite. The analytical model has a broad applicability for any DPT material.

  15. Deuterium Retention in Pure and Mixed Plasma Facing Materials

    NASA Astrophysics Data System (ADS)

    Alimov, V. Kh.

    Depth profiles of D atoms and D2 molecules in beryllium (Be), beryllium oxide (BeO), tungsten (W), chemically vapor deposited (CVD) tungsten carbide WC, and tungsten trioxide (WO3) both implanted with D ions at energies in the range of several keV and exposed to a low energy (30–200 eV) D plasma have been determined using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA) measurements in the course of surface sputtering. Additionally, the deuterium retention in carbon (C) and tungsten-carbon (W-C) mixed films deposited by reactive magnetron sputtering in D2 atmosphere has been investigated. Mechanisms of the deuterium trapping in these materials are discussed.

  16. Advance care directives

    MedlinePlus

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  17. Advanced Reactor Innovation Evaluation Study (ARIES) Properties Archive

    DOE Data Explorer

    ARIES stands for Advanced Reactor Innovation Evaluation Study. It is a program and a team that explores the commercial potential of fusion as an energy resource. Though it is a multi-institutional program, ARIES is led by the University of California at San Diego. ARIES studies both magnetic fusion energy (MFE) and inertial fusion energy (IFE), using an approach that integrates theory, experiments, and technology. The ARIES team proposes fusion reactor designs and works to understand how technology, materials and plasma physics processes interact and influence each other. A 2005 report to the Fusion Energy Sciences Advisory Committee ("Scientific Challenges, Opportunities, and Priorities for the U.S. Fusion Energy Sciences Program") noted on page 98 an example of the importance of this materials properties aspect: "For instance, effects on plasma edge by various plasma facing materials and effects on various plasma stabilization and control techniques by highly conducting liquid metal blankets are being considered by physicists." This web page is an archive of material properties collected here for the use of the ARIES Fusion Power Plant Studies Team.

  18. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  19. Advanced Composition

    ERIC Educational Resources Information Center

    Sarantos, R. L.

    1974-01-01

    This is an excerpt from a course for advanced students, designed to teach proficiency in English composition by providing activities specifically geared to the elimination of native language interference. (LG)

  20. Recent advances and issues in development of silicon carbide composites for fusion applications

    NASA Astrophysics Data System (ADS)

    Nozawa, T.; Hinoki, T.; Hasegawa, A.; Kohyama, A.; Katoh, Y.; Snead, L. L.; Henager, C. H., Jr.; Hegeman, J. B. J.

    2009-04-01

    Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  1. Recent advances and issues in development of silicon carbide composites for fusion applications

    SciTech Connect

    Nozawa, Takashi; Hinoki, Tatsuya; Hasegawa, Akira; Kohyama, Akira; Katoh, Yutai; Snead, Lance Lewis; HenagerJr., Charles H.; Hegeman, Hans

    2009-01-01

    Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  2. Recent advances and issues in development of silicon carbide composites for fusion applications

    SciTech Connect

    Nozawa, T.; Hinoki, Tetsuya; Hasegawa, Akira; Kohyama, Akira; Katoh, Yutai; Snead, Lance L.; Henager, Charles H.; Hegeman, Hans

    2009-04-30

    Radiation-resistant advanced silicon carbide composites (SiC/SiC) have been developed as a promising candidate of the high-temperature operating advanced fusion DEMO reactor. With the completion of the “proof-of-principle” phase in development of “nuclear-grade” SiC/SiC, the R&D on SiC/SiC is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in 1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, 2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and 3) irradiation effects were specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength were specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  3. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  4. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  5. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  6. Advanced computing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Advanced concepts in hardware, software and algorithms are being pursued for application in next generation space computers and for ground based analysis of space data. The research program focuses on massively parallel computation and neural networks, as well as optical processing and optical networking which are discussed under photonics. Also included are theoretical programs in neural and nonlinear science, and device development for magnetic and ferroelectric memories.

  7. Advanced Nanoemulsions

    NASA Astrophysics Data System (ADS)

    Fryd, Michael M.; Mason, Thomas G.

    2012-05-01

    Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.

  8. Advanced LIGO

    NASA Astrophysics Data System (ADS)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  9. Advanced Pacemaker

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.

  10. Advanced stellarators

    NASA Astrophysics Data System (ADS)

    Schlüter, Arnulf

    1983-03-01

    Toroidal confinement of a plasma by an external magnetic field is not compatible with axisymmetry, in contrast to confinement by the pinch effect of induced electric currents as in a tokomak or by the reversed field pinch configuration. The existence of magnetic surfaces throughout the region in which grad p ≠ 0 is therefore not guaranteed in such configurations, though it is necessary for MHD-equilibrium when the lines of force possess a finite twist (or "rotational transform"). These twisted equilibria are called stellarators. The other type of external confinement requires all lines of force to be closed upon themselves and p to be function of the well defined quantity Q = φ d l/ B only. The resulting "bumpy" tori are sometimes also referred to as being M + S like. By discussing specific examples it is shown that stellarator configurations exist which retain as much as possible the properties of M + S like configurations, combine these with the magnetic well, and with an approximation to the isodynamic requirement of D. Palumbo. These so-called Advanced Stellarators shown an improvement in predicted particle confinement and beta-limit compared to the classical stellarators. They can also be viewed as forming a system of linked stabilized mirrors of small mirror ratio. These fields can be produced by modular coils. A prototype of such a configuration is being designed by the stellarator division of IPP under the name of Wendelstein VII-AS. Expected physical data and technical details of W VII-AS are given.

  11. Advanced capacitors

    NASA Astrophysics Data System (ADS)

    Parker, R. D.; Buritz, R. S.; Taylor, A. R.; Bullwinkel, E. P.

    1982-11-01

    An experimental development program was conducted to develop and test advanced dielectric materials for capacitors for airborne power systems. High rep rate and low rate capacitors for use in pulse-forming networks, high voltage filter capacitors, and high frequency ac capacitors for series resonant inverters were considered. The initial goal was to develop an improved polysulfone film. Initially, low breakdown strength was thought to be related to inclusions of conductive particles. The effect of filtration of the casting solution was investigated. These experiments showed that more filtration was not the entire solution to low breakdown. The film samples were found to contain dissolved ionic impurities that move through the dielectric when voltage is applied and cause enhancement of the electric field. These contaminants enter the film via the resin and solvent, and can be partially removed. However, these treatments did not significantly improve the breakdown characteristics. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films. this is the first step toward a replacement for kraft paper.

  12. Advanced capacitors

    NASA Astrophysics Data System (ADS)

    Ennis, J. B.; Buritz, R. S.

    1984-10-01

    This report describes an experimental program to develop and test advanced dielectric materials for capacitors for airborne power systems. Five classes of capacitors were considered: high rep rate and low rep rate pulse capacitors for use in pulse-forming networks, high voltage filter capacitors, high frequency AC capacitors for series resonant inverters, and AC filter capacitors. To meet these requirements, existing dielectric materials were modified, and new materials were developed. The initial goal was to develop an improved polysulfone film with fewer imperfections that could operate at significantly higher electrical stresses. It was shown that contaminants enter the film via the resin and solvent, and that they can be partially removed. As far as developed, however, these treatments did not significantly improved the breakdown characteristics. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films -- the first step toward a replacement for Kraft paper. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. This material was selected for further study in model capacitor designs.

  13. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    SciTech Connect

    Dale M. Meade

    2004-10-21

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains {approx}10, self-driven currents of {approx}80%, fusion power {approx}150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm{sup -3} and neutron wall loading from 2-4 MWm{sup -2} which are at the levels expected from the ARIES-RS/AT design studies.

  14. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

    DOE PAGES

    Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; et al

    2016-09-14

    A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, whichmore » we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.« less

  15. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.

    2016-12-01

    A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.

  16. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  17. Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material.

    PubMed

    Luo, Laima; Shi, Jing; Lin, Jinshan; Zan, Xiang; Zhu, Xiaoyong; Xu, Qiu; Wu, Yucheng

    2016-01-01

    Pure W and W-(2%, 5%, 10%) Lu alloys were manufactured via mechanical alloying for 20 h and a spark plasma sintering process at 1,873 K for 2 min. The effects of Lu doping on the microstructure and performance of W were investigated using various techniques. For irradiation performance analysis, thermal desorption spectroscopy (TDS) measurements were performed from room temperature to 1,000 K via infrared irradiation with a heating rate of 1 K/s after implantations of He(+) and D(+) ions. TDS measurements were conducted to investigate D retention behavior. Microhardness was dramatically enhanced, and the density initially increased and then decreased with Lu content. The D retention performance followed the same trend as the density. Second-phase particles identified as Lu2O3 particles were completely distributed over the W grain boundaries and generated an effective grain refinement. Transgranular and intergranular fracture modes were observed on the fracture surface of the sintered W-Lu samples, indicating some improvement of strength and toughness. The amount and distribution of Lu substantially affected the properties of W. Among the investigated alloy compositions, W-5%Lu exhibited the best overall performance. PMID:27596002

  18. Secondary Electron Emission Properties of Plasma Facing Ceramic Materials at High Temperatures

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Dourbal, Paul; Spektor, Rostislav

    2015-11-01

    The plasma-wall interaction in the presence of strong secondary electron emission (SEE) has been studied theoretically and experimentally both as a basic phenomenon and in relation to numerous plasma applications such as, for example, fusion devices and Hall thrusters. Herein, we report on SEE measurements for boron nitride (BN) ceramics, which are commonly used as channel wall materials for Hall thrusters. Measurements were conducted for BN ceramics of three different grades with different fractions (0, 1% and 40%) and phases of different binder additions (calcium borate, silicon oxide) and as a function of the sample temperature relevant to the thruster operation (about 600K). For all three grades, the energy at which the yield equals to 1 at room temperature was measured to be near 40 V. This result is in agreement with previous measurements. At the elevated temperature, the yield was slightly different for these ceramics, but lower than at the room temperature. This temperature effect was not as strong as measured in. Analysis of these results and their implication on plasma-surface interactions in Hall thrusters and other related devices are presented. This work was partially supported by the Aerospace Corporation and by DOE contract DE-AC02-09CH11466.

  19. Ion beam analysis of tungsten layers in EUROFER model systems and carbon plasma facing components

    NASA Astrophysics Data System (ADS)

    Ström, Petter; Petersson, Per; Rubel, Marek; Primetzhofer, Daniel; Brezinsek, Sebastijan; Kreter, Arkadi; Unterberg, Bernhard; Sergienko, Gennady; Sugiyama, Kazuyoshi

    2016-03-01

    The tungsten enriched surface layers in two fusion-relevant EUROFER steel model samples, consisting of an iron-tungsten mixture exposed to sputtering by deuterium ions, were studied by Rutherford backscattering spectrometry and medium energy ion scattering. Exposure conditions were the same for the two samples and the total amount of tungsten atoms per unit area in the enriched layers were similar (2 · 1015 and 2.4 · 1015 atoms/cm2 respectively), despite slightly different initial atomic compositions. A depth profile featuring exponential decrease in tungsten content towards higher depths with 10-20 at.% of tungsten at the surface and a decay constant between 0.05 and 0.08 Å-1 was indicated in one sample, whereas only the total areal density of tungsten atoms was measured in the other. In addition, two different beams, iodine and chlorine, were employed for elastic recoil detection analysis of the deposited layer on a polished graphite plate from a test limiter in the TEXTOR tokamak following experiments with tungsten hexafluoride injection. The chlorine beam was preferred for tungsten analysis, mainly because it (as opposed to the iodine beam) does not give rise to problems with overlap of forward scattered beam particles and recoiled tungsten in the spectrum.

  20. Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material

    NASA Astrophysics Data System (ADS)

    Luo, Laima; Shi, Jing; Lin, Jinshan; Zan, Xiang; Zhu, Xiaoyong; Xu, Qiu; Wu, Yucheng

    2016-09-01

    Pure W and W-(2%, 5%, 10%) Lu alloys were manufactured via mechanical alloying for 20 h and a spark plasma sintering process at 1,873 K for 2 min. The effects of Lu doping on the microstructure and performance of W were investigated using various techniques. For irradiation performance analysis, thermal desorption spectroscopy (TDS) measurements were performed from room temperature to 1,000 K via infrared irradiation with a heating rate of 1 K/s after implantations of He+ and D+ ions. TDS measurements were conducted to investigate D retention behavior. Microhardness was dramatically enhanced, and the density initially increased and then decreased with Lu content. The D retention performance followed the same trend as the density. Second-phase particles identified as Lu2O3 particles were completely distributed over the W grain boundaries and generated an effective grain refinement. Transgranular and intergranular fracture modes were observed on the fracture surface of the sintered W-Lu samples, indicating some improvement of strength and toughness. The amount and distribution of Lu substantially affected the properties of W. Among the investigated alloy compositions, W-5%Lu exhibited the best overall performance.

  1. Hydrocarbon Redeposition on Plasma Facing Walls Intersecting Magnetic Field at Shallow Angles

    NASA Astrophysics Data System (ADS)

    Ohya, Kaoru; Inai, Kensuke

    2010-09-01

    In present nuclear fusion devices, hydrocarbons resulting from the chemical sputtering of carbon-based walls redeposit on other areas of the wall after transport in plasmas, forming hydrogen-rich carbon layers. A particle-in-cell calculation of a sheath region between the plasma and the wall is incorporated into the transport simulation of methane (CH4) and the fragments in the plasma. The effect of the magnetic field intersecting the wall surface at shallow angles on the redeposition characteristics is studied, taking the reflection and sticking on the wall into account. The redeposition rate is rather slowly increased with increasing angle between the magnetic field line and the surface normal, whereas it strongly depends on the plasma temperature and the sticking probability, S, of hydrocarbons (CHx) returning to the surface. By assuming S = 1, the redeposition of large molecular ions (CH3+ and CH4+) is suppressed at shallow angles (θ> 85°), whereas the redeposition of atomic C ions is enhanced. For zero sticking (S = 0), the redeposition is dominated by C ions at high temperature, whereas at low temperature, it is dominated by neutral C atoms.

  2. Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material

    PubMed Central

    Luo, Laima; Shi, Jing; Lin, Jinshan; Zan, Xiang; Zhu, Xiaoyong; Xu, Qiu; Wu, Yucheng

    2016-01-01

    Pure W and W-(2%, 5%, 10%) Lu alloys were manufactured via mechanical alloying for 20 h and a spark plasma sintering process at 1,873 K for 2 min. The effects of Lu doping on the microstructure and performance of W were investigated using various techniques. For irradiation performance analysis, thermal desorption spectroscopy (TDS) measurements were performed from room temperature to 1,000 K via infrared irradiation with a heating rate of 1 K/s after implantations of He+ and D+ ions. TDS measurements were conducted to investigate D retention behavior. Microhardness was dramatically enhanced, and the density initially increased and then decreased with Lu content. The D retention performance followed the same trend as the density. Second-phase particles identified as Lu2O3 particles were completely distributed over the W grain boundaries and generated an effective grain refinement. Transgranular and intergranular fracture modes were observed on the fracture surface of the sintered W-Lu samples, indicating some improvement of strength and toughness. The amount and distribution of Lu substantially affected the properties of W. Among the investigated alloy compositions, W-5%Lu exhibited the best overall performance. PMID:27596002

  3. Fundamental mechanisms of deuterium retention in lithiated graphite plasma facing surfaces

    NASA Astrophysics Data System (ADS)

    Taylor, Chase N.

    Plasma impurities and undesirable deuterium recycling degrade plasma confinement and impede a sustainable fusion reaction. This occurs by inducing plasma instabilities and reducing plasma temperature. Lithium wall conditioning has been used in fusion devices including TFTR, CDX-U, FTU, TJ-II, MAST and NSTX as a means to reduce plasma impurities and improve deuterium retention, resulting in significant enhancements in plasma performance. These improvements have come via a reduction in deuterium recycling in addition to a reduction in oxygen and carbon impurities. NSTX, with ATJ graphite walls, is the leading fusion device in lithium research. Many previous studies have investigated deuterated lithium, deuterated graphite, and lithiated graphite in order to understand fundamental properties and particular applications. Deuterium irradiation of lithiated graphite studies are few in number and no systematic research has been conducted to determine the fundamental mechanisms by which deuterium is retained in lithiated graphite. This work presents controlled laboratory studies that use X-ray photoelectron spectroscopy (XPS) to identify the fundamental chemical interactions in lithiated graphite. Li-O chemical interactions are observed in the photoelectron energy spectrum at 529.5 eV after thermally depositing lithium onto ATJ graphite. Deuterium retention induces Li-O-D and Li-C-D interactions which are observed at 529.9 eV and 291.2 eV, respectively. Examination of NSTX post-mortem tiles confirms the formation of Li-O-D and Li-C-D chemical interactions and validates the procedures in these experiments. Prior to these findings, deuterium was assumed to bind exclusively with lithium to form stoichiometric LiD. Instead, we find that in a graphite matrix, lithium will always bind with oxygen and carbon (when present) prior to the introduction of deuterium. The deuterium saturation of lithiated graphite is also assessed using XPS and results indicate that saturation occurs at a deuterium fluence of ˜ 2.9×10 17 cm-2. This implies that the NSTX deuterium flux of 1017 - 1018 cm-2 s-1 saturates the typical 10-100 nm lithium evaporations after a single plasma discharge. Atomistic simulations synergistically corroborate the above experimental findings. Experiments show significant influence of oxygen in retaining deuterium. Density functional theory simulations were updated to include oxygen and lithium in a carbon matrix at concentrations observed in experiments (˜20%). Results show that deuterium preferentially chooses to be near and bind with oxygen. Later experiments demonstrate the role of oxygen in retaining deuterium, but also show that lithium is required to attract sucient quantities of oxygen to the surface and to retain the oxygen. This dissertation conclusively demonstrates that the mechanism by which deuterium is retained in lithiated graphite is through a lithium-catalyzed oxygen-deuterium bond..

  4. A continuum-scale model of hydrogen precipitate growth in tungsten plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Kolasinski, R. D.; Cowgill, D. F.; Causey, R. A.

    2011-08-01

    The low solubility of hydrogen in tungsten leads to the growth of near-surface hydrogen precipitates during high-flux plasma exposure, strongly affecting migration and trapping in the material. We have developed a continuum-scale model of precipitate growth that leverages existing techniques for simulating the evolution of 3He gas bubbles in metal tritides. The present approach focuses on bubble growth by dislocation loop punching, assuming a diffusing flux to nucleation sites that arises from ion implantation. The bubble size is dictated by internal hydrogen pressure, the mechanical properties of the material, as well as local stresses. In this article, we investigate the conditions required for bubble growth. Recent focused ion beam (FIB) profiling studies that reveal the sub-surface damage structure provide an experimental database for comparison with the modeling results.

  5. Electron transport in plasmas with lithium-coated plasma-facing components

    NASA Astrophysics Data System (ADS)

    Jacobson, Craig Michael

    The Lithium Tokamak Experiment (LTX) is a spherical tokamak designed to study the lowrecycling regime through the use of lithium-coated shells conformal to the last closed flux surface (LCFS). A lowered recycling rate is expected to flatten core Te profiles, raise edge Te, strongly affect n e profiles, and enhance confinement. To study these unique plasmas, a Thomson scattering diagnostic uses a ≤ 20 J, 30 ns FWHM pulsed ruby laser to measure Te and ne at 11 radial points on the horizontal midplane, spaced from the magnetic axis to the outer edge at a single temporal point for each discharge. Scattered light is imaged through a spectrometer onto an intensified CCD. The diagnostic is absolutely calibrated using a precision light source and Raman scattering. Measurements of n e are compared with line integrated density measurements from a microwave interferometer. Adequate signal to noise is obtained with ne ≥ 2 x10 18 m--3. Thomson profiles of plasmas following evaporation of lithium onto room-temperature plasmafacing components (PFCs) are used in conjunction with magnetic equilibria as input for TRANSP modeling runs. Neoclassical calculations are used to determine Ti profiles, which have levels that agree with passive charge exchange recombination spectroscopy (CHERS) measurements. TRANSP results for confinement times and stored energies agree with diamagnetic loop measurements. Results of chie result in values as low as 7 m2/s near the core, which rise to around 100 m2/s near the edge. These are the first measurements of chie in LTX, or its predecessor, the Current Drive Experiment-Upgrade (CDX-U), with lithium PFCs.

  6. Assessment of database for interaction of tritium with ITER plasma facing materials

    SciTech Connect

    Dolan, T.J.; Anderl, R.A.

    1994-09-01

    The present work surveys recent literature on hydrogen isotope interactions with Be, SS and Inconels, Cu, C, and V, and alloys of Cu and V. The goals are (1) to provide input to the International Thermonuclear Experimental Reactor (ITER) team to help with tritium source term estimates for the Early Safety and Environmental Characterization Study and (2) to provide guidance for planning additional research that will be needed to fill gaps in the present materials database. Properties of diffusivity, solubility, permeability, chemical reactions, Soret effect, recombination coefficient, surface effects, trapping, porosity, layered structures, interfaces, and oxides are considered. Various materials data are tabulated, and a matrix display shows an assessment of the quality of the data available for each main property of each material. Recommendations are made for interim values of diffusivity and solubility to be used, pending further discussion by the ITER community.

  7. Potential of nanocrystalline low- Z materials for plasma facing, structural applications in fusion reactors

    NASA Astrophysics Data System (ADS)

    Vaßen, R.; Kaiser, A.; Stöver, D.

    1996-10-01

    Several types of silicon based nanocomposite ceramics have been produced by hot isostatic pressing (HIP) mixtures of ultrafine SiC, CSiC and SiSiC powders (particle size below 50 nm) with conventional carbon, boron carbide or silicon carbide powders. Compared to pressureless sintering grain growth was substantially reduced by this technique. Samples have been characterized with respect to microstructure. Thermal conductivity measurements at room temperature indicate a reduction of thermal conductivity compared to conventional materials. High heat flux experiments in the electron beam test facility JUDITH (Juelich divertor test equipment in hot cells) with energy densities up to 11 MJ/m 2 have been performed. Although the thermal conductivity is relatively low the materials prepared from SiSiC/C-mixtures show lower erosion rates compared to conventional composites. The negative effect of low thermal conductivity on thermal shock resistance seems to be overcompensated by the microstructural improvements in the nanocomposite materials. A model, which calculates the erosion rates and takes account of microstructural features like chemical composition and grain size, is presented.

  8. Modelling of Charged Particle Dynamics in the Sheath and Plasma-facing Surface Sputtering

    NASA Astrophysics Data System (ADS)

    Borodkina, I. E.; Tsvetkov, I. V.

    In this work a useful analytical approximation for the electric potential profile in the presence of an oblique magnetic field is suggested. It describes the potential profile dependence on the magnitude and angle of a magnetic field and plasma parameters in the Debye sheath and the magnetic pre-sheath. It is in good agreement with the Chodura and Stangeby solutions and respective PIC simulations performed with the SPICE2 code. The influence of the magnetic field inclination angle on the angle and energy distributions of ions which reach the wall, and thus on the effective sputtering, is analyzed for various first wall materials.

  9. Beryllium processing technology review for applications in plasma-facing components

    SciTech Connect

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  10. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator advanced studies, Mercury mission transport requirements, definition of super solar electric propulsion/solar sail mission discriminators, and advanced planning activities.

  11. Advanced midwifery practice or advancing midwifery practice?

    PubMed

    Smith, Rachel; Leap, Nicky; Homer, Caroline

    2010-09-01

    Advanced midwifery practice is a controversial notion in midwifery, particularly at present in Australia. The proposed changes in legislation around access to the publicly funded Medical Benefits Scheme (MBS) and the Pharmaceutical Benefits Scheme (PBS) in 2009-2010 have meant that the issue of advanced midwifery practice has again taken prominence. Linking midwifery access to MBS and PBS to a safety and quality framework that includes an 'advanced midwifery credentialling framework' is particularly challenging. The Haxton and Fahy paper in the December 2009 edition of Women and Birth is timely as it enables a reflection upon these issues and encourages debate and discussion about exactly what is midwifery, what are we educating our students for and is working to the full scope of practice practising at advanced level? This paper seeks to address some of these questions and open up the topic for further debate.

  12. Recent progress toward an advanced spherical torus operating point in NSTX

    DOE PAGES

    S. P. Gerhardt; Gates, D. A.; Kaye, S.; Maingi, R.; Menard, J. E.; Sabbagh, S. A.; Soukhanovskii, V.; Bell, M. G.; Bell, R. E.; Canik, J. M.; et al

    2011-05-13

    Progress in the development of integrated advanced ST plasma scenarios in NSTX (Ono et al., 2000 Nucl. Fusion 40 557) is reported. Recent high-performance plasmas in NSTX following lithium coating of the plasma facing surfaces have achieved higher elongation and lower internal inductance than previously. Analysis of the thermal confinement in these lithiumized discharges shows a stronger plasma current and weaker toroidal field dependence than in previous ST confinement scaling studies; the ITER-98(y, 2) scaling expression describes these scenarios reasonably well. Analysis during periods free of MHD activity has shown that the reconstructed current profile can be understood as themore » sum of pressure driven, inductive and neutral beam driven currents, without requiring any anomalous fast-ion transport. Non-inductive fractions of 65–70%, and βP > 2, have been achieved at lower plasma current. Some of these low-inductance discharges have a significantly reduced no-wall βN limit, and often have βN at or near the with-wall limit. Coupled m/n = 1/1 + 2/1 kink/tearing modes can limit the sustained β values when rapidly growing ideal modes are avoided. A βN controller has been commissioned and utilized in sustaining high-performance plasmas. 'Snowflake' divertors compatible with high-performance plasmas have been developed. Scenarios with significantly larger aspect ratios have also been developed, in support of next-step ST devices. Furthermore, these NSTX plasmas have many characteristics required for next-step ST devices.« less

  13. Recent progress toward an advanced spherical torus operating point in NSTX

    SciTech Connect

    S. P. Gerhardt; Gates, D. A.; Kaye, S.; Maingi, R.; Menard, J. E.; Sabbagh, S. A.; Soukhanovskii, V.; Bell, M. G.; Bell, R. E.; Canik, J. M.; Fredrickson, E.; Kaita, R.; Kolemen, E.; Kugel, H.; Le Blanc, B. P.; Mastrovito, D.; Mueller, D.; Yuh, H.

    2011-05-13

    Progress in the development of integrated advanced ST plasma scenarios in NSTX (Ono et al., 2000 Nucl. Fusion 40 557) is reported. Recent high-performance plasmas in NSTX following lithium coating of the plasma facing surfaces have achieved higher elongation and lower internal inductance than previously. Analysis of the thermal confinement in these lithiumized discharges shows a stronger plasma current and weaker toroidal field dependence than in previous ST confinement scaling studies; the ITER-98(y, 2) scaling expression describes these scenarios reasonably well. Analysis during periods free of MHD activity has shown that the reconstructed current profile can be understood as the sum of pressure driven, inductive and neutral beam driven currents, without requiring any anomalous fast-ion transport. Non-inductive fractions of 65–70%, and βP > 2, have been achieved at lower plasma current. Some of these low-inductance discharges have a significantly reduced no-wall βN limit, and often have βN at or near the with-wall limit. Coupled m/n = 1/1 + 2/1 kink/tearing modes can limit the sustained β values when rapidly growing ideal modes are avoided. A βN controller has been commissioned and utilized in sustaining high-performance plasmas. 'Snowflake' divertors compatible with high-performance plasmas have been developed. Scenarios with significantly larger aspect ratios have also been developed, in support of next-step ST devices. Furthermore, these NSTX plasmas have many characteristics required for next-step ST devices.

  14. Advance care planning.

    PubMed

    Lo, Bernard

    2004-01-01

    Advance directives allow patients to have some control over decisions even when they are no longer able to make decisions themselves. All states authorize written advance directives, such as the appointment of a health care proxy, but commonly impose procedural requirements. Some states have restricted the use of oral advance directives, although they are frequently used in everyday practice. Advance directives are limited because they are infrequently used, may not be informed, and may conflict with the patient's current best interests. Moreover, surrogates often cannot state patients' preferences accurately. Furthermore, discussions among physicians and patients about advance directives are flawed. Physicians can improve discussions about advance directives by asking the patient who should serve as proxy and by ascertaining the patient's values and general preferences before discussing specific clinical situations. PMID:15538068

  15. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  16. Advancing the educational agenda.

    PubMed

    Baker, Cynthia

    2010-12-01

    This timely paper provides a thought-provoking analysis of current advanced practice nursing education in Canada. It comes at a critical juncture in the evolution of Canadian healthcare services and the redefinition of nursing roles. Increasingly, multiple sectors of society are calling for more nurses with advanced practice preparation and for a wider range of advanced practice nursing specialties. Advanced practice nurses (APNs) are being proposed as a solution to a financially overburdened national healthcare system, the increasing complexity of healthcare services, and a crisis in access to primary healthcare. Thus, governments seeking greater fiscal efficiency, medical specialists needing sophisticated collaborative support, and healthcare consumers see APNs as the way forward.

  17. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  18. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  19. ADVANCED PLACEMENT IN OHIO.

    ERIC Educational Resources Information Center

    Ohio Council on Advanced Placement, Columbus.

    THE DOCUMENT PRESENTS A DESCRIPTION OF THE ADVANCED PLACEMENT PROGRAM IN OHIO. ANSWERS ARE GIVEN TO KEY QUESTIONS ON THE FUNCTION OF ADVANCED PLACEMENT, ACADEMIC AREAS COVERED, PROGRAM ADMINISTRATION, COSTS, BENEFITS, VARIOUS ORGANIZATIONAL PATTERNS, STUDENT PARTICIPANTS, COLLEGES AND UNIVERSITIES IN OHIO AND REPRESENTATIVE NATIONAL INSTITUTIONS…

  20. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  1. Advanced cryo propulsion systems

    NASA Technical Reports Server (NTRS)

    Tabata, William K.

    1991-01-01

    The following topics are presented in viewgraph form: (1) advanced space engine (ASE) chronology; (2) an ASE description; (3) a single expander; (4) a dual expander; (5) split expander; (6) launch vehicle start; (7) space start; (8) chemical transfer propulsion; and (9) an advanced expander test bed.

  2. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  3. Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2004-01-01

    Viewgraphs on Advanced Life Support (ALS) Systems are presented. The topics include: 1) Fundamental Need for Advanced Life Support; 2) ALS organization; 3) Requirements and Rationale; 4) Past Integrated tests; 5) The need for improvements in life support systems; 6) ALS approach to meet exploration goals; 7) ALS Projects showing promise to meet exploration goals; and 9) GRC involvement in ALS.

  4. Advanced Chemical Propulsion Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  5. Advanced electron microscopy for advanced materials.

    PubMed

    Van Tendeloo, Gustaaf; Bals, Sara; Van Aert, Sandra; Verbeeck, Jo; Van Dyck, Dirk

    2012-11-01

    The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.

  6. Advanced biostack experiment

    NASA Technical Reports Server (NTRS)

    Buecker, H.

    1981-01-01

    The Advanced Biostack Experiment is described. The objectives are: (1) to confirm, complement, and enlarge the information obtained from the previous experiments by applying improved and advanced methods of localization and physical and biological evaluation, performing advanced experiments based on these data, and including additional biological specimens and additional radiation detectors; (2) to determine the biological importance of nuclear disintegration stars; (3) to determine the interference of HZE particle induced effects with those of other space flight factors (e.g., weightlessness); and (4) to determine the distribution of HZE particles and of disintegration stars at different locations inside the module and on the pallet.

  7. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  8. Advanced information society(7)

    NASA Astrophysics Data System (ADS)

    Chiba, Toshihiro

    Various threats are hiding in advanced informationalized society. As we see car accident problems in motorization society light aspects necessarily accompy shady ones. Under the changing circumstances of advanced informationalization added values of information has become much higher. It causes computer crime, hacker, computer virus to come to the surface. In addition it can be said that infringement of intellectual property and privacy are threats brought by advanced information. Against these threats legal, institutional and insurance measures have been progressed, and newly security industry has been established. However, they are not adequate individually or totally. The future vision should be clarified, and countermeasures according to the visions have to be considered.

  9. Advances in cancer control

    SciTech Connect

    Anderson, P.N. ); Engstrom, P.F. ); Mortenson, L.E. )

    1989-01-01

    This book contains the proceedings of the sixth annual meeting on Advances in Cancer Control. Included are the following articles: Barriers and facilitators to compliance with routine mammographic screening, Preliminary report of an intervention to improve mammography skills of radiologists.

  10. Descendants and advance directives.

    PubMed

    Buford, Christopher

    2014-01-01

    Some of the concerns that have been raised in connection to the use of advance directives are of the epistemic variety. Such concerns highlight the possibility that adhering to an advance directive may conflict with what the author of the directive actually wants (or would want) at the time of treatment. However, at least one objection to the employment of advance directives is metaphysical in nature. The objection to be discussed here, first formulated by Rebecca Dresser and labeled by Allen Buchanan as the slavery argument and David DeGrazia the someone else problem, aims to undermine the legitimacy of certain uses of advance directives by concluding that such uses rest upon an incorrect assumption about the identity over time of those ostensibly governed by the directives. There have been numerous attempts to respond to this objection. This paper aims to assess two strategies that have been pursued to cope with the problem.

  11. Advances in Process Control.

    ERIC Educational Resources Information Center

    Morrison, David L.; And Others

    1982-01-01

    Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)

  12. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  13. Advanced Process Control Experiments.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.; And Others

    1980-01-01

    Describes laboratory experiments of a chemistry course on advanced process control. The equipment for the process around which these experiments were developed by the University of Louisville was constructed from data provided by Exxon Oil Company. (HM)

  14. Recent Advances in Vibroacoustics

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.

    2002-01-01

    Numerous vibroacoustics advances and impacts in the aerospace industry have occurred over the last 15 years. This article addresses some of these that developed from engineering programmatic task-work at the NASA Glenn Research Center at Lewis Field.

  15. Advanced information society(2)

    NASA Astrophysics Data System (ADS)

    Masuyama, Keiichi

    Our modern life is full of information and information infiltrates into our daily life. Networking of the telecommunication is extended to society, company, and individual level. Although we have just entered the advanced information society, business world and our daily life have been steadily transformed by the advancement of information network. This advancement of information brings a big influence on economy, and will play they the main role in the expansion of domestic demands. This paper tries to view the image of coming advanced information society, focusing on the transforming businessman's life and the situation of our daily life, which became wealthy by the spread of daily life information and the visual information by satellite system, in the development of the intelligent city.

  16. Advanced General Dentistry Program.

    ERIC Educational Resources Information Center

    Barnes, Douglas M.; And Others

    1988-01-01

    A description of the University of Maryland at Baltimore's one-year postdoctoral program in advanced general dentistry focuses on its goals and objectives, curriculum design, patient population, faculty and staff, finances, and program evaluation measures. (MSE)

  17. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  18. Descendants and advance directives.

    PubMed

    Buford, Christopher

    2014-01-01

    Some of the concerns that have been raised in connection to the use of advance directives are of the epistemic variety. Such concerns highlight the possibility that adhering to an advance directive may conflict with what the author of the directive actually wants (or would want) at the time of treatment. However, at least one objection to the employment of advance directives is metaphysical in nature. The objection to be discussed here, first formulated by Rebecca Dresser and labeled by Allen Buchanan as the slavery argument and David DeGrazia the someone else problem, aims to undermine the legitimacy of certain uses of advance directives by concluding that such uses rest upon an incorrect assumption about the identity over time of those ostensibly governed by the directives. There have been numerous attempts to respond to this objection. This paper aims to assess two strategies that have been pursued to cope with the problem. PMID:25743056

  19. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  20. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

  1. [Advances in hormonal contraception].

    PubMed

    Villanueva Egan, Luis Alberto; Pichardo Cuevas, Mauricio

    2007-01-01

    This review provides an update regarding newer options in hormonal contraception that include the progestin-releasing intrauterine system, the contraceptive patch and ring, the single rod progestin-releasing implant, extended and emergency oral contraception and recent advances in hormonal male contraception. These methods represent a major advancement in this field, allowing for the development of more acceptable, safety and effective birth control regimens.

  2. Advanced drilling systems study

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1995-03-01

    This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

  3. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  4. A direct advance on advance directives.

    PubMed

    Shaw, David

    2012-06-01

    Advance directives (ADs), which are also sometimes referred to as 'living wills', are statements made by a person that indicate what treatment she should not be given in the event that she is not competent to consent or refuse at the future moment in question. As such, ADs provide a way for patients to make decisions in advance about what treatments they do not want to receive, without doctors having to find proxy decision-makers or having recourse to the doctrine of necessity. While patients can request particular treatments in an AD, only refusals are binding. This paper will examine whether ADs safeguard the autonomy and best interests of the incompetent patient, and whether legislating for the use of ADs is justified, using the specific context of the legal situation in the United Kingdom to illustrate the debate. The issue of whether the law should permit ADs is itself dependent on the issue of whether ADs are ethically justified; thus we must answer a normative question in order to answer the legislative one. It emerges that ADs suffer from two major problems, one related to autonomy and one to consent. First, ADs' emphasis on precedent autonomy effectively sentences some people who want to live to death. Second, many ADs might not meet the standard criteria for informed refusal of treatment, because they fail on the crucial criterion of sufficient information. Ultimately, it transpires that ADs are typically only appropriate for patients who temporarily lose physical or mental capacity.

  5. Recruit and ADVANCE

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.

    2007-04-01

    Beginning in 2001, the National Science Foundation launched the ADVANCE Initiative, which has now awarded more than 70 million to some thirty institutions for transformations to advance women. Results of studies on how to attract and retain women students and faculty underpinned our ADVANCE Institutional Transformation grant funded by the NSF for 3.7 million for five years, beginning in 2001. As co-principal investigator on this grant, I insured that this research informed the five major threads of the grant: 1) Four termed ADVANCE professors to mentor junior women faculty in each college; 2) Collection of MIT-Report-like data indicators to assess whether advancement of women really occurs during and after the institutional transformation undertaken through ADVANCE; 3) Family-friendly policies and practices to stop the tenure clock and provide active service, modified duties, lactation stations and day care; 4) Mini-retreats to facilitate access for tenure-track women faculty to male decision-makers and administrators for informal conversations and discussion on topics important to women faculty; 5) Removal of subtle gender, racial, and other biases in promotion and tenure. The dynamic changes resulting from the grant in quality of mentoring, new understanding of promotion and tenure, numbers of women retained and given endowed chairs, and emergence of new family friendly policies gave me hope for genuine diversification of leadership in science and technology. As the grant funding ends, the absence of NSF prestige and monitoring, coupled with a change in academic leadership at the top, provide new challenges for institutionalization, recruitment, and advancement of women into leadership positions in science and engineering.

  6. Advanced transmission studies

    NASA Technical Reports Server (NTRS)

    Coy, John J.; Bill, Robert C.

    1988-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command share an interest in advancing the technology for helicopter propulsion systems. In particular, this paper presents highlights from that portion of the program in drive train technology and the related mechanical components. The major goals of the program are to increase the life, reliability, and maintainability; reduce the weight, noise, and vibration; and maintain the relatively high mechanical efficiency of the gear train. The current activity emphasizes noise reduction technology and analytical code development followed by experimental verification. Selected significant advances in technology for transmissions are reviewed, including advanced configurations and new analytical tools. Finally, the plan for future transmission research is presented.

  7. Advanced Hydrogen Turbine Development

    SciTech Connect

    Marra, John

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  8. Advances in craniofacial surgery.

    PubMed

    Tatum, Sherard A; Losquadro, William D

    2008-01-01

    The past 10 years have witnessed many advances in craniofacial surgery. Advances in surgical techniques, such as distraction osteogenesis and endoscopic procedures, combined with refinements in surgical equipment, such as resorbable plating and distractors, have improved surgical outcomes, while minimizing morbidity. Technological advances in 3-dimensional imaging, computer simulation, and intraoperative navigation facilitate diagnosis, preoperative planning, and surgical execution. Rising cases of deformational plagiocephaly owing to increased supine infant sleep positioning necessitated the development of appropriate diagnosis and treatment and the avoidance of unnecessary surgery. A greater understanding of the genetic basis of craniofacial disorders has allowed better preoperative assessment and counseling. Finally, efforts to develop better bone graft substitutes with gene therapy and nanotechnology are ongoing. PMID:19018057

  9. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. D.; Hansen, L. K.; Rasor, N. S.

    1974-01-01

    Basic analytical and experimental exploration was conducted on several types of advanced thermionic energy converters, and preliminary analysis was performed on systems utilizing advanced converter performance. The Pt--Nb cylindrical diode which exhibited a suppressed arc drop, as described in the preceding report, was reassembled and the existence of the postulated hydrid mode of operation was tentatively confirmed. Initial data obtained on ignited and unignited triode operation in the demountable cesium vapor system essentially confirmed the design principles developed in earlier work, with a few exceptions. Three specific advanced converter concepts were selected as candidates for concentrated basic study and for practical evaluation in fixed-configuration converters. Test vehicles and test stands for these converters and a unique controlled-atmosphere station for converter assembly and processing were designed, and procurement was initiated.

  10. Advanced servomanipulator development

    SciTech Connect

    Kuban, D.P.

    1985-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller (DAMC) or master, and the control system. The ASM is remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world.

  11. Advanced ramjet concepts program

    NASA Technical Reports Server (NTRS)

    Leingang, J. L.

    1992-01-01

    Uniquely advantageous features, on both the performance and weight sides of the ledger, can be achieved through synergistic design integration of airbreathing and rocket technologies in the development of advanced orbital space transport propulsion systems of the combined cycle type. In the context of well understood advanced airbreathing and liquid rocket propulsion principles and practices, this precept of synergism is advanced mainly through six rather specific examples. These range from the detailed component level to the overall vehicle system level as follows: using jet compression; achieving a high area ratio rocket nozzle; ameliorating gas generator cycle rocket system deficiencies; using the in-duct special rocket thrust chamber assembly as the principal scramjet fuel injection operation; using the unstowed, covered fan as a duct closure for effecting high area ratio rocket mode operation; and creating a unique airbreathing rocket system via the onboard, cryogenic hydrogen induced air liquefaction process.

  12. CONDOR Advanced Visionics System

    NASA Astrophysics Data System (ADS)

    Kanahele, David L.; Buckanin, Robert M.

    1996-06-01

    The Covert Night/Day Operations for Rotorcraft (CONDOR) program is a collaborative research and development program between the governments of the United States and the United Kingdom of Great Britain and Northern Ireland to develop and demonstrate an advanced visionics concept coupled with an advanced flight control system to improve rotorcraft mission effectiveness during day, night, and adverse weather conditions in the Nap- of-the-Earth environment. The Advanced Visionics System for CONDOR is the flight- ruggedized head mounted display and computer graphics generator with the intended use of exploring, developing, and evaluating proposed visionic concepts for rotorcraft including; the application of color displays, wide field-of-view, enhanced imagery, virtual displays, mission symbology, stereo imagery, and other graphical interfaces.

  13. Advanced quantum noise correlations

    NASA Astrophysics Data System (ADS)

    Vogl, Ulrich; Glasser, Ryan T.; Clark, Jeremy B.; Glorieux, Quentin; Li, Tian; Corzo, Neil V.; Lett, Paul D.

    2014-01-01

    We use the quantum correlations of twin beams of light to investigate the fundamental addition of noise when one of the beams propagates through a fast-light medium based on phase-insensitive gain. The experiment is based on two successive four-wave mixing processes in rubidium vapor, which allow for the generation of bright two-mode-squeezed twin beams followed by a controlled advancement while maintaining the shared quantum correlations between the beams. The demonstrated effect allows the study of irreversible decoherence in a medium exhibiting anomalous dispersion, and for the first time shows the advancement of a bright nonclassical state of light. The advancement and corresponding degradation of the quantum correlations are found to be operating near the fundamental quantum limit imposed by using a phase-insensitive amplifier.

  14. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  15. Advanced fuel chemistry for advanced engines.

    SciTech Connect

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  16. Advanced solar dynamic technology program

    NASA Technical Reports Server (NTRS)

    Calogeras, James

    1990-01-01

    Viewgraphs and discussion on Advanced Solar Dynamic Technology Program are presented. Topics covered include: advanced solar dynamic technology program; advanced concentrators; advanced heat receivers; power conversion systems; dished all metal honeycomb sandwich panels; Stirling cavity heat pipe receiver; Brayton solar receiver; and thermal energy storage technology.

  17. MR Neurography: Advances

    PubMed Central

    Chhabra, Avneesh; Zhao, Lianxin; Carrino, John A.; Trueblood, Eo; Koceski, Saso; Shteriev, Filip; Lenkinski, Lionel; Sinclair, Christopher D. J.; Andreisek, Gustav

    2013-01-01

    High resolution and high field magnetic resonance neurography (MR neurography, MRN) is shown to have excellent anatomic capability. There have been considerable advances in the technology in the last few years leading to various feasibility studies using different structural and functional imaging approaches in both clinical and research settings. This paper is intended to be a useful seminar for readers who want to gain knowledge of the advancements in the MRN pulse sequences currently used in clinical practice as well as learn about the other techniques on the horizon aimed at better depiction of nerve anatomy, pathology, and potential noninvasive evaluation of nerve degeneration or regeneration. PMID:23589774

  18. Advances in attosecond science

    NASA Astrophysics Data System (ADS)

    Calegari, Francesca; Sansone, Giuseppe; Stagira, Salvatore; Vozzi, Caterina; Nisoli, Mauro

    2016-03-01

    Attosecond science offers formidable tools for the investigation of electronic processes at the heart of important physical processes in atomic, molecular and solid-state physics. In the last 15 years impressive advances have been obtained from both the experimental and theoretical points of view. Attosecond pulses, in the form of isolated pulses or of trains of pulses, are now routinely available in various laboratories. In this review recent advances in attosecond science are reported and important applications are discussed. After a brief presentation of various techniques that can be employed for the generation and diagnosis of sub-femtosecond pulses, various applications are reported in atomic, molecular and condensed-matter physics.

  19. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  20. Advanced engine study program

    NASA Astrophysics Data System (ADS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-06-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  1. Advanced engine study program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-01-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  2. Avionics advanced development strategy

    NASA Technical Reports Server (NTRS)

    Dyer, D.

    1990-01-01

    Discussed here is the problem of how to put together an integrated, phased, and affordable avionics advanced development program that links and applies to operational, evolving, and developing programs/vehicles, as well as those in the planning phases. Collecting technology needs from individual programs/vehicles and proposed technology items from individual developers usually results in a mismatch and something that is unaffordable. A strategy to address this problem is outlined with task definitions which will lead to avionics advanced development items that will fit within an overall framework, prioritized to support budgeting, and support the scope of NASA space transportations needs.

  3. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  4. Advanced sensors technology survey

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert

    1992-01-01

    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.

  5. Advanced Neuroimaging of Tinnitus.

    PubMed

    Raghavan, Prashant; Steven, Andrew; Rath, Tanya; Gandhi, Dheeraj

    2016-05-01

    Although tinnitus may originate in damage to the peripheral auditory apparatus, its perception and distressing symptomatology are consequences of alterations to auditory, sensory, and limbic neural networks. This has been described in several studies, some using advanced structural MR imaging techniques such as diffusion tensor imaging. An understanding of these complex changes could enable development of targeted treatment. New MR imaging techniques enabling detailed depiction of the labyrinth may be useful when diagnosis of Meniere disease is equivocal. Advances in computed tomography and MR imaging have enabled noninvasive diagnosis of dural arteriovenous fistulae. PMID:27154611

  6. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  7. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  8. Advanced subsonic transport propulsion

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Ciepluch, C. C.; Chamberlain, R.; Meleason, E. T.; Kraft, G. A.

    1981-01-01

    A brief review of the current NASA Energy Efficient Engine (E(3)) Project is presented. Included in this review are the factors that influenced the design of these turbofan engines and the advanced technology incorporated in them to reduce fuel consumption and improve environmental characteristics. In addition, factors such as the continuing spiral in fuel cost, that could influence future aircraft propulsion systems beyond those represented by the E(3) engines, are also discussed. Advanced technologies that will address these influencing factors and provide viable future propulsion systems are described. The potential importance of other propulsion system types, such as geared fans and turboshaft engines, is presented.

  9. Advances in surgery.

    PubMed

    Weder, W

    2012-09-01

    In the last decade, technological advances, new staging tools, better understanding the role of surgery within multimodal treatment concepts in advanced stages and progress in the functional assessment of surgical candidates improved the quality of surgery in the management of patients with lung cancer. Lung resection with video-assisted thoracoscopic access gained wide acceptance, the indication for lobectomy or sublobar resection in early stages was applied based on new data and selection for multimodal treatment in stage III is better understood based on the data. a major impact on the outcome of patients with lung cancer has the treatment in specialized high-volume centers.

  10. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  11. Advanced geometries and regimes

    SciTech Connect

    Bulanov, S. S.; Bulanov, S. V.; Turchetti, G.; Limpouch, J.; Klimo, O.; Psikal, J.; Margarone, D.; Korn, G.

    2013-07-26

    We review and discuss different schemes of laser ion acceleration as well as advanced target geometries in connection with the development of the laser-driven proton source for hadron therapy of oncological diseases, which is a part of the ELIMED project.

  12. Advanced Cell Technology, Inc.

    PubMed

    Caldwell, William M

    2007-03-01

    Advanced Cell Technology, Inc. (OTCBB: ACTC) is a biotechnology company applying novel human embryonic stem cell technologies in the emerging field of regenerative medicine. We believe that regenerative medicine has the potential to revolutionize the field by enabling scientists to produce human cells of any kind for use in a wide array of therapies.

  13. Advanced Combustion Engineering.

    ERIC Educational Resources Information Center

    Bartholomew, Calvin H.

    1987-01-01

    Describes the development of the Advanced Combustion Engineering Research Center (ACERC), which is a cooperative project of Brigham Young University, the University of Utah, and 25 governmental and industrial research laboratories. Discusses the research objectives, the academic program, the industrial relations and technology transfer program,…

  14. Advanced Plant Habitat (APH)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  15. Oklahoma's Advanced School Funding.

    ERIC Educational Resources Information Center

    Green, Gary

    A new means of funding school operations known as advanced school funding allows Oklahoma schools financing during the temporary cash shortfalls. The program consists of the Oklahoma Development Authority issuing revenue bonds purchased by E. F. Hutton and Company, Inc., which then sells the tax free bonds to investors throughout the country. A…

  16. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  17. Advances in Distance Learning.

    ERIC Educational Resources Information Center

    1999

    This document contains three symposium papers on advances in distance learning. "The Adoption of Computer Technology and Telecommunications: A Case Study" (Larry M. Dooley, Teri Metcalf, Ann Martinez) reports on a study of the possible applications of two theoretical models (Rogers' Diffusion of Innovations model and the Concerns-Based Adoption…

  18. Advanced fossil energy utilization

    SciTech Connect

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  19. Advances in Helium Cryogenics

    NASA Astrophysics Data System (ADS)

    Sciver, S. W. Van

    This review provides a survey of major advances that have occurred in recent years in the area of helium cryogenics. Helium-temperature cryogenics is the enabling technology for a substantial and growing number of low-temperature systems from superconducting magnets to space-based experimental facilities. In recent years there have been many advances in the technology of low-temperature helium, driven mostly by new applications. However, to keep the review from being too broad, this presentation focuses mainly on three of the most significant advances. These are: (1) the development of large-scale recuperative refrigeration systems mainly for superconducting magnet applications in accelerators and other research facilities; (2) the use of stored superfluid helium (He II) as a coolant for spacebased astrophysics experiments; and (3) the application of regenerative cryocoolers operating at liquid helium temperatures primarily for cooling superconducting devices. In each case, the reader should observe that critical technologies were developed to facilitate these applications. In addition to these three primary advances, other significant helium cryogenic technologies are briefly reviewed at the end of this chapter, along with some vision for future developments in these areas.

  20. Advancing beyond AP Courses

    ERIC Educational Resources Information Center

    Hammond, Bruce G.

    2009-01-01

    A quiet revolution is picking up steam in the nation's private secondary schools, with broad implications for college admissions and for teaching and learning on both sides of the transition from high school to college. About 50 of the nation's leading college-preparatory schools have opted out of the College Board's Advanced Placement (AP)…

  1. The Advancement Checkup.

    ERIC Educational Resources Information Center

    Sanders, Joseph

    1993-01-01

    It is proposed that an external audit of a college advancement program is analogous to a periodic physical examination that offers objectivity and expertise. Audits are appropriate at the time of administrative transitions, performance difficulties, and even periods of sustained success. Guidelines and expectations are discussed. (MSE)

  2. Advanced intrarenal ureteroscopic procedures.

    PubMed

    Monga, Manoj; Beeman, William W

    2004-02-01

    The role of flexible ureteroscopy in the management of intrarenal pathology has undergone a dramatic evolution, powered by improvements in flexible ureteroscope design; deflection and image quality; diversification of small, disposable instrumentation; and the use of holmium laser lithotripsy. This article reviews the application of flexible ureteroscopy for advanced intrarenal procedures.

  3. Advanced Heart Failure

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Advanced Heart Failure Updated:Oct 8,2015 When heart failure (HF) ... content was last reviewed on 04/06/2015. Heart Failure • Home • About Heart Failure • Causes and Risks for ...

  4. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  5. Advanced Concept Modeling

    NASA Technical Reports Server (NTRS)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  6. Advanced Cardiac Life Support.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  7. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  8. The Teacher Advancement Program.

    ERIC Educational Resources Information Center

    Schiff, Tamara W.

    2002-01-01

    This publication contains two essays discussing the Teacher Advancement Program (TAP) and a criticism of merit pay for teachers. Today's schools are larger, often overcrowded, and frequently staffed by temporary or inexperienced teachers. TAP was created in response to the need for teacher-quality reform. It addresses challenges of teacher quality…

  9. Interfaces for Advanced Computing.

    ERIC Educational Resources Information Center

    Foley, James D.

    1987-01-01

    Discusses the coming generation of supercomputers that will have the power to make elaborate "artificial realities" that facilitate user-computer communication. Illustrates these technological advancements with examples of the use of head-mounted monitors which are connected to position and orientation sensors, and gloves that track finger and…

  10. Advancement's Sticky Issues

    ERIC Educational Resources Information Center

    Jackson, Patricia

    2011-01-01

    The author did not expect to be surprised or disturbed by the data from the latest Council for Advancement and Support of Education (CASE) salary survey; however, she was. CASE has been conducting the survey since 1982, so she assumed the findings would mirror her own salary history and those of her peers. While she suspected that older women…

  11. Advanced Gas Turbine (AGT)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development and progress of the Advanced Gas Turbine engine program is examined. An analysis of the role of ceramics in the design and major engine components is included. Projected fuel economy, emissions and performance standards, and versatility in fuel use are also discussed.

  12. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  13. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  14. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  15. Infant Development: Recent Advances.

    ERIC Educational Resources Information Center

    Bremner, Gavin, Ed.; Slater, Alan, Ed.; Butterworth, George, Ed.

    Noting that the last 30 years have seen enormous increases in the understanding of infancy, this book examines the current state of knowledge regarding infant development. The book's contents stem from meetings of the British Infancy Research Group. Although the book was intended for advanced undergraduates, it would also be useful for advanced…

  16. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  17. Advances in fetal surgery

    PubMed Central

    Pedreira, Denise Araujo Lapa

    2016-01-01

    ABSTRACT This paper discusses the main advances in fetal surgical therapy aiming to inform health care professionals about the state-of-the-art techniques and future challenges in this field. We discuss the necessary steps of technical evolution from the initial open fetal surgery approach until the development of minimally invasive techniques of fetal endoscopic surgery (fetoscopy). PMID:27074241

  18. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  19. Advanced radiator concepts

    NASA Technical Reports Server (NTRS)

    Diem-Kirsop, P. S.

    1985-01-01

    The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.

  20. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA

  1. Therapeutic advances in dystonia.

    PubMed

    Albanese, Alberto; Romito, Luigi M; Calandrella, Daniela

    2015-09-15

    Knowledge on dystonia has greatly improved recently, because of a renewed effort in understanding its cause, pathophysiology, and clinical characterization. Different drug classes traditionally have been used for the symptomatic treatment of dystonia, more recently surpassed by the introduction of botulinum neurotoxins and deep brain stimulation. No curative or disease-modifying treatments are available. Recent knowledge regarding the pathophysiology of inherited dystonias is highlighting new potential treatment strategies. We review therapeutic advances in dystonia that have been published over the last 3 years, particularly regarding oral medications, local injections of botulinum neurotoxins, deep brain stimulation, and transcranial or epidural brain stimulations. We discuss evidence of efficacy, highlight recent advances, and focus on key areas under development. PMID:26301801

  2. Advances in Estuarine Physics

    NASA Astrophysics Data System (ADS)

    Maccready, Parker; Geyer, W. Rockwell

    2010-01-01

    Recent advances in our understanding of estuarine circulation and salinity structure are reviewed. We focus on well- and partially mixed systems that are long relative to the tidal excursion. Dynamics of the coupled system of width- and tidally averaged momentum and salt equations are now better understood owing to the development of simple numerical solution techniques. These have led to a greater appreciation of the key role played by the time dependency of the length of the salt intrusion. Improved realism in simplified tidally averaged physics has been driven by simultaneous advances in our understanding of the detailed dynamics within the tidal cycle and across irregular channel cross-sections. The complex interactions of turbulence, stratification, and advection are now understood well enough to motivate a new generation of physically plausible mixing parameterizations for the tidally averaged equations.

  3. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  4. Advanced CCD camera developments

    SciTech Connect

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  5. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation.

  6. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  7. Advanced Rotorcraft Transmission Program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The U.S. Army/NASA Advanced Rotorcraft Transmission (ART) program is charged with developing and demonstrating a light, quiet, and durable drivetrain for next-generation rotorcraft in two classes: a 10,000-20,000 Future Attack Air Vehicle capable of both tactical ground support and air-to-air missions, and a 60,000-80,000 lb Advanced Cargo Aircraft, for heavy-lift field-support operations. Specific ART objectives encompass a 25-percent reduction in drivetrain weight, a 10-dB noise level reduction at the transmission source, and the achievement of a 5000-hr MTBF. Four candidate drivetrain systems have been carried to a conceptual design stage, together with projections of their mission performance and life-cycle costs.

  8. Advanced steel reheat furnace

    SciTech Connect

    Moyeda, D.; Sheldon, M.; Koppang, R.; Lanyi, M.; Li, X.; Eleazer, B.

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  9. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation. PMID:25345035

  10. Therapeutic advances in dystonia.

    PubMed

    Albanese, Alberto; Romito, Luigi M; Calandrella, Daniela

    2015-09-15

    Knowledge on dystonia has greatly improved recently, because of a renewed effort in understanding its cause, pathophysiology, and clinical characterization. Different drug classes traditionally have been used for the symptomatic treatment of dystonia, more recently surpassed by the introduction of botulinum neurotoxins and deep brain stimulation. No curative or disease-modifying treatments are available. Recent knowledge regarding the pathophysiology of inherited dystonias is highlighting new potential treatment strategies. We review therapeutic advances in dystonia that have been published over the last 3 years, particularly regarding oral medications, local injections of botulinum neurotoxins, deep brain stimulation, and transcranial or epidural brain stimulations. We discuss evidence of efficacy, highlight recent advances, and focus on key areas under development.

  11. Recent Advances in Voltammetry

    PubMed Central

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-01-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984

  12. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini; Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-theshelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  13. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  14. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  15. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  16. Recent Advances in Voltammetry.

    PubMed

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-06-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler-Volmer and Marcus-Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of 'nano-impacts'. PMID:26246984

  17. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  18. Advances in Oral Coagulants

    PubMed Central

    2013-01-01

    This article reviews current and future treatment practices concerning oral anticoagulants. In the second decade of the 21st millennium clinicians can finally treat thrombotic disease with long-awaited new oral anticoagulant medications. In addition, improvements have been made in managing warfarin, the traditional but far from obsolete medication. The first part of this review will cover current advances with warfarin treatment. The second portion will discuss specific active coagulation factor inhibitors, the new oral anticoagulants.

  19. Advanced composites for windmills

    NASA Astrophysics Data System (ADS)

    Bourquardez, G.

    A development status assessment is conducted for advanced composite construction techniques for windmill blade structures which, as in the case of composite helicopter rotors, promise greater reliability, longer service life, superior performance, and lower costs. Composites in wind turbine applications must bear aerodynamic, inertial and gravitational loads in complex interaction cycles. Attention is given to large Darrieus-type vertical axis windmills, to which composite construction methods may offer highly effective pitch-control mechanisms, especially in the 'umbrella' configuration.

  20. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  1. Advances in photovoltaic technology

    NASA Technical Reports Server (NTRS)

    Landis, G. A.; Bailey, S. G.

    1992-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost in the last 10 years are presented. The potential performance of thin-film solar cells in space is examined, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the needs of satellite solar power systems. Attention is given to single-crystal cells, concentrator and cascade cells, and thin-film solar cells.

  2. Advanced Polymer Processing Facility

    SciTech Connect

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  3. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  4. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  5. Advanced proteomic liquid chromatography

    PubMed Central

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-01-01

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput. PMID:22840822

  6. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  7. Therapeutic advances in immunosuppression.

    PubMed Central

    Thomson, A W; Forrester, J V

    1994-01-01

    Immunosuppressive therapy is appropriate for the prevention or reversal of allograft rejection, and for the treatment of autoimmune disorders and allergic disease. Recent advances in our understanding of the cellular and molecular mechanisms that regulate immune responses have paralleled elucidation of the modes of action of a variety of therapeutic immunosuppressive agents, both 'old' and new. These developments have identified potential targets for more refined and specific intervention strategies that are now being tested in the clinic. PMID:7994898

  8. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  9. Recent advances in dermoscopy

    PubMed Central

    Russo, Teresa; Piccolo, Vincenzo; Lallas, Aimilios; Argenziano, Giuseppe

    2016-01-01

    The use of dermoscopy has offered a new morphological dimension of skin lesions and has provided an effective diagnostic tool to differentiate melanoma from other benign or malignant skin tumors but also to support the clinical diagnosis in general dermatology. The aim of this article is to provide an overview of the most recent and important advances in the rising world of dermoscopy. PMID:26949523

  10. Advanced turboprop vibratory characteristics

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Fulton, G. B.

    1984-01-01

    The assembly of SR5 advanced turboprop blades to develop a structural dynamic data base for swept props is reported. Steady state blade deformation under centrifugal loading and vibratory characteristics of the rotor assembly were measured. Vibration was induced through a system of piezoelectric crystals attached to the blades. Data reduction procedures are used to provide deformation, mode shape, and frequencies of the assembly at predetermined speeds.

  11. Advanced concentrator panels

    NASA Technical Reports Server (NTRS)

    Bell, D. M.; Bedard, R. J., Jr.

    1981-01-01

    The prototype fabrication of a lightweight, high-quality cellular glass substrate reflective panel for use in an advanced point-focusing solar concentrator was completed. The reflective panel is a gore shaped segment of an 11-m paraboloidal dish. The overall concentrator design and the design of the reflective panels are described. prototype-specific panel design modifications are discussed and the fabrication approach and procedure outlined.

  12. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  13. Advances in Laryngoscopy.

    PubMed

    Aziz, Michael

    2015-01-01

    Recent technological advances have made airway management safer. Because difficult intubation remains challenging to predict, having tools readily available that can be used to manage a difficult airway in any setting is critical. Fortunately, video technology has resulted in improvements for intubation performance while using laryngoscopy by various means. These technologies have been applied to rigid optical stylets, flexible intubation scopes, and, most notably, rigid laryngoscopes. These tools have proven effective for the anticipated difficult airway as well as the unanticipated difficult airway.

  14. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  15. Advanced battery development

    SciTech Connect

    Diegle, R.B.; McWilliams, J.Y.

    1989-01-01

    In order to promote national security by ensuring that the United States has an adequate supply of safe, assured, affordable, and environmentally acceptable energy, the Storage Batteries Division at Sandia National Laboratories (SNL), Albuquerque, is responsible for engineering development of advanced rechargeable batteries for energy applications. This effort is conducted within the Exploratory Battery Technology Development and Testing (ETD) Lead center, whose activities are coordinated by staff within the Storage Batteries Division. The ETD Project, directed by SNL, is supported by the US Department of Energy, Office of Energy Systems Research, Energy Storage and Distribution Division (DOE/OESD). SNL is also responsible for technical management of the Electric Vehicle Advanced Battery Systems (EV-ABS) Development Project, which is supported by the US Department Of Energy's Office of Transportation Systems (OTS). The ETD Project is operated in conjunction with the Technology Base Research (TBR) Project, which is under the direction of Lawrence Berkeley Laboratory. Together these two projects seek to: establish the scientific feasibility of advanced electrochemical energy storage systems, and conduct the initial engineering development on systems suitable for mobile and stationary commercial applications. 6 figs.

  16. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  17. [Advanced sleep phase syndrome].

    PubMed

    Ondzé, B; Espa, F; Ming, L C; Chakkar, B; Besset, A; Billiard, M

    2001-11-01

    The Advanced Sleep Phase Syndrome (ASPS) is a sleep disorder characterized by an early sleep onset and early awakening without any disturbance of the sleep structure. The management of this disease requires clinical and laboratory investigations in an attempt to confirm the phase advance of body core temperature and melatonin rhythm. The use of light therapy, possibly associated with chronotherapy or melatonin intake has been proposed. The evolution is variable. Seven subjects, aged 15 to 72 were diagnosed in our sleep disorders unit by mean of sleep log, actigraphy, sleep and temperature recording. The sleep onset and sleep offset times were approximately the same according to sleep log, actigraphy and night polysomnography. The nadir of body core temperature was at 01:38 +/- 01:03. Two familial cases were identified of which 1 was investigated in constant routine condition with hourly blood sampling. An advanced phase of melatonin and cortisol was evidenced. The disease temporarily improved in 3 cases with light therapy and in one case with the association of light therapy and chronotherapy. These data show the difficulties of the management and the treatment of this rarely diagnosed disease. PMID:11924025

  18. Advanced Microturbine Systems

    SciTech Connect

    Lindberg, Laura

    2005-04-29

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  19. Advanced gearbox technology

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Cedoz, R. W.; Salama, E. E.; Wagner, D. A.

    1987-01-01

    An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress.

  20. Accelerating advanced-materials commercialization

    NASA Astrophysics Data System (ADS)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  1. TIMSS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    The "TIMSS Advanced 2015 Assessment Frameworks" provides the foundation for the two international assessments to take place as part of the International Association for the Evaluation of Educational Achievement's TIMSS (Trends in International Mathematics and Science Study) Advanced 2015--Advanced Mathematics and Physics. Chapter 1 (Liv…

  2. TIMSS Advanced 2008 Assessment Frameworks

    ERIC Educational Resources Information Center

    Garden, Robert A.; Lie, Svein; Robitaille, David F.; Angell, Carl; Martin, Michael O.; Mullis, Ina V.S.; Foy, Pierre; Arora, Alka

    2006-01-01

    Developing the Trends in International Mathematics and Science Study (TIMSS) Advanced 2008 Assessment Frameworks was a collaborative venture involving mathematics and physics experts from around the world. The document contains two frameworks for implementing TIMSS Advanced 2008--one for advanced mathematics and one for physics. It also contains…

  3. Advances in ice mechanics - 1987

    SciTech Connect

    Chung, J.S.; Hallam, S.D.; Maatanen, M.; Sinha, N.K.; Sodhi, D.S.

    1987-01-01

    This book presents the papers given at a symposium on the interaction of icebergs with offshore platforms. Topics considered at the symposium included advances in ice mechanics in the United Kingdom, ice mechanics in Finland, recent advances in ice mechanics in Canada, advances in sea ice mechanics in the USA, foundations, monitoring, hazards, risk assessment, and deformation.

  4. Criteria for Evaluating Advancement Programs.

    ERIC Educational Resources Information Center

    Heemann, Warren, Ed.

    Criteria for evaluating college and university advancement programs are presented, based on the efforts of professional area trustees and advisory committees of the Council for Advancement and Support of Education (CASE). The criteria can be useful in three ways: as the basis of internal audits of advancement programs or program components; as the…

  5. Residual gas analysis for long-pulse, advanced tokamak operation.

    PubMed

    Klepper, C C; Hillis, D L; Bucalossi, J; Douai, D; Oddon, P; Vartanian, S; Colas, L; Manenc, L; Pégourié, B

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H(2)/D(2) isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H(2) injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H(2) could increase due to thermodesorption of overheated plasma facing components.

  6. Residual gas analysis for long-pulse, advanced tokamak operation

    SciTech Connect

    Klepper, C. C.; Hillis, D. L.; Bucalossi, J.; Douai, D.; Oddon, P.; Vartanian, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-10-15

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This ''diagnostic RGA'' has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H{sub 2}/D{sub 2} isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H{sub 2} injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H{sub 2} could increase due to thermodesorption of overheated plasma facing components.

  7. Residual Gas Analysis for Long-Pulse, Advanced Tokamak Operation

    SciTech Connect

    Klepper, C Christopher; Hillis, Donald Lee; Bucalossi, J.; Douai, D.; OddonCEA, IRFM, P.; VartanianCEA-Cadarach, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-01-01

    A shielded residual gas analyzer RGA system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This diagnostic RGA has been used in long-pulse up to 6 min discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2 /D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses 4 min absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components. 2010 American Institute of Physics.

  8. Residual gas analysis for long-pulse, advanced tokamak operationa)

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Hillis, D. L.; Bucalossi, J.; Douai, D.; Oddon, P.; Vartanian, S.; Colas, L.; Manenc, L.; Pégourié, B.

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2/D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components.

  9. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  10. Advanced rotorcraft transmission program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.

  11. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  12. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  13. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  14. Advanced PDV velocity extraction

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Ao, Tommy; Furnish, Michael

    2015-06-01

    While PDV has become a standard diagnostic, reliable velocity extraction remains challenging. Measurements with multiple real/apparent velocities are intrinsically difficult to analyze, and overlapping frequency components invalidate standard extraction methods. This presentation describes an advanced analysis technique where overlapping frequency components are resolved in the complex Fourier spectrum. Practical matters--multiple region of interest selection, component intersection, and shock transitions--will also be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  15. Advances in Therapeutic Cholangioscopy

    PubMed Central

    Moura, Renata Nobre; de Moura, Eduardo Guimarães Hourneaux

    2016-01-01

    Nowadays, cholangioscopy is an established modality in diagnostic and treatment of pancreaticobiliary diseases. The more widespread use and the recent development of new technologies and accessories had renewed the interest of endoscopic visualization of the biliary tract, increasing the range of indications and therapeutic procedures, such as diagnostic of indeterminate biliary strictures, lithotripsy of difficult bile duct stones, ablative techniques for intraductal malignancies, removal of foreign bodies and gallbladder drainage. These endoscopic interventions will probably be the last frontier in the near future. This paper presents the new advances in therapeutic cholangioscopy, focusing on the current clinical applications and on research areas. PMID:27403156

  16. Advanced composites technology program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1993-01-01

    This paper provides a brief overview of the NASA Advanced Composites Technology (ACT) Program. Critical technology issues that must be addressed and solved to develop composite primary structures for transport aircraft are delineated. The program schedule and milestones are included. Work completed in the first 3 years of the program indicates the potential for achieving composite structures that weigh less and are cost effective relative to conventional aluminum structure. Selected technical accomplishments are noted. Readers who are seeking more in-depth technical information should study the other papers included in these proceedings.

  17. Advances in Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Frois, B.

    2005-04-01

    This paper briefly reviews the next generations of nuclear reactors and the perspectives of development of nuclear energy. Advanced reactors will progressively replace the existing ones during the next two decades. Future systems of the fourth generation are planned to be built beyond 2030. These systems have been studied in the framework of the "Generation IV" International Forum. The goals of these systems is to have a considerable increase in safety, be economically competitive and produce a significantly reduced volume of nuclear wastes. The closed fuel cycle is preferred.

  18. Advanced Optical Network

    NASA Astrophysics Data System (ADS)

    Braun, Steve; Michael, Xuejun

    The following article describes an advanced dense wavelength division multiplexing (DWDM) Optical Network developed by L-3 Photonics. The network, configured as an amplified optical bus, carries traffic simultaneously in both directions, using multiple wavelengths. As a result, data distribution is of the form peer-to-multi-peer, it is protocol independent, and it is scalable. The network leverages the rapid growth in commercial optical technologies, including wavelength division multiplexing (WDM), and when applied to military and commercial platforms such as aircraft, ships, unmanned and other vehicles, provides a cost-effective, low-weight, high-speed, and high noise-immune data distribution system.

  19. Horizontal Advanced Tensiometer

    SciTech Connect

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  20. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  1. Advances in optoelectronic oscillators

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain M.; Saleh, Khaldoun; Lin, Guoping; Matinenghi, Romain; Chembo, Yanne K.

    2016-02-01

    Optoelectronic oscillators are used for a wide variety of applications in microwave photonics. We here report the latest advances in this technology from our research group, with emphasis on the analysis of phase noise performance. We present a stochastic modelling approach for phase noise performance analysis of optoelectronic oscillators based on whispering gallery mode resonators and/or optical fiber delay lines, and the theory is complemented with experimental measurements. We provide a detailed theoretical analysis which enables us to find the stationary states of the system as well as their stability. Our calculations also permit to find explicit formulas for the phase noise spectra, thereby allowing for their optimization.

  2. Advanced soldering processes

    SciTech Connect

    Jellison, J.L.; Golden, J.; Frear, D.R.; Hosking, F.M.; Keicher, D.M.; Yost, F.G.

    1993-02-20

    Advanced soldering processes are discussed in a complete manner. The ability to meet the needs of electronic manufacturing, while addressing the environmental issues are challenging goals. Government regulations mandate the elimination of most solvents in solder flux removal. Alternative approaches to promoting wetting are discussed. Inert atmosphere soldering, acid vapor fluxless soldering, atomic and ionic hydrogen as reactive atmospheres, fluxless laser soldering in a controlled atmosphere are offered as soldering mechanisms for the future. Laser are discussed as alternate heat sources. Various types of lasers, advantages of lasers, and fiber optic beam delivery are considered.

  3. Advance Care Planning

    Cancer.gov

    The thirteenth module of the EPEC-O (Education in Palliative and End-of-Life Care for Oncology) Self-Study: Cultural Considerations When Caring for African Americans explores the attitudes and practices of African Americans related to completion of advance directives, and recommends effective strategies to improve decision-making in the setting of serious, life-threatening illness, in ways that augment patient autonomy and support patient-centered goal-setting and decision-making among African American patients and their families.

  4. Advanced Turboprop Project

    NASA Technical Reports Server (NTRS)

    Hager, Roy D.; Vrabel, Deborah

    1988-01-01

    At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987.

  5. Advanced turboprop project

    SciTech Connect

    Hager, R.D.; Vrabel, D.

    1988-01-01

    At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987.

  6. Advanced Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen; Niebuhr, Jason; Cruz, Santana; Lamoreaux, chris

    2007-01-01

    The advanced resistive exercise device (ARED), now at the prototype stage of development, is a versatile machine that can be used to perform different customized exercises for which, heretofore, it has been necessary to use different machines. Conceived as a means of helping astronauts and others to maintain muscle and bone strength and endurance in low-gravity environments, the ARED could also prove advantageous in terrestrial settings (e.g., health clubs and military training facilities) in which many users are exercising simultaneously and there is heavy demand for use of exercise machines.

  7. The Milstar Advanced Processor

    NASA Astrophysics Data System (ADS)

    Tjia, Khiem-Hian; Heely, Stephen D.; Morphet, John P.; Wirick, Kevin S.

    The Milstar Advanced Processor (MAP) is a 'drop-in' replacement for its predecessor which preserves existing interfaces with other Milstar satellite processors and minimizes the impact of such upgrading to already-developed application software. In addition to flight software development, and hardware development that involves the application of VHSIC technology to the electrical design, the MAP project is developing two sophisticated and similar test environments. High density RAM and ROM are employed by the MAP memory array. Attention is given to the fine-pitch VHSIC design techniques and lead designs used, as well as the tole of TQM and concurrent engineering in the development of the MAP manufacturing process.

  8. Advanced Electrophysiologic Mapping Systems

    PubMed Central

    2006-01-01

    Executive Summary Objective To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Clinical Need Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation

  9. Advanced PFBC transient analysis

    SciTech Connect

    White, J.S.; Bonk, D.L.

    1997-05-01

    Transient modeling and analysis of advanced Pressurized Fluidized Bed Combustion (PFBC) systems is a research area that is currently under investigation by the US Department of Energy`s Federal Energy Technology Center (FETC). The object of the effort is to identify key operating parameters that affect plant performance and then quantify the basic response of major sub-systems to changes in operating conditions. PC-TRAX{trademark}, a commercially available dynamic software program, was chosen and applied in this modeling and analysis effort. This paper describes the development of a series of TRAX-based transient models of advanced PFBC power plants. These power plants burn coal or other suitable fuel in a PFBC, and the high temperature flue gas supports low-Btu fuel gas or natural gas combustion in a gas turbine topping combustor. When it is utilized, the low-Btu fuel gas is produced in a bubbling bed carbonizer. High temperature, high pressure combustion products exiting the topping combustor are expanded in a modified gas turbine to generate electrical power. Waste heat from the system is used to raise and superheat steam for a reheat steam turbine bottoming cycle that generates additional electrical power. Basic control/instrumentation models were developed and modeled in PC-TRAX and used to investigate off-design plant performance. System performance for various transient conditions and control philosophies was studied.

  10. Advances in speech processing

    NASA Astrophysics Data System (ADS)

    Ince, A. Nejat

    1992-10-01

    The field of speech processing is undergoing a rapid growth in terms of both performance and applications and this is fueled by the advances being made in the areas of microelectronics, computation, and algorithm design. The use of voice for civil and military communications is discussed considering advantages and disadvantages including the effects of environmental factors such as acoustic and electrical noise and interference and propagation. The structure of the existing NATO communications network and the evolving Integrated Services Digital Network (ISDN) concept are briefly reviewed to show how they meet the present and future requirements. The paper then deals with the fundamental subject of speech coding and compression. Recent advances in techniques and algorithms for speech coding now permit high quality voice reproduction at remarkably low bit rates. The subject of speech synthesis is next treated where the principle objective is to produce natural quality synthetic speech from unrestricted text input. Speech recognition where the ultimate objective is to produce a machine which would understand conversational speech with unrestricted vocabulary, from essentially any talker, is discussed. Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. It is for this reason that the paper is concerned primarily with this technique.

  11. Advanced geothermal technologies

    NASA Astrophysics Data System (ADS)

    Whetten, J. T.; Murphy, H. D.; Hanold, R. J.; Myers, C. W.; Dunn, J. C.

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the U.S. Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico was producing 10 MW thermal, and still climbing, proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction was demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive.

  12. Advanced Liquid Feed Experiment

    NASA Astrophysics Data System (ADS)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  13. Advances in Capsule Endoscopy

    PubMed Central

    Scott, Ryan

    2015-01-01

    Wireless video capsule endoscopy (VCE) is a minimally invasive technology that has revolutionized the approach to small intestinal disease investigation and management. Designed primarily to provide diagnostic imaging of the small intestine, VCE is used predominantly for obscure gastrointestinal bleeding and suspected Crohn’s disease; however, numerous other indications have been established, including the assessment of celiac disease, investigation of small bowel tumors, and surveillance of hereditary polyposis syndromes. Since the introduction of small bowel VCE in 2000, more than 1600 articles have been published describing the evolution of this technology. The main adverse outcome is capsule retention, which can potentially be avoided by careful patient selection or by using a patency capsule. Despite the numerous advances in the past 15 years, limitations such as incomplete VCE studies, missed lesions, and time-consuming reporting remain. The inability to control capsule movement for the application of targeted therapy or the acquisition of tissue for histologic analysis remains among the greatest challenges in the further development of capsule technology. This article outlines the recent technological and clinical advances in VCE and the future directions of research in this field. PMID:27482183

  14. Advances in Capsule Endoscopy.

    PubMed

    Scott, Ryan; Enns, Robert

    2015-09-01

    Wireless video capsule endoscopy (VCE) is a minimally invasive technology that has revolutionized the approach to small intestinal disease investigation and management. Designed primarily to provide diagnostic imaging of the small intestine, VCE is used predominantly for obscure gastrointestinal bleeding and suspected Crohn's disease; however, numerous other indications have been established, including the assessment of celiac disease, investigation of small bowel tumors, and surveillance of hereditary polyposis syndromes. Since the introduction of small bowel VCE in 2000, more than 1600 articles have been published describing the evolution of this technology. The main adverse outcome is capsule retention, which can potentially be avoided by careful patient selection or by using a patency capsule. Despite the numerous advances in the past 15 years, limitations such as incomplete VCE studies, missed lesions, and time-consuming reporting remain. The inability to control capsule movement for the application of targeted therapy or the acquisition of tissue for histologic analysis remains among the greatest challenges in the further development of capsule technology. This article outlines the recent technological and clinical advances in VCE and the future directions of research in this field. PMID:27482183

  15. Advanced Stirling Convertor Update

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  16. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  17. Advanced Virgo phase cameras

    NASA Astrophysics Data System (ADS)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  18. Advanced composites technology

    SciTech Connect

    DeTeresa, S J; Groves, S E; Sanchez, R J

    1998-10-01

    The development of fiber composite components in next-generation munitions, such as sabots for kinetic energy penetrators and lightweight cases for advanced artillery projectiles, relies on design trade-off studies using validated computer code simulations. We are developing capabilities to determine the failure of advanced fiber composites under multiaxial stresses to critically evaluate three-dimensional failure models and develop new ones if necessary. The effects of superimposed hydrostatic pressure on failure of composites are being investigated using a high-pressure testing system that incorporates several unique features. Several improvements were made to the system this year, and we report on the first tests of both isotropic and fiber composite materials. The preliminary results indicate that pressure has little effect on longitudinal compression strength of unidirectional composites, but issues with obtaining reliable failures in these materials still remain to be resolved. The transverse compression strength was found to be significantly enhanced by pressure, and the trends observed for this property and the longitudinal strength are in agreement with recent models for failure of fiber composites.

  19. Advancing empirical resilience research.

    PubMed

    Kalisch, Raffael; Müller, Marianne B; Tüscher, Oliver

    2015-01-01

    We are delighted by the broad, intense, and fruitful discussion in reaction to our target article. A major point we take from the many comments is a prevailing feeling in the research community that we need significantly and urgently to advance resilience research, both by sharpening concepts and theories and by conducting empirical studies at a much larger scale and with a much more extended and sophisticated methodological arsenal than is the case currently. This advancement can be achieved only in a concerted international collaborative effort. In our response, we try to argue that an explicitly atheoretical, purely observational definition of resilience and a transdiagnostic, quantitative study framework can provide a suitable basis for empirically testing different competing resilience theories (sects. R1, R2, R6, R7). We are confident that it should be possible to unite resilience researchers from different schools, including from sociology and social psychology, behind such a pragmatic and theoretically neutral research strategy. In sections R3 to R5, we further specify and explain the positive appraisal style theory of resilience (PASTOR). We defend PASTOR as a comparatively parsimonious and translational theory that makes sufficiently concrete predictions to be evaluated empirically. PMID:26815844

  20. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  1. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  2. Aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1990-01-01

    The aeroacoustics of advanced, high speed propellers (propfans) are reviewed from the perspective of NASA research conducted in support of the Advanced Turboprop Program. Aerodynamic and acoustic components of prediction methods for near and far field noise are summarized for both single and counterrotation propellers in uninstalled and configurations. Experimental results from tests at both takeoff/approach and cruise conditions are reviewed with emphasis on: (1) single and counterrotation model tests in the NASA Lewis 9 by 15 (low speed) and 8 by 6 (high speed) wind tunnels, and (2) full scale flight tests of a 9 ft (2.74 m) diameter single rotation wing mounted tractor and a 11.7 ft (3.57 m) diameter counterrotation aft mounted pusher propeller. Comparisons of model data projected to flight with full scale flight data show good agreement validating the scale model wind tunnel approach. Likewise, comparisons of measured and predicted noise level show excellent agreement for both single and counterrotation propellers. Progress in describing angle of attack and installation effects is also summarized. Finally, the aeroacoustic issues associated with ducted propellers (very high bypass fans) are discussed.

  3. Advanced desiccant materials research

    SciTech Connect

    Czanderna, A.W.; Thomas, T.M.

    1986-05-01

    The long-range goal of this task is to understand the role of surface phenomena in desiccant cooling materials. The background information includes a brief introduction to desiccant cooling systems (DCS) and the role of the desiccant as a system component. The purpose, background, rationale, and long-term technical approach for studying advanced desiccant materials are then treated. Experimental methods for measuring water vapor sorption by desiccants are described, and the rationale is then given for choosing a quartz crystal microbalance (QCM) for measuring sorption isotherms, rates, and cyclic stability. Background information is given about the QCM, including the quartz crystal resonator itself, the support structure for the quartz crystal, and the advantages and limitations of a QCM. The apparatus assembled and placed into operation during CY 1985 is described. The functions of the principal components of the equipment, i.e., the QCM, vacuum system, pressure gauges, residual gas analyzer, constant temperature bath, and data acquisition system, are described as they relate to the water vapor sorption measurements now under way. The criteria for narrowing the potential candidates as advanced desiccant materials for the initial studies are given. Also given is a list of 20 principal candidate materials identified based on the criteria and data available in the literature.

  4. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  5. Advances in orthodontics.

    PubMed

    Cunningham, Susan J; Jones, Steven P; Hodges, Samantha J; Horrocks, Elisabeth N; Hunt, Nigel P; Moseley, Howard C; Noar, Joseph H

    2002-01-01

    There has been tremendous progress in orthodontics since Edward Angle first popularised the fixed orthodontic appliance at the turn of the century. Recent years have seen an increased demand for orthodontic treatment from both adolescents and adults and, in addition, patient and clinician expectations of treatment outcomes continue to rise. A desire for more aesthetic materials has resulted in both smaller and 'tooth-coloured' appliances. Improvements in technology, often outside orthodontics, have also led to the development of new materials. The best example of this was the development of nickel titanium alloy by the NASA space programme, which was subsequently adapted for use in nickel titanium archwires. Other technological advances adopted for use in orthodontics include magnets, computerised imaging systems and distraction osteogenesis. This review paper looks at some of the innovations in the fields of materials as well as in techniques and appliance systems.

  6. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

    1999-10-15

    This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

  7. Advanced night vision goggles

    NASA Astrophysics Data System (ADS)

    Thacker, Clinton

    2003-02-01

    The Advanced Night Vision Goggle (ANVG) program is developing integrated wide field of view (WFOV) helmet-mounted image intensifier night vision goggle systems. ANVG will provide a FOV of approximately 40° (vertical) × 100° (horizontal) and an integrated heads-up display for overlay of flight symbology and/or FLIR imagery. The added FLIR complements the I2 imagery in out of the window or ground applications. ANVG will significantly improve safety, situational awareness, and mission capabilities in differing environments. ANVG achieves the ultra wide FOV using four image intensifier tubes in a head-mounted configuration. Additional features include a miniature flat panel display and a lightweight uncooled FLIR. The integrated design will demonstrate the capability of helmet-mounted I2 and FLIR image fusion. Fusion will be accomplished optically and will offer significant opportunities for ground applications. This paper summarizes the basic technologies, lessons learned, and program status.

  8. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley Miller; Rich Gebert; William Swanson

    1999-11-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

  9. Advanced Telemetry Data Capturing

    SciTech Connect

    Paschke, G.A.

    2000-05-16

    This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.

  10. Advanced laser image recorder.

    PubMed

    Gramenopoulos, N; Hartfield, E D

    1972-12-01

    A laser image recorder is described, which is unique because of its advanced design and the state-of-the-art components employed to achieve high performance and versatility. The critical components are the pyramidal mirror scanner and the beam focusing lens. The scanner has a six-facet, beryllium mirror accurate to 0.33 sec of arc and rotating at 0-50,000 rpm on air bearings. A rapid change in speed is an important feature of this scanner. The focusing lens is diffraction limited with a flat field of 54 degrees , allowing a 90% duty cycle and the use of photographic film transported by a cylindrical drum. The lens converts the constant angular velocity of the reflected beam to a constant scanning velocity of the focused spot with a linearity of 0.05%. Maximum number of picture elements per line is 36,800 over a format of 228.6 mm. PMID:20119408

  11. Advances in Bioconjugation

    PubMed Central

    Kalia, Jeet; Raines, Ronald T.

    2010-01-01

    Bioconjugation is a burgeoning field of research. Novel methods for the mild and site-specific derivatization of proteins, DNA, RNA, and carbohydrates have been developed for applications such as ligand discovery, disease diagnosis, and high-throughput screening. These powerful methods owe their existence to the discovery of chemoselective reactions that enable bioconjugation under physiological conditions—a tremendous achievement of modern organic chemistry. Here, we review recent advances in bioconjugation chemistry. Additionally, we discuss the stability of bioconjugation linkages—an important but often overlooked aspect of the field. We anticipate that this information will help investigators choose optimal linkages for their applications. Moreover, we hope that the noted limitations of existing bioconjugation methods will provide inspiration to modern organic chemists. PMID:20622973

  12. Biotechnological advances in Lilium.

    PubMed

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; van Tuyl, Jaap M

    2016-09-01

    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily.

  13. Recent advances in VECSELs

    NASA Astrophysics Data System (ADS)

    Rahimi-Iman, Arash

    2016-09-01

    Within the last two decades, vertical-external-cavity surface-emitting lasers (VECSELs) have attracted rising interest from both industry and science. They have proven to be versatile lasers which can be specifically designed for research and applications that require a particular regime of operation. Various emission schemes ranging from narrow-linewidth emission, pulsed light or multimode emission to a frequency-converted output are feasible owing to remarkable device features. Being composed of a semiconductor gain mirror and an external cavity, not only is a unique access to high-brightness output and a high-beam quality is provided, but also wavelength flexibility. Moreover, the exploitation of intra-cavity frequency conversion further extends the accessible spectral range from the ultraviolet (UV) to the terahertz (THz). In this work, recent advances in the field of VECSELs are highlighted.

  14. Advances in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  15. Room for advancement

    SciTech Connect

    Carrio, L.A. ); Sharpe, R. ); Bizzarri, R.E. ); Wilson, T.E. )

    1993-12-01

    The advanced biological nutrient removal (ABNR) process is a viable nutrient removal choice for wastewater treatment plants where site limitations and energy costs are a concern. Specifically, ABNR plants: can remove more than 60% of total nitrogen; achieve a high degree of phosphorus removal - primarily by chemical additions; use step aeration (step feed) to save tank volume and site space and to eliminate mixed liquor recirculation requirements; use less energy; use a supplemental source of carbon (typically, methanol) in small quantities to achieve higher levels of nitrogen removal; take advantage of the highest denitrification rates of raw wastewater; allow nitrification of low alkalinity wastewater with no chemical supplement; can be created from existing step aeration plants with only minor modifications; and can retain all the flexibility and wet-weather flow stability of conventional step aeration systems. 5 figs., 2 tabs.

  16. Advanced Motor Drives Studies

    NASA Technical Reports Server (NTRS)

    Ehsani, M.; Tchamdjou, A.

    1997-01-01

    This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.

  17. Advanced servo manipulator

    DOEpatents

    Holt, William E.; Kuban, Daniel P.; Martin, H. Lee

    1988-01-01

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member.

  18. Advances in treating psoriasis

    PubMed Central

    Belge, Katharina; Brück, Jürgen

    2014-01-01

    Psoriasis is a T helper (Th)17/Th1-mediated autoimmune disease affecting the skin and joints. So far, distinct traditional oral compounds and modern biologics have been approved in most countries for the treatment of patients with moderate to severe psoriasis or psoriatic arthritis. Yet, the anti-psoriatic therapeutic spectrum is to be extended by a number of novel targeted therapies including biologics and modern oral compounds. The next set of anti-psoriatic biologics targets mainly Th17-associated cytokines such as IL-17 or IL-23. In contrast, modern oral anti-psoriatics, such as dimethyl fumarate (DMF), apremilast or Janus kinase (JAK) inhibitors interfere with intracellular proteins and affect signaling pathways. Here we summarize the current systemic therapies for psoriasis and their immunological mechanism. The recent advances in psoriasis therapy will help treat our patients efficiently and complete our understanding of disease pathogenesis. PMID:24592316

  19. Advanced subsystems development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1978-01-01

    The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.

  20. Advanced servo manipulator

    DOEpatents

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  1. Advanced turbine study

    NASA Technical Reports Server (NTRS)

    Castro, J. H.

    1985-01-01

    The feasibility of an advanced convective cooling concept applied to rocket turbine airfoils which operate in a high pressure hydrogen and methane environment was investigated. The concept consists of a central structural member in which grooves are machined. The grooves are temporarily filled with a removable filler and the entire airfoil is covered with a layer of electroformed nickel, or nickel base alloy. After removal of the filler, the low thermal resistance of the nickel closure causes the wall temperature to be reduced by heat transfer to the coolant. The program is divided in the following tasks: (1) turbine performance appraisal; (2) coolant geometry evaluation; (3) test hardware design and analysis; and (4) test airfoil fabrication.

  2. Advanced Amateur Astronomy

    NASA Astrophysics Data System (ADS)

    North, Gerald

    This book is for amateur astronomers and telescope users who want to move beyond elementary stargazing to more challenging projects. Written by an accomplished amateur astronomer, this indispensable guide to more advanced work is packed with information and lucid explanations. The first section of the book sets out the fundamental principles of practical astronomy, with chapters on telescope optics, the atmosphere, telescope hardware, astrophotography, and electronic imaging. This knowledge is then applied to the full range of celestial bodies accessible by telescope: the solar system, stars and galaxies. For those users who want to move to even greater challenges, chapters on photometry, spectroscopy and radio astronomy bring observational astronomy to a level where data of real scientific value can be acquired.

  3. Advanced glycation end products

    PubMed Central

    Gkogkolou, Paraskevi; Böhm, Markus

    2012-01-01

    Aging is the progressive accumulation of damage to an organism over time leading to disease and death. Aging research has been very intensive in the last years aiming at characterizing the pathophysiology of aging and finding possibilities to fight age-related diseases. Various theories of aging have been proposed. In the last years advanced glycation end products (AGEs) have received particular attention in this context. AGEs are formed in high amounts in diabetes but also in the physiological organism during aging. They have been etiologically implicated in numerous diabetes- and age-related diseases. Strategies inhibiting AGE accumulation and signaling seem to possess a therapeutic potential in these pathologies. However, still little is known on the precise role of AGEs during skin aging. In this review the existing literature on AGEs and skin aging will be reviewed. In addition, existing and potential anti-AGE strategies that may be beneficial on skin aging will be discussed. PMID:23467327

  4. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Grant L. Schelkoph

    1999-04-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in transfer of the dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses.

  5. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Grant L. Schelkoph; Stanley J. Miller

    1999-07-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in transfer of the dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses.

  6. The Advanced Photon Source

    SciTech Connect

    Galayda, John N.

    1996-01-01

    The Advanced Photon Source (APS) is a 7-GeV third-generation synchrotron radiation storage ring and full-energy positron injector. Construction project funding began in 1989, and ground breaking took place on 5 May 1990. Construction of all accelerator facilities was completed in January 1995 and storage ring commissioning is underway. First observation of x-rays from a bending magnet source took place on 26 March 1995. Nearly all performance specifications of the injector have been reached, and first observations indicate that the reliability, dynamic aperture, emittance, and orbit stability in the storage ring are satisfactory. Observation of radiation from the first of 20 insertion device beamlines is scheduled for October 1995. Start of regular operations is expected to take place well before the APS Project target date of December 1996.

  7. USMC UGS technology advancements

    NASA Astrophysics Data System (ADS)

    Hartup, David C.; Barr, Michael E.; Hirz, Philip M.; Kipp, Jason; Fishburn, Thomas A.; Waller, Ezra S.; Marks, Brian A.

    2008-04-01

    Technology advancements for the USMC UGS system are described. Integration of the ARL Blue Radio/CSR into the System Controller and Radio Repeater permit the TRSS system to operate seamlessly within the Family of UGS concept. In addition to the Blue Radio/CSR, the TRSS system provides VHF and SATCOM radio links. The TRSS system is compatible with a wide range of imagers, including those with both analog and digital interfaces. The TRSS System Controller permits simultaneous monitoring of 2 camera inputs. To complement enhanced compatibility and improved processing, the mechanical housing of the TRSS System Controller has been updated. The SDR-II, a system monitoring device, also incorporates four Blue Radio/CSRs along with other communication capabilities, making it an ideal choice for a monitoring station within the Family of UGS. Field testing of L-3 Nova's UGS system at YPG has shown flawless performance, capturing all 126 targets.

  8. Advanced powder processing

    SciTech Connect

    Janney, M.A.

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  9. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  10. [Advanced pulmonary alveolar microlithiasis].

    PubMed

    Triebel, H J; von Hülst, M; Schofer, M

    1987-09-01

    A severe course of microlithiasis alveolaris pulmonum in a 28-year old patient is described. The disease, which had progressed to a very advanced stage at the time of examination, produced in the plain radiograph of the thorax an extensive, homogeneous, ground-glass like shadow of practically all organs of the thorax. The typical miliary (spot-like) shadow ("sandstorm lung") is visible only in the lateral and apical parts of the lung. CT revealed massive calcareous deposits which increased in craniocaudal and ventrodorsal direction. Bullous metaplasia of the lung was particularly striking in the apical region. No effective therapy is known so far. A combined heart and lung transplantation might be the only therapy that could prolong the patient's life. PMID:3659783

  11. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  12. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  13. Advanced Hysteroscopic Surgery Training

    PubMed Central

    McLaren, Glenda R.; Erian, Anna-Marie

    2014-01-01

    Hysteroscopic surgery is pivotal in management of many gynecological pathologies. The skills required for performing advanced hysteroscopic surgery (AHS), eg, transcervical hysteroscopic endometrial resection (TCRE), hysteroscopic polypectomy and myomectomy in the management of menorrhagia, hysteroscopic septulysis in fertility-related gynecological problems and hysteroscopic removal of chronically retained products of conception and excision of intramural ectopic pregnancy ought to be practiced by contemporary gynecological surgeons in their day-to-day clinical practice. AHS is a minimally invasive procedure that preserves the uterus in most cases. Whilst the outcome is of paramount importance, proper training should be adopted and followed through so that doctors, nurses, and institutions may deliver the highest standard of patient care. PMID:25392678

  14. Advances in Alcoholism Treatment

    PubMed Central

    Huebner, Robert B.; Kantor, Lori Wolfgang

    2011-01-01

    Researchers are working on numerous and varied approaches to improving the accessibility, quality, effectiveness, and cost-effectiveness of treatment for alcohol use disorders (AUDs). This overview article summarizes the approaches reviewed in this issue, including potential future developments for alcoholism treatment, such as medications development, behavioral therapy, advances in technology that are being used to improve treatment, integrated care of patients with AUDs and co-occurring disorders, the role of 12-step programs in the broader realm of treatment, treating patients with recurring and chronic alcohol dependence, strategies to close the gap between treatment need and treatment utilization, and how changes in the health care system may affect the delivery of treatment. This research will not only reveal new medications and behavioral therapies but also will contribute to new ways of approaching current treatment problems. PMID:23580014

  15. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  16. Advanced solar space missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.

    1979-01-01

    The space missions in solar physics planned for the next decade are similar in that they will have, for the most part, distinct, unifying science objectives in contrast to the more general 'exploratory' nature of the Orbiting Solar Observatory and Skylab/ATM missions of the 1960's and 70's. In particular, the strategy for advanced solar physics space missions will focus on the quantitative understanding of the physical processes that create and control the flow of electromagnetic and particulate energy from the sun and through interplanetary space at all phases of the current sunspot cycle No. 21. Attention is given to the Solar Maximum Mission, the International Solar Polar Mission, solar physics on an early Shuttle mission, principal investigator class experiments for future spacelabs, the Solar Optical Telescope, the Space Science Platform, the Solar Cycle and Dynamics Mission, and an attempt to send a spacecraft to within 4 solar radii of the sun's surface.

  17. Luminescent dendrimers. Recent advances.

    PubMed

    Balzani, Vincenzo; Ceroni, Paolo; Maestri, Mauro; Saudan, Christophe; Vicinelli, Veronica

    2003-01-01

    Luminescent dendrimers are currently attracting much attention since coupling luminescence and dendrimer research topics can lead to valuable new functions. Indeed, luminescence is a valuable tool to monitor both basic properties and possible applications (sensors, displays, lasers), and dendrimers are macromolecular compounds exhibiting a well-defined chemical structure with the possibility of containing selected chemical units in predetermined sites and of encapsulating ions or neutral molecules in their internal dynamic cavities. In this paper we will review recent advances in this field focusing our attention on their properties in fluid solution related to light harvesting, changing the "color" of light, sensing with signal amplification, quenching and sensitization processes, shielding effects, elucidation of dendritic structures and superstructures, and investigation of dendrimer rotation in solution. PMID:21132484

  18. Advances in autism.

    PubMed

    Geschwind, Daniel H

    2009-01-01

    Autism is a common childhood neurodevelopmental disorder with strong genetic liability. It is not a unitary entity but a clinical syndrome, with variable deficits in social behavior and language, restrictive interests, and repetitive behaviors. Recent advances in the genetics of autism emphasize its etiological heterogeneity, with each genetic susceptibility locus accounting for only a small fraction of cases or having a small effect. Therefore, it is not surprising that no unifying structural or neuropathological features have been conclusively identified. Given the heterogeneity of autism spectrum disorder (ASD), approaches based on studying heritable components of the disorder, or endophenotypes, such as language or social cognition, provide promising avenues for genetic and neurobiological investigations. Early intensive behavioral and cognitive interventions are efficacious in many cases, but autism does not remit in the majority of children. Therefore, development of targeted therapies based on pathophysiologically and etiologically defined subtypes of ASD remains an important and achievable goal of current research. PMID:19630577

  19. Manifestations of advanced civilizations

    NASA Astrophysics Data System (ADS)

    Bracewell, R. N.

    A list of possible modes of detecting advanced civilizations elsewhere in the universe is provided, including EM Alfven, and gravity waves, matter transfer, and exotica such as tachyons, black hole tunneling, and telepathy. Further study is indicated for low frequency radio wave propagation, which may travel along magnetic fields to reach the earth while laser beams are not favored because of the power needed for transmitting quanta instead of waves. IR, X ray, and UV astronomy are noted to be suitable for detecting signals in those ranges, while Alfven wave communication will be best observed by probes outside the orbit of Jupiter, where local anomalies have less effect. Particle propagation communication is viewed as unlikely, except as a trace of an extinct civilization, but panspermia, which involves interstellar spreading of seeds and/or spores, receives serious attention, as does laser probe or pellet propulsion.

  20. Advanced Ceramics Property Measurements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  1. Advances in Antibody Design.

    PubMed

    Tiller, Kathryn E; Tessier, Peter M

    2015-01-01

    The use of monoclonal antibodies as therapeutics requires optimizing several of their key attributes. These include binding affinity and specificity, folding stability, solubility, pharmacokinetics, effector functions, and compatibility with the attachment of additional antibody domains (bispecific antibodies) and cytotoxic drugs (antibody-drug conjugates). Addressing these and other challenges requires the use of systematic design methods that complement powerful immunization and in vitro screening methods. We review advances in designing the binding loops, scaffolds, domain interfaces, constant regions, post-translational and chemical modifications, and bispecific architectures of antibodies and fragments thereof to improve their bioactivity. We also highlight unmet challenges in antibody design that must be overcome to generate potent antibody therapeutics. PMID:26274600

  2. [Pediatric advanced life support].

    PubMed

    Muguruma, Takashi

    2011-04-01

    Important changes or points of emphasis in the recommendations for pediatric advanced life support are as follows. In infants and children with no signs of life, healthcare providers should begin CPR unless they can definitely palpate a pulse within 10 seconds. New evidence documents the important role of ventilations in CPR for infants and children. Rescuers should provide conventional CPR for in-hospital and out-of-hospital pediatric cardiac arrests. The initial defibrillation energy dose of 2 to 4J/kg of either monophasic or biphasic waveform. Both cuffed and uncuffed tracheal tubes are acceptable for infants and children undergoing emergency intubation. Monitoring capnography/capnometry is recommended to confirm proper endotracheal tube position.

  3. The Advanced Helical Generator

    SciTech Connect

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  4. TOOLKIT FOR ADVANCED OPTIMIZATION

    2000-10-13

    The TAO project focuses on the development of software for large scale optimization problems. TAO uses an object-oriented design to create a flexible toolkit with strong emphasis on the reuse of external tools where appropriate. Our design enables bi-directional connection to lower level linear algebra support (for example, parallel sparse matrix data structures) as well as higher level application frameworks. The Toolkist for Advanced Optimization (TAO) is aimed at teh solution of large-scale optimization problemsmore » on high-performance architectures. Our main goals are portability, performance, scalable parallelism, and an interface independent of the architecture. TAO is suitable for both single-processor and massively-parallel architectures. The current version of TAO has algorithms for unconstrained and bound-constrained optimization.« less

  5. Advanced isotope separation

    SciTech Connect

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  6. Advances in Male Contraception

    PubMed Central

    Page, Stephanie T.; Amory, John K.; Bremner, William J.

    2008-01-01

    Despite significant advances in contraceptive options for women over the last 50 yr, world population continues to grow rapidly. Scientists and activists alike point to the devastating environmental impacts that population pressures have caused, including global warming from the developed world and hunger and disease in less developed areas. Moreover, almost half of all pregnancies are still unwanted or unplanned. Clearly, there is a need for expanded, reversible, contraceptive options. Multicultural surveys demonstrate the willingness of men to participate in contraception and their female partners to trust them to do so. Notwithstanding their paucity of options, male methods including vasectomy and condoms account for almost one third of contraceptive use in the United States and other countries. Recent international clinical research efforts have demonstrated high efficacy rates (90–95%) for hormonally based male contraceptives. Current barriers to expanded use include limited delivery methods and perceived regulatory obstacles, which stymie introduction to the marketplace. However, advances in oral and injectable androgen delivery are cause for optimism that these hurdles may be overcome. Nonhormonal methods, such as compounds that target sperm motility, are attractive in their theoretical promise of specificity for the reproductive tract. Gene and protein array technologies continue to identify potential targets for this approach. Such nonhormonal agents will likely reach clinical trials in the near future. Great strides have been made in understanding male reproductive physiology; the combined efforts of scientists, clinicians, industry and governmental funding agencies could make an effective, reversible, male contraceptive an option for family planning over the next decade. PMID:18436704

  7. Thermal behavior and temperature measurements of melting beryllium plasma-facing components exposed to high heat flux

    NASA Astrophysics Data System (ADS)

    Gauthier, E.; Pocheau, C.; Kovari, M.; Barnard, J. M.; Crowley, B.; Godwin, J.; Lane, C.

    2015-08-01

    The emissivity of metallic materials is low and varies with temperature and wavelength inducing errors on surface temperature measurements. High heat flux experiments on beryllium were carried out to investigate the thermal behavior of bulk Be tiles. Thermal modeling aiming at determining the surface and bulk temperatures have been performed using ANSYS®. A Be tile was exposed to heat flux with power density ranging between 1 and 7 MW/m2. Surface temperatures were measured using an infrared camera in the 3-5 μm range and two-color pyrometers, one at short wavelengths (1.5-1.7 μm) and one at mid IR range wavelengths (2-4 μm) range. Both the IR camera and two-color pyrometers do not provide accurate temperature measurements on melted Be due to changes in the emissivities and emissivity ratio induced by surface modifications.

  8. Estimates of RF-Induced Erosion at Antenna-Connected Beryllium Plasma-Facing Components in JET

    SciTech Connect

    Borodin, D.; Groth, M.; Airila, M.; Colas, L.; Jacquet, P.; Lasa, A.

    2016-01-01

    During high-power, ion cyclotron resonance heating (ICRH), RF sheath rectification and RF induced plasma-wall interactions (RF-PWI) can potentially limit long-pulse operation. With toroidally-spaced ICRH antennas, in an ITER-like wall (ILW) environment, JET provides an ideal environment for ITER-relevant, RF-PWI studies. JET pulses combining sequential toggling of the antennas with q95 (edge safety factor) sweeping were recently used to localize RF-enhanced Be I and Be II spectral line emission at outboard poloidal (beryllium) limiters. These measurements were carried out in the early stages of JET-ILW and in ICRF-only, L-mode discharges. The appearance of enhanced emission spots was explained by their magnetic connection to regions of ICRH antennas associated with higher RF-sheath rectification [1]. The measured emission lines were the same as those already qualified in ERO modelling of inboard limiter beryllium erosion in JET limiter plasmas [2]. In the present work, we revisit this spectroscopic study with the focus on obtaining estimates of the impact of these RF-PWI on sputtering and on net erosion of the affected limiter regions. To do this, the ERO erosion and re-deposition code [2] is deployed with the detailed geometry of a JET outboard limiter. The effect of RF-PWI on sputtering is represented by varying the surface negative biasing, which affects the incidence energy and the resulting sputtering yield. The observed variations in line emission, from [1], for JET pulse 81173 of about factor 3 can be reproduced with ~ 100 200 V bias. ERO simulations show that the influence of the respective E-field on the local Be transport is localized near the surface and relatively small. Still, the distribution of the 3D plasma parameters, shadowing and other geometrical effects are quite important. The plasma parameter simulated by Edge2D-EIRENE [3] are extrapolated towards the surface and mapped in 3D. These initial modelling results are consistent with the range of potentials anticipated through RF sheath rectification (see, e.g., [4]). Shortcomings from both the modelling and experimental side will be discussed, as will be plans for improvements in both areas method for the upcoming 2015 - 2016 JET campaign. [1] C.C. Klepper et al., J. Nucl. Mater. 438 (2013) S594 S598 [2] D. Borodin et al., Phys. Scr. T159 (2014) 014057 [3] M. Groth et al., Nucl. Fusion 53 (2013) 093016 [4] Jonathan Jacquot et al., Phys. Plasmas 21 (2014) 061509 *Corresponding author: presently at CCFE (UK) tel.: +44 1235 46 4304, e-mail: kleppercc@ornl.gov **See the Appendix of F. Romanelli et al., Proc. of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia Work supported, in part, by US DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  9. RECENT PROGRESS IN THE FABRICATION AND CHARACTERIZATION OF DUCTILE-PHASE-TOUGHENED TUNGSTEN LAMINATES FOR PLASMA-FACING MATERIALS

    SciTech Connect

    Cunningham, Kevin; Odette, G Robert; Fields, Kirk A.; Gragg, David; Yamamoto, Takuya; Zok, Frank W.; Henager, Charles H.; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.

    2015-09-23

    A promising approach to increasing the fracture toughness of W-alloys is ductile-phase toughening (DPT). A ductile phase reinforcement in a brittle matrix increases toughness primarily by crack bridging. A W-Cu laminate was fabricated and the properties of the constituent metals were characterized along with those for the composite. Development of a design model for large-scale crack bridging continued.

  10. RECENT PROGRESS IN THE FABRICATION AND CHARACTERIZATION OF DUCTILE-PHASE-TOUGHENED TUNGSTEN COMPOSITES FOR PLASMA-FACING MATERIALS

    SciTech Connect

    Cunningham, Kevin; Odette, G Robert; Fields, Kirk A.; Gragg, David; Zok, Frank W.; Henager, Charles H.; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.

    2014-08-29

    A promising approach to increasing fracture toughness and decreasing the DBTT of a W-alloy is by ductile-phase toughening (DPT). In this method, a ductile phase is included in a brittle matrix to prevent crack propagation by bridging. Composite specimens were fabricated by two methods: 1) sintering W powders together with carburized W wires, and 2) hot pressing W and Cu foils together with W wires. These composites were tested in tension and three-point bending.

  11. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    SciTech Connect

    C.N. Taylor; J. P. Allain; P. S. Krstic; J. Dadras; C. H. Skinner; K. E. Luitjohan

    2013-11-01

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to approximately 16% and then bombarded with deuterium. XPS showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  12. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    SciTech Connect

    Taylor, C. N.; Allain, J. P.; Luitjohan, K. E.; Krstic, P. S.; Dadras, J.; Skinner, C. H.

    2014-05-15

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to ∼16% and then bombarded with deuterium. X-ray photoelectron spectroscopy showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  13. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials

    SciTech Connect

    Girka, O.; Bizyukov, I.; Sereda, K.; Bizyukov, A.; Gutkin, M.; Sleptsov, V.

    2012-08-15

    This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}- 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.

  14. Advanced turbocharger design study program

    NASA Technical Reports Server (NTRS)

    Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.

    1984-01-01

    The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.

  15. Advanced Coats' disease.

    PubMed Central

    Haik, B G

    1991-01-01

    Advanced Coats' disease and retinoblastoma can both present with the triad of a retinal detachment, the appearance of a subretinal mass, and dilated retinal vessels. Thus, even the most experienced observer may not be able to differentiate these entities on ophthalmoscopic findings alone. Coats' disease is the most common reason for which eyes are enucleated with the misdiagnosis of retinoblastoma. Ultrasonography is the auxiliary diagnostic test most easily incorporated into the clinical examination, and can be utilized repeatedly without biologic tissue hazard. Ultrasonically identifiable features allowing differentiation between Coats' disease and retinoblastoma include the topography and character of retinal detachment and presence or absence of subretinal calcifications. Ultrasonography is of lesser use in poorly calcified retinoblastoma and in detecting optic nerve or extraocular extension in heavily calcified retinoblastoma. CT is perhaps the single most valuable test because of its ability to: (a) delineate intraocular morphology, (b) quantify subretinal densities, (c) identify vascularities within the subretinal space through the use of contrast enhancement, and (d) detected associated orbital or intracranial abnormalities. Optimal computed tomographic studies, however, require multiple thin slices both before and after contrast introduction and expose the child to low levels of radiation if studies are repeated periodically. MR imaging is valuable for its multiplanar imaging capabilities, its superior contrast resolution, and its ability to provide insights into the biochemical structure and composition of tissues. It is limited in its ability to detect calcium, which is the mainstay of ultrasonic and CT differentiation. Aqueous LDH and isoenzyme levels were not valuable in distinguishing between Coats' disease and retinoblastoma. The value of aqueous NSE levels in the differentiation of advanced Coats' disease and exophytic retinoblastoma deserves

  16. Advanced Concepts. Chapter 21

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Mulqueen, Jack

    2013-01-01

    Before there is a funded space mission, there must be a present need for the mission. Space science and exploration are expensive, and without a well-defined and justifiable need, no one is going to commit significant funding for any space endeavor. However, as discussed in Chapter 1, applications of space technology and many and broad, hence there are many ways to determine and establish a mission need. Robotic science missions are justified by their science return. To be selected for flight, questions like these must be addressed: What is the science question that needs answering, and will the proposed mission be the most cost-effective way to answer it? Why does answering the question require an expensive space flight, instead of some ground-based alternative? If the question can only be answered by flying in space, then why is this approach better than other potential approaches? How much will it cost? And is the technology required to answer the question in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? There are also many ways to justify human exploration missions, including science return, technology advancement, as well as intangible reasons, such as national pride. Nonetheless, many of the questions that need answering, are similar to those for robotic science missions: Where are the people going, why, and will the proposed mission be the most cost-effective way to get there? What is the safest method to achieve the goal? How much will it cost? And is the technology required to get there and keep the crew alive in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? Another reason for some groups sending spacecraft into space is for profit. Telecommunications, geospatial imaging, and tourism are examples of proven, market-driven space missions and applications. For this specific set of users, the

  17. Advanced Hydrogen Turbine Development

    SciTech Connect

    Joesph Fadok

    2008-01-01

    advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to

  18. Advanced sulfur control concepts

    SciTech Connect

    Gangwal, S.K.; Turk, B.S.; Gupta, R.P.

    1995-11-01

    Regenerable metal oxide sorbents, such as zinc titanate, are being developed to efficiently remove hydrogen sulfide (H{sub 2}S) from coal gas in advanced power systems. Dilute air regeneration of the sorbents produces a tailgas containing a few percent sulfur dioxide (SO{sub 2}). Catalytic reduction of the SO{sub 2} to elemental sulfur with a coal gas slipstream using the Direct Sulfur Recovery Process (DSRP) is a leading first-generation technology. Currently the DSRP is undergoing field testing at gasifier sites. The objective of this study is to develop second-generation processes that produce elemental sulfur without coal gas or with limited use. Novel approaches that were evaluated to produce elemental sulfur from sulfided sorbents include (1) sulfur dioxide (SO{sub 2}) regeneration, (2) substoichiometric (partial) oxidation, (3) steam regeneration followed by H{sub 2}S oxidation, and (4) steam-air regeneration. Preliminary assessment of these approaches indicated that developing SO{sub 2} regeneration faced the fewest technical and economic problems among the four process options. Elemental sulfur is the only likely product of SO{sub 2} regeneration and the SO{sub 2} required for the regeneration can be obtained by burning a portion of the sulfur produced. Experimental efforts have thus been concentrated on SO{sub 2}-based regeneration processes. Results from laboratory investigations are presented and discussed.

  19. Advanced Power Electronics Components

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  20. Advances in influenza vaccination

    PubMed Central

    Reperant, Leslie A.; Rimmelzwaan, Guus F.

    2014-01-01

    Influenza virus infections yearly cause high morbidity and mortality burdens in humans, and the development of a new influenza pandemic continues to threaten mankind as a Damoclean sword. Influenza vaccines have been produced by using egg-based virus growth and passaging techniques that were developed more than 60 years ago, following the identification of influenza A virus as an etiological agent of seasonal influenza. These vaccines aimed mainly at eliciting neutralizing antibodies targeting antigenically variable regions of the hemagglutinin (HA) protein, which requires regular updates to match circulating seasonal influenza A and B virus strains. Given the relatively limited protection induced by current seasonal influenza vaccines, a more universal influenza vaccine that would protect against more—if not all—influenza viruses is among the largest unmet medical needs of the 21st century. New insights into correlates of protection from influenza and into broad B- and T-cell protective anti-influenza immune responses offer promising avenues for innovative vaccine development as well as manufacturing strategies or platforms, leading to the development of a new generation of vaccines. These aim at the rapid and massive production of influenza vaccines that provide broad protective and long-lasting immunity. Recent advances in influenza vaccine research demonstrate the feasibility of a wide range of approaches and call for the initiation of preclinical proof-of-principle studies followed by clinical trials in humans. PMID:24991424

  1. Advanced Manufacture of Reflectors

    SciTech Connect

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  2. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Affonso Lourenco; Evren Ozbayoglu; Lei Zhou

    2002-01-30

    This is the second quarterly progress report for Year 3 of the ACTS project. It includes a review of progress made in: (1) Flow Loop development and (2) research tasks during the period of time between Oct 1, 2001 and Dec. 31, 2001. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Collection System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  3. Advances in Urine Microscopy.

    PubMed

    Becker, Gavin J; Garigali, Giuseppe; Fogazzi, Giovanni B

    2016-06-01

    Urine microscopy is an important tool for the diagnosis and management of several conditions affecting the kidneys and urinary tract. In this review, we describe the automated instruments, based either on flow cytometry or digitized microscopy, that are currently in use in large clinical laboratories. These tools allow the examination of large numbers of samples in short periods. We also discuss manual urinary microscopy commonly performed by nephrologists, which we encourage. After discussing the advantages of phase contrast microscopy over bright field microscopy, we describe the advancements of urine microscopy in various clinical conditions. These include persistent isolated microscopic hematuria (which can be classified as glomerular or nonglomerular on the basis of urinary erythrocyte morphology), drug- and toxin-related cystalluria (which can be a clue for the diagnosis of acute kidney injury associated with intrarenal crystal precipitation), and some inherited conditions (eg, adenine phosphoribosyltransferase deficiency, which is associated with 2,8-dihydroxyadenine crystalluria, and Fabry disease, which is characterized by unique urinary lamellated fatty particles). Finally, we describe the utility of identifying "decoy cells" and atypical malignant cells, which can be easily done with phase contrast microscopy in unfixed samples. PMID:26806004

  4. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  5. Recent advances in thermoregulation.

    PubMed

    Tansey, Etain A; Johnson, Christopher D

    2015-09-01

    Thermoregulation is the maintenance of a relatively constant core body temperature. Humans normally maintain a body temperature at 37°C, and maintenance of this relatively high temperature is critical to human survival. This concept is so important that control of thermoregulation is often the principal example cited when teaching physiological homeostasis. A basic understanding of the processes underpinning temperature regulation is necessary for all undergraduate students studying biology and biology-related disciplines, and a thorough understanding is necessary for those students in clinical training. Our aim in this review is to broadly present the thermoregulatory process taking into account current advances in this area. First, we summarize the basic concepts of thermoregulation and subsequently assess the physiological responses to heat and cold stress, including vasodilation and vasoconstriction, sweating, nonshivering thermogenesis, piloerection, shivering, and altered behavior. Current research is presented concerning the body's detection of thermal challenge, peripheral and central thermoregulatory control mechanisms, including brown adipose tissue in adult humans and temperature transduction by the relatively recently discovered transient receptor potential channels. Finally, we present an updated understanding of the neuroanatomic circuitry supporting thermoregulation.

  6. Research on advanced spacecraft

    NASA Astrophysics Data System (ADS)

    Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka

    1992-08-01

    Engineering test satellite systems to validate element technologies required for spacecraft composing advanced space infrastructures are studied. Case studies are conducted on element technologies for diversified manned space technology and the outline of the engineering test satellite systems is demonstrated. Debris observing systems, their debris collection and retrieval methods which are being reviewed in many countries are examined. Technical problems are picked up, and the fundamental concept of experiment satellites is determined. Missions deemed to be suitable for micro-satellites and various civil on-ground technologies focusing on electronic technology applicable to them are picked up. Functions of extravehicular operation systems required by the missions, and fundamental concept of the systems and subsystems are made clear. Missions to which artificial gravity experiment satellites that are effective are examined and preparatory review is conducted on artificial gravity generation methods, methods to retrieve experiment equipment and samples, and outline of the satellite systems. Technical problems of engineering test satellites to validate on-orbit cryogenic propellant storage and transportation technologies are picked up and the fundamental concept of the satellites are determined. A review is conducted on electrical propulsion Orbit Transfer Vehicle (OTV) technology satellite to validate fundamental technology for large electrical propulsion engine and electrical propulsion engine OTV operation technology, and to pick up problems on the orbit of electrical propulsion OTV.

  7. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Evren Ozbayoglu; Lei Zhou

    2002-04-30

    This is the third quarterly progress report for Year 3 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between Jan. 1, 2002 and Mar. 31, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Separation System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9b): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b); (f) Development of a Safety program for the ACTS Flow Loop, progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S); and (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

    2000-01-30

    This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

  9. Advanced hydrologic prediction system

    NASA Astrophysics Data System (ADS)

    Connelly, Brian A.; Braatz, Dean T.; Halquist, John B.; Deweese, Michael M.; Larson, Lee; Ingram, John J.

    1999-08-01

    As our Nation's population and infrastructure grow, natural disasters are becoming a greater threat to our society's stability. In an average year, inland flooding claims 133 lives and resulting property losses exceed 4.0 billion. Last year, 1997, these losses totaled 8.7 billion. Because of this blossoming threat, the National Weather Service (NWS) has requested funding within its 2000 budget to begin national implementation of the Advanced Hydrologic Prediction System (AHPS). With this system in place the NWS will be able to utilize precipitation and climate predictions to provide extended probabilistic river forecasts for risk-based decisions. In addition to flood and drought mitigation benefits, extended river forecasts will benefit water resource managers in decision making regarding water supply, agriculture, navigation, hydropower, and ecosystems. It's estimated that AHPS, if implemented nationwide, would save lives and provide $677 million per year in economic benefits. AHPS is used currently on the Des Moines River basin in Iowa and will be implemented soon on the Minnesota River basin in Minnesota. Experience gained from user interaction is leading to refined and enhanced product formats and displays. This discussion will elaborate on the technical requirements associated with AHPS implementation, its enhanced products and informational displays, and further refinements based on customer feedback.

  10. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  11. Advanced hybrid gasification facility

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; Johnson, S.A.; Dixit, V.B.

    1993-08-01

    The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

  12. Advanced Communication Processing Techniques

    NASA Astrophysics Data System (ADS)

    Scholtz, Robert A.

    This document contains the proceedings of the workshop Advanced Communication Processing Techniques, held May 14 to 17, 1989, near Ruidoso, New Mexico. Sponsored by the Army Research Office (under Contract DAAL03-89-G-0016) and organized by the Communication Sciences Institute of the University of Southern California, the workshop had as its objective to determine those applications of intelligent/adaptive communication signal processing that have been realized and to define areas of future research. We at the Communication Sciences Institute believe that there are two emerging areas which deserve considerably more study in the near future: (1) Modulation characterization, i.e., the automation of modulation format recognition so that a receiver can reliably demodulate a signal without using a priori information concerning the signal's structure, and (2) the incorporation of adaptive coding into communication links and networks. (Encoders and decoders which can operate with a wide variety of codes exist, but the way to utilize and control them in links and networks is an issue). To support these two new interest areas, one must have both a knowledge of (3) the kinds of channels and environments in which the systems must operate, and of (4) the latest adaptive equalization techniques which might be employed in these efforts.

  13. Advanced Chemistry Basins Model

    SciTech Connect

    William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2002-11-10

    The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

  14. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira

    2000-10-30

    This is the first quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between July 14, 2000 and September 30, 2000. This report presents information on the following specific tasks: (a) Progress in Advanced Cuttings Transport Facility design and development (Task 2), (b) Progress on research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress on research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress on research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress on research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Initiate research on project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Progress on instrumentation tasks to measure: Cuttings concentration and distribution (Tasks 11), and Foam properties (Task 12), (h) Initiate a comprehensive safety review of all flow-loop components and operational procedures. Since the previous Task 1 has been completed, we will now designate this new task as: (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  15. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  16. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-01-30

    This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  17. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Evren Ozbayoglu; Lei Zhou

    2002-07-30

    This is the fourth quarterly progress report for Year-3 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between April 1, 2002 and June 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Separation System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)''; (c) Research project (Task 9b): ''Study of Foam Flow Behavior Under EPET Conditions''; (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''; (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b); (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S); (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  18. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk, Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2002-10-30

    This is the first quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between July 1, 2002 and Sept. 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System, (b) New Research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings (Task 12), Viscosity of Foam under EPET (Task 9b). (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  19. Advanced centrifugal contactor development

    SciTech Connect

    DeMuth, S.F.; Jubin, R.T.; Ladd, L.D.

    1988-01-01

    As part of the Consolidated Fuel Reprocessing Program (CFRP) of the Oak Ridge National Laboratory (ORNL), compact centrifugal contactors were designed and prototypes were built for the Breeder Reprocessing Engineering Test (BRET) facility. These contactors were designed for a nominal throughput of 0.1 metric tons of heavy metal per day. While construction of BRET has been put on indefinite hold, development of the 5.5-cm-diam rotor centrifugal contactors has advanced due to their broad applicability in other areas of reprocessing. Development has been concentrated in three areas: (1) mass transfers, (2) hydraulics, and (3) fabrication. Mass transfer development has involved determining how the stage efficiency is affected by the rotor speed, phase ratio, and feed flow rate. Hydraulic efforts have focused on the cascade operation with individual stage failures. Fabrication development has resulted in reducing the number of rotor components from seven to four. This paper discusses the results of these development efforts. 20 refs., 10 figs., 6 tabs.

  20. Advances in cholangiocyte immunobiology

    PubMed Central

    Syal, Gaurav; Fausther, Michel

    2012-01-01

    Cholangiocytes, or bile duct epithelia, were once thought to be the simple lining of the conduit system comprising the intra- and extrahepatic bile ducts. Growing experimental evidence demonstrated that cholangiocytes are in fact the first line of defense of the biliary system against foreign substances. Experimental advances in recent years have unveiled previously unknown roles of cholangiocytes in both innate and adaptive immune responses. Cholangiocytes can release inflammatory modulators in a regulated fashion. Moreover, they express specialized pattern-recognizing molecules that identify microbial components and activate intracellular signaling cascades leading to a variety of downstream responses. The cytokines secreted by cholangiocytes, in conjunction with the adhesion molecules expressed on their surface, play a role in recruitment, localization, and modulation of immune responses in the liver and biliary tract. Cholangiocyte survival and function is further modulated by cytokines and inflammatory mediators secreted by immune cells and cholangiocytes themselves. Because cholangiocytes act as professional APCs via expression of major histocompatibility complex antigens and secrete antimicrobial peptides in bile, their role in response to biliary infection is critical. Finally, because cholangiocytes release mediators critical to myofibroblastic differentiation of portal fibroblasts and hepatic stellate cells, cholangiocytes may be essential in the pathogenesis of biliary cirrhosis. PMID:22961800

  1. Advanced robot locomotion.

    SciTech Connect

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  2. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1987-01-01

    Resent results of aerodynamic and acoustic research on both single and counter-rotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA); and F7-A7, the 8+8 counterrotating design used in the proof-of-concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortices are described. Aerodynamic and acoustic computational results derived from three-dimensional Euler and acoustic radiation codes are presented. Research on unsteady flows, which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of three-dimensional unsteady Euler solutions are illustrated for a single rotation propeller at an angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies of the unsteady aerodynamics of oscillating cascades are outlined. Finally, advanced concepts involving swirl recovery vanes and ultra bypass ducted propellers are discussed.

  3. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  4. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  5. Recent advances in sarcoidosis.

    PubMed

    Morgenthau, Adam S; Iannuzzi, Michael C

    2011-01-01

    Sarcoidosis, a systemic granulomatous disease of undetermined etiology, is characterized by a variable clinical presentation and course. During the past decade, advances have been made in the study of sarcoidosis. The multicenter ACCESS (A Case Control Etiologic Study of Sarcoidosis) trial recruited > 700 subjects with newly diagnosed sarcoidosis and matched control subjects. Investigators were unable to identify a single cause of sarcoidosis, but ACCESS paved the way for subsequent etiologic studies. The Mycobacterium tuberculosis catalase-peroxidase protein has been identified as a potential sarcoidosis antigen. Genetic aspects of the disease have been elucidated further. Genome-wide scans have identified candidate genes. Gene expression analyses have defined cytokine dysregulation in sarcoidosis more clearly. Although the criteria for diagnosis have not changed, sarcoidosis remains a diagnosis of exclusion best supported by a tissue biopsy specimen that demonstrates noncaseating granulomas in a patient with compatible clinical and radiologic features of the disease. Endobronchial ultrasound-guided transbronchial needle aspiration of mediastinal lymph nodes has facilitated diagnosis, often eliminating the need for more invasive procedures, such as mediastinoscopy. PET scanning has proven valuable in locating occult sites of active disease. Currently, no reliable prognostic biomarkers have been identified. The tumor necrosis factor inhibitors, a relatively new class of agents, have been used in patients with refractory disease. It is unclear whether phosphodiesterase-5 inhibitors, prostaglandin analogs, or endothelin antagonists should be used for the treatment of sarcoidosis-associated pulmonary hypertension. PMID:21208877

  6. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  7. Advanced commercial tokamak study

    SciTech Connect

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  8. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  9. Advancing toward Shared Decision Making

    ERIC Educational Resources Information Center

    Muller, Lisa; Thorn, Judi

    2007-01-01

    In May 2004, a group of 25 teachers at Jenks High School in Oklahoma received an invitation to the Summer 2004 Advance. Although many organizations hold retreats for their employees, the administrators wanted to send a different message: we're not retreating; we're advancing! Like many states, Oklahoma suffered a school budget crisis during the…

  10. ADVANCED CHINESE. YALE LINGUISTIC SERIES.

    ERIC Educational Resources Information Center

    DE FRANCIS, JOHN; AND OTHERS

    THE THIRD IN A SERIES OF TEXTS PREPARED AT SETON HALL UNIVERSITY, THIS ADVANCED TEXT PRESUPPOSES MASTERY OF "BEGINNING CHINESE,""BEGINNING CHINESE READER," AND LESSONS 1 TO 6 OF "INTERMEDIATE CHINESE READER." A COMPANION VOLUME TO THIS ONE, "CHARACTER TEXT FOR ADVANCED CHINESE," PROVIDES READING PRACTICE AND REPETITION OF THE 904 NEW CHARACTERS…

  11. Advanced LBB methodology and considerations

    SciTech Connect

    Olson, R.; Rahman, S.; Scott, P.

    1997-04-01

    LBB applications have existed in many industries and more recently have been applied in the nuclear industry under limited circumstances. Research over the past 10 years has evolved the technology so that more advanced consideration of LBB can now be given. Some of the advanced considerations for nuclear plants subjected to seismic loading evaluations are summarized in this paper.

  12. Advancements in analyzing food quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial provides insight on investigations regarding advancement in the application of technology and it’s advancement to food quality. The discussion elaborates on the advantages of recent analytical technologies and techniques, along with their impact on food safety, characterization of its...

  13. Accelerating development of advanced inverters :

    SciTech Connect

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  14. Predicting Epileptic Seizures in Advance

    PubMed Central

    Moghim, Negin; Corne, David W.

    2014-01-01

    Epilepsy is the second most common neurological disorder, affecting 0.6–0.8% of the world's population. In this neurological disorder, abnormal activity of the brain causes seizures, the nature of which tend to be sudden. Antiepileptic Drugs (AEDs) are used as long-term therapeutic solutions that control the condition. Of those treated with AEDs, 35% become resistant to medication. The unpredictable nature of seizures poses risks for the individual with epilepsy. It is clearly desirable to find more effective ways of preventing seizures for such patients. The automatic detection of oncoming seizures, before their actual onset, can facilitate timely intervention and hence minimize these risks. In addition, advance prediction of seizures can enrich our understanding of the epileptic brain. In this study, drawing on the body of work behind automatic seizure detection and prediction from digitised Invasive Electroencephalography (EEG) data, a prediction algorithm, ASPPR (Advance Seizure Prediction via Pre-ictal Relabeling), is described. ASPPR facilitates the learning of predictive models targeted at recognizing patterns in EEG activity that are in a specific time window in advance of a seizure. It then exploits advanced machine learning coupled with the design and selection of appropriate features from EEG signals. Results, from evaluating ASPPR independently on 21 different patients, suggest that seizures for many patients can be predicted up to 20 minutes in advance of their onset. Compared to benchmark performance represented by a mean S1-Score (harmonic mean of Sensitivity and Specificity) of 90.6% for predicting seizure onset between 0 and 5 minutes in advance, ASPPR achieves mean S1-Scores of: 96.30% for prediction between 1 and 6 minutes in advance, 96.13% for prediction between 8 and 13 minutes in advance, 94.5% for prediction between 14 and 19 minutes in advance, and 94.2% for prediction between 20 and 25 minutes in advance. PMID:24911316

  15. Advancements in asphere manufacturing

    NASA Astrophysics Data System (ADS)

    Fess, Edward; DeFisher, Scott

    2013-09-01

    Aspheric optics can pose as a challenge to the manufacturing community due to the surface shape and level of quality required. The aspheric surface may have inflection points that limit the usable tool size during manufacturing, or there may be a stringent tolerance on the slope for mid-spatial frequencies that may be problematic for sub-aperture finishing techniques to achieve. As aspheres become more commonplace in the optics community, requests for more complex aspheres have risen. OptiPro Systems has been developing technologies to create a robust aspheric manufacturing process. Contour deterministic microgrinding is performed on a Pro80 or eSX platform. These platforms utilize software and the latest advancements in machine motion to accurately contour the aspheric shape. Then the optics are finished using UltraForm Finishing (UFF), which is a sub-aperture polishing process. This process has the capability to adjust the diameter and compliance of the polishing lap to allow for finishing over a wide range of shapes and conditions. Finally, the aspheric surfaces are qualified using an OptiTrace contact profilometer, or an UltraSurf non-contact 3D surface scanner. The OptiTrace uses a stylus to scan across the surface of the part, and the UltraSurf utilizes several different optical pens to scan the surface and generate a topographical map of the surface under test. This presentation will focus on the challenges for asphere manufacturing, how OptiPro has implemented its technologies to combat these challenges, and provide surface data for analysis.

  16. Advanced Geothermal Turbodrill

    SciTech Connect

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  17. Advanced solar panel designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E.

    1995-01-01

    This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  18. State Technologies Advancement Collaborative

    SciTech Connect

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5

  19. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  20. Advances in rapid prototyping

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  1. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  2. Advanced beamline design for Fermilab's Advanced Superconducting Test Accelerator

    NASA Astrophysics Data System (ADS)

    Prokop, Christopher R.

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  3. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  4. Advanced Aerogel Technology

    NASA Technical Reports Server (NTRS)

    Jones, Steven

    2013-01-01

    The JPL Aerogel Laboratory has made aerogels for NASA flight missions, e.g., Stardust, 2003 Mars Exploration Rovers and the 2011 Mars Science Laboratory, as well as NASA research projects for the past 14 years. During that time it has produced aerogels of a range of shapes, sizes, densities and compositions. Research is ongoing in the development of aerogels for future sample capture and return missions and for thermal insulation for both spacecraft and scientific instruments. For the past several years, the JPL Aerogel Laboratory has been developing, producing and testing a new composite material for use as the high temperature thermal insulation in the Advanced Sterling Radioisotope Generator (ASRG) being developed by Lockheed Martin and NASA. The composite is made up of a glass fiber felt, silica aerogel, Titania powder, and silica powder. The oxide powders are included to reduce irradiative heat transport at elevated temperatures. These materials have thermal conductivity values that are the same as the best commercially produced high temperature insulation materials, and yet are 40% lighter. By greatly reducing the amount of oxide powder in the composite, the density, and therefore for the value of the thermal conductivity, would be reduced. The JPL Aerogel Laboratory has experimented with using glass fiber felt, expanded glass fiber felt and loose fibers to add structural integrity to silica aerogels. However, this work has been directed toward high temperature applications. By conducting a brief investigation of the optimal combination of fiber reinforcement and aerogel density, a durable, extremely efficient thermal insulation material for ambient temperature applications would be produced. If a transparent thermal insulation is desired, then aerogel is an excellent candidate material. At typical ambient temperatures, silica aerogel prevents the transport of heat via convection and conduction due to its highly porous nature. To prevent irradiative thermal

  5. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  6. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  7. Advanced extravehicular mobility unit study

    NASA Technical Reports Server (NTRS)

    Elkins, W.

    1982-01-01

    Components of the advanced extravehicular mobility unit (suit) are described. Design considerations for radiation protection, extravehicular operational pressure, mobility effects, tool/glove/effector, anthropometric definition, lighting, and equipment turnaround are addressed.

  8. Recent Advances in Thermionic Cathodes

    SciTech Connect

    Ives, R. Lawrence; Miram, George; Collins, George; Falce, Louis R.

    2010-11-04

    The latest advances in thermionic cathodes, including scandate and controlled porosity reservoir cathodes, are reviewed. These new cathodes provide improved performance over conventional cathodes for many applications. Advantages and disadvantages are presented.

  9. Advancement Planning: An Objectives View.

    ERIC Educational Resources Information Center

    Druck, Kalman B.

    1986-01-01

    Planning must revolve around objectives related to students, faculty, money, and political support. When it is understood that all of the institution's advancement activity should help produce these four things, planning is easy. (MLW)

  10. SERI advanced wind turbine blades

    SciTech Connect

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  11. SERI advanced wind turbine blades

    SciTech Connect

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  12. SERI advanced wind turbine blades

    NASA Astrophysics Data System (ADS)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10 percent to 30 percent more energy than conventional blades.

  13. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  14. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  15. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  16. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  17. Advanced Distillation Final Report

    SciTech Connect

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were

  18. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  19. Advanced Microturbine Systems

    SciTech Connect

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology

  20. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  1. Data management system advanced architectures

    NASA Technical Reports Server (NTRS)

    Chevers, ED

    1991-01-01

    The topics relating to the Space Station Freedom (SSF) are presented in view graph form and include: (1) the data management system (DMS) concept; (2) DMS evolution rationale; (3) the DMS advance architecture task; (4) DMS group support for Ames payloads; (5) DMS testbed development; (6) the DMS architecture task status; (7) real time multiprocessor testbed; (8) networked processor performance; (9) and the DMS advance architecture task 1992 goals.

  2. Advanced border monitoring sensor system

    NASA Astrophysics Data System (ADS)

    Knobler, Ronald A.; Winston, Mark A.

    2008-04-01

    McQ has developed an advanced sensor system tailored for border monitoring that has been delivered as part of the SBInet program for the Department of Homeland Security (DHS). Technology developments that enhance a broad range of features are presented in this paper, which address the overall goal of the system to improving unattended ground sensor system capabilities for border monitoring applications. Specifically, this paper addresses a system definition, communications architecture, advanced signal processing to classify targets, and distributed sensor fusion processing.

  3. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  4. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  5. Advanced Gradient Heating Facility (AGHF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the publication includes papers entitled: (1) Coupled growth in hypermonotectics; (2) Directional solidification of refined Al-4 wt.% Cu alloys; (3) Effects of convection on interface curvature during growth of concentrated ternary compounds; (4) Directional solidification of Al-1.5 wt.% Ni alloys; (5) Interactive response of advancing phase boundaries to particles; (6) INTeractive Response of Advancing Phase boundaries to Particles-INTRAPP; and (7) Particle engulfment and pushing by solidifying interfaces.

  6. Evolution paths for advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1990-01-01

    As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.

  7. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  8. Advance directives: prerequisites and usefulness.

    PubMed

    van Asselt, D

    2006-10-01

    Advance directives allow competent persons to extend their right of self-determination into the future, by recording choices that are intended to influence their future care should they become unable to make choices. They are considered tools to facilitate end-of-life decision making. Advance directives are a form of anticipatory decision-making. This article will focus on instruction directives against a certain treatment, so-called advance refusals. The most important legal requirement is the acknowledgement of patient autonomy. This condition is met in all European countries. The legal uncertainties surrounding advance refusals are focused on practical modalities rather than on the validity of the general principle. According to leading ethics the underlying moral rule of advanced directives is that all truly autonomous refusals of treatment must be respected, no matter what the consequences. Physicians find it hard to adhere to the wishes and choices of patients as expressed in directives. They find the text ambiguous. Another weakness is that directives give little information about what in the patient's view constitutes a good quality of life. Some health professionals lack the willingness to step outside their own value systems and fully embrace that of the patient. Empathic skills are required. Very few persons create an advance directive. Furthermore, of the created directives only some are accessible when patients are admitted to hospital. However, when directives are available they usually influence medical treatment decisions.

  9. EDITORIAL: Plasma Surface Interactions for Fusion

    NASA Astrophysics Data System (ADS)

    2006-05-01

    Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated

  10. Benefits of advanced propulsion technology for the advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Sabatella, J. A.

    1973-01-01

    Future supersonic transports will have to provide improvement in the areas of economics, range, and emissions relative to the present generation of supersonic transports, as well as meeting or improving upon FAR 36 noise goals. This paper covers the promising propulsion systems including variable-cycle engine concepts for long-range supersonic commercial transport application. The benefits of applying advanced propulsion technology to solve the economic and environmental problems are reviewed. The advanced propulsion technologies covered are in the areas of structures, materials, cooling techniques, aerodynamics, variable engine geometry, jet noise suppressors, acoustic treatment, and low-emission burners. The results of applying the advanced propulsion technology are presented in terms of improvement in overall system takeoff gross weight and return on investment.

  11. Oncology Advanced Practitioners Bring Advanced Community Oncology Care.

    PubMed

    Vogel, Wendy H

    2016-01-01

    Oncology care is becoming increasingly complex. The interprofessional team concept of care is necessary to meet projected oncology professional shortages, as well as to provide superior oncology care. The oncology advanced practitioner (AP) is a licensed health care professional who has completed advanced training in nursing or pharmacy or has completed training as a physician assistant. Oncology APs increase practice productivity and efficiency. Proven to be cost effective, APs may perform varied roles in an oncology practice. Integrating an AP into an oncology practice requires forethought given to the type of collaborative model desired, role expectations, scheduling, training, and mentoring. PMID:27249776

  12. New Advances in Chromosome Architecture.

    PubMed

    Leake, Mark C

    2016-01-01

    Our knowledge of the "architecture" of chromosomes has grown enormously in the past decade. This new insight has been enabled largely through advances in interdisciplinary research methods at the cutting-edge interface of the life and physical sciences. Importantly this has involved several state-of-the-art biophysical tools used in conjunction with molecular biology approaches which enable investigation of chromosome structure and function in living cells. Also, there are new and emerging interfacial science tools which enable significant improvements to the spatial and temporal resolution of quantitative measurements, such as in vivo super-resolution and powerful new single-molecule biophysics methods, which facilitate probing of dynamic chromosome processes hitherto impossible. And there are also important advances in the methods of theoretical biophysics which have enabled advances in predictive modeling of this high quality experimental data from molecular and physical biology to generate new understanding of the modes of operation of chromosomes, both in eukaryotic and prokaryotic cells. Here, I discuss these advances, and take stock on the current state of our knowledge of chromosome architecture and speculate where future advances may lead. PMID:27283297

  13. Basic advances in serotonin pharmacology.

    PubMed

    Fuller, R W

    1992-10-01

    Several advances in serotonin pharmacology have implications for psychiatry. The introduction of selective inhibitors of serotonin uptake into clinical use has established more firmly the relevance of brain serotonin neurons to depressive illness and is permitting an exploration of other therapeutic consequences of amplifying serotonergic function. A recent major advance in basic pharmacology has been the definition and characterization of multiple serotonin receptor subtypes in brain. Highly selective agonists and antagonists at these receptor subtypes are being developed as candidate drugs for therapy and as pharmacologic probes for assessing functionality of brain serotonin neurons in disease. Improved pharmacologic specificity will provide better tools for eliciting measurable responses mediated by brain serotonin receptors and for imaging key presynaptic and postsynaptic constituents of serotonin neuronal systems. Advances in serotonin pharmacology should therefore expand our understanding of serotonin's roles as a brain neurotransmitter in health and disease and lead to improved therapeutic agents.

  14. Advanced biofuel production in microbes.

    PubMed

    Peralta-Yahya, Pamela P; Keasling, Jay D

    2010-02-01

    The cost-effective production of biofuels from renewable materials will begin to address energy security and climate change concerns. Ethanol, naturally produced by microorganisms, is currently the major biofuel in the transportation sector. However, its low energy content and incompatibility with existing fuel distribution and storage infrastructure limits its economic use in the future. Advanced biofuels, such as long chain alcohols and isoprenoid- and fatty acid-based biofuels, have physical properties that more closely resemble petroleum-derived fuels, and as such are an attractive alternative for the future supplementation or replacement of petroleum-derived fuels. Here, we review recent developments in the engineering of metabolic pathways for the production of known and potential advanced biofuels by microorganisms. We concentrate on the metabolic engineering of genetically tractable organisms such as Escherichia coli and Saccharomyces cerevisiae for the production of these advanced biofuels.

  15. ISAAC Advanced Composites Research Testbed

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  16. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  17. Advanced cryogenic tank development status

    NASA Astrophysics Data System (ADS)

    Braun, G. F.; Tack, W. T.; Scholz, E. F.

    1993-06-01

    Significant advances have been made in the development of materials, structures, and manufacturing technologies for the next generation of cryogenic propellant tanks under the auspices of a joint U.S. Air Force/NASA sponsored advanced development program. This paper summarizes the achievements of this three-year program, particularly in the evolution and properties of Weldalite 049, net shape component technology, Al-Li welding technology, and efficient manufacturing concepts. Results of a recent mechanical property characterization of a full-scale integrally stiffened barrel panel extrusion are presented, as well as plans for an additional weld process optimization program using response surface design of experiment techniques. A further discussion is given to the status of hardware completed for the Advanced Manufacturing Development Center and Martin Marietta's commitment to the integration of these technologies into the production of low-cost, light-weight cryogenic propellant tanks.

  18. Translational research on advanced therapies.

    PubMed

    Belardelli, Filippo; Rizza, Paola; Moretti, Franca; Carella, Cintia; Galli, Maria Cristina; Migliaccio, Giovanni

    2011-01-01

    Fostering translational research of advanced therapies has become a major priority of both scientific community and national governments. Advanced therapy medicinal products (ATMP) are a new medicinal product category comprising gene therapy and cell-based medicinal products as well as tissue engineered medicinal products. ATMP development opens novel avenues for therapeutic approaches in numerous diseases, including cancer and neurodegenerative and cardiovascular diseases. However, there are important bottlenecks for their development due to the complexity of the regulatory framework, the high costs and the needs for good manufacturing practice (GMP) facilities and new end-points for clinical experimentation. Thus, a strategic cooperation between different stakeholders (academia, industry and experts in regulatory issues) is strongly needed. Recently, a great importance has been given to research infrastructures dedicated to foster translational medicine of advanced therapies. Some ongoing European initiatives in this field are presented and their potential impact is discussed.

  19. Process for producing advanced ceramics

    DOEpatents

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  20. Advanced Wall Framing; BTS Technology Fact Sheet

    SciTech Connect

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Advanced framing techniques for home construction have been researched extensively and proven effective. Both builders and home owners can benefit from advanced framing. Advanced framing techniques create a structurally sound home that has lower material and labor costs than a conventionally framed house. This fact sheet describes advanced framing techniques, design considerations, and framing.

  1. All Students Need Advanced Mathematics. Math Works

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  2. 7 CFR 1951.227 - Protective advances.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and real estate taxes, to preserve and protect the security, the lien, or the priority of the lien... in the best interest of the government. For insurance, factors such as the amount of advance... considered. (a) Protective advances are considered due and payable when advanced. Advances bear interest...

  3. Advancing Educational Policy by Advancing Research on Instruction

    ERIC Educational Resources Information Center

    Raudenbush, Stephen W.

    2008-01-01

    Understanding the impact of "instructional regimes" on student learning is central to advancing educational policy. Research on instructional regimes has parallels with clinical trials in medicine yet poses unique challenges because of the social nature of instruction: A child's potential outcome under a given regime depends on peers and teachers,…

  4. Advanced defect and metrology solutions

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2014-05-01

    Cost, weight, performance, and lifetime requirements for precision components used throughout the aerospace and defense industries are driving innovative mechanical designs, manufacturing processes and use of new materials. In turn, these advanced components typically require tighter dimensional and surface tolerances to function as designed. Scratch testers, microscope-based systems, and other traditional metrology systems are inadequate for roughness, small-scale geometry, and defect determination on many of these parts. This talk will examine the advantages and disadvantages of some of the new technologies developed to provide more robust, versatile, and sensitive measurements of precision components for advanced manufacturing environments.

  5. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  6. Advanced Vehicle Testing and Evaluation

    SciTech Connect

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  7. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  8. Management of advanced corneal ectasias.

    PubMed

    Maharana, Prafulla K; Dubey, Aditi; Jhanji, Vishal; Sharma, Namrata; Das, Sujata; Vajpayee, Rasik B

    2016-01-01

    Corneal ectasias include a group of disorders characterised by progressive thinning, bulging and distortion of the cornea. Keratoconus is the most common disease in this group. Other manifestations include pellucid marginal degeneration, Terrien's marginal degeneration, keratoglobus and ectasias following surgery. Advanced ectasias usually present with loss of vision due to high irregular astigmatism. Management of these disorders is difficult due to the peripheral location of ectasia and associated severe corneal thinning. Newer contact lenses such as scleral lenses are helpful in a selected group of patients. A majority of these cases requires surgical intervention. This review provides an update on the current treatment modalities available for management of advanced corneal ectasias. PMID:26294106

  9. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  10. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  11. Handheld advanced nucleic acid analyzer

    NASA Astrophysics Data System (ADS)

    Benett, William J.; Richards, James B.; Stratton, Paul; Hadley, Dean R.; Bodtker, Brian H.; Nasarabadi, Shanavaz L.; Milanovich, Fred P.; Mariella, Raymond P., Jr.; Koopman, Ronald P.; Belgrader, Philip

    2000-12-01

    There is a growing need for portable, lightweight, battery operated instruments capable of detecting and identifying bio-warfare and bio-terrorism agents in the field. To address this need, we have developed a handheld PCR instrument. LLNLs advanced thermal cycling technology and expertise with portable, field tested biological instrumentation, combined with the development of real-time, fluorescence based PCR assays, has enabled the development of a very portable, versatile, power efficient PCR instrument with a simplified operating system designed for use by first responders. The heart of the instrument is the sample module, which incorporates the advanced silicon thermal cycler developed at LLNL.

  12. Advanced Nuclear Fuel Cycle Options

    SciTech Connect

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  13. Modern Advances in Ablative TPS

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    2013-01-01

    Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.

  14. Advancing Diversity in Higher Education

    ERIC Educational Resources Information Center

    Turner, Caroline S.

    2013-01-01

    This special section of the "Journal of Diversity in Higher Education" ("JDHE") on "Advancing Diversity in Higher Education" emerged from the 2012 Association for the Study of Higher Education Council on Ethnic Participation (ASHE-CEP) Pre-Conference Forum. CEP, a standing committee of ASHE, partnered with the…

  15. TIMMS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    It is critical for countries to ensure that capable secondary school students receive further preparation in advanced mathematics and science, so that they are ready to enter challenging university-level studies that prepare them for careers in science, technology, engineering, and mathematics (STEM) fields. This group of students will become the…

  16. Advances In Librarianship. Volume 2.

    ERIC Educational Resources Information Center

    Voigt, Melvin J., Ed.

    The authors of this second volume provide a composite contribution to a broader understanding of some of the major topics affecting libraries and their operation today. These contributions are in keeping with the aim of the series of providing scholarly reviews of specific topics related to the rapidly changing and advancing field of…

  17. Neuroinflammation in advanced canine glaucoma

    PubMed Central

    Jiang, Bing; Harper, Matthew M.; Kecova, Helga; Adamus, Grazyna; Kardon, Randy H.; Grozdanic, Sinisa D.

    2010-01-01

    Purpose The pathophysiological events that occur in advanced glaucoma are not well characterized. The principal purpose of this study is to characterize the gene expression changes that occur in advanced glaucoma. Methods Retinal RNA was obtained from canine eyes with advanced glaucoma as well as from healthy eyes. Global gene expression patterns were determined using oligonucleotide microarrays and confirmed by real-time PCR. The presence of tumor necrosis factor (TNF) and its receptors was evaluated by immunolabeling. Finally, we evaluated the presence of serum autoantibodies directed against retinal epitopes using western blot analyses. Results We identified over 500 genes with statistically significant changes in expression level in the glaucomatous retina. Decreased expression levels were detected for large number of functional groups, including synapse and synaptic transmission, cell adhesion, and calcium metabolism. Many of the molecules with decreased expression levels have been previously shown to be components of retinal ganglion cells. Genes with elevated expression in glaucoma are largely associated with inflammation, such as antigen presentation, protein degradation, and innate immunity. In contrast, expression of many other pro-inflammatory genes, such as interferons or interleukins, was not detected at abnormal levels. Conclusions This study characterizes the molecular events that occur in the canine retina with advanced glaucoma. Our data suggest that in the dog this stage of the disease is accompanied by pronounced retinal neuroinflammation. PMID:21042562

  18. Advances in genetics. Volume 23

    SciTech Connect

    Caspari, E.W.; Scandalios, J.G.

    1985-01-01

    This book presents articles on genetics and the advances made in this field. Topics covered include the following: recovery, repair, and mutagenesis in Schizosaccharomyces pombe; gene transfer in fungi; Y chromosome function and spermatogenesis in Drosophila hydei; recent developments in population genetics; and genetics, cytology and evolution of Gossypium.

  19. Challenges of advanced hepatocellular carcinoma.

    PubMed

    Colagrande, Stefano; Inghilesi, Andrea L; Aburas, Sami; Taliani, Gian G; Nardi, Cosimo; Marra, Fabio

    2016-09-14

    Hepatocellular carcinoma (HCC) is an aggressive malignancy, resulting as the third cause of death by cancer each year. The management of patients with HCC is complex, as both the tumour stage and any underlying liver disease must be considered conjointly. Although surveillance by imaging, clinical and biochemical parameters is routinely performed, a lot of patients suffering from cirrhosis have an advanced stage HCC at the first diagnosis. Advanced stage HCC includes heterogeneous groups of patients with different clinical condition and radiological features and sorafenib is the only approved treatment according to Barcelona Clinic Liver Cancer. Since the introduction of sorafenib in clinical practice, several phase III clinical trials have failed to demonstrate any superiority over sorafenib in the frontline setting. Loco-regional therapies have also been tested as first line treatment, but their role in advanced HCC is still matter of debate. No single agent or combination therapies have been shown to impact outcomes after sorafenib failure. Therefore this review will focus on the range of experimental therapeutics for patients with advanced HCC and highlights the successes and failures of these treatments as well as areas for future development. Specifics such as dose limiting toxicity and safety profile in patients with liver dysfunction related to the underlying chronic liver disease should be considered when developing therapies in HCC. Finally, robust validated and reproducible surrogate end-points as well as predictive biomarkers should be defined in future randomized trials. PMID:27678348

  20. Advances in pediatrics. Volume 31

    SciTech Connect

    Barness, L.A.

    1984-01-01

    This book discusses the advances made in pediatrics. The topics discussed are--Molecular biology of thalassemia; genetic mapping of humans; technology of recombinant-DNA; DNA-sequencing and human chromosomes and etiology of hereditary diseases; acne; and T-cell abnormalities.

  1. Advancing Scientific Research in Education

    ERIC Educational Resources Information Center

    Towne, Lisa, Ed.; Wise, Lauress L., Ed.; Winters, Tina M., Ed.

    2005-01-01

    The title of this report reveals its purpose precisely: to spur actions that will advance scientific research in education. The recommendations for accomplishing this goal, detailed in this report, build on the National Research Council (NRC) report "Scientific Research in Education" (National Research Council, 2002). That report offers an…

  2. Advanced Technology for Engineering Education

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  3. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  4. Gas fired Advanced Turbine System

    SciTech Connect

    LeCren, R.T.; White, D.J.

    1993-01-01

    The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

  5. Techniques in Advanced Language Teaching.

    ERIC Educational Resources Information Center

    Ager, D. E.

    1967-01-01

    For ease of presentation, advanced grammar teaching techniques are briefly considered under the headings of structuralism (belief in the effectiveness of presenting grammar rules) and contextualism (belief in the maximum use by students of what they know in the target language). The structuralist's problem of establishing a syllabus is discussed…

  6. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  7. Advanced wind turbine conceptual study

    NASA Astrophysics Data System (ADS)

    1995-07-01

    Objective was to develop improvements to an existing wind turbine that would make wind energy more competitive in 1993-1995, and to initiate studies of an advanced wind turbine configuration that would make wind energy competitive for bulk electricity generation by 1998-2000. Objective has been achieved.

  8. Teacher Leaders: Advancing Mathematics Learning

    ERIC Educational Resources Information Center

    Kinzer, Cathy J.; Rincón, Mari; Ward, Jana; Rincón, Ricardo; Gomez, Lesli

    2014-01-01

    Four elementary school instructors offer insights into their classrooms, their unique professional roles, and their leadership approaches as they reflect on their journey to advance teacher and student mathematics learning. They note a "teacher leader" serves as an example to other educators and strives to impact student learning;…

  9. Early Childhood Assessment: Recent Advances.

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.; Greathouse, Dan

    As concern about the developmental progress of preschoolers has increased, the number of assessment instruments available has expanded. This paper reviews recent advances in early childhood assessment and evaluation, and describes several screening and assessment instruments. Varying information is presented for each test, but may include a…

  10. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  11. Advancing Binaural Cochlear Implant Technology.

    PubMed

    Dietz, Mathias; McAlpine, David

    2015-12-30

    This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology-ABCIT-as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies.

  12. Advancing Binaural Cochlear Implant Technology

    PubMed Central

    McAlpine, David

    2015-01-01

    This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology—ABCIT—as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies. PMID:26721929

  13. Challenges of advanced hepatocellular carcinoma

    PubMed Central

    Colagrande, Stefano; Inghilesi, Andrea L; Aburas, Sami; Taliani, Gian G; Nardi, Cosimo; Marra, Fabio

    2016-01-01

    Hepatocellular carcinoma (HCC) is an aggressive malignancy, resulting as the third cause of death by cancer each year. The management of patients with HCC is complex, as both the tumour stage and any underlying liver disease must be considered conjointly. Although surveillance by imaging, clinical and biochemical parameters is routinely performed, a lot of patients suffering from cirrhosis have an advanced stage HCC at the first diagnosis. Advanced stage HCC includes heterogeneous groups of patients with different clinical condition and radiological features and sorafenib is the only approved treatment according to Barcelona Clinic Liver Cancer. Since the introduction of sorafenib in clinical practice, several phase III clinical trials have failed to demonstrate any superiority over sorafenib in the frontline setting. Loco-regional therapies have also been tested as first line treatment, but their role in advanced HCC is still matter of debate. No single agent or combination therapies have been shown to impact outcomes after sorafenib failure. Therefore this review will focus on the range of experimental therapeutics for patients with advanced HCC and highlights the successes and failures of these treatments as well as areas for future development. Specifics such as dose limiting toxicity and safety profile in patients with liver dysfunction related to the underlying chronic liver disease should be considered when developing therapies in HCC. Finally, robust validated and reproducible surrogate end-points as well as predictive biomarkers should be defined in future randomized trials.

  14. Planning Ahead: Advanced Heart Failure

    MedlinePlus

    ... Pressure Tools & Resources Stroke More Planning Ahead: Advanced Heart Failure Updated:Aug 24,2016 An important part of ... content was last reviewed on 04/16/2015. Heart Failure • Home • About Heart Failure • Causes and Risks for ...

  15. Challenges of advanced hepatocellular carcinoma

    PubMed Central

    Colagrande, Stefano; Inghilesi, Andrea L; Aburas, Sami; Taliani, Gian G; Nardi, Cosimo; Marra, Fabio

    2016-01-01

    Hepatocellular carcinoma (HCC) is an aggressive malignancy, resulting as the third cause of death by cancer each year. The management of patients with HCC is complex, as both the tumour stage and any underlying liver disease must be considered conjointly. Although surveillance by imaging, clinical and biochemical parameters is routinely performed, a lot of patients suffering from cirrhosis have an advanced stage HCC at the first diagnosis. Advanced stage HCC includes heterogeneous groups of patients with different clinical condition and radiological features and sorafenib is the only approved treatment according to Barcelona Clinic Liver Cancer. Since the introduction of sorafenib in clinical practice, several phase III clinical trials have failed to demonstrate any superiority over sorafenib in the frontline setting. Loco-regional therapies have also been tested as first line treatment, but their role in advanced HCC is still matter of debate. No single agent or combination therapies have been shown to impact outcomes after sorafenib failure. Therefore this review will focus on the range of experimental therapeutics for patients with advanced HCC and highlights the successes and failures of these treatments as well as areas for future development. Specifics such as dose limiting toxicity and safety profile in patients with liver dysfunction related to the underlying chronic liver disease should be considered when developing therapies in HCC. Finally, robust validated and reproducible surrogate end-points as well as predictive biomarkers should be defined in future randomized trials. PMID:27678348

  16. Advanced materials and the economy

    SciTech Connect

    Clark, J.P.; Flemings, M.C.

    1986-10-01

    Advances in materials science and engineering have impact quickly throughout the economy. On the average, every person in the US requires the securing and processing of some 20,000 pounds of nonrenewable, nonfuel mineral resources each year. Industries engaged in the direct production of primary materials employ approximately 1.5 million wage and salaried personnel, or about 1.5% of the labor force. On each person employed in the primary materials industries depend the jobs of from two to three workers in other sectors. The value of shipments of advanced materials is about $70 billion, or approximately 14% of total materials shipments. The production of such materials occupies about 10% of the total labor force of the materials industries. As in the case of employment, the indirect effect of the presence of these materials on the rest of the economy is highly significant. The reason is that advanced materials are not an end product; they are assembled into components critical to the successful performance and operation of such large, complex systems as aircraft and aerospace vehicles, electronic devices and automobiles. Advanced materials are essential to the future growth of these and other industries. In fact, progress in materials science sets ultimate limits on the rate at which key sectors of the economy can grown.

  17. Advances in percutaneous electrode systems.

    PubMed

    Mooney, V; Roth, A M

    1976-01-01

    In the past eight years, developing a percutaneous electrode system has advanced to a successful, yet simple, method to transmit electrical signals, overcoming the serious problems of excessive mechanical irritation at the skin interface. Experience with over 50-74% in the clinical applications of 1) chronic pain relief; 2) contracture correction; and 3) sensory feedback.

  18. Advanced solid propellant motor insulation

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Russ, R. F.

    1972-01-01

    An advanced lightweight insulation system suitable for use in long duration, low pressure planetary orbiter-type motor applications was developed. Experiments included the screening of various filler and binder materials with optimization studies combining the best of each. Small scale test motor data were used to judge the degree of success.

  19. Advanced hot gas filter development

    SciTech Connect

    McMahon, T.J.

    1998-12-31

    Advanced coal-based power generation systems require hot gas cleanup under high-temperature, high-pressure process conditions in order to realize high efficiency and superior environmental performance. A key component of Integrated Gasification Combined Cycle and Pressurized Fluidized Bed Combustion systems is the hot gas filtration system, which removes particulate matter from the gas stream before it enters the gas turbine. The US DOE is currently sponsoring a program to develop and test hot gas filtration systems, demonstrating their reliability and commercial readiness. Reliability of individual filter elements is a major factor in determining the overall system reliability, and testing has shown that conventional ceramic filter elements are subject to brittle failure and thermal stress damage. In order to increase filter element reliability, a program was initiated to develop ceramic and metal filter elements resistant to brittle failure and thermal stress damage. Filter elements have been developed using advanced materials including continuous fiber ceramic composites, other novel ceramics, and corrosion resistant metals. The general approach taken under this program has been to first develop porous filter media from advanced materials that meet permeability and strength requirements, followed by fabrication of porous media into full scale filter elements. Filter elements and filter media were subjected to laboratory scale corrosion and filtration testing. Filter elements successfully passing laboratory testing have been tested under pilot scale conditions. This paper will summarize the development and testing of these advanced hot gas filters.

  20. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.