Science.gov

Sample records for advanced lipoprotein testing

  1. Recent advances in physiological lipoprotein metabolism.

    PubMed

    Ramasamy, Indra

    2014-12-01

    Research into lipoprotein metabolism has developed because understanding lipoprotein metabolism has important clinical indications. Lipoproteins are risk factors for cardiovascular disease. Recent advances include the identification of factors in the synthesis and secretion of triglyceride rich lipoproteins, chylomicrons (CM) and very low density lipoproteins (VLDL). These included the identification of microsomal transfer protein, the cotranslational targeting of apoproteinB (apoB) for degradation regulated by the availability of lipids, and the characterization of transport vesicles transporting primordial apoB containing particles to the Golgi. The lipase maturation factor 1, glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 and an angiopoietin-like protein play a role in lipoprotein lipase (LPL)-mediated hydrolysis of secreted CMs and VLDL so that the right amount of fatty acid is delivered to the right tissue at the right time. Expression of the low density lipoprotein (LDL) receptor is regulated at both transcriptional and post-transcriptional level. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has a pivotal role in the degradation of LDL receptor. Plasma remnant lipoproteins bind to specific receptors in the liver, the LDL receptor, VLDL receptor and LDL receptor-like proteins prior to removal from the plasma. Reverse cholesterol transport occurs when lipid free apoAI recruits cholesterol and phospholipid to assemble high density lipoprotein (HDL) particles. The discovery of ABC transporters (ABCA1 and ABCG1) and scavenger receptor class B type I (SR-BI) provided further information on the biogenesis of HDL. In humans HDL-cholesterol can be returned to the liver either by direct uptake by SR-BI or through cholesteryl ester transfer protein exchange of cholesteryl ester for triglycerides in apoB lipoproteins, followed by hepatic uptake of apoB containing particles. Cholesterol content in cells is regulated by several

  2. Advanced glycation endproduct changes to Bruch's membrane promotes lipoprotein retention by lipoprotein lipase.

    PubMed

    Cano, Marisol; Fijalkowski, Natalia; Kondo, Naoshi; Dike, Sonny; Handa, James

    2011-08-01

    Lipoprotein particles accumulate in Bruch's membrane before the development of basal deposits and drusen, two histopathologic lesions that define age-related macular degeneration (AMD). We therefore, sought to determine which molecules could participate in lipoprotein retention. Wild-type or lipoprotein lipase-deficient mice were injected with low-dose D-galactose or PBS subcutaneously for 8 weeks to induce advanced glycation endproduct (AGE) formation. Some mice were also injected with the AGE breaker phenacylphiazolium bromide and D-galactose. Rhodamine-labeled low-density lipoproteins were injected into mice, and the fluorescence was measured up to 72 hours later. AGEs, proteoglycans, and other lipid-retaining molecules were evaluated by IHC. Lipoprotein lipase distribution was assessed in AMD samples by IHC. D-galactose-treated mice retained lipoproteins in the retinal pigment epithelial and Bruch's membrane to a greater extent than either PBS- or phenacylphiazolium bromide/D-galactose-treated mice at 24 and 72 hours after injection (P ≤ 0.04). Immunolabeling for carboxymethyllysine, biglycan, and lipoprotein lipase was found in D-galactose-treated mice only. Mice deficient for lipoprotein lipase treated with D-galactose did not retain lipoproteins to any measureable extent. Human AMD samples had lipoprotein lipase labeling within drusen, basal deposits, and the choroid. Mice treated with D-galactose to induce AGE formation in Bruch's membrane retain intravenously injected lipoproteins. Our results suggest that lipoprotein retention in Bruch's membrane is mediated by lipoprotein lipase. PMID:21801873

  3. 21 CFR 862.1475 - Lipoprotein test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lipoprotein test system. 862.1475 Section 862.1475 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1475 Lipoprotein test system....

  4. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alpha-1-lipoprotein immuno-logical test system....5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An alpha-1-lipoprotein... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of...

  5. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alpha-1-lipoprotein immuno-logical test system....5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An alpha-1-lipoprotein... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of...

  6. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alpha-1-lipoprotein immuno-logical test system....5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An alpha-1-lipoprotein... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of...

  7. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low-density lipoprotein immunological test system....5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein...

  8. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low-density lipoprotein immunological test system....5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein...

  9. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low-density lipoprotein immunological test system....5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein...

  10. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low-density lipoprotein immunological test system....5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein...

  11. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-density lipoprotein immunological test system....5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein...

  12. [Lipoproteins].

    PubMed

    Manso, C

    1991-02-01

    The problem of plasma lipid transport between several organs is reviewed. The constitution of plasma lipoproteins is described as well as the importance of enzymes related to them. The problem of lipid transfer proteins is discussed. The origin of atherosclerosis is analyzed in relation to abnormalities of cholesterol metabolism, of its transport and of free radicals generation. PMID:2059473

  13. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lipoprotein X immunolog-ical test system. 866.5590... Lipoprotein X immunolog-ical test system. (a) Identification. A lipoprotein X immunological test system is a device that consists of the reagents used to measure by immunochemical techniques lipoprotein X (a...

  14. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lipoprotein X immunolog-ical test system. 866.5590 Section 866.5590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-density lipoprotein) in serum and other body fluids. Measurement of lipoprotein X aids in the diagnosis...

  15. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lipoprotein X immunolog-ical test system. 866.5590 Section 866.5590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-density lipoprotein) in serum and other body fluids. Measurement of lipoprotein X aids in the diagnosis...

  16. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lipoprotein X immunolog-ical test system. 866.5590 Section 866.5590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-density lipoprotein) in serum and other body fluids. Measurement of lipoprotein X aids in the diagnosis...

  17. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lipoprotein X immunolog-ical test system. 866.5590 Section 866.5590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...-density lipoprotein) in serum and other body fluids. Measurement of lipoprotein X aids in the diagnosis...

  18. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alpha-1-lipoprotein immuno-logical test system. 866.5580 Section 866.5580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...-lipoprotein may aid in the diagnosis of Tangier disease (a hereditary disorder of fat metabolism)....

  19. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha-1-lipoprotein immuno-logical test system. 866.5580 Section 866.5580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...-lipoprotein may aid in the diagnosis of Tangier disease (a hereditary disorder of fat metabolism)....

  20. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  1. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  2. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  3. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  4. Roles of antibody against oxygenized low density lipoprotein in atherosclerosis: recent advances

    PubMed Central

    Zhang, Jing; Wang, Daxin; He, Shenghu

    2015-01-01

    Atherosclerosis is a chronic immune inflammatory disease. Atherosclerosis and relevant disease are threatening human life and health. Oxygenized low density lipoprotein (oxLDL) is a molecular basis in the pathogenesis of atherosclerosis and able to induce inflammation, stimulate immune system and interfere with lipid metabolism in the occurrence and development of atherosclerosis. Antibody against oxLDL has been an important molecule in the immune related pathogenesis of atherosclerosis. In available studies on atherosclerosis, antibody against oxLDL has been a focus, but how oxLDL acts to affect the atherosclerosis and relevant diseases, whether oxLDL is protective or detrimental, and whether oxLDL acts in different ways at different stages of atherosclerosis are still unclear. This paper focuses on the role of antibody against oxLDL in the atherosclerosis and relevant diseases, and summarizes the advances in this field, aiming to provide new clue and new methods for the therapy of atherosclerosis. PMID:26550105

  5. 21 CFR 862.1475 - Lipoprotein test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.... (b) Classification. Class I (general controls). The device is exempt from the premarket...

  6. 21 CFR 862.1475 - Lipoprotein test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.... (b) Classification. Class I (general controls). The device is exempt from the premarket...

  7. 21 CFR 862.1475 - Lipoprotein test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.... (b) Classification. Class I (general controls). The device is exempt from the premarket...

  8. 21 CFR 862.1475 - Lipoprotein test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.... (b) Classification. Class I (general controls). The device is exempt from the premarket...

  9. The two-receptor model of lipoprotein clearance: tests of the hypothesis in "knockout" mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins.

    PubMed Central

    Ishibashi, S; Herz, J; Maeda, N; Goldstein, J L; Brown, M S

    1994-01-01

    Apolipoprotein E (apoE) is hypothesized to mediate lipoprotein clearance by binding to two receptors: (i) the low density lipoprotein receptor (LDLR) and (ii) a chylomicron remnant receptor. To test this hypothesis, we have compared plasma lipoproteins in mice that are homozygous for targeted disruptions of the genes for apoE [apoE(-/-)], the LDLR [LDLR(-/-)], and both molecules [poE(-/-); LDLR(-/-)]. On a normal chow diet, apoE(-/-) mice had higher mean plasma cholesterol levels than LDLR(-/-) mice (579 vs. 268 mg/dl). Cholesterol levels in the apoE(-/-); LDLR(-/-) mice were not significantly different from those in the apoE(-/-) mice. LDLR(-/-) mice had a relatively isolated elevation in plasma LDL, whereas apoE(-/-) mice had a marked increase in larger lipoproteins corresponding to very low density lipoproteins and chylomicron remnants. The lipoprotein pattern in apoE(-/-); LDLR(-/-) mice resembled that of apoE(-/-) mice. The LDLR(-/-) mice had a marked elevation in apoB-100 and a modest increase in apoB-48. In contrast, the apoE(-/-) mice had a marked elevation in apoB-48 but not in apoB-100. The LDLR(-/-); apoE(-/-) double homozygotes had marked elevations of both apolipoproteins. The observation that apoB-48 increases more dramatically with apoE deficiency than with LDLR deficiency supports the notion that apoE binds to a second receptor in addition to the LDLR. This conclusion is also supported by the observation that superimposition of a LDLR deficiency onto an apoE deficiency [apoE(-/-); LDLR(-/-) double homozygotes] does not increase hypercholesterolemia beyond the level observed with apoE deficiency alone. Images PMID:8183926

  10. Advanced Vehicle Testing and Evaluation

    SciTech Connect

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  11. Advanced Duct Sealing Testing

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2003-08-01

    Duct leakage has been identified as a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums or branches in the duct system. At each of these connections a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have typically shown that these seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory has been testing sealant durability for several years. Typical duct tape (i.e. fabric backed tapes with natural rubber adhesives) was found to fail more rapidly than all other duct sealants. This report summarizes the results of duct sealant durability testing of five UL 181B-FX listed duct tapes (three cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The first test involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars, and sheet metal ''collar-to-plenum joints'' pressurized with 200 F (93 C) air. The second test consisted of baking duct tape specimens in a constant 212 F (100 C) oven following the UL 181B-FX ''Temperature Test'' requirements. Additional tests were also performed on only two tapes using sheet metal collar-to-plenum joints. Since an unsealed flexible duct joint can have a variable leakage depending on the positioning of the flexible duct core, the durability of the flexible duct joints could not be based on the 10% of unsealed leakage criteria. Nevertheless, the leakage of the sealed specimens prior to testing could be considered as a basis for a failure criteria. Visual inspection was also documented throughout the tests. The flexible duct core-to-collar joints were inspected monthly, while the sheet metal collar-to-plenum joints were inspected

  12. Laboratory approaches for predicting and managing the risk of cardiovascular disease: postanalytical opportunities of lipid and lipoprotein testing.

    PubMed

    Langlois, Michel R

    2012-07-01

    Abstract Lipoprotein-related risk of cardiovascular disease (CVD) can be adequately predicted in subjects with elevated total cholesterol and low-density lipoprotein (LDL-)cholesterol using the available guidelines. However, individuals with dyslipidemia can have normal total- and LDL-cholesterol concentrations. Many statin-treated patients remain at high residual risk of CVD despite achieving LDL goals. The small dense LDL phenotype, frequently presenting with hypertriglyceridemia and low high-density lipoprotein (HDL-)cholesterol (lipid triad), may contribute to failure to identify and treat high-risk individuals. Therefore, calculated non-HDL-cholesterol is recommended as secondary therapeutic target to LDL-cholesterol in patients with hypertriglyceridemia and mixed dyslipidemia. On-treatment apolipoprotein B adds prognostic information to LDL- and non-HDL-cholesterol by indicating the total number of atherogenic lipoproteins, regardless of their cholesterol content. Risk may be higher than indicated in the risk estimation systems in additional subjects with elevated lipoprotein(a) and homocysteine concentrations. To improve the (post-)post-analytical phase of lipid tests, aiming for maximal health outcome effectiveness of test interpretation and utilization, laboratory professionals should deliver clinical added value services by providing readily interpreted and guideline-adjusted test reports, interpretative commenting, proactive reflex testing or recommending additional tests, and joining multidisciplinary cooperations in guideline development and cost/benefit studies. PMID:22850050

  13. Advanced work capacity testing.

    PubMed

    Bretz, Károly J; Dános, László; Smudla, Szilvia; Pálosi, Adrienn

    2015-01-01

    The aim of this study is to describe an accurate work capacity testing which can be used in the industry, as well as in rehabilitation process. The first part of this paper is dealing with the NIOSH lifting equation, which is a tool used by occupational health and safety professionals. The second part of this paper summarizes the features and applications of the "ErgoScope" work simulator. Static and dynamic strength of upper and lower limbs, as well as whole body efforts can be measured. The equipment makes it possible to evaluate pushing, pulling, lifting and carrying activities comprising reaching, bending and stooping movements. In the third part of this paper we demonstrate handgrip force data recorded using the "ErgoScope" work simulator comparing with handgrip force data published in the literature. "ErgoScope" work simulator is capable to measure handgrip and pinch forces, suitable to evaluate fine motor skills, hand and finger dexterity, as well as reaction times. PMID:26294589

  14. Recent Advances in Analytical Methods on Lipoprotein Subclasses: Calculation of Particle Numbers from Lipid Levels by Gel Permeation HPLC Using "Spherical Particle Model".

    PubMed

    Okazaki, Mitsuyo; Yamashita, Shizuya

    2016-01-01

    Recently, we developed an analytical method for determining the lipid levels and particle numbers in lipoprotein subclasses covering a wide size range from chylomicrons to small high density lipoproteins, by using gel permeation high-performance liquid chromatography (GP-HPLC). The challenges in analytical methods on lipoprotein subclasses have been addressed from 1980 by Hara and Okazaki using commercial TSK gel permeation columns. Later, the improvements in the hardware, separation and detection of lipoproteins, and the data processing software, using a Gaussian distribution approximation to calculate lipid levels of lipoprotein subclasses, have been extensively utilized in these analytical methods for over thirty years. In this review, we describe on the recent advances in analytical methods on lipoprotein subclasses based on various techniques, and the calculation of particle numbers from lipid levels by GPHPLC using the "spherical particle model". Free/ester ratio of cholesterol in particular lipoprotein subclass was accurately estimated from triglyceride, total cholesterol (free and esterified) and the size of the particle based on this model originally proposed by Shen and Kezdy. PMID:27041512

  15. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  16. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  17. The Advanced Expander Test Bed

    NASA Technical Reports Server (NTRS)

    Masters, Arthur I.; Tabata, William K.

    1990-01-01

    The principal goals and design concepts of the Advanced Expander Test Bed (AETB) program are briefly reviewed. The AETB is planned as the focal point for the development and demonstration of high-performance oxygen/hydrogen engine technology and advanced component technology for the next space engine. The engine will operate at pressures up to 1200 psia over a wide range of conditions, easily accommodating mission-focused components. The discussion covers design requirements, design approach, conceptual design, the AETB cycle, and the AETB control system.

  18. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  19. New utility of an old marker: serum low-density lipoprotein predicts histopathological response of neoadjuvant chemotherapy in locally advanced gastric cancer

    PubMed Central

    Zhou, Ji-Chun; Guo, Ju-Feng; Teng, Rong-Yue; Wang, Qin-Chuan; Wang, Ji; Wei, Qun; Li, Zi-Duo; Shen, Jian-Guo; Wang, Lin-Bo

    2016-01-01

    Background Although the correlation between metabolic abnormality and gastric cancer has been extensively investigated, the question of whether metabolic parameters might influence the efficacy of chemotherapy in locally advanced gastric cancer is still unanswered. In our present study, we investigated the relationship between serum fasting glucose, lipid levels, and histopathological response of neoadjuvant chemotherapy (NAC) in locally advanced gastric cancers. Patients and methods A total of 128 patients were identified from a prospectively maintained database of patients with locally advanced gastric cancer who received NAC between July 2004 and December 2012. Histopathological response after NAC was analyzed according to Becker’s tumor-regression grade. Univariate analyses and multivariable regression analyses were performed to determine the correlation between tumor size, differentiation, fasting glucose, lipid levels, and tumor histopathological response after NAC. Results Univariate analysis revealed that low-density lipoprotein level and total cholesterol, as well as tumor size and differentiation, correlated significantly with histopathological response. Low-density lipoprotein levels and tumor size were found to be independent predictors for histopathological response, according to multivariable regression analyses. Conclusion In this observational, hypothesis-generating study, serum low-density lipoprotein measurement was found to be useful in predicting chemosensitivity to locally advanced gastric cancer patients undergoing NAC. Incorporation of serum low-density lipoprotein levels into individualized treatment protocols could be considered in clinical practice. PMID:27574445

  20. Recent Advances in Contextuality Tests

    NASA Astrophysics Data System (ADS)

    Thompson, Jayne; Kurzyński, Paweł; Lee, Su-Yong; Soeda, Akihito; Kaszlikowski, Dagomir

    2016-07-01

    Our everyday experiences support the hypothesis that physical systems exist independently of the act of observation. Concordant theories are characterized by the objective realism assumption whereby the act of measurement simply reveals preexisting well-defined elements of reality. In stark contrast quantum mechanics portrays a world in which reality loses its objectivity and is in fact created by observation. Quantum contextuality as first discovered by Bell [1] and Kochen-Specker [2] captures aspects of this philosophical clash between classical and quantum descriptions of the world. Here we briefly summarize some of the more recent advances in the field of quantum contextuality. We approach quantum contextuality through its close relation to Bell type nonlocal scenarios and highlight some of the rapidly developing tests and experimental implementations.

  1. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  2. Reflex Testing for Carbohydrate-Deficient Transferrin (CDT) in Insurance Applicants with Elevated High Density Lipoprotein Cholesterol (HDL).

    PubMed

    Singh, Gurmukh

    2015-01-01

    Objectives .- Ascertain the utility of testing carbohydrate deficient transferrin (CDT) levels in insurance applicants with elevated high density lipoprotein cholesterol (HDL) levels. Background .- Chronic alcoholism is not uncommon and is a risk factor for health and longevity and thus of interest to providers of insurance. A number of tests serve as markers of alcohol use, eg, blood alcohol level, elevated liver enzymes, ethyl glucuronide in urine, whole blood associated aldehyde (WBAA), macrocytosis, elevated HDL, elevated CDT and others. WBAA and CDT are usually only done, if some other screening test suggests alcohol use. HDL testing is routinely done for assessing cardiac risk, however, chronic alcohol intake tends to raise HDL and some insurance providers reflex to CDT testing when HDL is elevated. Methods .- A number of the clients of Heritage Labs Inc. have rules in place to test for CDT levels in specimens showing elevated HDL levels. The commonest HDL level that serves as the trigger for reflex testing for CDT is 80mg/dL. The results of this practice were analyzed to assess the utility of reflex testing for CDT to identify chronic alcohol abusers among the applicants. Results .- In examining the results of CDT levels done as a reflex test due to elevated HDL levels, about 2% of the applicants, 0.7% of women and 3% of men, tested positive for elevated CDT levels. Conclusions .- The incidence of elevated CDT levels is high enough to warrant routinely testing for this analyte in applicants, especially men, with high HDL levels. PMID:27584808

  3. Instrumentation advances for transonic testing

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1989-01-01

    New and improved instrumentation, like new and improved wind tunnels, provide capabilities which stimulate innovative research and discovery. During the past few years there have been a number of instrumentation developments which have aided and abetted the acquisition of more accurate aerodynamic data and have led to new physical insights as well. Some of these advances are reviewed, particularly in the area of thin film gages, hot wire anemometry, and laser instrumentation. A description is given of the instruments and/or techniques and some sample results are shown.

  4. Advanced Test Accelerator (ATA) injector

    SciTech Connect

    Jackson, C.H.; Bubp, D.G.; Fessenden, T.J.; Hester, R.E.; Neil, V.K.; Paul, A.C.; Prono, D.S.

    1983-03-09

    The ATA injector, developed from experience gained from the Experimental Test Accelerator (ETA) linac, has recently been completed. The injector consists of ten 0.25 MV cells that are used to develop 2.5 MV across a single diode gap. The 10 kA beam is extracted from a 500 cm/sup 2/ plasma cathode at average rates of up to 5 Hz and burst rates to 1 kHz. Pulsed power from 20 water filled blumleins is divided and introduced symmetrically through four ports on each cell. All major insulators are fabricated from filled epoxy castings. With these improvements, the ATA injector is smaller than the ETA injector; has a faster pulse response; has lower voltage stress on insulators and higher ultimate performance. Injector characterization tests began in October 1982. These tests include beam current, energy, and emittance measurements.

  5. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  6. The advanced solar cell orbital test

    NASA Technical Reports Server (NTRS)

    Marvin, D. C.; Gates, M.

    1991-01-01

    The motivation for advanced solar cell flight experiments is discussed and the Advanced Solar Cell Orbital Test (ASCOT) flight experiment is described. Details of the types of solar cells included in the test and the kinds of data to be collected are given. The orbit will expose the cells to a sufficiently high radiation dose that useful degradation data will be obtained in the first year.

  7. EPA ALKALI SCRUBBING TEST FACILITY: ADVANCED PROGRAM

    EPA Science Inventory

    The report gives results of advanced testing (from June 1975 to February 1976) of 30,000 acfm (10 MW equivalent) lime/limestone wet scrubbers for SO2 and particulate removal at TVA's Shawnee Power Station. No reliability problems were experienced in 1143 hours of lime testing wit...

  8. Design of an Advanced Expander Test Bed

    NASA Technical Reports Server (NTRS)

    Mitchell, John C.; Tabata, William K.

    1993-01-01

    The final design of the Advanced Expander Test Bed (AETB) is discussed. The AETB is a cryogenic rocket ground test unit being designed and built for NASA to enable validation of mission-focused technologies for advanced space engines. Based on the split expander cycle, it will operate at a nominal thrust of 20,000 lbf, a chamber pressure of 1200 psia, and may be operated off-design over a wide range of throttling conditions and mixture ratios. The design approach and configuration of the major components are described.

  9. Advanced Stirling Convertor Testing at GRC

    NASA Technical Reports Server (NTRS)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  10. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  11. Advanced recovery systems wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Geiger, R. H.; Wailes, W. K.

    1990-01-01

    Pioneer Aerospace Corporation (PAC) conducted parafoil wind tunnel testing in the NASA-Ames 80 by 120 test sections of the National Full-Scale Aerodynamic Complex, Moffett Field, CA. The investigation was conducted to determine the aerodynamic characteristics of two scale ram air wings in support of air drop testing and full scale development of Advanced Recovery Systems for the Next Generation Space Transportation System. Two models were tested during this investigation. Both the primary test article, a 1/9 geometric scale model with wing area of 1200 square feet and secondary test article, a 1/36 geometric scale model with wing area of 300 square feet, had an aspect ratio of 3. The test results show that both models were statically stable about a model reference point at angles of attack from 2 to 10 degrees. The maximum lift-drag ratio varied between 2.9 and 2.4 for increasing wing loading.

  12. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  13. Future Transient Testing of Advanced Fuels

    SciTech Connect

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  14. Advanced wing design survivability testing and results

    NASA Technical Reports Server (NTRS)

    Bruno, J.; Tobias, M.

    1992-01-01

    Composite wings on current operational aircraft are conservatively designed to account for stress/strain concentrations, and to assure specified damage tolerance. The technology that can lead to improved composite wing structures and associated structural efficiency is to increase design ultimate strain levels beyond their current limit of 3500 to 4000 micro-in/in to 6000 micro-in/in without sacrificing structural integrity, durability, damage tolerance, or survivability. Grumman, under the sponsorship of the Naval Air Development Center (NADC), has developed a high-strain composite wing design for a subsonic aircraft wing using novel and innovative design concepts and manufacturing methods, while maintaining a state-of-the-art fiber/resin system. The current advanced wing design effort addressed a tactical subsonic aircraft wing using previously developed, high-strain wing design concepts in conjunction with newer/emerging fiber and polymer matrix composite (PMC) materials to achieve the same goals, while reducing complexity. Two categories of advanced PMC materials were evaluated: toughened thermosets; and engineered thermoplastics. Advanced PMC materials offer the technological opportunity to take maximum advantage of improved material properties, physical characteristics, and tailorability to increase performance and survivability over current composite structure. Damage tolerance and survivability to various threats, in addition to structural integrity and durability, were key technical issues addressed during this study, and evaluated through test. This paper focuses on the live-fire testing, and the results performed to experimentally evaluate the survivability of the advanced wing design.

  15. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  16. Telemetry Tests Of The Advanced Receiver II

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.; Bevan, Roland P.; Marina, Miguel

    1993-01-01

    Report describes telemetry tests of Advanced Receiver II (ARX-II): digital radio receiving subsystem operating on intermediate-frequency output of another receiving subsystem called "multimission receiver" (MMR), detecting carrier, subcarrier, and data-symbol signals transmitted by spacecraft, and extracts Doppler information from signals. Analysis of data shows performance of MMR/ARX-II system comparable and sometimes superior to performances of Blk-III/BPA and Blk-III/SDA/SSA systems.

  17. Irradiation Facilities at the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-12-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

  18. Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  19. Modal testing of advanced wind turbine systems

    SciTech Connect

    Osgood, R.M.

    1995-09-01

    The US Department of Energy (DOE), in conjunction with the US wind industry, is supporting the development of technology for advanced, higher efficiency wind energy conversion systems. Under the Advanced Wind Turbine (AAWT) Program, the DOE, through the National Renewable Energy Laboratory (NREL), will assist US industry in incorporating advanced wind turbine technology into utility-grade wind turbines. As part of the AWT Program, NREL is conducting a range of activities aimed at assisting the wind industry with system design analysis and testing. One major activity is NREL`s Full System Model Testing (FSMT) task. In 1993 and 1994, NREL`s FSMT team conducted model surveys on several wind turbine systems developed by industry, including Atlantic Orient Corporation`s AOC 15/50, R. Lynette and Associates` AWT-26 P1, and Carter Wind Turbines Incorporated`s CWT-300. This paper describes how these model surveys were carried out and how industry and NREL wind researchers used the experimental results to validate their analytical models.

  20. Chylomicrons: Advances in biology, pathology, laboratory testing, and therapeutics.

    PubMed

    Julve, Josep; Martín-Campos, Jesús M; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2016-04-01

    The adequate absorption of lipids is essential for all mammalian species due to their inability to synthesize some essential fatty acids and fat-soluble vitamins. Chylomicrons (CMs) are large, triglyceride-rich lipoproteins that are produced in intestinal enterocytes in response to fat ingestion, which function to transport the ingested lipids to different tissues. In addition to the contribution of CMs to postprandial lipemia, their remnants, the degradation products following lipolysis by lipoprotein lipase, are linked to cardiovascular disease. In this review, we will focus on the structure-function and metabolism of CMs. Second, we will analyze the impact of gene defects reported to affect CM metabolism and, also, the role of CMs in other pathologies, such as atherothrombotic cardiovascular disease and diabetes mellitus. Third, we will provide an overview of the laboratory tests currently used to study CM disorders, and, finally, we will highlight current treatments in diseases affecting CMs. PMID:26868089

  1. Advanced Video Guidance Sensor (AVGS) Development Testing

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2004-01-01

    NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.

  2. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  3. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  4. Advanced Test Reactor Testing Experience: Past, Present and Future

    SciTech Connect

    Frances M. Marshall

    2005-04-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 48" long and 5.0" diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors -- US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, wherein the target material is placed in a capsule, or plate form, and the capsule is in direct contact with the primary coolant. The next level of complexity of an experiment is an instrumented lead experiment, which allows for active monitoring and control of experiment conditions during the irradiation. The highest level of complexity of experiment is the pressurized water loop experiment, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

  5. Advanced tests of wet welded joints

    SciTech Connect

    Pachniuk, I.; Petershagen, H.; Pohl, R.; Szelagowski, P.; Drews, O.

    1994-12-31

    Wet Welding has in former times only been applied to secondary structural components. Nowadays wet welding has become an upcoming repair process due to high process flexibility, its low investment costs and its high versatility. Even the quality of the wet welded joints has been improved remarkably due to intensive and concentrated development activities. However, especially in the North Sea regions owners of offshore structures and classifying authorities still hesitate to recognize the process as a reliable alternative to dry hyperbaric welding repair methods. It therefore requires further activities especially in the field of data development for life prediction of such repaired components. Advanced testing methods are necessary, additional design criteria are to be developed and achievable weldment quality data are to be included in acknowledged and approved standards and recommendations to improve the credibility of the process and to solve the problem of quality assurance for wet welded joints. A comprehensive project, sponsored by the European Community under the Thermie Programme, is in progress to develop new testing procedures to generate the required data and design criteria for the future application of the wet welding process to main components of offshore structures. It is the aim of the project to establish additional fitness for purpose data for this process.

  6. Advanced Placement: More than a Test.

    ERIC Educational Resources Information Center

    Colwell, Richard

    1990-01-01

    Encourages music teachers to work with students interested in advanced placement (AP) music courses. Discusses the logistics and advantages of placing students in these courses. Describes the Advanced Placement Listening and Literature and the Advanced Placement Theory courses and examinations. Outlines the examination scoring method and looks at…

  7. Top-down lipidomics of low density lipoprotein reveal altered lipid profiles in advanced chronic kidney disease[S

    PubMed Central

    Reis, Ana; Rudnitskaya, Alisa; Chariyavilaskul, Pajaree; Dhaun, Neeraj; Melville, Vanessa; Goddard, Jane; Webb, David J.; Pitt, Andrew R.; Spickett, Corinne M.

    2015-01-01

    This study compared the molecular lipidomic profile of LDL in patients with nondiabetic advanced renal disease and no evidence of CVD to that of age-matched controls, with the hypothesis that it would reveal proatherogenic lipid alterations. LDL was isolated from 10 normocholesterolemic patients with stage 4/5 renal disease and 10 controls, and lipids were analyzed by accurate mass LC/MS. Top-down lipidomics analysis and manual examination of the data identified 352 lipid species, and automated comparative analysis demonstrated alterations in lipid profile in disease. The total lipid and cholesterol content was unchanged, but levels of triacylglycerides and N-acyltaurines were significantly increased, while phosphatidylcholines, plasmenyl ethanolamines, sulfatides, ceramides, and cholesterol sulfate were significantly decreased in chronic kidney disease (CKD) patients. Chemometric analysis of individual lipid species showed very good discrimination of control and disease sample despite the small cohorts and identified individual unsaturated phospholipids and triglycerides mainly responsible for the discrimination. These findings illustrate the point that although the clinical biochemistry parameters may not appear abnormal, there may be important underlying lipidomic changes that contribute to disease pathology. The lipidomic profile of CKD LDL offers potential for new biomarkers and novel insights into lipid metabolism and cardiovascular risk in this disease. PMID:25424003

  8. Lipoprotein(a) metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoprotein(a) [Lp(a)] is an atherogenic lipoprotein. The metabolism of this lipoprotein is still not well understood. It has long been known that the plasma concentration of Lp(a) is highly heritable, with its genetic determinants located in the apo(a) locus and regulating the rate of hepatic apo(a...

  9. Vacuum system for Advanced Test Accelerator

    SciTech Connect

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  10. Corrosion of spent Advanced Test Reactor fuel

    SciTech Connect

    Lundberg, L.B.; Croson, M.L.

    1994-11-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented.

  11. Beryllium Use in the Advanced Test Reactor

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

  12. Effect of serum lipoproteins on the adenylate cyclase activity of rat liver plasma membranes.

    PubMed Central

    Ghiselli, G; Sirtori, C R; Nicosia, S

    1981-01-01

    Four rat lipoprotein classes [lymph chylomicrons, VLD (very-low-density), LD (low-density) and HD (high-density) lipoproteins] were tested for their ability to affect basal adenylate cyclase (EC 4.6.1.1) activity of rat liver plasma membranes. All the lipoproteins, with the exception of lymph chylomicrons, effectively increase the enzyme activity. VLD lipoproteins are the most active class (67% maximal increase), followed by HD lipoproteins (33%) and LD lipoproteins (23%). The effect of VLD lipoproteins is additive to that elicited by GTP or GTP plus glucagon (at least within a certain concentration range). VLD lipoproteins affect only the Vmax. of the enzyme, not the Km. PMID:7317023

  13. Lipoprotein sorting in bacteria.

    PubMed

    Okuda, Suguru; Tokuda, Hajime

    2011-01-01

    Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and β-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm. PMID:21663440

  14. Lipoproteins and lipoprotein metabolism in periodontal disease

    PubMed Central

    Griffiths, Rachel; Barbour, Suzanne

    2010-01-01

    A growing body of evidence indicates that the incidence of atherosclerosis is increased in subjects with periodontitis – a chronic infection of the oral cavity. This article summarizes the evidence that suggests periodontitis shifts the lipoprotein profile to be more proatherogenic. LDL-C is elevated in periodontitis and most studies indicate that triglyceride levels are also increased. By contrast, antiatherogenic HDL tends to be low in periodontitis. Periodontal therapy tends to shift lipoprotein levels to a healthier profile and also reduces subclinical indices of atherosclerosis. In summary, periodontal disease alters lipoprotein metabolism in ways that could promote atherosclerosis and cardiovascular disease. PMID:20835400

  15. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  16. Raytheon Advanced Miniature Cryocooler Characterization Testing

    NASA Astrophysics Data System (ADS)

    Conrad, T.; Yates, R.; Schaefer, B.; Bellis, L.; Pillar, M.; Barr, M.

    2015-12-01

    The Raytheon Advanced Miniature (RAM) cryocooler is a flight packaged, high frequency pulse tube cooler with an integrated surge volume and inertance tube. Its design has been fully optimized to make use of the Raytheon Advanced Regenerator, resulting in improved efficiency relative to previous Raytheon pulse tube coolers. In this paper, thermodynamic characterization data for the RAM cryocooler is presented along with details of its design specifications.

  17. Men with Advanced Prostate Cancer Might Consider Gene Test

    MedlinePlus

    ... html Men With Advanced Prostate Cancer Might Consider Gene Test Detection of genetic flaw could help predict ... suggests. Testing for inherited abnormalities in DNA repair genes could provide patients and family members important information ...

  18. Lipoproteins of bacterial pathogens.

    PubMed

    Kovacs-Simon, A; Titball, R W; Michell, S L

    2011-02-01

    Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases. PMID:20974828

  19. Tests Of Advanced Nickel/Hydrogen Cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1994-01-01

    Individual-pressure-vessel (IPV) nickel-hydrogen technology adanced with intention of improving cycle life and performance. One advancement to use 26 percent potassium hydroxide electrolyte to improve cycle life. Another to modify state-of-art cell design to eliminate identified failure modes.

  20. Verification testing of advanced environmental monitoring systems

    SciTech Connect

    Kelly, T.J.; Riggs, K.B.; Fuerst, R.G.

    1999-03-01

    This paper describes the Advanced Monitoring Systems (AMS) pilot project, one of 12 pilots comprising the US EPA`s Environmental Technology Verification (ETV) program. The aim of ETV is to promote the acceptance of environmental technologies in the marketplace, through objective third-party verification of technology performance.

  1. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  2. Advanced CMOS Radiation Effects Testing Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan Allen; Marshall, Paul W.; Rodbell, Kenneth P.; Gordon, Michael S.; LaBel, Kenneth A.; Schwank, James R.; Dodds, Nathaniel A.; Castaneda, Carlos M.; Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  3. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  4. Advanced Stirling Convertor (ASC-E2) Characterization Testing

    NASA Technical Reports Server (NTRS)

    Williams, Zachary D.; Oriti, Salvatore M.

    2012-01-01

    Testing has been conducted on Advanced Stirling Convertor (ASC-E2) convertors at NASA Glenn Research Center in support of the Advanced Stirling Radioisotope Generator (ASRG) Project. This testing has been conducted to understand sensitivities of convertor parameters due to environmental and operational changes during operation of the ASRG in missions to space. This paper summarizes test results and explains in terms of operation of the ASRG during space missions.

  5. Advanced Stirling Convertor (ASC-E2) Characterization Testing

    NASA Technical Reports Server (NTRS)

    Williams, Zachary D.; Oriti, Salvatore M.

    2012-01-01

    Testing has been conducted on Advanced Stirling Convertors (ASCs)-E2 at NASA Glenn Research Center in support of the Advanced Stirling Radioisotope Generator (ASRG) project. This testing has been conducted to understand sensitivities of convertor parameters due to environmental and operational changes during operation of the ASRG in missions to space. This paper summarizes test results and explains the operation of the ASRG during space missions

  6. Flight test of the YF-23A Advanced Tactical Fighter

    SciTech Connect

    Metz, P. )

    1992-02-01

    The paper describes the approach used in flight tests of the YF-23A Advanced Tactical Fighter (ATF), the fighter which was conceived as a replacement for the F-1 Eagle and which combines stealth techologies with a supercruise capability while retaining the agility necessary in an air superiority fighter. Special attention is given to the flight test concept, flight test preparations, and test objectives. The test methods, the problems encountered, and the test results are described.

  7. Arachnid lipoproteins: comparative aspects.

    PubMed

    Cunningham, Mónica; Garcia, Fernando; Pollero, Ricardo J

    2007-01-01

    Findings on hemolymph lipoproteins in the class Arachnida are reviewed in relation to their lipid and protein compositions, hydrated densities, the capacity of apoproteins to bind lipids, and the influence of xenobiotics on their structures and functionality. The occurrence of hemolymphatic lipoproteins in arachnids has been reported in species belonging to the orders Araneida, Scorpionida, Solpugida and Acarina. However, lipoproteins were properly characterized in only three species, Eurypelma californicum, Polybetes pythagoricus and Latrodectus mirabilis. Like insect and crustaceans the arachnids examined contain high density lipoproteins (HDLs) as predominant circulating lipoproteins. Although in most arachnids these particles resemble those of insect HDLs called "lipophorins", in two arachnid species they differ from lipophorins in their apoproteins, total mass and lipid composition. The hemolymph of P. pythagoricus and L. mirabilis contains another HDL of higher density, while P. pythagoricus and E. californicum hemolymph contain a third lipoprotein of very high density (VHDL). Composition of arachnid lipoproteins regarding apoprotein classes as well as lipid classes differ among species. Hemocyanin, in addition to the classical role of this protein as respiratory pigment, is presented here performing the function of apolipoprotein in some arachnid species. Reports on experiments demonstrating the capacity of hemocyanin to bind neutral and polar lipid classes, including ecdysteroids, are commented. Recent works about the changes evoked by a phosphorous pesticide on the structures and functionality of spider lipoproteins are also reviewed. PMID:16887396

  8. Advanced regenerator testing in the Raytheon dual-use cryocoolerr

    SciTech Connect

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-29

    Significant progress has been made on the Raytheon low cost space cryocooler called the Dual-Use Cryocooler (DUC). Most notably, the DUC has been integrated and tested with an advanced regenerator. The advanced regenerator is a drop-in replacement for stainless steel screens and has shown significant thermodynamic performance improvements. This paper will compare the performance of two different regenerators and explain the benefits of the advanced regenerator.

  9. Advanced regenerator testing in the Raytheon dual-use cryocoolerr

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-01

    Significant progress has been made on the Raytheon low cost space cryocooler called the Dual-Use Cryocooler (DUC). Most notably, the DUC has been integrated and tested with an advanced regenerator. The advanced regenerator is a drop-in replacement for stainless steel screens and has shown significant thermodynamic performance improvements. This paper will compare the performance of two different regenerators and explain the benefits of the advanced regenerator.

  10. Arcjet Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Beck, Robin; Agrawal, Parul

    2014-01-01

    A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL. The compliant (high strain to failure) nature of the conformable ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. In May of 2013 the CA250 project executed an arcjet test series in the Ames IHF facility to evaluate a phenolic-based conformal system (named Conformal-PICA) over a range of test conditions from 40-400Wcm2. The test series consisted of four runs in the 13-inch diameter nozzle. Test models were based on SPRITE configuration (a 55-deg sphere cone), as it was able to provide a combination of required heat flux, pressure and shear within a single entry. The preliminary in-depth TC data acquired during that test series allowed a mid-fidelity thermal response model for conformal-PICA to be created while testing of seam models began to address TPS attachment and joining of multiple segments for future fabrication of large-scale aeroshells. Discussed in this paper are the results.

  11. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  12. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50

  13. F/A-18 FAST Offers Advanced System Test Capability

    NASA Video Gallery

    NASA's Dryden Flight Research Center has modified an F/A-18A Hornet aircraft with additional research flight control computer systems for use as a Full-scale Advanced Systems Test Bed. Previously f...

  14. Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks

    SciTech Connect

    Frances M. Marshall

    2008-07-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plans for the NSUF.

  15. Advances in Significance Testing for Cluster Detection

    NASA Astrophysics Data System (ADS)

    Coleman, Deidra Andrea

    Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic

  16. Advanced Solar Cell Testing and Characterization

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Curtis, Henry; Piszczor, Michael

    2005-01-01

    The topic for this workshop stems from an ongoing effort by the photovoltaic community and U.S. government to address issues and recent problems associated with solar cells and arrays experienced by a number of different space systems. In April 2003, a workshop session was held at the Aerospace Space Power Workshop to discuss an effort by the Air Force to update and standardize solar cell and array qualification test procedures in an effort to ameliorate some of these problems. The organizers of that workshop session thought it was important to continue these discussions and present this information to the entire photovoltaic community. Thus, it was decided to include this topic as a workshop at the following SPRAT conference.

  17. Advances in Solar System Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Eubanks, T. M.; Matsakis, D. N.; Martin, J. O.; Archinal, B. A.; McCarthy, D. D.; Klioner, S. A.; Shapiro, S.; Shapiro, I. I.

    1997-04-01

    The solar potential perturbs light propagating in the solar system, providing the basis for tests of gravity through Very Long Baseline Interferometry (VLBI) observations of radio waves from extragalactic radio sources. Such observations determine the γ parameter of the Parameterized Post Newtonian (PPN) expansion of the spacetime metric, with the effect being largest for raypaths close to the Sun. The determination of γ is currently improving rapidly, both due to improvements in the VLBI state-of-the-art, and the current ``quiet'' stage of the solar cycle, which facilitates observations of sources angularly close to the Sun. The VLBI data can be combined with recent estimates of the Nordtvedt parameter using Lunar Laser Ranging and determinations of the perihelion precession of Mercury to estimate both the PPN γ and β parameters, yielding γ = 0.99994 ± 0.00031 and β = 0.99981 ± 0.00026, together with a solar J2 estimate of (-1.8 ± 4.5) \\cdot 10-7. These data are thus consistent with General Relativity at the level of ~3 parts in 10^4 (one standard error).

  18. Familial lipoprotein lipase deficiency

    MedlinePlus

    ... and white-colored blood vessels in the retinas Pancreatitis that keeps returning Yellowing of the eyes and ... discuss your diet needs with a registered dietitian. Pancreatitis that is related to lipoprotein lipase deficiency responds ...

  19. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-21

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  20. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  1. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-04-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

  2. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect

    Dan Davies

    2004-10-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activities during this reporting period were the continuation of test section detail design and developing specifications for auxiliary systems and facilities.

  3. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  4. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    The analytical methodology for advanced encapsulation designs for the development of photovoltaic modules is presented. Analytical models are developed to test optical, thermal, electrical and structural properties of the various encapsulation systems. Model data is compared to relevant test data to improve model accuracy and develop general principles for the design of photovoltaic modules.

  5. MLA FOREIGN LANGUAGE PROFICIENCY TESTS FOR TEACHERS AND ADVANCED STUDENTS.

    ERIC Educational Resources Information Center

    STARR, WILMARTH H.

    THE DEVELOPMENT AND EVALUATION OF THE MODERN LANGUAGE ASSOCIATION (MLA) FOREIGN LANGUAGE PROFICIENCY TESTS FOR TEACHERS AND ADVANCED STUDENTS ARE THE SUBJECTS OF THIS FINAL PROJECT REPORT. FOLLOWING AN ACCOUNT OF THE EVENTS THAT LED TO THE AWARDING OF A GOVERNMENT CONTRACT TO MLA TO DEVELOP NATIONALLY STANDARDIZED QUALIFICATION TESTS AND A…

  6. Analysis of individual lipoproteins and liposomes

    SciTech Connect

    Robbins, D.L.; Keller, R.A.; Nolan, J.P.

    1997-08-01

    We describe the application of single molecule detection (SMD) technologies for the analysis of natural (serum lipoproteins) and synthetic (liposomes) transport systems. The need for advanced analytical procedures of these complex and important systems is presented with the specific enhancements afforded by SMD with flowing sample streams. In contrast to bulk measurements which yield only average values, measurement of individual species allows creation of population histograms from heterogeneous samples. The data are acquired in minutes and the analysis requires relatively small sample quantities. Preliminary data are presented from the analysis of low density lipoprotein, and multilamellar and unilamellar vesicles.

  7. Advanced regenerator testing in the Raytheon dual-use cryocooler

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2013-09-01

    Significant progress has been made on the Raytheon Dual-Use Cooler (DUC) which is a low cost space cryocooler for long life, cost sensitive missions. The DUC has been integrated and tested with an advanced regenerator intended to be a direct replacement for stainless steel screens and has shown significant thermodynamic performance improvements. This paper will compare the performance of two different regenerators and explain the benefits of the advanced regenerator.

  8. Advanced Stirling Convertor Dynamic Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Hill, Dennis; Ursic, Joseph J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. This sequence includes testing at workmanship and flight acceptance levels interspersed with periods of extended operation to simulate prefueling and post fueling. The final step in the test sequence utilizes additional testing at flight acceptance levels to simulate launch. To better replicate the acceleration profile seen by an ASC incorporated into an ASRG, the input spectra used in testing the convertors was modified based on dynamic testing of the ASRG Engineering Unit (ASRG EU) at LM. This paper outlines the overall test approach, summarizes the test results from the ASRG EU, describes the incorporation of those results into the test approach, and presents the results of applying the test approach to the ASC-1 #3 and #4 convertors. The test results include data from several accelerometers mounted on the convertors as well as the piston position and output power variables.

  9. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  10. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  11. Advanced Stirling Convertor Dynamic Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Hill, Dennis; Ursic, Joseph

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Converters (ASC) at NASA John H. Glenn Research Center undergo a vibration test sequence intended to simulate the vibration history of an ASC used in an ASRG for a space mission. This sequence includes testing at Workmanship and Flight Acceptance levels interspersed with periods of extended operation to simulate pre and post fueling. The final step in the test sequence utilizes additional testing at Flight Acceptance levels to simulate launch. To better replicate the acceleration profile seen by an ASC incorporated into an ASRG, the input spectra used in testing the convertors was modified based on dynamic testing of the ASRG Engineering Unit ( ASRG-EU) at Lockheed Martin. This paper presents the vibration test plan for current and future ASC units, including the modified input spectra, and the results of recent tests using these spectra. The test results include data from several accelerometers mounted on the convertors as well as the piston position and output power variables.

  12. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  13. Next Generation Advanced Video Guidance Sensor Development and Test

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Lee, Jimmy; Robertson, Bryan

    2009-01-01

    The Advanced Video Guidance Sensor (AVGS) was the primary docking sensor for the Orbital Express mission. The sensor performed extremely well during the mission, and the technology has been proven on orbit in other flights too. Parts obsolescence issues prevented the construction of more AVGS units, so the next generation of sensor was designed with current parts and updated to support future programs. The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been tested as a breadboard, two different brassboard units, and a prototype. The testing revealed further improvements that could be made and demonstrated capability beyond that ever demonstrated by the sensor on orbit. This paper presents some of the sensor history, parts obsolescence issues, radiation concerns, and software improvements to the NGAVGS. In addition, some of the testing and test results are presented. The NGAVGS has shown that it will meet the general requirements for any space proximity operations or docking need.

  14. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1982-01-01

    An analytical methodology for advanced encapsulation designs was developed. From these methods design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. Analytical models were developed to perform optical, thermal, electrical and analyses on candidate encapsulation systems. From these analyses several candidate systems were selected for qualification testing. Additionally, test specimens of various types are constructed and tested to determine the validity of the analysis methodology developed. Identified deficiencies and/or discrepancies between analytical models and relevant test data are corrected. Prediction capability of analytical models is improved. Encapsulation engineering generalities, principles, and design aids for photovoltaic module designers is generated.

  15. Overview of an Advanced Hypersonic Structural Concept Test Program

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony

    2007-01-01

    This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.

  16. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-01-01

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program initiated this quarter, provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principle activity during this first reporting period were preparing for and conducting a project kick-off meeting, working through plans for the project implementation, and beginning the conceptual design of the test section.

  17. A Test of the Instructional Strategy of Using Advance Organizers.

    ERIC Educational Resources Information Center

    Bastick, Tony

    This study tested the common assumption that lists of instructional objectives (LIOs) presented at the start of a lesson are used as advance organizers (AOs). Because traditional research designs have yielded conflicting results, an alternative design was used that sought to falsify the necessary association between the objectives and their use…

  18. 75 FR 75666 - Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ...: On September 1, 2010, we published in the Federal Register (75 FR 53681) a notice inviting... in the September 1, 2010 notice (75 FR 53682-53683). We encourage eligible applicants to submit their... Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education...

  19. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  20. Results of Laboratory Testing of Advanced Power Strips

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  1. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  2. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    NASA Technical Reports Server (NTRS)

    Meer, Dave; Oriti, Sal

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, NASA?s Glenn Research Center (GRC) has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  3. [Low density lipoprotein apheresis].

    PubMed

    Zaliūnas, Remigijus; Slapikas, Rimvydas; Gustiene, Olivija; Siurkus, Jonas; Vaitkus, Eduardas

    2003-01-01

    Increased blood cholesterol concentration is one of the main factors in ischemic heart disease, development of which is determined by atherosclerotic changes in coronary vessels. Diet and treatment with 3-hydroxi-3-metilglutaril coenzyme A (HMG-CoA) reductase inhibitors helps to reduce low density lipoprotein cholesterol (LDL-Ch) blood concentration up to recommended level of 3.0 mmol/l in most patients but in some patients particularly with familial dyslipidemias cholesterol concentration remains increased even after treatment with maximal doses of lipid-regulating agents or their combinations. The most frequently used mechanical methods of cholesterol removal from blood include the procedures of extracorporeal apheresis. Low density lipoprotein (LDL) apheresis not only significantly reduces the blood concentrations of total cholesterol (TCh), and LDL-Ch, lipoprotein (a) (Lp(a) and fibrinogen but also stops the progression of atherosclerosis in coronary vessels. PMID:14704503

  4. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  5. Future Opportunities for Advancing Glucose Test Device Electronics

    PubMed Central

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-01-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano “ink” composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, “ink,” and continuous processing development presents the opportunity for research collaboration with medical device designers. PMID:22027300

  6. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  7. Rotor Performance at High Advance Ratio: Theory versus Test

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2008-01-01

    Five analytical tools have been used to study rotor performance at high advance ratio. One is representative of autogyro rotor theory in 1934 and four are representative of helicopter rotor theory in 2008. The five theories are measured against three sets of well documented, full-scale, isolated rotor performance experiments. The major finding of this study is that the decades spent by many rotorcraft theoreticians to improve prediction of basic rotor aerodynamic performance has paid off. This payoff, illustrated by comparing the CAMRAD II comprehensive code and Wheatley & Bailey theory to H-34 test data, shows that rational rotor lift to drag ratios are now predictable. The 1934 theory predicted L/D ratios as high as 15. CAMRAD II predictions compared well with H-34 test data having L/D ratios more on the order of 7 to 9. However, the detailed examination of the selected codes compared to H-34 test data indicates that not one of the codes can predict to engineering accuracy above an advance ratio of 0.62 the control positions and shaft angle of attack required for a given lift. There is no full-scale rotor performance data available for advance ratios above 1.0 and extrapolation of currently available data to advance ratios on the order of 2.0 is unreasonable despite the needs of future rotorcraft. Therefore, it is recommended that an overly strong full-scale rotor blade set be obtained and tested in a suitable wind tunnel to at least an advance ratio of 2.5. A tail rotor from a Sikorsky CH-53 or other large single rotor helicopter should be adequate for this exploratory experiment.

  8. DSN advanced receiver: Breadboard description and test results

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.

    1987-01-01

    A breadboard Advanced Receiver for use in the Deep Space Network was designed, built, and tested in the laboratory. Field testing was also performed during Voyager Uranus encounter at DSS-13. The development of the breadboard is intended to lead towards implementation of the new receiver throughout the network. The receiver is described on a functional level and then in terms of more specific hardware and software architecture. The results of performance tests in the laboratory and in the field are given. Finally, there is a discussion of suggested improvements for the next phase of development.

  9. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    NASA Technical Reports Server (NTRS)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  10. Structural Dynamics Testing of Advanced Stirling Convertor Components

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  11. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  12. Advanced Short Takeoff and Vertical Landing (ASTOVL) Concepts Tested

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this cooperative program between NASA, Lockheed Corporation, and the Advanced Research and Projects Agency (ARPA), an advanced short takeoff and vertical landing (ASTOVL) model was tested in the 9- by 15-Foot Low-Speed Wind Tunnel at the NASA Lewis Research Center. The 10-percent scaled model was tested over a range of headwind velocities from 25 to 120 kn. This inlet/forebody test was a key part of an important Department of Defense program investigation enabling technologies for future high-performance ASTOVL aircraft. The Lockheed concept is focused on a shaft-coupled lift fan system centered around Pratt & Whitney's F119 power plant. As envisioned, a conventional takeoff and landing version (CTOL) would replace the U.S. Air Force's F-16's. The ASTOVL version would eventually replace Marine and, possibly, British Harrier aircraft. The ASTOVL and CTOL versions are scheduled to begin their manufacturing development phases in 2000. The purpose of this test was to acquire data pertinent to the inlet-forebody model. The test was very successful. Both steady-state and dynamic data were obtained. This small-scale testing, which is directed at reducing risks, may greatly reduce the risks on a full-scale aircraft.

  13. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    SciTech Connect

    1998-10-29

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  14. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1998-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  15. Utility Advanced Turbine Systems (ATS) technology readiness testing

    SciTech Connect

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  16. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Poriti, Sal

    2010-01-01

    The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.

  17. Advanced radial inflow turbine rotor program: Design and dynamic testing

    NASA Technical Reports Server (NTRS)

    Rodgers, C.

    1976-01-01

    The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).

  18. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  19. Advanced orbiting systems test-bedding and protocol verification

    NASA Technical Reports Server (NTRS)

    Noles, James; De Gree, Melvin

    1989-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has begun the development of a set of protocol recommendations for Advanced Orbiting Systems (SOS). The AOS validation program and formal definition of AOS protocols are reviewed, and the configuration control of the AOS formal specifications is summarized. Independent implementations of the AOS protocols by NASA and ESA are discussed, and cross-support/interoperability tests which will allow the space agencies of various countries to share AOS communication facilities are addressed.

  20. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    SciTech Connect

    Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley; Steven Taylor

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  1. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    SciTech Connect

    J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; K. Condie

    2011-06-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility (NSUF) in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  2. Temperature controlled material irradiation in the advanced test reactor

    NASA Astrophysics Data System (ADS)

    Ingram, F. W.; Palmer, A. J.; Stites, D. J.

    1998-10-01

    The United States Department of Energy (US DOE) has initiated the development of an Irradiation Test Vehicle (ITV) for fusion materials irradiation at the Advanced Test Reactor (ATR) in Idaho Falls, Idaho, USA. The ITV is capable of providing neutron spectral tailoring and individual temperature control for up to 15 experiment capsules simultaneously. The test vehicle consists of three In-Pile Tubes (IPTs) running the length of the reactor vessel. These IPTs are kept dry and test trains with integral instrumentation are inserted and removed through a transfer shield plate above the reactor vessel head. The test vehicle is designed to irradiate specimens as large as 2.2 cm in diameter, at temperatures of 250-800°C, achieving neutron damage rates as high as 10 displacements per atom per year. The high fast to thermal neutron flux ratio required for fusion materials testing is accomplished by using an aluminum filler to displace as much water as possible from the flux trap and surrounding the filler piece with a ring of replaceable neutron absorbing material. The gas blend temperature control system remains in place from test to test, thus hardware costs for new tests are limited to the experiment capsule train and integral instrumentation.

  3. The advanced receiver 2: Telemetry test results in CTA 21

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Bevan, R.; Marina, M.

    1991-01-01

    Telemetry tests with the Advanced Receiver II (ARX II) in Compatibility Test Area 21 are described. The ARX II was operated in parallel with a Block-III Receiver/baseband processor assembly combination (BLK-III/BPA) and a Block III Receiver/subcarrier demodulation assembly/symbol synchronization assembly combination (BLK-III/SDA/SSA). The telemetry simulator assembly provided the test signal for all three configurations, and the symbol signal to noise ratio as well as the symbol error rates were measured and compared. Furthermore, bit error rates were also measured by the system performance test computer for all three systems. Results indicate that the ARX-II telemetry performance is comparable and sometimes superior to the BLK-III/BPA and BLK-III/SDA/SSA combinations.

  4. Advanced liquid oxygen (LO2) propellant conditioning concept testing

    NASA Technical Reports Server (NTRS)

    Perry, G. L. E.; Suter, J. D.; Turner, S. G.

    1995-01-01

    Advanced methods of liquid oxygen (LO2) propellant conditioning were studied as part of an effort for increasing reliability and operability while reducing cost of future heavy lift launch vehicles. The most promising conditioning concept evaluated was no-bleed (passive recirculation) followed by low-bleed, helium injection, and use of a recirculation line. Full-scale cryogenic testing was performed with a sloped feedline test article to validate models of behavior of LO2 in the feedline and to prove no-bleed feasibility. Test data are also intended to help generate design guidelines for the development of a main propulsion system feed duct. A design-of-experiments matrix of over 100 tests was developed to test all four propellant conditioning concepts and the impact of design parameters on the concepts. Liquid nitrogen was used as the test fluid. The work for this project was conducted from October 1992 through January 1994 at the hydrogen cold flow facility of the west test area of MSFC. Test data have shown that satisfactory temperatures are being obtained for the no-bleed conditioning concept.

  5. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  6. Lipoprotein marker for hypertriglyceridemia

    DOEpatents

    Cubicciotti, Roger S.; Karu, Alexander E.; Krauss, Ronald M.

    1986-01-01

    Methods and compositions are provided for the detection of a particular low density lipoprotein which has been found to be a marker for patients suffering from type IV hypertriglyceridemia. A monoclonal antibody capable of specifically binding to a characteristic epitopic site on this LDL subspecies can be utilized in a wide variety of immunoassays. Hybridoma cell line SPL.IVA5A1 was deposited at the American Type Culture Collection on Mar. 29, 1984, and granted accession no. HB 8535.

  7. In-Situ Creep Testing Capability for the Advanced Test Reactor

    SciTech Connect

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2012-09-01

    An instrumented creep testing capability is being developed for specimens irradiated in Pressurized Water Reactor (PWR) coolant conditions at the Advanced Test Reactor (ATR). The test rig has been developed such that samples will be subjected to stresses ranging from 92 to 350 MPa at temperatures between 290 and 370 °C up to at least 2 dpa (displacement per atom). The status of Idaho National Laboratory (INL) efforts to develop the test rig in-situ creep testing capability for the ATR is described. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper reports efforts by INL to evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory (HTTL). Initial data from autoclave tests with 304 stainless steel (304 SS) specimens are reported.

  8. Advanced Test Reactor Capabilities and Future Irradiation Plans

    SciTech Connect

    Frances M. Marshall

    2006-10-01

    The Advanced Test Reactor (ATR), located at the Idaho National Laboratory (INL), is one of the most versatile operating research reactors in the Untied States. The ATR has a long history of supporting reactor fuel and material research for the US government and other test sponsors. The INL is owned by the US Department of Energy (DOE) and currently operated by Battelle Energy Alliance (BEA). The ATR is the third generation of test reactors built at the Test Reactor Area, now named the Reactor Technology Complex (RTC), whose mission is to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The current experiments in the ATR are for a variety of customers--US DOE, foreign governments and private researchers, and commercial companies that need neutrons. The ATR has several unique features that enable the reactor to perform diverse simultaneous tests for multiple test sponsors. The ATR has been operating since 1967, and is expected to continue operating for several more decades. The remainder of this paper discusses the ATR design features, testing options, previous experiment programs, future plans for the ATR capabilities and experiments, and some introduction to the INL and DOE's expectations for nuclear research in the future.

  9. Testing to Characterize the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward; Schreiber, Jeffrey

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. Lockheed Martin designed and fabricated an engineering unit (EU), the ASRG EU, under contract to the Department of Energy. This unit is currently undergoing extended operation testing at the NASA Glenn Research Center to generate performance data and validate life and reliability predictions for the generator and the Stirling convertors. It has also undergone performance tests to characterize generator operation while varying control parameters and system inputs. This paper summarizes and explains test results in the context of designing operating strategies for the generator during a space mission and notes expected differences between the EU performance and future generators.

  10. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is

  11. Some tests of avalanche photodiodes produced by Advanced Photonix, Inc.

    SciTech Connect

    Foster, G.W.; Ronzhin, A.; Rusack, R.

    1995-08-01

    The goal of the measurements presented here is to check some parameters of the high gain avalanche photodiodes (APD`s) produced by Advanced Photonix, Inc. Samples with 16 mm and 5 mm diameter sensitive areas were tested. The tests were performed at FNAL. The new photomultiplier testing facility were used for gain measurements, linearity, and nonuniformity studies. The setup consists of laser with shifted wavelength of 440 nm, 10 Hz repetition rate and a pulse duration of 15 nsec. The laser light was transported to the APD by 1 mm diameter clear fiber. An amount of laser light was adjusted by rotating wheels of fixed light attenuation. The dynamic range of the APD, an amplifier (AMP) and an ADC was about 1000. To get the nonuniformity data the APD was mounted on a moveable stage under management and control of computer. The positioning of the fiber along sensitive surface of the APD was better than 100 microns.

  12. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect

    Dan Davis

    2006-09-30

    Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

  13. Testing and Implementation of Advanced Reynolds Stress Models

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1997-01-01

    A research program was proposed for the testing and implementation of advanced turbulence models for non-equilibrium turbulent flows of aerodynamic importance that are of interest to NASA. Turbulence models that are being developed in connection with the Office of Naval Research ARI in Non-equilibrium are provided for implementation and testing in aerodynamic flows at NASA Langley Research Center. Close interactions were established with researchers at Nasa Langley RC and refinements to the models were made based on the results of these tests. The models that have been considered include two-equation models with an anisotropic eddy viscosity as well as full second-order closures. Three types of non-equilibrium corrections to the models have been considered in connection with the ARI on Nonequilibrium Turbulence: conducted for ONR.

  14. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  15. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  16. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  17. Benchmark integration test for the Advanced Integration Matrix (AIM)

    NASA Astrophysics Data System (ADS)

    Paul, H.; Labuda, L.

    The Advanced Integration Matrix (AIM) studies and solves systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO) through the design and development of a ground-based facility for developing revolutionary integrated systems for joint human-robotic missions. This systems integration approach to addressing human capability barriers will yield validation of advanced concepts and technologies, establish baselines for further development, and help identify opportunities for system-level breakthroughs. Early ground-based testing of mission capability will identify successful system implementations and operations, hidden risks and hazards, unexpected system and operations interactions, mission mass and operational savings, and can evaluate solutions to requirements-driving questions; all of which will enable NASA to develop more effective, lower risk systems and more reliable cost estimates for future missions. This paper describes the first in the series of integration tests proposed for AIM (the Benchmark Test) which will bring in partners and technology, evaluate the study processes of the project, and develop metrics for success.

  18. Advances in Genetic Testing for Hereditary Cancer Syndromes.

    PubMed

    Thomas, Ellen; Mohammed, Shehla

    2016-01-01

    The ability to identify genetic mutations causing an increased risk of cancer represents the first widespread example of personalised medicine, in which genetic information is used to inform patients of their cancer risks and direct an appropriate strategy to minimise those risks. Increasingly, an understanding of the genetic basis of many cancers also facilitates selection of the most effective therapeutic options. The technology underlying genetic testing has been revolutionised in the years since the completion of the Human Genome Project in 2001. This has advanced knowledge of the genetic factors underlying familial cancer risk, and has also improved genetic testing capacity allowing a larger number of patients to be tested for a constitutional cancer predisposition. To use these tests safely and effectively, they must be assessed for their ability to provide accurate and useful results, and be requested and interpreted by health professionals with an understanding of their strengths and limitations. Genetic testing is increasing in its scope and ambition with each year that passes, requiring a greater proportion of the healthcare workforce to acquire a working knowledge of genetics and genetic testing to manage their patients safely and sensitively. PMID:27075345

  19. INEL advanced test reactor plutonium-238 production feasibility assessment

    SciTech Connect

    Schnitzler, B.G. )

    1993-01-10

    Results of a preliminary neutronics assessment indicate the feasibility of [sup 238]Pu production in the Idaho National Engineering Laboratory Advanced Test Reactor (ATR). Based on the results of this assessment, an annual production of 11.3 kg [sup 238]Pu can be achieved in the ATR. An annual loading of 102 kg [sup 237]Np is required for the particular target configuration and irradiation scenario examined. The [sup 236]Pu contaminant level is approximately 6 parts per million at zero cooling time. The product quality is about 90% [sup 238]Pu. Neptunium feedstock requirements, [sup 238]Pu production rates, or product purity can be optimized depending on their relative importances.

  20. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    SciTech Connect

    Piot, Philippe; Harms, Elvin; Henderson, Stuart; Leibfritz, Jerry; Nagaitsev, Sergei; Shiltsev, Vladimir; Valishev, Alexander

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  1. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  2. Preliminary results from the advanced photovoltaic experiment flight test

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight; limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  3. 12 CFR 1266.3 - Purpose of long-term advances; Proxy test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Purpose of long-term advances; Proxy test. 1266... Advances to Members § 1266.3 Purpose of long-term advances; Proxy test. (a) A Bank shall make long-term... housing finance assets. (b)(1) Prior to approving an application for a long-term advance, a Bank...

  4. 12 CFR 1266.3 - Purpose of long-term advances; Proxy test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Purpose of long-term advances; Proxy test. 1266... Advances to Members § 1266.3 Purpose of long-term advances; Proxy test. (a) A Bank shall make long-term... housing finance assets. (b)(1) Prior to approving an application for a long-term advance, a Bank...

  5. Advances in Educational and Psychological Testing: Theory and Applications. Evaluation in Education and Human Services Series.

    ERIC Educational Resources Information Center

    Hambleton, Ronald K., Ed.; Zaal, Jac N., Ed.

    The 14 chapters of this book focus on the technical advances, advances in applied settings, and emerging topics in the testing field. Part 1 discusses methodological advances, Part 2 considers developments in applied settings, and Part 3 reviews emerging topics in the field of testing. Part 1 papers include: (1) "Advances in Criterion-Referenced…

  6. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    SciTech Connect

    Busby, Jeremy T

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  7. The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout

    SciTech Connect

    Prindiville, John S. Mennigen, Jan A.; Zamora, Jake M.; Moon, Thomas W.; Weber, Jean-Michel

    2011-03-15

    Gemfibrozil (GEM) is a fibrate drug consistently found in effluents from sewage treatment plants. This study characterizes the pharmacological effects of GEM on the plasma lipoproteins of rainbow trout (Oncorhynchus mykiss). Our goals were to quantify the impact of the drug on: 1) lipid constituents of lipoproteins (phospholipids (PL), triacylglycerol (TAG), and cholesterol), 2) lipoprotein classes (high, low and very low density lipoproteins), and 3) fatty acid composition of lipoproteins. Potential mechanisms of GEM action were investigated by measuring lipoprotein lipase activity (LPL) and the hepatic gene expression of LPL and of the peroxisome proliferator-activated receptor (PPAR) {alpha}, {beta}, and {gamma} isoforms. GEM treatment resulted in decreased plasma lipoprotein levels (- 29%) and a reduced size of all lipoprotein classes (lower PL:TAG ratios). However, the increase in HDL-cholesterol elicited by GEM in humans failed to be observed in trout. Therefore, HDL-cholesterol cannot be used to assess the impact of the drug on fish. GEM also modified lipoprotein composition by reducing the abundance of long-chain n-3 fatty acids, thereby potentially reducing the nutritional quality of exposed fish. The relative gene expression of LPL was increased, but the activity of the enzyme was not, and we found no evidence for the activation of PPAR pathways. The depressing effects of GEM on fish lipoproteins demonstrated here may be a concern in view of the widespread presence of fibrates in aquatic environments. Work is needed to test whether exposure to environmental concentrations of these drugs jeopardizes the capacity of fish for reproduction, temperature acclimation or migratory behaviors.

  8. Acoustic test and analyses of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Brooks, B. M.; Metzger, F. B.

    1980-01-01

    Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.

  9. Testing of Alternative Materials for Advanced Suit Bladders

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Orndoff, Evelyne; Makinen, Janice; Tang, Henry

    2011-01-01

    Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.

  10. Safety Assurance for Irradiating Experiments in the Advanced Test Reactor

    SciTech Connect

    T. A. Tomberlin; S. B. Grover

    2004-11-01

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory (INEEL), was specifically designed to provide a high neutron flux test environment for conducting a variety of experiments. This paper addresses the safety assurance process for two general types of experiments conducted in the ATR facility and how the safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore, this type of experiment is addressed in more detail in the ATR safety basis. This allows the individual safety analysis for this type of experiment to be more standardized. The second type of experiment is defined in more general terms in the ATR safety basis and is permitted under more general controls. Therefore, the individual safety analysis for the second type of experiment tends to be more unique and is tailored to each experiment.

  11. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  12. Development of an advanced respirator fit-test headform.

    PubMed

    Bergman, Michael S; Zhuang, Ziqing; Hanson, David; Heimbuch, Brian K; McDonald, Michael J; Palmiero, Andrew J; Shaffer, Ronald E; Harnish, Delbert; Husband, Michael; Wander, Joseph D

    2014-01-01

    Improved respirator test headforms are needed to measure the fit of N95 filtering facepiece respirators (FFRs) for protection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking) Advanced Headform (StAH) was developed for evaluating the fit of N95 FFRs. The StAH was developed based on the anthropometric dimensions of a digital headform reported by the National Institute for Occupational Safety and Health (NIOSH) and has a silicone polymer skin with defined local tissue thicknesses. Quantitative fit factor evaluations were performed on seven N95 FFR models of various sizes and designs. Donnings were performed with and without a pre-test leak checking method. For each method, four replicate FFR samples of each of the seven models were tested with two donnings per replicate, resulting in a total of 56 tests per donning method. Each fit factor evaluation was comprised of three 86-sec exercises: "Normal Breathing" (NB, 11.2 liters per min (lpm)), "Deep Breathing" (DB, 20.4 lpm), then NB again. A fit factor for each exercise and an overall test fit factor were obtained. Analysis of variance methods were used to identify statistical differences among fit factors (analyzed as logarithms) for different FFR models, exercises, and testing methods. For each FFR model and for each testing method, the NB and DB fit factor data were not significantly different (P > 0.05). Significant differences were seen in the overall exercise fit factor data for the two donning methods among all FFR models (pooled data) and in the overall exercise fit factor data for the two testing methods within certain models. Utilization of the leak checking method improved the rate of obtaining overall exercise fit factors ≥100. The FFR models, which are expected to achieve overall fit factors ≥ 100 on human subjects, achieved overall exercise fit factors ≥ 100 on the StAH. Further research is needed to evaluate the correlation of FFRs fitted on the StAH to FFRs

  13. Design considerations of the irradiation test vehicle for the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  14. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  15. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    SciTech Connect

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  16. NASA's Advanced Life Support Systems Human-Rated Test Facility

    NASA Technical Reports Server (NTRS)

    Henninger, D. L.; Tri, T. O.; Packham, N. J.

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  17. Simulation and ground testing with the Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2005-01-01

    The Advanced Video Guidance Sensor (AVGS), an active sensor system that provides near-range 6-degree-of-freedom sensor data, has been developed as part of an automatic rendezvous and docking system for the Demonstration of Autonomous Rendezvous Technology (DART). The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state imager to detect the light returned from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The development of the sensor, through initial prototypes, final prototypes, and three flight units, has required a great deal of testing at every phase, and the different types of testing, their effectiveness, and their results, are presented in this paper, focusing on the testing of the flight units. Testing has improved the sensor's performance.

  18. Lipoprotein metabolism indicators improve cardiovascular risk prediction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to inves...

  19. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  20. The Advanced Test Reactor Irradiation Facilities and Capabilities

    SciTech Connect

    S. Blaine Grover; Raymond V. Furstenau

    2007-03-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR’s unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments.

  1. Central Nervous System Lipoproteins

    PubMed Central

    Mahley, Robert W.

    2016-01-01

    ApoE on high-density lipoproteins is primarily responsible for lipid transport and cholesterol homeostasis in the central nervous system (CNS). Normally produced mostly by astrocytes, apoE is also produced under neuropathologic conditions by neurons. ApoE on high-density lipoproteins is critical in redistributing cholesterol and phospholipids for membrane repair and remodeling. The 3 main structural isoforms differ in their effectiveness. Unlike apoE2 and apoE3, apoE4 has markedly altered CNS metabolism, is associated with Alzheimer disease and other neurodegenerative disorders, and is expressed at lower levels in brain and cerebrospinal fluid. ApoE4-expressing cultured astrocytes and neurons have reduced cholesterol and phospholipid secretion, decreased lipid-binding capacity, and increased intracellular degradation. Two structural features are responsible for apoE4 dysfunction: domain interaction, in which arginine-61 interacts ionically with glutamic acid-255, and a less stable conformation than apoE3 and apoE2. Blocking domain interaction by gene targeting (replacing arginine-61 with threonine) or by small-molecule structure correctors increases CNS apoE4 levels and lipid-binding capacity and decreases intracellular degradation. Small molecules (drugs) that disrupt domain interaction, so-called structure correctors, could prevent the apoE4-associated neuropathology by blocking the formation of neurotoxic fragments. Understanding how to modulate CNS cholesterol transport and metabolism is providing important insights into CNS health and disease. PMID:27174096

  2. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  3. Advanced stellar compass deep space navigation, ground testing results

    NASA Astrophysics Data System (ADS)

    Betto, M.; Jørgensen, J. L.; Jørgensen, P. S.; Denver, T.

    2006-10-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks and the costs of the deep space missions. Navigation is the Achilles’ heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant. Nevertheless, up to now, ground navigation has been the only possible solution. The technological breakthrough of advanced star trackers, like the micro-advanced stellar compass (μASC) might change this situation. Indeed, exploiting the capabilities of this instrument, the authors have devised a method to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging.

  4. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  5. Advanced Communications Technology: Eighth District BOATRACS Test and Evaluation

    NASA Astrophysics Data System (ADS)

    1998-07-01

    One of the objectives of the Mobile Communications Infrastructure project is to conduct in-depth evaluations of mobile satellite systems that appear to meet Coast Guard communications requirements. The goal in testing these systems is to quantify how well they work and to provide some metrics to see how each of these systems could fit the needs of the Coast Guard. There are a variety of parameters that will be measured for each system. Most of the measurements are of the overall system, not the individual pieces. These parameters include coverage, availability, reliability, accuracy, interoperability, bandwidth, latency, ease of use, and cost. Some testing will be performed in the Advanced Communications Lab at the R&D Center, and some will be performed by placing systems on operational units for field testing. The Eight Coast Guard District has an extremely large AOR encompassing 26 States. The District is responsible for 1,200 miles of coastline and 10,300 miles of inland waterways. The major missions are Law Enforcement, Search and Rescue, and Pollution Response.

  6. Database requirements for the Advanced Test Accelerator project

    SciTech Connect

    Chambers, F.W.

    1984-11-05

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures.

  7. Noninvasive prenatal screening or advanced diagnostic testing: caveat emptor.

    PubMed

    Evans, Mark I; Wapner, Ronald J; Berkowitz, Richard L

    2016-09-01

    The past few years have seen extraordinary advances in prenatal genetic practice led by 2 major technological advances; next-generation sequencing of cell-free DNA in the maternal plasma to noninvasively identify fetal chromosome abnormalities, and microarray analysis of chorionic villus sampling and amniotic fluid samples, resulting in increased cytogenetic resolution. Noninvasive prenatal screening of cell-free DNA has demonstrated sensitivity and specificity for trisomy 21 superior to all previous screening approaches with slightly lower performance for other common aneuploidies. These tests have rapidly captured an increasing market share, with substantial reductions in the number of chorionic villus sampling and amniocentesis performed suggesting that physicians and patients regard such screening approaches as an equivalent replacement for diagnostic testing. Simultaneously, many clinical programs have noted significant decreases in patient counseling. In 2012 the Eunice Kennedy Shriver National Institute of Child Health and Human Development funded a blinded comparison of karyotype with the emerging technology of array comparative genomic hybridization showing that in patients with a normal karyotype, 2.5% had a clinically relevant microdeletion or duplication identified. In pregnancies with an ultrasound-detected structural anomaly, 6% had an incremental finding, and of those with a normal scan, 1.6% had a copy number variant. For patients of any age with a normal ultrasound and karyotype, the chance of a pathogenic copy number variant is greater than 1%, similar to the age-related risk of aneuploidy in the fetus of a 38 year old. This risk is 4-fold higher than the risk of trisomy 21 in a woman younger than 30 years and 5- to 10-fold higher than the present accepted risk of a diagnostic procedure. Based on this, we contend that every patient, regardless of her age, be educated about these risks and offered the opportunity to have a diagnostic procedure with

  8. Development of an Advanced Respirator Fit-Test Headform

    PubMed Central

    Bergman, Michael S.; Zhuang, Ziqing; Hanson, David; Heimbuch, Brian K.; McDonald, Michael J.; Palmiero, Andrew J.; Shaffer, Ronald E.; Harnish, Delbert; Husband, Michael; Wander, Joseph D.

    2015-01-01

    Improved respirator test headforms are needed to measure the fit of N95 filtering facepiece respirators (FFRs) for protection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking) Advanced Headform (StAH) was developed for evaluating the fit of N95 FFRs. The StAH was developed based on the anthropometric dimensions of a digital headform reported by the National Institute for Occupational Safety and Health (NIOSH) and has a silicone polymer skin with defined local tissue thicknesses. Quantitative fit factor evaluations were performed on seven N95 FFR models of various sizes and designs. Donnings were performed with and without a pre-test leak checking method. For each method, four replicate FFR samples of each of the seven models were tested with two donnings per replicate, resulting in a total of 56 tests per donning method. Each fit factor evaluation was comprised of three 86-sec exercises: “Normal Breathing” (NB, 11.2 liters per min (lpm)), “Deep Breathing” (DB, 20.4 lpm), then NB again. A fit factor for each exercise and an overall test fit factor were obtained. Analysis of variance methods were used to identify statistical differences among fit factors (analyzed as logarithms) for different FFR models, exercises, and testing methods. For each FFR model and for each testing method, the NB and DB fit factor data were not significantly different (P > 0.05). Significant differences were seen in the overall exercise fit factor data for the two donning methods among all FFR models (pooled data) and in the overall exercise fit factor data for the two testing methods within certain models. Utilization of the leak checking method improved the rate of obtaining overall exercise fit factors ≥100. The FFR models, which are expected to achieve overall fit factors ≥ 100 on human subjects, achieved overall exercise fit factors ≥ 100 on the StAH. Further research is needed to evaluate the correlation of FFRs fitted on the StAH to

  9. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  10. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  11. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2004-10-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  12. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    SciTech Connect

    Grover, S.B.

    2004-10-06

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  13. Lipoprotein (a), lipids, and lipoproteins in patients with rheumatoid arthritis.

    PubMed Central

    Rantapää-Dahlqvist, S; Wållberg-Jonsson, S; Dahlén, G

    1991-01-01

    Lipoprotein (a), (Lp(a)), an independent atherogenic factor, was significantly increased in 93 patients with classical, seropositive rheumatoid arthritis of median disease activity. In the patients with Lp(a) concentrations above the upper reference value of 480 mg/l there was a significant correlation between Lp(a) and the concentration of orosomucoid, erythrocyte sedimentation rate, and the platelet count. The plasma concentrations of cholesterol and high density lipoprotein-cholesterol in both male and female patients were significantly lower than in controls. Apolipoprotein B and apolipoprotein AI in the patients correlated significantly with total cholesterol and high density lipoprotein-cholesterol respectively. PMID:1829348

  14. Neutron spectrum studies in the ATR (Advanced Test Reactor)

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.; Putnam, M.H.

    1990-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) has been and currently is used to provide irradiation fields to study the effects of intense radiation on samples of reactor materials. These samples include fuel, cladding, control and structural materials. The ATR is also used to irradiate target materials for the production of radionuclides used in industrial and medical applications as well as for scientific research. Routine monitoring of the thermal'' and fast'' neutron levels have been conducted during every operational cycle since its startup in 1970. The routine neutron dosimetry has been primarily accomplished using the {sup 59}Co(n,{gamma}){sup 60}Co reaction for thermal'' neutrons and the {sup 58}Ni(n,p) {sup 58}Co reaction for fast'' neutrons as described in ASTM standard methods E261, E262, and E264. Neutron spectrum studies have now been conducted in the epithermal and fast neutron energy ranges for the various capsule irradiation test facilities and the routine neutron monitoring locations. 7 refs., 5 figs., 1 tab.

  15. Temperature controlled material irradiation in the advanced test reactor

    SciTech Connect

    Furstenau, R.V.; Ingrahm, F.W.

    1995-12-31

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor`s principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor`s capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment `in-pile tube (IPT)` inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities.

  16. Advanced Utility Mercury-Sorbent Field-Testing Program

    SciTech Connect

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  17. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  18. Phytosterols, Phytostanols, and Lipoprotein Metabolism

    PubMed Central

    Gylling, Helena; Simonen, Piia

    2015-01-01

    The efficacy of phytosterols and phytostanols added to foods and food supplements to obtain significant non-pharmacologic serum and low density lipoprotein (LDL) cholesterol reduction is well documented. Irrespective of age, gender, ethnic background, body weight, background diet, or the cause of hypercholesterolemia and, even added to statin treatment, phytosterols and phytostanols at 2 g/day significantly lower LDL cholesterol concentration by 8%–10%. They do not affect the concentrations of high density lipoprotein cholesterol, lipoprotein (a) or serum proprotein convertase subtilisin/kexin type 9. In some studies, phytosterols and phytostanols have modestly reduced serum triglyceride levels especially in subjects with slightly increased baseline concentrations. Phytosterols and phytostanols lower LDL cholesterol by displacing cholesterol from mixed micelles in the small intestine so that cholesterol absorption is partially inhibited. Cholesterol absorption and synthesis have been carefully evaluated during phytosterol and phytostanol supplementation. However, only a few lipoprotein kinetic studies have been performed, and they revealed that LDL apoprotein B-100 transport rate was reduced. LDL particle size was unchanged, but small dense LDL cholesterol concentration was reduced. In subjects with metabolic syndrome and moderate hypertriglyceridemia, phytostanols reduced not only non- high density lipoprotein (HDL) cholesterol concentration but also serum triglycerides by 27%, and reduced the large and medium size very low density lipoprotein particle concentrations. In the few postprandial studies, the postprandial lipoproteins were reduced, but detailed studies with apoprotein B-48 are lacking. In conclusion, more kinetic studies are required to obtain a more complete understanding of the fasting and postprandial lipoprotein metabolism caused by phytosterols and phytostanols. It seems obvious, however, that the most atherogenic lipoprotein particles will be

  19. Core design studies for advanced burner test reactor.

    SciTech Connect

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating

  20. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  1. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  2. Electrochemical test methods for advanced battery and semiconductor technology

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Hung

    This dissertation consists of two studies. The first study was the evaluation of metallic materials for advanced lithium ion batteries and the second study was the determination of the dielectric constant k for the low-k materials. The advanced lithium ion battery is miniature for implantable medical devices and capable of being recharged from outside of the body using magnetic induction without physical connections. The stability of metallic materials employed in the lithium ion battery is one of the major safety concerns. Three types of materials---Pt-Ir alloy, Ti alloys, and stainless steels---were evaluated extensively in this study. The electrochemical characteristics of Pt-Ir alloy, Ti alloys, and stainless steels were evaluated in several types of battery electrolytes in order to determine the candidate materials for long-term use in lithium ion batteries. The dissolution behavior of these materials and the decomposition behavior of the battery electrolyte were investigated using the anodic potentiodynamic polarization (APP) technique. Lifetime prediction for metal dissolution was conducted using constant potential polarization (CPP) technique. The electrochemical impedance spectroscopy (EIS) technique was employed to investigate the metal dissolution behavior or the battery electrolyte decomposition at the open circuit potential (OCP). The scanning electron microscope (SEM) was used to observe the morphology changes after these tests. The effects of experimental factors on the corrosion behaviors of the metallic materials and stabilities of the battery electrolytes were also investigated using the 23 factorial design approach. Integration of materials having low dielectric constant k as interlayer dielectrics and/or low-resistivity conductors will partially solve the RC delay problem for the limiting performance of high-speed logic chips. The samples of JSR LKD 5109 material capped by several materials were evaluated by using EIS. The feasibility of using

  3. Power-conditioning system for the Advanced Test Accelerator

    SciTech Connect

    Newton, M.A.; Smith, M.E.; Birx, D.L.; Branum, D.R.; Cook, E.G.; Copp, R.L.; Lee, F.D.; Reginato, L.L.; Rogers, D.; Speckert, G.C.

    1982-06-01

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector.

  4. Functional toxicology: tools to advance the future of toxicity testing.

    PubMed

    Gaytán, Brandon D; Vulpe, Chris D

    2014-01-01

    The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds-information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352

  5. Advanced Test Reactor probabilistic risk assessment methodology and results summary

    SciTech Connect

    Eide, S.A.; Atkinson, S.A.; Thatcher, T.A.

    1992-01-01

    The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 report documents a comprehensive and state-of-the-art study to establish and reduce the risk associated with operation of the ATR, expressed as a mean frequency of fuel damage. The ATR Level 1 PRA effort is unique and outstanding because of its consistent and state-of-the-art treatment of all facets of the risk study, its comprehensive and cost-effective risk reduction effort while the risk baseline was being established, and its thorough and comprehensive documentation. The PRA includes many improvements to the state-of-the-art, including the following: establishment of a comprehensive generic data base for component failures, treatment of initiating event frequencies given significant plant improvements in recent years, performance of efficient identification and screening of fire and flood events using code-assisted vital area analysis, identification and treatment of significant seismic-fire-flood-wind interactions, and modeling of large loss-of-coolant accidents (LOCAs) and experiment loop ruptures leading to direct damage of the ATR core. 18 refs.

  6. Orbiter Reinforced Carbon-Carbon Advanced Sealant Systems: Screening Tests

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Lewis, Ronad K.; Norman, Ignacio; Chao, Dennis; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    Oxidation protection for the Orbiter reinforced carbon-carbon (RCC consists of three components: silicon carbide coating, tetraethyl orthosilicate (TEOS) impregnated into the carbon substrate and a silicon based surface sealant (designated Type A). The Orbiter Type A sealant is being consumed each mission, which results in increased carbon-carbon substrate mass loss, which adversely impacts the mission life of the RCC components. In addition, the sealant loss in combination with launch pad contamination (salt deposit and zinc oxide) results in RCC pinholes. A sealant refurbishment schedule to maintain mission life and minimize affects of pin hole formation has been implemented in the Orbiter maintenance schedule. The objective of this investigation is to develop an advanced sealant system for the RCC that extends the refurbishment schedule by reducing sealant loss/pin hole formation and that can be applied to existing Orbiter RCC components. This paper presents the results of arc jet screening tests conducted on several sealants that are being considered for application to the Orbiter RCC.

  7. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  8. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  9. Functional toxicology: tools to advance the future of toxicity testing

    PubMed Central

    Gaytán, Brandon D.; Vulpe, Chris D.

    2014-01-01

    The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352

  10. Advanced Test Reactor National Scientific User Facility Progress

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  11. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-01

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. PMID:25130461

  12. Advanced sluicing system test report for single shell tank waste retrieval integrated testing

    SciTech Connect

    Berglin, E.J.

    1997-05-29

    This document describes the testing performed by ARD Environmental, Inc., and Los Alamos Technical Associates of the LATA/ARD Advanced Sluicing System, in support of ACTR Phase 1 activities. Testing was to measure the impact force and pressures of sluicing streams at three different distances, as measured by the Government supplied load cell. Simulated sluicing of large simulated salt cake and hard pan waste coupons was also performed. Due to operational difficulties experienced with the Government supplied load cell, no meaningful results with respect to sluice stream impact pressure distribution or stream coherence were obtained. Sluice testing using 3000 psi salt cake simulants measured waste retrieval rates of approximately 12 Ml/day (17.6 ft{sup 3}/hr). Rates as high as 314 m{sup 3}/day (463 ft{sup 3}/hr) were measured against the lower strength salt cake simulants.

  13. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    SciTech Connect

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J.

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  14. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  15. Pressure-Sensitive Paints Advance Rotorcraft Design Testing

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure

  16. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  17. 77 FR 8848 - Application for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Application for New Awards; Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Notice. Overview Information: Advanced Placement Test.... Full Text of Announcement I. Funding Opportunity Description Purpose of Program: The AP Test...

  18. 78 FR 19691 - Applications for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Applications for New Awards; Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Notice. Overview Information Advanced Placement Test... Announcement I. Funding Opportunity Description Purpose of Program: The AP Test Fee program awards grants...

  19. The advanced computational testing and simulation toolkit (ACTS)

    SciTech Connect

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  20. Low-Density Lipoprotein Apheresis

    PubMed Central

    2007-01-01

    . Costs for PE and HELP apheresis were halved with a biweekly treatment schedule. The cost per coronary artery disease death avoided over a 10-year period in HTZ FH-diagnosed patients was also calculated and estimated to be $37.5 million and $18.7 million for weekly and biweekly treatment respectively, when comparing HELP apheresis with PE and with no intervention. Although HELP apheresis costs twice as much as PE, it helped to avoid 12 deaths compared with PE and 22 deaths compared with no intervention, over a period of 10 years. Ontario Health System Impact Analysis Low-density lipoprotein apheresis using the HELP system is currently being funded by the provinces of Quebec and Alberta. The program in Quebec has been in operation since 2001 and is limited to the treatment of HMZ FH patients. The Alberta program is relatively new and is currently treating HMZ FH patients, but it is expanding to include refractory HTZ FH patients. Low-density lipoprotein apheresis is a lifelong treatment and requires considerable commitment on the part of the patient, and the patient’s family and physician. In addition, the management of FH continues to evolve. With the advent of new more powerful cholesterol-lowering drugs, some HTZ patients may be able to sufficiently control their hypercholesterolemia. Nevertheless, according to clinical experts, HMZ patients will likely always require LDL apheresis. Given the substantial costs associated with LDL apheresis, treatment has been limited to HMZ FH patients. However, LDL apheresis could be applied to a much larger population, which would include HTZ FH patients who are refractory to diet and drug therapy. HTZ FH patients are generally recruited in a more advanced state, demonstrate a longer natural survival than HMZ FH patients and are older. Conclusions For HMZ FH patients, the benefits of LDL apheresis clearly outweigh the risks and burdens. According to GRADE, the recommendation would be graded as strong, with low- to very low

  1. Development and application of proton NMR methodology to lipoprotein analysis

    NASA Astrophysics Data System (ADS)

    Korhonen, Ari Juhani

    1998-11-01

    The present thesis describes the development of 1H NMR spectroscopy and its applications to lipoprotein analysis in vitro, utilizing biochemical prior knowledge and advanced lineshape fitting analysis in the frequency domain. A method for absolute quantification of lipoprotein lipids and proteins directly from the terminal methyl-CH3 resonance region of 1H NMR spectra of human blood plasma is described. Then the use of NMR methodology in time course studies of the oxidation process of LDL particles is presented. The function of the cholesteryl ester transfer protein (CETP) in lipoprotein mixtures was also assessed by 1H NMR, which allows for dynamic follow-up of the lipid transfer reactions between VLDL, LDL, and HDL particles. The results corroborated the suggestion that neutral lipid mass transfer among lipoproteins is not an equimolar heteroexchange. A novel method for studying lipoprotein particle fusion is also demonstrated. It is shown that the progression of proteolytically (α- chymotrypsin) induced fusion of LDL particles can be followed by 1H NMR spectroscopy and, moreover, that fusion can be distinguished from aggregation. In addition, NMR methodology was used to study the changes in HDL3 particles induced by phospholipid transfer protein (PLTP) in HDL3 + PLTP mixtures. The 1H NMR study revealed a gradual production of enlarged HDL particles, which demonstrated that PLTP-mediated remodeling of HDL involves fusion of the HDL particles. These applications demonstrated that the 1H NMR approach offers several advantages both in quantification and in time course studies of lipoprotein-lipoprotein interactions and of enzyme/lipid transfer protein function.

  2. Development and testing of advanced cryogenic thermal switch concepts

    NASA Astrophysics Data System (ADS)

    Marland, B.; Bugby, D.; Stouffer, C.

    2000-01-01

    This paper describes the development and testing of two advanced cryogenic thermal switch (CTSW) options for use in long-life cryogenic space systems. The principal application for these two CTSW options in such systems is in implementing cryocooler redundancy with a minimum parasitic heating penalty. The two CTSW configurations covered in the paper are a hydrogen gas-gap (H2-GG) design, flown on STS-95 in October 1998 as part of the CRYOTSU Hitchhiker flight experiment, and a differential thermal expansion (DTE) design. Both options are constructed primarily of beryllium for CTE compatibility with beryllium cryogenic components. The H2-GG design utilizes a flat 2-mil gap between two cylindrical beryllium halves that are supported by a thin-walled titanium tube. A highly convoluted stainless steel bellows seals the unit. The H2-GG CTSW is nominally ``off'' (evacuated) until actuated ``on'' by heating a metal hydride getter, which evolves hydrogen and provides thermal conductance across the gap. The H2-GG design has demonstrated an ``on'' conductance of 1.0 W/K, an ``off'' resistance of 1000-1500 K/W and a range of operation from 15K-300K. The DTE design, which has just three parts, is very similar to the H2-GG design except that a stainless steel tube replaces the titanium tube and the bellows and getter are no longer needed. The DTE CSTW is actuated ``on'' (both sides cold) by the higher CTE of stainless steel compared to beryllium and actuated ``off'' by temporarily applying power to a small heater on the stainless steel tube to expand the tube enough to open the gap. After the smaller of the two beryllium parts warms sufficiently, the heater is no longer needed and the DTE CTSW remains ``off'' (one side cold, one side warm). The DTE design has demonstrated the potential for an ``on'' conductance greater than 1.0 W/K, an ``off'' resistance of 1400 K/W and a range of operation from less than 4K to 300K. This paper describes the design of each CTSW option and the

  3. Results of Laboratory Testing of Advanced Power Strips: Preprint

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  4. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    NASA Technical Reports Server (NTRS)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  5. A Secure Test Technique for Pipelined Advanced Encryption Standard

    NASA Astrophysics Data System (ADS)

    Shi, Youhua; Togawa, Nozomu; Yanagisawa, Masao; Ohtsuki, Tatsuo

    In this paper, we presented a Design-for-Secure-Test (DFST) technique for pipelined AES to guarantee both the security and the test quality during testing. Unlike previous works, the proposed method can keep all the secrets inside and provide high test quality and fault diagnosis ability as well. Furthermore, the proposed DFST technique can significantly reduce test application time, test data volume, and test generation effort as additional benefits.

  6. ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

    2001-09-30

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide >99.99% particulate collection efficiency for particle sizes from 0.01 to 50 {micro}m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of the

  7. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

  8. Lipoproteins: When size really matters.

    PubMed

    German, J Bruce; Smilowitz, Jennifer T; Zivkovic, Angela M

    2006-06-01

    The field of nanoscience is extending the applications of physics, chemistry and biology into previously unapproached infinitesimal length scales. Understanding the behavior and manipulating the positions and properties of single atoms and molecules hold great potential to improve areas of science as disparate as medicine and computation, and communication and orbiting satellites. Yet, in the race to develop novel, previously unavailable nanoparticles, there is an opportunity for scientists in this field to digress and to apply their growing understanding of nanoscience and the tools of nanotechnology to one of the most pressing problems in all of human biology-diseases related to lipoproteins. Although not appreciated outside the field of lipoprotein biology, variations in the compositions, structures and properties of these nanoscale-sized, blood-borne particles are responsible for most of the variations in health, morbidity and mortality in the Western world. If the lipoproteins could be understood at the nanometer length scale with precise details of their structures and functions, scientists could understand a wide range of perplexing physiological processes and also address the dysfunctions in normal lipoprotein biology that lead to such diseases as hypercholesterolemia, heart disease, stroke and neurodegenerative diseases. Furthermore, if the capabilities of nanoscience to assemble and manipulate nanometer-sized particles could be recruited to studies of lipoproteins, these biological particles would provide a new dimension to therapeutic agents, and these natural particles could be designed to carry out many specialized beneficial tasks. PMID:20592953

  9. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  10. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  11. Design, analysis, and test verification of advanced encapsulation system

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1981-01-01

    Procurement of 4 in x 4 in polycrystalline solar cells were proceeded with some delays. A total of 1200 cells were procured for use in both the verification testing and qualification testing. Additional thermal structural analyses were run and the data are presented. An outline of the verification testing is included with information on test specimen construction.

  12. Exemplary Advanced Placement Programs: Comparing AP Test Scores by Subject and School.

    ERIC Educational Resources Information Center

    Hoven, John

    This study compared performance of seniors at 21 Montgomery County (Maryland) high schools on the Advanced Placement (AP) Tests. The schools were ranked by the percentage of college-educated adults within the school boundaries, and the ranking was compared to Advanced Placement test results (the average number of students, per 100 seniors, who…

  13. [Lipoprotein lipase and diabetic cardiomyopathy].

    PubMed

    Liu, Xiang-Yu; Yin, Wei-Dong; Tang, Chao-Ke

    2014-02-01

    Lipoprotein lipase (LPL) hydrolyzes plasma triglyceride-rich lipoproteins into free fatty acids (FFA) to provide energy for cardiac tissue. During diabetes, cardiac energy supply is insufficient due to defected utilization of glucose. As a compensation of cardiac energy supply, FFAs are released through the hydrolysis of very low density lipoprotein (VLDL) and chylomicrons (CM) due to activation of LPL activity. In diabetic patients, activated LPL activity and elevated FFAs result in the intracellular accumulation of reactive oxygen species and lipids in myocardium and potentially induce the diabetic cardiomyopathy (DCM). The present review summarizes the regulatory mechanisms of myocardial LPL and the pathogenesis of DCM induced by LPL and provides novel therapeutic targets and pathways for DCM. PMID:24873138

  14. Ion mobility analysis of lipoproteins

    DOEpatents

    Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.

    2007-08-21

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  15. Aerosol preparation of intact lipoproteins

    DOEpatents

    Benner, W. Henry; Krauss, Ronald M; Blanche, Patricia J

    2012-01-17

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  16. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    SciTech Connect

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  17. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    SciTech Connect

    I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

  18. 77 FR 24480 - Application for New Awards; Advanced Placement (AP) Test Fee Program-Reopening the AP Test Fee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    .... ACTION: Notice reopening the AP Test Fee fiscal year 2012 competition. Catalog of Federal Domestic Assistance (CFDA) Number: 84.330B. SUMMARY: On February 15, 2012, we published in the Federal Register (77 FR... Application for New Awards; Advanced Placement (AP) Test Fee Program--Reopening the AP Test Fee Fiscal...

  19. Genetics Home Reference: familial lipoprotein lipase deficiency

    MedlinePlus

    ... tissue. This enzyme helps break down fats called triglycerides, which are carried by molecules called lipoproteins . Mutations ... which prevents the enzyme from effectively breaking down triglycerides. As a result, triglycerides attached to lipoproteins build ...

  20. Rapid diagnostics for avian influenza -- Advances in testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of tools are available for the diagnosis of avian influenza virus. They can be generally divided into the serologic diagnostic tests and direct virus detection tests. The serologic tests are important primarily for active surveillance to assure our poultry flocks are free of avian influe...

  1. Familial lipoprotein lipase deficiency

    MedlinePlus

    ... infancy Fatty deposits in the skin ( xanthomas ) High triglyceride levels in the blood Pale retinas and white- ... tests will be done to check cholesterol and triglyceride levels. Sometimes, a special blood test is done ...

  2. Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update.

    PubMed

    Ooi, Esther M M; Watts, Gerald F; Ng, Theodore W K; Barrett, P Hugh R

    2015-06-01

    Dyslipidemia is a major risk factor for cardiovascular disease (CVD). Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA) consumption diminished hepatic triglyceride-rich lipoprotein (TRL) secretion and enhanced TRL to low-density lipoprotein (LDL) conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL) cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids. PMID:26043038

  3. Advanced tests for skin and respiratory sensitization assessment.

    PubMed

    Rovida, Costanza; Martin, Stefan F; Vivier, Manon; Weltzien, Hans Ulrich; Roggen, Erwin

    2013-01-01

    Sens-it-iv is an FP6 Integrated Project that finished in March 2011 after 66 months of activity, thanks to 12 million € of funding. The ultimate goal of the Sens-it-iv project was the development of a set of in vitro methods for the assessment of the skin and respiratory sensitization potential of chemicals and proteins. The level of development was intended to be at the point to enter the pre-validation phase. At the end of the project it can be concluded that the goal has been largely accomplished. Several advanced methods were evaluated extensively, and for some of them a detailed Standard Operating Procedure (SOP) was established. Other, less advanced methods also contributed to our understanding of the mechanisms driving sensitization. The present contribution, which has been prepared with the support of CAAT-Europe, represents a short summary of what was discussed during the 3-day end congress of the Sens-it-iv project in Brussels. It presents a list of methods that are ready for skin sensitization hazard assessment. Potency evaluation and the possibility of distinguishing skin from respiratory sensitizers are also well advanced. PMID:23665811

  4. Advanced liquid Oxygen (LO2) propellant conditioning concept testing. 2

    NASA Technical Reports Server (NTRS)

    Hasting, J. H.; Perry, G. L. E.; Mehta, G. K.

    1996-01-01

    Extensive testing was performed on the promising L02 propellant conditioning concept of passive recirculation (no-bleed). Data from the project is being used to further anchor models in L02 conditioning behavior and broaden the data base of no-bleed and low-bleed conditioning. Data base expansion includes results from testing the limits of no-bleed and low-bleed conditioning with various configuration changes to the test facility and designed test article. Configuration changes include low velocity effects in the recirculation loop above the test article, test article internal constriction impacts, test article out-of-plane effects, impact from an actual Titan L02 pump attachment, feed duct slope effects, and up-leg booster effects. LN2 was used as the test fluid. The testing was conducted between July 1994 and January 1995 at the west test area of Marshall Space Flight Center. Data have shown that in most cases passive recirculation was demonstrated when the aforementioned limits were applied.

  5. Revisiting the gram-negative lipoprotein paradigm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  6. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III; Kallis, J. M.; Trucker, D. C.

    1983-01-01

    Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. From these analyses several candidate encapsulation systems were selected for qualification testing.

  7. Full-scale transmission testing to evaluate advanced lubricants

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Decker, Harry J.; Shimski, John T.

    1992-01-01

    Experimental tests were performed on the OH-58A helicopter main rotor transmission in the NASA Lewis 500 hp helicopter transmission test stand. The testing was part of a lubrication program. The objectives are to develop and show a separate lubricant for gearboxes with improved performance in life and load carrying capacity. The goal was to develop a testing procedure to fail certain transmission components using a MIL-L-23699 based reference oil and then to run identical tests with improved lubricants and show improved performance. The tests were directed at parts that failed due to marginal lubrication from Navy field experience. These failures included mast shaft bearing micropitting, sun gear and planet bearing fatigue, and spiral bevel gear scoring. A variety of tests were performed and over 900 hrs of total run time accumulated for these tests. Some success was achieved in developing a testing procedure to produce sun gear and planet bearing fatigue failures. Only marginal success was achieved in producing mast shaft bearing micropitting and spiral bevel gear scoring.

  8. [Lipoproteins, free radicals and atherosclerosis].

    PubMed

    Manso, C

    1990-10-01

    The Author reviews vascular, lipidic and oxidative factors in the genesis of atherosclerosis. He admits the possibility that an alteration in the arterial wall, an increase in circulating lipids or an oxidative stress may influence the precocity of atherosclerosis. The transport of lipoperoxides or of oxidized cholesterol by lipoproteins renders them toxic and susceptible to aggravate atherosclerosis. PMID:2291852

  9. Advanced development receiver thermal vacuum tests with cold wall

    NASA Technical Reports Server (NTRS)

    Sedgwick, Leigh M.

    1991-01-01

    The first ever testing of a full size solar dynamic heat receiver using high temperature thermal energy storage was completed. The heat receiver was designed to meet the requirements for operation on the Space Station Freedom. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partially simulate a low Earth orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to produce flux distributions typical of candidate concentrators. A closed Brayton cycle engine simulator conditioned a helium xenon gas mixture to specific interface conditions to simulate various operational modes of the solar dynamic power module. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles were completed during the test conduct period. The test hardware, execution of testing, test data, and post test inspections are described.

  10. Ground Instructor Written Test Guide--Basic-Advanced. Revised 1972.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The test guide was prepared to assist applicants who are preparing for the Ground Instructor Written Test. It supersedes the 1967 examination guide. The guide outlines the scope of the basic aeronautical knowledge requirements for a ground instructor; acquaints the applicant with source material that may be used to acquire this basic knowledge;…

  11. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  12. Structural thermal tests on Advanced Neutron Source reactor fuel plates

    SciTech Connect

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1995-08-01

    The thin aluminum-clad fuel plates proposed for the Advanced Neutron Source reactor are stressed by the high-velocity coolant flowing on each side of the plates and by the thermal gradients in the plates. The total stress, composed of the sum of the flow stress and the thermal stress at a point, could be reduced if the thermal loads tend to relax when the stress magnitude approaches the yield stress of the material. The potential of this occurring would be very significant in assessing the structural reliability of the fuel plates and has been investigated through experiment. The results of this investigation are given in this report.

  13. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Minning, C.

    1982-01-01

    Design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. The program consists of three phases. In Phase I, analytical models were developed to perform optical, thermal, electrical, and structural analyses on candidate encapsulation systems. From these analyses several candidate systems will be selected for qualification testing during Phase II. Additionally, during Phase II, test specimens of various types will be constructed and tested to determine the validity of the analysis methodology developed in Phase I. In Phse III, a finalized optimum design based on knowledge gained in Phase I and II will be developed. All verification testing was completed during this period. Preliminary results and observations are discussed. Descriptions of the thermal, thermal structural, and structural deflection test setups are included.

  14. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise

    PubMed Central

    2012-01-01

    Background Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Methods Using a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL). Results The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium) particle range. VLDL-TG in smaller particles (29–43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. Conclusions These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity. PMID

  15. ASRM subscale plume deflector testing. [advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Douglas, Freddie, III; Dawson, Michael C.; Orlin, Peter A.

    1992-01-01

    This paper reports the results of the scale model (1/22) testing of candidate refractory materials to be used as surface coatings for a solid rocket motor plume deflector structure. Five ROM tests were conducted to acquire data to support the selection, thickness determination, and placement of the materials. All data acquisition was achieved through nonintrusive methods. The tests demonstrated that little or no reductions in performance of the full-scale deflector would be experienced if the most economical materials were selected for construction.

  16. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1982-01-01

    Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. Qualification testing, specimens of various types, and a finalized optimum design are projected.

  17. Regulation of Plasma Cholesterol by Lipoprotein Receptors

    NASA Astrophysics Data System (ADS)

    Brown, Michael S.; Kovanen, Petri T.; Goldstein, Joseph L.

    1981-05-01

    The lipoprotein transport system holds the key to understanding the mechanisms by which genes, diet, and hormones interact to regulate the plasma cholesterol level in man. Crucial components of this system are lipoprotein receptors in the liver and extrahepatic tissues that mediate the uptake and degradation of cholesterol-carrying lipoproteins. The number of lipoprotein receptors, and hence the efficiency of disposal of plasma cholesterol, can be increased by cholesterol-lowering drugs. Regulation of lipoprotein receptors can be exploited pharmacologically in the therapy of hypercholesterolemia and atherosclerosis in man.

  18. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  19. Lipoprotein-a

    MedlinePlus

    ... test is done to check your risk of atherosclerosis , stroke, and heart attack. It is not clear ... a) are associated with a high risk for atherosclerosis, stroke, and heart attack. Considerations Lp(a) measurements ...

  20. Effects of hormones on lipids and lipoproteins

    SciTech Connect

    Krauss, R.M.

    1991-12-01

    Levels of plasma lipids and lipoproteins are strong predictors for the development of atherosclerotic cardiovascular disease in postmenopausal women. In women, as in men, numerous factors contribute to variations in plasma lipoproteins that may affect cardiovascular disease risk. These include age, dietary components, adiposity, genetic traits, and hormonal changes. Each of these factors may operate to varying degrees in determining changes in plasma lipoprotein profiles accompanying menopause- Cross-sectional and longitudinal studies have suggested increases in levels of cholesterol, low density lipoproteins (LDL) and triglyceride-rich lipoproteins associated with menopause. High density lipoproteins (HDL), which are higher in women than men and are thought to contribute to relative protection of premenopausal women from cardiovascular disease, remain relatively constant in the years following menopause, although small, and perhaps transient reductions in the HDL{sub 2} subfraction have been reported in relation to reduced estradiol level following menopause. Despite these associations, it has been difficult to determine the role of endogenous hormones in influencing the plasma lipoproteins of postmenopausal women. In principle, the effects of hormone replacement should act to reverse any alterations in lipoprotein metabolism that are due to postmenopausal hormone changes. While there may be beneficial effects on lipoproteins, hormone treatment does not restore a premenopausal lipoprotein profile. Furthermore, it is not dear to what extent exogenous hormone-induced lipoprotein changes contribute to the reduced incidence of cardiovascular disease with hormone replacement therapy.

  1. An introduction to the Advanced Testing Line for Actinide Separations (ATLAS)

    SciTech Connect

    Pope, N.G.; Yarbro, S.L.; Schreiber, S.B.; Day, R.S.

    1992-03-01

    The Advanced Testing Line for Actinide Separations (ATLAS) will evaluate promising plutonium recovery process modifications and new technologies. It combines advances in process chemistry, process control, process analytical chemistry, and process engineering. ATLAS has a processing capability equal to other recovery systems but without the pressure to achieve predetermined recovery quotas.

  2. Commercialisation of Biomarker Tests for Mental Illnesses: Advances and Obstacles.

    PubMed

    Chan, Man K; Cooper, Jason D; Bahn, Sabine

    2015-12-01

    Substantial strides have been made in the field of biomarker research for mental illnesses over the past few decades. However, no US FDA-cleared blood-based biomarker tests have been translated into routine clinical practice. Here, we review the challenges associated with commercialisation of research findings and discuss how these challenges can impede scientific impact and progress. Overall evidence indicates that a lack of research funding and poor reproducibility of findings were the most important obstacles to commercialization of biomarker tests. Fraud, pre-analytical and analytical limitations, and inappropriate statistical analysis are major contributors to poor reproducibility. Increasingly, these issues are acknowledged and actions are being taken to improve data validity, raising the hope that robust biomarker tests will become available in the foreseeable future. PMID:26549771

  3. Some advanced testing techniques for concentrator photovoltaic cells and lenses

    SciTech Connect

    Wiczer, J.J.; Chaffin, R.J.; Hibray, R.E.

    1982-09-01

    The authors describe two separate test techniques for evaluating concentrator photovoltaic components. For convenient characterization of concentrator solar cells, they have developed a method for measuring the entire illuminated I-V curve of a photovoltaic cell with a single flash of intense simulated sunlight. This method reduces the heat input to the cell and the time required to test a cell, thus making possible quick indoor measurements of photovoltaic conversion efficiency at concentrated illumination levels without the use of elaborate cell mounting fixtures or heat sink attachments. The other test method provides a technique to analyze the spatially dependent, spectral distribution of intense sunlight collected and focused by lenses designed for use in photovoltaic concentrator systems. This information is important in the design of multijunction photovoltaic receivers, secondary concentrators, and in optimizing the performance of conventional silicon cell concentrator systems.

  4. Could Acoustic Emission Testing Show a Pipe Failure in Advance?

    NASA Astrophysics Data System (ADS)

    Soares, S. D.; Teixeira, J. C. G.

    2004-02-01

    During the last 20 years PETROBRAS has been attempting to use Acoustic Emission (AE) as an inspection tool. In this period the AE concept has changed from a revolutionary method to a way of finding areas to make a complete inspection. PETROBRAS has a lot of pressure vessels inspected by AE and with other NDTs techniques to establish their relationship. In other hand, PETROBRAS R&D Center has conducted destructive hydrostatic tests in pipelines samples with artificial defects made by milling. Those tests were monitored by acoustic emission and manual ultrasonic until the complete failure of pipe sample. This article shows the results obtained and a brief proposal of analysis criteria for this environment of test.

  5. Hybrid bearing technology for advanced turbomachinery: Rolling contact fatigue testing

    SciTech Connect

    Dill, J.F.

    1996-01-01

    The purpose of this paper is to describe the basic structure and results to date of a major ARPA funded effort to provide a tribological performance database on ceramic bearing materials and their interaction with standard bearing steels. Program efforts include studies of material physical properties, machining characteristics, and tribological performance. The majority of the testing completed to date focuses on rolling contact fatigue testing of the ceramic materials, including efforts to arrive at optimum approaches to evaluating ceramic/steel hybrid combinations in rolling contact fatigue.

  6. The 20-Minute Version as a Predictor of the Raven Advanced Progressive Matrices Test

    ERIC Educational Resources Information Center

    Hamel, Ronald; Schmittmann, Verena D.

    2006-01-01

    The Raven Advanced Progressive Matrices Test (APM) is a well-known measure of higher order general mental ability. The time to administer the test, 40 to 60 minutes, is sometimes regarded as a drawback. To meet efficiency needs, the APM can be administered as a 30-or 40-minute timed test, or one of two developed short versions could be used. In…

  7. Lipoprotein Lipase releases esterified oxylipins from Very Low Density Lipoproteins

    PubMed Central

    Shearer, Gregory C.; Newman, John W.

    2009-01-01

    We previously demonstrated that defects in lipoprotein metabolism alter the distribution of oxygenated polyunsaturated fatty acids (PUFAs) in lipoprotein particles. If these oxidation products are released by lipoprotein lipase (LpL), then their delivery to peripheral tissues with bulk lipids could influence cellular function. Using 26 week old normolipidemic and hyperlipidemic Zucker rats, we measured PUFA alcohols, epoxides, diols, ketones and triols (i.e. oxylipins) in esterified and non-esterified fractions of whole plasma, VLDL, and LpL-generated VLDL-lipolysates. Whole plasma, VLDL, and lipolysate oxylipin profiles were distinct and altered by hyperlipidemia. While >90% of the whole plasma oxylipins were esterified, the fraction of each oxylipin class in the VLDL varied: 46% of alcohols, 30% of epoxides, 19% of diols, <10% of ketones, <1% triols. Whole plasma was dominated by arachidonate alcohols, while the linoleate alcohols, epoxides and ketones showed an increased prevalence in VLDL. LpL-mediated VLDL lipolysis of PUFA alcohols, diols and ketones was detected and the relative abundance of oxygenated linoleates was enhanced in the lipolysates, relative to their corresponding VLDL. In summary esterified oxylipins were seen to be LpL substrates with heterogeneous distributions among lipoprotein classes. Moreover, oxylipin distributions are changes within the context of obesity-associated dyslipidemia. These results support the notion that the VLDL-LpL axis may facilitate the delivery of plasma oxylipins to the periphery. The physiological implication of these findings are yet to be elucidated, however these molecules are plausible indicators of systemic oxidative stress, and could report this status to the peripheral tissues. PMID:19042114

  8. X-Ray Calibration Facility/Advanced Video Guidance Sensor Test

    NASA Technical Reports Server (NTRS)

    Johnston, N. A. S.; Howard, R. T.; Watson, D. W.

    2004-01-01

    The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.

  9. Metabolism of lipoproteins by human fetal hepatocytes

    SciTech Connect

    Carr, B.R.

    1987-12-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of (/sup 125/I)iodo-LDL and (/sup 125/I)iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. (/sup 125/I)Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas (/sup 125/I)iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues.

  10. Biogenesis and Membrane Targeting of Lipoproteins.

    PubMed

    Narita, Shin-Ichiro; Tokuda, Hajime

    2010-09-01

    Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism. PMID:26443779

  11. Ultrasonic Testing, Aviation Quality Control (Advanced): 9227.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This unit of instruction covers the theory of ultrasonic sound, methods of applying soundwaves to test specimens and interpreting results, calibrating the ultrasonic equipment, and the use of standards. Study periods, group discussions, and extensive use of textbooks and training manuals are to be used. These are listed along with references and…

  12. Problems in Testing the Intonation of Advanced Foreign Learners.

    ERIC Educational Resources Information Center

    Mendelsohn, David

    1978-01-01

    It is argued that knowledge about the testing of intonation in English as a foreign language is inadequate; the major problems are outlined and tentative suggestions are given. The basic problem is that the traditional foreign language teacher's conception of intonation is limited. A three-part definition of intonation is favored, with suggestions…

  13. Advances in Testing the Statistical Significance of Mediation Effects

    ERIC Educational Resources Information Center

    Mallinckrodt, Brent; Abraham, W. Todd; Wei, Meifen; Russell, Daniel W.

    2006-01-01

    P. A. Frazier, A. P. Tix, and K. E. Barron (2004) highlighted a normal theory method popularized by R. M. Baron and D. A. Kenny (1986) for testing the statistical significance of indirect effects (i.e., mediator variables) in multiple regression contexts. However, simulation studies suggest that this method lacks statistical power relative to some…

  14. Advances in the Detection of Differentially Functioning Test Items.

    ERIC Educational Resources Information Center

    Hambleton, Ronald K.; And Others

    The development and evaluation of methods for detecting potentially biased items or differentially functioning items (DIF) represent a critical area of research for psychometricians because of the negative impact of biased items on test validity. A summary is provided of the authors' 12 years of research at the University of Massachusetts…

  15. Designing and Testing Contols to Mitigate Dynamic Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A.D.; Stol, K.A.

    2008-01-01

    The National Renewable Energy Laboratory is designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads of wind turbines. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. In this paper, we show the design and simulation testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control design methods.

  16. Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Horne, William C.

    2015-01-01

    An advanced form of background subtraction is presented and applied to aeroacoustic wind tunnel data. A variant of this method has seen use in other fields such as climatology and medical imaging. The technique, based on an eigenvalue decomposition of the background noise cross-spectral matrix, is robust against situations where isolated background auto-spectral levels are measured to be higher than levels of combined source and background signals. It also provides an alternate estimate of the cross-spectrum, which previously might have poor definition for low signal-to-noise ratio measurements. Simulated results indicate similar performance to conventional background subtraction when the subtracted spectra are weaker than the true contaminating background levels. Superior performance is observed when the subtracted spectra are stronger than the true contaminating background levels. Experimental results show limited success in recovering signal behavior for data where conventional background subtraction fails. They also demonstrate the new subtraction technique's ability to maintain a proper coherence relationship in the modified cross-spectral matrix. Beam-forming and de-convolution results indicate the method can successfully separate sources. Results also show a reduced need for the use of diagonal removal in phased array processing, at least for the limited data sets considered.

  17. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  18. Lipoprotein-a

    MedlinePlus

    Higher than normal values of Lp(a) are associated with a high risk for atherosclerosis, stroke, and heart attack. ... a) measurements may provide more detail about your risk for heart disease, but the added value of this test beyond a lipid panel is ...

  19. Advanced Capabilities for Wind Tunnel Testing in the 21st Century

    NASA Technical Reports Server (NTRS)

    Kegelman, Jerome T.; Danehy, Paul M.; Schwartz, Richard J.

    2010-01-01

    Wind tunnel testing methods and test technologies for the 21st century using advanced capabilities are presented. These capabilities are necessary to capture more accurate and high quality test results by eliminating the uncertainties in testing and to facilitate verification of computational tools for design. This paper discusses near term developments underway in ground testing capabilities, which will enhance the quality of information of both the test article and airstream flow details. Also discussed is a selection of new capability investments that have been made to accommodate such developments. Examples include advanced experimental methods for measuring the test gas itself; using efficient experiment methodologies, including quality assurance strategies within the test; and increasing test result information density by using extensive optical visualization together with computed flow field results. These points could be made for both major investments in existing tunnel capabilities or for entirely new capabilities.

  20. [Advanced Testing and Laboratory for HBV, HCV, and HIV Infection].

    PubMed

    Deguchi, Matsuo

    2015-06-01

    Most target substances for immunoassay of infectious disease are antigens or antibodies which do not exist in the human body. Therefore, the method to set reference values is different from chemistry or hematology testing. High sensitivity is required for infectious disease testing, particularly for screening. Also, its reference values (cut-off values) are set as low as possible. Therefore, a false-positive reaction can be caused due to slightly non-specific reactions in infectious disease reagents. The specificities for infectious disease reagents were evaluated with 9 kinds of HCV antibody test kit and 9 kinds of HIV screening kit. The frequencies of false-positive results were 0.2-1.8 and 0.2-1.3%, respectively, and even a kit with a high specificity showed a false-positive result for 1 in 500 samples. The sensitivities for infectious disease reagents were evaluated with a newly developed super-high- sensitive HBs antigen assay kit and 8 kinds of chemiluminescence HBs antigen assay kit which are highly sensitive conventional kits. As a result, the super-high-sensitive kit was 10 to 40 times more sensitive than conventional kits. After introducing the super-high-sensitive kit to routine assays, 16 HBV-infected patients, who were not identified with the conventional kits, were detected for six months. On the other hand, we confirmed false-positive results due to contamination between specimens after introducing the super-high-sensitive kit. It is recommended to use the super-high-sensitive kit in a well-controlled environment to prevent contamination between specimens in order to generate highly reliable test results. PMID:26548240

  1. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect

    Not Available

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  2. Testing of an advanced thermochemical conversion reactor system

    NASA Astrophysics Data System (ADS)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions.

  3. Advanced technologies for fabrication and testing of large flat mirrors

    NASA Astrophysics Data System (ADS)

    Yellowhair, Julius Eldon

    Classical fabrication methods alone do not enable manufacturing of large flat mirrors that are much larger than 1 meter. This dissertation presents the development of enabling technologies for manufacturing large high performance flat mirrors and lays the foundation for manufacturing very large flat mirrors. The enabling fabrication and testing methods were developed during the manufacture of a 1.6 meter flat. The key advantage over classical methods is that our method is scalable to larger flat mirrors up to 8 m in diameter. Large tools were used during surface grinding and coarse polishing of the 1.6 m flat. During this stage, electronic levels provided efficient measurements on global surface changes in the mirror. The electronic levels measure surface inclination or slope very accurately. They measured slope changes across the mirror surface. From the slope information, we can obtain surface information. Over 2 m, the electronic levels can measure to 50 nm rms of low order aberrations that include power and astigmatism. The use of electronic levels for flatness measurements is analyzed in detail. Surface figuring was performed with smaller tools (size ranging from 15 cm to 40 cm in diameter). A radial stroker was developed and used to drive the smaller tools; the radial stroker provided variable tool stroke and rotation (up to 8 revolutions per minute). Polishing software, initially developed for stressed laps, enabled computer controlled polishing and was used to generate simulated removal profiles by optimizing tool stroke and dwell to reduce the high zones on the mirror surface. The resulting simulations from the polishing software were then applied to the real mirror. The scanning pentaprism and the 1 meter vibration insensitive Fizeau interferometer provided accurate and efficient surface testing to guide the remaining fabrication. The scanning pentaprism, another slope test, measured power to 9 nm rms over 2 meters. The Fizeau interferometer measured 1

  4. Prothrombotic lipoprotein patterns in stroke.

    PubMed

    Podrez, Eugene A; Byzova, Tatiana V

    2016-03-10

    The importance of research focused on the final events of atherothrombosis cannot be overestimated. Platelet hyperreactivity leading to thrombosis is the main reason for mortality and morbidity in patients with cardiovascular disease and stroke, which together remain a leading cause of death in developed countries. In this issue of Blood, Shen et al1 establish another functional link between proatherogenic lipoproteins and platelet-mediated thrombus formation with a specific focus on stroke. In their model, the initiating component is L5, the electronegative subfraction of low-density lipoproteins (LDLs), which was shown to be substantially elevated in patients with ischemic stroke. L5 was shown to activate platelets via its receptor, lectin-like oxidized LDL receptor-1 (LOX-1), and αβ amyloid peptide, which together contribute to platelet hyperreactivity and stroke complications. PMID:26965920

  5. Specificity and localisation of lipoprotein lipase in the flight muscles of Locusta migratoria.

    PubMed

    Wheeler, C H; Goldsworthy, G J

    1985-12-01

    Using natural lipoproteins as substrates, lipase activity has been measured in leg muscle, fat body, midgut and flight muscles of Locusta migratoria. The enzymic activity in the flight muscles is higher than in those other tissues tested, confirming the potential of the flight muscles to utilise lipids at high rates. In addition, a membrane-bound lipoprotein lipase can be extracted from flight muscle. The flight muscle enzyme activity shows a marked substrate specificity; at lipoprotein concentrations equivalent to those found normally in flown or resting locusts respectively, the enzyme hydrolyses diacylglycerols associated with lipoprotein A+ (present in the haemolymph of flown or adipokinetic hormone-injected locusts) at about 4 times the rate of those associated with lipoprotein Ayellow (which is the major lipoprotein in resting locusts). In addition, the hydrolysis of lipids carried by lipoprotein Ayellow is dramatically reduced in the presence of lipoprotein A+. These observations indicate that the enzyme plays a specific role in the uptake of lipids at the flight muscles to ensure a smooth transition from carbohydrate to lipid based metabolism during flight. PMID:4091966

  6. Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice.

    PubMed Central

    Harris, H W; Grunfeld, C; Feingold, K R; Rapp, J H

    1990-01-01

    Endotoxemia stimulates many physiologic responses including disturbances in lipid metabolism. We hypothesized that this lipemia may be part of a defensive mechanism by which the body combats the toxic effects of circulating endotoxin. We tested the effects of mixtures of endotoxin, lipoproteins, and lipoprotein-free plasma and determined the ability of varying concentrations of human very low density lipoproteins (VLDL) and chylomicrons, as well as low density lipoproteins (LDL) and high density lipoproteins (HDL), and of the synthetic lipid emulsion SOYACAL to prevent endotoxin-induced death in mice. This study demonstrates that the triglyceride-rich VLDL and chylomicrons, as well as cholesterol-rich LDL and HDL, and cholesterol-free SOYACAL can protect against endotoxin-induced death. Protection required small amounts of lipoprotein-free plasma, and depended on the incubation time and the concentration of lipoprotein lipid. Despite stringent techniques to prevent exogenous endotoxin contamination eight of ten duplicate VLDL preparations contained endotoxin (5,755 +/- 3,514 ng endotoxin/mg triglyceride, mean +/- SEM) making the isolation of endotoxin-free VLDL difficult. In contrast, simultaneous preparations of LDL and HDL were relatively free of endotoxin contamination (3 +/- 3 and 320 +/- 319 ng/mg total cholesterol, respectively), suggesting that the contamination of VLDL occurs in vivo and not during the isolation procedure. These observations suggest a possible role for increased triglyceride-rich lipoproteins in the host's defense against endotoxemia and infection. Images PMID:2394827

  7. Advanced solar thermal storage medium test data and analysis

    NASA Technical Reports Server (NTRS)

    Saha, H.

    1981-01-01

    A comparative study has been made of experimentally obtained heat transfer and heat storage characteristics of a solar thermal energy storage bed utilizing containerized water or phase change material (PCM) and rock or brick. It is shown that (1) containers with an L/D ratio of 0.80 and a mass/surface area ratio of 2.74 in a random stacking arrangement have the optimum heat transfer characteristics; and (2) vertical stacking has the least pressure drop across the test bed. It is also found that standard bricks with appropriate holes make an excellent storage medium.

  8. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    SciTech Connect

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were

  9. Lipoproteins, nutrition, and heart disease.

    PubMed

    Schaefer, Ernst J

    2002-02-01

    This article reviews the current status of our knowledge of lipoproteins, nutrition, and coronary heart disease (CHD). Special emphasis is placed on CHD risk assessment, dietary intervention studies, diet-gene interactions, and current dietary guidelines and the contributions of my laboratory to these areas. CHD remains a major cause of death and disability, and risk factors include age, sex, hypertension, smoking, diabetes, elevated serum LDL cholesterol, and low HDL cholesterol. Emerging independent risk factors include elevated serum concentrations of lipoprotein(a), remnant lipoproteins, and homocysteine. The cornerstone of CHD prevention is lifestyle modification. Dietary intervention studies support the concepts that restricting saturated fat and cholesterol and increasing the intake of essential fatty acids, especially n - 3 fatty acids, reduces CHD risk. The variability in LDL-cholesterol response to diet is large, related in part to APOE and APOA4 genotype. The use of antioxidants in intervention studies has not been shown to reduce CHD risk. Compliance with dietary recommendations remains a major problem, and directly altering the food supply may be the most effective way to ensure compliance. The available data indicate that the recommendation to use fats, oils, and sugars sparingly for CHD prevention should be modified to a recommendation to use animal, dairy, and hydrogenated fats; tropical oils; egg yolks; and sugars sparingly and to increase the use of vegetables, fruit, and whole grains. PMID:11815309

  10. Effects of the Absence of Apolipoprotein E on Lipoproteins, Neurocognitive Function, and Retinal Function

    PubMed Central

    Mak, Angel C. Y.; Pullinger, Clive R.; Tang, Ling Fung; Wong, Jinny S.; Deo, Rahul C.; Schwarz, Jean-Marc; Gugliucci, Alejandro; Movsesyan, Irina; Ishida, Brian Y.; Chu, Catherine; Poon, Annie; Kim, Phillip; Stock, Eveline O.; Schaefer, Ernst J.; Asztalos, Bela F.; Castellano, Joseph M.; Wyss-Coray, Tony; Duncan, Jacque L.; Miller, Bruce L.; Kane, John P.; Kwok, Pui-Yan; Malloy, Mary J.

    2016-01-01

    IMPORTANCE The identification of a patient with a rare form of severe dysbetalipoproteinemia allowed the study of the consequences of total absence of apolipoprotein E (apoE). OBJECTIVES To discover the molecular basis of this rare disorder and to determine the effects of complete absence of apoE on neurocognitive and visual function and on lipoprotein metabolism. DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing was performed on the patient’s DNA. He underwent detailed neurological and visual function testing and lipoprotein analysis. Lipoprotein analysis was also performed in the Cardiovascular Research Institute, University of California, San Francisco, on blood samples from the proband’s mother, wife, 2 daughters, and normolipidemic control participants. MAIN OUTCOME MEASURES Whole-exome sequencing, lipoprotein analysis, and neurocognitive function. RESULTS The patient was homozygous for an ablative APOE frameshift mutation (c.291del, p.E97fs). No other mutations likely to contribute to the phenotype were discovered, with the possible exception of two, in ABCC2 (p.I670T) and LIPC (p.G137R). Despite complete absence of apoE, he had normal vision, exhibited normal cognitive, neurological, and retinal function, had normal findings on brain magnetic resonance imaging, and had normal cerebrospinal fluid levels of β-amyloid and tau proteins. He had no significant symptoms of cardiovascular disease except a suggestion of myocardial ischemia on treadmill testing and mild atherosclerosis noted on carotid ultrasonography. He had exceptionally high cholesterol content (760 mg/dL; to convert to millimoles per liter, multiply by 0.0259) and a high cholesterol to triglycerides ratio (1.52) in very low-density lipoproteins with elevated levels of small-diameter high-density lipoproteins, including high levels of prebeta-1 high-density lipoprotein. Intermediate-density lipoproteins, low-density lipoproteins, and very low-density lipoproteins contained elevated apo

  11. Advanced ThioClear process testing. Final report

    SciTech Connect

    Lani, B.

    1998-03-01

    Wet scrubbing is the leading proven commercial post-combustion FGD technology available to meet the sulfur dioxide reductions required by the Clean Air Act Amendments. To reduce costs associated with wet FGD, Dravo Lime Company has developed the ThioClear process. ThioClear is an ex-situ forced oxidation magnesium-enhanced lime FGD process. ThioClear process differs from the conventional magnesium-enhanced lime process in that the recycle liquor has minimal suspended solids and the by-products are wallboard quality gypsum and magnesium hydroxide, an excellent reagent for water treatment. The process has demonstrated sulfur dioxide removal efficiencies of +95% in both a vertical spray scrubber tower and a horizontal absorber operating at gas velocities of 16 fps, respectively. This report details the optimization studies and associated economics from testing conducted at Dravo Lime Company`s pilot plant located at the Miami Fort Station of the Cincinnati Gas and Electric Company.

  12. Advances in measuring techniques for turbine cooling test rigs

    NASA Technical Reports Server (NTRS)

    Pollack, F. G.

    1972-01-01

    Surface temperature distribution measurements for turbine vanes and blades were obtained by measuring the infrared energy emitted by the airfoil. The IR distribution can be related to temperature distribution by suitable calibration methods and the data presented in the form of isotherm maps. Both IR photographic and real time electro-optical methods are being investigated. The methods can be adapted to rotating as well as stationary targets, and both methods can utilize computer processing. Pressure measurements on rotating components are made with a rotating system incorporating 10 miniature transducers. A mercury wetted slip ring assembly was used to supply excitation power and as a signal transfer device. The system was successfully tested up to speeds of 9000 rpm and is now being adapted to measure rotating blade airflow quantities in a spin rig and a research engine.

  13. Advanced ion beam calorimetry for the test facility ELISE

    SciTech Connect

    Nocentini, R. Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Ruf, B.; Wünderlich, D.; Bonomo, F.; Pimazzoni, A.; Pasqualotto, R.

    2015-04-08

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m{sup 2} in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m{sup 2}, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and

  14. Advanced ion beam calorimetry for the test facility ELISE

    NASA Astrophysics Data System (ADS)

    Nocentini, R.; Bonomo, F.; Pimazzoni, A.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Pasqualotto, R.; Riedl, R.; Ruf, B.; Wünderlich, D.

    2015-04-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m2, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and correlates

  15. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  16. INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2007-09-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  17. Characterization of a Real-time Neutron Imaging Test Station at China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    He, Linfeng; Han, Songbai; Wang, Hongli; Wei, Guohai; Wang, Yu; Wu, Meimei; Liu, Yuntao; Chen, Dongfeng

    A real-time neutron imaging test station was recently installed at the China Advanced Research Reactor. The objective of this work was to determine its operational characteristics, including neutron beam profile, the spatial resolution and time resolution. The performance of the equipment was demonstrated by a real time neutron imaging test of the water dynamics in a fuel cell.

  18. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    NASA Technical Reports Server (NTRS)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  19. Earth Observing System(EOS). Advanced Microwave Sounding Unit-A: Firmware Test Report

    NASA Technical Reports Server (NTRS)

    Schwantje, R.

    1998-01-01

    This document is the Firmware Test Report for the firmware to be used in the Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) instrument. It describes the firmware results of the Formal Qualification Test (FQT)/Demonstrations conducted on Mar. 21, 1997, Apr. 8, 1998, and July 14, 1998, for the EOS/AMSU-A instrument.

  20. Interior noise control ground test studies for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  1. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  2. A more flexible lipoprotein sorting pathway.

    PubMed

    Chahales, Peter; Thanassi, David G

    2015-05-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. PMID:25755190

  3. A brief history of lipid and lipoprotein measurements and their contribution to clinical chemistry.

    PubMed

    McNamara, Judith R; Warnick, G Russell; Cooper, Gerald R

    2006-07-23

    The study of modern lipid chemistry began in the 17th and 18th centuries with early observations by Robert Boyle, Poulletier de la Salle, Antoine François de Fourcroy and others. The 19th century chemist, Chevreul, identified several fatty acids, suggested the name 'cholesterine' for the fatty substance in gallstones, coined the word 'glycerine', and showed that fats were comprised of glycerol and fatty acids. The 20th century brought many advances in the understanding of lipoprotein structure and function, and explored relationships between lipoproteins and disease states. The development of the ultracentrifuge and other lipoprotein separation techniques, and reagents for accurate, standardized quantitative measurement have steadily increased our understanding of the important role of lipoprotein metabolism in both healthy and disease states. PMID:16740255

  4. Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2008-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The design of the first experiment (designated AGR-1) was completed in 2005, and the fabrication and assembly of the test train as well as the support systems and fission product monitoring system that monitor and control the experiment during irradiation were completed in September 2006. The experiment was inserted in the ATR in December 2006, and is serving as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed and the status of the experiment is provided.

  5. Lipoprotein Metabolism and Inflammation in Patients With Psoriasis.

    PubMed

    Armstrong, Ehrin J; Krueger, James G

    2016-08-15

    Psoriasis is a chronic inflammatory disease associated with a variety of co-morbid conditions, including cardiovascular disease. Advancements in our understanding of the cellular and molecular mechanisms of psoriasis have led to a better understanding regarding its pathogenesis, which in turn has stimulated ongoing research to identify the underlying pathophysiology responsible for the increased risk of cardiovascular events associated with psoriasis. Although not yet fully elucidated, emerging evidence points to immune-mediated inflammation as a process that contributes to endothelial cell dysfunction, dyslipidemia, and atherosclerosis as key processes influencing cardiovascular disease in psoriasis. In particular, the dyslipidemia present in psoriasis may be associated with altered lipoprotein function and increased atherogenicity. Here, we review how the cytokine networks involved in lipoprotein metabolism and inflammation could impact on the cardiovascular disease risk for patients with psoriasis. PMID:27392508

  6. In-flight load testing of advanced shuttle thermal protection systems

    NASA Technical Reports Server (NTRS)

    Trujillo, B. M.; Meyer, R., Jr.; Sawko, P. M.

    1983-01-01

    NASA Ames Research Center has conducted in-flight airload testing of some advanced thermal protection systems (TPS) at the Dryden Flight Research Center. The two flexible TPS materials tested, felt reusable surface insulation (FRSI) and advanced flexible reusable surface insulation (AFRSI), are currently certified for use on the Shuttle orbiter. The objectives of the flight tests were to evaluate the performance of FRSI and AFRSI at simulated launch airloads and to provide a data base for future advanced TPS flight tests. Five TPS configurations were evaluated in a flow field which was representative of relatively flat areas without secondary flows. The TPS materials were placed on a fin, the Flight Test fixture (FTF), that is attached to the underside of the fuselage of an F-104 aircraft. This paper describes the test approach and techniques used and presents the results of the advanced TPS flight test. There were no failures noted during post-flight inspections of the TPS materials which were exposed to airloads 40 percent higher than the design launch airloads.

  7. LIPOPROTEIN LIPASE RELEASES ESTERIFIED OXYLIPINS FROM VERY LOW-DENSITY LIPOPROTEINS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Defects in lipoprotein metabolism alter the lipoprotein distribution of oxidized PUFAs, and we speculate that lipoprotein lipase (LpL) is a determinant in the release of VLDL-associated oxylipins. Here, using 12 wk old normolipidemic (lean) and hyperlipidemic (obese) Zucker-rats, we measured PUFA al...

  8. Status of advanced airfoil tests in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ladson, C. L.; Ray, E. J.

    1984-01-01

    A joint NASA/U.S. industry program to test advanced technology airfoils in the Langley 0.3-meter Transonic Tunnel (TCT) was formulated under the Langley ACEE Project Office. The objectives include providing U.S. industry an opportunity to compare their most advanced airfoils to the latest NASA designs by means of high Reynolds number tests in the same facility. At the same time, industry would again experience in the design and construction of cryogenic test techniques. The status and details of the test program are presented. Typical aerodynamic results obtained, to date, are presented at chord Reynolds number up to 45 x 10(6) and are compared to results from other facilities and theory. Details of a joint agreement between NASA and the Deutsche Forschungs- und Versuchsantalt fur Luft- and Raumfahrt e.V. (DFVLR) for tests of two airfoils are also included. Results of these tests will be made available as soon as practical.

  9. The Advanced Microwave Sounding Unit-A: Antenna Number 2 Bearing Assembly Life Test

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    1997-01-01

    Four bearing assemblies, lubricated with Apiezon C oil with 5% lead naphthenate (PbNp), were life tested in support of the Advanced Microwave Sounding Unit-A (AMSU-A). These assemblies were tested continuously for five to six years using the scanning pattern of the flight instrument. A post-life-test analysis was performed on two of the assemblies to evaluate the lubricant behavior and wear in the bearings.

  10. ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Inhibition of endothelial lipase activity by sphingomyelin in the lipoproteins.

    PubMed

    Yang, Peng; Belikova, Natalia A; Billheimer, Jeff; Rader, Daniel J; Hill, John S; Subbaiah, Papasani V

    2014-10-01

    Endothelial lipase (EL) is a major determinant of plasma HDL concentration, its activity being inversely proportional to HDL levels. Although it is known that it preferentially acts on HDL compared to LDL and VLDL, the basis for this specificity is not known. Here we tested the hypothesis that sphingomyelin, a major phospholipid in lipoproteins is a physiological inhibitor of EL, and that the preference of the enzyme for HDL may be due to low sphingomyelin/phosphatidylcholine (PtdCho) ratio in HDL, compared to other lipoproteins. Using recombinant human EL, we showed that sphingomyelin inhibits the hydrolysis of PtdCho in the liposomes in a concentration-dependent manner. While the enzyme showed lower hydrolysis of LDL PtdCho, compared to HDL PtdCho, this difference disappeared after the degradation of lipoprotein sphingomyelin by bacterial sphingomyelinase. Analysis of molecular species of PtdCho hydrolyzed by EL in the lipoproteins showed that the enzyme preferentially hydrolyzed PtdCho containing polyunsaturated fatty acids (PUFA) such as 22:6, 20:5, 20:4 at the sn-2 position, generating the corresponding PUFA-lyso PtdCho. This specificity for PUFA-PtdCho species was not observed after depletion of sphingomyelin by sphingomyelinase. These results show that sphingomyelin not only plays a role in regulating EL activity, but also influences its specificity towards PtdCho species. PMID:25167836

  12. Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2006-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  13. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  14. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  15. Analysis of results from wind tunnel tests of inlets for an advanced turboprop nacelle installation

    NASA Technical Reports Server (NTRS)

    Hancock, J. P.; Lyman, V.; Pennock, A. P.

    1986-01-01

    Inlets for tractor installations of advanced turboprop propulsion systems were tested in three phases, covering a period from November, 1982 to January, 1984. Nacelle inlet configuration types included single scoop, twin scoop, and annular arrangements. Tests were performed with and without boundary layer diverters and several different diverter heights were tested for the single scoop inlet. This same inlet was also tested at two different axial positions. Test Mach numbers ranged from Mach 0.20 to 0.80. Types of data taken were: (1) internal and external pressures, including inlet throat recoveries; (2) balance forces, including thrust-minus-drag; and (3) propellar blade stresses.

  16. Analysis and correlation of the test data from an advanced technology rotor system

    NASA Technical Reports Server (NTRS)

    Jepson, D.; Moffitt, R.; Hilzinger, K.; Bissell, J.

    1983-01-01

    Comparisons were made of the performance and blade vibratory loads characteristics for an advanced rotor system as predicted by analysis and as measured in a 1/5 scale model wind tunnel test, a full scale model wind tunnel test and flight test. The accuracy with which the various tools available at the various stages in the design/development process (analysis, model test etc.) could predict final characteristics as measured on the aircraft was determined. The accuracy of the analyses in predicting the effects of systematic tip planform variations investigated in the full scale wind tunnel test was evaluated.

  17. Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.

  18. General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.

    2014-01-01

    A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.

  19. Approaches to Language Testing. Advances in Language Testing Series: 2. Papers in Applied Linguistics.

    ERIC Educational Resources Information Center

    Spolsky, Bernard, Ed.

    This volume, one in a series on modern language testing, collects four essays dealing with current approaches to lanquage testing. The introduction traces the development of language testing theory and examines the role of linguistics in this area. "The Psycholinguistic Basis," by E. Ingram, discusses some interpretations of the term…

  20. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  1. Testing of Passive Safety System Performance for Higher Power Advanced Reactors

    SciTech Connect

    brian G. Woods; Jose Reyes, Jr.; John Woods; John Groome; Richard Wright

    2004-12-31

    This report describes the results of NERI research on the testing of advanced passive safety performance for the Westinghouse AP1000 design. The objectives of this research were: (a) to assess the AP1000 passive safety system core cooling performance under high decay power conditions for a spectrum of breaks located at a variety of locations, (b) to compare advanced thermal hydraulic computer code predictions to the APEX high decay power test data and (c) to develop new passive safety system concepts that could be used for Generation IV higher power reactors.

  2. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  3. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  4. Historical perspectives on lipoprotein research and methodology

    SciTech Connect

    Lindgren, F.T.

    1990-03-01

    Since the early history of lipoprotein isolation and characterization dates back more than 60 years, it would be helpful to describe some of the landmarks occurring before about 1965. This document contains historical perspectives and information on lipoprotein research and methodology. 35 refs., 9 figs., 1 tab.

  5. Test Standard Developed for Determining the Slow Crack Growth of Advanced Ceramics at Ambient Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1998-01-01

    The service life of structural ceramic components is often limited by the process of slow crack growth. Therefore, it is important to develop an appropriate testing methodology for accurately determining the slow crack growth design parameters necessary for component life prediction. In addition, an appropriate test methodology can be used to determine the influences of component processing variables and composition on the slow crack growth and strength behavior of newly developed materials, thus allowing the component process to be tailored and optimized to specific needs. At the NASA Lewis Research Center, work to develop a standard test method to determine the slow crack growth parameters of advanced ceramics was initiated by the authors in early 1994 in the C 28 (Advanced Ceramics) committee of the American Society for Testing and Materials (ASTM). After about 2 years of required balloting, the draft written by the authors was approved and established as a new ASTM test standard: ASTM C 1368-97, Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature. Briefly, the test method uses constant stress-rate testing to determine strengths as a function of stress rate at ambient temperature. Strengths are measured in a routine manner at four or more stress rates by applying constant displacement or loading rates. The slow crack growth parameters required for design are then estimated from a relationship between strength and stress rate. This new standard will be published in the Annual Book of ASTM Standards, Vol. 15.01, in 1998. Currently, a companion draft ASTM standard for determination of the slow crack growth parameters of advanced ceramics at elevated temperatures is being prepared by the authors and will be presented to the committee by the middle of 1998. Consequently, Lewis will maintain an active leadership role in advanced ceramics standardization within ASTM

  6. High-density lipoprotein that supports Ureaplasma urealyticum growth.

    PubMed Central

    Sayed, I A; Sweat, F W

    1982-01-01

    A high-density lipoprotein with growth-promoting activity for Ureaplasma urealyticum was purified in high yield from equine serum by ammonium sulfate fractionation and molecular filtration. Fractions enriched in growth-promoting activity represented 5% of the total serum protein, and 30 micrograms of the purified protein per ml gave an activity equivalent to that from 100 micrograms of whole serum per ml. The serum was totally replaced by purified lipoprotein when tested in a soy peptone-yeast dialysate or when added to a chemically defined synthetic medium. Polyacrylamide gel electrophoresis indicated that one major protein with growth-promoting activity is present. A total of 10 proteins were distinguished by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with 75% of the total contributed by two proteins with molecular weights of 160,000 and 170,000. A total of 90% of the lipoprotein was an alpha-protein with a mobility of 0.67 in two-dimensional immunoelectrophoresis (albumin = 1.0). The active component was further characterized as high-density lipoprotein by density ultracentrifugation. Two components with S = 6.4 and S = 15.8 were distinguished by velocity sedimentation. The lipid was removed from lipoprotein during its precipitation with acetone. The growth-promoting activity of delipidized protein was dependent upon the addition of exogenous cholesterol, and [14C]cholesterol was transferred to urea-plasmic cells in cultures containing the delipidized protein. A major portion of the [14C]cholesterol remained associated with the protein during filtration on Sepharose 4B columns. Images PMID:7201468

  7. Computational studies of plasma lipoprotein lipids.

    PubMed

    Pan, Lurong; Segrest, Jere P

    2016-10-01

    Plasma lipoproteins are macromolecular assemblies of proteins and lipids found in the blood. The lipid components of lipoproteins are amphipathic lipids such as phospholipids (PLs), and unesterified cholesterols (UCs) and hydrophobic lipids such as cholesteryl esters (CEs) and triglycerides (TGs). Since lipoproteins are soft matter supramolecular assemblies easily deformable by thermal fluctuations and they also exist in varying densities and protein/lipid components, a detailed understanding of their structure/function is experimentally difficult. Molecular dynamics (MD) simulation has emerged as a particularly promising way to explore the structure and dynamics of lipoproteins. The purpose of this review is to survey the current status of computational studies of the lipid components of the lipoproteins. Computational studies aim to explore three levels of complexity for the 3-dimensional structural dynamics of lipoproteins at various metabolic stages: (i) lipoprotein particles consist of protein with minimal lipid; (ii) lipoprotein particles consist of PL-rich discoidal bilayer-like lipid particles; (iii) mature circulating lipoprotein particles consist of CE-rich or TG-rich spheroidal lipid-droplet-like particles. Due to energy barriers involved in conversion between these species, other biomolecules also participate in lipoprotein biological assembly. For example: (i) lipid-poor apolipoprotein A-I (apoA-I) interacts with ATP-binding cassette transporter A1 (ABCA1) to produce nascent discoidal high density lipoprotein (dHDL) particles; (ii) lecithin-cholesterol acyltransferase (LCAT) mediates the conversion of UC to CE in dHDL, driving spheroidal HDL (sHDL) formation; (iii) transfer proteins, cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), transfer both CE and TG and PL, respectively, between lipoprotein particles. Computational studies have the potential to explore different lipoprotein particles at each metabolic stage in

  8. Advanced E-O test capability for Army Next-Generation Automated Test System (NGATS)

    NASA Astrophysics Data System (ADS)

    Errea, S.; Grigor, J.; King, D. F.; Matis, G.; McHugh, S.; McKechnie, J.; Nehring, B.

    2015-05-01

    The Future E-O (FEO) program was established to develop a flexible, modular, automated test capability as part of the Next Generation Automatic Test System (NGATS) program to support the test and diagnostic needs of currently fielded U.S. Army electro-optical (E-O) devices, as well as being expandable to address the requirements of future Navy, Marine Corps and Air Force E-O systems. Santa Barbara infrared (SBIR) has designed, fabricated, and delivered three (3) prototype FEO for engineering and logistics evaluation prior to anticipated full-scale production beginning in 2016. In addition to presenting a detailed overview of the FEO system hardware design, features and testing capabilities, the integration of SBIR's EO-IR sensor and laser test software package, IRWindows 4™, into FEO to automate the test execution, data collection and analysis, archiving and reporting of results is also described.

  9. The iron-regulated staphylococcal lipoproteins

    PubMed Central

    Sheldon, Jessica R.; Heinrichs, David E.

    2012-01-01

    Lipoproteins fulfill diverse roles in antibiotic resistance, adhesion, protein secretion, signaling and sensing, and many also serve as the substrate binding protein (SBP) partner to ABC transporters for the acquisition of a diverse array of nutrients including peptides, sugars, and scarcely abundant metals. In the staphylococci, the iron-regulated SBPs are significantly upregulated during iron starvation and function to sequester and deliver iron into the bacterial cell, enabling staphylococci to circumvent iron restriction imposed by the host environment. Accordingly, this subset of lipoproteins has been implicated in staphylococcal pathogenesis and virulence. Lipoproteins also activate the host innate immune response, triggered through Toll-like receptor-2 (TLR2) and, notably, the iron-regulated subset of lipoproteins are particularly immunogenic. In this review, we discuss the iron-regulated staphylococcal lipoproteins with regard to their biogenesis, substrate specificity, and impact on the host innate immune response. PMID:22919632

  10. The pathophysiology of intestinal lipoprotein production

    PubMed Central

    Giammanco, Antonina; Cefalù, Angelo B.; Noto, Davide; Averna, Maurizio R.

    2015-01-01

    Intestinal lipoprotein production is a multistep process, essential for the absorption of dietary fats and fat-soluble vitamins. Chylomicron assembly begins in the endoplasmic reticulum with the formation of primordial, phospholipids-rich particles that are then transported to the Golgi for secretion. Several classes of transporters play a role in the selective uptake and/or export of lipids through the villus enterocytes. Once secreted in the lymph stream, triglyceride-rich lipoproteins (TRLs) are metabolized by Lipoprotein lipase (LPL), which catalyzes the hydrolysis of triacylglycerols of very low density lipoproteins (VLDLs) and chylomicrons, thereby delivering free fatty acids to various tissues. Genetic mutations in the genes codifying for these proteins are responsible of different inherited disorders affecting chylomicron metabolism. This review focuses on the molecular pathways that modulate the uptake and the transport of lipoproteins of intestinal origin and it will highlight recent findings on TRLs assembly. PMID:25852563

  11. Raising highly desirable lipoprotein versus lowering deleterious lipoprotein.

    PubMed

    Cheung, Bernard My; Kumana, Cyrus R

    2010-03-01

    Evaluation of: Taylor AJ, Villines TC, Stanek EJ et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N. Engl. J. Med. 361(22), 2113-2122 (2009). Epidemiological evidence suggests that elevated low-density lipoprotein cholesterol (LDL-C) and reduced high-density lipoprotein cholesterol (HDL-C) are both factors causing coronary heart disease. These authors compared extended-release niacin, which raises HDL-C, with ezetimibe, which lowers LDL-C, in a study named Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies (ARBITER 6-HALTS). The study was terminated early and only 208 patients were included in the analysis. Ezetimibe decreased LDL-C by 19.2%, to 66 mg/dl (1.7 mmol/l), whereas niacin increased HDL-C by 18.4%. Ezetimibe did not reduce carotid intima-media thickness, whereas niacin decreased it significantly. Moreover, major adverse cardiovascular events occurred in 5% of the ezetimibe group but only 1% of the niacin group (p = 0.04). The study suggests that niacin may be more effective than ezetimibe as an adjunct to statin in regressing atherosclerosis and in preventing cardiovascular events. This small study of short duration reported a very large treatment effect, so the findings need to be confirmed in a larger longer trial. Nevertheless, it provides the evidence that we now have an additional class of drugs besides statins that can reduce atherosclerosis and cardiovascular events. PMID:22111565

  12. Completion of the first NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover; John Maki; David Petti

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The design of AGR-1 test train and support systems used to monitor and control the experiment during

  13. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  14. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  15. Advanced Test Reactor In-Canal Ultrasonic Scanner: Experiment Design and Initial Results on Irradiated Plates

    SciTech Connect

    D. M. Wachs; J. M. Wight; D. T. Clark; J. M. Williams; S. C. Taylor; D. J. Utterbeck; G. L. Hawkes; G. S. Chang; R. G. Ambrosek; N. C. Craft

    2008-09-01

    An irradiation test device has been developed to support testing of prototypic scale plate type fuels in the Advanced Test Reactor. The experiment hardware and operating conditions were optimized to provide the irradiation conditions necessary to conduct performance and qualification tests on research reactor type fuels for the RERTR program. The device was designed to allow disassembly and reassembly in the ATR spent fuel canal so that interim inspections could be performed on the fuel plates. An ultrasonic scanner was developed to perform dimensional and transmission inspections during these interim investigations. Example results from the AFIP-2 experiment are presented.

  16. Battery Performance of ADEOS (Advanced Earth Observing Satellite) and Ground Simulation Test Results

    NASA Technical Reports Server (NTRS)

    Koga, K.; Suzuki, Y.; Kuwajima, S.; Kusawake, H.

    1997-01-01

    The Advanced Earth Observing Satellite (ADEOS) is developed with the aim of establishment of platform technology for future spacecraft and inter-orbit communication technology for the transmission of earth observation data. ADEOS uses 5 batteries, consists of two packs. This paper describes, using graphs and tables, the ground simulation tests and results that are carried to determine the performance of the ADEOS batteries.

  17. 2013 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  18. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  19. 2010 Radiological Monitoring Results Associated with the Advance Test Reactor Complex Cold Waste Pond

    SciTech Connect

    mike lewis

    2011-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  20. 2011 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2012-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  1. 2012 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  2. EPA ALKALI SCRUBBING TEST FACILITY: ADVANCED PROGRAM, FOURTH PROGRESS REPORT; VOLUME 1. BASIC REPORT

    EPA Science Inventory

    The report gives results of advanced testing (late November 1976 - June 1978) of 30,000-35,000 acfm (10 MW equivalent) lime/limestone wet scrubbers for SO2 and particulate removal at TVA's Shawnee power station. Forced oxidation with two scrubber loops was developed on the ventur...

  3. EPA ALKALI SCRUBBING TEST FACILITY: ADVANCED PROGRAM - FINAL REPORT (OCTOBER 1974-JUNE 1978)

    EPA Science Inventory

    The report summarizes results of advanced testing (from October 1974 through June 1978) of 30,000-35,000 acfm (10 MW equivalent) lime/limestone wet scrubbers for SO2 and particulate removal at TVA's Shawnee power station. Reliable scrubber and mist eliminator operations were demo...

  4. Development, Field Test, and Refinement of Performance Training Programs in Armor Advanced Individual Training. Final Report.

    ERIC Educational Resources Information Center

    Young, Douglas L.; Taylor, John E.

    Performance-oriented instruction was developed, field tested, and refined in two Advanced Individual Training (AIT) programs--Armor Reconnaissance Specialist (MOS 11D) and Armor Crewman (MOS 11E). Tasks for both MOS (Military Occupational Specialty) were inventoried and the inventories were reduced by eliminating those tasks which are not required…

  5. Estimated Effect of the Teacher Advancement Program on Student Test Score Gains

    ERIC Educational Resources Information Center

    Springer, Matthew G.; Ballou, Dale; Peng, Art

    2014-01-01

    This article presents findings from the first independent, third-party appraisal of the impact of the Teacher Advancement Program (TAP) on student test score gains in mathematics. TAP is a comprehensive school reform model designed to attract highly effective teachers, improve instructional effectiveness, and elevate student achievement. We use a…

  6. 75 FR 53681 - Office of Elementary and Secondary Education Overview Information; Advanced Placement (AP) Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION Office of Elementary and Secondary Education Overview Information; Advanced Placement (AP) Test Fee... academic credit is awarded. Program Authority: 20 U.S.C. 6531-6537. Applicable Regulations: The...

  7. Cognitive Levels of Questions Used by Iranian EFL Teachers in Advanced Reading Comprehension Tests

    ERIC Educational Resources Information Center

    Khorsand, Narjess

    2009-01-01

    This study examined the cognitive levels of questions used by Iranian EFL teachers in advanced reading comprehension tests. Twenty teachers participated in this study and generated 215 questions which were then categorized according to Bloom's taxonomy. This taxonomy consists of six major categories which starts from the simplest behavior to the…

  8. A Review of the Kaufman Adolescent and Adult Intelligence Test: An Advancement in Cognitive Assessment?

    ERIC Educational Resources Information Center

    Flanagan, Dawn P.; Alfonso, Vincent C.; Flanagan, Rosemary

    1994-01-01

    Reviews Kaufman Adolescent and Adult Intelligence Test (KAIT), a new assessment of cognitive function for technical qualities such as reliability, validity, and standardization characters. Concludes that KAIT represents advancements in cognitive assessment but cannot be regarded as superior to existing intelligence measures until data is available…

  9. 75 FR 15443 - Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop; Request for Comments AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop; request...

  10. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  11. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station

    NASA Technical Reports Server (NTRS)

    De La Cruz, Melinda; Henderson, Steve

    2016-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD1553B, Ethernet and TAXI) and is designed for rapid testing and deployment of payload experiments to the ISS. The ISS's goal is to reduce the amount of time it takes for a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface.

  12. Point-of-care testing for sexually transmitted infections: recent advances and implications for disease control

    PubMed Central

    Tucker, Joseph D.; Bien, Cedric H.; Peeling, Rosanna W.

    2013-01-01

    Purpose of review Sexually transmitted infections (STIs) remain a major global public health issue, with more than 448 million incident bacterial infections each year. We review recent advances in STI point-of-care (POC) testing and implications for STI prevention and control. Recent findings Accurate immunochromatographic assays to detect HIV, hepatitis C virus (HCV) and syphilis antibodies have made home or supervised self-testing possible. Several studies have demonstrated feasibility and excellent test characteristics for HIV, HCV and syphilis POC tests. Rapid oral HIV tests are now available for purchase at retail sites across the United States. Combined HIV and syphilis tests using a single finger prick blood sample are under evaluation. Summary Oral POC STI tests with comparable performance to blood-based POC tests are available for self-testing. POC tests can expand screening, improve syndromic management and reduce loss to follow up. POC STI tests have the potential to facilitate prompt treatment and partner services. POC STI tests create opportunities for new social and financial models of community-based testing services. Increasing equity and access to testing will create challenges in linkage to care, quality assurance, partner services and surveillance. These important developments warrant research to understand appropriate contexts for implementation. PMID:23242343

  13. The Design and Testing of the LSSIF Advanced Thermal Control System

    NASA Technical Reports Server (NTRS)

    Henson, Robert A.; Keller, John R.

    1995-01-01

    The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.

  14. A home environment test battery for status assessment in patients with advanced Parkinson's disease.

    PubMed

    Westin, Jerker; Dougherty, Mark; Nyholm, Dag; Groth, Torgny

    2010-04-01

    A test battery for assessing patient state in advanced Parkinson's disease, consisting of self-assessments and motor tests, was constructed and implemented on a hand computer with touch screen in a telemedicine setting. The aim of this work was to construct an assessment device, applicable during motor fluctuations in the patient's home environment. Selection of self-assessment questions was based on questions from an e-diary, previously used in a clinical trial. Both un-cued and cued tapping tests and spiral drawing tests were designed for capturing upper limb stiffnes, slowness and involuntary movements. The patient interface gave an audible signal at scheduled response times and was locked otherwise. Data messages in an XML-format were sent from the hand unit to a central server for storage, processing and presentation. In tapping tests, speed and accuracy were calculated and in spiral tests, standard deviation of frequency filtered radial drawing velocity was calculated. An overall test score, combining repeated assessments of the different test items during a test period, was defined based on principal component analysis and linear regression. An evaluation with two pilot patients before and after receiving new types of treatments was performed. Compliance and usability was assessed in a clinical trial (65 patients with advanced Parkinson's disease) and correlations between different test items and internal consistency were investigated. The test battery could detect treatment effect in the two pilot patients, both in self-assessments, tapping tests' results and spiral scores. It had good patient compliance and acceptable usability according to nine nurses. Correlation analysis showed that tapping results provided different information as compared to diary responses. Internal consistency of the test battery was good and learning effects in the tapping tests were small. PMID:19740563

  15. Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix.

    PubMed Central

    Eisenberg, S; Sehayek, E; Olivecrona, T; Vlodavsky, I

    1992-01-01

    Lipoprotein lipase enhances binding at 4 degrees C of human plasma lipoproteins (chylomicrons, VLDL, intermediate density lipoprotein, LDL, and HDL3) to cultured fibroblasts and hepG-2 cells and to extracellular matrix. Heparinase treatment of cells and matrix reduces the lipoprotein lipase enhanced binding by 90-95%. Lipoprotein lipase causes only a minimal effect on the binding of lipoproteins to heparan sulfate deficient mutant Chinese hamster ovary cells while it promotes binding to wild type cells that is abolished after heparinase treatment. With 125I-LDL, lipoprotein lipase also enhances uptake and proteolytic degradation at 37 degrees C by normal human skin fibroblasts but has no effect in heparinase-treated normal cells or in LDL receptor-negative fibroblasts. These observations prove that lipoprotein lipase causes, predominantly, binding of lipoproteins to heparan sulfate at cell surfaces and in extracellular matrix rather than to receptors. This interaction brings the lipoproteins into close proximity with cell surfaces and may promote metabolic events that occur at the cell surface, including facilitated transfer to cellular receptors. Images PMID:1430223

  16. The E-beam resist test facility: performance testing and benchmarking of E-beam resists for advanced mask writers

    NASA Astrophysics Data System (ADS)

    Malloy, Matt; Jang, Il Yong; Mellish, Mac; Litt, Lloyd C.; Raghunathan, Ananthan; Hartley, John

    2012-11-01

    With each new generation of e-beam mask writers comes the ability to write leading edge photomasks with improved patterning performance and increased throughput. However, these cutting-edge e-beam tools are often used with older generation resists, preventing the end-user from taking full advantage of the tool's potential. The generation gap between tool and resist will become even more apparent with the commercialization of multi-beam mask writers, which are expected to be available for pilot line use around 2015. The mask industry needs resists capable of meeting the resolution, roughness, and sensitivity requirements of these advanced tools and applications. The E-beam Resist Test Facility (ERTF) has been established to fill the need for consortium-based testing of e-beam resists for mask writing applications on advanced mask writers out to the 11nm half-pitch node and beyond. SEMATECH and the College of Nanoscale Science and Engineering (CNSE) began establishing the ERTF in early 2012 to test e-beam resist samples from commercial suppliers and university labs against the required performance metrics for each application at the target node. Operations officially began on June 12, 2012, at which time the first e-beam resist samples were tested. The ERTF uses the process and metrology infrastructure available at CNSE, including a Vistec VB300 Vectorscan e-beam tool adjusted to operate at 50kv. Initial testing results show that multiple resists already meet, or are close to meeting, the resolution requirements for mask writing at the 11nm node, but other metrics such as line width roughness still need improvement. An overview of the ERTF and its capabilities is provided here. Tools, baseline processes, and operation strategy details are discussed, and resist testing and benchmarking results are shown. The long-term outlook for the ERTF and plans to expand capability and testing capacity, including resist testing for e-beam direct write lithography, are also

  17. Molecular testing to optimize therapeutic decision making in advanced colorectal cancer

    PubMed Central

    Kim, Edward J.

    2016-01-01

    Colorectal cancer (CRC) is a leading cause of cancer death in the United States. In recent years, therapeutic advances have prolonged the survival of patients with advanced disease. Along with the addition of new treatments, an increasing body of literature explores the potential benefit of using molecular testing to define tumor, circulating, or host biomarkers of benefit to specific treatment strategies. At present, testing for specific mutations in exons 2, 3, and 4 of KRAS and NRAS has become accepted practice to select patients for treatment with epidermal growth factor receptor (EGFR)-targeted agents. Additionally, testing for the BRAF V600E mutation is used to refine decisions based on patient prognosis. The presence of the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) *28 polymorphism is associated with toxicity from irinotecan, although it has not been universally applied. Nonetheless, molecular markers to predict response and toxicity of cytotoxic therapy are evolving. While the development of selection biomarkers for anti-angiogenic treatments has not proved fruitful to date, improved development strategies and novel targeted agents are anticipated to revolutionize the approach to treatment of advanced CRC in the near future. This review summarizes currently available data to select treatment strategies in patients with advanced CRC. PMID:27034809

  18. Molecular testing to optimize therapeutic decision making in advanced colorectal cancer.

    PubMed

    Semrad, Thomas J; Kim, Edward J

    2016-04-01

    Colorectal cancer (CRC) is a leading cause of cancer death in the United States. In recent years, therapeutic advances have prolonged the survival of patients with advanced disease. Along with the addition of new treatments, an increasing body of literature explores the potential benefit of using molecular testing to define tumor, circulating, or host biomarkers of benefit to specific treatment strategies. At present, testing for specific mutations in exons 2, 3, and 4 of KRAS and NRAS has become accepted practice to select patients for treatment with epidermal growth factor receptor (EGFR)-targeted agents. Additionally, testing for the BRAF V600E mutation is used to refine decisions based on patient prognosis. The presence of the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) *28 polymorphism is associated with toxicity from irinotecan, although it has not been universally applied. Nonetheless, molecular markers to predict response and toxicity of cytotoxic therapy are evolving. While the development of selection biomarkers for anti-angiogenic treatments has not proved fruitful to date, improved development strategies and novel targeted agents are anticipated to revolutionize the approach to treatment of advanced CRC in the near future. This review summarizes currently available data to select treatment strategies in patients with advanced CRC. PMID:27034809

  19. The AEDC aerospace chamber 7V: An advanced test capability for infrared surveillance and seeker sensors

    NASA Technical Reports Server (NTRS)

    Simpson, W. R.

    1994-01-01

    An advanced sensor test capability is now operational at the Air Force Arnold Engineering Development Center (AEDC) for calibration and performance characterization of infrared sensors. This facility, known as the 7V, is part of a broad range of test capabilities under development at AEDC to provide complete ground test support to the sensor community for large-aperture surveillance sensors and kinetic kill interceptors. The 7V is a state-of-the-art cryo/vacuum facility providing calibration and mission simulation against space backgrounds. Key features of the facility include high-fidelity scene simulation with precision track accuracy and in-situ target monitoring, diffraction limited optical system, NIST traceable broadband and spectral radiometric calibration, outstanding jitter control, environmental systems for 20 K, high-vacuum, low-background simulation, and an advanced data acquisition system.

  20. Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.; Balas, M. J.

    2006-01-01

    Control can improve wind turbine performance by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory, we are implementing and testing state-space controls on the Controls Advanced Research Turbine (CART), a turbine specifically configured to test advanced controls. We show the design of control systems to regulate turbine speed in Region 3 using rotor collective pitch and reduce dynamic loads in Regions 2 and 3 using generator torque. These controls enhance damping in the first drive train torsion mode. We base these designs on sensors typically used in commercial turbines. We evaluate the performance of these controls by showing field test results. We also compare results from these modern controllers to results from a baseline proportional integral controller for the CART. Finally, we report conclusions to this work and outline future studies.

  1. Parameter estimation and tests of General Relativity with GW transients in Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Vitale, Salvatore

    2016-03-01

    The Advanced LIGO observatories have successfully completed their first observation run. Data were collected from September 2015 to January 2016, with a sensitivity a few times better than initial instruments in the hundreds of Hertz band. Bayesian parameter estimation and model selection algorithms can be used to estimate the astrophysical parameters of gravitational-wave sources, as well as to perform tests of General Relativity in its strong-field dynamical regime. In this talk we will describe the methods devised to characterize transient gravitational wave sources and their applications in the advanced gravitational-wave detector era.

  2. Analyses of the dynamic docking test system for advanced mission docking system test programs. [Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Williams, J. E.

    1974-01-01

    Results are given of analytical studies performed in support of the design, implementation, checkout and use of NASA's dynamic docking test system (DDTS). Included are analyses of simulator components, a list of detailed operational test procedures, a summary of simulator performance, and an analysis and comparison of docking dynamics and loads obtained by test and analysis.

  3. The use of safeguards data for process monitoring in the Advanced Test Line for Actinide Separations

    SciTech Connect

    Barnes, J.W.; Yarbro, S.L.

    1987-01-01

    Los Alamos is constructing an integrated process monitoring/materials control and accounting (PM/MC and A) system in the Advanced Testing Line for Actinide Separations (ATLAS) at the Los Alamos Plutonium Facility. The ATLAS will test and demonstrate new methods for aqueous processing of plutonium. The ATLAS will also develop, test, and demonstrate the concepts for integrated process monitoring/materials control and accounting. We describe how this integrated PM/MC and A system will function and provide benefits to both process research and materials accounting personnel.

  4. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  5. Boeing Helicopters Advanced Rotorcraft Transmission (ART) Program summary of component tests

    NASA Astrophysics Data System (ADS)

    Lenski, Joseph W., Jr.; Valco, Mark J.

    1992-07-01

    The principal objectives of the ART program are briefly reviewed, and the results of advanced technology component tests are summarized. The tests discussed include noise reduction by active cancellation, hybrid bidirectional tapered roller bearings, improved bearing life theory and friction tests, transmission lube study with hybrid bearings, and precision near-net-shape forged spur gears. Attention is also given to the study of high profile contact ratio noninvolute tooth form spur gears, parallel axis gear noise study, and surface modified titanium accessory spur gears.

  6. Advanced development of the spectrum sciences Model 5005-TF, single-event test fixture

    SciTech Connect

    Ackermann, M.R.; Browning, J.S. ); Hughlock, B.W. ); Lum, G.K. ); Tsacoyeanes, W.C. Lab., Inc., Cambridge, MA ); Weeks, M.D. )

    1990-09-01

    This report summarizes the advanced development of the Spectrum Sciences Model 5005-TF, Single-Event Test Fixture. The Model 5005-TF uses a Californium-252 (Cf-252) fission-fragment source to test integrated circuits and other devices for the effects of single-event phenomena. Particle identification methods commonly used in high-energy physics research and nuclear engineering have been incorporated into the Model 5005-TF for estimating the particle charge, mass, and energy parameters. All single-event phenomena observed in a device under test (DUT) are correlated with an identified fission fragment, and its linear energy transfer (LET) and range in the semiconductor material of the DUT.

  7. Development and integration of the Army's Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) HWIL facilities

    NASA Astrophysics Data System (ADS)

    LeSueur, Kenneth G.; Lowry, William; Morris, Joe

    2006-05-01

    The Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) is a suite of state-of-the-art hardware-in-the-loop (HWIL) simulation / test capabilities designed to meet the life-cycle testing needs of multi-spectral systems. This paper presents the major AMSTAR facility design concepts and each of the Millimeter Wave (MMW), Infrared (IR), and Semi-Active Laser (SAL) in-band scene generation and projection system designs. The emergence of Multispectral sensors in missile systems necessitates capabilities such as AMSTAR to simultaneous project MMW, IR, and SAL wave bands into a common sensor aperture.

  8. Development and integration of the Army's advanced multispectral simulation test acceptance resource (AMSTAR) HWIL facilities

    NASA Astrophysics Data System (ADS)

    LeSueur, Kenneth G.; Lowry, William; Morris, Joe

    2005-05-01

    The Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) is a suite of state-of-the-art Hardware-In-the-Loop (HWIL) simulation / test capabilities designed to meet the life-cycle testing needs of multi-spectral systems. This paper presents the major AMSTAR facility design concepts and each of the Millimeter Wave (MMW), Infrared (IR), and Semi-Active Laser (SAL) in-band scene generation and projection system designs. The emergence of Multispectral sensors in missile systems necessitates capabilities such as AMSTAR to simultaneous project MMW, IR, and SAL wave bands into a common sensor aperture.

  9. Design tradeoffs in the development of the advanced multispectral simulation test acceptance resource (AMSTAR) HWIL facilities

    NASA Astrophysics Data System (ADS)

    LeSueur, Kenneth G.; Almendinger, Frank J.

    2007-04-01

    The Army's Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) is a suite of missile Hardware-In-the-Loop (HWIL) simulation / test capabilities designed to support testing from concept through production. This paper presents the design tradeoffs that were conducted in the development of the AMSTAR sensor stimulators and the flight motion simulators. The AMSTAR facility design includes systems to stimulate each of the Millimeter Wave (MMW), Infrared (IR), and Semi-Active Laser (SAL) sensors. The flight motion simulator (FMS) performance was key to the success of the simulation but required many concessions to accommodate the design considerations for the tri-mode stimulation systems.

  10. A Combustion Research Facility for Testing Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bur, Michael J.

    2003-01-01

    The test facility presented herein uses a groundbased rocket combustor to test the durability of new ceramic composite and metallic materials in a rocket engine thermal environment. A gaseous H2/02 rocket combustor (essentially a ground-based rocket engine) is used to generate a high temperature/high heat flux environment to which advanced ceramic and/or metallic materials are exposed. These materials can either be an integral part of the combustor (nozzle, thrust chamber etc) or can be mounted downstream of the combustor in the combustor exhaust plume. The test materials can be uncooled, water cooled or cooled with gaseous hydrogen.

  11. Temperature monitoring options available at the Idaho national laboratory advanced test reactor

    NASA Astrophysics Data System (ADS)

    Daw, J. E.; Rempe, J. L.; Knudson, D. L.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.

    2013-09-01

    As part of the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Clearly, temperature sensor selection for irradiation tests will be determined based on the irradiation environment and budget. However, temperature sensors now offered by INL include a wide array of melt wires in small capsules, silicon carbide monitors, commercially available thermocouples, and specialized high temperature irradiation resistant thermocouples containing doped molybdenum and niobium alloy thermoelements. In addition, efforts have been initiated to develop and evaluate ultrasonic thermometers for irradiation testing. This array of temperature monitoring options now available to ATR and other Material and Test Reactor (MTR) users fulfills recent customer requests.

  12. Advanced Vehicle Testing Activity Cold Weather On-road Testing of the Chevrolet Volt

    SciTech Connect

    Smart, John

    2015-03-01

    This report details cold weather on-road testing of a Chevrolet Volt. It quantifies changes in efficiency and electric range as ambient temperature changes. It will be published to INL's AVTA website as an INL technical report and will be accessible to the general public.

  13. Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids

    ERIC Educational Resources Information Center

    Biggerstaff, Kyle D.; Wooten, Joshua S.

    2004-01-01

    A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…

  14. Progress in Implementing and Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.; Stol, K. A.

    2004-12-01

    Designing wind turbines with maximum energy production and longevity for minimal cost is a major goal of the federal wind program and the wind industry. Control can improve the performance of wind turbines by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory (NREL) we are designing state-space control algorithms for turbine speed regulation and load reduction and testing them on the Controls Advanced Research Turbine (CART). The CART is a test-bed especially designed to test advanced control algorithms on a two-bladed teetering hub upwind turbine. In this paper we briefly describe the design of control systems to regulate turbine speed in region 3 for the CART. These controls use rotor collective pitch to regulate speed and also enhance damping in the 1st drive-train torsion, 1st rotor symmetric flap mode, and the 1st tower fore-aft mode. We designed these controls using linear optimal control techniques using state estimation based on limited turbine measurements such as generator speed and tower fore-aft bending moment. In this paper, we describe the issues and steps involved with implementing and testing these controls on the CART, and we show simulated tests to quantify controller performance. We then present preliminary results after implementing and testing these controls on the CART. We compare results from these controls to field test results from a baseline Proportional Integral control system. Finally we report conclusions to this work and outline future studies.

  15. Lgt Processing Is an Essential Step in Streptococcus suis Lipoprotein Mediated Innate Immune Activation

    PubMed Central

    Wichgers Schreur, Paul J.; Rebel, Johanna M. J.; Smits, Mari A.; van Putten, Jos P. M.; Smith, Hilde E.

    2011-01-01

    Background Streptococcus suis causes invasive infections in pigs and occasionally in humans. The host innate immune system plays a major role in counteracting S. suis infections. The main components of S. suis able to activate the innate immune system likely include cell wall constituents that may be released during growth or after cell wall integrity loss, however characterization of these components is still limited. Methology/Principal Findings A concentrated very potent innate immunity activating supernatant of penicillin-treated S. suis was SDS-PAGE fractionated and tested for porcine peripheral blood mononucleated cell (PBMC) stimulating activity using cytokine gene transcript analysis. More than half of the 24 tested fractions increased IL-1β and IL-8 cytokine gene transcript levels in porcine PBMCs. Mass spectrometry of the active fractions indicated 24 proteins including 9 lipoproteins. Genetic inactivation of a putative prolipoprotein diacylglyceryl transferase (Lgt) gene resulted in deficient lipoprotein synthesis as evidenced by palmitate labeling. The Lgt mutant showed strongly reduced activation of porcine PBMCs, indicating that lipoproteins are dominant porcine PBMC activating molecules of S. suis. Conclusion/Significance This study for the first time identifies and characterizes lipoproteins of S. suis as major activators of the innate immune system of the pig. In addition, we provide evidence that Lgt processing of lipoproteins is required for lipoprotein mediated innate immune activation. PMID:21811583

  16. Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing

    SciTech Connect

    D. L. Knudson; J. L. Rempe

    2012-02-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated in pressurized water reactor (PWR) coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL's High Temperature Test Laboratory (HTTL).

  17. Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing

    SciTech Connect

    D. L. Knudson; J. L. Rempe

    2012-02-01

    New materials are being considered for fuel, cladding and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine and return irradiated samples for each measurement make this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated under pressurized water reactor coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory.

  18. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

  19. Testing advances in molecular discrimination among Chinook salmon life histories: evidence from a blind test.

    PubMed

    Banks, Michael A; Jacobson, David P; Meusnier, Isabelle; Greig, Carolyn A; Rashbrook, Vanessa K; Ardren, William R; Smith, Christian T; Bernier-Latmani, Jeremiah; Van Sickle, John; O'Malley, Kathleen G

    2014-06-01

    The application of DNA-based markers toward the task of discriminating among alternate salmon runs has evolved in accordance with ongoing genomic developments and increasingly has enabled resolution of which genetic markers associate with important life-history differences. Accurate and efficient identification of the most likely origin for salmon encountered during ocean fisheries, or at salvage from fresh water diversion and monitoring facilities, has far-reaching consequences for improving measures for management, restoration and conservation. Near-real-time provision of high-resolution identity information enables prompt response to changes in encounter rates. We thus continue to develop new tools to provide the greatest statistical power for run identification. As a proof of concept for genetic identification improvements, we conducted simulation and blind tests for 623 known-origin Chinook salmon (Oncorhynchus tshawytscha) to compare and contrast the accuracy of different population sampling baselines and microsatellite loci panels. This test included 35 microsatellite loci (1266 alleles), some known to be associated with specific coding regions of functional significance, such as the circadian rhythm cryptochrome genes, and others not known to be associated with any functional importance. The identification of fall run with unprecedented accuracy was demonstrated. Overall, the top performing panel and baseline (HMSC21) were predicted to have a success rate of 98%, but the blind-test success rate was 84%. Findings for bias or non-bias are discussed to target primary areas for further research and resolution. PMID:24628286

  20. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2009-09-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  1. Validation test of 125 Ah advanced design IPV nickel-hydrogen flight cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1993-01-01

    An update of validation test results confirming the advanced design nickel-hydrogen cell is presented. An advanced 125 Ah individual pressure vessel (IPV) nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, Low-Earth-Orbit (LEO) spacecraft missions. The new features of this design, which are not incorporated in state-of-the-art design cells, are: (1) use of 26 percent rather than 31 percent potassium hydroxide (KOH) electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. Six 125 Ah flight cells based on this design were fabricated by Eagle-Picher. Three of the cells contain all of the advanced features (test cells) and three are the same as the test cells except they do not have catalyst on the wall wick (control cells). All six cells are in the process of being evaluated in a LEO cycle life test at the Naval Weapons Support Center, Crane, IN, under a NASA Lewis Research Center contract. The catalyzed wall wick cells have been cycled for over 19000 cycles with no cell failures in the continuing test. Two of the noncatalyzed wall wick cells failed (cycles 9588 and 13,900).

  2. Excessive centrifugal fields damage high density lipoprotein[S

    PubMed Central

    Munroe, William H.; Phillips, Martin L.; Schumaker, Verne N.

    2015-01-01

    HDL is typically isolated ultracentrifugally at 40,000 rpm or greater, however, such high centrifugal forces are responsible for altering the recovered HDL particle. We demonstrate that this damage to HDL begins at approximately 30,000 rpm and the magnitude of loss increases in a rotor speed-dependent manner. The HDL is affected by elevated ultracentrifugal fields resulting in a lower particle density due to the shedding of associated proteins. To circumvent the alteration of the recovered HDL, we utilize a KBr-containing density gradient and a lowered rotor speed of 15,000 rpm to separate the lipoproteins using a single 96 h centrifugation step. This recovers the HDL at two density ranges; the bulk of the material has a density of about 1.115 g/ml, while lessor amounts of material are recovered at >1.2 g/ml. Thus, demonstrating the isolation of intact HDL is possible utilizing lower centrifuge rotor speeds. PMID:25910941

  3. The antigenic similarity of human low density lipoproteins.

    PubMed

    LEVINE, L; KAUFFMAN, D L; BROWN, R K

    1955-08-01

    THE FOLLOWING HUMAN LOW DENSITY LIPOPROTEINS WERE PREPARED: beta-lipoproteins of densities greater than 1.040 (A, B,C) a beta-lipoprotein of -S(1.063) = 5 (D), a lipoprotein of -S(1.063) = 19 (E), and a lipoprotein of -S(1.063) = 70 (F). Data are presented which show the immunochemical homogeneity of the D lipoprotein rabbit-anti-D lipoprotein system. Cross-reactions between antibody to A and D lipoproteins and the above lipoproteins have been demonstrated by quantitative precipitation, quanitative complement fixation, and single and double diffusion in agar. The antigenic similarities appear to be associated with the protein portions of the molecule. The antisera produced did not differentiate the low density lipoprotein classes. PMID:13242737

  4. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 4: Full scale ground test

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Dorwald, F.

    1982-01-01

    The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.

  5. Earth Observing System (EOS)/ Advanced Microwave Sounding Unit-A (AMSU-A): Special Test Equipment. Software Requirements

    NASA Technical Reports Server (NTRS)

    Schwantje, Robert

    1995-01-01

    This document defines the functional, performance, and interface requirements for the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A) Special Test Equipment (STE) software used in the test and integration of the instruments.

  6. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  7. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.

  8. Unified Instrumentation: Examining the Simultaneous Application of Advanced Measurement Techniques for Increased Wind Tunnel Testing Capability

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A. (Editor); Bartram, Scott M.; Humphreys, William M., Jr.; Jenkins, Luther N.; Jordan, Jeffrey D.; Lee, Joseph W.; Leighty, Bradley D.; Meyers, James F.; South, Bruce W.; Cavone, Angelo A.; Ingram, JoAnne L.

    2002-01-01

    A Unified Instrumentation Test examining the combined application of Pressure Sensitive Paint, Projection Moire Interferometry, Digital Particle Image Velocimetry, Doppler Global Velocimetry, and Acoustic Microphone Array has been conducted at the NASA Langley Research Center. The fundamental purposes of conducting the test were to: (a) identify and solve compatibility issues among the techniques that would inhibit their simultaneous application in a wind tunnel, and (b) demonstrate that simultaneous use of advanced instrumentation techniques is feasible for increasing tunnel efficiency and identifying control surface actuation / aerodynamic reaction phenomena. This paper provides summary descriptions of each measurement technique used during the Unified Instrumentation Test, their implementation for testing in a unified fashion, and example results identifying areas of instrument compatibility and incompatibility. Conclusions are drawn regarding the conditions under which the measurement techniques can be operated simultaneously on a non-interference basis. Finally, areas requiring improvement for successfully applying unified instrumentation in future wind tunnel tests are addressed.

  9. Full-load testing of the advanced V64. 3 gas turbine

    SciTech Connect

    Maghon, H.; Schulenburg; Froehlich, G. ); Laakkonen, M. ); Termuehlen, H. )

    1991-01-01

    This paper reports on the first V64.3 gas turbine installed in the author's factory test facility for extensive testing. The unit reached a maximum output far in excess of the introductory ISO rating of 53 MW. Testing of the unit will provide the authors with important information for all the advanced gas turbine models, which have been designed and will be built in accordance with the laws of similarity applied to different rated speeds. In the meantime, two V64.3 gas turbines have been supplied for the power plant Vuosaari in Finland and test data of these units are also available. The V64.3 gas turbine model can be applied to either 50 or 60 Hz systems with a different gear box ratio. The V84.3 model, which is a 60 Hz unit, will be tested in early 1992 and the first V94.3 turbine will be ready for shipment in 1993.

  10. Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Howard, Richard T.; Heaton, Andrew F.

    2008-01-01

    Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes.

  11. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles*

    PubMed Central

    Biagini, Massimiliano; Garibaldi, Manuela; Aprea, Susanna; Pezzicoli, Alfredo; Doro, Francesco; Becherelli, Marco; Taddei, Anna Rita; Tani, Chiara; Tavarini, Simona; Mora, Marirosa; Teti, Giuseppe; D'Oro, Ugo; Nuti, Sandra; Soriani, Marco; Margarit, Immaculada; Rappuoli, Rino; Grandi, Guido; Norais, Nathalie

    2015-01-01

    Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles. PMID:26018414

  12. Contribution of lipoproteins and lipoprotein processing to endocarditis virulence in Streptococcus sanguinis.

    PubMed

    Das, Sankar; Kanamoto, Taisei; Ge, Xiuchun; Xu, Ping; Unoki, Takeshi; Munro, Cindy L; Kitten, Todd

    2009-07-01

    Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by >1,000-fold. [(3)H]palmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence. PMID:19395487

  13. In-situ Creep Testing Capability Development for Advanced Test Reactor

    SciTech Connect

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  14. Major advances in testing of dairy products: milk component and dairy product attribute testing.

    PubMed

    Barbano, D M; Lynch, J M

    2006-04-01

    Milk component analysis is relatively unusual in the field of quantitative analytical chemistry because an analytical test result determines the allocation of very large amounts of money between buyers and sellers of milk. Therefore, there is high incentive to develop and refine these methods to achieve a level of analytical performance rarely demanded of most methods or laboratory staff working in analytical chemistry. In the last 25 yr, well-defined statistical methods to characterize and validate analytical method performance combined with significant improvements in both the chemical and instrumental methods have allowed achievement of improved analytical performance for payment testing. A shift from marketing commodity dairy products to the development, manufacture, and marketing of value added dairy foods for specific market segments has created a need for instrumental and sensory approaches and quantitative data to support product development and marketing. Bringing together sensory data from quantitative descriptive analysis and analytical data from gas chromatography olfactometry for identification of odor-active compounds in complex natural dairy foods has enabled the sensory scientist and analytical chemist to work together to improve the consistency and quality of dairy food flavors. PMID:16537952

  15. Test Hardware Design for Flightlike Operation of Advanced Stirling Convertors (ASC-E3)

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  16. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  17. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R

    SciTech Connect

    1999-09-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

  18. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sun power Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. In the past year, NASA GRC has been building a test facility to support extended operation of a pair of engineering level ASCs. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. Mechanical support hardware, data acquisition software, and an instrumentation rack were developed to prepare the pair of convertors for continuous extended operation. Short-term tests were performed to gather baseline performance data before extended operation was initiated. These tests included workmanship vibration, insulation thermal loss characterization, low-temperature checkout, and fUll-power operation. Hardware and software features are implemented to ensure reliability of support systems. This paper discusses the mechanical support hardware, instrumentation rack, data acquisition software, short-term tests, and safety features designed to support continuous unattended operation of a pair of ASCs.

  19. Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998

    SciTech Connect

    1998-08-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

  20. Testing of advanced ceramic fabric heat pipe for a Stirling engine

    SciTech Connect

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.

    1991-09-01

    The development and application of Stirling engines for space power production requires concomitant development of an advanced heat rejection system. We are currently involved in the design, development, and testing of advanced ceramic fabric (ACF) water heat pipes for optimal heat rejection from the Stirling cycle without the use of hazardous working fluids such as mercury. Our testing to-date has been with a 200-{mu}m thick titanium heat pipe utilizing Nextel {trademark} fabric as both the outer structural component and as a wick. This heat pipe has been successfully started up from a frozen condition against a negative 4 degree tilt (i.e., fluid return to evaporator was against gravity), with 75 W heat input, in ambient air. In a horizontal orientation, up to 100 W heat input was tolerated without experiencing dryout. 7 refs., 5 figs., 2 tabs.

  1. Cholesterol in serum lipoprotein fractions after spaceflight

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Johnson, Philip C., Jr.; Krauhs, Jane M.; Cintron, Nitza M.

    1988-01-01

    Results are reported from blood-lipid measurements obtained from 125 Space Shuttle crew members before and after space flight. The data are presented in tables and discussed in detail. The main differences noted between preflight and postflight values are a 12.8-percent decrease in high-density lipoproteins on postflight day 1 and significant decreases in total cholesterol and both high- and low-density lipoproteins later in the 23-day postflight period.

  2. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  3. Correlation of Simulation Examination to Written Test Scores for Advanced Cardiac Life Support Testing: Prospective Cohort Study

    PubMed Central

    Strom, Suzanne L.; Anderson, Craig L.; Yang, Luanna; Canales, Cecilia; Amin, Alpesh; Lotfipour, Shahram; McCoy, C. Eric; Langdorf, Mark I.

    2015-01-01

    Introduction Traditional Advanced Cardiac Life Support (ACLS) courses are evaluated using written multiple-choice tests. High-fidelity simulation is a widely used adjunct to didactic content, and has been used in many specialties as a training resource as well as an evaluative tool. There are no data to our knowledge that compare simulation examination scores with written test scores for ACLS courses. Objective To compare and correlate a novel high-fidelity simulation-based evaluation with traditional written testing for senior medical students in an ACLS course. Methods We performed a prospective cohort study to determine the correlation between simulation-based evaluation and traditional written testing in a medical school simulation center. Students were tested on a standard acute coronary syndrome/ventricular fibrillation cardiac arrest scenario. Our primary outcome measure was correlation of exam results for 19 volunteer fourth-year medical students after a 32-hour ACLS-based Resuscitation Boot Camp course. Our secondary outcome was comparison of simulation-based vs. written outcome scores. Results The composite average score on the written evaluation was substantially higher (93.6%) than the simulation performance score (81.3%, absolute difference 12.3%, 95% CI [10.6–14.0%], p<0.00005). We found a statistically significant moderate correlation between simulation scenario test performance and traditional written testing (Pearson r=0.48, p=0.04), validating the new evaluation method. Conclusion Simulation-based ACLS evaluation methods correlate with traditional written testing and demonstrate resuscitation knowledge and skills. Simulation may be a more discriminating and challenging testing method, as students scored higher on written evaluation methods compared to simulation. PMID:26594288

  4. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    SciTech Connect

    Holmes, Forest Howard

    2015-11-01

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”

  5. Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms

    SciTech Connect

    Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

    2011-02-01

    Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

  6. Wake potentials and impedances for the ATA (Advanced Test Accelerator) induction cell

    SciTech Connect

    Craig, G.D.

    1990-09-04

    The AMOS Wakefield Code is used to calculate the impedances of the induction cell used in the Advanced Test Accelerator (ATA) at Livermore. We present the wakefields and impedances for multipoles m = 0, 1 and 2. The ATA cell is calculated to have a maximum transverse impedance of approximately 1000 {Omega}/m at 875 MHz with a quality factor Q = 5. The sensitivity of the impedance spectra to modeling variations is discussed.

  7. Association between lipids, lipoproteins composition of HDL particles and triglyceride-rich lipoproteins, and LCAT and CETP activity in post-renal transplant patients.

    PubMed

    Kimak, Elżbieta; Bylina, Jerzy; Solski, Janusz; Hałabiś, Magdalena; Baranowicz-Gąszczyk, Iwona; Książek, Andrzej

    2013-11-01

    High-density lipoprotein (HDL) remodeling within the plasma compartment and the association between lecithin-cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) activity, and lipid, lipoprotein concentrations and composition were investigated. The aim was to examine the high sensitivity of C-reactive protein (hsCRP), lipid, apolipoprotein B (apoB), apoAI, total apoAII, apoAIInonB, apoB-containing apoAII (apoB:AII), total apoCIII, apoCIIInonB, apoB-containing apoCIII (apoB:CIII) concentration and LCAT and CETP activity to gain an insight into the association between them and LCAT and CETP, 57 post-renal transplant (Tx) patients with and without statin therapy and in 15 healthy subjects. Tx patients had moderate hypertriglyceridemia, hypercholesterolemia, and dyslipoproteinemia, disturbed triglyceride-rich lipoproteins (TRLs) and HDL composition, decreased LCAT, and slightly increased hsCRP but no CETP activity. Spearman's correlation test showed the association between lipids and lipoproteins and LCAT or CETP, and multiple ridge stepwise forward regression showed that immunosuppressive therapy in Tx patients can disturb HDL and TRLs composition. The results suggest that inhibition or activation of LCAT is due, in part, to HDL-associated lipoprotein. Lipoprotein composition of apoAI, apoAIInonB, and apoCIIInonB in HDL particle and apoB:AII TRLs can contribute to decrease LCAT mass in Tx patients. Tx patients without statin and with lower triglycerides but higher HDL cholesterol concentration and disturbed lipoprotein composition of ApoAI and apoAII in HDL particle can decrease LCAT, increase LDL cholesterol, aggravate renal graft, and accelerate atherosclerosis and chronic heart diseases. PMID:23479335

  8. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    SciTech Connect

    Gray S. Chang

    2011-05-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  9. Life test results for the advanced very high resolution radiometer scanner

    NASA Technical Reports Server (NTRS)

    Lenz, James

    1996-01-01

    The following paper reports the results obtained during a 3.33-year life test on the TIROS Advanced Very High Resolution Radiometer/3 (AVHRR/3) Scanner. The bearing drag torque and lubricant loss over life will be compared to predicted values developed through modeling. The condition of the lubricant at the end of the test will be described and a theory presented to explain the results obtained. The differences (if any) in the predicted and measured values of drag torque and lubricant loss will be discussed and possible reasons for these examined.

  10. Fabrication and test of prototype ring magnets for the ALS (Advanced Light Source)

    SciTech Connect

    Tanabe, J.; Avery, R.; Caylor, R.; Green, M.I.; Hoyer, E.; Halbach, K.; Hernandez, S.; Humphries, D.; Kajiyama, Y.; Keller, R.; Low, W.; Marks, S.; Milburn, J.; Yee, D.

    1989-03-01

    Prototype Models for the Advanced Light Source (ALS) Booster Dipole, Quadrupole and Sextupole and the Storage Ring Gradient Magnet, Quadrupole and Sextupole have been constructed. The Booster Magnet Prototypes have been tested. The Storage Ring Magnets are presently undergoing tests and magnetic measurements. This paper reviews the designs and parameters for these magnets, briefly describes features of the magnet designs which respond to the special constraints imposed by the requirements for both accelerator rings, and reviews some of the results of magnet measurements for the prototype. 13 refs., 7 figs., 1 tab.

  11. Design, development, and flight test of a demonstration advanced avionics system

    NASA Technical Reports Server (NTRS)

    Denergy, D. G.; Callas, G. P.; Hardy, G. H.; Nedell, W.

    1983-01-01

    Ames Research Center initiated a program in 1975 to provide the critical information required for the design of integrated avionics suitable for general aviation. The program emphasized the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. Design considerations included cost, reliability, maintainability, and modularity. As a final step, a demonstration advanced avionics system (DAAS) was designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. A functional description of the DAAS, including a description of the system architecture, is presented and the program and flight test results are briefly reviewed.

  12. Validation test of advanced technology for IPV nickel-hydrogen flight cells - Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the LEO cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion.

  13. Installation and Final Testing of an On-Line, Multi-Spectrometer Fission Product Monitoring System (FPMS) to Support Advanced Gas Reactor (AGR) Fuel Testing and Qualification in the Advanced Test Reactor

    SciTech Connect

    J. K. Hartwell; D. M. Scates; M. W. Drigert; J. B. Walter

    2006-10-01

    The US Department of Energy (DOE) is initiating tests of reactor fuel for use in an Advanced Gas Reactor (AGR). The AGR will use helium coolant, a low-power-density ceramic core, and coated-particle fuel. A series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). One important measure of fuel performance in these tests is quantification of the fission gas releases over the nominal 2-year duration of each irradiation experiment. This test objective will be met using the AGR Fission Product Monitoring System (FPMS) which includes seven (7) on-line detection stations viewing each of the six test capsule effluent lines (plus one spare). Each station incorporates both a heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometer for quantification of the isotopic releases, and a NaI(Tl) scintillation detector to monitor the total count rate and identify the timing of the releases. The AGR-1 experiment will begin irradiation after October 1, 2006. To support this experiment, the FPMS has been completely assembled, tested, and calibrated in a laboratory at the INL, and then reassembled and tested in its final location in the ATR reactor basement. This paper presents the details of the equipment performance, the control and acquisition software, the test plan for the irradiation monitoring, and the installation in the ATR basement. Preliminary on-line data may be available by the Conference date.

  14. RECENT ADVANCES OF GENETIC ANCESTRY TESTING IN BIOMEDICAL RESEARCH AND DIRECT TO CONSUMER TESTING

    PubMed Central

    Via, Marc; Ziv, Elad; Burchard, Esteban González

    2010-01-01

    In the post-Human Genome Project era, the debate on the concept of race/ethnicity and its implications for biomedical research are dependent on two critical issues: whether and how to classify individuals and whether biological factors play a role in health disparities. The advent of reliable estimates of genetic (or biogeographic) ancestry has provided this debate with a quantitative and more objective tool. The estimation of genetic ancestry allows investigators to control for population stratification in association studies and helps to detect biological causation behind population-specific differences in disease and drug response. New techniques such as admixture mapping can specifically detect population-specific risk alleles for a disease in admixed populations. However, researchers have to be mindful of the correlation between genetic ancestry and socioeconomic and environmental factors that could underlie these differences. More importantly, researchers must avoid the stigmatization of individuals based on perceived or real genetic risks. The latter point will become increasingly sensitive as several “for profit companies” are offering ancestry and genetic testing directly to consumers and the consequences of the spread of the services of these companies is still unforeseeable. PMID:19793051

  15. Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony

    2009-01-01

    Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.

  16. Construction and evaluation of a plasmid vector for the expression of recombinant lipoproteins in Escherichia coli.

    PubMed

    Cullen, Paul A; Lo, Miranda; Bulach, Dieter M; Cordwell, Stuart J; Adler, Ben

    2003-01-01

    Outer membrane lipoproteins are emerging as key targets for protective immunity to many bacterial pathogens. Heterologous expression of lipoproteins in Escherichia coli does not always result in high level expression of acylated recombinant protein. Thus, these proteins do not take up their correct membrane topology and are lacking the immunostimulatory properties endowed by the lipid. To this end, we have designed a lipoprotein expression vector (pDUMP) that results in the production of fusion proteins containing the E. coli major outer membrane lipoprotein (Lpp) signal sequence, lipoprotein signal peptidase recognition site, and the +2 outer membrane sorting signal at their N termini. To test the ability of pDUMP to express lipoproteins from heterologous hosts, the surface lipoprotein PsaA from the Gram-positive organism Streptococcus pneumoniae and the outer membrane lipoproteins MlpA from the Gram-negative Pasteurella multocida and BlpA from the spirochete Brachyspira hyodysenteriae were cloned into both hexahistidine fusion vectors and pDUMP. High level expression of antigenically active protein from both the hexahistidine fusion vectors and pDUMP resulted in abundant bands of the predicted molecular masses when analyzed by SDS-PAGE. When grown in the presence of 3[H]palmitic acid, proteins encoded by pDUMP were observed to incorporate palmitic acid whilst the hexahistidine fusion proteins did not. Using mass spectrometry and image analysis we determined the efficiency of lipidation between the three clones to vary from 31.7 to 100%. In addition, lipidated, but not hexahistidine, forms of the proteins were presented on the E. coli surface. PMID:12583997

  17. Lifestyle and Metformin Treatment Favorably Influence Lipoprotein Subfraction Distribution in the Diabetes Prevention Program

    PubMed Central

    Temprosa, M.; Otvos, J.; Brunzell, J.; Marcovina, S.; Mather, K.; Arakaki, R.; Watson, K.; Horton, E.; Barrett-Connor, E.

    2013-01-01

    Context: Although intensive lifestyle change (ILS) and metformin reduce diabetes incidence in subjects with impaired glucose tolerance (IGT), their effects on lipoprotein subfractions have not been studied. Objective: The objective of the study was to characterize the effects of ILS and metformin vs placebo interventions on lipoprotein subfractions in the Diabetes Prevention Program. Design: This was a randomized clinical trial, testing the effects of ILS, metformin, and placebo on diabetes development in subjects with IGT. Participants: Selected individuals with IGT randomized in the Diabetes Prevention Program participated in the study. Interventions: Interventions included randomization to metformin 850 mg or placebo twice daily or ILS aimed at a 7% weight loss using a low-fat diet with increased physical activity. Main Outcome Measures: Lipoprotein subfraction size, density, and concentration measured by magnetic resonance and density gradient ultracentrifugation at baseline and 1 year were measured. Results: ILS decreased large and buoyant very low-density lipoprotein, small and dense low-density lipoprotein (LDL), and small high-density lipoprotein (HDL) and raised large HDL. Metformin modestly reduced small and dense LDL and raised small and large HDL. Change in insulin resistance largely accounted for the intervention-associated decreases in large very low-density lipoprotein, whereas changes in body mass index (BMI) and adiponectin were strongly associated with changes in LDL. Baseline and a change in adiponectin were related to change in large HDL, and BMI change associated with small HDL change. The effect of metformin to increase small HDL was independent of adiponectin, BMI, and insulin resistance. Conclusion: ILS and metformin treatment have favorable effects on lipoprotein subfractions that are primarily mediated by intervention-related changes in insulin resistance, BMI, and adiponectin. Interventions that slow the development of diabetes may also

  18. Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope

    SciTech Connect

    Mishra, Chandra Kant; Arun, K. G.; Iyer, Bala R.; Sathyaprakash, B. S.

    2010-09-15

    General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitational-wave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44M{sub {center_dot}}. The choice of the lower frequency cutoff is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.

  19. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.

  20. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2010-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC E2 heater head assembly. These mechanical tests were collectively referred to as lateral load tests since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  1. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2010-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  2. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2011-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  3. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  4. Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement.

    PubMed

    Shatkin, J A; Ong, Kimberly J; Beaudrie, Christian; Clippinger, Amy J; Hendren, Christine Ogilvie; Haber, Lynne T; Hill, Myriam; Holden, Patricia; Kennedy, Alan J; Kim, Baram; MacDonell, Margaret; Powers, Christina M; Sharma, Monita; Sheremeta, Lorraine; Stone, Vicki; Sultan, Yasir; Turley, Audrey; White, Ronald H

    2016-08-01

    The Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM. Based on this review, experts recommended immediate and near-term actions that would advance ATS use in NM risk assessment. Three focal areas-human health, ecological health, and exposure considerations-shaped deliberations about information needs, priorities, and the next steps required to increase confidence in and use of ATS in NM risk assessment. The deliberations revealed that ATS are now being used for screening, and that, in the near term, ATS could be developed for use in read-across or categorization decision making within certain regulatory frameworks. Participants recognized that leadership is required from within the scientific community to address basic challenges, including standardizing materials, protocols, techniques and reporting, and designing experiments relevant to real-world conditions, as well as coordination and sharing of large-scale collaborations and data. Experts agreed that it will be critical to include experimental parameters that can support the development of adverse outcome pathways. Numerous other insightful ideas for investment in ATS emerged throughout the discussions and are further highlighted in this article. PMID:27510619

  5. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    SciTech Connect

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  6. Advance in a nano-accuracy surface profiler with an extended-angle test range

    NASA Astrophysics Data System (ADS)

    Qian, Shinan; Qian, Kun; Idir, Mourad

    2013-05-01

    An advanced design of a nano-accuracy surface profiler (NSP) is introduced wherein we combined a scanning optical head with non-tilted reference system to facilitate measurements over an extended range of angles. The lateral motion of the beam during testing of a strongly curved mirror induces a systematic error. For a pencil-beam scanning profiler, the arm with varying optical-path lengths should be non-tilted so to eliminate the beam's lateral motion, and the arm for testing larger angles should be short and fixed so to reduce the beam's lateral motion. Our new scheme of having a non-tilted reference system offers an effective, simple, and convenient solution. A beam spot of 0.5-1 mm is used for higher spatial frequency tests in surface-figure measurements. Some preliminary studies and test are demonstrated.

  7. Testing of the Advanced Stirling Radioisotope Generator Engineering Unit at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.

    2013-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.

  8. The Down Syndrome Information Act: Balancing the Advances of Prenatal Testing Through Public Policy.

    PubMed

    Leach, Mark W

    2016-04-01

    Since the dawn of prenatal testing in the 1970s, concerns have been raised over its administration to respect a mother's autonomy as well as the expressive critique against those with the tested-for condition. Advances in prenatal testing have made it such that more mothers than ever are given a test result of Down syndrome, yet are not provided the rest of the information recommended by professional guidelines. In response, first federal legislation and then, increasingly, state legislation is requiring that this information be provided to expectant mothers. Though receiving broad bipartisan support in passage, some of the statutes have received criticism. These public policy measures will be surveyed and evaluated as to their relative merits and limitations. PMID:27028250

  9. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, OH, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hour period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hour period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  10. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, Ohio, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hr period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hr period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  11. Lipolytic degradation of human very low density lipoproteins by human milk lipoprotein lipase: the identification of lipoprotein B as the main lipoprotein degradation product.

    PubMed

    Alaupovic, P; Wang, C S; McConathy, W J; Weiser, D; Downs, D

    1986-01-01

    Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol

  12. Outdoor testing of advanced optical materials for solar thermal electric applications

    NASA Astrophysics Data System (ADS)

    Wendelin, T. J.; Jorgensen, G.; Goggin, R. M.

    1992-05-01

    The development of low-cost, durable advanced optical materials is an important element in making solar energy viable for electricity production. It is important to determine the expected lifetime of candidate reflector materials in real-world service conditions. The demonstration of the optical durability of such materials in outdoor environments is critical to the successful commercialization of solar thermal electric technologies. For many years, optical performance data have been collected and analyzed by the National Renewable Energy Laboratory (NREL) for candidate reflector materials subjected to simulated outdoor exposure conditions. Much of this testing is accelerated in order to predict service durability. Some outdoor testing has occurred, but not in a systematic manner. To date, simulated/accelerated testing has had limited correlation with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering methods. To obtain outdoor exposure data for realistic environments and to establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data, the development of an expanded outdoor testing program has recently been initiated by NREL. Several outdoor test sites will be selected based on the solar climate, potential for solar energy utilization by industry, and cost of installation. Test results are site dependent because exposure conditions vary with geographical location. The importance of this program to optical materials development is outlined, and the process used to determine and establish the outdoor test sites is described. Candidate material identification and selection is also discussed.

  13. Outdoor testing of advanced optical materials for solar thermal electric applications

    SciTech Connect

    Wendelin, T.J.; Jorgensen, G.; Goggin, R.M.

    1992-05-01

    The development of low-cost, durable advanced optical materials is an important element in making solar energy viable for electricity production. It is important to determine the expected lifetime of candidate reflector materials in real-world service conditions. The demonstration of the optical durability of such materials in outdoor environments is critical to the successful commercialization of solar thermal electric technologies. For many years optical performance data have been collected and analyzed by the National Renewable Energy Laboratory (NREL) for candidate reflector materials subjected to simulated outdoor exposure conditions. Much of this testing is accelerated in order to predict service durability. Some outdoor testing has occurred but not in a systematic manner. To date, simulated/accelerated testing has been limited correlation with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering methods. To obtain outdoor exposure data for realistic environments and to establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data, the development of an expanded outdoor testing program has recently been initiated by NREL. Several outdoor test sites will be selected based on the solar climate, potential for solar energy utilization by industry, and cost of installation. Test results are site dependent because exposure conditions vary with geographical location. The importance of this program to optical materials development is outlined, and the process used to determine and establish the outdoor test sites is described. Candidate material identification and selection is also discussed. 10 refs.

  14. Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators

    NASA Technical Reports Server (NTRS)

    Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.

  15. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    SciTech Connect

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  16. Validation test of 125 Ah advanced design IPV nickel-hydrogen flight cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1993-01-01

    An update of validation test results confirming the advanced design nickel-hydrogen cell is presented. An advanced 125 Ah individual pressure vessel Ni-H cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous O and H flow within the cell, while maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack to accommodate Ni electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of Ni electrode expansion. Six 125 Ah flight cells based on this design were fabricated; the catalyzed wall wick cells have been cycled for over 19,000 cycles with no cell failures in the continuing test. Two of the noncatalyzed wall wick cells failed (cycles 9588 and 13,900).

  17. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to +662F (-150 to +350C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  18. Long-term testing of advanced ceramics: Concerns, insights, and recommendations

    SciTech Connect

    Jenkins, M.G.

    1996-10-01

    Advanced ceramics have reached a level of material development to warrant serious consideration for use in advanced heat engine designs. Typically, design requirements based on service conditions may include 25,000 h lifetimes under stresses and temperatures of up to 250 MPa and 1,370 C, respectively, with probabilities of failure of < 0.1%. To assure that materials meet these stringent requirements requires long-term testing under the service conditions. Tensile tests at 1,370 C in ambient air have been conducted on silicon nitride alloys to 5,000 h with reports of 10,000 h tests for silicon carbide. To provide useful data, such long-term tests must incorporate such meticulous attention to detail as: strict temperature control ({+-} 5 C); accurate temperature measurement (1% of the nominal temperature); close control of grip cooling ({+-} 0.1 C) and ambient environment ({+-} 0.25 C); stable, high-resolution extensometry ({+-} 0.5 {micro}m); reliable heating (MTBF > 10,000 h) and load control (gravity-controlled, dead load), and responsive data acquisition systems (12-bit, digital collection). Data thus obtained can be used as input into design codes such as NASA CARES/LIFE to predict and confirm reliability/durability.

  19. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS

    SciTech Connect

    X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

    2012-07-01

    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

  20. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662 F (-150 to 350 C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  1. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on fullscale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662degF (-150 to 350degC), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  2. Astrochronologic Testing in Deep-Time Strata: Historical Overview and Recent Advances

    NASA Astrophysics Data System (ADS)

    Meyers, S. R.

    2014-12-01

    The quest for astronomical-climate rhythms ("Milankovitch cycles") in Phanerozoic strata is now commonplace, and has yielded fundamental advancements in our understanding of climate change, paleoceanography, astrodynamics, geochronology and chronostratigraphy. Of central importance to this success has been the development of astrochronologic testing methods for the evaluation of astronomical-climate influence on sedimentation; this can be especially challenging for deep-time strata that lack sufficient independent time control (e.g., radioisotopic data) to unambiguously calibrate observed spatial rhythms to temporal periods. Most deep-time (pre-Pleistocene) astrochronologic testing methods fall into one of two categories: (1) those that test for expected amplitude or frequency modulation imposed by an astronomical signal, or (2) those that test for bedding hierarchies ("frequency ratios") that are predicted by the dominant astronomical periods. In this talk, I discuss the historical context of these methods, recent advances that overcome subjective evaluation and circular reasoning, and their implementation in a new "open source" software package for astrochronology (Meyers, 2014, astrochron: An R Package for Astrochronology).

  3. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  4. Revisiting the Gram-Negative Lipoprotein Paradigm

    PubMed Central

    LoVullo, Eric D.; Wright, Lori F.; Isabella, Vincent; Huntley, Jason F.

    2015-01-01

    ABSTRACT The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis strain Schu or to the live vaccine strain LVS. An LVS Δlnt mutant has a small-colony phenotype on sucrose medium and increased susceptibility to globomycin and rifampin. We provide data indicating that the OM lipoprotein Tul4A (LpnA) is diacylated but that it, and its paralog Tul4B (LpnB), still sort to the OM in the Δlnt mutant. We present a model in which the Lol sorting pathway of Francisella has a modified ABC transporter system that is capable of recognizing and sorting both triacylated and diacylated lipoproteins, and we show that this modified system is present in many other Gram-negative bacteria. We examined this model using Neisseria gonorrhoeae, which has the same Lol architecture as that of Francisella, and found that the lnt gene is not essential in this organism. This work suggests that Gram-negative bacteria fall into two groups, one in which full lipoprotein processing is essential and one in which the final acylation step is not essential, potentially due to the ability of the Lol sorting pathway in these bacteria to sort immature apolipoproteins to the OM. IMPORTANCE This paper describes the novel finding that the final stage in lipoprotein processing (normally considered an essential process) is not required by Francisella tularensis or Neisseria gonorrhoeae. The paper provides a potential reason for this and shows that it may be widespread in other Gram-negative bacteria. PMID:25755189

  5. Advancing molecular-guided surgery through probe development and testing in a moderate cost evaluation pipeline

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Paulsen, Keith D.; Hull, Sally M.; Samkoe, Kimberley S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

    2015-03-01

    Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill and finish, toxicity testing, and early phase clinical trials with image guidance.

  6. Advancing Molecular-Guided Surgery through probe development and testing in a moderate cost evaluation pipeline

    PubMed Central

    Pogue, Brian W; Paulsen, Keith D; Hull, Sally M.; Samkoe, Kimberly S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

    2015-01-01

    Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill & finish, toxicity testing, and early phase clinical trials with image guidance. PMID:25914500

  7. Design of an Advanced Expander Test Bed. [for future space engines

    NASA Technical Reports Server (NTRS)

    Masters, Arthur I.; Tabata, William K.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is the key element for development of technology for future space engines. The AETB will be used to validate the high pressure expander cycle concept, investigate system interactions and conduct investigations of advanced mission focused components and new health monitoring techniques. The AETB will use oxygen/hydrogen propellants and a split expander cycle with nominal operation at a combustion chamber pressure of 1200 psia, a mixture ratio of 6.0, and an equivalent vacuum thrust of 20,000 lbf. It will function over a wide range of conditions including throttling to 5 percent thrust, operation at a mixture ratio of 12.0, and operation in tank head idle and pumped idle modes.

  8. Flight test evaluation of advanced symbology for general aviation approach to landing displays

    NASA Technical Reports Server (NTRS)

    Downing, D. R.; Bryant, W. H.; Yenni, K. R.

    1981-01-01

    This paper describes a set of flight test experiments which were designed to evaluate the relative utility of candidate displays with advanced symbology for General Aviation IFR operations in the terminal area. This symbology was previously evaluated as part of the NASA Langley Research Center's Terminal Configured Vehicle Program for use in commercial airlines. The advanced symbology included vehicle track-angle, flight path angle and a perspective representation of the runway. These symbols were selectively drawn on a CRT display along with the roll attitude, pitch attitude, localizer-deviation and glideslope deviation. In addition to the CRT display, the instrument panel contained standard turn and bank, altimeter, rate of climb, airspeed, heading and engine instruments. The symbology was evaluated using tracking performance and pilot subjective ratings for an ILS capture and tracking task.

  9. A flight test evaluation of the pilot interface with a digital advanced avionics system

    NASA Technical Reports Server (NTRS)

    Hinton, D. A.

    1984-01-01

    A flight study was conducted to study pilot workload and the pilot interface with high levels of avionics capability and automation. The study was done in the context of general aviation, single-pilot IFR operations and utilized an experimental, digital, integrated avionics system. Results indicate that such advanced systems can provide improved information to the pilot and increased functional capability. The results also indicate that additional research is needed to increase the knowledge base required to design the pilot interfaces with highly capable systems. A CRT-based moving map display format tested provided excellent navigational situational awareness but was inferior to an HSI for manual path tracking. The complexity of navigation data management, autopilot management, and maintaining awareness of system status contributed to pilot workload and errors. Suggested guidelines for the design of the pilot/avionics interface for advanced avionics systems are given.

  10. Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2012-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt. A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d. Water samples were analyzed for cations, anions, metals, nutrients, total organic

  11. Lipase test

    MedlinePlus

    ... the bowel (bowel obstruction) Celiac disease Duodenal ulcer Cancer of the pancreas Infection or swelling of the pancreas This test may also be done for familial lipoprotein lipase deficiency . Risks ... Update Date 2/4/2015 Updated ...

  12. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2014-01-01

    Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.

  13. TOPICAL REVIEW: Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives

    NASA Astrophysics Data System (ADS)

    Sameoto, D.; Menon, C.

    2010-10-01

    In the past two years, there have been a large number of publications on the topic of biomimetic dry adhesives from modeling, fabrication and testing perspectives. We review and compare the most recent advances in fabrication and testing of these materials. While there is increased convergence and consensus as to what makes a good dry adhesive, the fabrication of these materials is still challenging, particularly for anisotropic or hierarchal designs. Although qualitative comparisons between different adhesive designs can be made, quantifying the exact performance and rating each design is significantly hampered by the lack of standardized testing methods. Manufacturing dry adhesives, which can reliably adhere to rough surfaces, show directional and self-cleaning behavior and are relatively simple to manufacture, is still very challenging—great strides by multiple research groups have however made these goals appear achievable within the next few years.

  14. Advanced Spacesuit Portable Life Support System Oxygen Regulator Development and Testing

    NASA Technical Reports Server (NTRS)

    Campbell, Colin; Vogel, Matt R.; Watts, Carly

    2011-01-01

    The advanced spacesuit portable life support system (PLSS) oxygen regulators represent an evolutionary approach to regulator development. Several technology development prototypes have been produced that borrow much of the mechanical regulator design from the well proven Shuttle/ISS Extravehicular Mobility Unit (EMU) Secondary Oxygen Regulator, but incorporate a motor-settable pressure set-point feature that facilitates significantly greater operational flexibility. For example, this technology would enable EVA to begin at a higher suit pressure, which would reduce pre-breathe time, and then slowly step down to a lower pressure to increase suit mobility for the duration of the EVA. Comprehensive testing of the prototypes was performed on the component level as well as part of the PLSS 1.0 system level testing. Results from these tests characterize individual prototype performance and demonstrate successful operation during multiple nominal and contingency EVA modes

  15. The Advanced Placement Physics Examinations: Test Development and Free-Response Section Readings

    NASA Astrophysics Data System (ADS)

    McMurray, Terri; Cain, L. S.

    2003-11-01

    The Advanced Placement Physics B and C Examinations are developed by a Test Development Committee consisting of both high school and college teachers appointed by The College Board. We will discuss the creation of the tests from their conception to their administration to more than 60,000 high school students each year. We will also discuss the reading of the free response sections for each exam. A group of readers, consisting of interested and motivated high school AP physics teachers and college instructors who teach comparable courses, is appointed to read the free response sections during June of each year. Two experienced readers, one of whom is a member of the Test Development Committee, will share information in this talk on becoming involved with the AP program as a reader.

  16. Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.; Shah, Ashwin R.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a

  17. Principles of Technology Student Achievement in Advanced Physics Measured by a Normed Physics Test.

    NASA Astrophysics Data System (ADS)

    Nicholson, James Alan

    1991-02-01

    The Principles of Technology (PT) curriculum, now in approximately 1,200 schools, has produced a profound change in the delivery of applied physics. If high school PT programs and traditional physics courses deliver comparable student outcomes, as some research suggests, the PT curriculum may find wider acceptance in vocational programs and postsecondary schools may have rationale for accepting PT as physics. This study measured PT student performance on an advanced physics test, after they have had one year (7 units) of PT. The 1988R version of the National Association of Physics Teachers and National Science Teachers Association physics test, with more than 7500 copies sold, was selected as the research instrument. This test covers advanced aspects of traditional high school physics. A secondary enquiry included an attempt to link PT teacher preparation and credentialing and/or PT site demographics to variation in PT student scores on the 1988R test. The 10 PT sites in this study were self-selected from the 29 PT field study schools, the most mature PT sites. The researcher determined, that the 1988R physics test lacked content validity for the PT students tested. The PT students tested had a composite mean score of 17.67 questions correct out of 80, (below the second percentile), not statistically different than a chance score. No differences were found between site mean scores. Interpretation of the results regarding the effect of teachers, or demographics was not justified. The value of PT to the vocational-technical programs that it was designed for was not measured, nor was the awarding of general science credit for PT completion. One year of the PT curriculum, at the sampled schools, has not prepared students in the advanced scientific aspects of traditional physics found on the 1988R examination. The primary implication is that educators should not expect year one PT to prepare students for classes or curricula that include traditional physics as a

  18. [Position of lipoprotein apheresis in present].

    PubMed

    Bláha, Vladimír; Bláha, Milan; Lánská, Miriam; Havel, Eduard; Vyroubal, Pavel; Zadák, Zdeněk; Vrablík, Michal; Piťha, Jan; Žák, Pavel; Sobotka, Luboš

    2015-11-01

    Lipoprotein apheresis (LA) is an effective treatment method the patients with severe hypercholesterolemia, resistant to the standard therapy. LA is an extracorporeal elimination technique, which specifically removes low density lipoprotein (LDL) cholesterol from the circulation. At present, lipoprotein apheresis, combined with high-dose statin and ezetimibe therapy, is the best available means of treating patients with homozygous and statin refractory heterozygous familial hypercholesterolaemia (FH). However, the extent of cholesterol-lowering achieved is often insufficient to meet the targets set by current guidelines. The recent advent of new classes of lipid-lowering agents provides new hope that the latter objective may now be achievable. These compounds act either by reducing low density lipoprotein (LDL) cholesterol production by inhibiting apolipoprotein B synthesis with an antisense oligonucleotide (mipomersen), or by inhibiting microsomal triglyceride transfer protein (lomitapid), or by enhancing LDL catabolism via monoclonal antibody-mediated inhibition of the activity of proprotein convertase subtilisin/kexin 9 (PCSK9-alirocumab, evolocumab etc). The promising is the combination of LDL-apheresis with new drugs, namely for its potential to further decrease of LDL-cholesterol between apheresis. Depending on the outcome of current trials, it seems likely that these compounds, used alone or combined with lipoprotein apheresis, will markedly improve the management of refractory FH. PMID:26652784

  19. Large-scale Advanced Prop-fan (LAP) static rotor test report

    NASA Technical Reports Server (NTRS)

    Degeorge, Charles L.; Turnberg, Jay E.; Wainauski, Harry S.

    1987-01-01

    Discussed is Static Rotor Testing of the SR-7L Large Scale Advanced Prop-Fan (LAP). The LAP is an advanced 9 foot diameter, 8 bladed propeller designed and built by Hamilton Standard under contract to the NASA Lewis Research Center. The Prop-Fan employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Static Testing was conducted on a 10,000 HP whirl rig at Wright Patterson Air Force Base. The test objectives were to investigate the Prop-Fan static aerodynamic and structural dynamic performance, determine the blade steady state stressers and deflections and to measure steady and unsteady pressures on the SR-7L blade surface. The measured performance of the LAP correlated well with analytical predictions at blade pitch angles below 30 deg. A stall buffet phenomenon was observed at blade pitch angles above 30 deg. This phenomenon manifested itself by elevated blade vibratory stress levels and lower than expected thrust produced and power absorbed by the Prop-Fan for a given speed and blade angle.

  20. 10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion

    SciTech Connect

    Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

    2012-05-01

    The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  1. Large-scale Advanced Prop-fan (LAP) high speed wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Campbell, William A.; Wainauski, Harold S.; Arseneaux, Peter J.

    1988-01-01

    High Speed Wind Tunnel testing of the SR-7L Large Scale Advanced Prop-Fan (LAP) is reported. The LAP is a 2.74 meter (9.0 ft) diameter, 8-bladed tractor type rated for 4475 KW (6000 SHP) at 1698 rpm. It was designated and built by Hamilton Standard under contract to the NASA Lewis Research Center. The LAP employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Testing was conducted in the ONERA S1-MA Atmospheric Wind Tunnel in Modane, France. The test objectives were to confirm that the LAP is free from high speed classical flutter, determine the structural and aerodynamic response to angular inflow, measure blade surface pressures (static and dynamic) and evaluate the aerodynamic performance at various blade angles, rotational speeds and Mach numbers. The measured structural and aerodynamic performance of the LAP correlated well with analytical predictions thereby providing confidence in the computer prediction codes used for the design. There were no signs of classical flutter throughout all phases of the test up to and including the 0.84 maximum Mach number achieved. Steady and unsteady blade surface pressures were successfully measured for a wide range of Mach numbers, inflow angles, rotational speeds and blade angles. No barriers were discovered that would prevent proceeding with the PTA (Prop-Fan Test Assessment) Flight Test Program scheduled for early 1987.

  2. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Blomberg, Ben; Mihalcea, Daniel; Panuganti, Harsha; Piot, Philippe; Brau, Charles; Choi, Bo; Gabella, William; Ivanov, Borislav; Mendenhall, Marcus; Lynn, Christopher; Sen, Tanaji; Wagner, Wolfgang

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  3. ATF (Advanced Toroidal Facility) ECH (Electron Cyclotron Heating) waveguide component development and testing

    SciTech Connect

    Bigelow, T.S.; White, T.L.; Kimrey, H.D.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Electron Cyclotron Heating (ECH) system presently under construction will consist of two 53.2-GHz, 200-kW continuous-wave (cw) gyrotrons with a mode-controlled waveguide system and polarized launcher optimized for maximum power in the ATF plasma. Several components, such as a waveguide mode-analyzing directional coupler, a TiO/sub 2/ mode absorber, miter bends, and a polarization-selectable beamed launcher, have been developed and tested. Laboratory results and initial high-power operation of the system are presented. 2 refs., 2 figs.

  4. High-pressure hydrogen testing of single crystal superalloys for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Alter, W. S.; Parr, R. A.; Johnston, M. H.; Strizak, J. P.

    1984-01-01

    A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens.

  5. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  6. New Sensors for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; Joshua E. Daw; Heng Ban; Brandon Fox; Gordon Kohse

    2009-06-01

    A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry.

  7. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.

    2014-01-01

    A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 µs to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.

  8. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2015-01-01

    A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micros to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.

  9. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2014-01-01

    Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems/Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four array currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission.

  10. Improving the AGR Fuel Testing Power Density Profile Versus Irradiation-Time in the Advanced Test Reactor

    SciTech Connect

    Gray S. Chang; David A. Petti; John T. Maki; Misti A. Lillo

    2009-05-01

    The Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on ceramic-coated fuel particles. Each TRISO-coated fuel particle has its own containment which serves as the principal barrier against radionuclide release under normal operating and accident conditions. These fuel particles, in the form of graphite fuel compacts, are currently undergoing a series of irradiation tests in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) to support the Advanced Gas-Cooled Reactor (AGR) fuel qualification program. A representive coated fuel particle with an 235U enrichment of 19.8 wt% was used in this analysis. The fuel burnup analysis tool used to perform the neutronics study reported herein, couples the Monte Carlo transport code MCNP, with the radioactive decay and burnup code ORIGEN2. The fuel burnup methodology known as Monte-Carlo with ORIGEN2 (MCWO) was used to evaluate the AGR experiment assembly and demonstrate compliance with ATR safety requirements. For the AGR graphite fuel compacts, the MCWO-calculated fission power density (FPD) due to neutron fission in 235U is an important design parameter. One of the more important AGR fuel testing requirements is to maintain the peak fuel compact temperature close to 1250°C throughout the proposed irradiation campaign of 550 effective full power days (EFPDs). Based on the MCWO-calculated FPD, a fixed gas gap size was designed to allow regulation of the fuel compact temperatures throughout the entire fuel irradiation campaign by filling the gap with a mixture of helium and neon gases. The chosen fixed gas gap can only regulate the peak fuel compact temperature in the desired range during the irradiation test if the ratio of the peak power density to the time-dependent low power density (P/T) at 550 EFPDs is less than 2.5. However, given the near constant neutron flux within the ATR driver core and the depletion of 235U in

  11. First test of high frequency Gravity Waves from inflation using Advanced LIGO

    SciTech Connect

    Lopez, Alejandro; Freese, Katherine E-mail: ktfreese@umich.edu

    2015-01-01

    Inflation models ending in a first order phase transition produce gravitational waves (GW) via bubble collisions of the true vacuum phase. We demonstrate that these bubble collisions can leave an observable signature in Advanced LIGO, an upcoming ground-based GW experiment. These GW are dependent on two parameters of the inflationary model: ε represents the energy difference between the false vacuum and the true vacuum of the inflaton potential, and χ measures how fast the phase transition ends (χ ∼ the number of e-folds during the actual phase transition). Advanced LIGO will be able to test the validity of single-phase transition models within the parameter space 10{sup 7} GeV∼< ε{sup 1/4} ∼< 10{sup 10} GeV and 0.19 ∼< χ ∼< 1. If inflation occurred through a first order phase transition, then Advanced LIGO could be the first to discover high frequency GW from inflation.

  12. Implementation and Initial Testing of Advanced Processing and Analysis Algorithms for Correlated Neutron Counting

    SciTech Connect

    Santi, Peter Angelo; Cutler, Theresa Elizabeth; Favalli, Andrea; Koehler, Katrina Elizabeth; Henzl, Vladimir; Henzlova, Daniela; Parker, Robert Francis; Croft, Stephen

    2015-12-01

    In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects in all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.

  13. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  14. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  15. First results from the ‘Violin-Mode’ tests on an advanced LIGO suspension at MIT

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Carbone, L.; Shapiro, B.; Tokmakov, K. V.; Bell, A.; Strain, K. A.

    2011-12-01

    This paper describes the first results from ‘Violin-Mode’ measurements made on the four suspension fibres of a fully suspended 40 kg test mass. These measurements were made at the LIGO lab, Gravitational Wave Observatory test facility, at MIT. Here, an aluminium-alloy (dummy) test mass, simulating an advanced LIGO (Laser Interferometer Gravitational Wave Observatory) test mass/mirror, had been suspended in air from a test suspension by four fused-silica suspension fibres, each measuring 400 µm in diameter × 600 mm long. Violin-Mode measurements were made on these highly tensioned fibres by retrofitting a prototype system of four novel shadow sensors to the test suspension, one per fibre, these sensors having, collectively, a displacement sensitivity of (6.9 ± 1.3) × 10-11 m (rms) Hz-1/2, at 500 Hz, over a measuring span of ±0.1 mm. Violin-Mode fundamental resonances were detected in all four fibres: with frequencies ˜ 485 Hz when the test mass was supported lightly from below, and at ˜500 Hz when it was fully suspended. In the latter case the Violin-Mode detection took place whilst the test mass, together with its suspension fibres, was undergoing relatively large-amplitude ‘pendulum-mode’ motion, at ˜0.6 Hz. This motion was measured to have a peak-peak amplitude at one of the suspension fibres of up to ˜140 µm (35 µm, rms)—the shadow sensors each having subsidiary outputs for monitoring such low-frequency, large amplitude, motion. Under fully suspended conditions, a calibrated Violin-Mode ‘free-oscillation’ amplitude of 430 ± 20 picometres, rms, was measured at 500.875 Hz, in the same suspension fibre which was found to be undergoing, simultaneously, the ˜140 µm peak-peak motion. Over the bandwidth monitored (dc to 3.2 kHz), Violin-Mode harmonics up to the sixth were recorded in an evoked response. It was concluded that the prototype system had demonstrated amply its practical viability as a detector of Violin-Mode resonances in the

  16. Understanding of the Dynamics of the Stirling Convertor Advanced by Structural Testing

    NASA Technical Reports Server (NTRS)

    Hughes, William O.

    2003-01-01

    The NASA Glenn Research Center, the U.S. Department of Energy, and the Stirling Technology Company (STC) are developing a highly efficient, long-life, free-piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions, including deep-space and Mars surface applications. As part of this development, four structural dynamic test programs were recently performed on Stirling Technology Demonstration Convertors (TDC's) that were designed and built by STC under contract to the Department of Energy. This testing was performed in Glenn's Structural Dynamics Laboratory and Microgravity Emissions Laboratory. The first test program, in November and December 1999, demonstrated that the Stirling TDC could withstand the harsh random vibration experienced during a typical spacecraft launch and survive with no structural damage or functional power performance degradation. This was a critical step in enabling the use of Stirling convertors for future spacecraft power systems. The most severe test was a 12.3grms random vibration test, with test durations of 3 min per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. The Microgravity Emissions Laboratory is typically used to measure the dynamics produced by operating space experiments and the resulting impact to the International Space Station's microgravity environment. For the second Stirling dynamic test program, performed in January 2001, the Microgravity Emissions Laboratory was used to characterize the structure-borne disturbances produced by the normal operation of a pair of Stirling convertors. The forces and moments produced by the normal operation of a Stirling system must be recognized and controlled, if necessary, so that other nearby spacecraft components, such as cameras, are not adversely affected. The Stirling convertor pair emitted relatively benign tonal forces at its operational frequency and

  17. [A history and review of cholesterol ester transfer protein inhibitors and their contribution to the understanding of the physiology and pathophysiology of high density lipoprotein].

    PubMed

    Corral, Pablo; Schreier, Laura

    2014-01-01

    There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules. PMID:24094503

  18. Lipids and lipoproteins in Friedreich's ataxia.

    PubMed Central

    Walker, J L; Chamberlain, S; Robinson, N

    1980-01-01

    Friedreich's ataxia is an autosomal recessively inherited disease affecting the nervous system with a high incidence of heart involvement. Abnormalities of lipid metabolism are known to be associated with several progressive ataxic conditions. In this study of 46 Friedreich's ataxia patients, serum lipids, fatty acids and lipoproteins were assayed and compared with some earlier findings on Friedreich's ataxia and related disorders. Abnormalities of low and high density lipoproteins suggestive of a major defect have been reported; in the present study the level and chemical composition of high density lipoprotein has been assessed in 20 Friedreich's ataxia patients but previous abnormalities could not be substantiated. Lipid compositional analysis of Friedreich's ataxia central nervous tissue and heart, which has not been previously reported, did not markedly differ from control tissue. PMID:7359148

  19. Summary of Thermocouple Performance During Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor and Out-of-Pile Thermocouple Testing in Support of Such Experiments

    SciTech Connect

    A. J. Palmer; DC Haggard; J. W. Herter; M. Scervini; W. D. Swank; D. L. Knudson; R. S. Cherry

    2011-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B); and tungsten-rhenium thermocouples (Types C and W). For lower temperature applications, previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of these Nickel based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past ten years, three long-term Advanced Gas Reactor (AGR) experiments have been conducted with measured temperatures ranging from 700oC – 1200oC. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out of pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150oC and 1200oC for 2000 hours at each temperature, followed by 200 hours at 1250oC, and 200 hours at 1300oC. The standard Type N design utilizes high purity crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard fired alumina

  20. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    SciTech Connect

    Santi, Peter A; Demuth, Scott F; Klasky, Kristen L; Lee, Haeok; Miller, Michael C; Sprinkle, James K; Tobin, Stephen J; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  1. Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.

  2. Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing for a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.

  3. Suppression of diet-induced atherosclerosis in low density lipoprotein receptor knockout mice overexpressing lipoprotein lipase.

    PubMed Central

    Shimada, M; Ishibashi, S; Inaba, T; Yagyu, H; Harada, K; Osuga, J I; Ohashi, K; Yazaki, Y; Yamada, N

    1996-01-01

    Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of triglyceride-rich lipoproteins. Conflicting results have been reported concerning its role in atherogenesis. To determine the effects of the overexpressed LPL on diet-induced atherosclerosis, we have generated low density lipoprotein receptor (LDLR) knockout mice that overexpressed human LPL transgene (LPL/LDLRKO) and compared their plasma lipoproteins and atherosclerosis with those in nonexpressing LDLR-knockout mice (LDLRKO). On a normal chow diet, LPL/LDLRKO mice showed marked suppression of mean plasma triglyceride levels (32 versus 236 mg/dl) and modest decrease in mean cholesterol levels (300 versus 386 mg/dl) as compared with LDLRKO mice. Larger lipoprotein particles of intermediate density lipoprotein (IDL)/LDL were selectively reduced in LPL/LDLRKO mice. On an atherogenic diet, both mice exhibited severe hypercholesterolemia. But, mean plasma cholesterol levels in LPL/ LDLRKO mice were still suppressed as compared with that in LDLRKO mice (1357 versus 2187 mg/dl). Marked reduction in a larger subfraction of IDL/LDL, which conceivably corresponds to remnant lipoproteins, was observed in the LPL/LDLRKO mice. LDLRKO mice developed severe fatty streak lesions in the aortic sinus after feeding with the atherogenic diet for 8 weeks. In contrast, mean lesion area in the LPL/LDLRKO mice was 18-fold smaller than that in LDLRKO mice. We suggest that the altered lipoprotein profile, in particular the reduced level of remnant lipoproteins, is mainly responsible for the protection by LPL against atherosclerosis. Images Fig. 1 Fig. 3 PMID:8692976

  4. Results of the Irradiation of R6R018 in the Advanced Test Reactor

    SciTech Connect

    Adam B Robinson; Daniel Wachs; Pavel Medvedev; Curtis Clark; Gray Chang; Misti Lillo; Jan-Fong Jue; Glenn Moore; Jared Wight

    2010-04-01

    For over 30 years the Reduced Enrichment for Research and Test Reactors (RERTR) program has worked to provide the fuel technology and analytical support required to convert research and test reactors from nuclear fuels that utilize highly enriched uranium (HEU) to fuels based on low-enriched uranium (LEU) (defined as <20% U-235). This effort is driven by a desire to minimize international civilian commerce in weapons usable materials. The RERTR fuel development program has executed a wide array of fuel tests over the last decade that clearly established the viability of research reactor fuels based on uranium-molybdenum (U-Mo) alloys. Fuel testing has included a large number of dispersion type fuels capable of providing uranium densities up to approximately 8.5 g U/cc (~1.7 g U-235/cc at 20% enrichment). The dispersion fuel designs tested are very similar to existing research test reactor fuels in that the U-Mo particles simply replace the current fuel phase within the matrix. In 2003 it became evident that the first generation U-Mo-based dispersion fuel within an aluminum matrix exhibited significant fuel performance problems at high power and burn-up. These issues have been successfully addressed with a modest modification to the matrix material composition. Testing has shown that small additions of silicon (2–5 wt%) to the aluminum (Al) matrix stabilizes the fuel performance. The fuel plate R6R018 which was irradiated in the Advanced Test Reactor (ATR) as part of the RERTR-9B experiment was part of an investigation into the role of the silicon content in the matrix. This plate consisted of a U-7Mo fuel phase dispersed in an Al-3.5Si matrix clad in Al-6061. This report outlines the fabrication history, the as fabricated analysis performed prior to irradiation, the irradiation conditions, the post irradiation examination results, and an analysis of the plates behavior.

  5. The Continued Need for Modeling and Scaled Testing to Advance the Hanford Tank Waste Mission

    SciTech Connect

    Peurrung, Loni M.; Fort, James A.; Rector, David R.

    2013-09-03

    Hanford tank wastes are chemically complex slurries of liquids and solids that can exhibit changes in rheological behavior during retrieval and processing. The Hanford Waste Treatment and Immobilization Plant (WTP) recently abandoned its planned approach to use computational fluid dynamics (CFD) supported by testing at less than full scale to verify the design of vessels that process these wastes within the plant. The commercial CFD tool selected was deemed too difficult to validate to the degree necessary for use in the design of a nuclear facility. Alternative, but somewhat immature, CFD tools are available that can simulate multiphase flow of non-Newtonian fluids. Yet both CFD and scaled testing can play an important role in advancing the Hanford tank waste mission—in supporting the new verification approach, which is to conduct testing in actual plant vessels; in supporting waste feed delivery, where scaled testing is ongoing; as a fallback approach to design verification if the Full Scale Vessel Testing Program is deemed too costly and time-consuming; to troubleshoot problems during commissioning and operation of the plant; and to evaluate the effects of any proposed changes in operating conditions in the future to optimize plant performance.

  6. Examination of loop-operator-initiated events for the advanced test reactor

    SciTech Connect

    Durney, J.L.; Majumdar, D.

    1989-01-01

    The Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory is a unique high-flux test reactor having nine major test positions for irradiation of reactor materials. These test positions contain inpile tubes (IPT) that are connected to external piping and equipment (loops) to provide the high-temperature, high-pressure environment for the testing. The design of the core has intimately integrated the IPTs into the fuel region by means of a serpentine fuel arrangement resulting in a close reactivity coupling between the loop thermal hydraulics and the core. Consequently, operator actions potentially have an impact on the reactor power transients resulting from off-normal conditions in these facilities. This paper examines these operator-initiated events and their consequences. The analysis of loop-operator-initiated events indicates there is no damage to the reactor core even when assuming no operator intervention for mitigation. However, analysis does assume a scram occurs when required by the reactor protection systems.

  7. Composite transport wing technology development: Design development tests and advanced structural concepts

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; Harvill, William E.

    1988-01-01

    Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

  8. Neural network setpoint control of an advanced test reactor experiment loop simulation

    SciTech Connect

    Cordes, G.A.; Bryan, S.R.; Powell, R.H.; Chick, D.R.

    1990-09-01

    This report describes the design, implementation, and application of artificial neural networks to achieve temperature and flow rate control for a simulation of a typical experiment loop in the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL). The goal of the project was to research multivariate, nonlinear control using neural networks. A loop simulation code was adapted for the project and used to create a training set and test the neural network controller for comparison with the existing loop controllers. The results for three neural network designs are documented and compared with existing loop controller action. The neural network was shown to be as accurate at loop control as the classical controllers in the operating region represented by the training set. 9 refs., 28 figs., 2 tabs.

  9. Design of a miniature hydraulic compression load frame for microdiffraction tests at the Advanced Photon Source.

    SciTech Connect

    Shu, D.; Varma, R.; Krasnicki, S.; Sinha, S.

    1999-10-11

    In support of the x-ray synchrotrons radiation multidiffraction project of Los Alamos National Laboratory at the Advanced Photon Source (APS), we have designed and fabricated a miniature hydraulic compression load frame with 20000 N load capacity for metal specimen tests at the APS. The compact design allows the load frame to sit on the center of a 6-circle goniometer with six degrees of freedom and maximum solid angle accessibility for the incoming x-ray beam and diffraction beam detectors. A set of compact precision stages with submicron resolution has been designed for the load frame positioning to compensate the sample internal elastic and/or plastic deformation during the loading process. The system design, specifications, and test results are presented.

  10. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  11. Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source

    SciTech Connect

    D. V. Morgan; S. Iversen; R. A. Hilko

    2002-06-01

    The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the original 1.5-MVp value.

  12. Lateral noise attenuation of the advanced propeller of the propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, F. W.; Reddy, N. N.; Bartel, H. W.

    1989-01-01

    Lateral noise attenuation characteristics of the advanced propeller are determined using the flight test results of the testbed aircraft, Propfan Test Assessment (PTA), with a single, large-scale propfan. The acoustic data were obtained with an array of ground-mounted microphones positioned at distances up to 2.47 km (8100 feet) to the side of the flight path. The aircraft was flown at a Mach number of 0.31 for a variety of operating conditions. The lateral noise attenuation in a frequency range containing the blade passage frequency of the propeller was found to have positive magnitudes on the propfan side and negative magnitudes on the opposite side. The measured attenuation exhibits a strong dependence upon the elevation angle. The results also display a clear dependence upon the angle at which the propeller and nacelle are mounted on the wing (inflow angle).

  13. Design, Development, And Testing of Umbilical System Mechanisms for the X-33 Advanced Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Littlefield, Alan C.; Melton, Gregory S.

    2000-01-01

    The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-off" umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.

  14. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  15. Design, Development,and Testing of Umbillical System Mechanisms for the X-33 Advanced Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Littlefield, Alan C.; Melton, Gregory S.

    1999-01-01

    The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-ofF' umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.

  16. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1996-10-01

    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  17. Supplemental final environmental impact statement for advanced solid rocket motor testing at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Since the Final Environmental Impact Statement (FEIS) and Record of Decision on the FEIS describing the potential impacts to human health and the environment associated with the program, three factors have caused NASA to initiate additional studies regarding these issues. These factors are: (1) The U.S. Army Corps of Engineers and the Environmental Protection Agency (EPA) agreed to use the same comprehensive procedures to identify and delineate wetlands; (2) EPA has given NASA further guidance on how best to simulate the exhaust plume from the Advanced Solid Rocket Motor (ASRM) testing through computer modeling, enabling more realistic analysis of emission impacts; and (3) public concerns have been raised concerning short and long term impacts on human health and the environment from ASRM testing.

  18. Advanced subsonic Technology Noise Reduction Element Separate Flow Nozzle Tests for Engine Noise Reduction Sub-Element

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.

    2000-01-01

    Contents of this presentation include: Advanced Subsonic Technology (AST) goals and general information; Nozzle nomenclature; Nozzle schematics; Photograph of all baselines; Configurations tests and types of data acquired; and Engine cycle and plug geometry impact on EPNL.

  19. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  20. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER). Appendices

    SciTech Connect

    1996-05-01

    This report consists of appendices pertaining to the separating media evaluation (calcium nitrate solution) and testing for an advanced cyclone process. Appendices include: materials safety data, aqueous medium regeneration, pH control strategy, and other notes and data.