Science.gov

Sample records for advanced liquid cooling

  1. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    SciTech Connect

    Timothy Chainer

    2012-11-30

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  2. Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.; Orndoff, Evelyne; Tang, Henry

    2010-01-01

    This design of the liquid-cooling garment for NASA spacesuits allows the suit to remove metabolic heat from the human body more effectively, thereby increasing comfort and performance while reducing system mass. The garment is also more flexible, with fewer restrictions on body motion, and more effectively transfers thermal energy from the crewmember s body to the external cooling unit. This improves the garment s performance in terms of the maximum environment temperature in which it can keep a crewmember comfortable. The garment uses flexible, highly thermally conductive sheet material (such as graphite), coupled with cooling water lines of improved thermal conductivity to transfer the thermal energy from the body to the liquid cooling lines more effectively. The conductive sheets can be layered differently, depending upon the heat loads, in order to provide flexibility, exceptional in-plane heat transfer, and good through-plane heat transfer. A metal foil, most likely aluminum, can be put between the graphite sheets and the external heat source/sink in order to both maximize through-plane heat transfer at the contact points, and to serve as a protection to the highly conductive sheets. Use of a wicking layer draws excess sweat away from the crewmember s skin and the use of an outer elastic fabric ensures good thermal contact of the highly conductive underlayers with the skin. This allows the current state of the art to be improved by having cooling lines that can be more widely spaced to improve suit flexibility and to reduce weight. Also, cooling liquid does not have to be as cold to achieve the same level of cooling. Specific areas on the human body can easily be targeted for greater or lesser cooling to match human physiology, a warmer external environment can be tolerated, and spatial uniformity of the cooling garment can be improved to reduce vasoconstriction limits. Elements of this innovation can be applied to other embodiments to provide effective heat

  3. Development and fabrication of an advanced liquid cooling garment

    NASA Technical Reports Server (NTRS)

    Leith, J. R.; Hixon, C. W.

    1976-01-01

    The elastomeric film fin/tube concept which was developed is a composite of polyurethane film, fine expanded silver mesh, a serpentine pattern polyurethane transport tubing and an integral comfort liner, all bonded via adhesive application and vacuum-bagged for final cure. As demonstrated by thermal analysis, the composite garment material is capable of removing a 293 watt (1000 BTU/hr) metabolic load through a head and torso cooling area of .46 sq m (5 sq ft) with tube spacing of slightly under one inch. A total of 60 test elements, each .15m x .15m (6 in. x 6 in.) were fabricated in support of the liquid cooling garment concept development. In parallel with the fabrication of these elements a continuing series of laboratory tests to support the fabrication techniques was carried out. The elements and supporting tests are described.

  4. Development and fabrication of an advanced liquid cooling garment

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    A tube/fin concept liquid cooling garment head cooler was developed, fabricated and delivered to NASA-ARC. The head cooler was fabricated from polyurethane film which sandwiches the transport fluid tubing and a thermally conductive fin material. The head cooler garment is sewn to form a skull cap and covered with a comfort liner. In addition, two Neonate heating garments were fabricated and supplied to NASA for further finishing and use in medical tests. The resulting garment is flexible, elastic and conforms to the head comfortably. Tests on a tube/fin element of identical construction as the head cooler demonstrated good thermal effectiveness. Use of commercially available materials and development of relatively simple fabrication techniques give the potential for a low garment cost.

  5. Neutronics investigation of advanced self-cooled liquid blanket systems in the helical reactor

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M. Z.

    2008-03-01

    Neutronics investigations have been conducted in the design activity of the helical-type reactor Force Free Helical Reactor (FFHR2) adopting Flibe-cooled and Li-cooled advanced liquid blanket systems. In this study, comprehensive investigations and geometry modifications related to the tritium breeding ratios (TBRs), neutron shielding performance and neutron wall loading on the first walls in FFHR2 have been performed by improving the three-dimensional (3D) neutronics calculation system developed for non-axisymmetric helical designs. The total TBRs obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. However, it appeared that the most important neutronics issue in the present helical blanket configuration was suppression of neutron streaming through the divertor pumping areas and reflection from support structures for protection of poloidal and helical coils. Evaluation of neutron wall loading on the first walls indicated that the peaking factor would be moderated as low as 1.2 by the toroidal and helical effect of the helical-shaped plasma distribution in the helical reactor.

  6. Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  7. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  8. Advanced liquid cooling in HCPVT systems to achieve higher energy efficiencies

    NASA Astrophysics Data System (ADS)

    Zimmermann, S.; Helmers, H.; Tiwari, M. K.; Escher, W.; Paredes, S.; Neves, P.; Poulikakos, D.; Wiesenfarth, M.; Bett, A. W.; Michel, B.

    2013-09-01

    The benefits of advanced thermal packaging are demonstrated through a receiver package consisting of a monolithic interconnected module (MIM) which is directly attached to a high performance microchannel heat sink. Those packages can be applied in high-concentration photovoltaic systems and the generated heat can be used in addition to the electrical power output (CPVT systems). Thus, the total energy efficiency of the system increases significantly. A detailed exergy analysis of the receiver power output underscores the advantages of the new cooling approach.

  9. Advanced composite materials and subcooled liquid change-of-phase (COP) cooling for thermal management in advanced electronic systems

    SciTech Connect

    Morgan, R.E.; Ehlers, S.L.; Mudawar, I.

    1996-12-31

    High performance, high density airborne and spaceborne electronic systems (both DoD and commercial) are performance and reliability limited by materials and thermal management. There is a continual need to improve performance and reliability in high density systems and to reduce adverse effects induced by excessive weight, dissipated heat, and related environmental incompatibilities. The penalties effected by these limitations prevail from cradle-to-grave in the life of high performance airborne systems, beginning at the development stage, continuing through manufacturing and procurement, and throughout system life, ultimately raising the cost of ownership. The objective of this effort is to investigate the use of selected high specific property composites and change-of-phase (COP) (i.e., liquid to vapor) cooling (using non-CFC, perfluorohexane fluids) to combat these limitations. High density (e.g., 2 kw SEM-E configuration), miniaturized avionics are assumed. Material systems for enclosure and module packaging as well as COP mechanisms will be discussed at this time relative to a retrofit scenario, interfacing with existing aircraft environmental control systems (ECS) for coolant reconditioning.

  10. Advanced Liquid Cooling for a Traction Drive Inverter Using Jet Impingement and Microfinned Enhanced Surfaces: Preprint

    SciTech Connect

    Waye, S. K.; Narumanchi, S.; Mihalic, M.; Moreno, G.; Bennion, K.; Jeffers, J.

    2014-08-01

    Jet impingement on plain and micro-finned enhanced surfaces was compared to a traditional channel flow configuration. The jets provide localized cooling to areas heated by the insulated-gate bipolar transistor and diode devices. Enhanced microfinned surfaces increase surface area and thermal performance. Using lighter materials and designing the fluid path to manage pressure losses increases overall performance while reducing weight, volume, and cost. Powering four diodes in the center power module of the inverter and computational fluid dynamics (CFD) modeling was used to characterize the baseline as well as jet-impingement-based heat exchangers. CFD modeling showed the thermal performance improvements should hold for a fully powered inverter. Increased thermal performance was observed for the jet-impingement configurations when tested at full inverter power (40 to 100 kW output power) on a dynamometer. The reliability of the jets and enhanced surfaces over time was also investigated. Experimentally, the junction-to- coolant thermal resistance was reduced by up to 12.5% for jet impingement on enhanced surfaces s compared to the baseline channel flow configuration. Base plate-to-coolant (convective) resistance was reduced by up to 37.0% for the jet-based configuration compared to the baseline, suggesting that while improvements to the cooling side reduce overall resistance, reducing the passive stack resistance may contribute to lowering overall junction-to-coolant resistance. Full inverter power testing showed reduced thermal resistance from the middle of the module baseplate to coolant of up to 16.5%. Between the improvement in thermal performance and pumping power, the coefficient of performance improved by up to 13% for the jet-based configuration.

  11. Liquid Cooling in Data Centers

    SciTech Connect

    Cader, Tahir; Sorell,, Vali; Westra, Levi; Marquez, Andres

    2009-05-01

    Semiconductor manufacturers have aggressively attacked the problem of escalating microprocessor power consumption levels. Today, server manufacturers can purchase microprocessors that currently have power consumption levels capped at 100W maximum. However, total server power levels continue to increase, with the increase in power consumption coming from the supportin chipsets, memory, and other components. In turn, full rack heat loads are very aggressivley climbing as well, and this is making it increasingly difficult and cost-prohibitive for facility owners to cool these high power racks. As a result, facilities owners are turning to alternative, and more energy efficient, cooling solutions that deploy liquids in one form or another. The paper discusses the advent of the adoption of liquid-cooling in high performance computing centers. An overview of the following competing rack-based, liquid-cooling, technologies is provided: in-row, above rack, refrigerated/enclosed rack, rear door heat exchanger, and device-level (i.e., chip-level). Preparation for a liquid-cooled data center, retroft and greenfield (new), is discussed, with a focus on the key issues that are common to all liquid-cooling technologies that depend upon the delivery of water to the rack (or in some deployments, a Coolant Distribution Unit). The paper then discusses, in some detail, the actual implementation and deployment of a liquid device-level cooled (spray cooled) supercomputer at the Pacific Northwest National Laboratory. Initial results from a successful 30 day compliance test show excellent hardware stability, operating system (OS) and software stack stability, application stability and performance, and an availability level that exceeded expectations at 99.94%. The liquid-cooled supercomputer achieved a peak performance of 9.287 TeraFlops, which placed it at number 101 in the June 2007 Top500 fastest supercomputers worldwide. Long-term performance and energy efficiency testing is

  12. Liquid cooling of aircraft engines

    NASA Technical Reports Server (NTRS)

    Weidinger, Hanns

    1931-01-01

    This report presents a method for solving the problem of liquid cooling at high temperatures, which is an intermediate method between water and air cooling, by experiments on a test-stand and on an airplane. A utilizable cooling medium was found in ethylene glycol, which has only one disadvantage, namely, that of combustibility. The danger, however is very slight. It has one decided advantage, that it simultaneously serves as protection against freezing.

  13. Liquid-metal-cooled, curved-crystal monochromator for Advanced Photon Source bending-magnet beamline 1-BM

    SciTech Connect

    Brauer, S.; Rodricks, B.; Assoufid, L.; Beno, M.A.; Knapp, G.S.

    1996-06-01

    The authors describe a horizontally focusing curved-crystal monochromator that invokes a 4-point bending scheme and a liquid-metal cooling bath. The device has been designed for dispersive diffraction and spectroscopy in the 5--20 keV range, with a predicted focal spot size of {le} 100 {micro}m. To minimize thermal distortions and thermal equilibration time, the 355 x 32 x 0.8 mm crystal will be nearly half submerged in a bath of Ga-In-Sn-Zn alloy. The liquid metal thermally couples the crystal to the water-cooled Cu frame, while permitting the required crystal bending. Calculated thermal profiles and anticipated focusing properties are discussed.

  14. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  15. Specific cooling capacity of liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Adcock, J. B.

    1977-01-01

    The assumed cooling process and the method used to calculate the specific cooling capacity of liquid nitrogen are described, and the simple equation fitted to the calculated specific cooling capacity data, together with the graphical form calculated values of the specific cooling capacity of nitrogen for stagnation temperatures from saturation to 350 K and stagnation pressures from 1 to 10 atmospheres, are given.

  16. Liquid cooled counter flow turbine bucket

    DOEpatents

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  17. Liquid Cooling/Warming Garment

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.

    2010-01-01

    The NASA liquid cooling/ventilating garment (LCVG) currently in use was developed over 40 years ago. With the commencement of a greater number of extra-vehicular activity (EVA) procedures with the construction of the International Space Station, problems of astronaut comfort, as well as the reduction of the consumption of energy, became more salient. A shortened liquid cooling/warming garment (SLCWG) has been developed based on physiological principles comparing the efficacy of heat transfer of different body zones; the capability of blood to deliver heat; individual muscle and fat body composition as a basis for individual thermal profiles to customize the zonal sections of the garment; and the development of shunts to minimize or redirect the cooling/warming loop for different environmental conditions, physical activity levels, and emergency situations. The SLCWG has been designed and completed, based on extensive testing in rest, exercise, and antiorthostatic conditions. It is more energy efficient than the LCVG currently used by NASA. The total length of tubing in the SLCWG is approximately 35 percent less and the weight decreased by 20 percent compared to the LCVG. The novel features of the innovation are: 1. The efficiency of the SLCWG to maintain thermal status under extreme changes in body surface temperatures while using significantly less tubing than the LCVG. 2. The construction of the garment based on physiological principles of heat transfer. 3. The identification of the body areas that are most efficient in heat transfer. 4. The inclusion of a hood as part of the garment. 5. The lesser consumption of energy.

  18. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  19. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  20. Liquid Cooling Technology Increases Exercise Efficiency

    NASA Technical Reports Server (NTRS)

    2015-01-01

    To keep astronauts' airtight spacesuits from becoming hot and humid, Ames Research Center developed liquid cooling garments that were integrated into each suit's long underwear. Vasper Systems, in San Jose, California, is using the technology in its liquid-cooled compression cuffs, which help people exercise more efficiently by concentrating lactic acid in their muscles.

  1. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  2. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  3. Advanced proteomic liquid chromatography

    PubMed Central

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-01-01

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput. PMID:22840822

  4. Multicompartment Liquid-Cooling/Warming Protective Garments

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.

    2005-01-01

    Shortened, multicompartment liquid-cooling / warming garments (LCWGs) for protecting astronauts, firefighters, and others at risk of exposure to extremes of temperature are undergoing development. Unlike prior liquid-circulation thermal-protection suits that provide either cooling or warming but not both, an LCWG as envisioned would provide cooling at some body locations and/or heating at other locations, as needed: For example, sometimes there is a need to cool the body core and to heat the extremities simultaneously. An LCWG garment of the type to be developed is said to be shortened because the liquid-cooling and - heating zones would not cover the whole body and, instead, would cover reduced areas selected for maximum heating and cooling effectiveness. Physiological research is under way to provide a rational basis for selection of the liquid-cooling and -heating areas. In addition to enabling better (relative to prior liquid-circulation garments) balancing of heat among different body regions, the use of selective heating and cooling in zones would contribute to a reduction in the amount of energy needed to operate a thermal-protection suit.

  5. Liquid metal cooling of synchrotron optics

    SciTech Connect

    Smither, R.K.

    1992-09-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi.

  6. Control Algorithms For Liquid-Cooled Garments

    NASA Technical Reports Server (NTRS)

    Drew, B.; Harner, K.; Hodgson, E.; Homa, J.; Jennings, D.; Yanosy, J.

    1988-01-01

    Three algorithms developed for control of cooling in protective garments. Metabolic rate inferred from temperatures of cooling liquid outlet and inlet, suitably filtered to account for thermal lag of human body. Temperature at inlet adjusted to value giving maximum comfort at inferred metabolic rate. Applicable to space suits, used for automatic control of cooling in suits worn by workers in radioactive, polluted, or otherwise hazardous environments. More effective than manual control, subject to frequent, overcompensated adjustments as level of activity varies.

  7. Liquid cooled approaches for high density avionics

    NASA Astrophysics Data System (ADS)

    Levasseur, Robert

    Next-generation aircraft will require avionics that provide greater system performance in a smaller volume, a process that requires highly developed thermal management techniques. To meet this need, a liquid-cooled approach has been developed to replace the conventional air-cooled approach for high-power applications. Liquid-cooled chassis and flow-through modules have been developed to limit junction temperatures to acceptable levels. Liquid cooling also permits emergency operation after loss of coolant for longer time intervals, which is desirable for flight-critical airborne applications. Activity to date has emphasized the development of chassis and modules that support the US Department of Defense's (DoD) two-level maintenance initiative as governed by the Joint Integrated Avionics Working Group (JIAWG).

  8. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  9. Advanced Liquid Feed Experiment

    NASA Astrophysics Data System (ADS)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  10. Advance in MEIC cooling studies

    SciTech Connect

    Zhang, Yuhong; Derbenev, Ya.; Douglas, D.; Hutton, A.; Kimber, A.; Li, R.; Nissen, E.; Tennant,; Zhang, H.

    2013-06-01

    Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

  11. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  12. Liquid metal cooled divertor for ARIES

    SciTech Connect

    Muraviev, E.

    1995-01-01

    A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m{sup 2}, and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed.

  13. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used

  14. Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; McQuillen, John B.

    2008-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.

  15. Liquid cooled data center design selection

    DOEpatents

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-09-13

    Input data, specifying aspects of a thermal design of a liquid cooled data center, is obtained. The input data includes data indicative of ambient outdoor temperature for a location of the data center; and/or data representing workload power dissipation for the data center. The input data is evaluated to obtain performance of the data center thermal design. The performance includes cooling energy usage; and/or one pertinent temperature associated with the data center. The performance of the data center thermal design is output.

  16. Small Liquid Metal Cooled Reactor Safety Study

    SciTech Connect

    Minato, A; Ueda, N; Wade, D; Greenspan, E; Brown, N

    2005-11-02

    The Small Liquid Metal Cooled Reactor Safety Study documents results from activities conducted under Small Liquid Metal Fast Reactor Coordination Program (SLMFR-CP) Agreement, January 2004, between the Central Research Institute of the Electric Power Industry (CRIEPI) of Japan and the Lawrence Livermore National Laboratory (LLNL)[1]. Evaluations were completed on topics that are important to the safety of small sodium cooled and lead alloy cooled reactors. CRIEPI investigated approaches for evaluating postulated severe accidents using the CANIS computer code. The methods being developed are improvements on codes such as SAS 4A used in the US to analyze sodium cooled reactors and they depend on calibration using safety testing of metal fuel that has been completed in the TREAT facility. The 4S and the small lead cooled reactors in the US are being designed to preclude core disruption from all mechanistic scenarios, including selected unprotected transients. However, postulated core disruption is being evaluated to support the risk analysis. Argonne National Laboratory and the University of California Berkeley also supported LLNL with evaluation of cores with small positive void worth and core designs that would limit void worth. Assessments were also completed for lead cooled reactors in the following areas: (1) continuing operations with cladding failure, (2) large bubbles passing through the core and (3) recommendations concerning reflector control. The design approach used in the US emphasizes reducing the reactivity in the control mechanisms with core designs that have essentially no, or a very small, reactivity change over the core life. This leads to some positive void worth in the core that is not considered to be safety problem because of the inability to identify scenarios that would lead to voiding of lead. It is also believed that the void worth will not dominate the severe accident analysis. The approach used by 4S requires negative void worth throughout

  17. 9 CFR 590.530 - Liquid egg cooling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Liquid egg cooling. 590.530 Section..., and Facility Requirements § 590.530 Liquid egg cooling. (a) Liquid egg storage rooms, including... condensation. Surface coolers and liquid holding vats containing product shall be kept covered while in...

  18. 9 CFR 590.530 - Liquid egg cooling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Liquid egg cooling. 590.530 Section..., and Facility Requirements § 590.530 Liquid egg cooling. (a) Liquid egg storage rooms, including... condensation. Surface coolers and liquid holding vats containing product shall be kept covered while in...

  19. High Performance Mars Liquid Cooling and Ventilation Garment Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald; Whitlock, David; Conger, Bruce

    2015-01-01

    EVA space suit mobility in micro-gravity is enough of a challenge and in the gravity of Mars, improvements in mobility will enable the suited crew member to efficiently complete EVA objectives. The idea proposed is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area in order to free up the arms and legs by removing the liquid tubes currently used in the ISS EVA suit in the limbs. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased to provide the entire liquid cooling requirement and increase mobility by freeing up the arms and legs. Additional potential benefits of this approach include reduced LCVG mass, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development.

  20. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  1. 9 CFR 590.530 - Liquid egg cooling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... meets the requirements. (c) The cooling and temperature requirements for liquid egg products shall be as specified in Table I of this section. Table I—Minimum Cooling and Temperature Requirements for Liquid Egg... product) to be held in excess of 8 hours Liquid salt product Temperature within 2 hours...

  2. 9 CFR 590.530 - Liquid egg cooling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... meets the requirements. (c) The cooling and temperature requirements for liquid egg products shall be as specified in Table I of this section. Table I—Minimum Cooling and Temperature Requirements for Liquid Egg... product) to be held in excess of 8 hours Liquid salt product Temperature within 2 hours...

  3. 9 CFR 590.530 - Liquid egg cooling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... meets the requirements. (c) The cooling and temperature requirements for liquid egg products shall be as specified in Table I of this section. Table I—Minimum Cooling and Temperature Requirements for Liquid Egg... product) to be held in excess of 8 hours Liquid salt product Temperature within 2 hours...

  4. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  5. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOEpatents

    Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  6. Design and testing of a superfluid liquid helium cooling loop

    SciTech Connect

    Gavin, L.M.; Green, M.A.; Levin, S.M.; Smoot, G.F.; Witebsky, C.

    1989-07-01

    This paper describes the design and preliminary testing of a cryogenic cooling loop that uses a thermomechanical pump to circulate superfluid liquid helium. The cooling loop test apparatus is designed to prove forced liquid helium flow concepts that will be used on the Astromag superconducting magnet facility. 3 refs., 2 figs.

  7. Liquid-cooling technology for gas turbines review and status

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J., Jr.; Stepka, F. S.

    1978-01-01

    A review of research related to liquid cooling of gas turbines was conducted and an assessment of the state of the art was made. Various methods of liquid cooling turbines were reviewed. Examples and results with test and demonstrator turbines utilizing these methods along with the advantages and disadvantages of the various methods are discussed.

  8. The cryogenic cooling program at the Advanced Photon Source

    SciTech Connect

    Rogers, C.S.; Mills, D.M.; Assoufid, L.

    1994-06-01

    This paper describes the experimental and analytical program in cryogenic cooling of high-heat-load optics at the Advanced-Photon Source. A prototype liquid nitrogen pumping system has been procured. This pump provides a variable flow rate of 1 to 10 gpm of pressurized liquid nitrogen and is sized to handle up to 5 kW of optic heat load. Also, a high-vacuum, double-crystal monochromator testing tank has been fabricated. This system will be used to test cryogenic crystals at existing synchrotron sources. A finite element analysis has been performed for a cryogenically cooled Si crystal in the inclined geometry for Undulator A at 100 mA. The inclination angle was 80{degrees}. It was set to diffract from the (111) planes at the first harmonic energy of 4.2 keV. The maximum slope error in the diffraction plane was calculated to be about 1 {mu}rad with a peak temperature of 94 K. An analysis has also been performed for a cryogenically-cooled ``thin`` crystal oriented in the Bragg geometry which accepts 87% of the lst harmonic photons at 3.866 keV. The total absorbed power was 131 W at 100 mA current and the peak temperature was 124 K.

  9. Liquid metal cooled reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Bailey, S.; Vaidyanathan, S.; Van Hoomissen, J.

    1985-01-01

    The technology basis for evaluation of liquid metal cooled space reactors is summarized. Requirements for space nuclear power which are relevant to selection of the reactor subsystem are then reviewed. The attributes of liquid metal cooled reactors are considered in relation to these requirements in the areas of liquid metal properties, neutron spectrum characteristics, and fuel form. Key features of typical reactor designs are illustrated. It is concluded that liquid metal cooled fast spectrum reactors provide a high confidence, flexible option for meeting requirements for SP-100 and beyond.

  10. The Cooling of a Liquid Absorber using a Small Cooler

    SciTech Connect

    Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S.; Liggins, N.

    2005-08-24

    This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed.

  11. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOEpatents

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  12. Liquid-cooling technology for gas turbines - Review and status

    NASA Technical Reports Server (NTRS)

    Van Fossen, G. J., Jr.; Stepka, F. S.

    1978-01-01

    After a brief review of past efforts involving the forced-convection cooling of gas turbines, the paper surveys the state of the art of the liquid cooling of gas turbines. Emphasis is placed on thermosyphon methods of cooling, including those utilizing closed, open, and closed-loop thermosyphons; other methods, including sweat, spray and stator cooling, are also discussed. The more significant research efforts, design data, correlations, and analytical methods are mentioned and voids in technology are summarized.

  13. Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Kesterson, Matthew; Bue, Grant; Trevino, Luis

    2006-01-01

    In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series off tubes through which cooling water is circulated. To better predict the effectiveness of the LCG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained. Currently, increasing the fabric s thermal conductivity along with also examining an increase in the cooling tube conductivity to more efficiently remove the excess heat generated during EVA is being simulated. Initial trials varied cooling water temperature, water flow rate, garment conductivity, tube conductivity, and total number of cooling tubes in the LCVG. Results indicate that the total number of cooling tubes could be reduced to 22 and still achieve the desired heat removal rate of 361 W. Further improvements are being made to the garment network used in the model to account for temperature gradients associated with the spacing of the cooling tubes over the surface of the garment

  14. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, A.S.

    1983-12-08

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  15. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, Aaron S.

    1985-01-01

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  16. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  17. RF cavity using liquid dielectric for tuning and cooling

    DOEpatents

    Popovic, Milorad; Johnson, Rolland P.

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  18. Liquid cooled brassiere and method of diagnosing malignant tumors therewith

    NASA Technical Reports Server (NTRS)

    Elkins, W.; Williams, B. A.; Tickner, E. G. (Inventor)

    1976-01-01

    A device for enhancing the detection of malignant tissue in the breasts of a woman was described. A brassiere-like garment which is fitted with a pair of liquid-perfused cooling panels which completely and compliantly cover the breasts and upper torso was studied. The garment is connected by plastic tubing to a liquid cooling system comprising a fluid pump, a solenoid control valve for controlling the flow of fluid to either the cooling unit or the heating unit, a fluid reservoir, a temperature sensor in the reservoir, and a restrictor valve to control the pressure in the garment inlet cooling line.

  19. Liquid Metal Cooled Reactor for Space Power

    NASA Astrophysics Data System (ADS)

    Weitzberg, Abraham

    2003-01-01

    The conceptual design is for a liquid metal (LM) cooled nuclear reactor that would provide heat to a closed Brayton cycle (CBC) power conversion subsystem to provide electricity for electric propulsion thrusters and spacecraft power. The baseline power level is 100 kWe to the user. For long term power generation, UN pin fuel with Nb1Zr alloy cladding was selected. As part of the SP-100 Program this fuel demonstrated lifetime with greater than six atom percent burnup, at temperatures in the range of 1400-1500 K. The CBC subsystem was selected because of the performance and lifetime database from commercial and aircraft applications and from prior NASA and DOE space programs. The high efficiency of the CBC also allows the reactor to operate at relatively low power levels over its 15-year life, minimizing the long-term power density and temperature of the fuel. The scope of this paper is limited to only the nuclear components that provide heated helium-xenon gas to the CBC subsystem. The principal challenge for the LM reactor concept was to design the reactor core, shield and primary heat transport subsystems to meet mission requirements in a low mass configuration. The LM concept design approach was to assemble components from prior programs and, with minimum change, determine if the system met the objective of the study. All of the components are based on technologies having substantial data bases. Nuclear, thermalhydraulic, stress, and shielding analyses were performed using available computer codes. Neutronics issues included maintaining adequate operating and shutdown reactivities, even under accident conditions. Thermalhydraulic and stress analyses calculated fuel and material temperatures, coolant flows and temperatures, and thermal stresses in the fuel pins, components and structures. Using conservative design assumptions and practices, consistent with the detailed design work performed during the SP-100 Program, the mass of the reactor, shield, primary heat

  20. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  1. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.

  2. MEMS based pumped liquid cooling systems for micro/nano spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; Shakkottai, P.; Sur, T. W.

    2000-01-01

    The electronic and other payload power densities in future micro/nano spacecraft are expected to exceed 25 Watts/cm(sup 2) and require advanced thermal control concepts and technologies to keep their payload within allowable temperature limits. This paper presents background on the need for pumped liquid cooling systems for future micro/nano spacecraft and results from this ongoing experimental investigation.

  3. High-pressure propulsion - advanced concepts for cooling

    NASA Astrophysics Data System (ADS)

    Schoerman, Leonard

    The state-of-the-art liquid propellant cooled combustion chambers utilized in the space shuttle are third-generation designs which have evolved from a continuing demand for higher operating pressure and aircraft-type reusability. History has shown that major advances in cooling occur in approximately ten-year cycles, with each cycle providing a nominal 400% increase in operating pressure and/or a higher degree of reusability. The previous technologies include the first-generation double-wall steel jackets used in the 220 psi V-2 and Aerobee, and the second generation wire-wrapped double tapered tubular assemblies typical of the 800 psi Titan I, II, and III, and 1000 psi F-1 engines. The third-generation designs utilize milled slot, high thermal conductivity liners and electrodeposited nickel closures. The space shuttle main engine operating at 3200 psia is adequate for individual flights; however, the desired goal of 55 service-free missions has yet to be realized. Future single-stage-to-orbit propulsion concepts can benefit from a further increase in operating pressures to 6000 to 10,000 psi combined with engine reuse capabilities in excess of the 55 flight goals of the space shuttle. A fourth-generation approach will be required to attain these more ambitious goals. These new designs will require a combination of cooling processes, including regenerative and transpiration, combined with improved high-temperature materials and new fabrication techniques. The limitations of the third-generation designs, the impact of propellant/coolant selection, and the approaches for the coming fourth-generation cooling technologies are discussed.

  4. Experimental and CFD Analysis of Advanced Convective Cooling Systems

    SciTech Connect

    Hassan, Yassin A; Ugaz, Victor M

    2012-06-27

    The objective of this project is to study the fundamental physical phenomena in the reactor cavity cooling system (RCCS) of very high-temperature reactors (VHTRs). One of the primary design objectives is to assure that RCCS acts as an ultimate heat sink capable of maintaining thermal integrity of the fuel, vessel, and equipment within the reactor cavity for the entire spectrum of postulated accident scenarios. Since construction of full-scale experimental test facilities to study these phenomena is impractical, it is logical to expect that computational fluid dynamics (CFD) simulations will play a key role in the RCCS design process. An important question then arises: To what extent are conventional CFD codes able to accurately capture the most important flow phenomena, and how can they be modified to improve their quantitative predictions? Researchers are working to tackle this problem in two ways. First, in the experimental phase, the research team plans to design and construct an innovative platform that will provide a standard test setting for validating CFD codes proposed for the RCCS design. This capability will significantly advance the state of knowledge in both liquid-cooled and gas-cooled (e.g., sodium fast reactor) reactor technology. This work will also extend flow measurements to micro-scale levels not obtainable in large-scale test facilities, thereby revealing previously undetectable phenomena that will complement the existing infrastructure. Second, in the computational phase of this work, numerical simulation of the flow and temperature profiles will be performed using advanced turbulence models to simulate the complex conditions of flows in critical zones of the cavity. These models will be validated and verified so that they can be implemented into commercially available CFD codes. Ultimately, the results of these validation studies can then be used to enable a more accurate design and safety evaluation of systems in actual nuclear power

  5. Analysis of temperature distribution in liquid-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Livingood, John N B; Brown, W Byron

    1952-01-01

    The temperature distribution in liquid-cooled turbine blades determines the amount of cooling required to reduce the blade temperature to permissible values at specified locations. This report presents analytical methods for computing temperature distributions in liquid-cooled turbine blades, or in simplified shapes used to approximate sections of the blade. The individual analyses are first presented in terms of their mathematical development. By means of numerical examples, comparisons are made between simplified and more complete solutions and the effects of several variables are examined. Nondimensional charts to simplify some temperature-distribution calculations are also given.

  6. Mechanically-reattachable liquid-cooled cooling apparatus

    DOEpatents

    Arney, Susanne; Cheng, Jen-Hau; Kolodner, Paul R; Kota-Venkata, Krishna-Murty; Scofield, William; Salamon, Todd R; Simon, Maria E

    2013-09-24

    An apparatus comprising a rack having a row of shelves, each shelf supporting an electronics circuit board, each one of the circuit boards being manually removable from the shelve supporting the one of the circuit boards and having a local heat source thereon. The apparatus also comprises a cooler attached to the rack and being able to circulate a cooling fluid around a channel forming a closed loop. The apparatus further comprises a plurality of heat conduits, each heat conduit being located over a corresponding one of the circuit boards and forming a path to transport heat from the local heat source of the corresponding one of the circuit boards to the cooler. Each heat conduit is configured to be manually detachable from the cooler or the circuit board, without breaking a circulation pathway of the fluid through the cooler.

  7. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  8. Mount makes liquid nitrogen-cooled gamma ray detector portable

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1966-01-01

    Liquid nitrogen-cooled gamma ray detector system is made portable by attaching the detector to a fixture which provides a good thermal conductive path between the detector and the liquid nitrogen in a dewar flask and a low heat leak path between the detector and the external environment.

  9. Investigation of helium injection cooling to liquid oxygen propellant chamber

    NASA Astrophysics Data System (ADS)

    Cho, Namkyung; Kwon, Ohsung; Kim, Youngmog; Jeong, Sangkwon

    2006-02-01

    Sub-cooling of cryogenic propellant by helium injection is one of the most effective methods for suppressing bulk boiling and keeping sub-cooled liquid oxygen before rocket launch. In order to design the cooling system, understanding of the limitations of heat and mass transfer is required. In this paper, an analytical model for the helium injection system is presented. This model's main feature is the representation of bubbling system using finite-rate heat transfer and instantaneous mass transfer concept. With this simplified approach, the effect of helium injection to liquid oxygen system under several circumstances is examined. Experimental results along with simulations of single bubble rising in liquid oxygen and bubbling system are presented with various helium injection flow rates, helium temperatures, and injection methods. The overall cooling effect for rocket application is also discussed.

  10. Thermal Performance Testing of EMU and CSAFE Liquid Cooling Gannents

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Meginnis, Ian; Hakam, Mary; Radford, Tamara

    2013-01-01

    Future exploration missions require the development of a new liquid cooling garment (LCG) to support the next generation extravehicular activity (EVA) suit system. The new LCG must offer greater system reliability, optimal thermal performance as required by mission directive, and meet other design requirements including improved tactile comfort. To advance the development of a future LCG, a thermal performance test was conducted to evaluate: (1) the comparable thermal performance of the EMU LCG and the CSAFE developed engineering evaluation unit (EEU) LCG, (2) the effect of the thermal comfort undergarment (TCU) on the EMU LCG tactile and thermal comfort, and (3) the performance of a torso or upper body only LCG shirt to evaluate a proposed auxiliary loop. To evaluate the thermal performance of each configuration, a metabolic test was conducted using the Demonstrator Spacesuit to create a relevant test environment. Three (3) male test subjects of similar height and weight walked on a treadmill at various speeds to produce three different metabolic loads - resting (300-600 BTU/hr), walking at a slow pace (1200 BTU/hr), and walking at a brisk pace (2200 BTU/hr). Each subject participated in five tests - two wearing the CSAFE full LCG, one wearing the EMU LCG without TCUs, one wearing the EMU LCG with TCUs, and one with the CSAFE shirt-only. During the test, performance data for the breathing air and cooling water systems and subject specific data was collected to define the thermal performance of the configurations. The test results show that the CSAFE EEU LCG and EMU LCG with TCU had comparable performance. The testing also showed that an auxiliary loop LCG, sized similarly to the shirt-only configuration, should provide adequate cooling for contingency scenarios. Finally, the testing showed that the TCU did not significantly hinder LCG heat transfer, and may prove to be acceptable for future suit use with additional analysis and testing.

  11. Regeneratively Cooled Liquid Oxygen/Methane Technology Development

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  12. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, Anstein

    1994-01-01

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  13. Next-Generation Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2012-01-01

    The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling

  14. Microprocessor Control For Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    Weaver, Charles S.

    1990-01-01

    Automatic control system maintains temperature of water-cooled garment within comfort zone while wearer's level of physical activity varies. Uncomfortable overshoots and undershoots of temperature eliminated. Designed for use in space suit, adaptable to other protective garments and to enclosed environments operating according to similar principles.

  15. Advanced regenerative-cooling techniques for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Shoji, J. M.

    1975-01-01

    A review of regenerative-cooling techniques applicable to advanced planned engine designs for space booster and orbit transportation systems has developed the status of the key elements of this cooling mode. This work is presented in terms of gas side, coolant side, wall conduction heat transfer, and chamber life fatigue margin considerations. Described are preliminary heat transfer and trade analyses performed using developed techniques combining channel wall construction with advanced, high-strength, high-thermal-conductivity materials (NARloy-Z or Zr-Cu alloys) in high heat flux regions, combined with lightweight steel tubular nozzle wall construction. Advanced cooling techniques such as oxygen cooling and dual-mode hydrocarbon/hydrogen fuel operation and their limitations are indicated for the regenerative cooling approach.

  16. Advanced Cooling Technology, Inc. final technical progress report

    SciTech Connect

    Myers, H.S.

    1993-08-12

    Tasks performed to develop an improved version of Advanced Cooling Technology`s Evaporative Subcooling System are described. Work on pump stability, improved drainage mechanism, and the American Refrigeration Institute engineering performance tests is presented.

  17. Recent advances in cooled-semen technology.

    PubMed

    Aurich, Christine

    2008-09-01

    The majority of horse registries approve the use of artificial insemination, and horse breeding has widely taken benefit from the use of cooled-stored semen. New insights into cooled-semen technology open possibilities to reduce problems such as impaired semen quality after cooled-storage in individual stallions. The stallion itself has major impacts on quality and fertility of cooled-stored semen. Dietary supplementation of antioxidants and polyunsaturated fatty acids improves semen quality in a variety of species, but only few studies on this topic exist in the horse. Proper semen collection and handling is the main key to the maintenance of semen quality during cooled-storage. Semen collection should be achieved by minimal sexual stimulation with a single mount; this results in high sperm concentration, low content of seminal plasma and minimal contamination with bacteria. Milk-based semen extenders are most popular for semen processing and storage. The development of more defined extenders containing only the beneficial milk ingredients has made extender quality more constant and reliable. Semen is often centrifuged to decrease the seminal plasma content. Centrifugation results in a recovery rate of only 75% of spermatozoa in the semen pellet. Recovery rates after centrifugation may be improved with use of a "cushion technique" allowing higher centrifugation force and duration. However, this is not routinely used in cooled-semen technology. After slow-cooling, semen-storage and shipping is best performed at 5 degrees C, maintaining semen motility, membrane integrity and DNA integrity for up to 40 h after collection. Shipping containers created from Styrofoam boxes provide maintenance of semen quality at low cost.

  18. Cooling and solidification of heavy hydrocarbon liquid streams

    DOEpatents

    Antieri, Salvatore J.; Comolli, Alfred G.

    1983-01-01

    A process and apparatus for cooling and solidifying a stream of heavy hydrocarbon material normally boiling above about 850.degree. F., such as vacuum bottoms material from a coal liquefaction process. The hydrocarbon stream is dropped into a liquid bath, preferably water, which contains a screw conveyor device and the stream is rapidly cooled, solidified and broken therein to form discrete elongated particles. The solid extrudates or prills are then dried separately to remove substantially all surface moisture, and passed to further usage.

  19. Development of a Very Dense Liquid Cooled Compute Platform

    SciTech Connect

    Hughes, Phillip N.; Lipp, Robert J.

    2013-12-10

    The objective of this project was to design and develop a prototype very energy efficient high density compute platform with 100% pumped refrigerant liquid cooling using commodity components and high volume manufacturing techniques. Testing at SLAC has indicated that we achieved a DCIE of 0.93 against our original goal of 0.85. This number includes both cooling and power supply and was achieved employing some of the highest wattage processors available.

  20. Trap seal for open circuit liquid cooled turbines

    DOEpatents

    Grondahl, Clayton M.; Germain, Malcolm R.

    1980-01-01

    An improved trap seal for open circuit liquid cooled turbines is disclosed. The trap seal of the present invention includes an annular recess formed in the supply conduit of cooling channels formed in the airfoil of the turbine buckets. A cylindrical insert is located in the annular recesses and has a plurality of axial grooves formed along the outer periphery thereof and a central recess formed in one end thereof. The axial grooves and central recess formed in the cylindrical insert cooperate with the annular recess to define a plurality of S-shaped trap seals which permit the passage of liquid coolant but prohibit passage of gaseous coolant.

  1. Liquid rocket engine self-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Self-cooled combustion chambers are chambers in which the chamber wall temperature is controlled by methods other than fluid flow within the chamber wall supplied from an external source. In such chambers, adiabatic wall temperature may be controlled by use of upstream fluid components such as the injector or a film-coolant ring, or by internal flow of self-contained materials; e.g. pyrolysis gas flow in charring ablators, and the flow of infiltrated liquid metals in porous matrices. Five types of self-cooled chambers are considered in this monograph. The name identifying the chamber is indicative of the method (mechanism) by which the chamber is cooled, as follows: ablative; radiation cooled; internally regenerative (Interegen); heat sink; adiabatic wall. Except for the Interegen and heat sink concepts, each chamber type is discussed separately. A separate and final section of the monograph deals with heat transfer to the chamber wall and treats Stanton number evaluation, film cooling, and film-coolant injection techniques, since these subjects are common to all chamber types. Techniques for analysis of gas film cooling and liquid film cooling are presented.

  2. Advanced Spectral Library (ASTRAL): Cool stars edition

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.

    2013-02-01

    ASTRAL is a project to create high-resolution, high-S/N UV (1150-3200 Å) atlases of bright stars utilizing {HST}/STIS. During Cycle 18 (2010-2011), eight cool star targets were observed, including key objects like Procyon and Betelgeuse, churning through 146 orbits in the process. The new spectral atlases are publically available through the project website. Data were obtained with the Hubble Space Telescope.

  3. An Integrated Liquid Cooling System Based on Galinstan Liquid Metal Droplets.

    PubMed

    Zhu, Jiu Yang; Tang, Shi-Yang; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2016-01-27

    The continued miniaturization of electronic components demands integrated liquid cooling systems with minimized external connections and fabrication costs that can be implanted very close to localized hot spots. This might be challenging for existing liquid cooling systems because most of them rely on external pumps, connecting tubes, and microfabricated heat sinks. Here, we demonstrate an integrated liquid cooling system by utilizing a small droplet of liquid metal Galinstan, which is placed over the hot spot. Energizing the liquid metal droplet with a square wave signal creates a surface tension gradient across the droplet, which induces Marangoni flow over the surface of droplet. This produces a high flow rate of coolant medium through the cooling channel, enabling a "soft" pump. At the same time, the high thermal conductivity of liquid metal extends the heat transfer surface and facilitates the dissipation of heat, enabling a "soft" heat sink. This facilitates the rapid cooling of localized hot spots, as demonstrated in our experiments. Our technology facilitates customized liquid cooling systems with simple fabrication and assembling processes, with no moving parts that can achieve high flow rates with low power consumption. PMID:26716607

  4. An Integrated Liquid Cooling System Based on Galinstan Liquid Metal Droplets.

    PubMed

    Zhu, Jiu Yang; Tang, Shi-Yang; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2016-01-27

    The continued miniaturization of electronic components demands integrated liquid cooling systems with minimized external connections and fabrication costs that can be implanted very close to localized hot spots. This might be challenging for existing liquid cooling systems because most of them rely on external pumps, connecting tubes, and microfabricated heat sinks. Here, we demonstrate an integrated liquid cooling system by utilizing a small droplet of liquid metal Galinstan, which is placed over the hot spot. Energizing the liquid metal droplet with a square wave signal creates a surface tension gradient across the droplet, which induces Marangoni flow over the surface of droplet. This produces a high flow rate of coolant medium through the cooling channel, enabling a "soft" pump. At the same time, the high thermal conductivity of liquid metal extends the heat transfer surface and facilitates the dissipation of heat, enabling a "soft" heat sink. This facilitates the rapid cooling of localized hot spots, as demonstrated in our experiments. Our technology facilitates customized liquid cooling systems with simple fabrication and assembling processes, with no moving parts that can achieve high flow rates with low power consumption.

  5. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  6. A liquid cooled garment temperature controller based on sweat rate

    NASA Technical Reports Server (NTRS)

    Chambers, A. B.; Blackaby, J. R.

    1972-01-01

    An automatic controller for liquid cooled space suits is reported that utilizes human sweat rate as the primary input signal. The controller is so designed that the coolant inlet temperature is inversely proportional to the subject's latent heat loss as evidenced by evaporative water loss.

  7. Film-Cooling Heat-Transfer Measurements Using Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.

    1997-01-01

    The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.

  8. 19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION GARMENT (LCVG), SUIT GLOVES, WAIST INSERTS, UPPER AND LOWER ARMS (LEFT, FROM TOP TO BOTTOM), LOWER TORSO ASSEMBLIES (LTA) (MIDDLE RIGHT TO LOWER RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  9. Design study of the cooling scheme for SMES system in ASPCS by using liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Makida, Yasuhiro; Shintomi, Takakazu; Asami, Takuya; Suzuki, Goro; Takao, Tomoaki; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Munakata, Kouhei; Kajiwara, Masataka

    2013-11-01

    From the point of view of environment and energy problems, the renewable energies have been attracting attention. However, fluctuating power generation by the renewable energies affects the stability of the power network. Thus, we propose a new electric power storage and stabilization system, Advanced Superconducting Power Conditioning System (ASPCS), in which a Superconducting Magnetic Energy Storage (SMES) and a hydrogen-energy-storage converge on a liquid hydrogen station for fuel cell vehicles. The ASPCS proposes that the SMES coils wound with MgB2 conductor are indirectly cooled by thermo-siphon circulation of liquid hydrogen to use its cooling capability. The conceptual design of cooling scheme of the ASPCS is presented.

  10. Modular liquid-cooled helmet liner for thermal comfort

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Shitzer, A.

    1974-01-01

    A modular liquid-cooled helmet liner made of eight form-fitting neoprene patches was constructed. The liner was integrated into the sweatband of an Army SPH-4 helicopter aircrew helmet. This assembly was tested on four subjects seated in a hot (47 C), humid (40%) environment. Results indicate a marked reduction in the rate of increase of physiological body functions. Rectal temperature, weight loss, heart rate, and strain indices are all reduced to approximately 50% of uncooled levels. The cooling liner removed from 10% to 30% of total metabolic heat produced. This study also demonstrated the technical feasilibity of using a cooling liner in conjunction with a standard hard helmet. Potential applications of the cooling liner in thermally stressful environments are numerous, notably for helicopter and other aircrews.

  11. Laser cooling in solids: advances and prospects.

    PubMed

    Seletskiy, Denis V; Epstein, Richard; Sheik-Bahae, Mansoor

    2016-09-01

    This review discusses the progress and ongoing efforts in optical refrigeration. Optical refrigeration is a process in which phonons are removed from a solid by anti-Stokes fluorescence. The review first summarizes the history of optical refrigeration, noting the success in cooling rare-earth-doped solids to cryogenic temperatures. It then examines in detail a four-level model of rare-earth-based optical refrigeration. This model elucidates the essential roles that the various material parameters, such as the spacing of the energy levels and the radiative quantum efficiency, play in the process of optical refrigeration. The review then describes the experimental techniques for cryogenic optical refrigeration of rare-earth-doped solids employing non-resonant and resonant optical cavities. It then examines the work on laser cooling of semiconductors, emphasizing the differences between optical refrigeration of semiconductors and rare-earth-doped solids and the new challenges and advantages of semiconductors. It then describes the significant experimental results including the observed optical refrigeration of CdS nanostructures. The review concludes by discussing the engineering challenges to the development of practical optical refrigerators, and the potential advantages and uses of these refrigerators. PMID:27484295

  12. Laser cooling in solids: advances and prospects.

    PubMed

    Seletskiy, Denis V; Epstein, Richard; Sheik-Bahae, Mansoor

    2016-09-01

    This review discusses the progress and ongoing efforts in optical refrigeration. Optical refrigeration is a process in which phonons are removed from a solid by anti-Stokes fluorescence. The review first summarizes the history of optical refrigeration, noting the success in cooling rare-earth-doped solids to cryogenic temperatures. It then examines in detail a four-level model of rare-earth-based optical refrigeration. This model elucidates the essential roles that the various material parameters, such as the spacing of the energy levels and the radiative quantum efficiency, play in the process of optical refrigeration. The review then describes the experimental techniques for cryogenic optical refrigeration of rare-earth-doped solids employing non-resonant and resonant optical cavities. It then examines the work on laser cooling of semiconductors, emphasizing the differences between optical refrigeration of semiconductors and rare-earth-doped solids and the new challenges and advantages of semiconductors. It then describes the significant experimental results including the observed optical refrigeration of CdS nanostructures. The review concludes by discussing the engineering challenges to the development of practical optical refrigerators, and the potential advantages and uses of these refrigerators.

  13. Advanced fabrication techniques for cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1978-01-01

    An improved design for regeneratively cooled engine structures was identified. This design uses photochemically machined (PCM) coolant passages. It permits the braze joint to be placed in a relatively cool area, remote from the critical hot face sheet. The geometry of the passages at the face sheet also minimizes stress concentration and, therefore, enhances the low cycle fatigue performance. The two most promising alloys identified for this application are Inconel 617 and Nickel 201. Inconel 617 was selected because it has excellent creep rupture properties, while Nickel 201 was selected because of its predicted good performance under low cycle fatigue loading. The fabrication of the PCM coolant passages in both Inconel 617 and Nickel 201 was successfully developed. During fabrication of Inconel 617, undesirable characteristics were observed in the braze joints. A development program to resolve this condition was undertaken and led to definition of an isothermal solidification process for joining Inconel 617 panels. This process produced joints which approach parent metal strength and homogeneity.

  14. Laser cooling in solids: advances and prospects

    NASA Astrophysics Data System (ADS)

    Seletskiy, Denis V.; Epstein, Richard; Sheik-Bahae, Mansoor

    2016-09-01

    This review discusses the progress and ongoing efforts in optical refrigeration. Optical refrigeration is a process in which phonons are removed from a solid by anti-Stokes fluorescence. The review first summarizes the history of optical refrigeration, noting the success in cooling rare-earth-doped solids to cryogenic temperatures. It then examines in detail a four-level model of rare-earth-based optical refrigeration. This model elucidates the essential roles that the various material parameters, such as the spacing of the energy levels and the radiative quantum efficiency, play in the process of optical refrigeration. The review then describes the experimental techniques for cryogenic optical refrigeration of rare-earth-doped solids employing non-resonant and resonant optical cavities. It then examines the work on laser cooling of semiconductors, emphasizing the differences between optical refrigeration of semiconductors and rare-earth-doped solids and the new challenges and advantages of semiconductors. It then describes the significant experimental results including the observed optical refrigeration of CdS nanostructures. The review concludes by discussing the engineering challenges to the development of practical optical refrigerators, and the potential advantages and uses of these refrigerators.

  15. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-04-05

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  16. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-08-09

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  17. Radome cooling by transpiration of a freezing liquid

    NASA Astrophysics Data System (ADS)

    Schindel, L.; Driftmyer, R.

    1989-06-01

    A supersonic wind tunnel test was carried out, in which temperature distributions and the coolant mass flow were measured on a transpiration-cooled conical radome, with the purpose of obtaining data on liquid transpiration cooling that could be scaled from wind tunnel to free-flight conditions. Water coolant was injected through a small porous nose tip, and immediately froze on the surface of the model, even though the adiabatic wall temperature was about 185 deg F. The experimentally determined temperature distributions were modeled using the method of Rubesin and Inouye (1973), providing a means of scaling the experimental data to other flow conditions. The freezing liquid cooling method can be likened to an ablation-cooled radome which employs one or more bands of ablating material. A copper coolant was examined by an application to free flight at Mach number 8; approximate calculations indicate that ablation from the frozen surface of such a liquid metal might be effective in limiting the temperature of a radome.

  18. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  19. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    PubMed

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both. PMID:27043177

  20. Review and status of liquid-cooling technology for gas turbines

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J., Jr.; Stepka, F. S.

    1979-01-01

    A review was conducted of liquid-cooled turbine technology. Selected liquid-cooled systems and methods are presented along with an assessment of the current technology status and requirements. A comprehensive bibliography is presented.

  1. Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling

    NASA Technical Reports Server (NTRS)

    Chu, Paul C. W.

    2004-01-01

    The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.

  2. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Shintomi, T.; Hamajima, T.; Ota, N.; Katsura, M.; Ando, K.; Takao, T.; Tsuda, M.; Miyagi, D.; Tsujigami, H.; Fujikawa, S.; Hirose, J.; Iwaki, K.; Komagome, T.

    2015-12-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured.

  3. Polymerization, shock cooling and ionization of liquid nitrogen

    SciTech Connect

    Ross, M; Rogers, F

    2005-07-21

    The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10{sup 6} GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T {approx} 3.5 10{sup 5} K) and at 400 Mbar (T {approx} 2.3 10{sup 6} K) from K shell ionization. Near a pressure of 10{sup 6} GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit.

  4. Advancements of vertically aligned liquid crystal displays.

    PubMed

    Kumar, Pankaj; Jaggi, Chinky; Sharma, Vandna; Raina, Kuldeep Kumar

    2016-02-01

    This review describes the recent advancements in the field of the vertical aligned (VA) liquid crystal displays. The process and formation of different vertical alignment modes such as conventional VA, patterned VA, multi-domain VA, and polymer stabilised VA etc are widely discussed. Vertical alignment of liquid crystal due to nano particle dispersion in LC host, bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces, azo dye etc., are also highlighted and discussed. Overall, the article highlights the advances in the research of vertical aligned liquid crystal in terms of their scientific and technological aspects.

  5. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    SciTech Connect

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  6. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    SciTech Connect

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  7. The dissociation of dense liquid nitrogen and shock cooling

    SciTech Connect

    Ross, M.

    1987-07-01

    A theoretical model is used to examine the dissociation of shock-compressed liquid nitrogen. An important feature of the model is the introduction of a binding energy for the atomic state which leads to a volume-dependent dissociation energy. The model correctly predicts the highly unusual feature of shock cooling which is shown to be the consequence of the volume dependent dissociation energy.

  8. Evaluation of battery packs for liquid microclimate cooling systems

    NASA Astrophysics Data System (ADS)

    Teal, Walter B., Jr.; Avellini, Barbara A.

    1995-05-01

    The Navy clothing and Textile Research Facility conducted a literature and industry survey to determine the best commercially available battery technology for use with liquid microclimate cooling systems (MCS), and a laboratory evaluation of a battery pack utilizing that technology. Nickel/cadmium batteries were determined to be the best battery technology commercially available at the present time. However, several other battery technologies are nearing commercialization and may be available in the near future.

  9. Advanced Spectral Library (ASTRAL): Cool Stars

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; Co-Investigators, ASTRAL

    2011-05-01

    The Advanced Spectral Library (ASTRAL) is a Hubble Space Telescope (HST) Cycle 18 (2010-2011) Large Treasury Project, whose aim is to collect high-quality ultraviolet echelle spectra of bright stars utilizing the high-performance Space Telescope Imaging Spectrograph (STIS). In Cycle 18, ASTRAL focuses on eight iconic late-type objects -- all well-known bright stars with vaguely unpronounceable names like Procyon and Betelgeuse -- and will devote 146 HST orbits for the purpose. The objective is to record each of the targets with broad uninterrupted UV coverage (1150-3100 Angstroms) at the highest signal-to-noise and highest spectral resolution achievable within the available spacecraft time, and given a variety of observing constraints. The broad ultraviolet coverage will be achieved by splicing together echellegrams taken in multiple FUV and NUV prime echelle settings of STIS. The observing strategy was designed to maximize S/N, ensure accurate wavelength scales, and preserve the radiometric level of the UV spectral energy distribution. This is a progress report on the observational status of ASTRAL. Up-to-date information can be found at the project website:http://casa.colorado.edu/ ayres/ASTRAL/. Supported by grants from the Space Telescope Science Institute, operated by AURA for NASA.

  10. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  11. Advances in gas-liquid flows 1990

    SciTech Connect

    Kim, J.M. . Nuclear Reactor Lab.); Rohatgi, U.S. ); Hashemi, A. )

    1990-01-01

    Gas-liquid two-phase flows commonly occur in nature and industrial applications. Rain, clouds, geysers, and waterfalls are examples of natural gas-liquid flow phenomena, whereas industrial applications can be found in nuclear reactors, steam generators, boilers, condensers, evaporators, fuel atomization, heat pipes, electronic equipment cooling, petroleum engineering, chemical process engineering, and many others. The household-variety phenomena such as garden sprinklers, shower, whirlpool bath, dripping faucet, boiling tea pot, and bubbling beer provide daily experience of gas-liquid flows. The papers presented in this volume reflect the variety and richness of gas-liquid two-phase flow and the increasing role it plays in modern technology. This volume contains papers dealing with some recent development in gas-liquid flow science and technology, covering basic gas-liquid flows, measurements and instrumentation, cavitation and flashing flows, countercurrent flow and flooding, flow in various components and geometries liquid metals and thermocapillary effects, heat transfer, nonlinear phenomena, instability, and other special and general topics related to gas-liquid flows.

  12. Thermal management of VECSELs by front surface direct liquid cooling

    NASA Astrophysics Data System (ADS)

    Smyth, Conor J. C.; Mirkhanov, Shamil; Quarterman, Adrian H.; Wilcox, Keith G.

    2016-03-01

    Efficient thermal management is vital for VECSELs, affecting the output power and several aspects of performance of the device. Presently there exist two distinct methods of effective thermal management which both possess their merits and disadvantages. Substrate removal of the VECSEL gain chip has proved a successful method in devices emitting at a wavelength near 1μm. However for other wavelengths the substrate removal technique has proved less effective primarily due to the thermal impedance of the distributed Bragg reflectors. The second method of thermal management involves the use of crystalline heat spreaders bonded to the gain chip surface. Although this is an effective thermal management scheme, the disadvantages are additional loss and the etalon effect that filters the gain spectrum, making mode locking more difficult and normally resulting in multiple peaks in the spectrum. There are considerable disadvantages associated with both methods attributed to heatspreader cost and sample processing. It is for these reasons that a proposed alternative, front surface liquid cooling, has been investigated in this project. Direct liquid cooling involves flowing a temperature-controlled liquid over the sample's surface. In this project COMSOL was used to model surface liquid cooling of a VECSEL sample in order to investigate and compare its potential thermal management with current standard thermal management techniques. Based on modelling, experiments were carried out in order to evaluate the performance of the technique. While modelling suggests that this is potentially a mid-performance low cost alternative to existing techniques, experimental measurements to date do not reflect the performance predicted from modelling.

  13. Cooling of rocket thrust chambers with liquid oxygen

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Schlumberger, Julie A.

    1990-01-01

    Rocket engines using high pressure liquid oxygen (LOX) and kerosene (RP-1) as the propellants have been considered for future launch vehicle propulsion. Generaly, in regeneratively cooled engines, thefuel is used to cool the combustion chamber. However, hydrocarbons such as RP-1 are limited in their cooling capability at high temperatures and pressures. Therefore, LOX is being considered as an alternative coolant. However, there has been concern as to the effect on the integrity of the chamber liner if oxygen leaks into the combustion zone through fatigue cracks that may develop between the cooling passages and the hot-gas side wall. To address this concern, an investigation was previously conducted with simulated fatigue cracks upstream of the thrust chamber throat. When these chambers were tested, an unexpected melting in the throat region developed which was not in line with the simulated fatigue cracks. The current experimental program was conducted in order to determine the cause for the failure in the earlier thrust chambers and to further investigate the effects of cracks in the thrust chamber liner upstream of the throat. The thrust chambers were tested at oxygen-to-fuel mixture ratios from 1.5 to 2.86 at a nominal chamber pressure of 8.6 MPa. As a result of the test series, the reason for the failure occurring in the earlier work was determined to be injector anomalies. The LOX leaking through the simulated fatigue cracks did not affect the integrity of the chambers.

  14. Cooling of rocket thrust chambers with liquid oxygen

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Schlumberger, Julie A.

    1990-01-01

    Rocket engines using high pressure liquid oxygen (LOX) and kerosene (RP-1) as the propellants have been considered for future launch vehicle propulsion. Generally, in regeneratively cooled engines, the fuel is used to cool the combustion chamber. However, hydrocarbons such as RP-1 are limited in their cooling capability at high temperatures and pressures. Therefore, LOX is being considered as an alternative coolant. However, there has been concern as to the effect on the integrity of the chamber liner if oxygen leaks into the combustion zone through fatigue cracks that may develop between the cooling passages and the hot-gas side wall. To address this concern, an investigation was previously conducted with simulated fatigue cracks upstream of the thrust chamber throat. When these chambers were tested, an unexpected melting in the throat region developed which was not in line with the simulated fatigue cracks. The current experimental program was conducted in order to determine the cause for the failure in the earlier thrust chambers and to further investigate the effects of cracks in the thrust chamber liner upstream of the throat. The thrust chambers were tested at oxygen-to-fuel mixture ratios from 1.5 to 2.86 at a nominal chamber pressure of 8.6 MPa. As a result of the test series, the reason for the failure occurring in the earlier work was determined to be injector anomalies. The LOX leaking through the simulated fatigue cracks did not affect the integrity of the chambers.

  15. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    SciTech Connect

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated.

  16. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  17. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  18. Liquid Oxygen/Liquid Methane Propulsion and Cryogenic Advanced Development

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Smith, Timothy D.; Wadel, Mary F.; Meyer, Michael L.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    Exploration Systems Architecture Study conducted by NASA in 2005 identified the liquid oxygen (LOx)/liquid methane (LCH4) propellant combination as a prime candidate for the Crew Exploration Vehicle Service Module propulsion and for later use for ascent stage propulsion of the lunar lander. Both the Crew Exploration Vehicle and Lunar Lander were part the Constellation architecture, which had the objective to provide global sustained lunar human exploration capability. From late 2005 through the end of 2010, NASA and industry matured advanced development designs for many components that could be employed in relatively high thrust, high delta velocity, pressure fed propulsion systems for these two applications. The major investments were in main engines, reaction control engines, and the devices needed for cryogenic fluid management such as screens, propellant management devices, thermodynamic vents, and mass gauges. Engine and thruster developments also included advanced high reliability low mass igniters. Extensive tests were successfully conducted for all of these elements. For the thrusters and engines, testing included sea level and altitude conditions. This advanced development provides a mature technology base for future liquid oxygen/liquid methane pressure fed space propulsion systems. This paper documents the design and test efforts along with resulting hardware and test results.

  19. Specific power of liquid-metal-cooled reactors

    SciTech Connect

    Dobranich, D.

    1987-10-01

    Calculations of the core specific power for conceptual space-based liquid-metal-cooled reactors, based on heat transfer considerations, are presented for three different fuel types: (1) pin-type fuel; (2) cermet fuel; and (3) thermionic fuel. The calculations are based on simple models and are intended to provide preliminary comparative results. The specific power is of interest because it is a measure of the core mass required to produce a given amount of power. Potential problems concerning zero-g critical heat flux and loss-of-coolant accidents are also discussed because these concerns may limit the core specific power. Insufficient experimental data exists to accurately determine the critical heat flux of liquid-metal-cooled reactors in space; however, preliminary calculations indicate that it may be a concern. Results also indicate that the specific power of the pin-type fuels can be increased significantly if the gap between the fuel and the clad is eliminated. Cermet reactors offer the highest specific power because of the excellent thermal conductivity of the core matrix material. However, it may not be possible to take fuel advantage of this characteristic when loss-of-coolant accidents are considered in the final core design. The specific power of the thermionic fuels is dependent mainly on the emitter temperature. The small diameter thermionic fuels have specific powers comparable to those of pin-type fuels. 11 refs., 12 figs, 2 tabs.

  20. Experimental evidence for a liquid-liquid crossover in deeply cooled confined water.

    PubMed

    Cupane, Antonio; Fomina, Margarita; Piazza, Irina; Peters, Judith; Schirò, Giorgio

    2014-11-21

    In this work we investigate, by means of elastic neutron scattering, the pressure dependence of mean square displacements (MSD) of hydrogen atoms of deeply cooled water confined in the pores of a three-dimensional disordered SiO2 xerogel; experiments have been performed at 250 and 210 K from atmospheric pressure to 1200 bar. The "pressure anomaly" of supercooled water (i.e., a mean square displacement increase with increasing pressure) is observed in our sample at both temperatures; however, contrary to previous simulation results and to the experimental trend observed in bulk water, the pressure effect is smaller at lower (210 K) than at higher (250 K) temperature. Elastic neutron scattering results are complemented by differential scanning calorimetry data that put in evidence, besides the glass transition at about 170 K, a first-order-like endothermic transition occurring at about 230 K that, in view of the neutron scattering results, can be attributed to a liquid-liquid crossover. Our results give experimental evidence for the presence, in deeply cooled confined water, of a crossover occurring at about 230 K (at ambient pressure) from a liquid phase predominant at 210 K to another liquid phase predominant at 250 K; therefore, they are fully consistent with the liquid-liquid transition hypothesis.

  1. Monitoring system for a liquid-cooled nuclear fission reactor

    DOEpatents

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  2. Comparison of advanced cooling technologies efficiency depending on outside temperature

    SciTech Connect

    Blaise Hamanaka; Haihua Zhao; Phil Sharpe

    2009-09-01

    In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

  3. Effect of Exhaust Pressure on the Cooling Characteristics of a Liquid-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Doyle, Ronald B.; Desmon, Leland G.

    1947-01-01

    Data for a liquid-cooled engine with a displacement volume of 1710 cubic inches were analyzed to determine the effect of exhaust pressure on the engine cooling characteristics. The data covered a range of exhaust pressures from 7 to 62 inches of mercury absolute, inlet-manifold pressures from 30 to 50 inches of mercury absolute, engine speeds from 1600 to 3000 rpm, and fuel-air ratios from 0.063 to 0.100. The effect of exhaust pressure on engine cooling was satisfactorily incorporated in the NACA cooling-correlation method as a variation in effective gas temperature with exhaust pressure. Large variations of cylinder-head temperature with exhaust pressure were obtained for operation at constant charge flow. At a constant charge flow of 2 pounds per second (approximately 1000 bhp) and a fuel-air ratio of 0.085, an increase in exhaust pressure from 10 to 60 inches of mercury absolute resulted in an increase of 40 F in average cylinder-head temperature. For operation at constant engine speed and inlet-manifold pressure and variable exhaust pressure (variable charge flow), however, the effect of exhaust pressure on cylinder-head temperature is small. For example, at an inlet-manifold pressure of 40 inches of mercury absolute, an engine speed of 2400 rpm.- and a fuel-air ratio of 0.085, the average cylinder-head temperature was about the same at exhaust pressures of 10 and 60 inches of,mercury absolute; a rise and a subsequent decrease of about 70 occurred between these extremes.

  4. PERFORMANCE STUDY OF LIQUID NITROGEN THERMO-SIPHON COOLING LOOP

    SciTech Connect

    Kar, S.; Kumar, M.; Choudhury, A.; Datta, T. S.; Chorowski, M.; Polinski, J.

    2010-04-09

    A RF-superconducting linear accelerator (LINAC) booster for the existing 15 UD Pelletron accelerator is presently under construction at Inter-University Accelerator Centre in New Delhi, India. The LINAC will make use of superconducting niobium quarter-wave resonators (QWR) as the accelerating element, and will consist of three accelerating cryomodules. A gravity-assisted (thermo-siphon) flow scheme with liquid nitrogen has been proposed to cool the thermal radiation shields of the LINAC cryomodules. A small test rig of the thermo-siphon loop has been developed to simulate and investigate the chosen aspects of the proposed configuration. The experimental work has been focused on the thermal performances of the specially designed copper clamps and optimization of the system engineering parameters. The paper presents the results of the thermo-siphon measurements and the qualitative description of the investigated phenomena.

  5. Liquid-cooled cylinder assembly in internal-combustion engine

    SciTech Connect

    Nakano, H.; Ozu, T.

    1987-02-03

    This patent describes an internal-combustion engine of the piston type having at least one cylinder assembly comprising a cylinder head and a cylinder liner capped at the upper end thereof by the cylinder head. The improvement described here comprises: a reinforcing ring fixedly fitted around the outer cylindrical surface of the upper end part of the cylinder liner; recesses grooved in and at respective positions around the outer cylindrical surface; passageways in the reinforcing ring and communicating with respective the recesses to form cooling-liquid passageways; the upper end part of the cylinder liner having an inverted frustoconical shape with the outer diameter thereof increasing gradually in the direction toward the cylinder head. The inner wall surface of the reinforcing ring is formed to fit tightly around the upper end part in a lead-proof manner for preventing relative displacements between the cylinder head, the cylinder liner, and the reinforcing ring.

  6. Reliability and Maintainability Data for Liquid Metal Cooling Systems

    SciTech Connect

    Cadwallader, Lee Charles

    2015-05-01

    One of the coolants of interest for future fusion breeding blankets is lead-lithium. As a liquid metal it offers the advantages of high temperature operation for good station efficiency, low pressure, and moderate flow rate. This coolant is also under examination for use in test blanket modules to be used in the ITER international project. To perform reliability, availability, maintainability and inspectability (RAMI) assessment as well as probabilistic safety assessment (PSA) of lead-lithium cooling systems, component failure rate data are needed to quantify the system models. RAMI assessment also requires repair time data and inspection time data. This paper presents a new survey of the data sets that are available at present to support RAMI and PSA quantification. Recommendations are given for the best data values to use when quantifying system models.

  7. Method of shielding a liquid-metal-cooled reactor

    DOEpatents

    Sayre, Robert K.

    1978-01-01

    The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.

  8. Comparison of different cooling regimes within a shortened liquid cooling/warming garment on physiological and psychological comfort during exercise

    NASA Technical Reports Server (NTRS)

    Leon, Gloria R.; Koscheyev, Victor S.; Coca, Aitor; List, Nathan

    2004-01-01

    The aim of this study was to compare the effectiveness of different cooling regime intensities to maintain physiological and subjective comfort during physical exertion levels comparable to that engaged in during extravehicular activities (EVA) in space. We studied eight subjects (six males, two females) donned in our newly developed physiologically based shortened liquid cooling/warming garment (SLCWG). Rigorous (condition 1) and mild (condition 2) water temperature cooling regimes were compared at physical exertion levels comparable to that performed during EVA to ascertain the effectiveness of a lesser intensity of cooling in maintaining thermal comfort, thus reducing energy consumption in the portable life support system. Exercise intensity was varied across stages of the session. Finger temperature, rectal temperature, and subjective perception of overall body and hand comfort were assessed. Finger temperature was significantly higher in the rigorous cooling condition and showed a consistent increase across exercise stages, likely due to the restriction of heat extraction because of the intensive cold. In the mild cooling condition, finger temperature exhibited an overall decline with cooling, indicating greater heat extraction from the body. Rectal temperature was not significantly different between conditions, and showed a steady increase over exercise stages in both rigorous and mild cooling conditions. Ratings of overall comfort were 30% higher (more positive) and more stable in mild cooling (p<0.001). The mild cooling regime was more effective than rigorous cooling in allowing the process of heat exchange to occur, thus maintaining thermal homeostasis and subjective comfort during physical exertion.

  9. Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV)

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Rahman, H. Y.; Mahlia, T. M. I.; Sheng, J. L. Y.

    2016-03-01

    A liquid cooled plate heat exchanger was designed to improve the battery life of an electric vehicle which suffers from premature aging or degradation due to the heat generation during discharging and charging period. Computational fluid dynamics (CFD) was used as a tool to analyse the temperature distribution when a constant surface heat flux was set at the bottom surface of the battery. Several initial and boundary conditions were set based on the past studies on the plate heat exchanger in the simulation software. The design of the plate heat exchanger was based on the Nissan Leaf battery pack to analyse the temperature patterns. Water at different mass flow rates was used as heat transfer fluid. The analysis revealed the designed plate heat exchanger could maintain the surface temperature within the range of 20 to 40°C which is within the safe operating temperature of the battery.

  10. Photovoltaic-electrodialysis regeneration method for liquid desiccant cooling system

    SciTech Connect

    Li, Xiu-Wei; Zhang, Xiao-Song

    2009-12-15

    Liquid desiccant cooling system (LDCS) is an (a novel) air-conditioning system with good energy saving potential. Regenerator is the power centre for LDCS. Currently, the regeneration process is always fuelled by thermal energy. Nevertheless, this regeneration pattern has some disadvantages in that its performance will become poor when the surrounding atmosphere is of high humidity, and the heat provided for regeneration will be unfavourable to the following dehumidification process. To ameliorate that, a new regeneration method is proposed in this paper: a membrane regenerator is employed to regenerate the liquid desiccant in an electrodialysis way; while solar photovoltaic generator is adopted to supply electric power for this process. Analysis has been made about this new regeneration method and the result reveals: this new manner achieves good stability with the immunity against the adverse impact from the outside high humidity; its performance is much higher than that of the thermal regeneration manner while putting aside the low efficiency of the photovoltaic system. Besides, purified water can be obtained in company with the regeneration process. (author)

  11. Liquid gallium metal cooling for optical elements with high heat loads

    NASA Astrophysics Data System (ADS)

    Smither, Robert K.; Forster, George A.; Kot, Christian A.; Kuzay, Tuncer M.

    1988-04-01

    The intense photon beams from the insertion devices of the Argonne Advanced Photon Source (APS) will have very high total powers, which in some cases will exceed 10 kW, spread over a few cm 2. These high heat loads will require special cooling methods for the optical elements to preserve the quality of the photon beam. A set of finite element analysis calculations were made in three dimensions to determine the temperature distributions and thermal stresses in a single crystal of silicon with heat loads of 2-20 kW. Different geometric arrangements and different cooling fluids (water, gallium, oil, Na, etc.) were considered. These data were then used in a second set of calculations to determine the distortion of the surface of the crystal and the change in the crystal plane spacing for different parts of the surface. The best heat transfer, smallest surface distortions and smallest temperature gradients on the surface of the crystals were obtained when the cooling fluid was allowed to flow through channels in the crystal. The two best fluids for room temperature operation were found to be water and liquid gallium metal. In all cases tried, the variation in temperature across the face of the crystal and the distortion of the surface was at least a factor of two less for the gallium cooling case than for the water cooling case. The water cooling was effective only for very high flow rates. These high flow rates can cause vibrations in the diffraction crystal and in its mount that can seriously degrade the quality of the diffracted photon beam. When the flow rates were decreased the gallium cooling became 3-10 times more effective. This very efficient cooling and the very low vapor pressure for liquid gallium (less than 10 -12 Torr at 100°C) make liquid gallium a very attractive cooling fluid for high vacuum synchrotron applications. A small electromagnetic induction pump for liquid Ga was built to test this cooling method. A pumping volume of 100 cm 3/s was achieved

  12. Design and Testing of a Superfluid Liquid Helium CoolingLoop

    SciTech Connect

    Gavin, L.M.; Green, M.A.; Levin, S.M.; Smoot, George F.; Witebsky, C.

    1989-07-24

    This paper describes the design and preliminary testing of a cryogenic cooling loop that uses a thermomechanical pump to circulate superfluid liquid helium. The cooling loop test apparatus is designed to prove forced liquid helium flow concepts that will be used on the Astromag superconducting magnet facility.

  13. Thermal Performance Testing of EMU and CSAFE Liquid Cooling Garments

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Hakam, Mark; Radford, Tamara

    2013-01-01

    Future exploration missions require the development of a new liquid cooling garment (LCG) that offers greater system reliability, is more comfortable, and maximizes thermal performance. To inform the development of a future LCG a thermal performance test was conducted to evaluate three factors: (1) the effect of the thermal comfort undergarment (TCU) on tactile and thermal comfort, (2) the comparable thermal performance of an CSAFE developed engineering evaluation unit (EEU) LCG, which uses a commercial-off-the-shelf (COTS) wicking garment as the base, and (3) the performance of a torso or upper body only LCG configuration to evaluate a proposed auxiliary loop configuration. To evaluate the thermal performance of each configuration a metabolic suit test was conducted, utilizing suited subjects to generate metabolic heat by walking on a treadmill at various speeds. Three (3) test subjects of similar height and weight produced a metabolic load for five tests by either resting (300-600 BTU/hr), walking at a slow pace (1200 BTU/hr), and walking at a brisk pace (2200 BTU/hr). During the test, data was collected that would allow us to track the heat transfer to the LCG and ventilation system to determine the thermal performance of the LCG configurations. Four different test configurations were tested, with one configuration tested twice. The test results show that the CSAFE EEU LCG and EMU LCG had comparable performance. The testing also showed that an auxiliary loop LCG, sized similarly to the shirt-only configuration, should provide adequate cooling for contingency scenarios. Finally, the testing showed the previous analysis that assumed a UA deterioration from the TCU was too conservative and the TCU may prove to be acceptable for future development with additional analysis and testing.

  14. Delamination of graphite oxide in a liquid upon cooling

    NASA Astrophysics Data System (ADS)

    Talyzin, Alexandr V.; Klechikov, Alexey; Korobov, Mikhail; Rebrikova, Anastasiya T.; Avramenko, Nataliya V.; Gholami, M. Fardin; Severin, Nikolai; Rabe, Jürgen P.

    2015-07-01

    Graphite oxide (GO) in liquid acetonitrile undergoes a transition from an ordered phase around ambient temperature to a gel-like disordered phase at temperatures below 260 K, as demonstrated by in situ X-ray diffraction. The stacking order of GO layers is restored below the freezing point of acetonitrile (199 K). The reversible swelling transition between a stacked crystalline phase and an amorphous delaminated state observed upon cooling provides an unusual example of increased structural disorder at lower temperatures. The formation of the gel-like phase is attributed to the thermo-responsive conformational change of individual GO flakes induced by stronger solvation. Scanning force microscopy demonstrates that GO flakes deposited onto a solid substrate from acetonitrile dispersions at a temperature below 260 K exhibit corrugations and wrinkling which are not observed for the flakes deposited at ambient temperature. The thermo-responsive transition between the delaminated and stacked phases reported here can be used for sonication-free dispersion of graphene oxide, micro-container applications, or the preparation of new composite materials.Graphite oxide (GO) in liquid acetonitrile undergoes a transition from an ordered phase around ambient temperature to a gel-like disordered phase at temperatures below 260 K, as demonstrated by in situ X-ray diffraction. The stacking order of GO layers is restored below the freezing point of acetonitrile (199 K). The reversible swelling transition between a stacked crystalline phase and an amorphous delaminated state observed upon cooling provides an unusual example of increased structural disorder at lower temperatures. The formation of the gel-like phase is attributed to the thermo-responsive conformational change of individual GO flakes induced by stronger solvation. Scanning force microscopy demonstrates that GO flakes deposited onto a solid substrate from acetonitrile dispersions at a temperature below 260 K exhibit

  15. Thermal Performance Testing of EMU and OSS Liquid Cooling Garments

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Hakam, Mary

    2012-01-01

    A test was conducted to evaluate three factors influencing the thermal performance of liquid cooling garments (LCG): (1) the comparable thermal performance of an Oceaneering developed engineering evaluation unit (EEU) prototype LDG, (2) the effect of the thermal comfort undergarment (TCU), and (3) the performance of a torso or upper body only LCG configuration. To evaluate the thermal performance of each configuration a metabolic test was conducted, utilizing suited subjects to generate the metabolic heat. For this study three (3) test subjects of similar health and weight produced a metabolic load on the LDG configuration by either resting (300-600 BTU/hr), walking at a slow pace (1200 BRU/hr), and walking at a brisk pace (2200 BTU/hr), as outlined in Figure 1, the metabolic profile. During the test, oxygen consumption, heart rate, relative humidity, air flow, inlet and outlet air pressure, inlet and outlet air temperature, delta air temperature, water flow (100 lb/hr), inlet water temperature (64 F), delta water temperature, water pressure, core body temperature, skin temperature, and sweat loss data was recorded. Four different test configurations were tested, with one configuration tested twice, as outlined in Table 1. The test was conducted with the suit subjects wearing the Demonstrator Suit, pressurized to vent pressure (approximately 0.5 psig). The demonstrator suit has an integrated ventilation duct system and was used to create a relevant environment with a captured ventilation return, an integrated vent tree, and thermal insulation from the environment.

  16. Experimentally Determined Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Watts, Carly; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vonau, Walt; Vogel, Matt; Conger, Bruce

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flowrate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  17. Assessment of an active liquid cooling garment intended for use in a hot environment.

    PubMed

    Bartkowiak, Grazyna; Dabrowska, Anna; Marszalek, Anna

    2017-01-01

    This paper discusses the construction of a designed active liquid cooling garment (LCG) that has been developed in order to reduce thermal discomfort of persons working in hot environments. It consists of clothing with a tube system distributing a cooling liquid, a sensor measuring the microclimate under the clothing, and a portable cooling unit with a module controlling the temperature of the cooling liquid depending on the microclimate temperature under the clothing. The LCG was validated through tests on volunteers in a climatic chamber at 30 °C, a relative humidity of 40%, and an air movement rate of 0.4 m/s. The obtained test results confirmed the beneficial effects of the cooling system used on mean weighted skin temperature, the physical parameters of the microclimate under the clothing, and the participants' subjective assessments, as well as confirmed that the functioning of the control system regulating liquid temperature in the LCG was correct. PMID:27633212

  18. Thermal Performance Mapping of Direct Liquid Cooled 3d Chip Stacks

    NASA Astrophysics Data System (ADS)

    Geisler, Karl J. L.; Bar-Cohen, Avram

    Chip stacks are a crucial building block in advanced 3D microsystem architectures and can accommodate shorter interconnect distances between devices, leading to reduced power dissipation and improved electrical performance. Although enhanced conduction can serve to transfer the dissipated heat to the top and sides of the package and/or down to the underlying PCB, effective thermal management of stacked chips remains a most difficult challenge. Immersion cooling techniques, which provide convective and/or ebullient heat transfer, along with buoyant fluid flow, in the narrow gaps separating adjacent chips, are a most promising alternative to conduction cooling of threedimensional chip stacks. Application of the available theories, correlations, and experimental data are shown to reveal that passive immersion cooling--relying on natural convection and/or pool boiling--could provide the requisite thermal management capability for 3D chip stacks anticipated for use in much of the portable equipment category. Alternatively, pumped flow of dielectric liquids through the microgaps in 3D stacks, providing single phase and/or flow boiling heat absorption, could meet many of the most extreme thermal management requirements for high-performance 3D microsystems.

  19. Investigation of helium injection cooling to liquid oxygen under pressurized condition

    NASA Astrophysics Data System (ADS)

    Cho, Namkyung; Kwon, Ohsung; Kim, Youngmog; Jeong, Sangkwon

    2006-11-01

    Sub-cooling of cryogenic propellant by helium injection is one of the most effective methods for suppressing bulk boiling and keeping sub-cooled liquid oxygen before rocket launch. Compared with the helium injection cooling under atmospheric condition, helium injection cooling under pressurized condition has advantage that it can greatly reduce re-warming time of the sub-cooled liquid oxygen. Helium injection cooling under pressurized condition is characterized by cooling of initially sub-cooled cryogenic liquid, which is significantly different from that of the atmospheric condition where liquid oxygen usually exists at saturated condition. In this paper, we discuss the characteristics of helium injection cooling under pressurized condition, with the associated physical understanding of the process. Experimental results are presented along the simulations of variously combined system parameters based on the finite heat transfer and instantaneous diffusion mass transfer model. A non-dimensional parameter for identifying the cooling regime is conceived. The critical values of the non-dimensional parameters and injected helium temperatures are also estimated.

  20. Dynamic evolution of liquid-liquid phase separation during continuous cooling

    SciTech Connect

    Imhoff, S. D.; Gibbs, P. J.; Katz, M. R.; Ott, T. J.; Patterson, B. M.; Lee, W. -K.; Fezzaa, K.; Cooley, J. C.; Clarke, A. J.

    2015-03-01

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography has been used to observe liquideliquid phase separation in Al90In10 prior to solidification. Quantitative image analysis has been used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.

  1. Enhancement of Cognitive Processing by Multiple Sclerosis Patients Using Liquid Cooling Technology: A Case Study

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Montgomery, Richard W.; Ku, Yu-Tsuan; Luna, Bernadette (Technical Monitor)

    1997-01-01

    Cognitive dysfunction is a common symptom in patients with multiple sclerosis (MS). This can have a significant impact on the quality of life of both the patient and of their primary care giver. This case study explores the possibility that liquid cooling therapy may be used to enhance the cognitive processing of MS patients in the same way that it provides temporary relief of some physical impairment. Two MS patients were presented a series of pattern discrimination tasks before and after being cooled with a liquid cooling garment for a one hour period. The subject whose ear temperature was reduced during cooling showed greater electroencephalographic (EEG) activity and scored much better on the task after cooling. The patient whose ear temperature was unaffected by cooling showed less EEG activity and degraded performance after the one hour cooling period.

  2. [Heat transfer analysis of liquid cooling garment used for extravehicular activity].

    PubMed

    Qiu, Y F; Yuan, X G; Mei, Z G; Jia, S G; Ouyang, H; Ren, Z S

    2001-10-01

    Brief description was given about the construction and function of the LCG (liquid cooling garment) used for EVA (extravehicular activity). The heat convection was analyzed between ventilating gas and LCG, the heat and mass transfer process was analyzed too, then a heat and mass transfer mathematical model of LCG was developed. Thermal physiological experimental study with human body wearing LVCG (liquid cooling and ventilation garment) used for EVA was carried out to verify this mathematical model. This study provided a basis for the design of liquid-cooling and ventilation system for the space suit.

  3. Cooling Properties of the Shuttle Advanced Crew Escape Spacesuit: Results of an Environmental Chamber Experiment

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas; Gillis, David; Bue, Grant; Son, Chan; Norcross, Jason; Kuznetz, Larry; Chapman, Kirt; Chhipwadia, Ketan; McBride, Tim

    2008-01-01

    The shuttle crew wears the Advanced Crew Escape Spacesuit (ACES) to protect themselves from cabin decompression and to support bail out during landing. ACES is cooled by a liquid-cooled garment (LCG) that interfaces to a heat exchanger that dumps heat into the cabin. The ACES outer layer is made of Gore-Tex(Registered TradeMark), permitting water vapor to escape while containing oxygen. The crew can only lose heat via insensible water losses and the LCG. Under nominal landing operations, the average cabin temperature rarely exceeds 75 F, which is adequate for the ACES to function. Problem A rescue shuttle will need to return 11 crew members if the previous mission suffers a thermal protection system failure, preventing it from returning safely to Earth. Initial analysis revealed that 11 crew members in the shuttle will increase cabin temperature at wheel stop above 80 F, which decreases the ACES ability to keep crew members cool. Air flow in the middeck of the shuttle is inhomogeneous and some ACES may experience much higher temperatures that could cause excessive thermal stress to crew members. Methods A ground study was conducted to measure the cooling efficiency of the ACES at 75 F, 85 F, and 95 F at 50% relative humidity. Test subjects representing 5, 50, and 95 percentile body habitus of the astronaut corps performed hand ergometry keeping their metabolic rate at 400, 600, and 800 BTU/hr for one hour. Core temperature was measured by rectal probe and skin, while inside and outside the suit. Environmental chamber wall and cooling unit inlet and outlet temperatures were measured using high-resolution thermistors ( 0.2 C). Conclusions Under these test conditions, the ACES was able to protect the core temperature of all test subjects, however thermal stress due to high insensible losses and skin temperature and skin heat flow may impact crew performance. Further research should be performed to understand the impact on cognitive performance.

  4. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    SciTech Connect

    Salamon, Todd

    2012-12-13

    efficiency and carbon footprint reduction for our nation's Information and Communications Technology (ICT) infrastructure. The specific objectives of the ARCTIC project focused in the following three areas: i) advanced research innovations that dramatically enhance the ability to deal with ever-increasing device heat densities and footprint reduction by bringing the liquid cooling much closer to the actual heat sources; ii) manufacturing optimization of key components; and iii) ensuring rapid market acceptance by reducing cost, thoroughly understanding system-level performance, and developing viable commercialization strategies. The project involved participants with expertise in all aspects of commercialization, including research & development, manufacturing, sales & marketing and end users. The team was lead by Alcatel-Lucent, and included subcontractors Modine and USHose.

  5. Recent Advance in Thermoelectric Devices for Electronics Cooling

    NASA Astrophysics Data System (ADS)

    Wang, Peng

    Thermal management of on-chip hot spot, with a heat flux of around 1000 W/cm2, has become one of the major challenges in the development of next-generation microprocessors. Solid state thermoelectric cooler (TEC) offers great promise for hot spot thermal management because of their compact structure, fast response, high reliability, localized cooling, and high flux removal capability. To date TEC has received great attentions in electronics cooling community as one of the potential hot spot cooling solutions. In this paper, recent development and application of hot spot cooling strategies based on micro thermoelectric technologies will be reviewed and discussed, three hot spot cooling concepts, including thinfilm thermoelectric cooling, mini-contact cooling, and semiconductor selfcooling in silicon substrate and germanium substrate will be discussed. The advantages and disadvantages of these on-chip cooling solutions for high flux hot spots will be evaluated.

  6. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  7. Overview of liquid lubricants for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1982-01-01

    An overall status report on liquid lubricants for use in high-performance turbojet engines is presented. Emphasis is placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is iven of the development of turbine engine lubricants which led to synthetic oils with their inherent modification advantages. The status and state of development of some nine candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Also, alternatives to high temperature fluid development are described. The importance of of continuing work on improving high temperature lubricant candidates and encouraging development of fluid base stocks is discussed.

  8. Cooling of superconducting devices by liquid storage and refrigeration unit

    SciTech Connect

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  9. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOEpatents

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  10. Advanced collapsible tank for liquid containment

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Tanks for bulk liquid containment will be required to support advanced planetary exploration programs. Potential applications include storage of potable, process, and waste water, and fuels and process chemicals. The launch mass and volume penalties inherent in rigid tanks suggest that collapsible tanks may be more efficient. Collapsible tanks are made of lightweight flexible material and can be folded compactly for storage and transport. Although collapsible tanks for terrestrial use are widely available, a new design was developed that has significantly less mass and bulk than existing models. Modelled after the shape of a sessible drop, this design features a dual membrane with a nearly uniform stress distribution and a low surface-to-volume ratio. It can be adapted to store a variety of liquids in nearly any environment with constant acceleration field. Three models of 10L, 50L, and 378L capacity have been constructed and tested. The 378L (100 gallon) model weighed less than 10 percent of a commercially available collapsible tank of equivalent capacity, and required less than 20 percent of the storage space when folded for transport.

  11. Liquid Cooling of Tractive Lithium Ion Batteries Pack with Nanofluids Coolant.

    PubMed

    Li, Yang; Xie, Huaqing; Yu, Wei; Li, Jing

    2015-04-01

    The heat generated from tractive lithium ion batteries during discharge-charge process has great impacts on the performances of tractive lithium ion batteries pack. How to solve the thermal abuse in tractive lithium ion batteries pack becomes more and more urgent and important for future development of electrical vehicles. In this work, TiO2, ZnO and diamond nanofluids are prepared and utilized as coolants in indirect liquid cooling of tractive lithium ion batteries pack. The results show that nanofluids present superior cooling performance to that of pure fluids and the diamond nanofluid presents relatively excellent cooling abilities than that of TiO2 and ZnO nanofluids. During discharge process, the temperature distribution of batteries in batteries pack is uniform and stable, due to steady heat dissipation by indirect liquid cooling. It is expected that nanofluids could be considered as a potential alternative for indirect liquid cooling in electrical vehicles. PMID:26353564

  12. Liquid Cooling of Tractive Lithium Ion Batteries Pack with Nanofluids Coolant.

    PubMed

    Li, Yang; Xie, Huaqing; Yu, Wei; Li, Jing

    2015-04-01

    The heat generated from tractive lithium ion batteries during discharge-charge process has great impacts on the performances of tractive lithium ion batteries pack. How to solve the thermal abuse in tractive lithium ion batteries pack becomes more and more urgent and important for future development of electrical vehicles. In this work, TiO2, ZnO and diamond nanofluids are prepared and utilized as coolants in indirect liquid cooling of tractive lithium ion batteries pack. The results show that nanofluids present superior cooling performance to that of pure fluids and the diamond nanofluid presents relatively excellent cooling abilities than that of TiO2 and ZnO nanofluids. During discharge process, the temperature distribution of batteries in batteries pack is uniform and stable, due to steady heat dissipation by indirect liquid cooling. It is expected that nanofluids could be considered as a potential alternative for indirect liquid cooling in electrical vehicles.

  13. Theoretical analysis of specimen cooling rate during impact freezing and liquid-jet freezing of freeze-etch specimens.

    PubMed

    Kopstad, G; Elgsaeter, A

    1982-11-01

    We have carried out a theoretical analysis of specimen cooling rate under ideal conditions during impact freezing and liquid-jet freezing. The analysis shows that use of liquid helium instead of liquid nitrogen as cooling medium during impact freezing results in an increase in a specimen cooling rate of no more than 30-40%. We have further shown that when both impact freezing and liquid-jet freezing are conducted at liquid nitrogen temperature, the two methods give approximately the same specimen cooling rate under ideal conditions except for a thin outer layer of the specimen. In this region impact freezing yields the highest cooling rate. PMID:7171712

  14. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  15. Light-Weight, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  16. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    NASA Technical Reports Server (NTRS)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  17. Advanced Cooling Technology, Inc. quarterly technical progress report

    SciTech Connect

    Myers, H.S.

    1992-07-29

    Advanced Cooling Technology (ACT), Inc., will perform the following tasks in order to develop an improved, more reliable and more marketable version of their ACT Evaporative Subcooling System: (1) Develop a more stable pump by reducing vibration levels; (2) Design and develop a drainage mechanism that will protect the coil; (3) Apply for Underwriters laboratories approval and perform follow-up and coordination work to complete task to insure product is safe, within its intended applications; (4) Test invention's performance to demonstrate energy savings and long term resistance to scale and corrosion; (5) Contract with the American Refrigeration Institute to perform engineering tests under controlled laboratory conditions; (6) Organize data, and develop technical manual for helping purchasers determining energy savings and inventions merits, and (7) Perform a field test in a cooperative supermarket, where utility usage can be measured on a before and after basis. Tasks 1,2 are completed; task 3 was abandoned for reasons explained in the last quarterly progress report. Progress on tasks 4 and 5 is reported in this paper. (GHH)

  18. Advanced Cooling Technology, Inc. quarterly technical progress report

    SciTech Connect

    Myers, H.S.

    1992-07-29

    Advanced Cooling Technology (ACT), Inc., will perform the following tasks in order to develop an improved, more reliable and more marketable version of their ACT Evaporative Subcooling System: (1) Develop a more stable pump by reducing vibration levels; (2) Design and develop a drainage mechanism that will protect the coil; (3) Apply for Underwriters laboratories approval and perform follow-up and coordination work to complete task to insure product is safe, within its intended applications; (4) Test invention`s performance to demonstrate energy savings and long term resistance to scale and corrosion; (5) Contract with the American Refrigeration Institute to perform engineering tests under controlled laboratory conditions; (6) Organize data, and develop technical manual for helping purchasers determining energy savings and inventions merits, and (7) Perform a field test in a cooperative supermarket, where utility usage can be measured on a before and after basis. Tasks 1,2 are completed; task 3 was abandoned for reasons explained in the last quarterly progress report. Progress on tasks 4 and 5 is reported in this paper. (GHH)

  19. Cryogenically cooled monochromators for the Advanced Photon Source

    SciTech Connect

    Mills, D.M.

    1996-09-01

    The use of cryogenically cooled monochromators looks to be a very promising possibility for the Advanced Photon Source. This position has recently been bolstered by several experiments performed on beamlines at the ESRF and CHESS. At the ESRF, several crystal geometries have been tested that were designed for high power densities ({approx_gt}150 W/mm{sup 2}) and moderate total absorbed powers ({lt}200 W). These geometries have proven to be very successful at handling these power parameters with measured strains on the arc-second level. The experiments performed at CHESS were focused on high total power ({approx_gt}1000 W) but moderate power densities. As with the previously mentioned experiments, the crystals designed for this application performed superbly with no measurable broadening of the rocking curves on the arc-second level. These experiments will be summarized and, based on these results, the performance of cryogenic monochromators for the APS will be assessed. {copyright} {ital 1996 American Institute of Physics.}

  20. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Galvez, Cristhian

    2011-12-01

    The Pebble Bed Advanced High Temperature Reactor (PB-AHTR) is a pebble fueled, liquid salt cooled, high temperature nuclear reactor design that can be used for electricity generation or other applications requiring the availability of heat at elevated temperatures. A stage in the design evolution of this plant requires the analysis of the plant during a variety of potential transients to understand the primary and safety cooling system response. This study focuses on the performance of the passive safety cooling system with a dual purpose, to assess the capacity to maintain the core at safe temperatures and to assist the design process of this system to achieve this objective. The analysis requires the use of complex computational tools for simulation and verification using analytical solutions and comparisons with experimental data. This investigation builds upon previous detailed design work for the PB-AHTR components, including the core, reactivity control mechanisms and the intermediate heat exchanger, developed in 2008. In addition the study of this reference plant design employs a wealth of auxiliary information including thermal-hydraulic physical phenomena correlations for multiple geometries and thermophysical properties for the constituents of the plant. Finally, the set of performance requirements and limitations imposed from physical constrains and safety considerations provide with a criteria and metrics for acceptability of the design. The passive safety cooling system concept is turned into a detailed design as a result from this study. A methodology for the design of air-cooled passive safety systems was developed and a transient analysis of the plant, evaluating a scrammed loss of forced cooling event was performed. Furthermore, a design optimization study of the passive safety system and an approach for the validation and verification of the analysis is presented. This study demonstrates that the resulting point design responds properly to the

  1. Calculating the Muon Cooling within a MICE Solid and LiquidAbsorber

    SciTech Connect

    Yang, Stephanie Q.; Green, Michael A.; Virostek, Steve P.

    2006-06-10

    The key elements of the Muon Ionization Cooling Experiment (MICE) cooling channel are the absorbers that are a part of the MICE absorber focus coil modules (AFC modules). The boundaries of room temperature solid absorbers are well defined. The density of most solid absorber materials is also well understood. The properties of solid absorber are most certainly understood to 0.3 percent. The MICE liquid absorbers are different in that their dimensions are a function of the absorber temperature and the fluid pressure within the absorber. The second element in the liquid absorber is the variability of the liquid density with temperature and pressure. While one can determine the absorber boundary within 0.3 percent, the determination of the liquid density within 0.3 percent is more difficult (particularly with liquid helium in the absorber). This report presents a method of calculating absorber boundary and the cooling performance of the MICE absorbers as a function of fluid temperature and pressure.

  2. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  3. Automatic control of human thermal comfort with a liquid-cooled garment

    NASA Technical Reports Server (NTRS)

    Kuznetz, L. H.

    1977-01-01

    Water cooling in a liquid-cooled garment is used to maintain the thermal comfort of crewmembers during extravehicular activity. The feasibility of a simple control that will operate automatically to maintain the thermal comfort is established. Data on three test subjects are included to support the conclusion that heat balance can be maintained well within allowable medical limits. The controller concept was also successfully demonstrated for ground-based applications and shows potential for any tasks involving the use of liquid-cooled garments.

  4. ALS liquid hydrogen turbopump: Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Shimp, Nancy R.; Claffy, George J.

    1989-01-01

    The point of departure (POD) turbopump concept was reviewed and finalized. The basis for the POD was the configuration presented in the Aerojet proposal. After reviewing this proposal concept, several modifications were made. These modifications include the following: (1) the dual pump discharge arrangement was changed to a single discharge; (2) commonality of the turbine inlet manifold with the advanced launch system (ALS) liquid oxygen (LOX) TPA was dropped for this program; (3) the turbine housing flange arrangement was improved by relocating it away from the first stage nozzles; (4) a ten percent margin (five percent diameter increase) was built into the impeller design to ensure meeting the required discharge pressure without the need for increasing speed; (5) a ten percent turbine power margin was imposed which is to be obtained by increasing turbine inlet pressure if required; and (6) the backup concept, as an alternative to the use of cast impellers, now incorporates forged/machined shrouded impellers, rather than the unshrouded type originally planned.

  5. Advanced seals for Liquid Oxygen (LOX) turbopumps

    NASA Technical Reports Server (NTRS)

    Shapiro, W.; Hamm, R.; Hemminger, J. A.

    1985-01-01

    Reliability, life and vehicle pay load can be enhanced by improved seals on space vehicle propulsion systems. Development of two types of fluid-film seals for application to advanced LOX turbomachines are summarized. The first is a floating ring, helium buffered seal whose function is to exclude intrusion of liquid oxygen (LOX) into the turbine drive. The other is a spiral groove, LOX, face-type configuration designed to break down pressure and minimize leakage of LOX. The Rayleigh-step, floating ring gas seals require low clearances to minimize leakage and stiff films to assure tracking excursions of the rotor and to overcome Coulomb friction between the rings and housings. The design and test results of these buffer seals are described. Results indicate significant performance improvement over seals used on contemporary engines. The possibilities of reducing helium storage requirements and thus increasing payload appear promising. A unique configuration of spiral groove LOX seal was required to avoid detrimental vaporization in the flow path. It was found that fluid turbulence and inertia influence groove geometry and in particular groove depth must be much greater than spiral groove seals using conventional fluids.

  6. Self-Transport of Condensed Liquid in Micro Cooling Device Using Distributed Meniscus Pumping.

    PubMed

    So, Hongyun; Pisano, Albert P

    2015-06-16

    This paper reports a reliable passive micro pump system combining the physical properties of a tapered microchannel and sharp microstructures. This tailored microchannel with triple-spike microstructures was created to transport condensed liquid into the reservoir chamber in a micro cooling device and in the case of chip off-mode prepare the next cooling cycle before chip on-mode, allowing the reliable and continuous circulation of coolant without liquid being trapped in the vapor channel causing dryout limitation. At the tapered channel end, the pinned liquid meniscus was distributed by a middle spike and then continued to overflow into the condenser chamber due to extended capillary action. PMID:26010771

  7. Self-Transport of Condensed Liquid in Micro Cooling Device Using Distributed Meniscus Pumping.

    PubMed

    So, Hongyun; Pisano, Albert P

    2015-06-16

    This paper reports a reliable passive micro pump system combining the physical properties of a tapered microchannel and sharp microstructures. This tailored microchannel with triple-spike microstructures was created to transport condensed liquid into the reservoir chamber in a micro cooling device and in the case of chip off-mode prepare the next cooling cycle before chip on-mode, allowing the reliable and continuous circulation of coolant without liquid being trapped in the vapor channel causing dryout limitation. At the tapered channel end, the pinned liquid meniscus was distributed by a middle spike and then continued to overflow into the condenser chamber due to extended capillary action.

  8. Regeneratively Cooled Liquid Oxygen/Methane Technology Development Between NASA MSFC and PWR

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey B.

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  9. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOEpatents

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  10. Advances in open-cycle solid desiccant cooling

    SciTech Connect

    Penney, T R; Maclaine-cross, I

    1985-05-01

    Of the solar cooling options available open cycle solid desiccant cooling looks very promising. A brief review of the experimental and analytical efforts to date shows that within the last 10 years thermal performance has doubled. Research centers have been developed to explore new materials and geometry options and to improve and validate mathematical models that can be used by design engineers to develop new product lines. Typical results from the Solar Energy Research Institute's (SERI) Desiccant Cooling Research Program are shown. Innovative ideas for new cycles and spinoff benefits provide incentives to continue research in this promising field.

  11. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges... What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and discharges information and cooling water...

  12. Cooling rate dependence of solidification for liquid aluminium: a large-scale molecular dynamics simulation study.

    PubMed

    Hou, Z Y; Dong, K J; Tian, Z A; Liu, R S; Wang, Z; Wang, J G

    2016-06-29

    The effect of the cooling rate on the solidification process of liquid aluminium is studied using a large-scale molecular dynamics method. It is found that there are various types of short-range order (SRO) structures in the liquid, among which the icosahedral (ICO)-like structures are dominant. These SRO structures are in dynamic fluctuation and transform each other. The effect of the cooling rate on the microstructure is very weak at high temperatures and in supercooled liquids, and it appears only below the liquid-solid transition temperature. Fast cooling rates favour the formation of amorphous structures with ICO-like features, while slow cooling rates favour the formation of FCC crystalline structures. Furthermore, FCC and HCP structures can coexist in crystalline structures. It is also found that nanocrystalline aluminium can be achieved at appropriate cooling rates, and its formation mechanism is thoroughly investigated by tracing the evolution of nanoclusters. The arrangement of FCC and HCP atoms in the nanograins displays various twinned structures as observed using visualization analysis, which is different from the layering or phase separation structures observed in the solidification of Lennard-Jones fluids and some metal liquids. PMID:27302145

  13. Heat-driven liquid metal cooling device for the thermal management of a computer chip

    NASA Astrophysics Data System (ADS)

    Ma, Kun-Quan; Liu, Jing

    2007-08-01

    The tremendous heat generated in a computer chip or very large scale integrated circuit raises many challenging issues to be solved. Recently, liquid metal with a low melting point was established as the most conductive coolant for efficiently cooling the computer chip. Here, by making full use of the double merits of the liquid metal, i.e. superior heat transfer performance and electromagnetically drivable ability, we demonstrate for the first time the liquid-cooling concept for the thermal management of a computer chip using waste heat to power the thermoelectric generator (TEG) and thus the flow of the liquid metal. Such a device consumes no external net energy, which warrants it a self-supporting and completely silent liquid-cooling module. Experiments on devices driven by one or two stage TEGs indicate that a dramatic temperature drop on the simulating chip has been realized without the aid of any fans. The higher the heat load, the larger will be the temperature decrease caused by the cooling device. Further, the two TEGs will generate a larger current if a copper plate is sandwiched between them to enhance heat dissipation there. This new method is expected to be significant in future thermal management of a desk or notebook computer, where both efficient cooling and extremely low energy consumption are of major concern.

  14. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  15. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.

  16. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  17. New Mexico cloud super cooled liquid water survey final report 2009.

    SciTech Connect

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  18. Progress on the MICE Liquid Absorber Cooling and CryogenicDistribution System

    SciTech Connect

    Green, M.A.; Baynham, E.; Bradshaw, T.; Drumm, P.; Ivanyushenkov,Y.; Ishimoto, S.; Cummings, M.A.C.; Lau, W.W.; Yang, S.Q.

    2005-05-13

    This report describes the progress made on the design of the cryogenic cooling system for the liquid absorber for the international Muon Ionization Cooling Experiment (MICE). The absorber consists of a 20.7-liter vessel that contains liquid hydrogen (1.48 kg at 20.3 K) or liquid helium (2.59 kg at 4.2 K). The liquid cryogen vessel is located within the warm bore of the focusing magnet for the MICE. The purpose of the magnet is to provide a low beam beta region within the absorber. For safety reasons, the vacuum vessel for the hydrogen absorber is separated from the vacuum vessel for the superconducting magnet and the vacuum that surrounds the RF cavities or the detector. The absorber thin windows separate the liquid in the absorber from the absorber vacuum. The absorber vacuum vessel also has thin windows that separate the absorber vacuum space from adjacent vacuum spaces. Because the muon beam in MICE is of low intensity, there is no beam heating in the absorber. The absorber can use a single 4 K cooler to cool either liquid helium or liquid hydrogen within the absorber.

  19. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    SciTech Connect

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.; Gromada, R.J.; McCarville, T.J.; Moir, R.W.; Lee, J.D.; Bandini, B.R.; Fulton, F.J.; Wong, C.P.C.; Maya, I.; Hoot, C.G.; Schultz, K.R.; Miller, L.G.; Beeston, J.M.; Harris, B.L.; Westman, R.A.; Ghoniem, N.M.; Orient, G.; Wolfer, M.; DeVan, J.H.; Torterelli, P.

    1985-09-01

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future.

  20. The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems

    SciTech Connect

    Green, Michael A.

    2003-07-09

    The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoring and controlling the cooling is discussed.

  1. Indiana State University Graduates to Advanced Plastic Cooling Towers

    ERIC Educational Resources Information Center

    Sullivan, Ed

    2012-01-01

    Perhaps more than many other industries, today's universities and colleges are beset by dramatically rising costs on every front. One of the areas where overhead can be contained or reduced is in the operation of the chilled water systems that support air conditioning throughout college campuses, specifically the cooling towers. Like many…

  2. Influence of coolant injector configuration on film cooling effectiveness for gaseous and liquid film coolants

    NASA Astrophysics Data System (ADS)

    Shine, S. R.; Sunil Kumar, S.; Suresh, B. N.

    2012-05-01

    An experimental investigation is conducted to bring out the effects of coolant injector configuration on film cooling effectiveness, film cooled length and film uniformity associated with gaseous and liquid coolants. A series of measurements are performed using hot air as the core gas and gaseous nitrogen and water as the film coolants in a cylindrical test section simulating a thrust chamber. Straight and compound angle injection at two different configurations of 30°-10° and 45°-10° are investigated for the gaseous coolant. Tangential injection at 30° and compound angle injection at 30°-10° are examined for the liquid coolant. The analysis is based on measurements of the film-cooling effectiveness and film uniformity downstream of the injection location at different blowing ratios. Measured results showed that compound angle configuration leads to lower far-field effectiveness and shorter film length compared to tangential injection in the case of liquid film cooling. For similar injector configurations, effectiveness along the stream wise direction showed flat characteristics initially for the liquid coolant, while it was continuously dropping for the gaseous coolant. For liquid coolant, deviations in temperature around the circumference are very low near the injection point, but increases to higher values for regions away from the coolant injection locations. The study brings out the existance of an optimum gaseous film coolant injector configuration for which the effectiveness is maximum.

  3. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  4. Liquid gallium cooling of silicon crystals in high intensity photon beams (invited)

    NASA Astrophysics Data System (ADS)

    Smither, R. K.; Forster, G. A.; Bilderback, D. H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L. E.; Stefan, P.; Oversluizen, T.

    1989-07-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1-10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator. Tests were performed on two new Ga-cooled Si crystals and compared with the standard water-cooled Si crystal. One of the crystals had cooling

  5. [Advances of poly (ionic liquid) materials in separation science].

    PubMed

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials. PMID:26939357

  6. Liquid gallium cooling of silicon crystals in high intensity photon beams

    SciTech Connect

    Smither, R. K.; Forster, G. A.; Bilderback, D. H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L. E.; Stefan, P.; Oversluizen, T.; and others

    1989-07-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1--10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator.

  7. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  8. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is

  9. Advanced turbine cooling, heat transfer, and aerodynamic studies

    SciTech Connect

    Je-Chin Han; Schobeiri, M.T.

    1995-10-01

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect on Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  10. Advanced turbine cooling, heat transfer, and aerodynamic studies

    SciTech Connect

    Han, Je-Chin; Schobeiri, M.T.

    1995-12-31

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect of Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  11. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  12. Vegetable oils: liquid coolants for solar heating and cooling applications

    SciTech Connect

    Ingley, H A

    1980-02-01

    It has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. The major thrust of the project was to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density, and thermal conductivity were determined over a range of temperatures for corn, soybean, peanut, and cottonseed oil. ASTM standard methods were used for these determinations. In addition, chemical analyses were performed on samples of each oil. The samples were collected before and after each experiment so that any changes in composition could be noted. The tests included iodine number, fatty acid, and moisture content determination. (MHR)

  13. Liquid nitrogen cooling considerations of the Compact Ignition Tokamak

    SciTech Connect

    Dabiri, A.E.

    1986-10-01

    A simple model was developed to estimate the cooldown time between pulses of toroidal field (TF) coils of the Compact Ignition Tokamak (CIT) using liquid nitrogen. Good agreement was obtained between the analysis results and those measured in the early fusion experimental devices. A cooldown time of about 1 h would reduce the TF coil temperature to about 80 K. An R and D experimental program is required to determine the actual cooldown time between pulses, an issue in the conceptual design of the CIT.

  14. Determining the surface temperature of liquid oxygen cooled bearings

    NASA Technical Reports Server (NTRS)

    Naerheim, Y.; Stocker, P. J.; Lumsden, J. B.

    1988-01-01

    This paper presents a method for determining the surface temperature of liquid-oxygen turbopump bearings during the operation of the turbopump. The method relies on the fact that the surface temperature of a bearing can be correlated with the composition of oxides used to cover the bearings, using oxidation samples for calibration and AES for chemical analysis. Using this method, it was found that, for the bearings studied, the maximum temperature reached by stainless steel bearings was 600 C, which is well below the 1100-C autoignition temperature of the AISI stainless steel.

  15. Final report-passive safety optimization in liquid sodium-cooled reactors.

    SciTech Connect

    Cahalana, J. E.; Hahn, D.; Nuclear Engineering Division; Korea Atomic Energy Research Inst.

    2007-08-13

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  16. Modeling of the Evaporative Cooling of Running-Down Liquid Films in the Slit Channel of the Spraying Device of a Cooling Tower

    NASA Astrophysics Data System (ADS)

    Dashkov, G. V.; Malenko, G. L.; Solodukhin, A. D.; Tyutyuma, V. D.

    2014-11-01

    This paper presents the results of computational modeling of the nonstationary evaporative cooling of a liquid film running down a vertical surface cooled by a turbulent vapor-air counterflow. The heat and mass transfer problem has been formulated in conjugate form. The calculation data on the total heat flow density at the interface for various instants of time are given.

  17. Phase II Testing of Liquid Cooling Garments Using a Sweating Manikin, Controlled by a Human Physiological Model

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Trevino, Luis; Bue,Grant; Rugh, John

    2006-01-01

    An Advanced Automotive Manikin (ADAM) developed at the National Renewable Energy Laboratory (NREL) is used to evaluate NASA's liquid cooling garments (LCGs) used in advanced space suits for extravehicular applications. The manikin has 120 separate heated/sweating zones and is controlled by a finite element physiological model of the human thermoregulatory system. Previous testing showed the thermal sensation and comfort followed the expected trends as the LCG inlet fluid temperature was changed. The Phase II test data demonstrates the repeatability of ADAM by retesting the baseline LCG. Skin and core temperature predictions using ADAM in an LCG/Arctic suit combination are compared to NASA physiological data to validate the manikin/model. Additional LCG configurations are assessed using the manikin and compared to the baseline LCG. Results can extend to other personal protective clothing, including HAZMAT suits, nuclear/biological/chemical protective suits, and fire protection suits.

  18. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    NASA Astrophysics Data System (ADS)

    Hoadley, A. W.; Porter, A. J.

    1992-07-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  19. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  20. Cylinder-temperature correlation of a single-cylinder liquid-cooled engine

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Manganiello, Eugene J; Bernardo, Everett

    1946-01-01

    An analysis based on nonboiling forced-convection heat-transfer theory is made of the cooling processes in liquid-cooled engine cylinders. Semiempirical equations that relate the average head and barrel temperatures with the primary engine and coolant parameters are derived. A correlation method based on these equations is applied to data obtained from previously reported investigations, which were conducted over large ranges of engine and coolant conditions with two liquid-cooled cylinders using water and various aqueous ethylene glycol solutions as coolants. Upon evaluation of empirical factors, an equation for the cylinder-head temperature as a function of the engine operating conditions and the flow rate, temperature, and physical properties of the coolants is obtained, which represents the data with good accuracy.

  1. Simplified thermochemistry of oxygen in lithium and sodium for liquid metal cooling systems

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1972-01-01

    Plots of oxygen chemical potential against composition of lithium-oxygen solutions and sodium-oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.

  2. Deeply-cooled water under strong confinement: neutron scattering investigations and the liquid-liquid critical point hypothesis.

    PubMed

    Bertrand, Christopher E; Zhang, Yang; Chen, Sow-Hsin

    2013-01-21

    We present an overview of recent experimental investigations into the properties of strongly-confined water below the bulk freezing temperature. Under strong confinement, the crystallization of water is completely suppressed and the behavior of the confined liquid state can be measured at temperatures and pressures that are inaccessible to the bulk liquid. We focus on two phenomena that have recently been discovered in strongly confined water: the density minimum and the fragile-to-strong dynamic crossover. All experimental results seem to indicate that confined water undergoes a unique kind of transition below the bulk homogeneous nucleation limit. Much of the recent work on deeply-cooled water under strong confinement has been motivated by the liquid-liquid critical point (LLCP) hypothesis. We discuss this hypothesis in the context of the various experimental findings. PMID:23184078

  3. Method of high heat flux removal by usage of liquid spray cooling

    NASA Astrophysics Data System (ADS)

    Smakulski, Przemysław

    2013-09-01

    High heat flux removal are important issue in many perspective applications such as computer chips, laser diode arrays, or boilers working on supercritical parameters. Electronic microchips constructed nowadays are model example of high heat flux removal, where the cooling system have to maintain the temperature below 358 K and take heat flux up to 300 W/cm2. One of the most efficient methods of microchips cooling turns out to be the spray cooling method. Review of installations has been accomplished for removal at high heat flux with liquid sprays. In the article are shown high flux removal characteristic and dependences, boiling critical parameters, as also the numerical method of spray cooling analysis.

  4. In vivo MRI using liquid nitrogen cooled phased array coil at 3.0 T

    PubMed Central

    Kwok, Wingchi E.; You, Zhigang

    2010-01-01

    A liquid nitrogen (LN2) cooled dual-channel array coil was designed and built for use on a 3.0-T whole-body scanner. In vivo imaging of a volunteer's fingers and imaging of a deceased mouse and oil phantom were performed using the LN2 cooled array and a similar room-temperature coil. Imaging results showed that the LN2 cooled array provides a signal-to-noise ratio gain of up to 240% as compared with its room-temperature counterpart. LN2 cooled arrays may be useful for high-resolution clinical imaging of joints, skin, eyes and peripheral vessels as well as for biomedical imaging of small animals in human disease modeling. PMID:16824977

  5. Development of actively cooled panels for advanced propulsion systems

    NASA Astrophysics Data System (ADS)

    Hauber, Brett K.

    1998-01-01

    Development of actively cooled flowpath panels for the National Aero-Space Plane (NASP) propulsion system was a critical task in the development plan of the air vehicle system. This task encompassed development of design requirements and loads, and component design and testing. In the early 90's the effort focused on six cooled panel designs based in five different materials (NARloy-Z, Haynes 188, MoRe, IN909, C/C and C/SiC), each satisfying requirements in a different area of the propulsion flowpath. Eventually, three of these designs were fabricated and tested. For these tests, two primary facilities were used. The first was a radiant heating facility at Wright Patterson Air Force Base (WPAFB), and the second, a vitiated air heater at General Applied Science Laboratories (GASL) Inc. In these facilities, tests were run to validate thermal and mechanical models and to demonstrate coating durability and effectiveness. Additional tests to assess the damage tolerance of these designs were planned but never run. These tests ultimately exposed strengths and weaknesses in the designs and the analysis methods.

  6. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  7. Recent advances in convectively cooled engine and airframe structures for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.; Shore, C. P.; Nowak, R. J.

    1978-01-01

    A hydrogen-cooled structure for a fixed-geometry, airframe-integrated scramjet is described. The thermal/structural problems, concepts, design features, and technological advances are applicable to a broad range of engines. Convectively cooled airframe structural concepts that have evolved from an extensive series of investigations, the technology developments that have led to these concepts, and the benefits that accrue from their use are discussed.

  8. Application of metallic nanoparticle suspensions in advanced cooling systems

    SciTech Connect

    Lee, S.; Choi, S.U.S.

    1996-12-31

    In the development of energy-efficient heat transfer fluids that are required in many cooling applications, low thermal conductivity is a primary limitation. However, it is well known that at room temperature, metals in solid form have orders-of-magnitude higher thermal conductivities than those of fluids. Therefore, the thermal conductivities of fluids that contain suspended solid metallic particles are expected to be significantly enhanced over those of conventional heat transfer fluids. In fact, numerous theoretical and experimental studies of the effective thermal conductivity of dispersions that contain solid particles have been conducted since Maxwell`s theoretical was published more than 100 years ago. However, all of the studies on thermal conductivity of suspensions have been confined to millimeter- or micrometer-sized particles.

  9. A comparison of three liquid-ventilation cooling garments during treadmill exercise

    NASA Technical Reports Server (NTRS)

    Webbon, B.; Miller, L.; Williams, B.; Montgomery, L.

    1981-01-01

    A comparative study was made of the heat transfer performance and physiological effects of three different cooling garments used under sealed garments (simulating space suits) on five male subjects, during treadmill exercise. The mean exercise metabolic rate while walking at 0.9 m/s (2 mph) was 464 plus or minus 33 W. An equilibrium condition was never reached during the uncooled suited control runs and the subjects lost approximately two percent of body weight during the exercises. The mean weight loss with an Apollo-type garment was 0.35 plus or minus 0.10 kg, and 0.26 plus or minus 0.11 kg with the full-body cooling patch garment (garment 2). With the partial-coverage cooling patch (garment 3), the weight loss was 0.52 plus or minus 0.12 kg. The data showed an increase in the leg blood flow when the working muscles were not cooled by liquid flow (garment 3), and the arm blood flow remained unchanged with and without liquid cooling to the arms.

  10. Liquid gallium cooling of silicon crystals in high intensity photon beam

    SciTech Connect

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L.E.; Stefan, P.; Oversluizen, T.

    1988-11-01

    The high-brilliance, insertion-device-based, photon beams of the next generation of synchrotron sources will deliver large thermal loads (1 kW to 10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and new cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in uhv conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium cooled silicon diffraction crystals with water cooled crystals. 2 refs., 16 figs., 1 tab.

  11. Liquid jet impingement cooling with diamond substrates for extremely high heat flux applications

    SciTech Connect

    Lienhard, J.H. V; Khounsary, A.M.

    1993-09-01

    The combination of impinging jets and diamond substrates may provide an effective solution to a class of extremely high heat flux problems in which very localized heat loads must be removed. Some potential applications include the cooling of high-heat-load components in synchrotron x-ray, fusion, and semiconductor laser systems. Impinging liquid jets are a very effective vehicle for removing high heat fluxes. The liquid supply arrangement is relatively simple, and low thermal resistances can be routinely achieved. A jet`s cooling ability is a strong function of the size of the cooled area relative to the jet diameter. For relatively large area targets, the critical heat fluxes can approach 20 W/mm{sup 2}. In this situation, burnout usually originates at the outer edge of the cooled region as increasing heat flux inhibits the liquid supply. Limitations from liquid supply are minimized when heating is restricted to the jet stagnation zone. The high stagnation pressure and high velocity gradients appear to suppress critical flux phenomena, and fluxes of up to 400 W/mm{sup 2} have been reached without evidence of burnout. Instead, the restrictions on heat flux are closely related to properties of the cooled target. Target properties become an issue owing to the large temperatures and large temperature gradients that accompany heat fluxes over 100 W/mm{sup 2}. These conditions necessitate a target with both high thermal conductivity to prevent excessive temperatures and good mechanical properties to prevent mechanical failures. Recent developments in synthetic diamond technology present a possible solution to some of the solid-side constraints on heat flux. Polycrystalline diamond foils can now be produced by chemical vapor deposition in reasonable quantity and at reasonable cost. Synthetic single crystal diamonds as large as 1 cm{sup 2} are also available.

  12. Advances in cooled semen technologies: seminal plasma and semen extender.

    PubMed

    Rigby, S L; Brinsko, S P; Cochran, M; Blanchard, T L; Love, C C; Varner, D D

    2001-12-01

    This study evaluated motility and fertility of uncentrifuged and centrifuged equine semen following dilution in a skim milk-glucose extender with or without supplemental Tyrode's medium. In addition, the effect of seminal plasma addition to each extender was evaluated. For Experiment 1, motility of 48h cooled, stored spermatozoa was evaluated following eight dilution treatments: uncentrifuged and diluted 1:4 (v/v) in skim milk-glucose extender (EZ Mixin CSTJ; CST-1:4) or in CST supplemented 65:35 (v/v) with modified Tyrode's medium (KMT-1:4); uncentrifuged and diluted to 25x10(6) spermatozoa/ml in CST (CST-1:9) or in KMT (KMT-1:9); centrifuged and diluted in CST with 0% seminal plasma (CST-0) or 20% seminal plasma (CST-20) or centrifuged and diluted in KMT containing 0% seminal plasma (KMT-0) or in KMT containing 20% seminal plasma (KMT-20). Sperm motility parameters evaluated included percentage of total motile sperm (% TMOT), percentage of progressively motile sperm (% PMOT), curvilinear velocity (VCL) and straight-line velocity (VSL). Mean % PMOT was lower (P<0.05) for spermatozoa extended in CST-1:4 compared to CST-1:9, whereas, all motility parameters were reduced (P<0.05) in KMT-1:4 compared to KMT-1:9. Spermatozoa extended in CST-1:4 had greater % TMOT, % PMOT and VSL (P<0.05) than in KMT-1:4. Spermatozoa extended in CST-1:9 had greater (P<0.05) % PMOT than in KMT-1:9, however, VCL was greater (P<0.05) in KMT-1:9. Mean VCL and VSL were lower (P<0.05) for spermatozoa extended in CST-0 compared with CST-20, whereas, spermatozoa extended in KMT-0 had greater (P<0.05) % TMOT, % PMOT and VSL compared to spermatozoa extended in KMT-20. Mean % TMOT and % PMOT were greater (P<0.05) in CST-20 compared to KMT-20, however, KMT-0 increased (P<0.05) velocity measures (VCL and VSL) compared to CST-0. In Experiment 2, fertility of centrifuged spermatozoa diluted in either CST-20 or KMT-0 was similar (P>0.05). We conclude that modified Tyrode's medium was not detrimental to

  13. Test program to provide confidence in liquid oxygen cooling of hydrocarbon fueled rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.

    1986-01-01

    In previous tests of liquid oxygen cooling of hydrocarbon fueled rocket engines, small oxygen leaks developed at the throat of the thrust chamber and film cooled the hot gas side of the chamber wall without resulting in catastrophic failure. However, more testing is necessary to demonstrate that a catastropic failure would not occur if cracks developed further upstream between the injector and the throat, where the boundary layer has not been established. Since under normal conditions cracks are expected to form in the throat region of the thrust chamber, cracks must be initiated artificially in order to control their location. Several methods of crack initiation are discussed here.

  14. Cooling and solidification of liquid-metal drops in a gaseous atmosphere

    NASA Technical Reports Server (NTRS)

    Mccoy, J. K.; Markworth, A. J.; Collings, E. W.; Brodkey, R. S.

    1992-01-01

    The free fall of a liquid-metal drop, heat transfer from the drop to its environment, and solidification of the drop are described for both gaseous and vacuum atmospheres. A simple model, in which the drop is assumed to fall rectilinearly, with behavior like that of a rigid particle, is developed to describe cooling behavior. Recalescence of supercooled drops is assumed to occur instantaneously when a specified temperature is passed. The effects of solidification and experimental parameters on drop cooling are calculated and discussed. Major results include temperature as a function of time, and of drag, time to complete solidification, and drag as a function of the fraction of the drop solidified.

  15. A flight-rated liquid-cooled garment for use within a full-pressure suit

    NASA Technical Reports Server (NTRS)

    Carpenter, R.; Winter, W. R.

    1972-01-01

    A flight rated liquid cooled garment system for use inside a full pressure suit has been designed, fabricated, and tested. High temperature tests with this system have indicated that heat is absorbed at a rate decreasing from 224 kg-cal/hr to 143 kg-cal/hr over a 40-min period. The first 30 min are very comfortable; thereafter a gradual heat load builds that results in mild sweating at the end of the 40-min period. In flight tests during hot weather when this cooling system was worn under a regulation flight suit, the pilot reported that temperatures were comfortable and that the garment prevented sweating.

  16. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  17. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants

    SciTech Connect

    Martin, Christopher; Pavlish, John

    2013-09-30

    The University of North Dakota’s Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high capital cost and degraded cooling performance during daytime temperature peaks. The unique aspect of desiccant dry cooling (DDC) is the use of a hygroscopic working fluid—a liquid desiccant—as a heat-transfer medium between a power plant’s steam condenser and the atmosphere. This configuration enables a number of beneficial features for large-scale heat dissipation to the atmosphere, without the consumptive use of cooling water. The overall goal of this project was to accurately define the performance and cost characteristics of DDC to determine if further development of the concept is warranted. A balanced approach of modeling grounded in applied experimentation was pursued to substantiate DDC-modeling efforts and outline the potential for this technology to cool full-scale power plants. The resulting analysis shows that DDC can be a lower-cost dry cooling alternative to an air-cooled condenser (ACC) and can even be competitive with conventional wet recirculating cooling under certain circumstances. This project has also highlighted the key technological steps that must be taken in order to transfer DDC into the marketplace. To address these issues and to offer an extended demonstration of DDC technology, a next-stage project should include the opportunity for outdoor ambient testing of a small DDC cooling cell. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program.

  18. Cooling of Gas Turbines. 3; Analysis of Rotor and Blade Temperatures in Liquid-Cooled Gas Turbines

    NASA Technical Reports Server (NTRS)

    Brown, W. Byron; Livingood, John N. B.

    1947-01-01

    A theoretical analysis of the radial temperature distribution through the rotor and constant cross sectional area blades near the coolant passages of liquid cooled gas turbines was made. The analysis was applied to obtain the rotor and blade temperatures of a specific turbine using a gas flow of 55 pounds per second, a coolant flow of 6.42 pounds per second, and an average coolant temperature of 200 degrees F. The effect of using kerosene, water, and ethylene glycol was determined. The effect of varying blade length and coolant passage lengths with water as the coolant was also determined. The effective gas temperature was varied from 2000 degrees to 5000 degrees F in each investigation.

  19. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-12-31

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows. Again, to verify and or direct the development of these advanced codes, complete three-dimensional unsteady flow field data are needed.

  20. Pressure Effect on the Boson Peak in Deeply Cooled Confined Water: Evidence of a Liquid-Liquid Transition

    DOE PAGES

    Wang, Zhe; Kolesnikov, Alexander I.; Ito, Kanae; Podlesnyak, Andrey; Chen, Sow-Hsin

    2015-12-03

    We studied the boson peak in deeply cooled water confined in nanopores in order to examine the liquid-liquid transition (LLT). Below ~180 K, the boson peaks at pressures P higher than ~3.5 kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. Moreover, these phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. Additionally,more » the P dependence of the librational band also agrees with the above conclusion.« less

  1. Pressure Effect on the Boson Peak in Deeply Cooled Confined Water: Evidence of a Liquid-Liquid Transition

    SciTech Connect

    Wang, Zhe; Kolesnikov, Alexander I.; Ito, Kanae; Podlesnyak, Andrey; Chen, Sow-Hsin

    2015-12-03

    We studied the boson peak in deeply cooled water confined in nanopores in order to examine the liquid-liquid transition (LLT). Below ~180 K, the boson peaks at pressures P higher than ~3.5 kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. Moreover, these phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. Additionally, the P dependence of the librational band also agrees with the above conclusion.

  2. Different Mechanisms for Establishing Liquid Walls in Advanced Reactor Systems

    NASA Astrophysics Data System (ADS)

    Hançerlioğullari, Aybaba; Cini, Mesut

    2013-04-01

    The APEX study is investigating the use of free flowing liquid surfaces to form the inner surface of the chamber around a fusion plasma. In this study the modeling of APEX hybrid reactor produced by using ARIES-RS hybrid reactor technology, was performed by using the Monte Carlo code and ENF/B-V-VI nuclear data. The most important feature of APEX hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity, good power transformation productivity the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. Around the fusion chamber, molten salt Li2BeF4 and natural lithium were used as cooling materials. The result of the study indicated that fissile material production UF4 and ThF4 heavy metal salt increased nearly at the same percentage.

  3. Capillary Condensation of Liquid 4He in Aerogel on Cooling Through {lambda} Point

    SciTech Connect

    Miyashita, W.; Yoneyama, K.; Kato, H.; Nomura, R.; Okuda, Y.

    2006-09-07

    Capillary condensation of liquid 4He in silica aerogel with a 90% porosity was investigated visually. The initial condition of the experiment was such that liquid 4He was present in the sample cell but not in the aerogel. This situation was realized by introducing the liquid into the cell at a fast rate to avoid liquefaction in the aerogel. The free surface of the liquid rose up in the cell with filling and eventually reached the bottom of the aerogel. Then, the aerogel absorbed the liquid by capillary condensation. The height of the liquid in the aerogel rose with time t roughly as t1/2 in the normal fluid phase. This behavior was consistent with the Washburn model. When the system was cooled through the {lambda} point during the condensation, the liquid height started to rise faster in the superfluid phase with a constant velocity of about 0.3 mm/sec. The dynamics of capillary condensation was strongly dependent on whether the liquid 4He was in the normal or the superfluid phase.

  4. Dynamic evolution of liquid–liquid phase separation during continuous cooling

    DOE PAGES

    Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; Ott, Thomas J.; Patterson, Brian M.; Lee, Wah-Keat; Fezzaa, Kamel; Cooley, Jason C.; Clarke, Amy J.

    2015-01-06

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al90In10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamicmore » instability caused by the large density difference between the dispersed and matrix liquid phases.« less

  5. Dynamic evolution of liquid–liquid phase separation during continuous cooling

    SciTech Connect

    Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; Ott, Thomas J.; Patterson, Brian M.; Lee, Wah-Keat; Fezzaa, Kamel; Cooley, Jason C.; Clarke, Amy J.

    2015-01-06

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al90In10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.

  6. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges... (dpp) and Development Operations Coordination Documents (docd) § 250.248 What solid and liquid wastes... following solid and liquid wastes and discharges information and cooling water intake information...

  7. Cooling tower with concrete support structure, fiberglass panels, and a fan supported by the liquid distribution system

    SciTech Connect

    Bardo, C. J.; Clark Jr., J. L.; Dylewski, A. J.; Seawell, J. Q.

    1985-09-24

    A liquid cooling tower includes precast concrete support legs and cross beams and fiberglass reinforced polyester resin side and top panels. A liquid distribution system is supplied with liquid by a vertically extending main pipe, and a fan and fan motor are supported by the main pipe.

  8. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  9. Coolant and ambient temperature control for chillerless liquid cooled data centers

    DOEpatents

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.

    2016-02-02

    Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.

  10. Direct liquid cooled Nd:YLF thin disk laser with unstable resonator

    NASA Astrophysics Data System (ADS)

    Ye, Zhibin; Cai, Zhen; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Liu, Chong

    2015-10-01

    A large-aperture Nd:YLF thin disk laser oscillator is demonstrated, in which the refractive index matching liquid is used as the coolant flowing in narrow channels to cool the multiple thin disks directly. A high uniformity of pump intensity distribution is realized by using waveguides. With the a-cut Nd:YLF thin disks at different doping levels, a linearly polarized laser with the maximum output energy of 346 mJ is achieved with the repetition of 350 Hz, corresponding to an optical-optical efficiency of 8.7%, and a slope efficiency of 10%. The beam quality β factor is estimated less than 8 in the horizontal direction due to the positive branch confocal unstable resonator. To the best of our knowledge, it is the first time that the direct-liquid-cooled Nd:YLF thin disk unstable resonator is reported.

  11. Design study of steady-state 30-tesla liquid-neon-cooled magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Brown, G. V.

    1976-01-01

    A design for a 30-tesla, liquid-neon-cooled magnet was reported which is capable of continuous operation. Cooled by nonboiling, forced-convection heat transfer to liquid neon flowing at 2.8 cu m/min in a closed, pressurized heat-transfer loop and structurally supported by a tapered structural ribbon, the tape-wound coils with a high-purity-aluminum conductor will produce over 30 teslas for 1 minute at 850 kilowatts. The magnet will have an inside diameter of 7.5 centimeters and an outside diameter of 54 centimeters. The minimum current density at design field will be 15.7 kA/sq cm.

  12. A Liquid-Helium-Cooled Absolute Reference Cold Load forLong-Wavelength Radiometric Calibration

    SciTech Connect

    Bensadoun, M.; Witebsky, C.; Smoot, George F.; De Amici,Giovanni; Kogut, A.; Levin, S.

    1990-05-01

    We describe a large (78-cm) diameter liquid-helium-cooled black-body absolute reference cold load for the calibration of microwave radiometers. The load provides an absolute calibration near the liquid helium (LHe) boiling point, accurate to better than 30 mK for wavelengths from 2.5 to 25 cm (12-1.2 GHz). The emission (from non-LHe temperature parts of the cold load) and reflection are small and well determined. Total corrections to the LHe boiling point temperature are {le} 50 mK over the operating range. This cold load has been used at several wavelengths at the South Pole and at the White Mountain Research Station. In operation, the average LHe loss rate was {le} 4.4 l/hr. Design considerations, radiometric and thermal performance and operational aspects are discussed. A comparison with other LHe-cooled reference loads including the predecessor of this cold load is given.

  13. A hybrid liquid nitrogen system for the cooling of the ESO OmegaCAM detector

    NASA Astrophysics Data System (ADS)

    Lizon, J. L.; Silber, A.; Jakob, G.

    2010-07-01

    OmegaCAM is a wide field camera housing a mosaic of 32 CCD detectors. For the optimal trade-off between dark current, sensitivity, and cosmetics, these detectors need to be operated at a temperature of about 155 K. The detectors mosaic with a total area of 630 cm2 directly facing the Dewar entrance window, is exposed to a considerable radiation heat load. This can only be achieved with a very performing cooling system. The paper describes the cooling system, which is build such that it makes the most efficient use of the cooling power of the liquid nitrogen. This is obtained by forcing the nitrogen through a series of well designed and strategically distributed heat exchangers. Results and performance of the system recorded during the laboratory system testing are reported as well. In addition to the cryogenic performance, the document reports also about the overall performance of the instrument including long term vacuum behavior.

  14. Evaluation of a liquid cooling garment as a component of the Launch and Entry Suit (LES)

    NASA Technical Reports Server (NTRS)

    Waligora, J.; Charles, J.; Fritsch, I.; Fortney, S.; Siconolfi, S.; Pepper, L.; Bagian, L.; Kumar, V.

    1994-01-01

    The LES is a partial pressure suit and a component of the shuttle life support system used during launch and reentry. The LES relies on gas ventilation with cabin air to provide cooling. There are conditions during nominal launch and reentry, landing, and post-landing phases when cabin temperature is elevated. Under these conditions, gas cooling may result in some discomfort and some decrement in orthostatic tolerance. There are emergency conditions involving loss of cabin ECS capability that would challenge crew thermal tolerance. The results of a series of tests are presented. These tests were conducted to assess the effectiveness of a liquid-cooled garment in alleviating thermal discomfort, orthostatic intolerance, and thermal intolerance during simulated mission phases.

  15. Comprehensive Design Method for LOX/Liquid-Methane Regenerative Cooling Combustor with Coaxial Injector

    NASA Astrophysics Data System (ADS)

    Yatsuyanagi, Nobuyuki

    A comprehensive design method for a LOX/Liquid-Methane (L-CH4) rocket engine combustor with a coaxial injector and the preliminary design of the regenerative cooling combustor with 100-kN thrust in vacuum at a combustion pressure of a 3.43 MPa are presented. Reasonable dimensions for the combustor that satisfy the targeted C* efficiency of more than 98% and combustion stability are obtained.

  16. Measurements of thermal-hydraulic parameters in liquid-metal-cooled fast-breeder reactors

    SciTech Connect

    Sackett, J.I.

    1983-01-01

    This paper discusses instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, sodium purity, and leakage. The paper identifies the overall instrumentation requirements for LMFBR's and those aspects of instrumentation which are unique or of special concern to LMFBR systems. It also gives an overview of the status of instrument design and performance.

  17. Eddy Current Loss Induced in Aluminum Thermal Conduction Strips for ASPCS Coils Indirectly Cooled by Liquid Hydrogen through Thermo-siphon System

    NASA Astrophysics Data System (ADS)

    Ota, Narumi; Katsura, Masashi; Ando, Kennosuke; Takao, Tomoaki; Shintomi, Takakazu; Makida, Yasuhiro; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Tsujigami, Hiroshi; Fujikawa, Shizuichi; Semba, Toshiaki; Iwaki, Katsuya

    To promote renewable energy sources, we proposed a new system called the Advanced Superconducting Power Conditioning System (ASPCS), which consists of Superconducting Magnetic Energy Storage-system (SMES), Electrolyzer, and Fuel Cell, and is also combined with a liquid hydrogen station for vehicles. The SMES plays a role to compensate the fast fluctuations generated by the renewable energies. In case of the ASPCS with a capacity of 5 MW, we designed the 50 MJ-class SMES composed of 4 solenoid coils. The winding of the solenoid coils is double pancake and a basic coil is 2 m in diameter and 0.5 m in height. Each SMES coil is wound with MgB2 conductor and indirectly cooled at 20 K by liquid hydrogen flowing through a thermo-siphon cooling system. Pure aluminum strips are inserted between the double-pancake coils and the pure aluminum plates gathering the strips lead to liquid hydrogen pipes. This scheme enables the strips and the plates to transfer the heat load in the coils to the cooling pipes and keep the coils at low temperature. On the other hand, we must consider that the strips generate eddy current loss which is strongly affected by a width of the strips. At the same time as the primary study of the SMES coils, we experimented on the thermo-siphon cooling system and investigated the relationship between the heat load and the heat extraction ability of the cooling system. The experiments showed that the cooling system could proficiently function. The estimation of eddy current loss from the particular cooling aluminum strips for the SMES in the ASPCS is reported with the results of the thermo-siphon driving experiment.

  18. A low-cost-solar liquid desiccant system for residential cooling

    NASA Astrophysics Data System (ADS)

    Ware, Joel D., III

    The use of liquid desiccants for dehumidification of heating, ventilation, and air conditioning (HVAC) process air is becoming a more promising concept as the drive for energy conservation continues to grow. Recently, liquid desiccant systems have been implemented on the commercial level in conjunction with evaporative coolers and have recorded energy savings upwards of 50%. The aim of this research is to test the potential liquid desiccant systems have on the residential level when paired with a conventional vapor compression cycle and to construct a system that would overcome some of its barriers to the residential market. A complete low-cost-solar liquid desiccant system was designed, constructed, and tested in the Off-Grid Zero Emissions Building (OGZEB) at the Florida State University. Key design characteristics include turbulent process air flow through the conditioner and airside heating in the regenerator. The system was tested in the two following ways: (1) for the energy savings while maintaining a constant temperature over a twenty four hour period and (2) for the energy savings over a single cooling cycle. The liquid desiccant system achieved a maximum energy savings of 38% over a complete day and 52% over a single cooling cycle. It was projected that the system has the potential to save 1064 kWh over the course of a year. When combined with a renewable source of heat for regeneration, liquid desiccant systems become very cost effective. The levelized cost of energy for the combination of the liquid desiccant system and solar thermal collectors was calculated to be 7.06 C/kWh with a payback period of 4.4 years. This research provides evidence of the technology's potential on the residential sector and suggests ways for it to become competitive in the market.

  19. Basic cooling characteristics of perfluorocarbon liquid immersed windings for nonflammable transformers; Disk coil cooling for large-capacity forced circulating transformers. Part 1

    SciTech Connect

    Yamazaki, H.; Sakamoto, T. ); Takagi, I. )

    1991-01-01

    This paper reports that to develop a new type of nonflammable large-power transformer which uses perfluorocarbon liquid as the cooling and insulation medium, the basic cooling characteristics of the liquid were investigated. Using a horizontal coil duct model, design data on heat-transfer characteristics of perfluorocarbon liquid were obtained by the computer program. Using a two-dimensional cooling model of nine coils per section, the velocity distribution in the coil ducts and the temperature rise distribution of the coils were clarified. Comparisons were made between experimental and calculated results and the developed computer program was found to be valid for the prediction of the velocity distribution in the coil ducts and of the temperature rise distribution of the coils.

  20. Limitations of liquid nitrogen cooling of high heat load x-ray monochromators

    NASA Astrophysics Data System (ADS)

    Khounsary, Ali; Strons, Philip; Kujala, Naresh; Macrander, Albert

    2012-10-01

    X-ray monochromators, made of single crystals or multilayer coatings, are the most common optical components on many synchrotron beamlines. They intercept the broad-spectrum x-ray (white or pink) beams generated by the radiation source and absorb all but select narrow spectral bands of x-rays, which are diffracted according to Bragg's Law. With some incident beam power in the kW range, minimizing thermally induced deformation detrimental to the performance of the device necessitates the design of optimally cooled monochromators. Monochromator substrate designs have evolved, in parallel with thermal loads of the incident beams, from simple blocks with no cooling, to water cooled (both contact -cooled and internally cooled), and to cryogenically cooled designs where the undesirable thermal distortions are kept in check by operating in a temperature range where the thermomechanical properties of the substrate materials are favorable. Fortuitously, single-crystal silicon at cryogenic temperatures has an exceptionally favorable combination of high thermal conductivity and low thermal expansion coefficient. With further increases in x-ray beam power, partly as a result of the upgrades to the existing synchrotron facilities, the question arises as to the ultimate limits of liquid-nitrogen-cooled silicon monochromators' ability to handle the increased thermal load. In this paper, we describe the difficulties and begin the investigation by using a simple geometric model for a monochromator and obtain analytical solutions for the temperature field. The temperature can be used as a proxy for thermally induced deformation. The significant role of the nonlinear material properties of silicon is examined.

  1. Use of volatile organic solvents in headspace liquid-phase microextraction by direct cooling of the organic drop using a simple cooling capsule.

    PubMed

    Ghiasvand, Ali Reza; Yazdankhah, Fatemeh; Hajipour, Somayeh

    2016-08-01

    A low-cost and simple cooling-assisted headspace liquid-phase microextraction device for the extraction and determination of 2,6,6-trimethyl-1,3 cyclohexadiene-1-carboxaldehyde (safranal) in Saffron samples, using volatile organic solvents, was fabricated and evaluated. The main part of the cooling-assisted headspace liquid-phase microextraction system was a cooling capsule, with a Teflon microcup to hold the extracting organic solvent, which is able to directly cool down the extraction phase while the sample matrix is simultaneously heated. Different experimental factors such as type of organic extraction solvent, sample temperature, extraction solvent temperature, and extraction time were optimized. The optimal conditions were obtained as: extraction solvent, methanol (10 μL); extraction temperature, 60°C; extraction solvent temperature, 0°C; and extraction time, 20 min. Good linearity of the calibration curve (R(2) = 0.995) was obtained in the concentration range of 0.01-50.0 μg/mL. The limit of detection was 0.001 μg/mL. The relative standard deviation for 1.0 μg/mL of safranal was 10.7% (n = 6). The proposed cooling-assisted headspace liquid-phase microextraction device was coupled (off-line) to high-performance liquid chromatography and used for the determination of safranal in Saffron samples. Reasonable agreement was observed between the results of the cooling-assisted headspace liquid-phase microextraction high-performance liquid chromatography method and those obtained by a validated ultrasound-assisted solvent extraction procedure. PMID:27311349

  2. Use of volatile organic solvents in headspace liquid-phase microextraction by direct cooling of the organic drop using a simple cooling capsule.

    PubMed

    Ghiasvand, Ali Reza; Yazdankhah, Fatemeh; Hajipour, Somayeh

    2016-08-01

    A low-cost and simple cooling-assisted headspace liquid-phase microextraction device for the extraction and determination of 2,6,6-trimethyl-1,3 cyclohexadiene-1-carboxaldehyde (safranal) in Saffron samples, using volatile organic solvents, was fabricated and evaluated. The main part of the cooling-assisted headspace liquid-phase microextraction system was a cooling capsule, with a Teflon microcup to hold the extracting organic solvent, which is able to directly cool down the extraction phase while the sample matrix is simultaneously heated. Different experimental factors such as type of organic extraction solvent, sample temperature, extraction solvent temperature, and extraction time were optimized. The optimal conditions were obtained as: extraction solvent, methanol (10 μL); extraction temperature, 60°C; extraction solvent temperature, 0°C; and extraction time, 20 min. Good linearity of the calibration curve (R(2) = 0.995) was obtained in the concentration range of 0.01-50.0 μg/mL. The limit of detection was 0.001 μg/mL. The relative standard deviation for 1.0 μg/mL of safranal was 10.7% (n = 6). The proposed cooling-assisted headspace liquid-phase microextraction device was coupled (off-line) to high-performance liquid chromatography and used for the determination of safranal in Saffron samples. Reasonable agreement was observed between the results of the cooling-assisted headspace liquid-phase microextraction high-performance liquid chromatography method and those obtained by a validated ultrasound-assisted solvent extraction procedure.

  3. Identification of Structural Motifs of Imidazolium Based Ionic Liquids from Jet-Cooled Infrared Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.

    2016-06-01

    Highly variable and potentially revolutionary, ionic liquids (IL) are a class of molecules with potential for numerous Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition the role of hydrogen bonding in ILs, especially its relationship to macroscopic properties, is a matter of ongoing research. Here, structural motifs are identified from jet-cooled infrared spectra of different imidazolium based ionic liquids, such as 1-ethyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide. Measurements of the C-H stretches indicate three structural families present in the gas phase.

  4. Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media

    SciTech Connect

    Tanno, Yusuke; Ito, Satoshi; Hashizume, Hidetoshi

    2014-01-29

    A remountable high-temperature superconducting magnet, whose segments can be mounted and demounted repeatedly, has been proposed for construction and maintenance of superconducting magnet and inner reactor components of a fusion reactor. One of the issues in this design is that the performance of the magnet deteriorates by a local temperature rise due to Joule heating in jointing regions. In order to prevent local temperature rise, a cooling system using a cryogenic coolant and metal porous media was proposed and experimental studies have been carried out using liquid nitrogen. In this study, flow and heat transfer characteristics of cooling system using subcooled liquid nitrogen and bronze particle sintered porous media are evaluated through experiments in which the inlet degree of subcooling and flow rate of the liquid nitrogen. The flow characteristics without heat input were coincided with Ergun’s equation expressing single-phase flow in porous materials. The obtained boiling curve was categorized into three conditions; convection region, nucleate boiling region and mixed region with nucleate and film boiling. Wall superheat did not increase drastically with porous media after departure from nucleate boiling point, which is different from a situation of usual boiling curve in a smooth tube. The fact is important characteristic to cooling superconducting magnet to avoid its quench. Heat transfer coefficient with bronze particle sintered porous media was at least twice larger than that without the porous media. It was also indicated qualitatively that departure from nucleate boiling point and heat transfer coefficient depends on degree of subcooling and mass flow rate. The quantitative evaluation of them and further discussion for the cooling system will be performed as future tasks.

  5. Test program to provide confidence in liquid oxygen cooling of hydrocarbon fueled rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1986-01-01

    An experimental program has been planned at the NASA Lewis Research Center to build confidence in the feasibility of liquid oxygen cooling for hydrocarbon fueled rocket engines. Although liquid oxygen cooling has previously been incorporated in test hardware, more runtime is necessary to gain confidence in this concept. In the previous tests, small oxygen leaks developed at the throat of the thrust chamber and film cooled the hot-gas side of the chamber wall without resulting in catastrophic failure. However, more testing is necessary to demonstrate that a catastrophic failure would not occur if cracks developed further upstream between the injector and the throat, where the boundary layer has not been established. Since under normal conditions cracks are expected to form in the throat region of the thrust chamber, cracks must be initiated artificially in order to control their location. Several methods of crack initiation are discussed in this report. Four thrust chambers, three with cracks and one without, should be tested. The axial location of the cracks should be varied parametrically. Each chamber should be instrumented to determine the effects of the cracks, as well as the overall performance and durability of the chambers.

  6. Advanced cooling techniques for high-pressure hydrocarbon-fueled engines

    NASA Technical Reports Server (NTRS)

    Cook, R. T.

    1979-01-01

    The regenerative cooling limits (maximum chamber pressure) for 02/hydrocarbon gas generator and staged combustion cycle rocket engines over a thrust range of 89,000 N (20,000lbf) to 2,669,000 N (600,000 lbf) for a reusable life of 250 missions were defined. Maximum chamber pressure limits were first determined for the three propellant combinations (O2/CH4, O2/C3H8, and O2/RP-1 without a carbon layer (unenhanced designs). Chamber pressure cooling enhancement limits were then established for seven thermal barriers. The thermal barriers evaluated for these designs were: carbon layer, ceramic coating, graphite liner, film cooling, transpiration cooling, zoned combustion, and a combination of two of the above. All fluid barriers were assessed a 3 percent performance loss. Sensitivity studies were then conducted to determine the influence of cycle life and RP-1 decomposition temperature on chamber pressure limits. Chamber and nozzle design parameters are presented for the unenahanced and enhanced designs. The maximum regenerative cooled chamber pressure limits were attained with the O2/CH4 propellant combination. The O2/RP-1 designs relied on a carbon layer and liquid gas injection chamber contours, short chamber, to be competitive with the other two propellant combinations. This was attributed to the low decomposition temperature of RP-1.

  7. An experimental investigation of liquid methane convection and boiling in rocket engine cooling channels

    NASA Astrophysics Data System (ADS)

    Trujillo, Abraham Gerardo

    In the past decades, interest in developing hydrocarbon-fueled rocket engines for deep spaceflight missions has continued to grow. In particular, liquid methane (LCH4) has been of interest due to the weight efficiency, storage, and handling advantages it offers over several currently used propellants. Deep space exploration requires reusable, long life rocket engines. Due to the high temperatures reached during combustion, the life of an engine is significantly impacted by the cooling system's efficiency. Regenerative (regen) cooling is presented as a viable alternative to common cooling methods such as film and dump cooling since it provides improved engine efficiency. Due to limited availability of experimental sub-critical liquid methane cooling data for regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through sub-scale cooling channels. To conduct the experiments, the csETR developed a High Heat Flux Test Facility (HHFTF) where all the channels are heated using a conduction-based thermal concentrator. In this study, two smooth channels with cross sectional geometries of 1.8 mm x 4.1 mm and 3.2 mm x 3.2 mm were tested. In addition, three roughened channels all with a 3.2 mm x 3.2 mm square cross section were also tested. For the rectangular smooth channel, Reynolds numbers ranged between 68,000 and 131,000, while the Nusselt numbers were between 40 and 325. For the rough channels, Reynolds numbers ranged from 82,000 to 131,000, and Nusselt numbers were between 65 and 810. Sub-cooled film-boiling phenomena were confirmed for all the channels presented in this work. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of

  8. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  9. Electric component cooling alternatives: Compressed air and liquid nitrogen. Project report, June 1991-September 1993

    SciTech Connect

    Schmitt, S.S.; Olfenbuttel, R.F.

    1994-09-01

    The goal of the study was to evaluate tools used to troubleshoot circuit boards with known or suspected thermally intermittent components. Spray cans of refrigerants (R-12 (CFC-12) and R-22 (HCFC-22)), which are commonly used in electronics manufacturing and repair businesses for this purpose, served as the benchmark for the evaluation. A promising alternative technology that was evaluated in the study is a compressed-air tool that provides a continuous stream of cold air that can be directed toward specific components. Another alternative technology that was considered is a Dewar flask that dispenses cold nitrogen gas as the cooling agent. Critical parameters were measured for each cooling method to provide a basis for comparison of compressed air and liquid nitrogen with spray cans of refrigerant. Although the plan was written specifically for the evaluation of compressed air, the test plan was written to include an evaluation of liquid nitrogen because test site staff were interested in evaluating this technology. The liquid nitrogen evaluation showed that it could be a viable alternative.

  10. High-power laser phosphor light source with liquid cooling for digital cinema applications

    NASA Astrophysics Data System (ADS)

    Li, Kenneth

    2014-02-01

    Laser excited phosphor has been used to excite phosphor material, producing high intensity light output with smaller etendue than that of LEDs with the same long lifetime. But due to the high intensity of the laser light, phosphor with organic binder burns at low power, which requires the phosphor to be deposited on a rotating wheel in practical applications. Phosphor with inorganic binders, commonly known as ceramic phosphor, on the other hand, does not burn, but efficiency goes down as temperature goes up under high power excitation. This paper describes cooling schemes in sealed chambers such that the phosphor materials using organic or inorganic binders can be liquid cooled for high efficiency operations. Confined air bubbles are introduced into the sealed chamber accommodating the differential thermal expansion of the liquid and the chamber. For even higher power operation suitable for digital cinema, a suspension of phosphor in liquid is described suitable for screen brightness of over 30,000 lumens. The aging issues of phosphor can also be solved by using replaceable phosphor cartridges.

  11. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  12. Free-standing silicene obtained by cooling from 2D liquid Si: structure and thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Van Hoang, Vo; Thi Cam Mi, Huynh

    2014-12-01

    The structure and various thermodynamic properties of free-standing silicene have been studied by computer simulation. Models are obtained by cooling from buckling two-dimensional (2D) liquid Si via molecular dynamics (MD) simulation with Stillinger-Weber interatomic potential. The temperature dependence of total energy, heat capacity, mean ring size and mean coordination number shows that silicenization of 2D liquid Si exhibits a first-order-like behavior. The evolution of radial distribution function upon cooling from the melt also shows that solidification occurs in the system. The final configuration of silicene is analyzed via coordination, bond-angle, interatomic distance and ring distributions or distribution of buckling in the system. 2D visualization of atomic configurations clearly demonstrated that silicene obtained ‘naturally’ by cooling from the melt exhibits various structural previously unreported behaviors. We find the formation of polycrystalline silicene with clear grain boundaries containing various defects including various vacancies, Stone-Wales defects or skew rings and multimembered rings unlike those proposed in the literature. However, atoms in the obtained silicene are mostly involved in six-fold rings, forming a buckling honeycomb structure like that found in practice. We find that buckling is not unique for all atoms in the models although the majority of atoms reveal buckling of the most stable low-buckling silicene found in the literature. The buckling distribution is broad and symmetric. Our comprehensive MD simulation of a relatively large silicene model containing 104 atoms and obtained ‘naturally’ by cooling from the melt provides original insights into the structure and thermodynamics of this important 2D material.

  13. Advanced Space Suit PLSS 2.0 Cooling Loop Evaluation and PLSS 2.5 Recommendations

    NASA Technical Reports Server (NTRS)

    Steele, John; Quinn, Greg; Campbell, Colin; Makinen, Janice; Watts, Carly; Westheimer, David

    2016-01-01

    From 2012 to 2015 The NASA/JSC AdvSS (Advanced Space Suit) PLSS (Portable Life Support Subsystem) team, with support from UTC Aerospace Systems, performed the build-up, packaging and testing of PLSS 2.0. One aspect of that testing was the evaluation of the long-term health of the water cooling circuit and the interfacing components. Periodic and end-of-test water, residue and hardware analyses provided valuable information on the status of the water cooling circuit, and the approaches that would be necessary to enhance water cooling circuit health in the future. The evaluated data has been consolidated, interpreted and woven into an action plan for the maintenance of water cooling circuit health for the planned FY (fiscal year) 2016 through FY 2018 PLSS 2.5 testing. This paper provides an overview of the PLSS 2.0 water cooling circuit findings and the associated steps to be taken in that regard for the PLSS 2.5.

  14. Advanced Space Suit PLSS 2.0 Cooling Loop Evaluation and PLSS 2.5 Recommendations

    NASA Technical Reports Server (NTRS)

    Steele, John; Quinn, Greg; Campbell, Colin; Makinen, Janice; Watts, Carly; Westheimer, Dave

    2016-01-01

    From 2012 to 2015 The NASA/JSC AdvSS (Advanced Space Suit) PLSS (Primary Life Support Subsystem) team, with support from UTC Aerospace Systems, performed the build-up, packaging and testing of PLSS 2.0. A key aspect of that testing was the evaluation of the long-term health of the water cooling circuit and the interfacing components. Intermittent and end-of-test water, residue and hardware analyses provided valuable information on the status of the water cooling circuit, and the approaches that would be necessary to enhance water cooling circuit health in the future. The evaluated data has been consolidated, interpreted and woven into an action plan for the maintenance of water cooling circuit health for the planned FY (fiscal year) 2016 through FY 2018 PLSS 2.5 testing. This paper provides an overview of the PLSS 2.0 water cooling circuit findings and the associated steps to be taken in that regard for the PLSS 2.5 testing.

  15. Development of a prototype automatic controller for liquid cooling garment inlet temperature

    NASA Technical Reports Server (NTRS)

    Weaver, C. S.; Webbon, B. W.; Montgomery, L. D.

    1982-01-01

    The development of a computer control of a liquid cooled garment (LCG) inlet temperature is descirbed. An adaptive model of the LCG is used to predict the heat-removal rates for various inlet temperatures. An experimental system that contains a microcomputer was constructed. The LCG inlet and outlet temperatures and the heat exchanger outlet temperature form the inputs to the computer. The adaptive model prediction method of control is successful during tests where the inlet temperature is automatically chosen by the computer. It is concluded that the program can be implemented in a microprocessor of a size that is practical for a life support back-pack.

  16. Method for forming a liquid cooled airfoil for a gas turbine

    DOEpatents

    Grondahl, Clayton M.; Willmott, Leo C.; Muth, Myron C.

    1981-01-01

    A method for forming a liquid cooled airfoil for a gas turbine is disclosed. A plurality of holes are formed at spaced locations in an oversized airfoil blank. A pre-formed composite liquid coolant tube is bonded into each of the holes. The composite tube includes an inner member formed of an anti-corrosive material and an outer member formed of a material exhibiting a high degree of thermal conductivity. After the coolant tubes have been bonded to the airfoil blank, the airfoil blank is machined to a desired shape, such that a portion of the outer member of each of the composite tubes is contiguous with the outer surface of the machined airfoil blank. Finally, an external skin is bonded to the exposed outer surface of both the machined airfoil blank and the composite tubes.

  17. Combustion performance of bipropellant liquid rocket engine combustors with fuel-impingement cooling

    SciTech Connect

    Jiang, T.L.; Chiang, W.; Jang, S.

    1995-05-01

    In order to obtain an accurate combustion analyses which are important in the thruster design of modern advanced liquid rocket engine, flow analysis should be conducted from the injector phase down to the propulsive nozzle throat. Thus, in the present study, flow analysis for the axisymmetric thrust chamber of an OMV(exp 3) installed with a pintle-type ring-shaped injector and a conical convergent nozzle is conducted. Liquid monomethyl hydrazine (MMH) and nitrogen tetroxide (NTO) storable bipropellants are used as fuel and oxidizer sources. An optimum injected fuel and oxidizer droplet-size combination is proposed. Finally, the results obtained are presented. 4 refs.

  18. Combustion performance of bipropellant liquid rocket engine combustors with fuel-impingement cooling

    NASA Astrophysics Data System (ADS)

    Jiang, Tsung Leo; Chiang, Wei-Tang; Jang, Shyh-Dihng

    1995-05-01

    In order to obtain an accurate combustion analyses which are important in the thruster design of modern advanced liquid rocket engine, flow analysis should be conducted from the injector phase down to the propulsive nozzle throat. Thus, in the present study, flow analysis for the axisymmetric thrust chamber of an OMV(exp 3) installed with a pintle-type ring-shaped injector and a conical convergent nozzle is conducted. Liquid monomethyl hydrazine (MMH) and nitrogen tetroxide (NTO) storable bipropellants are used as fuel and oxidizer sources. An optimum injected fuel and oxidizer droplet-size combination is proposed. Finally, the results obtained are presented.

  19. Superconducting cable cooling system by helium gas and a mixture of gas and liquid helium

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming cryogenic fluid streams in the same enclosure in a closed cycle that changes from a cool high pressure helium gas to a cooler reduced pressure helium fluid comprised of a mixture of gas and boiling liquid so as to be near the same temperature but at different pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid in a go leg from a refrigerator at one end of the line as a high pressure helium gas near the normal boiling temperature of helium; then circulating the gas through an expander at the other end of the line where the gas becomes a mixture of reduced pressure gas and boiling liquid at its boiling temperature; then by circulating the mixture in a return leg that is separated from but in thermal contact with the gas in the go leg and in the same enclosure therewith; and finally returning the resulting low pressure gas to the refrigerator for compression into a high pressure gas at T.sub.2 is a closed cycle, where T.sub.1 >T.sub.2, the temperature distribution is such that the line temperature is nearly constant along its length from the refrigerator to the expander due to the boiling of the liquid in the mixture. A heat exchanger between the go and return lines removes the gas from the liquid in the return leg while cooling the go leg.

  20. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    SciTech Connect

    Greene, Sherrell R; Gehin, Jess C; Holcomb, David Eugene; Carbajo, Juan J; Ilas, Dan; Cisneros, Anselmo T; Varma, Venugopal Koikal; Corwin, William R; Wilson, Dane F; Yoder Jr, Graydon L; Qualls, A L; Peretz, Fred J; Flanagan, George F; Clayton, Dwight A; Bradley, Eric Craig; Bell, Gary L; Hunn, John D; Pappano, Peter J; Cetiner, Sacit M

    2011-02-01

    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

  1. Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.

    2005-01-01

    With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled aircraft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft s propulsive fans. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are too heavy for aircraft propulsion. We need to develop high-power, lightweight electric motors (highpower- density motors). One approach is to increase the conductivity of the wires by cooling them with liquid hydrogen (LH2). This would allow superconducting rotors with an ironless core. In addition, the motor could use very pure aluminum or copper, substances that have low resistances at cryogenic temperatures. A preliminary design of a 450-hp LH2-cooled electric motor was completed and is being manufactured by a contractor. This motor will be tested at the NASA Glenn Research Center and will be used to test different superconducting materials such as magnesium diboride (MgB2). The motor will be able to operate at speeds of up to 6000 rpm.

  2. Development of preliminary design program for combustor of regenerative cooled liquid rocket engine

    NASA Astrophysics Data System (ADS)

    Cho, Won Kook; Seol, Woo Seok; Son, Min; Seo, Min Kyo; Koo, Jaye

    2011-10-01

    An integrated program was established to design a combustor for a liquid rocket engine and to analyze regenerative cooling results on a preliminary design level. Properties of burnt gas from a kerosene-LOx mixture in the combustor and rocket performance were calculated from CEA which is the code for the calculation of chemical equilibrium. The heat transfer of regenerative cooling was analyzed by using SUPERTRAPP code for coolant properties and by one-dimensional correlations of the heat transfer coefficient from the combustor liner to the coolant. Profiles of the combustors of F-1 and RS-27A engines were designed from similar input data and the present results were compared to actual data for validation. Finally, the combustors of 30 tonf class, 75 tonf class and 150 tonf class were designed from the required thrust, combustion chamber, exit pressure and mixture ratio of propellants. The wall temperature, heat flux and pressure drop were calculated for heat transfer analysis of regenerative cooling using the profiles.

  3. Liquid-nitrogen cooled, free-running single-photon sensitive detector at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Covi, M.; Pressl, B.; Günthner, T.; Laiho, K.; Krapick, S.; Silberhorn, C.; Weihs, G.

    2015-03-01

    The measurement of light characteristics at the single- and few photon level plays a key role in many quantum optics applications. Often photodetection is preceded with the transmission of quantum light over long distances in optical fibers with their low loss window near 1550 nm. Nonetheless, the detection of the photonic states at telecommunication wavelengths via avalanche photodetectors has long been facing severe restrictions. Only recently, demonstrations of the first free-running detector techniques in the telecommunication band have lifted the demand of synchronizing the signal with the detector. Moreover, moderate cooling is required to gain single-photon sensitivity with these detectors. Here, we implement a liquid-nitrogen cooled negative-feedback avalanche diode (NFAD) at telecommunication wavelengths and investigate the properties of this highly flexible, free-running single-photon sensitive detector. Our realization of cooling provides a large range of stable operating temperatures and has advantages over the relatively bulky commercial refrigerators that have been used before. We determine the region of NFAD working parameters most suitable for single-photon sensitive detection enabling a direct plug-in of our detector to a true photon-counting task.

  4. A thermodynamic approach for advanced fuels of gas-cooled reactors

    NASA Astrophysics Data System (ADS)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  5. Characterization of Super-Cooled Liquid Water Clouds Using the Research Scanning Polarimeter Measurements

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Cairns, B.; van Diedenhoven, B.; Wasilewski, A. P.; Ackerman, A. S.

    2014-12-01

    Super-cooled liquid water (SCW) clouds, where liquid droplets exist at temperatures below 0oC, impact both the radiative budget and the development of precipitation. They also present an aviation hazard due to their role in aircraft icing. The two recent NASA's field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January - February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August - September 2013) provided a unique opportunity to observe SCW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of the measurements made by the Research Scanning Polarimeter (RSP) during these experiments. This instrument measures both polarized and total reflectance in 9 spectral channels with central wavelengths of 410, 470, 555, 670, 865, 960, 1590, 1880 and 2250 nm. The RSP is a scanning sensor taking samples at 0.8o intervals within 60o from nadir in both forward and backward directions. This unique high angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135o and 165o for every pixel independently. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution itself. The latter is important in the case of SCW clouds, which often have complex spatial and microphysical structure. For example the measurements made on 22 September 2013 during SEAC4RS indicate a cloud that alternates between being in glaciated and liquid phases, with super-cooled liquid drops at altitudes as high as 10 km, which

  6. Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device

    NASA Astrophysics Data System (ADS)

    Saha, Bidyut Baran; Chakraborty, Anutosh; Koyama, Shigeru; Srinivasan, Kandadai; Ng, Kim Choon; Kashiwagi, Takao; Dutta, Pradip

    2007-09-01

    This letter presents a thermodynamic formulation to calculate the minimum driving heat source temperature of an advanced solid sorption cooling device, and it is validated with experimental data. This formalism has been developed from the rigor of the Boltzmann distribution function and the condensation approximation of adsorptive molecules. An interesting and useful finding has been established from this formalism that it is possible to construct a solid sorption refrigeration device that operates in a cycle transferring heat from a low temperature source to a heat sink with a driving heat source at a temperature close to but above ambient.

  7. Effect of cooling time on the vapor liquid solid based growth of gold-catalyzed bismuth nanorods

    NASA Astrophysics Data System (ADS)

    Acharya, Susant Kumar; Rai, Alok Kumar; Kim, Gil-Sung; Hyung, Jung-Hwan; Ahn, Byung-Guk; Lee, Sang-Kwon

    2012-01-01

    Deposition of single crystalline bismuth nanorods (Bi NRs) using a thermal evaporation method through vapor-liquid-solid (VLS) mechanism is reported here and the effect of sample cooling time on the growth of Bi NRs is investigated. Deposited Bi NRs have diameters varying from 100 to 400 nm and lengths extending to ∼3 μm in the (012) growth direction. Morphological observation indicated that the length and density of Bi NRs are strongly coupled with prolonged cooling time. A growth mechanism is suggested and discussed to describe the growth of single crystalline Bi NRs based on the morphological observations as a function of cooling temperature and time.

  8. Effects of turbulent flow field on wavefront aberration in liquid-convection-cooled disk laser oscillator

    NASA Astrophysics Data System (ADS)

    Li, Peilin; Fu, Xing; Liu, Qiang; Gong, Mali

    2015-05-01

    A liquid-convection-cooled Nd:YAG disk laser oscillator with an output power of 30.7 W and a slope efficiency of 14.1 % is built. By using large-eddy simulation model, the wavefront aberration induced by the turbulent flow is numerically calculated. In the experiment, a Shack-Hartmann wavefront sensor is used to measure the wavefront aberration and the laser intensity distribution. The RMS values and PV values of the beam wavefront and the phase stability of three feature points have been investigated. The experimental results prove that the turbulent flow with high flow velocity and high turbulent intensity can reduce the aberration of the flow field.

  9. Magnetohydrodynamic considerations for the design of self-cooled liquid-metal fusion reactor blankets

    SciTech Connect

    Picologlou, B.F.

    1985-01-01

    During the course of the Blanket Comparison and Selection Study, magnetohydrodynamic effects were shown to prevent not only an efficiency but also a feasibility issue for self-cooled liquid-metal blankets, especially for tokamak machines. Based on state-of-the art MHD analyses and understanding of related phenomena, designs for both mirror and tokamak machines were developed. Although details of the designs depend on specific reactor parameters, MHD related considerations were the main driver in the development of the designs. This paper presents, in a unified way, these considerations, as well as effective strategies to minimize adverse MHD effects so that they can be used as guidelines by others in future design efforts.

  10. Establishment of Design Method for Liquid Hydrogen Regenerative Cooling Combustor of LOX/Hydrogen Rocket Engine

    NASA Astrophysics Data System (ADS)

    Yatsuyanagi, Nobuyuki

    An optimum method for design of a liquid hydrogen regenerative cooling combustor for the LOX/hydrogen engine was constructed using the author’s previous empirical correlation of C* efficiency and calculation model for combustion characteristics, and the present calculation model for the heat load characteristics for LOX/hydrogen combustion. Using this method, the atomization characteristics of the injected LOX jet, the combustion performance including combustion stability, and the heat load on the combustor were evaluated for LOX/hydrogen upper-stage engines such as the LE-5, RL-10 and HM-7. This method was then applied to the LE-5B engine, which is the derivative engine of the LE-5 and has been used as the second stage of the H-2A launcher, to improve combustion stability and to optimize configuration of the injector and combustor. A reduction of about 30% in chamber length of it with sufficient combustion performance was achieved by such optimization.

  11. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    DOEpatents

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  12. Boiling effect in liquid nitrogen directly cooled Yb³⁺:YAG laser.

    PubMed

    Sakurai, Toshimitsu; Chosrowjan, Haik; Furuse, Hiroaki; Taniguchi, Seiji; Kitamura, Toshiyuki; Fujita, Masayuki; Ishii, Shinya; Izawa, Yasukazu

    2016-02-20

    Liquid nitrogen (LN2) behavior on the surface of excited Yb(3+):YAG is investigated using fluorometry. From the time-resolved temperature variations and integrated fluorescence spectra intensity on this directly cooled Yb(3+):YAG surface, we observe a phase transition of LN2 from nucleate boiling to film boiling. As a result of this pool boiling, good beam quality should occur when the temperature and heat flux at an excited surface of Yb(3+):YAG are below 95 K and 15.8  W/cm2, respectively. That is, the LN2 should remain in a steady state of nucleate boiling to produce good beam quality using pool boiling.

  13. Method of detecting leakage of reactor core components of liquid metal cooled fast reactors

    DOEpatents

    Holt, Fred E.; Cash, Robert J.; Schenter, Robert E.

    1977-01-01

    A method of detecting the failure of a sealed non-fueled core component of a liquid-metal cooled fast reactor having an inert cover gas. A gas mixture is incorporated in the component which includes Xenon-124; under neutron irradiation, Xenon-124 is converted to radioactive Xenon-125. The cover gas is scanned by a radiation detector. The occurrence of 188 Kev gamma radiation and/or other identifying gamma radiation-energy level indicates the presence of Xenon-125 and therefore leakage of a component. Similarly, Xe-126, which transmutes to Xe-127 and Kr-84, which produces Kr-85.sup.m can be used for detection of leakage. Different components are charged with mixtures including different ratios of isotopes other than Xenon-124. On detection of the identifying radiation, the cover gas is subjected to mass spectroscopic analysis to locate the leaking component.

  14. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOEpatents

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  15. Vacuum Plasma Spray Forming of Copper Alloy Liners for Regeneratively Cooled Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2003-01-01

    Vacuum plasma spray (VPS) has been demonstrated as a method to form combustion chambers from copper alloys NARloy-Z and GRCop-84. Vacuum plasma spray forming is of particular interest in the forming of CuCrNb alloys such as GRCop-84, developed by NASA s Glenn Research Center, because the alloy cannot be formed using conventional casting and forging methods. This limitation is related to the levels of chromium and niobium in the alloy, which exceed the solubility limit in copper. Until recently, the only forming process that maintained the required microstructure of CrNb intermetallics was powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. This paper discusses the techniques used to form combustion chambers from CuCrNb and NARloy-Z, which will be used in regeneratively cooled liquid rocket combustion chambers.

  16. a Dosimetry Assessment for the Core Restraint of AN Advanced Gas Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Thornton, D. A.; Allen, D. A.; Tyrrell, R. J.; Meese, T. C.; Huggon, A. P.; Whiley, G. S.; Mossop, J. R.

    2009-08-01

    This paper describes calculations of neutron damage rates within the core restraint structures of Advanced Gas Cooled Reactors (AGRs). Using advanced features of the Monte Carlo radiation transport code MCBEND, and neutron source data from core follow calculations performed with the reactor physics code PANTHER, a detailed model of the reactor cores of two of British Energy's AGR power plants has been developed for this purpose. Because there are no relevant neutron fluence measurements directly supporting this assessment, results of benchmark comparisons and successful validation of MCBEND for Magnox reactors have been used to estimate systematic and random uncertainties on the predictions. In particular, it has been necessary to address the known under-prediction of lower energy fast neutron responses associated with the penetration of large thicknesses of graphite.

  17. Design and testing of a liquid cooled garment for hot environments.

    PubMed

    Guo, Tinghui; Shang, Bofeng; Duan, Bin; Luo, Xiaobing

    2015-01-01

    Liquid cooled garments (LCGs) are considered a viable method to protect individuals from hyperthermia and heat-related illness when working in thermally stressful environments. While the concept of LCGs was proposed over 50 years ago, the design and testing of these systems is undeveloped and stands in need of further study. In this study, a detailed heat transfer model of LCG in a hot environment was built to analyze the effects of different factors on the LCG performance, and to identify the main limitations to achieve maximum performance. An LCG prototype was designed and fabricated. Series of tests were done by a modified thermal manikin method to validate the heat transfer model and to evaluate the thermal properties. Both experimental and predicted results show that the heat flux components match the heat balance equation with an error of less than 10% at different flowrate. Thermal resistance analysis also manifests that the thermal resistance between the cooling water and the ambient (R2) is more sensitive to the flowrate than to the one between the skin surface and the cooling water (R1). When the flowrate increased from 225 to 544 mL/min, R2 decreased from 0.5 to 0.3 °C m(2)/W while R1 almost remained constant. A specific duration time was proposed to assess the durability and an optimized value of 1.68 h/kg was found according to the heat transfer model. The present heat transfer model and specific duration time concept could be used to optimize and evaluate this kind of LCG respectively.

  18. Conceptual Design of the Liquid Hydrogen Moderator Cooling Circuit for the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Klaus, M.; Haberstroh, Ch.; Quack, H.; Beßler, Y.; Butzek, M.

    The European Spallation Sourcein Lund, Sweden, will be a 5 MW beam power neutron spallation research center. As subsystem of the target station the moderators play a vital role by slowing down high energy neutrons set free during the spallation process. To provide maximum neutron flux intensities with high availability for scattering experiments a conceptual liquid hydrogen moderator cooling circulation design proposal was developed. Supercritical hydrogen at 17 K will be utilized to absorb energy of the incoming neutrons in two parallel moderator vessels. A helium refrigerator provides the necessary cooling capacity by implementing an additional helium expansion turbine downstream the refrigerator coldbox. Strategies for the mitigation of pressure fluctuations due to beam trips are being presented. Solutions in form of electrical heaters and an accumulator or an expansion vessel are discussed. Different supercritical hydrogen circulator implementation scenarios are being matched to indicate the most reliable setup. For an efficient moderation process parahydrogen concentrations higher than 99% have to be guaranteed at the moderator inlet. Due to potential conversion of parahydrogen to orthohydrogen via irradiation processes the implementation of an ortho-parahydrogen catalyst bed is being evaluated. Methods for a continuous measurement of the apparent parahydrogen concentration at the moderator in- and outlet will be introduced. The arrangement and interaction of the components will be detailed in the paper.

  19. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub

  20. Multiple lead seal assembly for a liquid-metal-cooled fast-breeder nuclear reactor

    DOEpatents

    Hutter, Ernest; Pardini, John A.

    1977-03-15

    A reusable multiple lead seal assembly provides leak-free passage of stainless-steel-clad instrument leads through the cover on the primary tank of a liquid-metal-cooled fast-breeder nuclear reactor. The seal isolates radioactive argon cover gas and sodium vapor within the primary tank from the exterior atmosphere and permits reuse of the assembly and the stainless-steel-clad instrument leads. Leads are placed in flutes in a seal body, and a seal shell is then placed around the seal body. Circumferential channels in the body and inner surface of the shell are contiguous and together form a conduit which intersects each of the flutes, placing them in communication with a port through the wall of the seal shell. Liquid silicone rubber sealant is injected into the flutes through the port and conduit; the sealant fills the space in the flutes not occupied by the leads themselves and dries to a rubbery hardness. A nut, threaded onto a portion of the seal body not covered by the seal shell, jacks the body out of the shell and shears the sealant without damage to the body, shell, or leads. The leads may then be removed from the body. The sheared sealant is cleaned from the body, leads, and shell and the assembly may then be reused with the same or different leads.

  1. Recent developments on Air Liquide advanced technologies turbines

    NASA Astrophysics Data System (ADS)

    Delcayre, Franck; Gondrand, Cecile; Drevard, Luc; Durand, Fabien; Marot, Gerard

    2012-06-01

    Air Liquide Advanced Technologies has developed for more than 40 years turboexpanders mainly for hydrogen and helium liquefiers and refrigerators and has in total more than 600 references of cryogenic turbo-expanders and cold compressors. The latest developments are presented in this paper. The key motivation of these developments is to improve the efficiency of the machines, and also to widen the range of operation. New impellers have been designed for low and high powers, the operation range is now between 200W and 200kW. The thrust bearings have been characterized in order to maximize the load which can be withstood and to increase the turbo-expander cold power. Considering low power machines, 3D open wheels have been designed and machined in order to increase the adiabatic efficiencies. A new type of machine, a turbobooster for methane liquefaction has been designed, manufactured and tested at AL-AT test facility.

  2. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? 550.248 Section 550.248 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER...

  3. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? 550.248 Section 550.248 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER...

  4. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? 550.248 Section 550.248 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER...

  5. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    SciTech Connect

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  6. Advanced nanoparticle generation and excitation by lasers in liquids.

    PubMed

    Barcikowski, Stephan; Compagnini, Giuseppe

    2013-03-01

    Today, nanoparticles are widely implemented as functional elements onto surfaces, into volumes and as nano-hybrids, resulting for example in bioactive composites and biomolecule conjugates. However, only limited varieties of materials compatible for integration into advanced functional materials are available: nanoparticles synthesized using conventional gas phase processes are often agglomerated into micro powders that are hard to re-disperse into functional matrices. Chemical synthesis methods often lead to impurities of the nanoparticle colloids caused by additives and precursor reaction products. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment, and conjugate a large variety of nanostructures in a scalable and clean manner. This editorial briefly highlights selected recent advancements and critical aspects in the field of pulsed laser-based nanoparticle generation and manipulation, including exemplary strategies to harvest the unique properties of the laser-generated nanomaterials in the field of biomedicine and catalysis. The presented critical aspects address future assignments such as size control and scale-up.

  7. Design of Cooling Channels of Preburners for Small Liquid Rocket Engines with Computational Flow and Heat Transfer Analysis

    NASA Astrophysics Data System (ADS)

    Moon, In-Sang; Lee, Seon-Mi; Moon, Il-Yoon; Yoo, Jae-Han; Lee, Soo-Yong

    2011-09-01

    A series of computational analyses was performed to predict the cooling process by the cooling channel of preburners used for kerosene-liquid oxygen staged combustion cycle rocket engines. As an oxygen-rich combustion occurs in the kerosene fueled preburner, it is of great importance to control the wall temperature so that it does not exceed the critical temperature. However, since the heat transfer is proportional to the speed of fluid running inside the channel, the high heat transfer leads to a trade-off of pressure loss. For this reason, it is necessary to establish a certain criteria between the pressure loss and the heat transfer or the wall surface temperature. The design factors of the cooling channel were determined by the computational research, and a test model was manufactured. The test model was used for the hot fire tests to prove the function of the cooling mechanism, among other purposes.

  8. The influence of cooling on the advance of lava flows: insights from analogue experiments on the feedbacks between flow dynamics and thermal structure

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2012-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and the eruptive mass flux. These two parameters are not known a priori during an eruption and a key question is how to evaluate them in near real-time (rather than afterwards.) There is no generic macroscopic model for the rheology of an advancing lava flow, and analogue modelling is a precious tool to empirically estimate the rheology of a complex flow. We investigate through laboratory experiments the simultaneous spreading and cooling of horizontal currents fed at constant rate from a point source. The materials used are silicone oil (isoviscous), and poly-ethylene glycol (PEG) wax injected in liquid state and solidiying during its advance. In the isoviscous case, the temperature field is a passive tracer of the flow dynamics, whereas in the PEG experiments there is a feedback between the cooling of the flow and its effective rheology. We focus on the evolution of the current area and of the surface thermal structure, imaged with an infrared camera, to assess how the thermal structure can be related to the flow rate. The flow advance is continuous in the viscous case, and follows the predictions of Huppert (1982); in that case the surface temperature become steady after a transient time and the radiated heat flux is shown to be proportional to the input rate. For the PEG experiments, the spreading occurs through an alternation of stagnation and overflow phases, with a mean spreading rate decreasing as the experiment goes on. As in the case of lava flows, these experiments can exhibit a compound flow field, solid levees, thermal erosion, liquid overflows and channelization. A key observation is that the effective rheology of the solifying PEG material depends on the input flow rate, with high input rates yielding a rheology closer to the

  9. Analysis and comparison of wall cooling schemes for advanced gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1972-01-01

    The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.

  10. Natural Convection Cooling of the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Hill, Dennis

    2011-01-01

    After fueling and prior to launch, the Advanced Stirling Radioisotope Generator (ASRG) will be stored for a period of time then moved to the launch pad for integration with the space probe and mounting on the launch vehicle. During this time, which could be as long as 3 years, the ASRG will operate continuously with heat rejected from the housing and fins. Typically, the generator will be cooled by forced convection using fans. During some of the ground operations, maintaining forced convection may add significant complexity, so allowing natural convection may simplify operations. A test was conducted on the ASRG Engineering Unit (EU) to quantify temperatures and operating parameters with natural convection only and determine if the EU could be safely operated in such an environment. The results show that with natural convection cooling the ASRG EU Stirling convertor pressure vessel temperatures and other parameters had significant margins while the EU was operated for several days in this configuration. Additionally, an update is provided on ASRG EU testing at NASA Glenn Research Center, where the ASRG EU has operated for over 16,000 hr and underwent extensive testing.

  11. Technical basis for extending storage of the UK's advanced gas-cooled reactor fuel

    SciTech Connect

    Hambley, D.I.

    2013-07-01

    The UK Nuclear Decommissioning Agency has recently declared a date for cessation of reprocessing of oxide fuel from the UK's Advanced Gas-cooled Reactors (AGRs). This will fundamentally change the management of AGR fuel: from short term storage followed by reprocessing to long term fuel storage followed, in all likelihood, by geological disposal. In terms of infrastructure, the UK has an existing, modern wet storage asset that can be adapted for centralised long term storage of dismantled AGR fuel under the required pond water chemistry. No AGR dry stores exist, although small quantities of fuel have been stored dry as part of experimental programmes in the past. These experimental programmes have shown concerns about corrosion rates.

  12. High Temperature Materials - The Challenge for Future Advanced Gas Cooled Reactors

    SciTech Connect

    Hoffelner, Wolfgang

    2004-07-01

    Advanced gas cooled reactor systems for future combined cycle applications (electricity and process heat) are planned to operate at temperatures above 1000 deg. C. The reliable and safe operation of such plants requires materials that are able to carry loads at these temperatures in impure helium and under neutron irradiation. The most exposed components are the pressure vessel, reactor internals, gas turbine, pipes and valves. Considering the envisaged long operating time (6 years for replaceable components) life time assessments and extrapolation methods are necessary for the determination of damage evolution and long term behaviour of the reactor components. This paper gives a summary of candidate materials and possible approaches to life-time assessment. (author)

  13. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  14. Liquid oxygen cooling of high pressure LOX/hydrocarbon rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Price, H. G.; Masters, P. A.

    1986-01-01

    An experimental program using liquid oxygen (LOX) and RP-1 as the propellants and supercritical LOX as the coolant was conducted at 4.14, 8.27, and 13.79 MN/sq m (600, 1200, and 2000 psia) chamber pressure. The objectives of this program were to evaluate the cooling characteristics of LOX with the LOX/RP-1 propellants, the buildup of the soot on the hot-gas-side chamber wall, and the effect of an internal LOX leak on the structural integrity of the combustor. Five thrust chambers with throat diameters of 6.6 cm (2.5 in.) were tested successfully. The first three were tested at 4.14 MN/sq m (600 psia) chamber pressure over a mixture ratio range of 2.25 to 2.92. One of these three was tested for over 22 cyclic tests after the first through crack from the coolant channel to the combustion zone was observed with no apparent metal burning or distress. The fourth chamber was tested at 8.27 MN/sq m (1200 psia) chamber pressure over a mixture range of 1.93 to 2.98. The fourth and fifth chambers were tested at 13.79 MN/sq m (2000 psia) chamber pressure over a mixture ratio range of 1.79 to 2.68.

  15. Compact counter-flow cooling system with subcooled gravity-fed circulating liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu.; Radovinsky, A.; Zhukovsky, A.; Sasaki, A.; Watanabe, H.; Kawahara, T.; Hamabe, M.; Yamaguchi, S.

    2010-11-01

    A liquid nitrogen (LN2) is usually used to keep the high-temperature superconducting (HTS) cable low temperature. A pump is utilized to circulate LN2 inside the cryopipes. In order to minimize heat leakage, a thermal siphon circulation scheme can be realized instead. Here, we discuss the effectiveness of thermal siphon with counter-flow circulation loop composed of cryogen flow channel and inner cable channel. The main feature of the system is the existence of essential parasitic heat exchange between upwards and downwards flows. Feasibility of the proposed scheme for cable up to 500 m in length has been investigated numerically. Calculated profiles of temperature and pressure show small differences of T and p in the inner and the outer flows at the same elevation, which allows not worrying about mechanical stability of the cable. In the case under consideration the thermal insulating properties of a conventional electrical insulating material (polypropylene laminated paper, PPLP) appear to be sufficient. Two interesting effects were disclosed due to analysis of subcooling of LN2. In case of highly inclined siphon subcooling causes significant increase of temperature maximum that can breakup of superconductivity. In case of slightly inclined siphon high heat flux from outer flow to inner flow causes condensation of nitrogen gas in outer channel. It leads to circulation loss. Results of numerical analyses indicate that counter-flow thermosiphon cooling system is a promising way to increase performance of short-length power transmission (PT) lines, but conventional subcooling technique should be applied carefully.

  16. Experimentally Determined Overall Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vogel, Matt; Vonaue, Walt; Conger, Bruce; Stein, James

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the overall heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flow rate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  17. Millimeter wave surface resistance measurement on high temperature superconductors using a liquid nitrogen cooled cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Bing-Lin; Han, Sheng-Chiang

    1991-03-01

    An accurate, relatively convenient and economical method of evaluating surface resistance Rs of high-temperature superconductors has been developed. This method is based on a technique of replacing one end wall of a copper cylindrical cavity which resonates at a frequency of 50.9 GHz in TE011 circular mode. Measurement at 50.9 GHz allows evaluation of high-quality samples whose Rs value at 10 GHz is even one order of magnitude lower than that of copper. The proper diameter of the cavity is suitable for measuring samples with an area of 1 cm2, the usual area used in thin-film growth and device fabrication. The cavity and the sample to be measured were cooled by liquid nitrogen, whose vapor pressure could be reduced to obtain temperatures down to 65 K. The temperature dependence of the Rs value of RF-magnetron-sputtered TBCCO thick film on Ag substrate and RF-magnetron-sputtered YBCO thin film on LaAlO3 substrate has been measured in the temperature range of 65-250 K. The Rs value of the thick film was 0.17 ohm at 77 K. The Rs value of the thin film dramatically decreases below 90 K and reaches 18 mohm at 77 K, which is almost two times lower than that of oxygen-free, high-conductivity (OFHC) copper.

  18. Design and evaluation of automatic control for human/liquid cooling garment thermal interaction

    NASA Astrophysics Data System (ADS)

    Nyberg, Karen Lujean

    An automatic control system was designed and developed to control the thermal comfort of an astronaut wearing a liquid cooling garment (LCG). Experimental trials were run with test subjects performing arm cranking exercise in an environmental chamber. The thermal control algorithm incorporates the use of carbon dioxide production as a measure of metabolic rate to initiate the control response and mean body temperature, as a function of ear canal and skin temperatures, to provide feedback of the human thermal state to the controller. Nine test subjects each completed three, ninety-minute tests in three different environmental temperatures. Subjective comfort levels were obtained from the subjects throughout each test. Evaluation of subjective comfort level and quantitative energy storage indicates good performance of the controller in maintaining thermal neutrality for the subject over a wide range of environmental and transient metabolic states. The Wissler human thermoregulation model was utilized in the control design process and was used to further analyze the experimental results following testing. Subsequent application of the model allowed evaluation of additional protocols for which the LCG thermal controller may be used in the future.

  19. Liquid-lithium cooling for 100-kW ISOL and fragmentation targets.

    SciTech Connect

    Nolen, J. A.; Reed, C. B.,Hassanein, A.,Gomes, I. C.

    2000-11-10

    Advanced exotic beam facilities that are currently being developed will use powerful driver accelerator for the production of short-lived rare isotopes. Multi-beam-drivers capable of producing high power beams from very light to very heavy ions are now technically feasible. A challenge for such facilities is the development of production targets to be used for a variety of reaction mechanisms with beam powers of about 100 kilowatts. This paper presents engineering concepts that have been developed recently for using liquid lithium coolant for two types of targets, one for use with light-ion beams on high atomic number (Z) targets and the other for heavy-ion beams on low-Z targets.

  20. An experimental investigation on liquid methane heat transfer enhancement through the use of longitudinal fins in cooling channels

    NASA Astrophysics Data System (ADS)

    Galvan, Manuel de Jesus

    In the past years, hydrocarbon fuels have been the focus of attention as the interest in developing reusable, high-performing liquid rocket engines has grown. Liquid methane (LCH4) has been of particular interest because of the cost, handling, and storage advantages that it presents when compared to currently used propellants. Deep space exploration requires thrusters that can operate reliably during long-duration missions. One of the challenges in the development of a reliable engine has been providing adequate combustion chamber cooling to prevent engine failure. Regenerative (regen) cooling has presented itself as an appealing option because it provides improved cooling and engine efficiency over other types of cooling, such as film or dump cooling. Due to limited availability of experimental sub-critical liquid methane cooling data for pressure-fed regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through smooth sub-scale cooling channels. In addition to investigating smooth channels, the cSETR has conducted experiments to investigate the effects of internal longitudinal fins on the heat transfer of methane. To conduct the experiments, the cSETR developed a conduction-based thermal concentrator known as the High Heat Flux Test Facility (HHFTF) in which the channels are heated. In this study, a smooth channel and three channels with longitudinal fins all with cross sectional geometries of 3.2 mm x 3.2 mm were tested. The Nusselt numbers ranged from 70 and 510, and Reynolds numbers were between 50,000 and 128,000. Sub-cooled film-boiling phenomena were discovered in the data pertaining to the smooth and two finned channels. Sub-cooled film-boiling was not

  1. Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors

    SciTech Connect

    Peterson, Per

    2012-10-30

    The objective of the 3-year project was to collect integral effects test (IET) data to validate the RELAP5-3D code and other thermal hydraulics codes for use in predicting the transient thermal hydraulics response of liquid salt cooled reactor systems, including integral transient response for forced and natural circulation operation. The reference system for the project is a modular, 900-MWth Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a specific type of Fluoride salt-cooled High temperature Reactor (FHR). Two experimental facilities were developed for thermal-hydraulic integral effects tests (IETs) and separate effects tests (SETs). The facilities use simulant fluids for the liquid fluoride salts, with very little distortion to the heat transfer and fluid dynamics behavior. The CIET Test Bay facility was designed, built, and operated. IET data for steady state and transient natural circulation was collected. SET data for convective heat transfer in pebble beds and straight channel geometries was collected. The facility continues to be operational and will be used for future experiments, and for component development. The CIET 2 facility is larger in scope, and its construction and operation has a longer timeline than the duration of this grant. The design for the CIET 2 facility has drawn heavily on the experience and data collected on the CIET Test Bay, and it was completed in parallel with operation of the CIET Test Bay. CIET 2 will demonstrate start-up and shut-down transients and control logic, in addition to LOFC and LOHS transients, and buoyant shut down rod operation during transients. Design of the CIET 2 Facility is complete, and engineering drawings have been submitted to an external vendor for outsourced quality controlled construction. CIET 2 construction and operation continue under another NEUP grant. IET data from both CIET facilities is to be used for validation of system codes used for FHR modeling, such as RELAP5-3D. A set of

  2. A 100 MWe advanced sodium-cooled fast reactor core concept

    SciTech Connect

    Kim, T. K.; Grandy, C.; Hill, R. N.

    2012-07-01

    An Advanced sodium-cooled Fast Reactor core concept (AFR-100) was developed targeting a small electrical grid to be transportable to the plant site and operable for a long time without frequent refueling. The reactor power rating was strategically decided to be 100 MWe, and the core barrel diameter was limited to 3.0 m for transportability. The design parameters were determined by relaxing the peak fast fluence limit and bulk coolant outlet temperature to beyond irradiation experience assuming that advanced cladding and structural materials developed under US-DOE programs would be available when the AFR-100 is deployed. With a de-rated power density and U-Zr binary metallic fuel, the AFR-100 can maintain criticality for 30 years without refueling. The average discharge burnup of 101 MWd/kg is comparable to conventional design values, but the peak discharge fast fluence of {approx}6x10{sup 23} neutrons/cm{sup 2} is beyond the current irradiation experiences with HT-9 cladding. The evaluated reactivity coefficients provide sufficient negative feedbacks and the reactivity control systems provide sufficient shutdown margins. The integral reactivity parameters obtained from quasi-static reactivity balance analysis indicate that the AFR-100 meets the sufficient conditions for acceptable asymptotic core outlet temperature following postulated unprotected accidents. Additionally, the AFR-100 has sufficient thermal margins by grouping the fuel assemblies into eight orifice zones. (authors)

  3. Advanced helium purge seals for Liquid Oxygen (LOX) turbopumps

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur; Lee, Chester C.

    1989-01-01

    Program objectives were to determine three advanced configurations of helium buffer seals capable of providing improved performance in a space shuttle main engine (SSME), high-pressure liquid oxygen (LOX) turbopump environment, and to provide NASA with the analytical tools to determine performance of a variety of seal configurations. The three seal designs included solid-ring fluid-film seals often referred to as floating ring seals, back-to-back fluid-film face seals, and a circumferential sectored seal that incorporated inherent clearance adjustment capabilities. Of the three seals designed, the sectored seal is favored because the self-adjusting clearance features accommodate the variations in clearance that will occur because of thermal and centrifugal distortions without compromising performance. Moreover, leakage can be contained well below the maximum target values; minimizing leakage is important on the SSME since helium is provided by an external tank. A reduction in tank size translates to an increase in payload that can be carried on board the shuttle. The computer codes supplied under this program included a code for analyzing a variety of gas-lubricated, floating ring, and sector seals; a code for analyzing gas-lubricated face seals; a code for optimizing and analyzing gas-lubricated spiral-groove face seals; and a code for determining fluid-film face seal response to runner excitations in as many as five degrees of freedom. These codes proved invaluable for optimizing designs and estimating final performance of the seals described.

  4. Advanced Technology Development: Solid-Liquid Interface Characterization Hardware

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Characterizing the solid-liquid interface during directional solidification is key to understanding and improving material properties. The goal of this Advanced Technology Development (ATD) has been to develop hardware, which will enable real-time characterization of practical materials, such as aluminum (Al) alloys, to unprecedented levels. Required measurements include furnace and sample temperature gradients, undercooling at the growing interface, interface shape, or morphology, and furnace translation and sample growth rates (related). These and other parameters are correlated with each other and time. A major challenge was to design and develop all of the necessary hardware to measure the characteristics, nearly simultaneously, in a smaller integral furnace compatible with existing X-ray Transmission Microscopes, XTMs. Most of the desired goals have been accomplished through three generations of Seebeck furnace brassboards, several varieties of film thermocouple arrays, heaters, thermal modeling of the furnaces, and data acquisition and control (DAC) software. Presentations and publications have resulted from these activities, and proposals to use this hardware for further materials studies have been submitted as sequels to this last year of the ATD.

  5. Direct contact liquid-liquid heat exchanger for solar heated and cooled buildings. Final report, January 1, 1979-May 30, 1980

    SciTech Connect

    Karaki, S.; Brothers, P.

    1980-06-01

    The technical and economic feasibility of using a direct contact liquid-liquid heat exchanger (DCLLHE) storage unit in a solar heating and cooling system is established. Experimental performance data were obtained from the CSU Solar House I using a DCLLHE for both heating and cooling functions. A simulation model for the system was developed. The model was validated using the experimental data and applied in five different climatic regions of the country for a complete year. The life-cycle cost of the system was estimated for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger. It is concluded that while thare is a performance advantage with a DCLLHE system over a conventional solar system, the advantage is not sufficiently large to overcome slightly higher capital and operating costs for the DCLLHE system.

  6. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  7. Investigation of an Alternative Fuel Form for the Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    SciTech Connect

    Casino, William A. Jr.

    2006-07-01

    Much of the recent studies investigating the use of liquid salts as reactor coolants have utilized a core configuration of graphite prismatic fuel block assemblies with TRISO particles embedded into cylindrical fuel compacts arranged in a triangular pitch lattice. Although many calculations have been performed for this fuel form in gas cooled reactors, it would be instructive to investigate whether an alternative fuel form may yield improved performance for the liquid salt-cooled Very High Temperature Reactor (LS-VHTR). This study investigates how variations in the fuel form will impact the performance of the LS-VHTR during normal and accident conditions and compares the results with a similar analysis that was recently completed for a LS-VHTR core made up of prismatic block fuel. (author)

  8. Feasibility study of automatic control of crew comfort in the shuttle Extravehicular Mobility Unit. [liquid cooled garment regulator

    NASA Technical Reports Server (NTRS)

    Cook, D. W.

    1977-01-01

    Computer simulation is used to demonstrate that crewman comfort can be assured by using automatic control of the inlet temperature of the coolant into the liquid cooled garment when input to the controller consists of measurements of the garment inlet temperature and the garment outlet temperature difference. Subsequent tests using a facsimile of the control logic developed in the computer program confirmed the feasibility of such a design scheme.

  9. Specific impulse loss due to friction and dissipation in the nozzle of a liquid propellant rocket engine with film cooling

    NASA Astrophysics Data System (ADS)

    Lushchik, V. G.; Sizov, V. I.; Sternin, L. E.; Yakubenko, A. E.

    1993-07-01

    A method and algorithms for computing a compressible turbulent boundary layer in the nozzles of liquid propellant rocket engines with film cooling are developed which make it possible to determine losses of the specific impulse due to friction as well as heat fluxes and other flow characteristics. The calculations are based on the numerical solution of gasdynamic equations in the boundary layer approximation using a three-parameter turbulence model. The conditions for minimum specific impulse loss are determined.

  10. Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach

    PubMed Central

    Xu, Xuefeng; Ma, Liran

    2015-01-01

    During liquid evaporation, the equations for the vapor concentration in the atmosphere and for the temperature in the liquid are coupled and must be solved in an iterative manner. In the present paper, a combined field approach which unifies the coupled fields into one single hybrid field and thus makes the iteration unnecessary is proposed. By using this approach, the influences of the evaporative cooling on the evaporation of pinned sessile droplets are investigated, and its predictions are found in good agreement with the previous theoretical and experimental results. A dimensionless number Ec which can evaluate the strength of the evaporative cooling is then introduced, and the results show that both the evaporation flux along the droplet surface and the total evaporation rate of the droplet decrease as the evaporative cooling number Ec increases. For drying droplets, there exists a critical value EcCrit below which the evaporative cooling effect can be neglected and above which the significance of the effect increases dramatically. The present work may also have more general applications to coupled field problems in which all the fields have the same governing equation. PMID:25721987

  11. Recent Advances in Colloidal and Interfacial Phenomena Involving Liquid Crystals

    PubMed Central

    Bai, Yiqun; Abbott, Nicholas L.

    2011-01-01

    This article describes recent advances in several areas of research involving the interfacial ordering of liquid crystals (LCs). The first advance revolves around the ordering of LCs at bio/chemically functionalized surfaces. Whereas the majority of past studies of surface-induced ordering of LCs have involved surfaces of solids that present a limited diversity of chemical functional groups (surfaces at which van der Waals forces dominate surface-induced ordering), recent studies have moved to investigate the ordering of LCs on chemically complex surfaces. For example, surfaces decorated with biomolecules (e.g. oligopeptides and proteins) and transition metal ions have been investigated, leading to an understanding of the roles that metal-ligand coordination interactions, electrical double-layers, acid-base interactions, and hydrogen bonding can have on the interfacial ordering of LCs. The opportunity to create chemically-responsive LCs capable of undergoing ordering transitions in the presence of targeted molecular events (e.g., ligand exchange around a metal center) has emerged from these fundamental studies. A second advance has focused on investigations of the ordering of LCs at interfaces with immiscible isotropic fluids, particularly water. In contrast to prior studies of surface-induced ordering of LCs on solid surfaces, LC- aqueous interfaces are deformable and molecules at these interfaces exhibit high levels of mobility and thus can reorganize in response to changes in interfacial environment. A range of fundamental investigations involving these LC-aqueous interfaces have revealed that (i) the spatial and temporal characteristics of assemblies formed from biomolecular interactions can be reported by surface-driven ordering transitions in the LCs, (ii) the interfacial phase behaviour of molecules and colloids can be coupled to (and manipulated via) the ordering (and nematic elasticity) of LCs, and (iii) confinement of LCs leads to unanticipated size

  12. Development of low-cost test techniques for advancing film cooling technology

    NASA Astrophysics Data System (ADS)

    Soechting, F. O.; Landis, K. K.; Dobrowolski, R.

    1987-06-01

    A program for studying advanced film hole geometries that will provide improved film effectiveness levels relative to those reported in the literature is described. A planar wind tunnel was used to conduct flow visualization studies on different film hole shapes, followed by film effectiveness measurements. The most promising geometries were then tested in a two-dimensional cascade to define the film effectiveness distributions, while duplicating a turbine airfoil curvature, Mach number, and acceleration characteristics. The test techniques are assessed and typical results are presented. It was shown that smoke flow visualization is an excellent low-cost technique for observing film coolant-to-mainstream characteristics and that reusable liquid crystal sheets provide an accurate low-cost technique for measuring near-hole film effectiveness contours. Cascade airfoils constructed using specially developed precision fabrication techniques provided high-quality film effectiveness data.

  13. Traction Drive Inverter Cooling with Submerged Liquid Jet Impingement on Microfinned Enhanced Surfaces (Presentation)

    SciTech Connect

    Waye, S.; Narumanchi, S.; Moreno, G.

    2014-09-01

    Jet impingement is one means to improve thermal management for power electronics in electric-drive traction vehicles. Jet impingement on microfin-enhanced surfaces further augments heat transfer and thermal performance. A channel flow heat exchanger from a commercial inverter was characterized as a baseline system for comparison with two new prototype designs using liquid jet impingement on plain and microfinned enhanced surfaces. The submerged jets can target areas with the highest heat flux to provide local cooling, such as areas under insulated-gate bipolar transistors and diode devices. Low power experiments, where four diodes were powered, dissipated 105 W of heat and were used to validate computational fluid dynamics modeling of the baseline and prototype designs. Experiments and modeling used typical automotive flow rates using water-ethylene glycol as a coolant (50%-50% by volume). The computational fluid dynamics model was used to predict full inverter power heat dissipation. The channel flow and jet impingement configurations were tested at full inverter power of 40 to 100 kW (output power) on a dynamometer, translating to an approximate heat dissipation of 1 to 2 kW. With jet impingement, the cold plate material is not critical for the thermal pathway. A high-temperature plastic was used that could eventually be injection molded or formed, with the jets formed from a basic aluminum plate with orifices acting as nozzles. Long-term reliability of the jet nozzles and impingement on enhanced surfaces was examined. For jet impingement on microfinned surfaces, thermal performance increased 17%. Along with a weight reduction of approximately 3 kg, the specific power (kW/kg) increased by 36%, with an increase in power density (kW/L) of 12% compared with the baseline channel flow configuration.

  14. Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors

    SciTech Connect

    Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W

    2007-09-01

    The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) composites are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.

  15. Theoretical prediction of the effect of heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of spermatozoa.

    PubMed

    Sansinen, M; Santos, M V; Zaritzky, N; Baez, R; Chirife, J

    2010-01-01

    Heat transfer plays a key role in cryopreservation of liquid semen in plastic straws. The effect of several parameters on the cooling rate of a liquid-filled polypropylene straw when plunged into liquid nitrogen was investigated using a theoretical model. The geometry of the straw containing the liquid was assimilated as two concentric finite cylinders of different materials: the fluid and the straw; the unsteady-state heat conduction equation for concentric cylinders was numerically solved. Parameters studied include external (convection) heat transfer coefficient (h), the thermal properties of straw manufacturing material and wall thickness. It was concluded that the single most important parameter affecting the cooling rate of a liquid column contained in a straw is the external heat transfer coefficient in LN2. Consequently, in order to attain maximum cooling rates, conditions have to be designed to obtain the highest possible heat transfer coefficient when the plastic straw is plunged in liquid nitrogen.

  16. Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Ekkad, S. V.; Du, H.; Teng, S.

    2000-01-01

    Unsteady wake effect, with and without trailing edge ejection, on detailed heat transfer coefficient and film cooling effectiveness distributions is presented for a downstream film-cooled gas turbine blade. Tests were performed on a five-blade linear cascade at an exit Reynolds number of 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.4 to 1.2; air and CO2 were used as coolants to simulate different density ratios. Surface heat transfer and film effectiveness distributions were obtained using a transient liquid crystal technique; coolant temperature profiles were determined with a cold wire technique. Results show that Nusselt numbers for a film cooled blade are much higher compared to a blade without film injection. Unsteady wake slightly enhances Nusselt numbers but significantly reduces film effectiveness versus no wake cases. Nusselt numbers increase only slic,htly but film cooling, effectiveness increases significantly with increasing, blowing ratio. Higher density coolant (CO2) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher 0 effectiveness at lower blowing ratios (M = 0.8). Trailing edge ejection generally has more effect on film effectiveness than on the heat transfer, typically reducing film effectiveness and enhancing heat transfer. Similar data is also presented for a film cooled cylindrical leading edge model.

  17. Validation of Supersonic Film Cooling Modeling for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.; Ruf, Joseph H.

    2010-01-01

    Topics include: upper stage engine key requirements and design drivers; Calspan "stage 1" results, He slot injection into hypersonic flow (air); test articles for shock generator diagram, slot injector details, and instrumentation positions; test conditions; modeling approach; 2-d grid used for film cooling simulations of test article; heat flux profiles from 2-d flat plate simulations (run #4); heat flux profiles from 2-d backward facing step simulations (run #43); isometric sketch of single coolant nozzle, and x-z grid of half-nozzle domain; comparison of 2-d and 3-d simulations of coolant nozzles (run #45); flowfield properties along coolant nozzle centerline (run #45); comparison of 3-d CFD nozzle flow calculations with experimental data; nozzle exit plane reduced to linear profile for use in 2-d film-cooling simulations (run #45); synthetic Schlieren image of coolant injection region (run #45); axial velocity profiles from 2-d film-cooling simulation (run #45); coolant mass fraction profiles from 2-d film-cooling simulation (run #45); heat flux profiles from 2-d film cooling simulations (run #45); heat flux profiles from 2-d film cooling simulations (runs #47, #45, and #47); 3-d grid used for film cooling simulations of test article; heat flux contours from 3-d film-cooling simulation (run #45); and heat flux profiles from 3-d and 2-d film cooling simulations (runs #44, #46, and #47).

  18. Gel phantom study of a cryosurgical probe with a thermosiphon effect and liquid nitrogen-cooled aluminum thermal storage blocks

    PubMed Central

    Isoda, Haruo; Takehara, Yasuo; Fujino, Hitoshi; Sone, Kazuya; Suzuki, Takeshi; Tsuzaki, Yoshinari; Miyazaki, Kouji; Fujie, Michio; Sakahara, Harumi; Maekawa, Yasuaki

    2015-01-01

    ABSTRACT Cryosurgery is a minimally invasive treatment for certain types of cancers. Argon-based cryosurgical devices are available at present, however a large compressed gas cylinder with the pressure of 300 atmospheres is needed. To overcome these drawbacks, we developed a new cryosurgical probe measuring about 50 cm in length with separate lumens inside for liquid and gaseous ethylene to be used as a thermosiphon and liquid nitrogen-cooled aluminum thermal storage blocks. The probe needle was 8 cm in length and 3 mm in outer diameter. To investigate the freezing capabilities of our new cryosurgical system we inserted the needle 5cm into a poly-acrylamide gel phantom warmed to 36.5 ℃. Thermal storage blocks made of aluminum, cooled at –196 ℃ in liquid nitrogen, were attached to the condenser of the probe and replaced with thermal storage blocks every 4 to 5 minutes to compensate for warming. We took digital camera images of the ice ball at the needle and measured the temperature in certain locations of the cryoprobe. Ice ball formation started at one minute after cooling. The sizes (longest diameter × minimum diameter) at 10, 20 and 30 minutes after the start of the procedure were 4.5×2.1, 4.5×3.1 and 4.6×3.7 cm, respectively. During the procedure the minimum temperature of the condenser was –85 ℃ and the needle was –65 ℃. This newly developed compact cryosurgical probe with thermosiphon effect and cooled thermal storage blocks created an ice ball that can be used for cryosurgery within 20 minutes. PMID:26412886

  19. Gel phantom study of a cryosurgical probe with a thermosiphon effect and liquid nitrogen-cooled aluminum thermal storage blocks.

    PubMed

    Isoda, Haruo; Takehara, Yasuo; Fujino, Hitoshi; Sone, Kazuya; Suzuki, Takeshi; Tsuzaki, Yoshinari; Miyazaki, Kouji; Fujie, Michio; Sakahara, Harumi; Maekawa, Yasuaki

    2015-08-01

    Cryosurgery is a minimally invasive treatment for certain types of cancers. Argon-based cryosurgical devices are available at present, however a large compressed gas cylinder with the pressure of 300 atmospheres is needed. To overcome these drawbacks, we developed a new cryosurgical probe measuring about 50 cm in length with separate lumens inside for liquid and gaseous ethylene to be used as a thermosiphon and liquid nitrogen-cooled aluminum thermal storage blocks. The probe needle was 8 cm in length and 3 mm in outer diameter. To investigate the freezing capabilities of our new cryosurgical system we inserted the needle 5cm into a poly-acrylamide gel phantom warmed to 36.5 ℃. Thermal storage blocks made of aluminum, cooled at -196 ℃ in liquid nitrogen, were attached to the condenser of the probe and replaced with thermal storage blocks every 4 to 5 minutes to compensate for warming. We took digital camera images of the ice ball at the needle and measured the temperature in certain locations of the cryoprobe. Ice ball formation started at one minute after cooling. The sizes (longest diameter × minimum diameter) at 10, 20 and 30 minutes after the start of the procedure were 4.5×2.1, 4.5×3.1 and 4.6×3.7 cm, respectively. During the procedure the minimum temperature of the condenser was -85 ℃ and the needle was -65 ℃. This newly developed compact cryosurgical probe with thermosiphon effect and cooled thermal storage blocks created an ice ball that can be used for cryosurgery within 20 minutes.

  20. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  1. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  2. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  3. Vacuum cooling of meat products: current state-of-the-art research advances.

    PubMed

    Feng, Chaohui; Drummond, Liana; Zhang, Zhihang; Sun, Da-Wen; Wang, Qijun

    2012-01-01

    Vacuum cooling (VC) is commonly applied for cooling of several foodstuffs, to provide exceptionally rapid cooling rates with low energy consumption and resulting in high-quality food products. However, for products such as meat and cooked meat products, the higher cooling loss of vacuum cooling compared with established methods still means lower yields, and important meat quality parameters can be negatively affected. Substantial efforts during the past ten years have aimed to improve the technology in order to offer the meat industry, especially the cooked meat industry, optimized production in terms of safety regulations and guidelines, as well as meat quality. This review presents and discusses recent VC developments directed to the cooked meat industry. The principles of VC, and the basis for improvements of this technology, are firstly discussed; future prospects for research and development in this area are later explored, particularly in relation to cooling of cooked meat and meat products.

  4. Effects of liquid cooling garments on recovery and performance time in individuals performing strenuous work wearing a firefighter ensemble.

    PubMed

    Kim, Jung-Hyun; Coca, Aitor; Williams, W Jon; Roberge, Raymond J

    2011-07-01

    This study investigated the effects of body cooling using liquid cooling garments (LCG) on performance time (PT) and recovery in individuals wearing a fully equipped prototype firefighter ensemble (PFE) incorporating a self-contained breathing apparatus (SCBA). Six healthy male participants (three firefighters and three non-firefighters) completed six experimental sessions in an environmental chamber (35°C, 50% relative humidity), consisting of three stages of 15 min exercise at 75% VO2max, and 10 min rest following each exercise stage. During each session, one of the following six conditions was administered in a randomized order: control (no cooling, CON); air ventilation of exhaust SCBA gases rerouted into the PFE (AV); top cooling garment (TCG); TCG combined with AV (TCG+AV); a shortened whole body cooling garment (SCG), and SCG combined with AV (SCG+AV). Results showed that total PT completed was longer under SCG and SCG+AV compared with CON, AV, TCG, and TCG+AV (p<0.01). Magnitude of core temperature (Tc) elevation was significantly decreased when SCG was utilized (p<0.01), and heart rate recovery rate (10 min) was enhanced under SCG, SCG+AV, TCG, and TCG+AV compared with CON (p<0.05). Estimated Esw rate (kg·h(-1)) was the greatest in CON, 1.62 (0.37), and the least in SCG+AV 0.98 (0.44): (descending order: CON>AV>TCG=TCG+AV>SCG>SCG+AV) without a statistical difference between the conditions (p<0.05). Results of the present study suggest that the application of LCG underneath the PFE significantly improves the recovery during a short period of rest and prolongs performance time in subsequent bouts of exercise. LCG also appears to be an effective method for body cooling that promotes heat dissipation during uncompensable heat stress.

  5. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.

    1979-01-01

    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).

  6. Subjective perceptions and ergonomics evaluation of a liquid cooled garment worn under protective ensemble during an intermittent treadmill exercise.

    PubMed

    Kim, Jung-Hyun; Coca, Aitor; Williams, W Jon; Roberge, Raymond J

    2011-07-01

    While a personal protective equipment (PPE) ensemble effectively provides workers with protection from occupational hazards, working in a vapour-resistant ensemble increases the risk of heat illness/injuries and physiological burdens. The purpose of this study was to investigate the effect of body cooling via a liquid-cooled garment (LCG) underneath a PPE ensemble on perceived thermal strain, physiological responses and ergonomics during an intermittent treadmill exercise in warm environmental conditions. The results of the present study indicated that the concomitant wearing of LCG underneath the PPE ensemble significantly reduced subjective perception of heat and alleviated overall increase in body temperature and heart rate while no impact of wearing LCG on ergonomic features was found. The extension of the present findings to practical applications in occupational settings requires further research on a LCG system design and performance evaluations while the LCG is incorporated within the PPE ensemble. STATEMENT OF RELEVANCE: Implementation of a LCG underneath PPE for body cooling was investigated, focusing on its impact on individuals' perceived thermal strain, physiological responses and ergonomics. The findings of the present study indicated that body cooling via a wearable LCG underneath PPE significantly alleviated both perceived thermal and physiological strain in uncompensable heat stress condition. PMID:21770750

  7. Subjective perceptions and ergonomics evaluation of a liquid cooled garment worn under protective ensemble during an intermittent treadmill exercise.

    PubMed

    Kim, Jung-Hyun; Coca, Aitor; Williams, W Jon; Roberge, Raymond J

    2011-07-01

    While a personal protective equipment (PPE) ensemble effectively provides workers with protection from occupational hazards, working in a vapour-resistant ensemble increases the risk of heat illness/injuries and physiological burdens. The purpose of this study was to investigate the effect of body cooling via a liquid-cooled garment (LCG) underneath a PPE ensemble on perceived thermal strain, physiological responses and ergonomics during an intermittent treadmill exercise in warm environmental conditions. The results of the present study indicated that the concomitant wearing of LCG underneath the PPE ensemble significantly reduced subjective perception of heat and alleviated overall increase in body temperature and heart rate while no impact of wearing LCG on ergonomic features was found. The extension of the present findings to practical applications in occupational settings requires further research on a LCG system design and performance evaluations while the LCG is incorporated within the PPE ensemble. STATEMENT OF RELEVANCE: Implementation of a LCG underneath PPE for body cooling was investigated, focusing on its impact on individuals' perceived thermal strain, physiological responses and ergonomics. The findings of the present study indicated that body cooling via a wearable LCG underneath PPE significantly alleviated both perceived thermal and physiological strain in uncompensable heat stress condition.

  8. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    PubMed

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  9. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2015-07-28

    The evaporation of pinned, sessile droplets resting on finite thickness substrates was investigated numerically by extending the combined field approach to include the thermal properties of the substrate. By this approach, the combined effects of the underlying substrate and the evaporative cooling were characterized. The results show that the influence of the substrate on the droplet evaporation depends largely on the strength of the evaporative cooling. When the evaporative cooling is weak, the influence of substrate is also weak. As the strength of evaporative cooling increases, the influence of the substrate becomes more and more pronounced. Further analyses indicated that it is the cooling at the droplet surface and the temperature dependence of the saturation vapor concentration that relate the droplet evaporation to the underlying substrate. This indicates that the evaporative cooling number, Ec, can be used to identify the influence of the substrate on the droplet evaporation. The theoretical predictions by the present model are compared and found to be in good agreement with the experimental measurements. The present work may contribute to the body of knowledge concerning droplet evaporation and may have applications in a wide range of industrial and scientific processes.

  10. An experimental investigation of the cooling channel geometry effects on the internal forced convection of liquid methane

    NASA Astrophysics Data System (ADS)

    Trejo, Adrian

    Rocket engine fuel alternatives have been an area of discussion for use in high performance engines and deep spaceflight missions. In particular, LCH4 has showed promise as an alternative option in regeneratively cooled rocket engines due to its non-toxic nature, similar storage temperatures to liquid oxygen, and its potential as an in situ resource. However, data pertaining to the heat transfer characteristics of LCH4 is limited. For this reason, a High Heat Transfer Test Facility (HHTTF) at the University of Texas at El Paso's (UTEP) Center for Space Exploration Technology and Research has been developed for the purpose of flowing LCH4 through several heated tube geometry designs subjected to a constant heat flux. In addition, a Methane Condensing Unit (MCU) is integrated to the system setup to supply LCH4 to the test facility. Through the use of temperature and pressure measurements, this experiment will serve not only to study the heat transfer characteristics of LCH4; it serves as a method of simulating the cooling channels of a regeneratively cooled rocket engine at a subscale level. The cross sections for the cooling channels investigated are a 1.8 mm x 1.8 mm square channel, 1.8 mm x 4.1 mm rectangular channel, 3.2 mm and 6.34 mm inside diameter channel, and a 1.8 mm x 14.2 mm high aspect ratio cooling channel (HARCC). The test facility is currently designed for test pressures between 1.03 MPa to 2.06 MPa and heat fluxes up to 5 MW/m2. Results show that at the given test pressures, the Reynolds number reaches up to 140,000 for smaller cooling channels (3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangle) while larger cooling channel geometries (6.35 mm diameter and HARCC) reached Reynolds number around 70,000. Nusselt numbers reached as high as 320 and 265 for a 3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangular channel respectively. For cooling channel geometries with 6.35 mm diameter and HARCC geometry, Nusselt numbers reached 136 (excluding an outlier

  11. Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

    PubMed

    Ye, Zhibin; Liu, Chong; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Cai, Zhen

    2016-01-25

    A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

  12. Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

    PubMed

    Ye, Zhibin; Liu, Chong; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Cai, Zhen

    2016-01-25

    A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator. PMID:26832554

  13. Synthesis of a control model for a liquid nitrogen cooled, closed circuit, cryogenic nitrogen wind tunnel and its validation

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Goglia, G. L.

    1979-01-01

    The details of the efforts to synthesize a control-compatible multivariable model of a liquid nitrogen cooled, gaseous nitrogen operated, closed circuit, cryogenic pressure tunnel are presented. The synthesized model was transformed into a real-time cryogenic tunnel simulator, and this model is validated by comparing the model responses to the actual tunnel responses of the 0.3 m transonic cryogenic tunnel, using the quasi-steady-state and the transient responses of the model and the tunnel. The global nature of the simple, explicit, lumped multivariable model of a closed circuit cryogenic tunnel is demonstrated.

  14. INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHENOMENA IN ADVANCED GAS-COOLED REACTORS

    SciTech Connect

    INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHE

    2006-09-01

    INL LDRD funded research was conducted at MIT to experimentally characterize mixed convection heat transfer in gas-cooled fast reactor (GFR) core channels in collaboration with INL personnel. The GFR for Generation IV has generated considerable interest and is under development in the U.S., France, and Japan. One of the key candidates is a block-core configuration first proposed by MIT, has the potential to operate in Deteriorated Turbulent Heat Transfer (DTHT) regime or in the transition between the DTHT and normal forced or laminar convection regime during post-loss-of-coolant accident (LOCA) conditions. This is contrary to most industrial applications where operation is in a well-defined and well-known turbulent forced convection regime. As a result, important new need emerged to develop heat transfer correlations that make possible rigorous and accurate predictions of Decay Heat Removal (DHR) during post LOCA in these regimes. Extensive literature review on these regimes was performed and a number of the available correlations was collected in: (1) forced laminar, (2) forced turbulent, (3) mixed convection laminar, (4) buoyancy driven DTHT and (5) acceleration driven DTHT regimes. Preliminary analysis on the GFR DHR system was performed and using the literature review results and GFR conditions. It confirmed that the GFR block type core has a potential to operate in the DTHT regime. Further, a newly proposed approach proved that gas, liquid and super critical fluids all behave differently in single channel under DTHT regime conditions, thus making it questionable to extrapolate liquid or supercritical fluid data to gas flow heat transfer. Experimental data were collected with three different gases (nitrogen, helium and carbon dioxide) in various heat transfer regimes. Each gas unveiled different physical phenomena. All data basically covered the forced turbulent heat transfer regime, nitrogen data covered the acceleration driven DTHT and buoyancy driven DTHT

  15. Preliminary neutronic studies for the liquid-salt-cooled very hightemperature reactor (LS-VHTR).

    SciTech Connect

    Kim, T. K.; Taiwo, T. A.; Yang, W. S.

    2005-10-05

    Preliminary neutronic studies have been performed in order to provide guidelines to the design of a liquid-salt cooled Very High Temperature Reactor (LS-VHTR) using Li{sub 2}BeF{sub 4} (FLiBe) as coolant and a solid cylindrical core. The studies were done using the lattice codes (WIMS8 and DRAGON) and the linear reactivity model to estimate the core reactivity balance, fuel composition, discharge burnup, and reactivity coefficients. An evaluation of the lattice codes revealed that they give very similar accuracy as the Monte Carlo MCNP4C code for the prediction of the fuel element multiplication factor (kinf) and the double heterogeneity effect of the coated fuel particles in the graphite matrix. The loss of coolant from the LS-VHTR core following coolant voiding was found to result in a positive reactivity addition, due primarily to the removal of the strong neutron absorber Li-6. To mitigate this positive reactivity addition and its impact on reactor design (positive void reactivity coefficient), the lithium in the coolant must be enriched to greater than 99.995% in its Li-7 content. For the reference LS-VHTR considered in this work, it was found that the magnitude of the coolant void reactivity coefficient (CVRC) is quite small (less than $1 for 100% voiding). The coefficient was found to become more negative or less positive with increase in the lithium enrichment (Li-7 content). It was also observed that the coefficient is positive at the beginning of cycle and becomes more negative with increasing burnup, indicating that by using more than one fuel batch, the coefficient could be made negative at the beginning of cycle. It might, however, still be necessary at the beginning of life to design for a negative CVRC value. The study shows that this can be done by using burnable poisons (erbium is a leading candidate) or by changing the reference assembly design (channel dimensions) in order to modify the neutron spectrum. Parametric studies have been performed to

  16. Enhancement of Cognitive Processing by Multiple Sclerosis Patients Using Liquid Cooling Technology: A Case Study

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Ku, Yu-Tsuan E.; Montgomery, Richard W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Recent neuropsychological studies demonstrate that cognitive dysfunction is a common symptom in patients with multiple sclerosis. In many cases the presence of cognitive impairment affects the patient's daily activities to a greater extent than would be found due to their physical disability alone. Cognitive dysfunction can have a significant impact on the quality of life of both the patient and that of their primary caregiver. Two cognitively impaired male MS patients were given a visual discrimination task before and after a one hour cooling period. The subjects were presented a series of either red or blue circles or triangles. One of these combinations, or one fourth of the stimuli, was designated as the "target" presentation. EEG was recorded from 20 scalp electrodes using a Tracor Northern 7500 EEG/ERP system. Oral and ear temperatures were obtained and recorded manually every five minutes during the one hour cooling period. The EEG ERP signatures from each series of stimuli were analyzed in the energy density domain to determine the locus of neural activity at each EEG sampling time. The first subject's ear temperature did not decrease during the cooling period. It was actually elevated approximately 0.05 C by the end of the cooling period compared to his mean of control period value. In turn, Subject One's discrimination performance and cortical energy remained essentially the same after body cooling. In contrast, Subject Two's ear temperature decreased approx. 0.8 C during his cooling period. Subject Two's ERROR score decreased from 12 during the precooling control period to 2 after cooling. His ENERGY value increased approximately 300%, from a precooling value of approximately 200 to a postcooling value of nearly 600. These findings might be interpreted by the following three-part hypothesis: (1) the general cognitive impairment of MS patients may be a result of low or unfocused metabolic energy conversion in the cortex; (2) such differences show up most

  17. Monitoring system for a liquid-cooled nuclear fission reactor. [PWR

    DOEpatents

    DeVolpi, A.

    1984-07-20

    The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.

  18. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; McKechnie, Timothy; Hickman, Robert; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Next-generation, regeneratively cooled rocket engines require materials that can meet high temperatures while resisting the corrosive oxidation-reduction reaction of combustion known as blanching, the main cause of engine failure. A project was initiated at NASA-Marshal Space Flight Center (MSFC) to combine three existing technologies to build and demonstrate an advanced liquid rocket engine combustion chamber that would provide a 100 mission life. Technology developed in microgravity research to build cartridges for space furnaces was utilized to vacuum plasma spray (VPS) a functional gradient coating on the hot wall of the combustion liner as one continuous operation, eliminating any bondline between the coating and the liner. The coating was NiCrAlY, developed previously as durable protective coatings on space shuttle high pressure fuel turbopump (HPFTP) turbine blades. A thermal model showed that 0.03 in. NiCrAlY applied to the hot wall of the combustion liner would reduce the hot wall temperature 200 F, a 20% reduction, for longer life. Cu-8Cr-4Nb alloy, which was developed by NASA-Glenn Research Center (GRC), and which possesses excellent high temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability, was utilized as the liner material in place of NARloy-Z. The Cu-8Cr-4Nb material exhibits better mechanical properties at 650 C (1200 F) than NARloy-Z does at 538 C (1000 F). VPS formed Cu-8Cr-4Nb combustion chamber liners with a protective NiCrAlY functional gradient coating have been hot fire tested, successfully demonstrating a durable coating for the first time. Hot fire tests along with tensile and low cycle fatigue properties of the VPS formed combustion chamber liners and witness panel specimens are discussed.

  19. Survival of Suspension-cultured Sycamore Cells Cooled to the Temperature of Liquid Nitrogen.

    PubMed

    Sugawara, Y; Sakai, A

    1974-11-01

    Suspension-cultured cells of sycamore (Acer pseudoplatanus L.) which were immersed in liquid nitrogen after prefreezing to the temperatures from -30 to -50 C in the presence of dimethylsulfoxide and glucose as cryoprotective additive could proliferate vigorously when rewarmed rapidly in water at 40 C. For maintaining high viability of the cells after immersion in liquid nitrogen, it seems to be essential to use the cells at the later lag phase or the early cell division phase. This study provides a possibility for long term preservation in liquid nitrogen of plant-cultured lines.

  20. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    PubMed

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw.

  1. Failure detection of liquid cooled electronics in sealed packages. [in airborne information management system

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1991-01-01

    The theory and experimental verification of a method of detecting fluid-mass loss, expansion-chamber pressure loss, or excessive vapor build-up in NASA's Airborne Information Management System (AIMS) are presented. The primary purpose of this leak-detection method is to detect the fluid-mass loss before the volume of vapor on the liquid side causes a temperature-critical part to be out of the liquid. The method detects the initial leak after the first 2.5 pct of the liquid mass has been lost, and it can be used for detecting subsequent situations including the leaking of air into the liquid chamber and the subsequent vapor build-up.

  2. Time-resolved study of crystallization in deeply cooled liquid parahydrogen.

    PubMed

    Kühnel, Matthias; Fernández, José M; Tejeda, Guzmán; Kalinin, Anton; Montero, Salvador; Grisenti, Robert E

    2011-06-17

    We present real-time measurements of the crystallization process occurring in liquid para-hydrogen (para-H(2)) quenched to ≈0.65T(m) (T(m)=13.8   K is the melting point of bulk liquid para-H(2)). The combination of high spatial resolution Raman spectroscopy and liquid microjet generation allows, in situ, capturing structural changes with ∼10(-8)  s time resolution. Our results provide a crystal growth rate that rules out a thermally activated freezing process and reveal that the quenched melt freezes into a metastable polymorph, which undergoes a structural transition. The achieved temporal control offers new opportunities for exploring the elementary processes of nonequilibrium phase transformations in supercooled liquids. PMID:21770578

  3. Directional solidification of large cross-section nickel-base superalloy castings via liquid-metal cooling

    NASA Astrophysics Data System (ADS)

    Elliott, Andrew J.

    The drive for higher efficiency in very large industrial gas turbines (IGTs) used in power generation applications has led to the need for directional solidification of large cross-section components, such as turbine blades, used in the hot gas path sections of the IGTs. The Bridgman directional solidification technique, which is currently used to produce these components, has been optimized for much smaller aero-engine components. The scale-up of this technique to produce large parts has resulted in numerous problems, and consequently low casting yield, which can all be related to the limited cooling capability of the Bridgman process. In this dissertation, a higher cooling efficiency process, liquid-metal cooling (LMC) using Sn as the cooling medium, has been evaluated for improved capability to cast large cross-section components. A series of castings were made for direct comparison using both the conventional Bridgman and the high thermal gradient LMC processes. Casting conditions were selected to simulate the state of the art for the Bridgman method and to assess the limits of casting with the less familiar LMC method. The experiments were evaluated through thermocouple analyses of casting conditions and post-casting analyses of grain defects, microstructural features, and mechanical behavior. Additionally, a finite element model of the solidification process was developed to further elucidate casting conditions. The casting parameters and elements of the LMC process that had the greatest influence on casting conditions were determined. Results indicated that the LMC process is capable of significantly enhancing cooling efficiency during directional solidification of large cross-section components. The enhanced cooling allowed much faster solidification withdrawal rates and resulted in substantially refined cast microstructure. The LMC process eliminated freckle-type defects in all cases and considerably reduced other casting defects under optimal conditions

  4. Data center cooling method

    DOEpatents

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  5. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    SciTech Connect

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for the advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.

  6. Advances in flow visualization using liquid-crystal coatings

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.

    1987-01-01

    This paper discusses a new four-part mixing method for visualizing boundary layer flows, including transitions, separation, and shock locations, by the use of liquid-crystal coatings. The method controls the event temperature and color-play bandwidth best suited to specific experimental conditions, and is easily learned. The method is applicable almost throughout the altitude and speed ranges for subsonic aircraft flight envelopes, and is also applicable to supersonic flow visualization and for general use in high- and low-speed wind tunnel and water tunnel testing.

  7. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography.

    PubMed

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2014-08-29

    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  8. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2013-06-01

    Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of

  9. Surface Tension of Super-Cooled Fe-O Liquid Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Han Gyeol; Choe, Joongkil; Inoue, Takashi; Ozawa, Shumpei; Lee, Joonho

    2016-08-01

    The surface tension of liquid Fe-O alloys was measured at temperatures ranging from 1621 K to 2006 K (1348 °C to 1733 °C) under a He-Ar atmosphere by using the oscillating drop method with an electromagnetic levitation facility. The experimental results were compared with the calculated ones based on the ideal adsorption model and the two-step adsorption model. Since the calculation results based on the two-step adsorption model showed better agreements with the experimental data, it was concluded that there is interactions between the adsorbed oxygen on the surface of liquid iron.

  10. [Advances in multidimensional high performance liquid chromatography for separation technology in proteomic study].

    PubMed

    Gao, Mingxia; Guan, Xia; Hong, Guangfeng; Zhang, Xiangmin

    2009-09-01

    With the developments of proteomic study, multidimensional high performance liquid chromatography technology has attracted increasing interests due to its obvious advantages, such as rapid analysis, high automation and easy combination with mass spectrometry and so on. This review emphasizes the advances of multidimensional high performance liquid chromatography technology, including classical bottom-up methods, top-down techniques and array-based two-dimensional liquid chromatography system, which was designed and set up by our lab to improve the throughput. These techniques showed promising potential applications in proteomics study.

  11. Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils

    SciTech Connect

    Holowczak, J.

    2002-03-01

    With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

  12. Advanced glazing and associated materials for solar and building applications: International Energy Agency Solar Heating and Cooling Program Task 18

    NASA Astrophysics Data System (ADS)

    Hutchins, Michael G.

    1992-11-01

    Following a program definition phase of 2 years, Task 18 of the International Energy Agency Solar Heating & Cooling program commenced a 5 year research phase in April 1992. Task 18 investigates a wide range of advanced glazing materials and glazing systems which include monolithic and granular aerogels, transparent insulation materials, chromogenic materials, evacuated glazings, low-emittance coatings, solar collector covers, angular selective transmittance thin films, holographic and light guide materials, and frame and edge seal technology. In addition to materials-centered research, Task 18 concentrates on measurement of key glazing properties such as total energy transmittance, U-value, and spectral directional optical properties, and through the use of building energy analysis software tools the identification of appropriate applications, control strategies, and energy and environmental benefits to be derived from advanced glazing products. Fifteen OECD countries are participating in Task 18 which is led by the United Kingdom.

  13. Cooling Characteristics of Highly Viscous Liquids in a Channel with a Large Number of Right-Angled Bends

    NASA Astrophysics Data System (ADS)

    Kuriyam, Masafumi; Li, Xiangyi; Harada, Eiji; Konno, Hirotaka

    An investigation was performed on the flow and cooling characteristics of highly viscous liquids in the channel with a large number of right-angled bends. The variation of flow pattern and temperature profile according to Reynolds number and Prandtl number were presented by solving numerically the Navier-Stokes equations with energy equation under the condition that the fluid properties were independent on temperature. Average heat transfer cofficient and friction factor were also calculated and compared with the experimental data regarding aqueous solutions of corn syrup. Through the comparison, the effect of the variable viscosity of the test fluid on the flow and heat transfer characteristics was considered in connection with the channel configuration.

  14. Effect of sintering columns on the heat transfer and flow characteristics of the liquid cooling vapor chambers

    NASA Astrophysics Data System (ADS)

    Naphon, Paisarn; Wiriyasart, Songkran

    2016-09-01

    The results of the heat and flow characteristics of working fluid inside the vapor chamber with different sintering columns of 20, 81, 225 are presented. The vapor chambers with one inlet port and four outlet ports are tested by using water as coolant. Parametric studies including different heat fluxes, number and size of wick columns, and flow rate of coolants on the cooling performance are considered. A three-dimensional heat and mass transfer model for vapor chamber with wick and without sintering plate and sintering columns are developed. The numerical simulation results show the velocity and pressure distribution of liquid and vapor phases of the working fluid inside the vapor chamber. It is found that the number of wick column have an important influence to the velocity and pressure phenomena of working fluid which results in thermal performance of vapor chamber. Reasonable agreement is obtained from the comparison between the measured data and the predicted results.

  15. Optimum Reflector Configurations for Minimizing Fission Power Peaking in a Lithium-Cooled, Liquid-Metal Reactor with Sliding Reflectors

    SciTech Connect

    Fensin, Michael L.; Poston, David I.

    2005-02-06

    Many design constraints limit the development of a space fission power system optimized for fuel performance, system reliability, and mission cost. These design constraints include fuel mass provisions to meet cycle-length requirements, fuel centerline and clad temperatures, and clad creep from fission gas generation. Decreasing the fission power peaking of the reactor system enhances all of the mentioned parameters. This design study identifies the cause, determines the reflector configurations for reactor criticality, and generates worth curves for minimized fission-power-peaking configuration in a lithium-cooled liquid-metal reactor that uses sliding reflectors. Because of the characteristics of the core axial power distribution and axial power distortions inherent to the sliding reflector design, minimizing the power peaking of the reactor involves placing the reflectors in a position that least distorts the axial power distribution. The views expressed in this document are those of the author and do not necessarily reflect agreement by the Government.

  16. Superconducting electromechanical rotating device having a liquid-cooled, potted, one layer stator winding

    DOEpatents

    Dombrovski, Viatcheslav V.; Driscoll, David I.; Shovkhet, Boris A.

    2001-01-01

    A superconducting electromechanical rotating (SER) device, such as a synchronous AC motor, includes a superconducting field winding and a one-layer stator winding that may be water-cooled. The stator winding is potted to a support such as the inner radial surface of a support structure and, accordingly, lacks hangers or other mechanical fasteners that otherwise would complicate stator assembly and require the provision of an unnecessarily large gap between adjacent stator coil sections. The one-layer winding topology, resulting in the number of coils being equal to half the number of slots or other mounting locations on the support structure, allows one to minimize or eliminate the gap between the inner radial ends of adjacent straight sections of the stator coilswhile maintaining the gap between the coil knuckles equal to at least the coil width, providing sufficient room for electrical and cooling element configurations and connections. The stator winding may be potted to the support structure or other support, for example, by a one-step VPI process relying on saturation of an absorbent material to fill large gaps in the stator winding or by a two-step process in which small gaps are first filled via a VPI or similar operation and larger gaps are then filled via an operation that utilizes the stator as a portion of an on-site mold.

  17. Thermal Manikin Evaluation of Liquid Cooling Garments Intended for Use in Hazardous Waste Management

    SciTech Connect

    Dionne, J. P.; Semeniuk, K.; Makris, A.; Teal, W.; Laprise, B.

    2003-02-26

    Thermal manikins are valuable tools for quantitatively evaluating the performance of protective clothing ensembles and microclimate cooling systems. The goal of this investigation was to examine the performance of Coretech personal cooling systems, designed to reduce the effects of physiological and environmental heat stress, using a sweating thermal manikin. A sweating manikin takes into account the effective physiological evaporative heat transfer. Three tubesuits containing different densities of tubing were evaluated on the thermal manikin in conjunction with body armor and two Chemical-Biological suits (SPM and JSLIST). The experiments were carried out in an environmental chamber set at a temperature of 35 C with a relative humidity of 30%. For the tubesuits, two flow rates were tested and the heat removal rates were obtained by measuring the amount of power required to maintain the manikin's surface at a constant temperature of 35 C. The sweating rates were adjusted to maintain a fully wetted manikin surface at the above environmental conditions. For fluid flow rates ranging from approximately 250 to 750 ml/min, and inlet temperatures to the tubesuit ranging from 7 to 10 C, heat removal rates between 220 W to 284 W were measured, indicating the effectiveness of tubesuits at removing excessive body heat. This research was performed at the U.S. Army Soldier and Biological Chemical Command (SBCCOM) in Natick, Massachusetts.

  18. Review of advances in coupling electrochemistry and liquid state NMR.

    PubMed

    Bussy, Ugo; Boujtita, Mohammed

    2015-05-01

    The coupling of electrochemistry and NMR spectroscopy (EC-NMR) may present an interesting approach in the environmental oxidative degradation or metabolism studies. This review presents experimental advances in the field of EC-NMR and highlights the main advantages and drawbacks of in situ and on line of NMR spectroelectrochemistry. The analysis of NMR spectra recorded in situ or on line EC-NMR permits to elucidate the reaction pathway of the electrochemical oxidation reactions and could constitute a fast way for monitoring unstable species as for instance quinone and quinone imine structures without using any coupling agents. The use of 1D and 2D NMR coupled with electrochemistry may leads to the elucidation of the major species produced from the electrochemical oxidation process. The present review gives an overview about the development of the electrochemical cells which can operate on line or in situ with NMR measurements. Future developments and potential applications of EC-NMR are also discussed.

  19. Advanced fabrication techniques for hydrogen-cooled engine structures. Final report, October 1975-June 1982

    SciTech Connect

    Buchmann, O.A.; Arefian, V.V.; Warren, H.A.; Vuigner, A.A.; Pohlman, M.J.

    1985-11-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  20. Tank 241-C-106 thermal hydraulic analysis to establish the cooling liquid at a minimum level

    SciTech Connect

    Bander, T.J.; Thurgood, M.J.

    1995-12-31

    This report presents the computer simulations used to evaluate whether tank 241-C-106 can be operated at new lower operating liquid levels without significant reduction in th heat removal capability of the tank ventilation system. It is concluded that if the tank is operated with the liquid level between 72 and 74 in. the evaporation of the tank will be similar to what it is for the current operating level of 75 to 79 in. Analyses predict that for both operating limits voids will form during the summer months and disappear during the winter months. The waste temperatures for both operating limits will be close to the same. Installation of a chiller can maintain the highest waste temperatures below the saturation temperature (i.e., no voids will form) year round provided 67% of the original pool surface area is maintained for evaporation

  1. Advanced liquid fuel production from biomass for power generation

    SciTech Connect

    Grassi, G.; Palmarocchi, M.; Joeler, J.

    1995-11-01

    In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

  2. Modeling of the performance of a liquid-gallium-cooled silicon monochromator for a high-energy-resolution scattering beamline: comparison with experimental data

    SciTech Connect

    Assoufid, L.; Quast, K.W.; Nian, H.L.T.

    1996-09-01

    A finite element analysis method (FEA) was used to predict the performance of a silicon monochromator for a high-energy-resolution scattering beamline at sector 3 of the Advanced Photon Source (APS). The monochromator is internally cooled through 17 rectangular channels with liquid gallium and is designed to operate at photon energies near 14 keV, under beam from a 2.7 cm period undulator. The atomic planes of the monochromator have a (1 1 1) orientation with an asymmetric cut angle of 4.5{degrees}. The displacement profile calculated from the structural FEA was used to compute the double- crystal rocking curves at 14.41 keV. Both the simulations and the experiment show that this monochromator will operate at about 40 mA with rocking-curve broadening of only about 0.5 arcsec. This corresponds to a surface heat flux of 1.2 W/mm{sup 2} (i.e., 20 W/mm{sup 2} at normal incidence) and a total absorbed power of about 86 watts. The monochromator was used for the commissioning of the beamline and to perform the first series of experiments up to 100 mA. In this paper, we give the results of the FEA calculations and diffraction simulations and compare these to the experimental data.

  3. Advanced Capillary Liquid Chromatography-Mass Spectrometry for Proteomics

    SciTech Connect

    Shen, Yufeng; Page, Jason S.; Smith, Richard D.

    2009-02-23

    The liquid chromatography (LC)-mass spectrometric (MS) analysis of peptides has become a routine method for proteomics – the study of the entire complement of proteins e.g., expressed by a cell under a specific set of conditions at a specific time. Mixtures of peptides, such as those generated from enzymatic (e.g., trypsin) digestion of globally recovered proteins (i.e. a proteome), are typically very complex and >100,000 different molecular species may be observable using MS detection [1]. LC separations implemented prior to MS for broad protein identification have three major roles: 1) to isolate individual components or reduce complexity as much as possible, 2) to increase sensitivity by concentrating the components into narrow zones prior to MS, and 3) to eliminate or displace interfering species (e.g., salts and polymers) that may be present in proteomics samples. A desired quality of LC separation can be achieved from the use of either multiple steps of moderate quality separations, or fewer steps of high power separations. The former approach is generally more easily accessible for very high quality separations due to the variety of commercialized LC platforms available, while the latter still often requires considerable developmental efforts (for both columns and instrumentation). In addition to proteomics data quality, other differences between these two approaches include proteomics analysis time and sample consumption (and subsequent analysis costs), as well as direct impact on potential proteomics applications that have special requirements in terms of analysis coverage, sample size, dynamic range, sensitivity, and throughput.

  4. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    NASA Technical Reports Server (NTRS)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  5. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  6. Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.

    2005-01-01

    With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled airc raft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft#s propulsive fan s. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 ?F). Conventional electric motors, however, are too heavy to use on an aircraft. We need to develop high-power, lig htweight electric motors (high-powerdensity motors).

  7. Status of Physics and Safety Analyses for the Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR)

    SciTech Connect

    Ingersoll, DT

    2005-12-15

    A study has been completed to develop a new baseline core design for the liquid-salt-cooled very high-temperature reactor (LS-VHTR) that is better optimized for liquid coolant and that satisfies the top-level operational and safety targets, including strong passive safety performance, acceptable fuel cycle parameters, and favorable core reactivity response to coolant voiding. Three organizations participated in the study: Oak Ridge National Laboratory (ORNL), Idaho National Laboratory (INL), and Argonne National Laboratory (ANL). Although the intent was to generate a new reference LS-VHTR core design, the emphasis was on performing parametric studies of the many variables that constitute a design. The results of the parametric studies not only provide the basis for choosing the optimum balance of design options, they also provide a valuable understanding of the fundamental behavior of the core, which will be the basis of future design trade-off studies. A new 2400-MW(t) baseline design was established that consists of a cylindrical, nonannular core cooled by liquid {sup 7}Li{sub 2}BeF{sub 4} (Flibe) salt. The inlet and outlet coolant temperatures were decreased by 50 C, and the coolant channel diameter was increased to help lower the maximum fuel and vessel temperatures. An 18-month fuel cycle length with 156 GWD/t burnup was achieved with a two-batch shuffling scheme, while maintaining a core power density of 10 MW/m{sup 3} using graphite-coated uranium oxicarbide particle fuel enriched to 15% {sup 235}U and assuming a 25 vol-% packing of the coated particles in the fuel compacts. The revised design appears to have excellent steady-state and transient performance. The previous concern regarding the core's response to coolant voiding has been resolved for the case of Flibe coolant by increasing the coolant channel diameter and the fuel loading. Also, the LSVHTR has a strong decay heat removal performance and appears capable of surviving a loss of forced circulation

  8. Experimental validation of advanced regulations for superconducting magnet cooling undergoing periodic heat loads

    NASA Astrophysics Data System (ADS)

    Lagier, B.; Rousset, B.; Hoa, C.; Bonnay, P.

    2014-01-01

    Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and the refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.

  9. Experimental validation of advanced regulations for superconducting magnet cooling undergoing periodic heat loads

    SciTech Connect

    Lagier, B.; Rousset, B.; Hoa, C.; Bonnay, P.

    2014-01-29

    Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and the refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.

  10. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    SciTech Connect

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized.

  11. Investigation on heavy liquid metal cooling of ADS fuel pin assemblies

    NASA Astrophysics Data System (ADS)

    Litfin, K.; Batta, A.; Class, A. G.; Wetzel, Th.; Stieglitz, R.

    2011-08-01

    In the framework of accelerator driven sub-critical reactor systems heavy liquid metals are considered as coolant for the reactor core and the spallation target. In particular lead or lead bismuth eutectic (LBE) exhibit efficient heat removal properties and high production rate of neutrons. However, the excellent heat conductivity of LBE-flows expressed by a low molecular Prandtl number of the order 10 -2 requires improved modeling of the turbulent heat transfer. Although various models for thermal hydraulics of LBE flows are existing, validated heat transfer correlations for ADS-relevant conditions are still missing. In order to validate the sub-channel codes and computational fluid dynamics codes used to design fuel assemblies, the comparison with experimental data is inevitable. Therefore, an experimental program composed of three major experiments, a single electrically heated rod, a 19-pin hexagonal water rod bundle and a LBE rod bundle, has been initiated at the Karlsruhe Liquid metal Laboratory (KALLA) of the Karlsruhe Institute of Technology, in order to quantify and separate the individual phenomena occurring in the momentum and energy transfer of a fuel assembly.

  12. Development of advanced low-temperature heat transfer fluids for district heating and cooling

    SciTech Connect

    Not Available

    1991-09-30

    The feasibility of adding phase change materials (PCMs) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMs, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literaturevalues. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. When using PCMs in district cooling systems, clogging of frozen PCM particles isone of the major problems to be overcome. In the present project it is proposed to minimize or prevent clogging by the addition of an emulsifier. Effects of the emulsifier on the mixture of water and hexadecane(a PCM) were studied. As the amount of the emulsifier was increased, the size of the solid PCM particles became smaller. When the size of the particles was small enough, they did not stick together or stick to the cold surface of a heat exchanger. The amount of emulsifier to produce this condition was determined.

  13. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    SciTech Connect

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  14. Engineering design of a liquid metal cooled self-pumped limiter for a tokamak reactor

    SciTech Connect

    Brooks, J.N.; Cha, Y.; Hassanein, A.; Majumdar, S.; Mattas, R.F.; Smith, D.L.

    1987-10-01

    A lithium cooled self-pumped limiter has been designed as the impurity control system for the TPSS high-..beta.. power reactor conceptual design. The limiter removes helium by trapping impinging helium ions in freshly deposited vanadium surface layers in a slot region. No hydrogen is removed and no pumps or vacuum penetrations are used, thereby eliminating penetration shielding and reducing tritium handling. The limiter is composed of a vanadium alloy structure with a 2mm tungsten cladding on the front face and leading edges for sputtering control. Up to approx.3cm of vanadium trapping material is deposited in the slot region during 5 years of operation. A key design feature is the use of a calcium oxide electrical insulator which coats the limiter coolant channels to reduce MHD pressure drops. A combination of high lithium coolant velocity, made possible by the insulator, and mid-limiter manifolding has been used to obtain acceptable material temperatures with moderately high heat fluxes (3 to 5 mw/m/sup 2/). Overall, a limiter lifetime of approx.5 years is predicted by stress and lifetime analysis. This would permit maintenance free impurity control operation between first wall/blanket replacement periods. 4 refs., 3 figs., 1 tab.

  15. Production of liquid fuels with a high-temperature gas-cooled reactor

    NASA Astrophysics Data System (ADS)

    Quade, R. N.; Vrable, D. L.; Green, L., Jr.

    An exploration is made of the technical, economic and environmental impact feasibility of integrating coal liquefaction methods directly and indirectly with a nuclear reactor source of process heat, with stress on the production of synthetic jet fuel. Production figures and operating costs are compared for indirect conventional and nuclear processes using Lurgi-Fischer-Tropsch technology with direct conventional and nuclear techniques employing the advanced SRC-II technology, and it is concluded that significant advantages in coal savings and environmental impact can be expected from nuclear reactor integration.

  16. COUGAR: a liquid nitrogen cooled InGaAs camera for astronomy and electro-luminescence

    NASA Astrophysics Data System (ADS)

    Van Bogget, Urbain; Vervenne, Vincent; Vinella, Rosa Maria; van der Zanden, Koen; Merken, Patrick; Vermeiren, Jan

    2014-06-01

    A SWIR FPA was designed and manufactured with 640*512 pixels, 20 μm pitch and InGaAs detectors for electroluminescence characterization and astronomical applications in the [0.9 - 1.55 μm] range. The FPA is mounted in a liquid nitrogen dewar and is operated by a low noise frontend electronics. One of the biggest problem in designing sensors and cameras for electro-luminescence measurements is the autoillumination of the detectors by the readout circuit. Besides of proper shielding of the detectors, the ROIC shall be optimized for minimal electrical activity during the integration time of the very-weak signals coming from the circuit under test. For this reason a SFD (or Source Follower per Detector) architecture (like in the Hawaii sensor) was selected, resulting in a background limited performance of the detector. The pixel has a (somewhat arbitrary) full well capacity of 400 000 e- and a sensitivity of 2.17 μV/e-. The dark signal is app. 1 e-/pixel/sec and with the appropriate Fowler sampling the dark noise lowers below 5 e-rms. The power consumption of the circuit is limited 2 mW, allowing more than 24 hours of operation on less than 1 l of liquid nitrogen. The FPA is equipped with 4 outputs (optional readout on one single channel) and is capable of achieving 3 frames per second. Due to the non-destructive readout it is possible to determine in a dynamic way the optimal integration time for each observation. The Cougar camera is equipped with ultra-low noise power supply and bias lines; the electronics contain also a 24 bit AD converter to fully exploit the sensitivity of the FPA and the camera.

  17. Assessment of liquid hydrogen cooled MgB2 conductors for magnetically confined fusion

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Nuttall, W. J.

    2008-02-01

    Importantly environmental factors are not the only policy-driver for the hydrogen economy. Over the timescale of the development of fusion energy systems, energy security issues are likely to motivate a shift towards both hydrogen production and fusion as an energy source. These technologies combine local control of the system with the collaborative research interests of the major energy users in the global economy. A concept Fusion Island Reactor that might be used to generate H2 (rather than electricity) is presented. Exploitation of produced hydrogen as a coolant and as a fuel is proposed in conjunction with MgB2 conductors for the tokomak magnets windings, and electrotechnical devices for Fusion Island's infrastructure. The benefits of using MgB2 over the Nb-based conductors during construction, operation and decommissioning of the Fusion Island Reactor are presented. The comparison of Nb3Sn strands for ITER fusion magnet with newly developed high field composite MgB2 PIT conductors has shown that at 14 Tesla MgB2 possesses better properties than any of the Nb3Sn conductors produced. In this paper the potential of MgB2 conductors is examined for tokamaks of both the conventional ITER type and a Spherical Tokamak geometry. In each case MgB2 is considered as a conductor for a range of field coil applications and the potential for operation at both liquid helium and liquid hydrogen temperatures is considered. Further research plans concerning the application of MgB2 conductors for Fusion Island are also considered.

  18. Advanced CD-SEM metrology for qualification of DSA patterns using coordinated line epitaxy (COOL) process

    NASA Astrophysics Data System (ADS)

    Kato, Takeshi; Konishi, Junko; Ikota, Masami; Yamaguchi, Satoru; Seino, Yuriko; Sato, Hironobu; Kasahara, Yusuke; Azuma, Tsukasa

    2016-03-01

    Directed self-assembly (DSA) applying chemical epitaxy is one of the promising lithographic solutions for next generation semiconductor device manufacturing. Especially, DSA lithography using coordinated line epitaxy (COOL) process is obviously one of candidates which could be the first generation of DSA applying PS-b-PMMA block copolymer (BCP) for sub-15nm dense line patterning . DSA can enhance the pitch resolutions, and can mitigate CD errors to the values much smaller than those of the originally exposed guiding patterns. On the other hand, local line placement error often results in a worse value, with distinctive trends depending on the process conditions. To address this issue, we introduce an enhanced measurement technology of DSA line patterns with distinguishing their locations in order to evaluate nature of edge placement and roughness corresponding to individual pattern locations by using images of CD-SEM. Additionally correlations among edge roughness of each line and each space are evaluated and discussed. This method can visualize features of complicated roughness easily to control COOL process. As a result, we found the followings. (1) Line placement error and line placement roughness of DSA were slightly different each other depending on their relative position to the chemical guide patterns. (2) In middle frequency area of PSD (Power Spectral Density) analysis graphs, it was observed that shapes were sensitively changed by process conditions of chemical stripe guide size and anneals temperature. (3) Correlation coefficient analysis using PSD was able to clarify characteristics of latent defect corresponding to physical and chemical property of BCP materials.

  19. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  20. ORIGEN-ARP Cross-Section Libraries for Magnox, Advanced Gas-Cooled, and VVER Reactor Designs

    SciTech Connect

    Murphy, BD

    2004-03-10

    Cross-section libraries for the ORIGEN-ARP system were extended to include four non-U.S. reactor types: the Magnox reactor, the Advanced Gas-Cooled Reactor, the VVER-440, and the VVER-1000. Typical design and operational parameters for these four reactor types were determined by an examination of a variety of published information sources. Burnup simulation models of the reactors were then developed using the SAS2H sequence from the Oak Ridge National Laboratory SCALE code system. In turn, these models were used to prepare the burnup-dependent cross-section libraries suitable for use with ORIGEN-ARP. The reactor designs together with the development of the SAS2H models are described, and a small number of validation results using spent-fuel assay data are reported.

  1. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-25

    Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

  2. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979

    SciTech Connect

    Not Available

    1980-03-07

    The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  3. Burnout Test of First- and Second-Generation HTS Tapes in Liquid-Nitrogen Bath Cooling

    NASA Astrophysics Data System (ADS)

    Young, M. A.; Demko, J. A.; Duckworth, R. C.; Lue, J. W.; Gouge, M. J.; Pace, M. O.

    2004-06-01

    A series of BSCCO-2223 and YBCO tapes were subjected to burnout tests in a liquid-nitrogen bath to observe operational stability limits when different layers of dielectric tape are added to the sample surface. In this study, the BSCCO tapes were composed of a silver/alloy sheath with nickel/copper plating, while the YBCO tapes had a 50-μm layer of copper attached to the silver surface. After attaching the tapes to a thermally insulated G-10 holder, the stability of the tapes was found by applying current greater than the critical current and holding it constant for up to 1 min. If the sample voltage increased rapidly during this period, the tape was considered unstable at this current. This was repeated at different layers of Cryoflex™, and the results were compared to a numerical simulation of the energy balance equation. This simulation was also utilized to investigate the effect of the layers on the stability limit and estimate the thermal conductivity of the Cryoflex™.

  4. Safety and core design of large liquid-metal cooled fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  5. Benefits of advanced working fluids for DHC (district heating and cooling) systems

    SciTech Connect

    Choi, U.S.; Kasza, K.E.

    1988-09-01

    DHC projects have positive economic and community development rewards. Today the US DHC industry has moved beyond a market consisting of institutional and military-base systems to community energy systems which cover the central business district and adjoining high density areas as well as communities that need revitalization and new development. One day DHC may be a national industry when DHC is married to electric utilities by recovering waste heat from nuclear or coal power plants (rather than wasting it causing thermal pollution) and supplying heat to customers through the DHC loop as is done in several European countries. These cogenerative DHC systems will make a significant impact on energy conservation and create the most reliable and efficient electric utility systems. The objectives of this paper, are to review the benefits and barriers of conventional DHC technology, introduce the concepts of advanced working fluids and consider the potential benefits of these advanced working fluids for DHC systems. 5 refs.

  6. An advanced Thermal-FSI approach to flow heating/cooling

    NASA Astrophysics Data System (ADS)

    Badur, J.; Ziółkowski, P.; Zakrzewski, W.; Sławiński, D.; Kornet, S.; Kowalczyk, T.; Hernet, J.; Piotrowski, R.; Felincjancik, J.; Ziółkowski, P. J.

    2014-08-01

    Actually, two-way thermal-energy exchange between working fluid and solid material of a casing is a leading problem for modern - semi automatic - design techniques. Many questions should be solved, especially, the turbulent mode of thermal energy transport both in fluid and solid, should be re-examined and reformulated from the primary principles. In the present paper, a group of researchers from Energy Conversion Department of IMP PAN at Gdańsk, tries to summarise a last three-years efforts towards to mathematical modelling of advanced models of thermal energy transport. This extremely difficult problem in "thermal-FSI" ("Fluid Solid Interaction") means that the both for solid and fluid mathematical model of a surface layer should be self-equilibrated and self-concise. Taking these requirements into account, an advanced Reynolds-Stanton analogy has been discussed and implemented. Some numerical examples concerning of the benchmarks experiments and industrial applications have also been developed and presented.

  7. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    SciTech Connect

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  8. Internal-liquid-film-cooling Experiments with Air-stream Temperatures to 2000 Degrees F. in 2- and 4-inch-diameter Horizontal Tubes

    NASA Technical Reports Server (NTRS)

    Kinney, George R; Abramson, Andrew E; Sloop, John L

    1952-01-01

    Report presents the results of an investigation conducted to determine the effectiveness of liquid-cooling films on the inner surfaces of tubes containing flowing hot air. Experiments were made in 2- and 4-inch-diameter straight metal tubes with air flows at temperatures from 600 degrees to 2000 degrees F. and diameter Reynolds numbers from 2.2 to 14 x 10(5). The film coolant, water, was injected around the circumference at a single axial position on the tubes at flow rates from 0.02 to .24 pound per second per foot of tube circumference (0.8 to 12 percent of the air flow). Liquid-coolant films were established and maintained around and along the tube wall in concurrent flow with the hot air. The results indicated that, in order to film cool a given surface area with as little coolant flow as possible, it may be necessary to limit the flow of coolant introduced at a single axial position and to introduce it at several axial positions. The flow rate of inert coolant required to maintain liquid-film cooling over a given area of tube surface can be estimated when the gas-flow conditions are known by means of a generalized plot of the film-cooling data.

  9. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    NASA Technical Reports Server (NTRS)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  10. Cryogenic gaseous photomultipliers and liquid hole- multipliers: advances in THGEM-based sensors for future noble-liquid TPCs

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Coimbra, A. E. C.; Erdal, E.; Israelashvili, I.; Rappaport, M. L.; Shchemelinin, S.; Vartsky, D.; dos Santos, J. M. F.; A, Breskin

    2015-11-01

    Dual-phase noble-liquid TPCs are presently the most sensitive instruments for direct dark matter detection. Scaling up existing ton-scale designs to the multi-ton regime may prove to be technologically challenging. This includes both large-area coverage with affordable high-QE UV-photon detectors, and maintaining high precision in measuring the charge and light signals of rare events with keV-scale energy depositions. We present our recent advances in two complementary approaches to these problems: large-area cryogenic gaseous photomultipliers (GPM) for UV-photon detection, and liquid-hole multipliers (LHM) that provide electroluminescence light in response to ionization electrons and primary scintillation photons, using perforated electrodes immersed within the noble liquid. Results from a 10 cm diameter GPM coupled to a dual-phase liquid- xenon TPC demonstrate the feasibility of recording - for the first time - both primary (“S1”) and secondary (“S2”) scintillation signals, over a very broad dynamic range. The detector, comprising a triple-THGEM structure with CsI on the first element, has been operating stably at 180 K with gains larger than 105; it provided high single-photon detection efficiency - in the presence of massive alpha-particle induced S2 signals; S1 scintillation signals were recorded with time resolutions of 1.2 ns (RMS). Results with the LHM operated in liquid xenon yielded large photon gains, with a pulse-height resolution of 11% (RMS) for alpha-particle induced S2 signals. The detector response was stable over several months. The response of the S2 signals to rapid changes in pressure lead to the conclusion that the underlying mechanism for S2 light is electroluminescence in xenon bubbles trapped below the immersed THGEM electrode. Both studies have the potential of paving the way towards new designs of dual- and single-phase noble-liquid TPCs that could simplify the conception of future multi-ton detectors of dark matter and other rare

  11. Recent advances in actively cooled high-power laser diode bars

    NASA Astrophysics Data System (ADS)

    Ostrom, Nels P.; Roh, S. D.; Grasso, Daniel M.; Kane, Thomas J.

    2007-02-01

    In order to meet the ever increasing demands of many high power laser diode customers, Nuvonyx has worked to improve a number of key metrics of the diode laser package. The most often challenged specifications are power per bar, efficiency, and reliability in both hard pulse and constant current mode. In response to these requests, Nuvonyx has worked to offer commercial component devices in excess of 100 and 150 watts per bar package in multiple wavelengths. The packages are routinely combined to form single stacks that generate greater than 3.5 kilowatts each and two-dimensional arrays which produce light in excess of 10 kilowatts. These parts all demonstrate predicted lifetimes in excess of 10,000 hours. The micro-channel cooled heat sink has also been improved by closer matching the coefficient of thermal expansion of the cooler to the laser diode bar, which allows for harder solders such as gold-tin to be employed. All of this work has helped to meet the specifications of the most demanding laser diode customers.

  12. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report

    SciTech Connect

    Cho, Y.I.; Lorsch, H.G.

    1991-03-31

    The feasibility of adding phase change materials (PCMS) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMS, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literature values. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. For 10% and 25% PCM/water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent above the value for water, respectively. Within the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  13. Advanced water-cooled phosphoric acid fuel cell development. Final report

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  14. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli.

    PubMed

    Bokinsky, Gregory; Peralta-Yahya, Pamela P; George, Anthe; Holmes, Bradley M; Steen, Eric J; Dietrich, Jeffrey; Lee, Taek Soon; Tullman-Ercek, Danielle; Voigt, Christopher A; Simmons, Blake A; Keasling, Jay D

    2011-12-13

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels. PMID:22123987

  15. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli

    PubMed Central

    Bokinsky, Gregory; Peralta-Yahya, Pamela P.; George, Anthe; Holmes, Bradley M.; Steen, Eric J.; Dietrich, Jeffrey; Soon Lee, Taek; Tullman-Ercek, Danielle; Voigt, Christopher A.; Simmons, Blake A.; Keasling, Jay D.

    2011-01-01

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels. PMID:22123987

  16. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  17. High heat flux sensor for infrared thermography determination of heat transfer coefficient of liquid metal cooled target's wall

    NASA Astrophysics Data System (ADS)

    Patorski, Jacek A.; Gindrat, Malko

    2009-05-01

    The proton beam passing through the wall area of a liquid metal (LM) target container, called entrance window, is causing deposition of maximum high heat flux amount 140 W/cm2.Previous experimental thermo-hydraulics investigations for the MEGAPIE LM-target at the SINQ facility of Heat- Transfer-Coefficient (HTC) using InfraRed-Thermography (IRT) have been presented at Thermosense 2006 and 2007 [1], [2] and references therein. During these investigations the IRT active sensors with applied heat fluxes of the small and low range from 2.5 to 15.2 W/cm2 are used. The heating shell foil of the sensor has been connected to steel dish enclosing LM target container by using electrical insulation ceramic glue. A higher, then achieved 15 W/cm2, heat flux has lead to delaminating of the heater. Because of interest to determinate the HTC-chart under real heat flux conditions and investigate some positive effect of heat flux buoyancy on cooling, the idea for the High Heat Flux (HHF) IRT Sensors, using of the Low Pressure Plasma Spraying - Thin Film (LPPS-TF) technology of the Sulzer Metco Company has been created. The paper presents the idea of multilayer thermal sprayed construction of HHF-IRT-Sensor, few realizations and some results of the first pre-test performed at the PSI LBE Double Pump Loop using the new sensor and the 2DD IRT methodology presented in [1].

  18. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  19. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  20. Magnetometry of evoked fields from human peripheral nerve, brachial plexus and primary somatosensory cortex using a liquid nitrogen cooled superconducting quantum interference device.

    PubMed

    Curio, G; Drung, D; Koch, H; Müller, W; Steinhoff, U; Trahms, L; Shen, Y Q; Vase, P; Freltoft, T

    1996-03-15

    Superconducting Quantum Interference Devices (SQUIDs) can be used to detect neuromagnetic fields evoked in the peripheral and central nervous system. Up to now, such measurements had to be based on SQUIDs with a low critical temperature (Tc) requiring liquid helium cooling. Recent improvements in high-Tc SQUID technology relying on liquid nitrogen cooling led to a significant reduction in the system's noise level. Hare, first high-Tc recordings of weak neuromagnetic fields are demonstrated. In particular, along the entire somatosensory afferent pathway including peripheral nerves, brachial plexus and primary somatosensory neocortex evoked neuromagnetic activities were detected using conventional recording parameters for bandwidth and number of averages. This opens up a wide perspective for cost-effective high-Tc magnetometry in clinical neuroscience.

  1. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    NASA Astrophysics Data System (ADS)

    Navarro, Jorge

    The goal of this study presented is to determine the best available nondestructive technique necessary to collect validation data as well as to determine burnup and cooling time of the fuel elements on-site at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal, the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements nondestructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed were used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results, it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however, in order to enhance the quality of the spectra collected using this scintillator, a deconvolution method was developed. Following the development of the deconvolution method

  2. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    SciTech Connect

    Navarro, Jorge

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  3. Two side liquid-cooled and passively Q-switched disk oscillator with nanosheets in flowing CCl4

    NASA Astrophysics Data System (ADS)

    Nie, Rongzhi; She, Jiangbo; Li, Dongdong; Li, Fuli; Peng, Bo

    2016-09-01

    A passively Q-switched and two side liquid-cooled Nd:YAG disk oscillator is demonstrated, which is operated at a pump pulse width of 300 μs and a pump repetition rate of 10 Hz. The coolant flows over the two large surfaces of the disk and will be passed through by laser beam, so it can also serve as a saturable absorber. For the unmodulated laser, the pure CCl4 was employed as coolant and a plane output mirror of 15 % transmission was employed. The maximum output energy of 795 mJ is realized corresponding to the optical-optical efficiency of 27.4 % and the slope efficiency of 30 %; for the graphene Q-switched laser, the CCl4 with graphene nanosheets was employed as coolant and a plane output mirror of 40 % transmission was employed. The maximum output energy of 376 mJ is realized corresponding to the optical-optical efficiency of 13 % and the slope efficiency of 18 %. The maximum average Q-switching repetition rate is 385 kHz, and the minimum average pulse width is 116 ns; for the MoS2 Q-switched laser, the CCl4 with MoS2 nanosheets was employed as coolant and a plane output mirror of 30 % transmission was employed. The maximum output energy of 486 mJ is realized corresponding to the optical-optical efficiency of 17 % and the slope efficiency of 22 %.The maximum average Q-switching repetition rate is 470 kHz, and the minimum average pulse width is 137 ns.

  4. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST. PMID:25725839

  5. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  6. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  7. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1977-01-01

    A five-cell, liquid-cooled advanced electrochemical depolarized carbon dioxide concentrator module was fabricated. The cells utilized the advanced, lightweight, plated anode current collector concept and internal liquid-cooling. The five cell module was designed to meet the carbon dioxide removal requirements of one man and was assembled using plexiglass endplates. This one-man module was tested as part of an integrated oxygen generation and recovery subsystem.

  8. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    SciTech Connect

    Marland, S. )

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  9. Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery.

    PubMed

    Xu, Jiaxing; Xiong, Peng; He, Bingfang

    2016-01-01

    Ionic liquids (ILs) have been considered as a class of promising solvents that can dissolve lignocellulosic biomass and then provide enzymatic hydrolyzable holocellulose. However, most of available cellulases are completely or partially inactivated in the presence of even low concentrations of ILs. To more fully exploit the benefits of ILs to lignocellulose biorefinery, it is critical to improve the compatibility between cellulase and ILs. Various attempts have been made to screen natural IL-tolerant cellulases from different microhabitats. Several physical and chemical methods for stabilizing cellulases in ILs were also developed. Moreover, recent advances in protein engineering have greatly facilitated the rational engineering of cellulases by site-directed mutagenesis for the IL stability. This review is aimed to provide the first detailed overview of the current advances in improving the performance of cellulase in non-natural IL environments. New ideas from the most representative progresses and technical challenges will be summarized and discussed.

  10. Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery.

    PubMed

    Xu, Jiaxing; Xiong, Peng; He, Bingfang

    2016-01-01

    Ionic liquids (ILs) have been considered as a class of promising solvents that can dissolve lignocellulosic biomass and then provide enzymatic hydrolyzable holocellulose. However, most of available cellulases are completely or partially inactivated in the presence of even low concentrations of ILs. To more fully exploit the benefits of ILs to lignocellulose biorefinery, it is critical to improve the compatibility between cellulase and ILs. Various attempts have been made to screen natural IL-tolerant cellulases from different microhabitats. Several physical and chemical methods for stabilizing cellulases in ILs were also developed. Moreover, recent advances in protein engineering have greatly facilitated the rational engineering of cellulases by site-directed mutagenesis for the IL stability. This review is aimed to provide the first detailed overview of the current advances in improving the performance of cellulase in non-natural IL environments. New ideas from the most representative progresses and technical challenges will be summarized and discussed. PMID:26602145

  11. Mandate a Man to Fish?: Technological advance in cooling systems at U.S. thermal electric plants

    NASA Astrophysics Data System (ADS)

    Peredo-Alvarez, Victor M.; Bellas, Allen S.; Trainor-Guitton, Whitney J.; Lange, Ian

    2016-02-01

    Steam-based electrical generating plants use large quantities of water for cooling. The potential environmental impacts of water cooling systems have resulted in their inclusion in the Clean Water Act's (CWA) Sections 316(a), related to thermal discharges and 316(b), related to cooling water intake. The CWA mandates a technological standard for water cooling systems. This analysis examines how the performance-adjusted rates of thermal emissions and water withdrawals for cooling units have changed over their vintage and how these rates of change were impacted by imposition of the CWA. Results show that the rate of progress increased for cooling systems installed after the CWA whilethere was no progress previous to it.

  12. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect

    2010-10-01

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  13. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method

    PubMed Central

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  14. Advanced two-photon photolithography for patterning of transparent, electrically conductive ionic liquid-polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Bakhtina, Natalia A.; MacKinnon, Neil; Korvink, Jan G.

    2016-04-01

    A key challenge in micro- and nanotechnology is the direct patterning of functional structures. For example, it is highly desirable to possess the ability to create three-dimensional (3D), conductive, and optically transparent structures. Efforts in this direction have, to date, yielded less than optimal results since the polymer composites had low optical transparency over the visible range, were only slightly conductive, or incompatible with high resolution structuring. We have previously presented the novel cross-linkable, conductive, highly transparent composite material based on a photoresist (IP-L 780, OrmoComp, or SU-8) and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. Material patterning by conventional and two-photon photolithography has been demonstrated as proof-of-concept. Aiming to increase the resolution and to extend the spectrum of exciting applications we continued our research into identifying new ionic liquid - polymer composites. In this paper, we report the precise 3D single-step structuring of optically transparent and electrically conductive ionic liquid - polymer nanostructures with the highest spatial resolution (down to 150 nm) achieved to date. This was achieved via the development of novel cross-linkable composite based on the photoresist IP-G 780 and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. The successful combination of the developed material with the advanced direct laser writing technique enabled the time- and cost-saving direct manufacturing of transparent, electrically conductive components. We believe that the excellent characteristics of the structured material will open a wider range of exciting applications.

  15. Liquid flat plate collector and pump for solar heating and cooling systems: A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress in the development, fabrication, and delivery of solar subsystems consisting of a solar operated pump, and solar collectors which can be used in solar heating and cooling, or hot water, for single family, multifamily, or commercial applications is reported.

  16. Microstructure characterization of InAs{sub 0.93}Sb{sub 0.07} films grown by ramp-cooled liquid phase epitaxy

    SciTech Connect

    Deng, H.Y.; Hong, X.K.; Fang, W.Z.; Dai, N. . E-mail: ndai@mail.sitp.ac.cn

    2007-03-15

    InAs{sub 0.93}Sb{sub 0.07} alloy thin films were grown by ramp-cooled liquid phase epitaxy on (100) InAs substrate using horizontally sliding multi-wells graphite boats. The systematic microstructural characterizations of the epi-grown films were analyzed by X-ray diffraction, scanning electronic microscopy and energy dispersive spectra. Four typical surface morphologies of the films were observed, which depend sensitively on growth parameters such as the growth temperature, the substrate etching time, the flux of the hydrogen, and the cooling range and rate. The film shows high crystal perfection with (100) orientation, as evidenced by X-ray measurement. The crystal quality of the epilayer was evaluated by the X-ray double axes diffraction, and the dislocation density was estimated through fitting the (200) and (400) rocking curves by Gaussian lineshape.

  17. Development of an experimental system for characterization of high-temperature superconductors cooled by liquid hydrogen under the external magnetic field

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-05-01

    An experimental system has been developed to investigate electro-magnetic properties of high-Tc superconductors cooled by liquid hydrogen under the external magnetic field of up to 7 T. A LH2 cryostat is concentrically mounted on the inside of a LHe cryostat to cool a NbTi superconducting magnet. The experimental system is installed in an explosion-proof room. Explosion proof electrical devices are used and current leads are covered with an enclosure filled with nitrogen gas. A remote control system has been developed. Furthermore, the effects of stray magnetic field on the existing and the new devices are investigated and electro-magnetic shielding panels and enclosure made of iron were designed. It is confirmed through the cryogenic test that the experimental system meets the design requirements.

  18. R&D towards a Liquid Xenon Advanced Compton Telescope (LXeACT)

    NASA Astrophysics Data System (ADS)

    Oberlack, Uwe; Olsen, Christopher; Shagin, Petr; Aprile, Elena; Giboni, Karl Ludwig; Santorelli, Roberto

    2007-04-01

    The scientific potential of gamma-ray astronomy in the energy regime of nuclear transitions has long been recognized. Yet, only the tip of the iceberg has been probed by gamma-ray telescopes to-date, due to a lack of sensitivity. A future ``Advanced Compton Telescope'' (ACT) could boost this field by improving sensitivity 100-fold over current instruments. We are working on advancing the liquid xenon time projection chamber (LXeTPC) technology to combine the uniq advantages of this detector type (large homogeneous sensitive volumes with a minimum of electronics channels and hence power, high efficiency, radiation hardness, low background, etc.) with the spectroscopic requirements of the ACT. Rapid advances in UV photosensor technologies have opened new opportunities for the successful development of a LXeACT. These are: (a) Improvement of energy resolution by combination of ionization and scintillation signals. (b) Application of time-of-flight in a compact telescope configuration. We report on the status of our current R&D program, which includes characterization of novel photosensors, such as APDs and Geiger-mode APD pixel arrays (SiPMs), inside LXe.

  19. Far-Infrared Photometry with an 0.4-Meter Liquid Helium Cooled Balloon-Borne Telescope. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jacobson, M. R.

    1977-01-01

    A 0.4-meter aperture, liquid helium cooled multichannel far-infrared balloon-borne telescope was constructed to survey the galactic plane. Nine new sources, above a 3-sigma confidence level of 1300 Jy, were identified. Although two-thirds of the scanned area was more than 10 degrees from the galactic plane, no sources were detected in that region; all nine fell within 10 degrees and eight of those within 4 degrees of the galactic equator. Correlations with visible, compact H lines associated with radio continuum and with sources displaying spectra steeply rising between 11 and 20 microns were noted, while stellar objects were not detected.

  20. Application of a radiometric calibration method to lunar Fourier transform IR spectra by using a liquid-nitrogen-cooled high-emissivity blackbody.

    PubMed

    Schreiber, J; Blumenstock, T; Hase, F

    1997-11-01

    Since winter 1994/1995 the Moon has been used in addition to the Sun as an IR source of radiation to measure atmospheric absorption spectra with a Bruker IR Fourier transform spectrometer IFS 120M located near Kiruna, Sweden. A two-point radiometric calibration method with blackbody references was applied to lunar spectra in the long-wave detector channel to improve the accuracy of evaluation of the column amounts of different atmospheric trace gases. A new liquid-nitrogen-cooled high-emissivity blackbody without an entrance window is described that is used for this calibration method.

  1. Evaluation of a method for heat transfer measurements and thermal visualization using a composite of a heater element and liquid crystals. [thermal performance of turbine blade cooling configurations

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Stepka, F. S.

    1981-01-01

    Commercially available elements of a composite consisting of a plastic sheet coated with liquid crystal, another sheet with a thin layer of a conducting material (gold or carbon), and copper bus bar strips were evaluated and found to provide a simple, convenient, accurate, and low-cost measuring device for use in heat transfer research. The particular feature of the composite is its ability to obtain local heat transfer coefficients and isotherm patterns that provide visual evaluation of the thermal performances of turbine blade cooling configurations. Examples of the use of the composite are presented.

  2. Testing Dark Energy with the Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics

    NASA Astrophysics Data System (ADS)

    LoVerde, M.; Corasaniti, P. S.; Crotts, A.; Blake, C.

    2006-06-01

    The Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-meter liquid mirror telescope surveying ˜ 1000 deg2 of the southern-hemisphere sky. It will be a remarkably simple and inexpensive telescope that will nonetheless deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consists of nightly, high signal-to-noise, multiband light curves of SN Ia. At the end of the three-year run ALPACA is expected to collect ˜ 100,000 SN Ia up to z ˜ 1. This will allow accurate calibration of the standard-candle relation and reduce the systematic uncertainties. The survey will also provide several other datasets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak lensing measurements. In this preliminary analysis we forecast constraints on dark energy parameters from SN Ia and baryon acoustic oscillations. The combination of these two datasets will provide competitive constraints on the dark energy parameters with minimal prior assumptions. Further studies are needed to address the accuracy of weak lensing measurements.

  3. Testing dark energy with the Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics

    NASA Astrophysics Data System (ADS)

    Corasaniti, Pier Stefano; LoVerde, Marilena; Crotts, Arlin; Blake, Chris

    2006-06-01

    The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying ~1000deg2 of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect >~100000 SNe Ia up to z ~ 1. This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.

  4. Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials

    NASA Astrophysics Data System (ADS)

    Garcia-Giron, A.; Sola, D.; Peña, J. I.

    2016-02-01

    In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.

  5. Advance Complex Liquid Nitriding of Stainless Steel AISI 321 Surface at 430 °C

    NASA Astrophysics Data System (ADS)

    Lin, Yuanhua; Wang, Jun; Zeng, Dezhi; Huang, Runbo; Fan, Hongyuan

    2013-09-01

    Liquid nitriding of type 321 austenite stainless steel was conducted at low temperature at 430 °C, using a type of a complex chemical heat-treatment; and the properties of the nitrided surface were evaluated. Experimental results revealed that a modified layer was formed on the surface with the thickness ranging from 2 to 30 μm varying with changing treatment time. When the stainless steel subjected to the advanced liquid nitriding less than 8 h at 430 °C, the main phase of the nitrided coating layer was the S phase generally. When the treatment time prolonged up to 16 h, S phase formed and partially transformed to CrN subsequently; and then the fine secondary CrN phase precipitated. All treatments performed in the current study can effectively improve the surface hardness. The nitrided layer thickness changed intensively with the increasing nitrided time. The growth of the nitride layer took place mainly by nitrogen diffusion according to the expected parabolic rate law. The highest hardness value obtained in this experiment was about 1400 Hv0.25. Low-temperature nitriding can improve the corrosion resistance of the 321 stainless steel against diluted vitriolic acid. The immerse test results revealed that the sample nitrided for 16 h had the best corrosion resistance than the others. SEM examinations indicated that after nitriding, the corrosion mechanisms of the steel had changed from serious general corrosion of untreated sample to selectivity corrosion of nitrided samples in the diluted vitriolic acid.

  6. Improved structural detail in freeze-fracture replicas: high-angle shadowing of gap junctions cooled below -170 degrees C and protected by liquid nitrogen-cooled shrouds.

    PubMed

    Rash, J E; Yasumura, T

    1992-01-15

    In conventional freeze-fracture replicas, precise complementarity of membrane faces is seldom achieved. In a model system frequently used to evaluate replica quality, vertebrate gap junctions are usually visualized as patches of 8-10 nm P-face intramembrane particles separated by 1-2 nm spaces, while E-face images are represented by 4-6 nm conical pits separated by 5-7 nm wide membrane ridges. However, that disparity in sizes of particles versus pits, as well as the disparity in the widths of the spaces separating particles versus pits, suggests that a significant reduction in complementarity of membrane faces has occurred. In this investigation, a JEOL JFD-9000 freeze-etch machine was modified so that fracturing and replication could be performed at temperatures much colder than commonly employed. With the addition of cryopumps to improve overall vacuum and the installation of optically tight LN2-cooled shrouds surrounding the specimen and the knife, water vapor contamination arising from all sources within the vacuum chamber was reduced substantially, allowing replicas to be made at temperatures down to -185 degrees C. With the specimen at these much colder temperatures, water vapor released by the heat of cleaving was also reduced significantly, providing additional improvement in replica quality. In addition, with higher shadowing angles (greater than 60 degrees) and with the specimen at a much lower temperature, the grain size of the platinum film was noticeably reduced, thereby improving resolution at the molecular level. Under these improved conditions, replicas of rat liver gap junctions revealed that many of the P-face IMPs were tubes 6-7 nm in diameter, but that other IMPs had been stretched and distorted by the fracturing process. More important, however, these high resolution replicas revealed that the replicas of the E-face pits represented three-dimensional molecular casts of the transmembrane proteins comprising the connexon hexamer. This means that

  7. Vaporization Would Cool Primary Battery

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Miyake, Robert N.

    1991-01-01

    Temperature of discharging high-power-density primary battery maintained below specified level by evaporation of suitable liquid from jacket surrounding battery, according to proposal. Pressure-relief valve regulates pressure and boiling temperature of liquid. Less material needed in cooling by vaporization than in cooling by melting. Technique used to cool batteries in situations in which engineering constraints on volume, mass, and location prevent attachment of cooling fins, heat pipes, or like.

  8. The value of a liquid alginate suspension (Gaviscon Advance) in the management of laryngopharyngeal reflux.

    PubMed

    McGlashan, Julian A; Johnstone, Lesley M; Sykes, John; Strugala, Vicki; Dettmar, Peter W

    2009-02-01

    Laryngopharyngeal reflux (LPR) refers to the backflow of stomach contents into the laryngopharynx. Increasing evidence has demonstrated that LPR is a contributing factor in some cases of hoarseness, vocal fatigue, voice breaks, cough and globus and chronic throat clearing. However, several randomised placebo-controlled trials of proton pump inhibitors in the treatment of LPR have been reported with the majority showing no significant benefit in patient symptom scores over placebo. The aim of this pilot clinical study was to investigate whether any improvement in LPR-related symptoms, using the Reflux Symptom Index (RSI), and clinical findings, using the Reflux Finding Score (RFS), could be achieved with treatment with a liquid alginate suspension compared to control (no treatment). Patients presenting with the symptoms of LPR to the Otorhinolaryngology Outpatient Department at the Queen's Medical Centre, Nottingham, UK were considered eligible if they had an RSI of greater than 10 and an RFS greater than 5 based on a fibreoptic examination of the larynx. A total of 49 patients were randomised into the open, parallel group study; 24 patients were randomised to receive 10 ml liquid alginate suspension (Gaviscon Advance) four times daily after meals and at bedtime, and 25 patients into the control group (no treatment). Patients were assessed pre-treatment and at 2, 4 and 6 months post treatment. Mean (SD) RSI and RFS pre-treatment scores were 23.9 (7.0) and 10.4 (3.6) for the treatment group and 24.6 (7.4) and 10.3 (3.3) for the control group, respectively. Significant differences between treatment and control were observed for RSI at the 2-month (11.2 (7.0) vs. 16.8 (6.4), P=0.005) and 6-month (11.2 (8.1) vs. 18.3 (9.4), P=0.008) assessments and for RFS at the 6-month (7.1 (2.8) vs. 9.5 (3.4), P=0.005) assessment. Significant improvement in symptom scores and clinical findings were achieved with liquid alginate suspension (Gaviscon Advance) compared to control and

  9. Preliminary ANS (Advanced Neutron Source) reactor cold source gain factor calculations for liquid deuterium and liquid nitrogen-15

    SciTech Connect

    Henderson, D.L.

    1988-11-01

    Individual energy group gain factors are computed for liquid nitrogen-15 and liquid deuterium cold source moderators using simple one-dimensional slab and spherical geometry calculational models. The energy spectrum of the neutron source is assumed to be that of a thermalized Maxwellian flux at 20/degree/C. The slab geometry calculations indicate that the optimum thickness for neutron transmission through a slab given an isotropic incident flux is for wavelengths above .6 nm, approximately .20 m for liquid deuterium and between .28 and .32 m for liquid nitrogen-15. The gain factors at .8 nm corresponding to these thicknesses are 15.5 for liquid deuterium and 3.50 for liquid nitrogen-15. The spherical geometry analysis showed that the cold neutron current below 10 MeV of 1.36 n/m/sup 2/-s for the neutron component entering the cavity of a .16 m thick liquid deuterium spherical shell exceeds the neutron leakage current of 1.08 n/cm/sup 2/-s from a .38 m diameter liquid deuterium solid sphere. However, the cold neutron factors for the neutron entering the void region are considerably lower than for the solid sphere case. 15 refs., 24 figs., 7 tabs.

  10. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  11. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vesselthat is Cooled by Liquid Hydrogen in Film Boiling

    SciTech Connect

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-05-07

    This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels.

  12. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    NASA Astrophysics Data System (ADS)

    Stillwell, Ashlynn S.; Clayton, Mary E.; Webber, Michael E.

    2011-07-01

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights—a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions—a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m3—enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  13. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  14. Direct contact liquid-liquid heat exchanger for solar-heated and -cooled buildings. Final report, January 1, 1979-May 30, 1980

    SciTech Connect

    Karaki, S.; Brothers, P.

    1980-06-01

    The procedure used was to obtain experimental performance data from a solar system using a DCLLHE for both heating and cooling functions, develop a simulation model for the system, validate the model using the data, apply the model in five different climatic regions of the country for a complete year, and estimate the life-cycle cost of the system for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger.

  15. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Le, Peisi; Ito, Kanae; Leão, Juscelino B.; Tyagi, Madhusudan; Chen, Sow-Hsin

    2015-09-01

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

  16. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    SciTech Connect

    Wang, Zhe; Le, Peisi; Ito, Kanae; Chen, Sow-Hsin; Leão, Juscelino B.; Tyagi, Madhusudan

    2015-09-21

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

  17. Evidence for regional cooling, frontal advances, and East Greenland Ice Sheet changes during the demise of the last interglacial

    NASA Astrophysics Data System (ADS)

    Irvalı, Nil; Ninnemann, Ulysses S.; Kleiven, Helga (Kikki) F.; Galaasen, Eirik V.; Morley, Audrey; Rosenthal, Yair

    2016-10-01

    High-resolution lithic and sea surface climate records are used to portray the progression of North Atlantic climate, hydrography, and Greenland Ice Sheet (GIS) activity through the peak of Marine Isotope Stage (MIS) 5e into the last glacial inception. We use Eirik Drift sediment core MD03-2664 (57°26.34‧N, 48°36.35‧W), recovered south of Greenland, strategically located to monitor fluctuations in GIS extent and iceberg calving events. Our results show that a significant amount of ice-rafted debris (IRD) was present during the early MIS 5e, until gradually tapering off by 122 kyr BP due to a diminishing GIS. Sea surface temperatures (SSTs) in the northern subpolar gyre reached peak values early in MIS 5e coinciding with peak insolation. Regional cooling leading to the demise of the last interglacial started prior to the end of the MIS 5e benthic δ18O plateau, at approximately 119 kyr BP, as summer insolation waned. This gradual cooling trend is interrupted by an abrupt and brief cooling episode at ∼117 kyr BP. Increased IRD abundance during the 117 kyr BP cooling event suggests that regional ice sheet growth occurred prior to the end of the MIS 5e benthic δ18O plateau, and the major glacial inception. SSTs south of Greenland followed a two-step cooling during the glacial inception similar to the pattern observed across much of the North Atlantic and Europe. Benthic δ18O increases in parallel, suggesting that this two-step cooling is linked to a two-phased intensification of Northern Hemisphere glaciation.

  18. Investigation of Advanced Counterrotation Blade Configuration Concepts for High Speed Turboprop Systems. Task 8: Cooling Flow/heat Transfer Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Topp, David A.; Heidegger, Nathan J.; Delaney, Robert A.

    1994-01-01

    The focus of this task was to validate the ADPAC code for heat transfer calculations. To accomplish this goal, the ADPAC code was modified to allow for a Cartesian coordinate system capability and to add boundary conditions to handle spanwise periodicity and transpiration boundaries. The primary validation case was the film cooled C3X vane. The cooling hole modeling included both a porous region and grid in each discrete hold. Predictions for these models as well as smooth wall compared well with the experimental data.

  19. Effects of cryogenic cooling by liquid nitrogen jet on forces, temperature and surface residual stresses in grinding steels

    NASA Astrophysics Data System (ADS)

    Paul, S.; Chattopadhyay, A. B.

    Grinding is a widely employed finishing process for different materials such as metals, ceramics, glass, carbides, rocks, etc. to achieve good geometrical (form) and dimensional accuracy with acceptable surface finish and surface integrity. However, it is inherently characterized by high specific energy requirements, unlike other conventional machining processes such as turning, milling, etc., which lead to a high grinding zone temperature and poor surface integrity. Many methods have been investigated to control this high grinding zone temperature, but all have their shortfalls, both technological and environmental, in exchange for controlling the grinding zone temperature. This paper briefly discusses the results obtained with regard to grinding forces, specific energy, grinding zone temperature and surface residual stress when using cryogenic cooling and compares them to the results from dry grinding and grinding with soluble oil. Cryogenic cooling seems to have the edge over other coolants in terms of controlling the temperature, residual stresses and grinding forces, and it is also environment friendly.

  20. Cooling rate and ice-crystal measurement in biological specimens plunged into liquid ethane, propane, and Freon 22.

    PubMed

    Ryan, K P; Bald, W B; Neumann, K; Simonsberger, P; Purse, D H; Nicholson, D N

    1990-06-01

    Specimens sandwiched between copper planchettes were plunged up to a depth of 430 mm into coolants used for cryofixation. Hydrated gelatin containing a miniature thermocouple was used to mimic the behaviour of tissue during freezing. Gelatin and red blood cells were used for ice-crystal analysis. Ethane produced the fastest cooling rates and the smallest ice-crystal profiles, and Freon 22 produced the slowest cooling rates and the largest crystal profiles. Smaller crystal profiles were often seen in the centre of the specimens than in subsurface zones. The results show that ethane, rather than propane, should be used for freezing metal-sandwiched freeze-fracture specimens by the plunging method, and probably also in the jet-cooling method. They further suggest that good cryofixation could occur at the centre of thin specimens rather than only at their surfaces. Comparison between theoretical and experimental ice-crystal sizes was satisfactory, indicating that where the experimental parameters can be defined then realistic predictions can be made regarding cryofixation results.

  1. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Cabin Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Chullen, Cinda

    2016-01-01

    The development of new, robust, life support systems is critical to NASA's continued progress in space exploration. One vital function is maintaining the carbon dioxide (CO2) concentration in the cabin at levels that do not impair the health or performance of the crew. The CO2 removal assembly (CDRA) is the current CO2 control technology on-board the International Space Station (ISS). Although the CDRA has met the needs of the ISS to date, the repeated cycling of the molecular sieve sorbent causes it to break down into small particles that clog filters or generate dust in the cabin. This reduces reliability and increases maintenance requirements. Another approach that has potential advantages over the current system is a membrane that separates CO2 from air. In this approach, cabin air contacts one side of the membrane while other side of the membrane is maintained at low pressure to create a driving force for CO2 transport across the membrane. In this application, the primary power requirement is for the pump that creates the low pressure and then pumps the CO2 to the oxygen recovery system. For such a membrane to be practical, it must have high CO2 permeation rate and excellent selectivity for CO2 over air. Unfortunately, conventional gas separation membranes do not have adequate CO2 permeability and selectivity to meet the needs of this application. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over air. In a recently completed Phase II SBIR project, Reaction Systems, Inc. fabricated an SLM that is very close to meeting permeability and selectivity objectives for use in the advanced space suit portable life support system. This paper describes work carried out to evaluate its potential for use in spacecraft cabin application.

  2. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  3. High Performance Torso Cooling Garment

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Makinen, Janice

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  4. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... of Exploration Plans (ep) § 250.217 What solid and liquid wastes and discharges information and... product wastes) likely to be generated by your proposed exploration activities. Describe: (1) The...

  5. Advances in liquid chromatography-high-resolution mass spectrometry for quantitative and qualitative environmental analysis.

    PubMed

    Aceña, Jaume; Stampachiacchiere, Serena; Pérez, Sandra; Barceló, Damià

    2015-08-01

    This review summarizes the advances in environmental analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) during the last decade and discusses different aspects of their application. LC-HRMS has become a powerful tool for simultaneous quantitative and qualitative analysis of organic pollutants, enabling their quantitation and the search for metabolites and transformation products or the detection of unknown compounds. LC-HRMS provides more information than low-resolution (LR) MS for each sample because it can accurately determine the mass of the molecular ion and its fragment ions if it can be used for MS-MS. Another advantage is that the data can be processed using either target analysis, suspect screening, retrospective analysis, or non-target screening. With the growing popularity and acceptance of HRMS analysis, current guidelines for compound confirmation need to be revised for quantitative and qualitative purposes. Furthermore, new commercial software and user-built libraries are required to mine data in an efficient and comprehensive way. The scope of this critical review is not to provide a comprehensive overview of the many studies performed with LC-HRMS in the field of environmental analysis, but to reveal its advantages and limitations using different workflows. PMID:26138893

  6. On the behaviour of foreign particles at an advancing solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Pötschke, Jürgen; Rogge, Volker

    1989-03-01

    The present paper describes a theoretical approach to the behaviour at advancing solid-liquid interfaces of foreign particles present in the melt as a separate phase. The temperature field and the influence of a contaminant in the melt were taken into account. The equations which arose were solved numerically. The numerical data can be described with satisfactory accuracy by a function, so that the result can be communicated in the form of a self-contained expression. The use of this equation is found to be in good agreement with recent measurements of latex particles in water: the model gives the critical solidification velocity at which the latex particles of a specific size are only just pushed along by the ice front. An assessment of other measured values given in the literature is not possible since the material values and experimental parameters are not completely known. To consolidate the theory, therefore, further quantitative measurements of systems with known material values, interfacial free energies in particular, are required.

  7. Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, E. L.; Rothschild, W. J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  8. Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, Edward L.; Rothschild, William J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  9. Advances in liquid chromatography-high-resolution mass spectrometry for quantitative and qualitative environmental analysis.

    PubMed

    Aceña, Jaume; Stampachiacchiere, Serena; Pérez, Sandra; Barceló, Damià

    2015-08-01

    This review summarizes the advances in environmental analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) during the last decade and discusses different aspects of their application. LC-HRMS has become a powerful tool for simultaneous quantitative and qualitative analysis of organic pollutants, enabling their quantitation and the search for metabolites and transformation products or the detection of unknown compounds. LC-HRMS provides more information than low-resolution (LR) MS for each sample because it can accurately determine the mass of the molecular ion and its fragment ions if it can be used for MS-MS. Another advantage is that the data can be processed using either target analysis, suspect screening, retrospective analysis, or non-target screening. With the growing popularity and acceptance of HRMS analysis, current guidelines for compound confirmation need to be revised for quantitative and qualitative purposes. Furthermore, new commercial software and user-built libraries are required to mine data in an efficient and comprehensive way. The scope of this critical review is not to provide a comprehensive overview of the many studies performed with LC-HRMS in the field of environmental analysis, but to reveal its advantages and limitations using different workflows.

  10. Cryogenic generator cooling

    NASA Astrophysics Data System (ADS)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  11. High-pressure Experimental Studies on Geo-liquids Using Synchrotron Radiation at the Advanced Photon Source

    SciTech Connect

    Wang, Yanbin; Shen, Guoyin

    2014-12-23

    Here, we review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Moreover, we describe experimental techniques, along with scientific highlights. Future developments are also discussed.

  12. Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint

    SciTech Connect

    Booten, C.; Tabares-Velasco, P. C.

    2012-08-01

    This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

  13. Design and analysis of the internally cooled silicon mirrors and benders for wiggler sources at the Advanced Photon Source

    SciTech Connect

    Schildkamp, W.; Jaski, Y.; Tonnessen, T.; Douglas, G.

    1996-09-01

    When silicon single crystal mirrors are bent to cylindrical figures of typically 6 km bending radius, the moments needed are very small and easy to disturb by cooling attachments to the sides of the mirror. Hence, we decided to abandon the conventional concept of cooling plates attached to the sides of the mirrors and instead have chosen to use internal water channels. We present here the design of mirrors with cooling channels near the neutral axis of the silicon beam that have a rather thick {open_quote}{open_quote}hot wall.{close_quote}{close_quote} The results of this analytical work are nonintuitive, regarding the stresses produced by wiggler heating. The design path chosen minimizes figure errors due to coolant pressure variations and residual stresses from machining and bonding of multiple layers of silicon. The geometry of the water channels avoids water-to-vacuum seals and uses the mirror bender as the coolant manifold. Engineering efforts, which reduce the bending stresses at bender-to-silicon interface by a factor of five, will be presented. The complete mirror bender and motion control mechanics will be shown. {copyright} {ital 1996 American Institute of Physics.}

  14. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) heat transport system dynamics and steam generator control: Figures

    NASA Astrophysics Data System (ADS)

    Brukx, J. F. L. M.

    1982-06-01

    Dynamic modeling of LMFBR heat transport system is discussed. Uncontrolled transient behavior of individual components and of the integrated heat transport system are considered. For each component, results showing specific dynamic features of the component and/or model capability were generated. Controlled dynamic behavior for alternative steam generator control systems during forced and natural sodium coolant circulation was analyzed. Combined free and forced convection of laminar and turbulent vertical pipe flow of liquid metals was investigated.

  15. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andrew M.; Doering, Kimberly B; Meadows, Robert G.; Lariviere, Brian W.; Graham, Jerry B.

    2015-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS; and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. For NASA's SLS ABEDRR procurement, Dynetics and AR formed a team to offer a series of full-scale risk mitigation hardware demonstrations for an affordable booster approach that meets the evolved capabilities of the SLS. To establish a basis for the risk reduction activities, the Dynetics Team developed a booster design that takes advantage of the flight-proven Apollo-Saturn F-1. Using NASA's vehicle assumptions for the SLS Block 2, a two-engine, F-1-based booster design delivers 150 mT (331 klbm) payload to LEO, 20 mT (44 klbm) above NASA's requirements. This enables a low-cost, robust approach to structural design. During the ABEDRR effort, the Dynetics Team has modified proven Apollo-Saturn components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the

  16. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    NASA Astrophysics Data System (ADS)

    Leadbetter, Kirt C.

    . Advancements of this nonaqueous aluminum plating process have the potential to lead to a novel and competitive commercial aluminum deposition process. In this investigation aluminum electrodeposition from ionic liquid based electrolytes onto steel, copper and magnesium substrates without conversion coatings or strike layers was evaluated in six different ionic liquid based electrolytes in two technical setups. Three of which are commercially available aluminum plating electrolytes, three of which, discussed in literature were created on site by research personnel in the laboratory. The three commercially available electrolytes were: 1-Butyl-3-methylimidazolium chloride ([BMIm]Cl) * 1.5 AlCl3 with proprietary additives from IoLiTec, 1-Ethyl-3-methylimidazolium chloride ([EMIm]Cl) * 1.5 AlCl3 with proprietary additives from IoLiTec, and BasionicsTM AL-02, an aluminum plating electrolyte containing [EMIm]Cl * 1.5 AlCl3 with additives from BASF. The three electrolytes created on site were based on the 1-ethyl-3-methylimidazolium chloride ionic liquid with added 1.5 AlCl3 and one with added sodium dodecyl sulfate. Small scale plating tests in a 25-mL plating cell were conducted to provide a comparative analysis of the six different electrolytes considered. From these investigations, two were chosen to be evaluated in a larger 1-liter plating cell; designed and constructed to provide a more realistic evaluation of plating parameters with selected electrolytes to better portray industrial electroplating conditions. The effect of current density (10-40 mA/cm 2), temperature (30-90° Celsius) and plating bath agitation on current efficiency, corrosion resistance by the ASTM B117 method, adhesion, microstructure, and chemical composition (evaluated with energy-dispersive x-ray spectroscopy) of the plated Al-layer was explored in both the 25-mL and 1-L plating cell investigations. In addition development of pre- and post-treatment processes for the metal substrates was attempted. While

  17. Design Issues for the Superconducting Magnet that Goes Around theLiquid Hydrogen Absorber for the Muon Ionization Cooling Experiment(MICE)

    SciTech Connect

    Barr, G.; Cobb, J.H.; Green, M.A.; Lau, W.; Senanayake R.S.; Yang, S.Q.; Baynham, D.E.; Bradshaw, T.W.; Drum, P.V.; Rochford, J.H.; Chilton, Didcot

    2004-06-15

    This report describes the design issues that are associated with a superconducting focusing solenoid that goes around a liquid hydrogen absorber for the Muon Ionization Cooling Experiment (MICE) proposed for the Rutherford Appleton Laboratory. The solenoid consists of two superconducting coils that may operated at the same polarity or at opposite polarities. As a result, the coils and their support structure must be designed to carry a 360-ton inter-coil force that is forcing the coils apart along their axis. The basic design parameters for the focusing magnet are discussed. The magnet and its cryostat are designed so that the absorber can be assembled and tested before installation into the pre-tested focusing solenoid. Safety requirements for MICE dictate that the insulating vacuum for the superconducting magnet be separated from the insulating vacuum for the absorber and that both vacuum be separated from the experiment vacuum and the vacuum within adjacent RF cavities. The safety issues associated with the arrangement of the various vacuums in the MICE focusing modules are presented. The effect of magnet operation and magnet quench on the liquid hydrogen absorber is also discussed.

  18. Advanced use of high-performance liquid chromatography for synthesis of controlled metal clusters

    NASA Astrophysics Data System (ADS)

    Niihori, Yoshiki; Matsuzaki, Miku; Uchida, Chihiro; Negishi, Yuichi

    2014-06-01

    Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective means of separating ligand combinations when working with metal clusters protected by two different types of thiolates. We report herein advanced use of this method. The studies involving Au24Pd(SR1)18-x(SR2)x and Au24Pd(SR1)18-x(SeR2)x (SR1, SR2 = thiolate, SeR2 = selenolate) revealed the following. (1) In general, an increase in the difference between the polarities of the functional groups incorporated in the two types of ligands improves the separation resolution. A suitable ligand combination for separation can be predicted from the retention times of Au24Pd(SR1)18 and Au24Pd(SR2)18, which cause the terminal peaks in a series of peaks. (2) The use of a step-gradient program during the mobile phase substitution results in improved resolution compared to that achievable with the linear gradients applied in prior work. (3) This technique is also useful for the evaluation of the chemical compositions of metal clusters protected by two different types of ligands with similar molecular weights. These findings will provide clear design guidelines for the functionalization of metal clusters via control of the ligand composition, and will also improve our understanding of the high-resolution isolation of metal clusters.Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective

  19. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Astrophysics Data System (ADS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  20. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    1992-01-01

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  1. Launch Vehicle Fire Accident Preliminary Analysis of a Liquid-Metal Cooled Thermionic Nuclear Reactor: TOPAZ-II

    NASA Astrophysics Data System (ADS)

    Hu, G.; Zhao, S.; Ruan, K.

    2012-01-01

    In this paper, launch vehicle propellant fire accident analysis of TOPAZ-II reactor has been done by a thermionic reactor core analytic code-TATRHG(A) developed by author. When a rocket explodes on a launch pad, its payload-TOPAZ-II can be subjected to a severe thermal environment from the resulting fireball. The extreme temperatures associated with propellant fires can create a destructive environment in or near the fireball. Different kind of propellants - liquid propellant and solid propellant which will lead to different fire temperature are considered. Preliminary analysis shows that the solid propellant fires can melt the whole toxic beryllium radial reflector.

  2. Advancing the State-of-the-Practice for Liquid Rocket Engine Injector Design

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Kenny, R. J.; Richardson, B. R.; Anderso, W. E.; Austin, B. J.; Schumaker, S. A.; Muss, J. A.

    2015-01-01

    Current shortcomings in both the overall injector design process and its underlying combustion stability assessment methodology are rooted in the use of empirically based or low fidelity representations of complex physical phenomena and geometry details that have first order effects on performance, thermal environments and combustion stability. The result is a design and analysis capability that is often inadequate to reliably arrive at a suitable injector design in an efficient manner. Specifically, combustion instability has been particularly difficult to predict and mitigate. Large hydrocarbon-fueled booster engines have been especially problematic in this regard. Where combustion instability has been a problem, costly and time-consuming redesign efforts have often been an unfortunate consequence. This paper presents an overview of a recently completed effort at NASA Marshall Space Flight Center to advance the state-of-the-practice for liquid rocket engine injector design. Multiple perturbations of a gas-centered swirl coaxial (GCSC) element that burned gaseous oxygen and RP-1 were designed, assessed for combustion stability, and tested. Three designs, one stable, one marginally unstable and one unstable, were used to demonstrate both an enhanced overall injector design process and an improved combustion stability assessment process. High-fidelity results from state-of-the-art computational fluid dynamics CFD simulations were used to substantially augment and improve the injector design methodology. The CFD results were used to inform and guide the overall injector design process. They were also used to upgrade selected empirical or low-dimensional quantities in the ROCket Combustor Interactive Design (ROCCID) stability assessment tool. Hot fire single element injector testing was used to verify both the overall injector designs and the stability assessments. Testing was conducted at the Air Force Research Laboratory and at Purdue University. Companion papers

  3. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  4. Gas turbine cooling system

    SciTech Connect

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  5. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T. (Inventor); Gleason, Kevin J. (Inventor); Cowley, Scott W. (Inventor)

    2015-01-01

    There is disclosed a portable life support system with a component for removal of at least one selected gas. In an embodiment, the system includes a supported liquid membrane having a first side and a second side in opposition to one another, the first side configured for disposition toward an astronaut and the second side configured for disposition toward a vacuum atmosphere. The system further includes an ionic liquid disposed between the first side and the second side of the supported liquid membrane, the ionic liquid configured for removal of at least one selected gas from a region housing the astronaut adjacent the first side of the supported liquid membrane to the vacuum atmosphere adjacent the second side of the supported liquid membrane. Other embodiments are also disclosed.

  6. Support of NASA ADR/ Cross-Enterprise NRA Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10K to 50mK, Development of a Heat Switch

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    2005-01-01

    Mechanical heat switches are used in conjunction with sorption refrigerators, adiabatic demagnetization refrigerators and for other cryogenic tasks including the pre-cooling cryogenic systems. They use a mechanical actuator which closes Au plated Cu jaws on an Au plated Cu bar. The thermal conductance in the closed position is essentially independent of the area of the jaws and proportional to the force applied. It varies linearly with T. It is approximately 10mW/K for 200 N at 1.5K. In some applications, the heat switch can be driven from outside the cryostat by a rotating rod and a screw. Such heat switches are available commercially from several sources. In other applications, including systems for space, it is desirable to drive the switch using a cold linear motor, or solenoid. Superconducting windings are used at temperatures s 4.2K to minimize power dissipation, but are not appropriate for pre-cooling a system at higher temperatures. This project was intended to improve the design of solenoid activated mechanical heat switches and to provide such switches as required to support the development of Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10 K to 50 mK at GSFC. By the time funding began in 5/1/01, the immediate need for mechanical heat switches at GSFC had subsided but, at the same time, the opportunity had arisen to improve the design of mechanical heat switching by incorporating a "latching solenoid". In this device, the solenoid current is required only for changing the state of the switch and not during the whole time that the switch is closed.

  7. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples

  8. Recent advances in ultra-high performance liquid chromatography for the analysis of traditional chinese medicine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional Chinese medicines (TCMs) have been widely used for the prevention and treatment of various diseases for thousands of years in China. Ultra Performance Liquid Chromatography (UHPLC) is a relatively new technique offering new possibilities in liquid chromatography. This paper reviews recen...

  9. Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1975-01-01

    A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.

  10. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    SciTech Connect

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filter membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the

  11. Advanced liquid and solid extraction procedures for ultratrace determination of rhenium by radiochemical neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Mizera, J.; Kučera, J.; Řanda, Z.; Lučaníková, M.

    2006-01-01

    Radiochemical neutron activation analysis (RNAA) procedures for determination of Re at the ultratrace level based on use of liquid-liquid extraction (LLE) and extraction chromatography (EXC) have been developed. Two different LLE procedures were used depending on the way of sample decomposition using either 2-butanone or tetraphenylarsonium chloride in CHCl3. EXC employed new solid extractant materials prepared by incorporation of the liquid trioctyl-methyl-ammonium chloride into an inert polyacrylonitrile matrix. The RNAA procedures presented have been compared and applied for Re determination in several biological and environmental reference materials.

  12. Biomedical Use of Aerospace Personal Cooling Garments

    NASA Technical Reports Server (NTRS)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  13. Development of Mechanistic Modeling Capabilities for Local Neutronically-Coupled Flow-Induced Instabilities in Advanced Water-Cooled Reactors

    SciTech Connect

    Michael Podowski

    2009-11-30

    The major research objectives of this project included the formulation of flow and heat transfer modeling framework for the analysis of flow-induced instabilities in advanced light water nuclear reactors such as boiling water reactors. General multifield model of two-phase flow, including the necessary closure laws. Development of neurton kinetics models compatible with the proposed models of heated channel dynamics. Formulation and encoding of complete coupled neutronics/thermal-hydraulics models for the analysis of spatially-dependent local core instabilities. Computer simulations aimed at testing and validating the new models of reactor dynamics.

  14. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  15. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  16. Advanced space engine preliminary design. [liquid hydrogen/liquid oxygen upper stage engine for space tug application

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.

    1973-01-01

    Analysis and design of an optimum LO2/LH2, combustion topping cycle, 88,964 Newtons (20,000-pound) thrust, liquid rocket engine was conducted. The design selected is well suited to high-energy, upper-stage engine applications such as the Space Tug and embodies features directed toward optimization of vehicle performance. A configuration selection was conducted based on prior Air Force Contracts, and additional criteria for optimum stage performance. Following configuration selection, analyses and design of the major components and engine systems were conducted to sufficient depth to provide layout drawings suitable for subsequent detailing. In addition, engine packaging to a common interface and a retractable nozzle concept were defined. Alternative development plans and related costs were also established. The design embodies high-performance, low-weight, low NPSH requirements (saturated propellant inlet conditions at start), idle-mode operation, and autogenous pressurization. The design is the result of the significant past and current LO2/LH2 technology efforts of the NASA centers and the Air Force, as well as company-funded programs.

  17. Feasibility study on ultralong-cycle operation and material performance for compact liquid metal-cooled fast reactors: a review work

    SciTech Connect

    Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung; Kim, T. K.; Hong, Ser Gi

    2015-11-01

    This paper reviews the feasibility of ultralong-cycle operation on a compact liquid metal-cooled fast reactor (LMR) firstly by assessing the operation of a long-life fast reactor core and secondly by evaluating material performance in respect to both long-cycle operation and compact-size fast reactor. Many kinds of reactor concepts have been proposed, and LMR and small modular reactor (SMR) are the issued leading technologies for generation four (Gen-IV) reactor system development. The breed-and-burn strategy was proposed as a core burning strategy to operate a long cycle, and it has been evaluated in this paper with two reactor concepts: constant axial shape of neutron flux, nuclide densities, and power shape during life of energy and ultralong cycle fast reactor. In addition, Super-Safe, Small, and Simple and small modular fast reactor, compact LMR concepts, have been simulated to evaluate their long-life operation strategies. For the other practical issues, the materials for fuel, coolant, and structure have been identified and some of them are selected to have their performance optimized specifically for compact LMR with a long-cycle operation. It is believed that this comprehensive review will propose a proper direction for future reactor development and will be followed by the next step research for a complete reactor model with the other reactor components.

  18. Protective Effects of the Launch/Entry Suit (LES) and the Liquid Cooling Garment(LCG) During Re-entry and Landing After Spaceflight

    NASA Technical Reports Server (NTRS)

    Perez, Sondra A.; Charles, John B.; Fortner, G. William; Hurst, Victor, IV; Meck, Janice V.

    2002-01-01

    Heart rate and arterial pressure were measured during shuttle re-entry, landing and initial standing in crewmembers with and without inflated anti-g suits and with and without liquid cooling garments (LCG). Preflight, three measurements were obtained seated, then standing. Prior to and during re-entry, arterial pressure and heart rate were measured every five minutes until wheels stop (WS). Then crewmembers initiated three seated and three standing measurements. In subjects without inflated anti-g suits, SBP and DBP were significantly lower during preflight standing (P = 0.006; P = 0.001 respectively) and at touchdown (TD) (P = 0.001; P = 0.003 respectively); standing SBP was significantly lower after WS. on-LeG users developed significantly higher heart rates during re-entry (P = 0.029, maxG; P = 0.05, TD; P = 0.02, post-WS seated; P = 0.01, post-WS standing) than LCG users. Our data suggest that the anti-g suit is effective, but the combined anti-g suit with LCG is more effective.

  19. Effects of Coolant Temperature Changes on Reactivity for Various Coolants in a Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    SciTech Connect

    Casino, William A. Jr.

    2006-07-01

    The purpose of this study is to perform an investigation into the relative merit of various salts and salt compounds being considered for use as coolants in the liquid salt cooled very high temperature reactor platform (LS-VHTR). Most of the non-nuclear properties necessary to evaluate these salts are known, but the neutronic characteristics important to reactor core design are still in need of a more extensive examination. This report provides a two-fold approach to further this investigation. First, a list of qualifying salts is assembled based upon acceptable non-nuclear properties. Second, the effect on system reactivity for a secondary system transient or an off-normal or accident condition is examined for each of these salt choices. The specific incident to be investigated is an increase in primary coolant temperature beyond normal operating parameters. In order to perform the relative merit comparison of each candidate salt, the System Temperature Coefficient of Reactivity is calculated for each candidate salt at various state points throughout the core burn history. (author)

  20. Is cooling still cool?

    PubMed

    Subramaniam, Ashwin; Tiruvoipati, Ravindranath; Botha, John

    2015-03-01

    Therapeutic hypothermia (TH), where patients are cooled to between 32°C and 36°C for a period of 12-24 hours and then gradually rewarmed, may reduce the risk of ischemic injury to cerebral tissue following a period of insufficient blood flow. This strategy of TH could improve mortality and neurological function in patients who have experienced out-of-hospital cardiac arrest (OOHCA). The necessity of TH in OOHCA was challenged in late 2013 by a fascinating and potentially practice changing publication, which found that targeting a temperature of 36°C had similar outcomes to cooling patients to 33°C. This article reviews the current literature and summarizes the uncertainties and questions raised when considering cooling of patients at risk of hypoxic brain injury. Irrespective of whether TH or targeted temperature management is deployed in patients at risk of hypoxic brain injury, it would seem that avoiding hyperpyrexia is important and that a more rigorous approach to neurological evaluation is mandated. PMID:25423577

  1. Electron cooling

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  2. Importance of combining convection with film cooling

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1971-01-01

    The interaction of film and convection cooling and its effect on wall cooling efficiency is investigated analytically for two cooling schemes for advanced gas turbine applications. The two schemes are full coverage- and counterflow-film cooling. In full coverage film cooling, the cooling air issues from a large number of small discrete holes in the surface. Counterflow film cooling is a film-convection scheme with film injection from a slot geometry. The results indicate that it is beneficial to utilize as much of the cooling air heat sink as possible for convection cooling prior to ejecting it as a film.

  3. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  4. The movement of particles in liquid metals under gravity forces and the interaction of particles with advancing solid-liquid interface

    NASA Technical Reports Server (NTRS)

    Weinberg, F.

    1984-01-01

    The problems of shrinkage and gas porosity are discussed. Gravity forces enhance the removal of gas bubbles from a metal melt and contribute to the feeding of shrinkage porosity in castings. Experiments are reviewed which determine how large a density difference is required for metal particles to float or sink in a metal melt and to what extent do factors not considered in Stokes Law influence particle movement in a real system. As to the interaction of particles with an advancing solid-liquid interface, the results indicate that the metal particles are not rejected in a metal melt, and that concentrations of particles in a metal following solidification are due to other factors.

  5. Final Report Full-Scale Test of DWPF Advanced Liquid-Level and Density Measurement Bubblers

    SciTech Connect

    Duignan, M.R.; Weeks, G.E.

    1999-07-01

    As requested by the Technical Task Request (1), a full-scale test was carried out on several different liquid-level measurement bubblers as recommended from previous testing (2). This final report incorporates photographic evidence (Appendix B) of the bubblers at different stages of testing, along with the preliminary results (Appendix C) which were previously reported (3), and instrument calibration data (Appendix D); while this report contains more detailed information than previously reported (3) the conclusions remain the same. The test was performed under highly prototypic conditions from November 26, 1996 to January 23, 1997 using the full-scale SRAT/SME tank test facilities located in the 672-T building at TNX. Two different types of advanced bubblers were subjected to approximately 58 days of slurry operation; 14 days of which the slurry was brought to boiling temperatures.The test showed that the large diameter tube bubbler (2.64 inches inside diameter) operated successfully throughout the2-month test by not plugging with the glass-frit ladened slurry which was maintained at a minimum temperature of 50 deg Cand several days of boiling temperatures. However, a weekly blow-down with air or water is recommended to minimize the slurry which builds up.The small diameter porous tube bubbler (0.62 inch inside diameter; water flow {gt} 4 milliliters/hour = 1.5 gallons/day) operated successfully on a daily basis in the glass-frit ladened slurry which was maintained at a minimum temperature of 50 degrees C and several days of boiling temperatures. However, a daily blow-down with air, or air and water, is necessary to maintain accurate readings.For the small diameter porous tube bubbler (0.62 inch inside diameter; water flow {gt} 4 milliliters/hour = 1.5 gallons/day) there were varying levels of success with the lower water-flow tubes and these tubes would have to be cleaned by blowing with air, or air and water, several times a day to maintain them plug free. This

  6. Recent Advances in Applicability of TEMHD Driven Liquid Lithium as a Fusion Relevant PFC

    NASA Astrophysics Data System (ADS)

    Szott, Matthew; Fiflis, Peter; Kalathiparambil, Kishor; Ruzic, David N.

    2015-11-01

    Liquid lithium displays increasing promise as a replacement to solid plasma facing components (PFC) in fusion device applications. Liquid PFCs reduce erosion and thermal stress damage, prolonging device lifetime, while lithium has been shown to decrease edge recycling, reduce impurities, and enhance plasma performance. The Liquid Metal Infused Trench (LiMIT) concept developed at UIUC successfully demonstrates horizontal and vertical thermoelectric magnetohydrodynamic (TEMHD) flow of liquid lithium through metal trenches for use as a PFC. Installed in the HT-7 tokamak and at the Magnum-PSI linear plasma device, the system performed effectively in fusion relevant conditions. In high heat flux tests, trench dry-out was observed, which exposes solid trench material due to higher TEMHD force on the area with the highest heat flux. A 3D free surface fluid model of dry-out and experimental tests conducted to mitigate the detrimental effect are described. The final designs for the upcoming test of LiMIT as a limiter for the EAST tokamak are discussed, along with velocity characteristics of steady-state TEMHD driven flow through the LiMIT system inclined up to 180 degrees from horizontal, which is necessary for broad applicability of a liquid lithium PFC system.

  7. Advanced fuels modeling: Evaluating the steady-state performance of carbide fuel in helium-cooled reactors using FRAPCON 3.4

    NASA Astrophysics Data System (ADS)

    Hallman, Luther, Jr.

    Uranium carbide (UC) has long been considered a potential alternative to uranium dioxide (UO2) fuel, especially in the context of Gen IV gas-cooled reactors. It has shown promise because of its high uranium density, good irradiation stability, and especially high thermal conductivity. Despite its many benefits, UC is known to swell at a rate twice that of UO2. However, the swelling phenomenon is not well understood, and we are limited to a weak empirical understanding of the swelling mechanism. One suggested cladding for UC is silicon carbide (SiC), a ceramic that demonstrates a number of desirable properties. Among them are an increased corrosion resistance, high mechanical strength, and irradiation stability. However, with increased temperatures, SiC exhibits an extremely brittle nature. The brittle behavior of SiC is not fully understood and thus it is unknown how SiC would respond to the added stress of a swelling UC fuel. To better understand the interaction between these advanced materials, each has been implemented into FRAPCON, the preferred fuel performance code of the Nuclear Regulatory Commission (NRC); additionally, the material properties for a helium coolant have been incorporated. The implementation of UC within FRAPCON required the development of material models that described not only the thermophysical properties of UC, such as thermal conductivity and thermal expansion, but also models for the swelling, densification, and fission gas release associated with the fuel's irradiation behavior. This research is intended to supplement ongoing analysis of the performance and behavior of uranium carbide and silicon carbide in a helium-cooled reactor.

  8. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    NASA Astrophysics Data System (ADS)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  9. Liquid-phase combinatorial library synthesis: recent advances and future perspectives.

    PubMed

    Barot, Kuldipsinh P; Nikolova, Stoyanka; Ivanov, Illiyan; Ghate, Manjunath D

    2014-01-01

    Liquid-phase combinatorial library synthesis is commonly developed into the viable alternatives or adjunct across the broad spectrum of polymer-supported organic chemistry. It includes the use of soluble polymer supports in the combinatorial synthesis of peptides and small-molecular library compounds which act as catalyst and reagent supports. It also includes high throughput biological screening with generation and evaluation of chemical leads for drug discovery development. In this review, liquid-phase combinatorial library synthesis is shown as the most efficient method of choice for the synthesis of most of the combinatorial library compounds with specific approaches from different groups that state potentials of solution-phase combinatorial synthesis.

  10. Cooling solutions for high heat load optics

    SciTech Connect

    Morris, D.; Harding, G.H.; Cox, M.P.; Lunt, D.

    1996-09-01

    Heat loads on optical components at third-generation synchrotron sources, such as the APS, present beamline designers with difficult and complex engineering problems. A number of solutions have been proposed, such as pin-post water cooling, cryogenic cooling, and liquid gallium cooling. This paper describes both a cryogenic cooling system and a liquid gallium pumping system that have been developed specifically for the APS high heat load beamlines. Also presented is a potential solution for the first mirrors on high heat load beamlines, based on liquid gallium internal cooling of a silicon carbide mirror. {copyright} {ital 1996 American Institute of Physics.}

  11. An Advanced, Interactive, High-Performance Liquid Chromatography Simulator and Instructor Resources

    ERIC Educational Resources Information Center

    Boswell, Paul G.; Stoll, Dwight R.; Carr, Peter W.; Nagel, Megan L.; Vitha, Mark F.; Mabbott, Gary A.

    2013-01-01

    High-performance liquid chromatography (HPLC) simulation software has long been recognized as an effective educational tool, yet many of the existing HPLC simulators are either too expensive, outdated, or lack many important features necessary to make them widely useful for educational purposes. Here, a free, open-source HPLC simulator is…

  12. Stochastic cooling at Fermilab

    SciTech Connect

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system.

  13. Successful production of piglets derived from expanded blastocysts vitrified using a micro volume air cooling method without direct exposure to liquid nitrogen.

    PubMed

    Misumi, Koji; Hirayama, Yuri; Egawa, Sachiko; Yamashita, Shoko; Hoshi, Hiroyoshi; Imai, Kei

    2013-12-17

    This study was conducted to clarify the feasibility of newly developed vitrification techniques for porcine embryos using the micro volume air cooling (MVAC) method without direct contact with liquid nitrogen (LN₂). Expanded blastocysts were vitrified in a solution containing 6 M ethylene glycol, 0.6 M trehalose and 2% (wt/vol) polyethylene glycol in 10% HEPES-buffered PZM-5. The blastocysts were collected from gilts and vitrified using the new device (MVAC) or a Cryotop (CT). Blastocysts were stored in LN₂ for at least 1 month. After warming, cryoprotective agents were removed using a single step. Survival of the embryos was assessed by in vitro culture (Experiment 1) and by embryo transfer to recipients (Experiment 2). In Experiment 1, the embryos vitrified by the MVAC or CT and fresh embryos without vitrification (Control) were used. The survival rates of embryos in the MVAC, CT and Control groups were 88.9% (32/36), 91.7% (33/36) and 100% (34/34), respectively, after 48 h culture, and the hatching rates of embryos after 48 h incubation were 69.4% (25/36), 63.9% (23/36) and 94.1% (32/34), respectively. In Experiment 2, 64 vitrified embryos were transferred to 5 recipient gilts, and 8 healthy piglets were produced from 3 recipients in the MVAC group. Similarly, 66 vitrified embryos were transferred to 5 recipient gilts, and 9 healthy piglets were produced from 2 recipients in the CT group. These results indicated that porcine expanded blastocysts can be cryopreserved using the MVAC method without potential pathogen contamination from LN₂. PMID:23955236

  14. Fully automated multifunctional ultrahigh pressure liquid chromatography system for advanced proteome analyses

    SciTech Connect

    Lee, Jung Hwa; Hyung, Seok-Won; Mun, Dong-Gi; Jung, Hee-Jung; Kim, Hokeun; Lee, Hangyeore; Kim, Su-Jin; Park, Kyong Soo; Moore, Ronald J.; Smith, Richard D.; Lee, Sang-Won

    2012-08-03

    A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations, and online phosphopeptides enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve, which is equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtained from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments.

  15. Advanced Launch System propulsion focused technology liquid methane turbopump technical implementation plan

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Nielson, C. E.

    1989-01-01

    This program will focus on the integration of all functional disciplines of the design, manufacturing, materials, fabrication and producibility to define and demonstrate a highly reliable, easily maintained, low cost liquid methane turbopump as a component for the STBE (Space Transportation Booster Engine) using the STME (main engine) oxygen turbopump. A cost model is to be developed to predict the recurring cost of production hardware and operations. A prime objective of the program is to design the liquid methane turbopump to be used in common with a LH2 turbopump optimized for the STME. Time phasing of the effort is presented and interrelationship of the tasks is defined. Major subcontractors are identified and their roles in the program are described.

  16. Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries.

    PubMed

    Vogl, T; Menne, S; Balducci, A

    2014-12-01

    In this study we investigated the chemical-physical properties of mixtures containing the protic ionic liquid (PIL) N-butyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRH4TFSI), propylene carbonate (PC) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in view of their use as electrolytes for lithium-ion batteries (LIBs). We showed that these electrolytic solutions might display conductivity and viscosity comparable to those of conventional electrolytes. Depending on the amount of PIL present inside the mixtures, such mixtures might also display the ability to suppress the anodic dissolution of Al. Furthermore, we showed that the coordination of lithium ions by TFSI in PIL-PC mixtures appears to be different than the one observed for mixtures of PC and aprotic ionic liquids (AILs). When used in combination with a battery electrode, e.g. lithium iron phosphate (LFP), these mixtures allow the achievement of high performance also at a very high C-rate.

  17. Measurement of cell volume loss in the liquid region preceding an advancing phase change interface.

    PubMed

    Harmison, H R; Diller, K R; Walsh, J R; Neils, C M; Brand, J J

    1998-09-11

    It is well understood that the solidification of a solution results in a redistribution of solute in the liquid zone. For the freezing of suspensions of cells it is anticipated that accumulation of solute in the region leading a growing ice phase will cause an osmotic response in cells before the ice phase reaches the cells. To measure this phenomenon in a specific algal species, the volume changes in Chlorococcum texanum during freezing were studied using directional solidification cryomicroscopy. The relative cell volume was tracked continuously as a function of temperature and position as cells encountered the moving phase front. The loss of cell volume was measured in the liquid region containing concentrated solute ahead of the growing solid phase.

  18. RECENT ADVANCES IN ULTRA-HIGH PERFORMANCE LIQUID CHROMATOGRAPHY FOR THE ANALYSIS OF TRADITIONAL CHINESE MEDICINE.

    PubMed

    Huang, Huilian; Liu, Min; Chen, Pei

    2014-01-01

    Traditional Chinese medicine has been widely used for the prevention and treatment of various diseases for thousands of years in China. Ultra-high performance liquid chromatography (UHPLC) is a relatively new technique offering new possibilities. This paper reviews recent developments in UHPLC in the separation and identification, fingerprinting, quantification, and metabolism of traditional Chinese medicine. Recently, the combination of UHPLC with MS has improved the efficiency of the analysis of these materials.

  19. RECENT ADVANCES IN ULTRA-HIGH PERFORMANCE LIQUID CHROMATOGRAPHY FOR THE ANALYSIS OF TRADITIONAL CHINESE MEDICINE

    PubMed Central

    Huang, Huilian; Liu, Min; Chen, Pei

    2014-01-01

    Traditional Chinese medicine has been widely used for the prevention and treatment of various diseases for thousands of years in China. Ultra-high performance liquid chromatography (UHPLC) is a relatively new technique offering new possibilities. This paper reviews recent developments in UHPLC in the separation and identification, fingerprinting, quantification, and metabolism of traditional Chinese medicine. Recently, the combination of UHPLC with MS has improved the efficiency of the analysis of these materials. PMID:25045170

  20. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    SciTech Connect

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica