Science.gov

Sample records for advanced lithium batteries

  1. Recent advances in lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Shaw, Leon L.

    2014-12-01

    Lithium-sulfur (Li-S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg-1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li-S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li-S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li-S cells, but also we cover some of our proposals for engineering of Li-S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li-S batteries in the near future.

  2. Nanocarbon networks for advanced rechargeable lithium batteries.

    PubMed

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting

  3. Multilayer Approach for Advanced Hybrid Lithium Battery.

    PubMed

    Ming, Jun; Li, Mengliu; Kumar, Pushpendra; Li, Lain-Jong

    2016-06-28

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode(-1) (vs the total mass of electrode) or 1866 mAh gs(-1) (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs(-1)). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode(-1) at 0.25C and 376 mAh gcathode(-1) at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. PMID:27268064

  4. Advances in rechargeable lithium molybdenum disulfide batteries

    NASA Technical Reports Server (NTRS)

    Brandt, K.; Stiles, J. A. R.

    1985-01-01

    The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.

  5. Advances in lithium-ion batteries

    SciTech Connect

    Kerr, John B.

    2003-06-24

    The editors state in their introduction that this book is intended for lithium-ion scientists and engineers but they hope it may be of interest to scientists from other fields. Their main aim was to provide a snapshot of the state of the Lithium-ion art and in this they have largely succeeded. The book is comprised of a collection of very current reviews of the lithium ion battery literature by acknowledged experts that draw heavily on the authors' own research but are sufficiently general to provide the lithium ion researcher with enough guidance to the current literature and the current thinking in the field. Some of the literature references may be too current as there are numerous citations of conference proceedings which may be easily accessible to the lithium ion scientist or engineer but are not likely to be available to the interested chemist coming to the field for the first time. One author expresses the hope and expectation that properly peer-reviewed articles will appear in due course and the interested reader should look out for them in future. From the point of view of the lithium ion battery scientist and engineer, the book covers most of the topics that are of current interest. Two areas are treated by inference in the various chapters but are not specifically granted chapters of their own. One of these is safety and abuse tolerance and the other is cost. Since there are a number of groups active in the investigation of abuse tolerance of these batteries this is a curious omission and obviously the cost factor is a driver for commercial development. The book should be instructive to the chemical community provided the average chemist can obtain some guidance from an electrochemist or battery engineer. Many of the measurements and techniques referred to (e.g. impedance, capacities, etc.) may be somewhat unfamiliar and confusing in the context they are used. Chemists who persevere and can obtain some guidance will find some rich opportunities for the

  6. Advances in primary lithium liquid cathode batteries

    NASA Astrophysics Data System (ADS)

    Blomgren, George E.

    1989-05-01

    Recent work on cell development and various aspects of cell chemistry and cell development of lithium/thionyl chloride liquid cathode batteries is reviewed. As a result of safety studies, a number of cell sizes can now be considered satisfactory for many applications and the energy densities of these cells is higher than any other developed battery system. Primary batteries operate with low to moderate currents and the anode delay effect appears to be under reasonable control. Reserve cells are in the design stage and operate at high to very high power densities as well as very high energy densities. The nature of the anode film and the operation of the lithium anode has been studied with substantial success and understanding has grown accordingly. Also, studies of the structure of the electrolyte and the effects on the electrolyte of impurities and additives have led to improved understanding in this area as well. Work in progress on new electrolytes is reviewed. The state of the art of mathematical modeling is also discussed and it is expected that this work will continue to develop.

  7. Advances of aqueous rechargeable lithium-ion battery: A review

    NASA Astrophysics Data System (ADS)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  8. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  9. Advances in Wearable Fiber-Shaped Lithium-Ion Batteries.

    PubMed

    Zhang, Ye; Zhao, Yang; Ren, Jing; Weng, Wei; Peng, Huisheng

    2016-06-01

    It is highly desirable to develop flexible and efficient energy-storage systems for widely used wearable electronic products. To this end, fiber-shaped lithium-ion batteries (LIBs) attract increasing interest due to their combined superiorities of miniaturization, adaptability, and weavability, compared with conventional bulky and planar structures. Recent advances in the fabrication, structure, mechanism, and properties of fiber-shaped LIBs are summarized here, with a focus on the electrode material. Remaining challenges and future directions are also highlighted to provide some useful insights from the viewpoint of practical applications. PMID:26643467

  10. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  11. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode.

    PubMed

    Hassoun, Jusef; Bonaccorso, Francesco; Agostini, Marco; Angelucci, Marco; Betti, Maria Grazia; Cingolani, Roberto; Gemmi, Mauro; Mariani, Carlo; Panero, Stefania; Pellegrini, Vittorio; Scrosati, Bruno

    2014-08-13

    We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable. To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development. PMID:25026051

  12. "Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    A technology developed at the National Renewable Energy Laboratory has sparked a start-up company that has attracted funding from the Advanced Projects Research Agency-Energy (ARPA-E). Planar Energy, Inc. has licensed NREL's "buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so, they could provide a significant boost to the emerging market for electric and plug-in hybrid vehicles.

  13. Advanced Lithium Ion Battery Materials Prepared with Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Cavanagh, Andrew S.

    As the world consumes the dwindling supply of fossil fuels, an alternative to gasoline powered vehicles will become necessary. Lithium ion batteries (LIBs) are emerging as the dominant power source for portable electronics, and are seen as a promising energy source in the development of electric vehicles. Current LIB technology is not well suited for vehicles, increases in the energy density, power density and durability are needed before LIB are ready for widespread use in electric vehicles. LiCoO2 and graphite are the dominant cathode and anode active materials, respectively in LIBs. On the cathode side, instabilities in LiCoO 2 can lead to the deterioration of the LIB. Decomposition of electrolyte on the graphite anode surface to form a solid-electrolyte interphase (SEI) consumes lithium from the cathode resulting in a lower battery capacity. Instabilities in the in the SEI can result in catastrophic battery failure. Previous studies have employed metal oxides films, typically grown with wet chemical techniques, to stabilize LiCoO2 and mitigate the formation of the SEI on graphite. The thicknesses of films grown with wet chemical techniques was typically ˜50--1000 A. In order to achieve higher power densities, the particle size of LIB active materials is being scaled down. As active materials get smaller the mass contribution of a protective film can become a significant fraction of the total mass. Atomic layer deposition (ALD) has been used to grow ultra thin films of Al2O3 on LiCoO2 and graphite. By altering the interaction between the active material and the battery electrolyte it was possible to improve the stability of both LiCoO2 and graphite electrodes in LIBs. In the case of graphite, the Al2O3 film may be thought of as an artificial SEI. During the initial charge-discharge cycle of a LIB, the electrolyte decomposes on the anode to form the SEI. The formation of the SEI is believed to prevent further decomposition of the electrolyte on the anode surface

  14. Advanced Small Rechargeable Batteries

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald

    1989-01-01

    Lithium-based units offer highest performance. Paper reviews status of advanced, small rechargeable batteries. Covers aqueous systems including lead/lead dioxide, cadmium/nickel oxide, hydrogen/nickel oxide, and zinc/nickel oxide, as well as nonaqueous systems. All based on lithium anodes, nonaqueous systems include solid-cathode cells (lithium/molybdenum disulfide, lithium/titanium disulfide, and lithium/vanadium oxide); liquid-cathode cells (lithium/sulfur dioxide cells); and new category, lithium/polymer cells.

  15. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  16. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE PAGESBeta

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  17. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Bennett, William R.

    2010-01-01

    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.

  18. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  19. Rational design of metal oxide nanocomposite anodes for advanced lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yong; Yu, Shenglan; Yuan, Tianzhi; Yan, Mi; Jiang, Yinzhu

    2015-05-01

    Metal-oxide anodes represent a significant future direction for advanced lithium ion batteries. However, their practical applications are still seriously hampered by electrode disintegration and capacity fading during cycling. Here, we report a rational design of 3D-staggered metal-oxide nanocomposite electrode directly fabricated by pulsed spray evaporation chemical vapor deposition, where various oxide nanocomponents are in a staggered distribution uniformly along three dimensions and across the whole electrode. Such a special design of nanoarchitecture combines the advantages of nanoscale materials in volume change and Li+/electron conduction as well as uniformly staggered and compact structure in atom migration during lithiation/delithiation, which exhibits high specific capacity, good cycling stability and excellent rate capability. The rational design of metal-oxide nanocomposite electrode opens up new possibilities for high performance lithium ion batteries.

  20. Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lithium ion batteries, which use a new battery chemistry, are being developed under cooperative agreements between Lockheed Martin, Ultralife Battery, and the NASA Lewis Research Center. The unit cells are made in flat (prismatic) shapes that can be connected in series and parallel to achieve desired voltages and capacities. These batteries will soon be marketed to commercial original-equipment manufacturers and thereafter will be available for military and space use. Current NiCd batteries offer about 35 W-hr/kg compared with 110 W-hr/kg for current lithium ion batteries. Our ultimate target for these batteries is 200 W-hr/kg.

  1. Lithium use in batteries

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  2. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.

  3. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    DOE PAGESBeta

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions andmore » conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.« less

  4. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established

  5. Lithium battery management system

    DOEpatents

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  6. Electrolytes for advanced batteries

    NASA Astrophysics Data System (ADS)

    Blomgren, George E.

    The choices of the components of the electrolyte phase for advanced batteries (lithium and lithium ion batteries) are very sensitive to the electrodes which are used. There are also a number of other requirements for the electrolyte phase, which depend on the cell design and the materials chosen for the battery. The difficulty of choice is compounded when the cell is a rechargeable one. This paper looks at each of these requirements and the degree to which they are met for lithium and lithium ion batteries. The discussion is broken into sections on anode or negative electrode stability requirements, cathode or positive electrode stability requirements, conductivity needs, viscosity and wetting requirements. The effects of these properties and interactions on the performance of batteries are also discussed.

  7. Synthesis and Characterization of Polyphosphazene Materials for Advanced Lithium-Water Batteries

    SciTech Connect

    Mason K. Harrup; Thomas A. Luther; Frederick F. Stewart; Christopher J. Orme; Mark L. Stone; William F. Bauer

    2007-08-01

    Development of long-lived high-energy lithium-water batteries hinges upon developing solid polymer electrolytes (SPEs) with the appropriate properties. These polymer membranes paradoxically must allow lithium atoms to pass from the metallic surface, oxidize to the ionic form, and then pass through the membrane to the water outside. At the same time, the membrane must exclude all water, tramp ions, and deleterious gases such as oxygen and carbon dioxide. SPE membranes are the leading choice for lithium-water batteries however, because current non-membrane approaches being pursued by other research groups suffer from two insurmountable problems - storage and non-productive energy loss via direct lithium/water reaction. In this paper, we present the results of our latest investigations into the transport of water and permanent gasses, such as carbon dioxide, through polyphosphazene SPE materials designed to address the challenges inherent in lithium water batteries.

  8. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  9. Lithium batteries for pulse power

    SciTech Connect

    Redey, L.

    1990-01-01

    New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

  10. Laminar Multicell Lithium Batteries

    SciTech Connect

    Bruder, A. H.

    1984-01-31

    Laminar batteries of series connected cells comprising lithium anodes and an electrolyte containing a passivating solvent reactive with lithium in which the cells are electrically connected in series by intercell barriers comprising outer layers of electrochemically inert electronically conducting material in contact with the electrochemically active anode and cathode of adjacent cells and a layer of metal foil between the electrochemically inert layers.

  11. Nanomaterials for rechargeable lithium batteries.

    PubMed

    Bruce, Peter G; Scrosati, Bruno; Tarascon, Jean-Marie

    2008-01-01

    Energy storage is more important today than at any time in human history. Future generations of rechargeable lithium batteries are required to power portable electronic devices (cellphones, laptop computers etc.), store electricity from renewable sources, and as a vital component in new hybrid electric vehicles. To achieve the increase in energy and power density essential to meet the future challenges of energy storage, new materials chemistry, and especially new nanomaterials chemistry, is essential. We must find ways of synthesizing new nanomaterials with new properties or combinations of properties, for use as electrodes and electrolytes in lithium batteries. Herein we review some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries. PMID:18338357

  12. Ceramic-metal seals for advanced battery systems. [sodium sulfur and lithium sulfur batteries

    NASA Technical Reports Server (NTRS)

    Reed, L.

    1978-01-01

    The search for materials which are electrochemically compatible with the lithium sulfur and sodium sulfur systems is discussed. The use liquid or braze alloys, titanium hydrite coatings, and tungsten yttria for bonding beryllium with ceramic is examined.

  13. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    DOE PAGESBeta

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembledmore » into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.« less

  14. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    SciTech Connect

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.

  15. Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries.

    PubMed

    Li, Xuemin; Wolden, Colin A; Ban, Chunmei; Yang, Yongan

    2015-12-30

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1-5 μm). Electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency. PMID:26633238

  16. Polymer Electrolytes for Lithium/Sulfur Batteries

    PubMed Central

    Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296

  17. An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode

    NASA Astrophysics Data System (ADS)

    Hassoun, Jusef; Bonaccorso, Francesco; Agostini, Marco; Angelucci, Marco; Betti, Maria Grazia; Cingolani, Roberto; Gemmi, Mauro; Mariani, Carlo; Panero, Stefania; Pellegrini, Vittorio; Scrosati, Bruno

    2014-08-01

    Li-ion rechargeable batteries have enabled the wireless revolution transforming global communication. Future challenges, however, demands distributed energy supply at a level that is not feasible with the current energy-storage technology. New materials, capable of providing higher energy density are needed. Here we report a new class of lithium-ion batteries based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode, we demonstrate an optimal battery performance in terms of specific capacity, i.e. 165 mAhg-1, estimated energy density of about 190 Whkg-1 and life, with a stable operation for over 80 charge-discharge cycles. We link these unique properties to the graphene nanoflake anode displaying crystalline order and high uptake of lithium at the edges, as well as to its structural and morphological optimization in relation to the overall battery composition. Our approach, compatible with any printing technologies, is cheap and scalable and opens up new opportunities for the development of high-capacity Li-ion batteries.

  18. Si composite electrode with Li metal doping for advanced lithium-ion battery

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  19. An advanced lithium-air battery exploiting an ionic liquid-based electrolyte.

    PubMed

    Elia, G A; Hassoun, J; Kwak, W-J; Sun, Y-K; Scrosati, B; Mueller, F; Bresser, D; Passerini, S; Oberhumer, P; Tsiouvaras, N; Reiter, J

    2014-11-12

    A novel lithium-oxygen battery exploiting PYR14TFSI-LiTFSI as ionic liquid-based electrolyte medium is reported. The Li/PYR14TFSI-LiTFSI/O2 battery was fully characterized by electrochemical impedance spectroscopy, capacity-limited cycling, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The results of this extensive study demonstrate that this new Li/O2 cell is characterized by a stable electrode-electrolyte interface and a highly reversible charge-discharge cycling behavior. Most remarkably, the charge process (oxygen oxidation reaction) is characterized by a very low overvoltage, enhancing the energy efficiency to 82%, thus, addressing one of the most critical issues preventing the practical application of lithium-oxygen batteries. PMID:25329836

  20. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes.

    PubMed

    Devaraj, A; Gu, M; Colby, R; Yan, P; Wang, C M; Zheng, J M; Xiao, J; Genc, A; Zhang, J G; Belharouak, I; Wang, D; Amine, K; Thevuthasan, S

    2015-01-01

    The distribution of cations in Li-ion battery cathodes as a function of cycling is a pivotal characteristic of battery performance. The transition metal cation distribution has been shown to affect cathode performance; however, Li is notoriously challenging to characterize with typical imaging techniques. Here laser-assisted atom probe tomography (APT) is used to map the three-dimensional distribution of Li at a sub-nanometre spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. As-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions. Cycled material has an overall loss of Li in addition to Ni-, Mn- and Li-rich regions. Spinel LiNi0.5Mn1.5O4 is shown to have a uniform distribution of all cations. APT results were compared to energy dispersive spectroscopy mapping with a scanning transmission electron microscope to confirm the transition metal cation distribution. PMID:26272722

  1. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    PubMed Central

    Devaraj, A.; Gu, M.; Colby, R.; Yan, P.; Wang, C. M.; Zheng, J. M.; Xiao, J.; Genc, A.; Zhang, J. G.; Belharouak, I.; Wang, D.; Amine, K.; Thevuthasan, S.

    2015-01-01

    The distribution of cations in Li-ion battery cathodes as a function of cycling is a pivotal characteristic of battery performance. The transition metal cation distribution has been shown to affect cathode performance; however, Li is notoriously challenging to characterize with typical imaging techniques. Here laser-assisted atom probe tomography (APT) is used to map the three-dimensional distribution of Li at a sub-nanometre spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. As-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions. Cycled material has an overall loss of Li in addition to Ni-, Mn- and Li-rich regions. Spinel LiNi0.5Mn1.5O4 is shown to have a uniform distribution of all cations. APT results were compared to energy dispersive spectroscopy mapping with a scanning transmission electron microscope to confirm the transition metal cation distribution. PMID:26272722

  2. The NASA "PERS" Program: Solid Polymer Electrolyte Development for Advanced Lithium-Based Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    In fiscal year 2000, The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The ultimate objective of this development program, which was referred to as the Polymer Energy Rechargeable System (PERS), was to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. Out of a total of 38 proposals received in response to a NASA Research Announcement (NRA) solicitation, 18 proposals (13 contracts and 5 grants) were selected for initial award to address these technical challenges. Brief summaries of technical approaches, results and accomplishments of the PERS Program development efforts are presented. With Agency support provided through FY 2004, the PERS Program efforts were concluded in 2005, as internal reorganizations and funding cuts resulted in shifting programmatic priorities within NASA. Technically, the PERS Program participants explored, to various degrees over the lifetime of the formal program, a variety of conceptual approaches for developing and demonstrating performance of a viable advanced solid polymer electrolyte possessing the desired attributes, as well as several participants addressing all components of an integrated cell configuration. Programmatically, the NASA PERS Program was very successful, even though the very challenging technical goals for achieving a viable solid polymer electrolyte material or

  3. Materials for advanced batteries

    SciTech Connect

    Murphy, D.W.; Broadhead, J.

    1980-01-01

    The requirements of battery systems are considered along with some recent studies of materials of importance in aqueous electrochemical energy-storage systems, lithium-aluminum/iron sulfide batteries, solid electrolytes, molten salt electrolytes in secondary batteries, the recharging of the lithium electrode in organic electrolytes, intercalation electrodes, and interface phenomena in advanced batteries. Attention is given to a lead-acid battery overview, the design and development of micro-reference electrodes for the lithium/metal-sulfide cell system, molten salt electrochemical studies and high energy density cell development, a selenium (IV) cathode in molten chloroaluminates, and the behavior of hard and soft ions in solid electrolytes. Other topics explored are related to the use of the proton conductor hydrogen uranyl phosphate tetrahydrate as the solid electrolyte in hydride-air batteries and hydrogen-oxygen fuel cells, the behavior of the passivating film in Li/SOCl2 cells under various conditions, and the analysis of surface insulating films in lithium nitride crystals.

  4. Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  5. Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  6. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 GDR Performance Evaluation Report

    SciTech Connect

    Jon P. Christophersen; Chinh D. Ho; Gary L. Henriksen; David Howell

    2006-07-01

    The Advanced Technology Development Program has completed the performance evaluation of the second generation of lithium-ion cells (i.e., Gen 2 cells). This report documents the testing and analysis of the Gen 2 GDR cells, which were used to learn and debug the newly developed Technology Life Verification Test Manual. The purpose of the manual is to project a 15-year, 150,000 mile battery life capability with a 90% confidence interval using predictive models and short-term testing. The GDR cells were divided into two different matrices. The core-life test matrix consisted of calendar- and cycle-life cells with various changes to the four major acceleration factors (temperature, state-of-charge, throughput, and power rating). The supplemental-life test matrix consisted of cells subjected either to a path dependence study, or a comparison between the standard hybrid pulse power characterization test and the newly-developed minimum pulse power characterization test. Resistance and capacity results are reported.

  7. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries.

    PubMed

    Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi

    2014-06-11

    Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries. PMID:24844948

  8. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  9. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  10. Membranes in Lithium Ion Batteries

    PubMed Central

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  11. 77 FR 28259 - Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... for mailpieces containing lithium metal or lithium-ion cells or batteries and applies regardless of...'' instead of ``lithium content'' for secondary lithium-ion batteries when describing maximum quantity limits...-ion (Rechargeable) Cells and Batteries Small consumer-type lithium-ion cells and batteries like...

  12. Commercialization of advanced batteries

    SciTech Connect

    Mader, J.

    1996-11-01

    Mader and Associates has been working as a contractor for the South Coast Air Quality Management District (District) for the past several years. During this period it has performed various assessments of advanced battery technology as well as established the Advanced Battery Task Force. The following paper is Mader`s view of the status of battery technologies that are competing for the electric vehicle (EV) market being established by the California Air Resources Board`s Zero Emission Vehicle (ZEV) Mandate. The ZEV market is being competed for by various advanced battery technologies. And, given the likelihood of modifications to the Mandate, the most promising technologies should capture the following market share during the initial 10 years: Lead-Acid--8.4%, Nickel Metal Hydride--50.8%, Sodium Sulfur--7.8%, Lithium Ion 33.0%.

  13. Manufacturing of advanced Li(NiMnCo)O2 electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Smyrek, P.; Pröll, J.; Rakebrandt, J.-H.; Seifert, H. J.; Pfleging, W.

    2015-03-01

    Lithium-ion batteries require an increase in cell life-time as well as an improvement in cycle stability in order to be used as energy storage systems, e.g. for stationary devices or electric vehicles. Nowadays, several cathode materials such as Li(NiMnCo)O2 (NMC) are under intense investigation to enhanced cell cycling behavior by simultaneously providing reasonable costs. Previous studies have shown that processing of three-dimensional (3D) micro-features in electrodes using nanosecond laser radiation further increases the active surface area and therefore, the lithium-ion diffusion cell kinetics. Within this study, NMC cathodes were prepared by tape-casting and laser-structured using nanosecond laser radiation. Furthermore, laser-induced breakdown spectroscopy (LIBS) was used in a first experimental attempt to analyze the lithium distribution in unstructured NMC cathodes at different state-of-charges (SOC). LIBS will be applied to laser-structured cathodes in order to investigate the lithium distribution at different SOC. The results will be compared to those obtained for unstructured electrodes to examine advantages of 3D micro-structures with respect to lithium-ion diffusion kinetics.

  14. Solid-state lithium battery

    SciTech Connect

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  15. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect

    Gallego, Nidia C; Contescu, Cristian I; Meyer III, Harry M; Howe, Jane Y; Meisner, Roberta Ann; Payzant, E Andrew; Lance, Michael J; Yoon, Steve; Denlinger, Matthew; Wood III, David L

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  16. Modified Separator Using Thin Carbon Layer Obtained from Its Cathode for Advanced Lithium Sulfur Batteries.

    PubMed

    Liu, Naiqiang; Huang, Bicheng; Wang, Weikun; Shao, Hongyuan; Li, Chengming; Zhang, Hao; Wang, Anbang; Yuan, Keguo; Huang, Yaqin

    2016-06-29

    The realization of a practical lithium sulfur battery system, despite its high theoretical specific capacity, is severely limited by fast capacity decay, which is mainly attributed to polysulfide dissolution and shuttle effect. To address this issue, we designed a thin cathode inactive material interlayer modified separator to block polysulfides. There are two advantages for this strategy. First, the coating material totally comes from the cathode, thus avoids the additional weights involved. Second, the cathode inactive material modified separator improve the reversible capacity and cycle performance by combining gelatin to chemically bond polysulfides and the carbon layer to physically block polysulfides. The research results confirm that with the cathode inactive material modified separator, the batteries retain a reversible capacity of 644 mAh g(-1) after 150 cycles, showing a low capacity decay of about 0.11% per circle at the rate of 0.5C. PMID:27267483

  17. Nitrogen-Doped Carbon Embedded MoS2 Microspheres as Advanced Anodes for Lithium- and Sodium-Ion Batteries.

    PubMed

    Xie, Dong; Xia, Xinhui; Wang, Yadong; Wang, Donghuang; Zhong, Yu; Tang, Wangjia; Wang, Xiuli; Tu, Jiangping

    2016-08-01

    Rational design and synthesis of advanced anode materials are extremely important for high-performance lithium-ion and sodium-ion batteries. Herein, a simple one-step hydrothermal method is developed for fabrication of N-C@MoS2 microspheres with the help of polyurethane as carbon and nitrogen sources. The MoS2 microspheres are composed of MoS2 nanoflakes, which are wrapped by an N-doped carbon layer. Owing to its unique structural features, the N-C@MoS2 microspheres exhibit greatly enhanced lithium- and sodium-storage performances including a high specific capacity, high rate capability, and excellent capacity retention. Additionally, the developed polyurethane-assisted hydrothermal method could be useful for the construction of many other high-capacity metal oxide/sulfide composite electrode materials for energy storage. PMID:27355199

  18. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  19. Conductive Polymer-Coated VS4 Submicrospheres As Advanced Electrode Materials in Lithium-Ion Batteries.

    PubMed

    Zhou, Yanli; Li, Yanlu; Yang, Jing; Tian, Jian; Xu, Huayun; Yang, Jian; Fan, Weiliu

    2016-07-27

    VS4 as an electrode material in lithium-ion batteries holds intriguing features like high content of sulfur and one-dimensional structure, inspiring the exploration in this field. Herein, VS4 submicrospheres have been synthesized via a simple solvothermal reaction. However, they quickly degrade upon cycling as an anode material in lithium-ion batteries. So, three conductive polymers, polythiophene (PEDOT), polypyrrole (PPY), and polyaniline (PANI), are coated on the surface to improve the electron conductivity, suppress the diffusion of polysulfides, and modify the interface between electrode/electrolyte. PANI is the best in the polymers. It improves the Coulombic efficiency to 86% for the first cycle and keeps the specific capacity at 755 mAh g(-1) after 50 cycles, higher than the cases of naked VS4 (100 mAh g(-1)), VS4@PEDOT (318 mAh g(-1)), and VS4@PPY (448 mAh g(-1)). The good performances could be attributed to the improved charge-transfer kinetics and the strong interaction between PANI and VS4 supported by theoretical simulation. The discharge voltage ∼2.0 V makes them promising cathode materials. PMID:27377263

  20. High capacity tin-iron oxide-carbon nanostructured anode for advanced lithium ion battery

    NASA Astrophysics Data System (ADS)

    Verrelli, Roberta; Hassoun, Jusef

    2015-12-01

    A novel nanostructured Sn-Fe2O3-C anode material, prepared by high-energy ball milling, is here originally presented. The anode benefits from a unique morphology consisting in Fe2O3 and Sn active nanoparticles embedded in a conductive buffer carbon matrix of micrometric size. Furthermore, the Sn metal particles, revealed as amorphous according to X-ray diffraction measurement, show a size lower than 10 nm by transmission electron microscopy. The optimal combination of nano-scale active materials and micrometric electrode configuration of the Sn-Fe2O3-C anode reflects into remarkable electrochemical performances in lithium cell, with specific capacity content higher than 900 mAh g-1 at 1C rate (810 mA g-1) and coulombic efficiency approaching 100% for 100 cycles. The anode, based on a combination of lithium conversion, alloying and intercalation reactions, exhibits exceptional rate-capability, stably delivering more than 400 mAh g-1 at the very high current density of 4 A g-1. In order to fully confirm the suitability of the developed Sn-Fe2O3-C material as anode for lithium ion battery, the electrode is preliminarily studied in combination with a high voltage LiNi0.5Mn1.5O4 cathode in a full cell stably and efficiently operating with a 3.7 V working voltage and a capacity exceeding 100 mAh g-1.

  1. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.

    PubMed

    Meng, Ying Shirley; Arroyo-de Dompablo, M Elena

    2013-05-21

    To meet the increasing demands of energy storage, particularly for transportation applications such as plug-in hybrid electric vehicles, researchers will need to develop improved lithium-ion battery electrode materials that exhibit high energy density, high power, better safety, and longer cycle life. The acceleration of materials discovery, synthesis, and optimization will benefit from the combination of both experimental and computational methods. First principles (ab Initio) computational methods have been widely used in materials science and can play an important role in accelerating the development and optimization of new energy storage materials. These methods can prescreen previously unknown compounds and can explain complex phenomena observed with these compounds. Intercalation compounds, where Li(+) ions insert into the host structure without causing significant rearrangement of the original structure, have served as the workhorse for lithium ion rechargeable battery electrodes. Intercalation compounds will also facilitate the development of new battery chemistries such as sodium-ion batteries. During the electrochemical discharge reaction process, the intercalating species travel from the negative to the positive electrode, driving the transition metal ion in the positive electrode to a lower oxidation state, which delivers useful current. Many materials properties change as a function of the intercalating species concentrations (at different state of charge). Therefore, researchers will need to understand and control these dynamic changes to optimize the electrochemical performance of the cell. In this Account, we focus on first-principles computational investigations toward understanding, controlling, and improving the intrinsic properties of five well known high energy density Li intercalation electrode materials: layered oxides (LiMO2), spinel oxides (LiM2O4), olivine phosphates (LiMPO4), silicates-Li2MSiO4, and the tavorite-LiM(XO4)F (M = 3d

  2. Separator for lithium batteries and lithium batteries including the separator

    SciTech Connect

    Foster, D.L.

    1989-03-14

    A multilayer separator is described for preventing the internal shorting of lithium batteries, the multilayer separator including porous membranes and an electroactive polymeric material contained within the separator layers wherein the polymer is one that will react with any lithium dendrites that could penetrate the separator thus preventing an internal short circuit of the cell.

  3. Modeling the Lithium Ion Battery

    ERIC Educational Resources Information Center

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  4. NASA/Marshall's lithium battery applications

    NASA Technical Reports Server (NTRS)

    Paschal, L. E.

    1980-01-01

    A general lithium battery is described and a summary of lithium battery applications is presented. Four aspects of a particular lithium battery, the inducement environmental contamination monitoring battery, are discussed-design and construction details, thermal vacuum tests, projection tests, and acceptance tests.

  5. Intercell connector for lithium batteries

    SciTech Connect

    Bruder, A.H.

    1984-10-16

    Laminar batteries of series connected cells comprising lithium anodes and an electrolyte containing a passivating solvent reactive with lithium in which the cells are electrically connected in series by intercell barriers comprising outer layers of electrochemically inert electronically conducting material in contact with the electrochemically active anode and cathode of adjacent cells and a layer of metal foil between the electrochemically inert layers.

  6. Primary lithium batteries, some consumer considerations

    NASA Technical Reports Server (NTRS)

    Bro, P.

    1983-01-01

    In order to determine whether larger size lithium batteries would be commercially marketable, the performance of several D size lithium batteries was compared with that of an equivalent alkaline manganese battery, and the relative costs of the different systems were compared. It is concluded that opportunities exist in the consumer market for the larger sizes of the low rate and moderate rate lithium batteries, and that the high rate lithium batteries need further improvements before they can be recommended for consumer applications.

  7. Lithium-air batteries: Something from nothing

    NASA Astrophysics Data System (ADS)

    Cheng, Fangyi; Chen, Jun

    2012-12-01

    The reversible reduction and evolution of oxygen are the key processes to be mastered before high-energy rechargeable lithium-air batteries can be successfully created. Now an advance towards this goal has been achieved with the synthesis of a pyrochlore catalyst that benefits from a mesoporous structure and oxygen deficiencies.

  8. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.

    PubMed

    Suo, Liumin; Borodin, Oleg; Sun, Wei; Fan, Xiulin; Yang, Chongyin; Wang, Fei; Gao, Tao; Ma, Zhaohui; Schroeder, Marshall; von Cresce, Arthur; Russell, Selena M; Armand, Michel; Angell, Austen; Xu, Kang; Wang, Chunsheng

    2016-06-13

    A new super-concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra-high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li-ion cell based on LiMn2 O4 and carbon-coated TiO2 delivered the unprecedented energy density of 100 Wh kg(-1) for rechargeable aqueous Li-ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the "water-in-salt" electrolyte further pushed the energy densities of aqueous Li-ion cells closer to those of the state-of-the-art Li-ion batteries. PMID:27120336

  9. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Srivastava, Manish; Singh, Jay; Kuila, Tapas; Layek, Rama K.; Kim, Nam Hoon; Lee, Joong Hee

    2015-03-01

    Today, one of the major challenges is to provide green and powerful energy sources for a cleaner environment. Rechargeable lithium-ion batteries (LIBs) are promising candidates for energy storage devices, and have attracted considerable attention due to their high energy density, rapid response, and relatively low self-discharge rate. The performance of LIBs greatly depends on the electrode materials; therefore, attention has been focused on designing a variety of electrode materials. Graphene is a two-dimensional carbon nanostructure, which has a high specific surface area and high electrical conductivity. Thus, various studies have been performed to design graphene-based electrode materials by exploiting these properties. Metal-oxide nanoparticles anchored on graphene surfaces in a hybrid form have been used to increase the efficiency of electrode materials. This review highlights the recent progress in graphene and graphene-based metal-oxide hybrids for use as electrode materials in LIBs. In particular, emphasis has been placed on the synthesis methods, structural properties, and synergetic effects of metal-oxide/graphene hybrids towards producing enhanced electrochemical response. The use of hybrid materials has shown significant improvement in the performance of electrodes.

  10. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S.; Ahn, Jou-Hyeon

    2016-09-01

    Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g-1 and enhanced capacity retention of 862 mAh g-1 at 0.1 C after 100 cycles.

  11. Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Wang, Baofeng; Xiao, Feng; Huang, Zhenguo; Wang, Yijing; Richardson, Christopher; Chen, Zhixin; Jiao, Lifang; Yuan, Huatang

    2015-12-01

    A facile two-step annealing process is applied to synthesize nanocage Co3O4, using cobalt-based metal-organic framework as precursor and template. The as-obtained nanocages are composed of numerous Co3O4 nanoparticles. N2 adsorption-desorption isotherms show that the as-obtained Co3O4 has a porous structure with a favorable surface area of 110.6 m2 g-1. Electrochemical tests show that nanocage Co3O4 is a potential candidate as anode for lithium-ion batteries. A reversible specific capacity of 810 mAh g-1 was obtained after 100 cycles at a high specific current of 500 mA g-1. The material also displays good rate capability, with a reversible capacity of 1069, 1063, 850, and 720 mAh g-1 at specific current of 100, 200, 800, and 1000 mA g-1, respectively. The good electrochemical performance of nanocage Co3O4 can be attributed to its unique hierarchical hollow structure, which is maintained during electrochemical cycling.

  12. Toxicity of materials used in the manufacture of lithium batteries

    SciTech Connect

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  13. Toxicity of materials used in the manufacture of lithium batteries

    NASA Astrophysics Data System (ADS)

    Archuleta, Melecita M.

    The growing interest in battery systems has led to major advances in high-energy and/or high-power density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  14. Michael Thackeray on Lithium-air Batteries

    SciTech Connect

    Thackeray, Michael

    2009-01-01

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  15. Michael Thackeray on Lithium-air Batteries

    ScienceCinema

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  16. Khalil Amine on Lithium-air Batteries

    ScienceCinema

    Khalil Amine

    2010-01-08

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  17. Khalil Amine on Lithium-air Batteries

    SciTech Connect

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  18. Lithium Redistribution in Lithium-Metal Batteries

    SciTech Connect

    Ferrese, A; Albertus, P; Christensen, J; Newman, J

    2012-01-01

    A model of a lithium-metal battery with a CoO2 positive electrode has been modeled in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. A finite-element approach was used to incorporate an intercalation positive electrode using superposition, electrode tabbing, transport using concentrated solution theory, as well as the net movement of the lithium electrode during cycling. From this model, it has been found that movement of lithium along the negative electrode/separator interface does occur during cycling and is affected by three factors: the cell geometry, the slope of the open-circuit-potential function of the positive electrode, and concentration gradients in both the solid and liquid phases in the cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.027210jes] All rights reserved.

  19. Novel Electrolytes for Lithium Ion Batteries

    SciTech Connect

    Lucht, Brett L

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  20. Advanced batteries for electric vehicles

    SciTech Connect

    Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. )

    1994-11-01

    The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

  1. Redox shuttles for safer lithium-ion batteries.

    SciTech Connect

    Chen, Z.; Qin, Y.; Amine, K.; Chemical Sciences and Engineering Division

    2009-10-01

    Overcharge protection is not only critical for preventing the thermal runaway of lithium-ion batteries during operation, but also important for automatic capacity balancing during battery manufacturing and repair. A redox shuttle is an electrolyte additive that can be used as intrinsic overcharge protection mechanism to enhance the safety characteristics of lithium-ion batteries. The advances on stable redox shuttles are briefly reviewed. Fundamental studies for designing stable redox shuttles are also discussed.

  2. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  3. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  4. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  5. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  6. Anodes for rechargeable lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  7. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  8. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  9. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report

    SciTech Connect

    Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell

    2006-07-01

    The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

  10. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    NASA Astrophysics Data System (ADS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials.

  11. Gelled Electrolytes For Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Attia, Alan; Halpert, Gerald

    1993-01-01

    Gelled polymer electrolyte consists of polyacrylonitrile (PAN), LiBF4, and propylene carbonate (PC). Thin films of electrolyte found to exhibit stable bulk conductivities of order of 10 to the negative 3rd power S/cm at room temperature. Used in thinfilm rechargeable lithium batteries having energy densities near 150 W h/kg.

  12. Army position on lithium battery safety

    NASA Technical Reports Server (NTRS)

    Reiss, E.

    1982-01-01

    User requirements for lithium sulfur batteries are presented. They include careful analysis of design and quality control, along with certain equipment specifications. Some of the specifications include: hermetically sealed cells; lithium limited cells with stoichiometry of lithium to sulfur dioxide as a ratio of one; low moisture content in the cells; and battery capacity.

  13. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  14. Design Evaluation of High Reliability Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Buchman, R. C.; Helgeson, W. D.; Istephanous, N. S.

    1985-01-01

    Within one year, a lithium battery design can be qualified for device use through the application of accelerated discharge testing, calorimetry measurements, real time tests and other supplemental testing. Materials and corrosion testing verify that the battery components remain functional during expected battery life. By combining these various methods, a high reliability lithium battery can be manufactured for applications which require zero defect battery performance.

  15. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  16. Lithium Ion Battery Design and Safety

    NASA Technical Reports Server (NTRS)

    Au, George; Locke, Laura

    2001-01-01

    This viewgraph presentation makes several recommendations to ensure the safe and effective design of Lithium ion cell batteries. Large lithium ion cells require pressure switches and small cells require pressure disconnects and other safety devices with the ability to instantly interrupt flow. Other suggestions include specifications for batteries and battery chargers.

  17. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  18. Lithium disulfide battery

    DOEpatents

    Kaun, Thomas D.

    1988-01-01

    A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

  19. Lithium thionyl chloride battery

    SciTech Connect

    Saathoff, D.J.; Venkatasetty, H.V.

    1982-10-19

    The discharge rate and internal conductivity of electrochemical cell including a lithium anode, and a cathode and an electrolyte including LiAlCl4 and SOC2 is improved by the addition of an amount of a mixture containing AlCl3 and butyl pyridinium chloride.

  20. Lithium battery discharge tests

    NASA Technical Reports Server (NTRS)

    Johnson, C. J.

    1980-01-01

    The long term discharge of a variety of lithium cells was characterized and the susceptibility of the cells to chemical variation during the slow discharge was tested. A shunt resistor was set across the terminals to monitor the voltage as a function of time. Failures were identified by premature voltage drops.

  1. Lithium-Ion Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.

    1999-01-01

    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.

  2. Electrolytes for lithium ion batteries

    SciTech Connect

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  3. Issues and challenges facing rechargeable lithium batteries.

    PubMed

    Tarascon, J M; Armand, M

    2001-11-15

    Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems. PMID:11713543

  4. STS lithium/CF(x) battery

    NASA Technical Reports Server (NTRS)

    Gnacek, Dee

    1991-01-01

    Lithium carbon fluoride batteries are used on Space Shuttle Rocket Boosters and external tanks. These batteries have been extremely successful in terms of mission reliability with the exception of cell yield variances. The function/system and battery descriptions are given. A description is given of the battery range safety system.

  5. Calendar-Life and Cycle-Life Studies of Advanced Technology Development Program Generation 1 Lithium-Ion Batteries

    SciTech Connect

    Wright, Randy Ben; Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Ho, Chinh Dac; Richardson, Roger Allen; Bloom, I.; Jones, S. A.; Battaglia, Vincent S.; Henriksen, G. L.; Unkelhaeuser, T.; Ingersoll, D.; Case, H. L.; Rogers, S. A.; Sutula, R. A.

    2002-08-01

    This paper presents the test results and life modeling of special calendar- and cycle-life tests conducted on 18650-size generation 1 (Gen 1) lithium-ion battery cells (nominal capacity of 0.9 Ah; 3.0–4.1 V rating) developed to establish a baseline chemistry and performance for the Department of Energy sponsored advanced technology development (ATD) program. Electrical performance testing was conducted at the Argonne National Laboratory (ANL), Sandia National Laboratory (SNL) and the Idaho National Engineering and Environmental Laboratory (INEEL). As part of the electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once per day discharge and charge pulse designed to have minimal impact on the cell yet establish its performance over a period of time such that the calendar-life of the cell could be determined. The calendar-life test matrix included two states-of-charge (SOCs) (i.e. 60 and 80%) and four test temperatures (40, 50, 60 and 70 °C). Discharge and regen resistances were calculated from the test data. Results indicate that both the discharge and regen resistances increased non-linearly as a function of the test time. The magnitude of the resistances depended on the temperature and SOC at which the test was conducted. Both resistances had a non-linear increase with respect to time at test temperature. The discharge resistances are greater than the regen resistances at all of the test temperatures of 40, 50, 60 and 70 °C. For both the discharge and regen resistances, generally the higher the test temperature, the lower the resistance.

  6. New Horizons for Conventional Lithium Ion Battery Technology.

    PubMed

    Erickson, Evan M; Ghanty, Chandan; Aurbach, Doron

    2014-10-01

    Secondary lithium ion battery technology has made deliberate, incremental improvements over the past four decades, providing sufficient energy densities to sustain a significant mobile electronic device industry. Because current battery systems provide ∼100-150 km of driving distance per charge, ∼5-fold improvements are required to fully compete with internal combustion engines that provide >500 km range per tank. Despite expected improvements, the authors believe that lithium ion batteries are unlikely to replace combustion engines in fully electric vehicles. However, high fidelity and safe Li ion batteries can be used in full EVs plus range extenders (e.g., metal air batteries, generators with ICE or gas turbines). This perspective article describes advanced materials and directions that can take this technology further in terms of energy density, and aims at delineating realistic horizons for the next generations of Li ion batteries. This article concentrates on Li intercalation and Li alloying electrodes, relevant to the term Li ion batteries. PMID:26278438

  7. Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance.

    PubMed

    Fang, Jason; Kelarakis, Antonios; Lin, Yueh-Wei; Kang, Chi-Yun; Yang, Ming-Huan; Cheng, Cheng-Liang; Wang, Yue; Giannelis, Emmanuel P; Tsai, Li-Duan

    2011-08-28

    We report a simple, scalable approach to improve the interfacial characteristics and, thereby, the performance of commonly used polyolefin based battery separators. The nanoparticle-coated separators are synthesized by first plasma treating the membrane in oxygen to create surface anchoring groups followed by immersion into a dispersion of positively charged SiO(2) nanoparticles. The process leads to nanoparticles electrostatically adsorbed not only onto the exterior of the surface but also inside the pores of the membrane. The thickness and depth of the coatings can be fine-tuned by controlling the ζ-potential of the nanoparticles. The membranes show improved wetting to common battery electrolytes such as propylene carbonate. Cells based on the nanoparticle-coated membranes are operable even in a simple mixture of EC/PC. In contrast, an identical cell based on the pristine, untreated membrane fails to be charged even after addition of a surfactant to improve electrolyte wetting. When evaluated in a Li-ion cell using an EC/PC/DEC/VC electrolyte mixture, the nanoparticle-coated separator retains 92% of its charge capacity after 100 cycles compared to 80 and 77% for the plasma only treated and pristine membrane, respectively. PMID:21731963

  8. Materials for rechargeable lithium-ion batteries.

    PubMed

    Hayner, Cary M; Zhao, Xin; Kung, Harold H

    2012-01-01

    The lithium-ion battery is the most promising battery candidate to power battery-electric vehicles. For these vehicles to be competitive with those powered by conventional internal combustion engines, significant improvements in battery performance are needed, especially in the energy density and power delivery capabilities. Recent discoveries and advances in the development of electrode materials to improve battery performance are summarized. Promising substitutes for graphite as the anode material include silicon, tin, germanium, their alloys, and various metal oxides that have much higher theoretical storage capacities and operate at slightly higher and safer potentials. Designs that attempt to accommodate strain owing to volumetric changes upon lithiation and delithiation are presented. All known cathode materials have storage capacities inferior to those of anode materials. In addition to variations on known transition metal oxides and phosphates, other potential materials, such as metal fluorides, are discussed as well as the effects of particle size and electrode architecture. New electrolyte systems and additives as well as their effects on battery performance, especially with regard to safety, are described. PMID:22524506

  9. Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector

    SciTech Connect

    Martha, Surendra K; Kiggans, Jim; Nanda, Jagjit; Dudney, Nancy J

    2011-01-01

    To fabricate LiFePO4 battery cathodes, highly conductive carbon fibers of 10-20 m in diameter have been used to replace a conventional aluminum (Al) foil current collector. This disperses the current collector throughout the cathode sheet and increases the contact area with the LiFePO4 (LFP) particles. In addition, the usual organic binder plus carbon-black can be replaced by a high temperature binder of <5 weight % carbonized petroleum pitch (P-pitch). Together these replacements increase the specific energy density and energy per unit area of the electrode. Details of the coating procedure, characterization and approach for maximizing the energy density are discussed. In a side-by-side comparison with conventional cathodes sheets of LFP on Al foil, the carbon fiber composite cathodes have a longer cycle life, higher thermal stability, and high capacity utilization with little sacrifice of the rate performance.

  10. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2013-10-29

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  11. Lithium Battery Power Delivers Electric Vehicles to Market

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Hybrid Technologies Inc., a manufacturer and marketer of lithium-ion battery electric vehicles, based in Las Vegas, Nevada, and with research and manufacturing facilities in Mooresville, North Carolina, entered into a Space Act Agreement with Kennedy Space Center to determine the utility of lithium-powered fleet vehicles. NASA contributed engineering expertise for the car's advanced battery management system and tested a fleet of zero-emission vehicles on the Kennedy campus. Hybrid Technologies now offers a series of purpose-built lithium electric vehicles dubbed the LiV series, aimed at the urban and commuter environments.

  12. Three-Dimensional Branched TiO2 Architectures in Controllable Bloom for Advanced Lithium-Ion Batteries.

    PubMed

    Wang, Shaofu; Qu, Dandan; Jiang, Yun; Xiong, Wan-Sheng; Sang, Hong-Qian; He, Rong-Xiang; Tai, Qidong; Chen, Bolei; Liu, Yumin; Zhao, Xing-Zhong

    2016-08-10

    Three-dimensional branched TiO2 architectures (3D BTA) with controllable morphologies were synthesized via a facile template-free one-pot solvothermal route. The volume ratio of deionized water (DI water) and diethylene glycol in solvothermal process is key to the formation of 3D BTA assembled by nanowire-coated TiO2 dendrites, which combines the advantages of 3D hierarchical structure and 1D nanoscale building blocks. Benefiting from such unique structural features, the BTA in full bloom achieved significantly increased specific surface areas and shortened Li(+) ion/electrons diffusion pathway. The lithium-ion batteries based on BTA in full bloom exhibited remarkably enhanced reversible specific capacity and rate performance, attributing to the high contact area with the electrolyte and the short solid state diffusion pathway for Li(+) ion/electrons promoting lithium insertion and extraction. PMID:27420343

  13. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries.

    PubMed

    Shui, Jiang-Lan; Okasinski, John S; Kenesei, Peter; Dobbs, Howard A; Zhao, Dan; Almer, Jonathan D; Liu, Di-Jia

    2013-01-01

    Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained ion-transport and battery operation until the total consumption of lithium. PMID:23929396

  14. Green energy storage materials: advanced nanostructured materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tripathi, Alok Mani; Chandrasekar, M. S.; Mitra, Sagar

    2011-06-01

    The projected doubling of world energy consumption in the next fifty years requires certain measures to meet this demand. The ideal energy provider is reliable, efficient, with low emissions source - wind, solar, etc. The low carbon footprint of renewables is an added benefit, which makes them especially attractive during this era of environmental consciousness. Unfortunately, the intermittent nature of energy from these renewables is not suitable for the commercial and residential grid application, unless the power delivery is 24/7, with minimum fluctuation. This requires intervention of efficient electrical energy storage technology to make power generation from renewable practical. The progress to higher energy and power density especially for battery technology will push material to the edge of stability and yet these materials must be rendered safe, stable and with reliable operation throughout their long life. A major challenge for chemical energy storage is developing the ability to store more energy while maintaining stable electrode-electrolyte interface. A structural transformation occurs during charge-discharge cycle, accompanied by a volume change, degrading the microstructure over-time. The need to mitigate this volume and structural change accompanying charge-discharge cycle necessitates going to nanostructured and multifunctional materials that have the potential of dramatically enhancing the energy density and power density.

  15. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  16. Anode materials for lithium-ion batteries

    DOEpatents

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  17. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  18. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1995-06-01

    Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

  19. A Cable-Shaped Lithium Sulfur Battery.

    PubMed

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. PMID:26585740

  20. An improved high-performance lithium-air battery

    NASA Astrophysics Data System (ADS)

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-07-01

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh gcarbon-1 and 3 A gcarbon-1, respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  1. An improved high-performance lithium-air battery.

    PubMed

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-07-01

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology. PMID:22717445

  2. A review of lithium and non-lithium based solid state batteries

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam

    2015-05-01

    Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.

  3. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Federal Aviation Administration Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  4. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Federal Aviation Administration Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  5. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... Federal Aviation Administration First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  6. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Federal Aviation Administration Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  7. Rechargeable lithium battery technology - A survey

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1990-01-01

    The technology of the rechargeable lithium battery is discussed with special attention given to the types of rechargeable lithium cells and to their expected performance and advantages. Consideration is also given to the organic-electrolyte and polymeric-electrolyte cells and to molten salt lithium cells, as well as to technical issues, such as the cycle life, charge control, rate capability, cell size, and safety. The role of the rechargeable lithium cell in future NASA applications is discussed.

  8. Issue and challenges facing rechargeable thin film lithium batteries

    SciTech Connect

    Patil, Arun; Patil, Vaishali; Shin, Dong Wook; Choi, Ji-Won; Paik, Dong-Soo; Yoon, Seok-Jin

    2008-08-04

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5-6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development.

  9. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  10. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  11. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  12. Lithium ion batteries based on nanoporous silicon

    DOEpatents

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  13. Lithium batteries: Status, prospects and future

    NASA Astrophysics Data System (ADS)

    Scrosati, Bruno; Garche, Jürgen

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content.

  14. Lithium ion battery with improved safety

    DOEpatents

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  15. Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

    PubMed

    Ge, Hao; Hao, Tingting; Osgood, Hannah; Zhang, Bing; Chen, Li; Cui, Luxia; Song, Xi-Ming; Ogoke, Ogechi; Wu, Gang

    2016-04-13

    Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker agent and reducing agent during the synthesis. It was found to prevent the aggregation of LTO particles, and to yield mesoporous structures in nanocomposites. Moreover, GO is reduced to rGO by the hydroxyl groups on glucose during the hydrothermal process. When compared to previously reported LTO/graphene electrodes, the newly prepared LTO/rGO nanocomposite has mesoporous characteristics and provides additional surface lithium storage capability, superior to traditional LTO-based materials for LIBs. These unique properties lead to markedly improved electrochemical performance. In particular, the nanocomposite anode delivers an ultrahigh reversible capacity of 193 mA h g(-1) at 0.5 C and superior rate performance capable of retaining a capacity of 168 mA h g(-1) at 30 C between 1.0 and 2.5 V. Therefore, the newly prepared mesoporous LTO/rGO nanocomposite with increased surface lithium storage capability will provide a new opportunity to develop high-power anode materials for LIBs. PMID:27015357

  16. Encapsulating micro-nano Si/SiO(x) into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries.

    PubMed

    Wang, Jing; Zhou, Meijuan; Tan, Guoqiang; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-05-01

    Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge-discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both as binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g(-1) with 75% coulombic efficiency), stable cycle performance (988 mA h g(-1) after 100 cycles), and good rate capability (800 mA h g(-1) at 1 A g(-1) rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries. PMID:25865463

  17. Encapsulating micro-nano Si/SiOx into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhou, Meijuan; Tan, Guoqiang; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-04-01

    Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge-discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both as binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g-1 with 75% coulombic efficiency), stable cycle performance (988 mA h g-1 after 100 cycles), and good rate capability (800 mA h g-1 at 1 A g-1 rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries.

  18. An in-situ electrolytically formed lithium iodine battery

    NASA Astrophysics Data System (ADS)

    Yourey, William M.

    2011-12-01

    Today the lithium and lithium-ion batteries represent the premiere high energy density battery. Beyond improving performance, there is a desire to reduce cost of manufacture and enable battery technology to adapt conformally to a variety of operating environments. Recently Rutgers introduced a concept of electrolytically formed batteries (EFBs) as a type of self-assembled approach where the entire anode and cathode is formed in-situ on the atomic level. EFBs have the potential to offer a unique pathway to much lower cost cell manufacture (no electrodes, no lithium metal to handle), a non lithium metal containing reserve cell, and to form batteries in very demanding architectures such as those dictated by advanced 3-D battery designs. This thesis represents the first comprehensive research related to lithium EFBs, specifically one based on LiI. Specific focus on the structure and ionic and electronic transport of in-situ formed polyiodide networks will be discussed along with the key role of stabilizing interphases.

  19. Testing Conducted for Lithium-Ion Cell and Battery Verification

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  20. Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S Dual-Doped Mesoporous Carbon Coating for Advanced Lithium-Sulfur Batteries.

    PubMed

    Balach, Juan; Singh, Harish K; Gomoll, Selina; Jaumann, Tony; Klose, Markus; Oswald, Steffen; Richter, Manuel; Eckert, Jürgen; Giebeler, Lars

    2016-06-15

    Because of the outstanding high theoretical specific energy density of 2600 Wh kg(-1), the lithium-sulfur (Li-S) battery is regarded as a promising candidate for post lithium-ion battery systems eligible to meet the forthcoming market requirements. However, its commercialization on large scale is thwarted by fast capacity fading caused by the Achilles' heel of Li-S systems: the polysulfide shuttle. Here, we merge the physical features of carbon-coated separators and the unique chemical properties of N and S codoped mesoporous carbon to create a functional hybrid separator with superior polysulfide affinity and electrochemical benefits. DFT calculations revealed that carbon materials with N and S codoping possess a strong binding energy to high-order polysulfide species, which is essential to keep the active material in the cathode side. As a result of the synergistic effect of N, S dual-doping, an advanced Li-S cell with high specific capacity and ultralow capacity degradation of 0.041% per cycle is achieved. Pushing our simple-designed and scalable cathode to a highly increased sulfur loading of 5.4 mg cm(-2), the Li-S cell with the functional hybrid separator can deliver a remarkable areal capacity of 5.9 mAh cm(-2), which is highly favorable for practical applications. PMID:27225061

  1. Catastrophic event modeling. [lithium thionyl chloride batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  2. 76 FR 53056 - Outbound International Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... requirements established for mailpieces containing equipment with lithium metal or lithium-ion batteries in... exposure of the contents during normal handling in the mail. 135.63 Secondary Lithium-ion (Rechargeable) Cells and Batteries. Small consumer-type lithium-ion cells and batteries like those used to power...

  3. 77 FR 21714 - Hazardous Materials: Transportation of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Safety Administration, telephone (202) 366-1074. Background On January 11, 2010 (75 FR 1302), PHMSA, in... Assessment of Bulk-Packed, Rechargeable Lithium-Ion Cells in Transport Category Aircraft; April 2006 (DOT/FAA... configurations of lithium batteries: 1. Lithium ion batteries (PI 965). 2. Lithium ion batteries packed...

  4. Characterization of prototype secondary lithium battery

    NASA Technical Reports Server (NTRS)

    Somoano, R.

    1980-01-01

    The performance characteristics of ambient temperature secondary lithium batteries were determined through continuous cycle tests with periodic current and voltage measurements. Cycle life of the lithium anode was found to be an important problem area as was the formation of dentrite breakage and subsequent shorting. Energy density was increased by using more efficient cathode structures.

  5. Nanostructured lithium sulfide materials for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Kyu; Lee, Yun Jung; Sun, Yang-Kook

    2016-08-01

    Upon the maturation and saturation of Li-ion battery technologies, the demand for the development of energy storage systems with higher energy densities has surged to meet the needs of key markets such as electric vehicles. Among the many next generation high-energy storage options, the Lisbnd S battery system is considered particularly close to mass commercialization because of its low cost and the natural abundance of sulfur. In this review, we focus on nanostructured Li2S materials for Lisbnd S batteries. Due to a lithium source in its molecular structure, Li2S can be coupled with various Li-free anode materials, thereby giving it the potential to surmount many of the problems related with a Li-metal anode. The hurdles that impede the full utilization of Li2S materials include its high activation barrier and the low electrical conductivity of bulk Li2S particles. Various strategies that can be used to assist the activation process and facilitate electrical transport are analyzed. To provide insight into the opportunities specific to Li2S materials, we highlight some major advances and results that have been achieved in the development of metal Li-free full cells and all-solid-state cells based on Li2S cathodes.

  6. Application potential of rechargeable lithium batteries

    SciTech Connect

    Hunger, H.F.; Bramhall, P.J.

    1983-10-01

    Rechargeable lithium cells with Cr /SUB 0.5/ V/sub 0/ /sub 5/S/sub 2/ and MoO/sub 3/ cathodes were investigated in the temperature range of -30/sup 0/C to +25/sup 0/C. The electrolyte was 1.5M LiAsF/sub 6/ in 2-methyl tetrahydrofuran with tetrahydrofuran (50:50 V percent). Current densities and capacities as a function of temperature, cathode utilization efficiencies versus cycle life, and shelf lives were determined. The state of charge could be related to open circuit voltages after partial discharge. The potential of the system for communication applications is discussed. Recent advances in rechargeable lithium batteries were mainly due to the discovery of stable, cyclic ether electrolyte solvents (1) and to the use of rechargeable cathode materials (2). The practical usefulness of rechargeable lithium cells with Cr /SUB 0.5/ V /SUB 0.5/ S/sub 2/ and MoO/sub 3/ cathodes was investigated in the temperature range of -30/sup 0/C to +25/sup 0/C. The electrolyte was mainly 1.5M LiAsF/sub 6/ in 2-methyl tetrahydrofuran with tetrahydrofuran (50:50 V percent). The two cathode materials were chosen because Cr /SUB 0.5/ V /SUB 0.5/ S/sub 2/ resembles TiS/sub 2/ in capacity and cycling behavior and MoO/sub 3/ is a low cost cathode material of interest.

  7. A Lithium Superionic Sulfide Cathode for Lithium-Sulfur Batteries

    SciTech Connect

    Lin, Zhan; Liu, Zengcai; Dudney, Nancy J; Liang, Chengdu

    2013-01-01

    This work presents a facile synthesis approach for core-shell structured Li2S nanoparticles, which have Li2S as the core and Li3PS4 as the shell. This material functions as lithium superionic sulfide (LSS) cathode for long-lasting, energy-efficient lithium-sulfur (Li-S) batteries. The LSS has an ionic conductivity of 10-7 S cm-1 at 25 oC, which is 6 orders of magnitude higher than that of bulk Li2S (~10-13 S cm-1). The high lithium-ion conductivity of LSS imparts an excellent cycling performance to all-solid Li-S batteries, which also promises safe cycling of high-energy batteries with metallic lithium anodes.

  8. Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques.

    PubMed

    Zhu, Jing; Lu, Li; Zeng, Kaiyang

    2013-02-26

    High-resolution real-space mapping of Li-ion diffusion in the LiNi(1/3)Co(1/3)Mn(1/3)O₂ cathode within an all-solid-state thin film Li-ion battery has been conducted using advanced scanning probe microscopy techniques, namely, band excitation electrochemical strain microscopy (BE-ESM) and conductive atomic force microscopy. In addition, local variations of the electrochemical response in the LiNi(1/3)Co(1/3)Mn(1/3)O₂ thin film cathode at different cycling stages have been investigated. This work demonstrates the unique feature and applications of the BE-ESM technique on battery research. The results allow us to establish a direct relationship of the changes in ionic mobility as well as the electrochemical activity at the nanoscale with the numbers of charge/discharge cycles. Furthermore, various factors influencing the BE-ESM measurements, including sample mechanical properties (e.g., elastic and dissipative properties) as well as surface electrical properties, have also been studied to investigate the coupling effects on the electrochemical strain. The study on the relationships between the Li-ion redistribution and microstructure of the electrode materials within thin film Li-ion battery will provide further understanding of the electrochemical degradation mechanisms of Li-ion rechargeable batteries at the nanoscale. PMID:23336441

  9. Hazardous behavior of lithium batteries. Case histories

    NASA Technical Reports Server (NTRS)

    Marincic, N.

    1983-01-01

    Case histories were described of hazardous behavior for three different cell sizes ranging in nominal capacity from 300 mAh to 12,000 Ah. Design characteristics and other facts believed to have been responsible for the cell explosions, are presented. Obvious facts are discussed as causes for hazardous behavior of lithium batteries in general and oxyhalide batteries in particular.

  10. A review of lithium deposition in lithium-ion and lithium metal secondary batteries

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Huang, Jun; Yann Liaw, Bor; Metzler, Viktor; Zhang, Jianbo

    2014-05-01

    Major aspects related to lithium deposition in lithium-ion and lithium metal secondary batteries are reviewed. For lithium-ion batteries with carbonaceous anode, lithium deposition may occur under harsh charging conditions such as overcharging or charging at low temperatures. The major technical solutions include: (1) applying electrochemical models to predict the critical conditions for deposition initiation; (2) preventions by improved battery design and material modification; (3) applying adequate charging protocols to inhibit lithium deposition. For lithium metal secondary batteries, the lithium deposition is the inherent reaction during charging. The major technical solutions include: (1) the use of mechanistic models to elucidate and control dendrite initiation and growth; (2) engineering surface morphology of the lithium deposition to avoid dendrite formation via adjusting the composition and concentration of the electrolyte; (3) controlling battery working conditions. From a survey of the literature, the areas that require further study are proposed; e.g., refining the lithium deposition criteria, developing an effective AC self pre-heating method for low-temperature charging of lithium-ion batteries, and clarifying the role the solid electrolyte interphase (SEI) plays in determining the deposition morphology; to facilitate a refined control of the lithium deposition.

  11. Electrolytes for high-energy lithium batteries

    NASA Astrophysics Data System (ADS)

    Schaefer, Jennifer L.; Lu, Yingying; Moganty, Surya S.; Agarwal, Praveen; Jayaprakash, N.; Archer, Lynden A.

    2012-06-01

    From aqueous liquid electrolytes for lithium-air cells to ionic liquid electrolytes that permit continuous, high-rate cycling of secondary batteries comprising metallic lithium anodes, we show that many of the key impediments to progress in developing next-generation batteries with high specific energies can be overcome with cleaver designs of the electrolyte. When these designs are coupled with as cleverly engineered electrode configurations that control chemical interactions between the electrolyte and electrode or by simple additives-based schemes for manipulating physical contact between the electrolyte and electrode, we further show that rechargeable battery configurations can be facilely designed to achieve desirable safety, energy density and cycling performance.

  12. Lithium batteries: Application of neutron radiography

    NASA Astrophysics Data System (ADS)

    Kamata, Masahiro; Esaka, Takao; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    Several kinds of primary and secondary commercial lithium batteries, such as CR1/3 · 1H (Fujitsu), CR1220 and BR435 (Panasonic), ML1220 (Sanyo Excel) were investigated using neutron radiography; the variation of the lithium distribution inside these batteries upon discharging (and charging) were clarified by analyzing their visualized images. It was demonstrated that neutron radiography is a potential and useful method, especially in evaluating the reversibility of rechargeable batteries, which have been used under different discharging/charging conditions.

  13. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    PubMed Central

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  14. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries.

    PubMed

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  15. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-08-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

  16. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Shuling; Zhang, Hongzhe; Xu, Liqiang; Ma, Lanbing; Chen, Xiaoxia

    2016-02-01

    Tin phosphide (Sn4P3) nanoparticles with different sizes are synthesized via a facile solvothermal method at 180 °C for 10 h. The as-prepared Sn4P3 nanoparticles have an average size of about 15 nm. Meanwhile, their size could be easily controlled by the solvent ratio. The long cycle stability and rate performance of the as-obtained Sn4P3 nanoparticles have been tested as an anode material for lithium ion batteries for the first time. Electrochemical measurements show that the Sn4P3 nanoparticles with a smallest size give the best cycling and rate performances. They deliver a discharge capacity of 612 mAh g-1 after 10 cycles and could still maintain 442 mAh g-1 after 320 cycles at the current density of 100 mA g-1 within voltage limit of 0.01-3.0 V. Even after 200 cycles at a current density of 200 mA g-1, the specific capacity still could be remained at 315 mAh g-1. The improved electrochemical performances of Sn4P3 electrode might be largely attributed to their small-size. Furthermore, the as-prepared Sn4P3 nanoparticles have also been tested as an anode material for Na-ion batteries, this Sn4P3 anode can deliver a reversible capacity of 305 mAh g-1 after 10 cycles at the current density of 50 mA g-1.

  17. Costs of lithium-ion batteries for vehicles

    SciTech Connect

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  18. Calendar- and cycle-life studies of advanced technology development program generation 1 lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wright, R. B.; Motloch, C. G.; Belt, J. R.; Christophersen, J. P.; Ho, C. D.; Richardson, R. A.; Bloom, I.; Jones, S. A.; Battaglia, V. S.; Henriksen, G. L.; Unkelhaeuser, T.; Ingersoll, D.; Case, H. L.; Rogers, S. A.; Sutula, R. A.

    This paper presents the test results and life modeling of special calendar- and cycle-life tests conducted on 18650-size generation 1 (Gen 1) lithium-ion battery cells (nominal capacity of 0.9 Ah; 3.0-4.1 V rating) developed to establish a baseline chemistry and performance for the Department of Energy sponsored advanced technology development (ATD) program. Electrical performance testing was conducted at the Argonne National Laboratory (ANL), Sandia National Laboratory (SNL) and the Idaho National Engineering and Environmental Laboratory (INEEL). As part of the electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once per day discharge and charge pulse designed to have minimal impact on the cell yet establish its performance over a period of time such that the calendar-life of the cell could be determined. The calendar-life test matrix included two states-of-charge (SOCs) (i.e. 60 and 80%) and four test temperatures (40, 50, 60 and 70 °C). Discharge and regen resistances were calculated from the test data. Results indicate that both the discharge and regen resistances increased non-linearly as a function of the test time. The magnitude of the resistances depended on the temperature and SOC at which the test was conducted. Both resistances had a non-linear increase with respect to time at test temperature. The discharge resistances are greater than the regen resistances at all of the test temperatures of 40, 50, 60 and 70 °C. For both the discharge and regen resistances, generally the higher the test temperature, the lower the resistance. The measured resistances were then used to develop an empirical model that was used to predict the calendar-life of the cells. This model accounted for the time, temperature and SOC of the batteries during the calendar-life test. The functional form of the model is given by: R( t, T,SOC)= A( T, SOC) F( t)+ B( T, SOC), where t is the time at test temperature, T the test temperature

  19. Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi2(PO4)3/C as a superior anode

    PubMed Central

    Sun, Dan; Jiang, Yifan; Wang, Haiyan; Yao, Yan; Xu, Guoqing; He, Kejian; Liu, Suqin; Tang, Yougen; Liu, Younian; Huang, Xiaobing

    2015-01-01

    Poor cycling performance arising from the instability of anode is still a main challenge for aqueous rechargeable lithium batteries (ARLB). In the present work, a high performance LiTi2(PO4)3/C composite has been achieved by a novel and facile preparation method associated with an in-situ carbon coating approach. The LiTi2(PO4)3/C nanoparticles show high purity and the carbon layer is very uniform. When used as an anode material, the ARLB of LiTi2(PO4)3/C//LiMn2O4 delivered superior cycling stability with a capacity retention of 90% after 300 cycles at 30 mA g−1 and 84% at 150 mA g−1 over 1300 cycles. It also demonstrated excellent rate capability with reversible discharge capacities of 115 and 89 mAh g−1 (based on the mass of anode) at 15 and 1500 mA g−1, respectively. The superior electrochemical properties should be mainly ascribed to the high performance of LiTi2(PO4)3/C anode, benefiting from its nanostructure, high-quality carbon coating, appropriate crystal structure and excellent electrode surface stability as verified by Raman spectra, electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements. PMID:26035774

  20. Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi2(PO4)3/C as a superior anode.

    PubMed

    Sun, Dan; Jiang, Yifan; Wang, Haiyan; Yao, Yan; Xu, Guoqing; He, Kejian; Liu, Suqin; Tang, Yougen; Liu, Younian; Huang, Xiaobing

    2015-01-01

    Poor cycling performance arising from the instability of anode is still a main challenge for aqueous rechargeable lithium batteries (ARLB). In the present work, a high performance LiTi2(PO4)3/C composite has been achieved by a novel and facile preparation method associated with an in-situ carbon coating approach. The LiTi2(PO4)3/C nanoparticles show high purity and the carbon layer is very uniform. When used as an anode material, the ARLB of LiTi2(PO4)3/C//LiMn2O4 delivered superior cycling stability with a capacity retention of 90% after 300 cycles at 30 mA g(-1) and 84% at 150 mA g(-1) over 1300 cycles. It also demonstrated excellent rate capability with reversible discharge capacities of 115 and 89 mAh g(-1) (based on the mass of anode) at 15 and 1500 mA g(-1), respectively. The superior electrochemical properties should be mainly ascribed to the high performance of LiTi2(PO4)3/C anode, benefiting from its nanostructure, high-quality carbon coating, appropriate crystal structure and excellent electrode surface stability as verified by Raman spectra, electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements. PMID:26035774

  1. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    SciTech Connect

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  2. 78 FR 1119 - Hazardous Materials: Transportation of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... Materials: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety... Hazardous Materials Regulations (HMR) on the transportation of lithium cells and batteries, including.... 78, No. 4 / Monday, January 7, 2013 / Proposed Rules#0;#0; ] DEPARTMENT OF TRANSPORTATION...

  3. Lithium-aluminum/iron sulfide batteries

    NASA Astrophysics Data System (ADS)

    Henriksen, G. L.; Vissers, D. R.

    Lithium-alloy/metal sulfide batteries have been under development at Argonne National Laboratory since 1972. ANL's technology employs a two-phase Li alloy negative electrode, low-melting point LiCl-rich LiCl-LiBr-KBr molten salt electrolyte, and either an FeS or an upper-plateau (UP) FeS 2 positive electrode. These components are assembled in an 'electrolyte-starved' bipolar cell configuration. Use of the multi-phase Li alloy ((α+β)-Li-Al and Li 5Al 5Fe 2) negative electrode provides in situ overcharge tolerance that renders the bipolar design viable. Employing LiCl-rich LiCl-LiBr-KBr electrolyte is 'electrolyte-starved" cells achieves low-burdened cells that possess low area-specific impedance, comparable with that of flooded cells using LiCl-LiBr-KBr eutectic electrolyte. The combination of dense UP FeS 2 electrodes and low-melting electrolyte produces a stable and reversible couple, achieving over 1000 cycles in flooded cells, with high power capabilities. In addition, a new class of stable chalcogenide ceramic/sealant materials was developed. These materials produce high-strength bonds between a variety of metals and ceramics, which make fabrication of lithium/iron sulfide bipolar stacks practical. Bipolar Li-Al/FeS and Li-Al/FeS 2 cells and four-cell stacks using these seals have been built and tested for electric vehicle (EV) applications. When cell performance characteristics are used to model full-scale EV ad hybrid vehicle (HV) batteries, they are projected to meet or exceed the performance requirements for a large variety of EV and HV applications. In 1992, the US Advanced Battery Consortium awarded contracts to ANL and SAFT America to continue the development of the bipolar Li-Al/FeS 2 battery to meet their long-term criteria. Both ANL and sAFT are working together to refine this technology for EV applications and scale it up to larger stacks and fully integrated battery modules.

  4. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  5. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    SciTech Connect

    Lin, Zhan; Liang, Chengdu

    2014-11-11

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and the electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.

  6. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    DOE PAGESBeta

    Lin, Zhan; Liang, Chengdu

    2014-11-11

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and themore » electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.« less

  7. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  8. Cyanoethylated Compounds as Additives in Lithium/Lithium Ion Batteries

    SciTech Connect

    Nagasubramanian, Ganesan

    1998-05-08

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  9. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOEpatents

    Nagasubramanian, Ganesan

    1999-01-01

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  10. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) includes both lithium metal and lithium ion chemistries. Equipment means the device or apparatus for which... ion cells or batteries packed with the equipment must be packaged in accordance with paragraph (b)(3... 20 Wh for a lithium ion cell or 100 Wh for a lithium ion battery. After December 31, 2015,...

  11. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  12. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  13. Mechanics of high-capacity electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ting, Zhu

    2016-01-01

    Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research. Project support by the NSF (Grant Nos. CMMI 1100205 and DMR 1410936).

  14. Advanced battery development

    NASA Astrophysics Data System (ADS)

    In order to promote national security by ensuring that the United States has an adequate supply of safe, assured, affordable, and environmentally acceptable energy, the Storage Batteries Division at Sandia National Laboratories (SNL), Albuquerque, is responsible for engineering development of advanced rechargeable batteries for energy applications. This effort is conducted within the Exploratory Battery Technology Development and Testing (ETD) Lead center, whose activities are coordinated by staff within the Storage Batteries Division. The ETD Project, directed by SNL, is supported by the U.S. Department of Energy, Office of Energy Systems Research, Energy Storage and Distribution Division (DOE/OESD). SNL is also responsible for technical management of the Electric Vehicle Advanced Battery Systems (EV-ABS) Development Project, which is supported by the U.S. Department of Energy's Office of Transportation Systems (OTS). The ETD Project is operated in conjunction with the Technology Base Research (TBR) Project, which is under the direction of Lawrence Berkeley Laboratory. Together these two projects seek to establish the scientific feasibility of advanced electrochemical energy storage systems, and conduct the initial engineering development on systems suitable for mobile and stationary commercial applications.

  15. Lithium-sulfur batteries: progress and prospects.

    PubMed

    Manthiram, Arumugam; Chung, Sheng-Heng; Zu, Chenxi

    2015-03-25

    Development of advanced energy-storage systems for portable devices, electric vehicles, and grid storage must fulfill several requirements: low-cost, long life, acceptable safety, high energy, high power, and environmental benignity. With these requirements, lithium-sulfur (Li-S) batteries promise great potential to be the next-generation high-energy system. However, the practicality of Li-S technology is hindered by technical obstacles, such as short shelf and cycle life and low sulfur content/loading, arising from the shuttling of polysulfide intermediates between the cathode and anode and the poor electronic conductivity of S and the discharge product Li2 S. Much progress has been made during the past five years to circumvent these problems by employing sulfur-carbon or sulfur-polymer composite cathodes, novel cell configurations, and lithium-metal anode stabilization. This Progress Report highlights recent developments with special attention toward innovation in sulfur-encapsulation techniques, development of novel materials, and cell-component design. The scientific understanding and engineering concerns are discussed at the end in every developmental stage. The critical research directions needed and the remaining challenges to be addressed are summarized in the Conclusion. PMID:25688969

  16. Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lin, Chunfu; Yu, Shu; Zhao, Hua; Wu, Shunqing; Wang, Guizhen; Yu, Lei; Li, Yanfang; Zhu, Zi-Zhong; Li, Jianbao; Lin, Shiwei

    2015-12-01

    To explore anode materials with large capacities and high rate performances for the lithium-ion batteries of electric vehicles, defective Ti2Nb10O27.1 has been prepared through a facile solid-state reaction in argon. X-ray diffractions combined with Rietveld refinements indicate that Ti2Nb10O27.1 has the same crystal structure with stoichiometric Ti2Nb10O29 (Wadsley-Roth shear structure with A2/m space group) but larger lattice parameters and 6.6% O2- vacancies (vs. all O2- ions). The electronic conductivity and Li+ion diffusion coefficient of Ti2Nb10O27.1 are at least six orders of magnitude and ~2.5 times larger than those of Ti2Nb10O29, respectively. First-principles calculations reveal that the significantly enhanced electronic conductivity is attributed to the formation of impurity bands in Ti2Nb10O29-x and its conductor characteristic. As a result of the improvements in the electronic and ionic conductivities, Ti2Nb10O27.1 exhibits not only a large initial discharge capacity of 329 mAh g-1 and charge capacity of 286 mAh g-1 at 0.1 C but also an outstanding rate performance and cyclability. At 5 C, its charge capacity remains 180 mAh g-1 with large capacity retention of 91.0% after 100 cycles, whereas those of Ti2Nb10O29 are only 90 mAh g-1 and 74.7%.

  17. Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries.

    PubMed

    Lin, Chunfu; Yu, Shu; Zhao, Hua; Wu, Shunqing; Wang, Guizhen; Yu, Lei; Li, Yanfang; Zhu, Zi-Zhong; Li, Jianbao; Lin, Shiwei

    2015-01-01

    To explore anode materials with large capacities and high rate performances for the lithium-ion batteries of electric vehicles, defective Ti2Nb10O27.1 has been prepared through a facile solid-state reaction in argon. X-ray diffractions combined with Rietveld refinements indicate that Ti2Nb10O27.1 has the same crystal structure with stoichiometric Ti2Nb10O29 (Wadsley-Roth shear structure with A2/m space group) but larger lattice parameters and 6.6% O(2-) vacancies (vs. all O(2-) ions). The electronic conductivity and Li(+)ion diffusion coefficient of Ti2Nb10O27.1 are at least six orders of magnitude and ~2.5 times larger than those of Ti2Nb10O29, respectively. First-principles calculations reveal that the significantly enhanced electronic conductivity is attributed to the formation of impurity bands in Ti2Nb10O29-x and its conductor characteristic. As a result of the improvements in the electronic and ionic conductivities, Ti2Nb10O27.1 exhibits not only a large initial discharge capacity of 329 mAh g(-1) and charge capacity of 286 mAh g(-1) at 0.1 C but also an outstanding rate performance and cyclability. At 5 C, its charge capacity remains 180 mAh g(-1) with large capacity retention of 91.0% after 100 cycles, whereas those of Ti2Nb10O29 are only 90 mAh g(-1) and 74.7%. PMID:26632883

  18. Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries

    PubMed Central

    Lin, Chunfu; Yu, Shu; Zhao, Hua; Wu, Shunqing; Wang, Guizhen; Yu, Lei; Li, Yanfang; Zhu, Zi-Zhong; Li, Jianbao; Lin, Shiwei

    2015-01-01

    To explore anode materials with large capacities and high rate performances for the lithium-ion batteries of electric vehicles, defective Ti2Nb10O27.1 has been prepared through a facile solid-state reaction in argon. X-ray diffractions combined with Rietveld refinements indicate that Ti2Nb10O27.1 has the same crystal structure with stoichiometric Ti2Nb10O29 (Wadsley-Roth shear structure with A2/m space group) but larger lattice parameters and 6.6% O2– vacancies (vs. all O2– ions). The electronic conductivity and Li+ion diffusion coefficient of Ti2Nb10O27.1 are at least six orders of magnitude and ~2.5 times larger than those of Ti2Nb10O29, respectively. First-principles calculations reveal that the significantly enhanced electronic conductivity is attributed to the formation of impurity bands in Ti2Nb10O29–x and its conductor characteristic. As a result of the improvements in the electronic and ionic conductivities, Ti2Nb10O27.1 exhibits not only a large initial discharge capacity of 329 mAh g–1 and charge capacity of 286 mAh g–1 at 0.1 C but also an outstanding rate performance and cyclability. At 5 C, its charge capacity remains 180 mAh g–1 with large capacity retention of 91.0% after 100 cycles, whereas those of Ti2Nb10O29 are only 90 mAh g–1 and 74.7%. PMID:26632883

  19. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOEpatents

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  20. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOEpatents

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  1. Safety considerations for fabricating lithium battery packs

    NASA Technical Reports Server (NTRS)

    Ciesla, J. J.

    1986-01-01

    Lithium cell safety is a major issue with both manufacturers and end users. Most manufacturers have taken great strides to develop the safest cells possible while still maintaining performance characteristics. The combining of lithium cells for higher voltages, currents, and capacities requires the fabricator of lithium battery packs to be knowledgable about the specific electrochemical system being used. Relatively high rate, spirally wound (large surface area) sulfur oxychloride cells systems, such as Li/Thionyl or Sulfuryl chloride are considered. Prior to the start of a design of a battery pack, a review of the characterization studies for the cells should be conducted. The approach for fabricating a battery pack might vary with cell size.

  2. A Polymer Lithium-Oxygen Battery.

    PubMed

    Elia, Giuseppe Antonio; Hassoun, Jusef

    2015-01-01

    Herein we report the characteristics of a lithium-oxygen battery using a solid polymer membrane as the electrolyte separator. The polymer electrolyte, fully characterized in terms of electrochemical properties, shows suitable conductivity at room temperature allowing the reversible cycling of the Li-O2 battery with a specific capacity as high as 25,000 mAh gC(-1) reflected in a surface capacity of 12.5 mAh cm(-2). The electrochemical formation and dissolution of the lithium peroxide during Li-O2 polymer cell operation is investigated by electrochemical techniques combined with X-ray diffraction study, demonstrating the process reversibility. The excellent cell performances in terms of delivered capacity, in addition to its solid configuration allowing the safe use of lithium metal as high capacity anode, demonstrate the suitability of the polymer lithium-oxygen as high-energy storage system. PMID:26238552

  3. A Polymer Lithium-Oxygen Battery

    PubMed Central

    Elia, Giuseppe Antonio; Hassoun, Jusef

    2015-01-01

    Herein we report the characteristics of a lithium-oxygen battery using a solid polymer membrane as the electrolyte separator. The polymer electrolyte, fully characterized in terms of electrochemical properties, shows suitable conductivity at room temperature allowing the reversible cycling of the Li-O2 battery with a specific capacity as high as 25,000 mAh gC−1 reflected in a surface capacity of 12.5 mAh cm−2. The electrochemical formation and dissolution of the lithium peroxide during Li-O2 polymer cell operation is investigated by electrochemical techniques combined with X-ray diffraction study, demonstrating the process reversibility. The excellent cell performances in terms of delivered capacity, in addition to its solid configuration allowing the safe use of lithium metal as high capacity anode, demonstrate the suitability of the polymer lithium-oxygen as high-energy storage system. PMID:26238552

  4. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  5. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  6. A lithium-oxygen battery based on lithium superoxide

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Jung Lee, Yun; Luo, Xiangyi; Chun Lau, Kah; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J.; Sub Jeong, Yo; Park, Jin-Bum; Zak Fang, Zhigang; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A.; Amine, Khalil

    2016-01-01

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  7. A lithium-oxygen battery based on lithium superoxide.

    PubMed

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage. PMID:26751057

  8. Modeling thermal management of lithium-ion PNGV batteries

    NASA Astrophysics Data System (ADS)

    Nelson, Paul; Dees, Dennis; Amine, Khalil; Henriksen, Gary

    Batteries were designed with the aid of a computer modeling program to study the requirements of the thermal control system for meeting the goals set by the Partnership for a New Generation of Vehicles (PNGV). The battery designs were based upon the lithium-ion cell composition designated Gen-2 in the US Department of Energy Advanced Technology Development Program. The worst-case cooling requirement that would occur during prolonged aggressive driving was estimated to be 250 W or about 5 W per cell for a 48-cell battery. Rapid heating of the battery from a very low startup temperature is more difficult than cooling during driving. A dielectric transformer fluid is superior to air for both heating and cooling the battery. A dedicated refrigeration system for cooling the battery coolant would be helpful in maintaining low temperature during driving. The use of ample insulation would effectively slow the battery temperature rise when parking the vehicle in warm weather. Operating the battery at 10 °C during the first several years when the battery has excess power would extend the battery life.

  9. High-discharge-rate lithium ion battery

    DOEpatents

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  10. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema

    Zheng, Wesley

    2014-07-16

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  11. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect

    Zheng, Wesley

    2014-06-30

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  12. Thermal modeling of the lithium/polymer battery

    NASA Astrophysics Data System (ADS)

    Pals, C. R.

    1994-10-01

    Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.

  13. Lithium batteries with laminar anodes

    SciTech Connect

    Bruder, A.H.

    1986-11-04

    This patent describes a laminar electrical cell, comprising an anode, a cathode, and an electrolyte permeable separator between the anode and the cathode. The anode consists essentially of a layer of lithium having at least one surface of unreacted lithium metal in direct contact with and adhered to a layer of conductive plastic with no intermediate adhesive promoting adjuncts. The cathode comprises a slurry of MnO/sub 2/ and carbon particles in a solution of a lithium salt in an organic solvent, the solution permeating the separator and being in contact with the lithium.

  14. Electrochemical analysis of lithium polymer batteries

    NASA Astrophysics Data System (ADS)

    Han, Yong-Bong

    Lithium batteries consist of lithium anode, polymer electrolyte separator, and the porous, composite cathode. Lithium batteries have been very attractive to the battery industries because lithium metal has an extremely high energy density. The use of lithium metal can cause dendrite formation by uneven electro-deposition during charge. The lithium battery can explode in a liquid electrolyte when it is shorted by the dendrite. It has been reported that the mechanical properties of a polymer electrolyte can retard the dendrite initiation. We have attempted to study the dendrite initiation quantitatively by developing a mathematical model that evaluates the behavior of the interface and by performing dendrite-initiation experiments with the use of cross-linked polymer electrolytes to vary the mechanical properties of the electrolyte. Cross-linking the polymer backbone may decrease the transport properties of the polymer electrolyte. The transport properties are diffusion coefficient, ionic conductivity, and transference number of the electrolyte. When poor transport properties of the polymer electrolyte cause salt depletion at the cathode at low salt concentrations, side reactions and dendrite initiation can be accelerated. In order to study how cross-linking the polymer backbone affects the transport properties, the transport properties are measured experimentally by LBNL method which is based on concentrated solution theory. Porous electrodes are commonly used as the cathode in lithium battery systems. Because the electrochemical reaction occurs at the active particles in the porous, composite cathode during charge and discharge, the kinetics of the electrochemical reaction at the active particles in the cathode affects the battery performance. AC impedance has been broadly used to study the kinetics of the electrochemical reaction in the cathode. However, the AC impedance spectra have been analyzed by regarding the porous cathode as a planar electrode by most

  15. Enhanced polysulphide redox reaction using a RuO2 nanoparticle-decorated mesoporous carbon as functional separator coating for advanced lithium-sulphur batteries.

    PubMed

    Balach, J; Jaumann, T; Mühlenhoff, S; Eckert, J; Giebeler, L

    2016-06-21

    A multi-functional RuO2 nanoparticle-embedded mesoporous carbon-coated separator is used as an electrocatalytic and adsorbing polysulphide-net to enhance the redox reaction of migrating polysulphides, to improve active material utilization and boost the electrochemical performance of lithium-sulphur batteries. PMID:27270267

  16. State of the art in high power lithium batteries

    NASA Astrophysics Data System (ADS)

    Chenebault, P.; Planchat, J. P.

    The features of liquid cathode systems used in high-power lithium batteries are reviewed. Practical examples representing the state of the art in the field of high-power lithium batteries are presented, illustrating the advantages and limitations of high-power lithium batteries. Other potentially substitute systems are examined. It is concluded that the high-rate lithium/sulfur oxychloride couples remain the most interesting systems in terms of energy density and specific power, especially in the reserve configuration.

  17. Progress in secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1982-01-01

    The lithium/molybdenum trisulfide system is discussed. This system has a higher potential energy density than that of lithium/titanium disulfide. Possible energy densities and performance values for cells, projected from preliminary data obtained on small cells, are summarized. The electrode structure is emphasized as an important factor in the decreasing of capacity upon cycling.

  18. Size effects in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hu-Rong, Yao; Ya-Xia, Yin; Yu-Gao, Guo

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204 and 21303222), the Shandong Taishan Scholarship, China, the Ministry of Science and Technology, China (Grant No. 2012CB932900), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010000).

  19. Design considerations for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Huang, C.-K.; Davies, E.; Perrone, D.; Surampudi, S.; Halpert, Gerald

    1993-01-01

    Viewgraphs of a discussion of design considerations for rechargable lithium batteries. The objective is to determine the influence of cell design parameters on the performance of Li-TiS2 cells. Topics covered include cell baseline design and testing, cell design and testing, cell design parameters studies, and cell cycling performance.

  20. Overview of ENEA's Projects on lithium batteries

    NASA Astrophysics Data System (ADS)

    Alessandrini, F.; Conte, M.; Passerini, S.; Prosini, P. P.

    The increasing need of high performance batteries in various small-scale and large-scale applications (portable electronics, notebooks, palmtops, cellular phones, electric vehicles, UPS, load levelling) in Italy is motivating the R&D efforts of various public and private organizations. Research of lithium batteries in Italy goes back to the beginning of the technological development of primary and secondary lithium systems with national know-how spread in various academic and public institutions with a few private stakeholders. In the field of lithium polymer batteries, ENEA has been dedicating significant efforts in almost two decades to promote and carry out basic R&D and pre-industrial development projects. In recent years, three major national projects have been performed and coordinated by ENEA in co-operation with some universities, governmental research organizations and industry. In these projects novel polymer electrolytes with ceramic additives, low cost manganese oxide-based composite cathodes, environmentally friendly process for polymer electrolyte, fabrication processes of components and cells have been investigated and developed in order to fulfill long-term needs of cost-effective and highly performant lithium polymer batteries.

  1. Lithium electronic environments in rechargeable battery electrodes

    NASA Astrophysics Data System (ADS)

    Hightower, Adrian

    This work investigates the electronic environments of lithium in the electrodes of rechargeable batteries. The use of electron energy-loss spectroscopy (EELS) in conjunction with transmission electron microscopy (TEM) is a novel approach, which when coupled with conventional electrochemical experiments, yield a thorough picture of the electrode interior. Relatively few EELS experiments have been preformed on lithium compounds owing to their reactivity. Experimental techniques were established to minimize sample contamination and control electron beam damage to studied compounds. Lithium hydroxide was found to be the most common product of beam damaged lithium alloys. Under an intense electron beam, halogen atoms desorbed by radiolysis in lithium halides. EELS spectra from a number of standard lithium compounds were obtained in order to identify the variety of spectra encountered in lithium rechargeable battery electrodes. Lithium alloys all displayed characteristically broad Li K-edge spectra, consistent with transitions to continuum states. Transitions to bound states were observed in the Li K and oxygen K-edge spectra of lithium oxides. Lithium halides were distinguished by their systematic chemical shift proportional to the anion electronegativity. Good agreement was found with measured lithium halide spectra and electron structure calculations using a self-consistant multiscattering code. The specific electrode environments of LiC6, LiCoO2, and Li-SnO were investigated. Contrary to published XPS predictions, lithium in intercalated graphite was determined to be in more metallic than ionic. We present the first experimental evidence of charge compensation by oxygen ions in deintercalated LiCoO2. Mossbauer studies on cycled Li-SnO reveal severely defective structures on an atomic scale. Metal hydride systems are presented in the appendices of this thesis. The mechanical alloying of immiscible Fe and Mg powders resulted in single-phase bcc alloys of less than 20

  2. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  3. A Foldable Lithium-Sulfur Battery.

    PubMed

    Li, Lu; Wu, Zi Ping; Sun, Hao; Chen, Deming; Gao, Jian; Suresh, Shravan; Chow, Philippe; Singh, Chandra Veer; Koratkar, Nikhil

    2015-11-24

    The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed <12% loss in specific capacity over 100 continuous folding and unfolding cycles. Such shape-conformable Li-S batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices. PMID:26412399

  4. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  5. Hierarchically structured materials for lithium batteries

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-10-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg-1), new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime.

  6. Hierarchically structured materials for lithium batteries.

    PubMed

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-10-25

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg(-1)), new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. PMID:24067410

  7. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  8. Evaluation of the low temperature performance of lithium manganese oxide/lithium titanate lithium-ion batteries for start/stop applications

    NASA Astrophysics Data System (ADS)

    Chen, Kebin; Yu, Zhiqiang; Deng, Shawn; Wu, Qiang; Zou, Jianxin; Zeng, Xiaoqin

    2015-03-01

    The start/stop technology requires the battery to provide high cold cranking power at low temperatures. In this report, the low temperature performance of LMO/LTO (lithium manganese oxide/lithium titanate) lithium ion batteries with three different electrolytes were studied on pouch cells incorporated with the reference electrode (RE). Electrochemical impedance spectroscopy (EIS) analysis in conjunction with the reference electrode was applied to unravel the influence of electrolyte and individual electrodes on the battery's low temperature performance. Results demonstrate that it is the LMO electrode that limits the cell discharge performance at -30 °C and an electrolyte with a considerable amount of ester as co-solvent delivers the best low temperature performance. The LMO/LTO battery with the optimal electrolyte passes the U.S. Advanced Battery Consortium (USABC) cold cranking test at -30 °C using an assumed 40 Ah battery pack.

  9. Status of shipping provisions for large lithium batteries

    SciTech Connect

    Henriksen, G.L.

    1998-01-01

    In 1990, the Electric and Hybrid Propulsion Division of the US Department of Energy (DOE) established its ad hoc Advanced Battery Readiness Working Group to identify regulatory barriers to the commercialization of advanced electric vehicle (EV) battery technologies and to facilitate the removal of these barriers. As one of three sub-working groups, the Shipping Sub-working Group (SSWG) was formed to address regulatory issues associated with the domestic and international transport of new battery technologies under development for EV and hybrid electric vehicle (HEV) applications. The SSWG is currently working with DOT on a proposal, which is intended for submission and consideration at the July 1998 meeting of the UN Sub-Committee of Experts. It is their intent to secure full support for the revised proposal from both the German and French delegations prior to its submission. It is critical to obtain UN Sub-Committee approval in July 1998, so that the DOT proposal can be considered and approved by the UN Committee of Experts at their meeting in December 1998. The UN Committee of Experts meets only on even numbered years, so failure to secure their approval in December 1998 will cause a two-year delay in implementing international regulations for large EV and HEV lithium-ion and lithium-polymer batteries. Details of the DOT proposal are provided in this paper, including provisions that would relax the lithium and lithium-alloy mass restrictions in a general way, thereby providing a measure of relief for small cells and batteries.

  10. Lithium oxides precipitation in nonaqueous Li-air batteries.

    PubMed

    Hou, Junbo; Yang, Min; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2012-10-21

    Lithium-air/oxygen battery is a rising star in the field of electrochemical energy storage as a promising alternative to lithium ion batteries. Nevertheless, this alluring system is still at its infant stage, and the breakthrough of lithium-air batteries into the energy market is currently constrained by a combination of scientific and technical challenges. Targeting at the air electrode in nonaqueous lithium-air batteries, this review attempts to summarize the knowledge about the fundamentals related to lithium oxides precipitation, which has been one of the vital and attractive aspects of the research communities of science and technology. PMID:22968061

  11. 78 FR 19024 - Lithium Ion Batteries in Transportation Public Forum

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... SAFETY BOARD Lithium Ion Batteries in Transportation Public Forum On Thursday and Friday, April 11-12, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Lithium Ion... Inquiry. The forum is organized into three topic areas: Lithium ion battery design, development, and...

  12. 75 FR 9147 - Hazardous Materials: Transportation of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... equipment (HM-224F; 75 FR 1302). The proposed changes are intended to enhance safety by ensuring that all... for lithium metal batteries and lithium ion batteries were adopted into the UN Recommendations. The... regulations were revised to reflect this change. Adopt shipping descriptions for lithium ion...

  13. Design and simulation of lithium rechargeable batteries

    SciTech Connect

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  14. All Solid State Rechargeable Lithium Batteries using Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Balsara, Nitash

    2011-03-01

    The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.

  15. Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries.

    PubMed

    Wang, Nana; Yue, Jie; Chen, Liang; Qian, Yitai; Yang, Jian

    2015-05-20

    Rational design and delicate control on the component, structure, and surface of electrodes in lithium ion batteries are highly important to their performances in practical applications. Compared with various components and structures for electrodes, the choices for their surface are quite limited. The most widespread surface for numerous electrodes, a carbon shell, has its own issues, which stimulates the desire to find another alternative surface. Here, hydrogenated TiO2 is exemplified as an appealing surface for advanced anodes by the growth of ultrathin hydrogenated TiO2 branches on Mn3O4 nanorods. High theoretical capacity of Mn3O4 is well matched with low volume variation (∼4%), enhanced electrical conductivity, good cycling stability, and rate capability of hydrogenated TiO2, as demonstrated in their electrochemical performances. The proof-of-concept reveals the promising potential of hydrogenated TiO2 as a next-generation material for the surface in high-performance hybrid electrodes. PMID:25928277

  16. Synthesis and characterization of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pradhan, A. K.; Zhang, K.; Mundle, R.; Arslan, M.; Amponsah, O.; Bahoura, M.

    2012-04-01

    Layered lithiated transition metal oxides have been extensively developed and investigated as a cathode materials for lithium ion batteries due to the following advantages, such as high output voltage of 3.6 V, high energy density larger than 450Wh/dm3, low self-discharge rate less than 10%, no memory effect resulting in long cycle lives for more than 1000 times charging and discharging, free maintenance and no environmental pollution. The cathode materials in lithium ion battery are generally in the form of LiMO2 (M= Co, Ni, Mn, etc). Currently, lithium vanadium oxides also were studied. It is well known that the synthetic condition and methods are closely related to the electrochemical properties of lithium ion batteries. In this work, the wet chemical sol gel techniques have been used to synthesize LiNiO2 and LiV3O8. In this study, the LiNiO2 particles and LiV3O8 nanorods were successfully synthesized by sol-gel wet chemical methods. Annealing heat treatment influence the crystallinity of the final product, which may be consequently affected their electrochemical performance.

  17. Dendrites Inhibition in Rechargeable Lithium Metal Batteries

    NASA Astrophysics Data System (ADS)

    Aryanfar, Asghar

    The specific high energy and power capacities of rechargeable lithium metal (Li0) batteries are ideally suited to portable devices and are valuable as storage units for intermittent renewable energy sources. Lithium, the lightest and most electropositive metal, would be the optimal anode material for rechargeable batteries if it were not for the fact that such devices fail unexpectedly by short-circuiting via the dendrites that grow across electrodes upon recharging. This phenomenon poses a major safety issue because it triggers a series of adverse events that start with overheating, potentially followed by the thermal decomposition and ultimately the ignition of the organic solvents used in such devices. In this thesis, we developed experimental platform for monitoring and quantifying the dendrite populations grown in a Li battery prototype upon charging under various conditions. We explored the effects of pulse charging in the kHz range and temperature on dendrite growth, and also on loss capacity into detached "dead" lithium particles. Simultaneously, we developed a computational framework for understanding the dynamics of dendrite propagation. The coarse-grained Monte Carlo model assisted us in the interpretation of pulsing experiments, whereas MD calculations provided insights into the mechanism of dendrites thermal relaxation. We also developed a computational framework for measuring the dead lithium crystals from the experimental images.

  18. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries

    PubMed Central

    Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk

    2014-01-01

    Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg−1total electrode while also retaining a high energy density of 225 Wh kg−1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices. PMID:24923290

  19. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... Federal Aviation Administration Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice...

  20. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice...

  1. 78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the twelfth meeting of the RTCA Special Committee 225, Rechargeable Lithium...

  2. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... Federal Aviation Administration Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice...

  3. Pure inorganic separator for lithium ion batteries.

    PubMed

    He, Meinan; Zhang, Xinjie; Jiang, Kuiyang; Wang, Joe; Wang, Yan

    2015-01-14

    Battery safety is critical for many applications including portable electronics, hybrid and electric vehicles, and grid storage. For lithium ion batteries, the conventional polymer based separator is unstable at 120 °C and above. In this research, we have developed a pure aluminum oxide nanowire based separator; this separator does not contain any polymer additives or binders; additionally, it is a bendable ceramic. The physical and electrochemical properties of the separator are investigated. The separator has a pore size of about 100 nm, and it shows excellent electrochemical properties under both room and high temperatures. At room temperature, the ceramic separator shows a higher rate capability compared to the conventional Celgard 2500 separator and life cycle performance does not show any degradation. At 120 °C, the cell with the ceramic separator showed a much better cycle performance than the conventional Celgard 2500 separator. Therefore, we believe that this research is really an exciting scientific breakthrough for ceramic separators and lithium ion batteries and could be potentially used in the next generation lithium ion batteries requiring high safety and reliability. PMID:25459154

  4. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  5. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  6. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-01

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air. PMID:24926965

  7. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to... Battery and Battery Systems--Small and Medium Size DATES: The meeting will be held October 1-3, 2013,...

  8. Hazards of lithium thionyl chloride batteries

    NASA Technical Reports Server (NTRS)

    Parry, J. M.

    1978-01-01

    Two different topics which only relate in that they are pertinent to lithium thionyl chloride battery safety are discussed. The first topic is a hazards analysis of a system (risk assessment), a formal approach that is used in nuclear engineering, predicting oil spills, etc. It is a formalized approach for obtaining assessment of the degree of risk associated with the use of any particular system. The second topic is a small piece of chemistry related to the explosions that can occur with lithium thionyl chloride systems. After the two topics are presented, a discussion is generated among the Workshop participants.

  9. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  10. High-throughput theoretical design of lithium battery materials

    NASA Astrophysics Data System (ADS)

    Shi-Gang, Ling; Jian, Gao; Rui-Juan, Xiao; Li-Quan, Chen

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201).

  11. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries.

    PubMed

    Zhou, Yanli; Yan, Dong; Xu, Huayun; Liu, Shuo; Yang, Jian; Qian, Yitai

    2015-02-28

    A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g(-1) after 120 cycles at 1 A g(-1). The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries. PMID:25629465

  12. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    SciTech Connect

    Fenton, Kyle R.; Nagasubramanian, Ganesan; Staiger, Chad L.; Pratt, III, Harry D.; Rempe, Susan B.; Leung, Kevin; Chaudhari, Mangesh I.; Anderson, Travis Mark

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  13. Lithium-ion batteries having conformal solid electrolyte layers

    SciTech Connect

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  14. Anode material for lithium batteries

    DOEpatents

    Belharouak, Ilias; Amine, Khalil

    2008-06-24

    Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  15. Anode material for lithium batteries

    DOEpatents

    Belharouak, Ilias; Amine, Khalil

    2011-04-05

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  16. Anode material for lithium batteries

    DOEpatents

    Belharouak, Ilias; Amine, Khalil

    2012-01-31

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  17. Reserve, flowing electrolyte, high rate lithium battery

    NASA Astrophysics Data System (ADS)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  18. Nanostructured cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Myung, Seung-Taek; Amine, Khalil; Sun, Yang-Kook

    2015-06-01

    The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core-shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries.

  19. Solid polymeric electrolytes for lithium batteries

    DOEpatents

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  20. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    SciTech Connect

    John Olson, PhD

    2004-07-21

    high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.

  1. Conductive polymeric compositions for lithium batteries

    DOEpatents

    Angell, Charles A.; Xu, Wu

    2009-03-17

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  2. Modeling Diffusion Induced Stresses for Lithium-Ion Battery Materials

    NASA Astrophysics Data System (ADS)

    Chiu Huang, Cheng-Kai

    Advancing lithium-ion battery technology is of paramount importance for satisfying the energy storage needs in the U.S., especially for the application in the electric vehicle industry. To provide a better acceleration for electric vehicles, a fast and repeatable discharging rate is required. However, particle fractures and capacity loss have been reported under high current rate (C-rate) during charging/discharging and after a period of cycling. During charging and discharging, lithium ions extract from and intercalate into electrode materials accompanied with the volume change and phase transition between Li-rich phase and Li-poor phase. It is suggested that the diffusion-induced-stress is one of the main reasons causing capacity loss due to the mechanical degradation of electrode particles. Therefore, there is a fundamental need to provide a mechanistic understanding by considering the structure-mechanics-property interactions in lithium-ion battery materials. Among many cathode materials, the olivine-based lithium-iron-phosphate (LiFePO4) with an orthorhombic crystal structure is one of the promising cathode materials for the application in electric vehicles. In this research we first use a multiphysic approach to investigate the stress evolution, especially on the phase boundary during lithiation in single LiFePO4 particles. A diffusion-controlled finite element model accompanied with the experimentally observed phase boundary propagation is developed via a finite element package, ANSYS, in which lithium ion concentration-dependent anisotropic material properties and volume misfits are incorporated. The stress components on the phase boundary are used to explain the Mode I, Mode II, and Mode III fracture propensities in LiFePO4 particles. The elastic strain energy evolution is also discussed to explain why a layer-by-layer lithium insertion mechanism (i.e. first-order phase transformation) is energetically preferred. Another importation issue is how current

  3. Electrochemical Lithium Ion Battery Performance Model

    2007-03-29

    The Electrochemical Lithium Ion Battery Performance Model allows for the computer prediction of the basic thermal, electrical, and electrochemical performance of a lithium ion cell with simplified geometry. The model solves governing equations describing the movement of lithium ions within and between the negative and positive electrodes. The governing equations were first formulated by Fuller, Doyle, and Newman and published in J. Electrochemical Society in 1994. The present model solves the partial differential equations governingmore » charge transfer kinetics and charge, species, heat transports in a computationally-efficient manner using the finite volume method, with special consideration given for solving the model under conditions of applied current, voltage, power, and load resistance.« less

  4. Spinel electrodes for rechargeable lithium batteries.

    SciTech Connect

    Thackeray, M. M.

    1999-11-10

    This paper gives a historical account of the development of spinel electrodes for rechargeable lithium batteries. Research in the late 1970's and early 1980's on high-temperature . Li/Fe{sub 3}O{sub 4} cells led to the evaluation of lithium spinels Li[B{sub 2}]X{sub 4} at room temperature (B = metal cation). This work highlighted the importance of the [B{sub 2}]X{sub 4}spinel framework as a host electrode structure and the ability to tailor the cell voltage by selection of different B cations. Examples of lithium-ion cells that operate with spinel anode/spinel cathode couples are provided. Particular attention is paid to spinels within the solid solution system Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 {le} x {le} 0.33).

  5. Power fade and capacity fade resulting from cycle-life testing of Advanced Technology Development Program lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wright, R. B.; Christophersen, J. P.; Motloch, C. G.; Belt, J. R.; Ho, C. D.; Battaglia, V. S.; Barnes, J. A.; Duong, T. Q.; Sutula, R. A.

    This paper presents the test results and analysis of the power and capacity fade resulting from the cycle-life testing using PNGV (now referred to as FreedomCAR) test protocols at 25 and 45 °C of 18650-size Li-ion batteries developed by the US Department of Energy sponsored Advanced Technology Development (ATD) Program. Two cell chemistries were studied, a Baseline chemistry that had a cathode composition of LiNi 0.8Co 0.15Al 0.05O 2 with binders, that was cycle-life tested at 25 and 45 °C, and a Variant C chemistry with a cathode composition of LiNi 0.8Co 0.10Al 0.10O 2 with binders, that was tested only at 45 °C. The 300 Wh power, and % power fade were determined as a function of test time, i.e. the number of test cycles for up to 44 weeks (369,600 test cycles) for the Baseline cells, and for 24 weeks (201,600 test cycles) for the Variant C cells. The C/1 and C/25 discharge capacity and capacity fade were also determined during the course of these studies. The results of this study indicate that the 300 Wh power for the Baseline cells tested at 25 °C (up to 44 weeks of testing) decreased as a linear function of test time. The % power fade for these cells increased as a linear function of test time. The Baseline cells tested at 45 °C (up to 44 weeks of testing) displayed a decrease in their power proportional to the square root of the test time, with a faster rate of decrease of the power occurring at ˜28 weeks of testing. The % power fade for these cells also increased as the square root of the test time, and exhibited an increase in the % power fade rate at ˜28 weeks of testing. The 45 °C tested Baseline cells' power decreased, and their % power fade increased at a greater rate than the 25 °C tested Baseline cells. The power fade was greater for the Variant C cells. The power of the Variant C cells (tested at 45 °C) decreased as the square root of the test time, and their % power fade was also found to be a function of the square root of the test time

  6. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect

    Kim, G. H.; Smith, K.

    2008-05-01

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  7. Transparent lithium-ion batteries.

    PubMed

    Yang, Yuan; Jeong, Sangmoo; Hu, Liangbing; Wu, Hui; Lee, Seok Woo; Cui, Yi

    2011-08-01

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries. PMID:21788483

  8. Thermal characteristics of Lithium-ion batteries

    NASA Technical Reports Server (NTRS)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter

  9. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries.

    PubMed

    Li, Wenwu; Gan, Lin; Guo, Kai; Ke, Linbo; Wei, Yaqing; Li, Huiqiao; Shen, Guozhen; Zhai, Tianyou

    2016-04-21

    We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g(-1) with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g(-1) capacity retention at an ultrahigh rate of 15 A g(-1). More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g(-1), a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g(-1) even at 20 A g(-1). Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices. PMID:27049639

  10. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries.

    PubMed

    Zheng, Jiaxin; Hou, Yuyang; Duan, Yandong; Song, Xiaohe; Wei, Yi; Liu, Tongchao; Hu, Jiangtao; Guo, Hua; Zhuo, Zengqing; Liu, Lili; Chang, Zheng; Wang, Xiaowei; Zherebetskyy, Danylo; Fang, Yanyan; Lin, Yuan; Xu, Kang; Wang, Lin-Wang; Wu, Yuping; Pan, Feng

    2015-09-01

    LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,1-3 little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-1)) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible. PMID:26305572

  11. A Molten Salt Lithium-Oxygen Battery.

    PubMed

    Giordani, Vincent; Tozier, Dylan; Tan, Hongjin; Burke, Colin M; Gallant, Betar M; Uddin, Jasim; Greer, Julia R; McCloskey, Bryan D; Chase, Gregory V; Addison, Dan

    2016-03-01

    Despite the promise of extremely high theoretical capacity (2Li + O2 ↔ Li2O2, 1675 mAh per gram of oxygen), many challenges currently impede development of Li/O2 battery technology. Finding suitable electrode and electrolyte materials remains the most elusive challenge to date. A radical new approach is to replace volatile, unstable and air-intolerant organic electrolytes common to prior research in the field with alkali metal nitrate molten salt electrolytes and operate the battery above the liquidus temperature (>80 °C). Here we demonstrate an intermediate temperature Li/O2 battery using a lithium anode, a molten nitrate-based electrolyte (e.g., LiNO3-KNO3 eutectic) and a porous carbon O2 cathode with high energy efficiency (∼95%) and improved rate capability because the discharge product, lithium peroxide, is stable and moderately soluble in the molten salt electrolyte. The results, supported by essential state-of-the-art electrochemical and analytical techniques such as in situ pressure and gas analyses, scanning electron microscopy, rotating disk electrode voltammetry, demonstrate that Li2O2 electrochemically forms and decomposes upon cycling with discharge/charge overpotentials as low as 50 mV. We show that the cycle life of such batteries is limited only by carbon reactivity and by the uncontrolled precipitation of Li2O2, which eventually becomes electrically disconnected from the O2 electrode. PMID:26871485

  12. Lithium ion batteries and their manufacturing challenges

    SciTech Connect

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, and solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.

  13. Lithium ion batteries and their manufacturing challenges

    DOE PAGESBeta

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less

  14. Lithium-Air Batteries with Hybrid Electrolytes.

    PubMed

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-01

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided. PMID:26977713

  15. Green Template-Free Synthesis of Hierarchical Shuttle-Shaped Mesoporous ZnFe2 O4 Microrods with Enhanced Lithium Storage for Advanced Li-Ion Batteries.

    PubMed

    Hou, Linrui; Hua, Hui; Lian, Lin; Cao, Hui; Zhu, Siqi; Yuan, Changzhou

    2015-09-01

    In the work, a facile and green two-step synthetic strategy was purposefully developed to efficiently fabricate hierarchical shuttle-shaped mesoporous ZnFe2 O4 microrods (MRs) with a high tap density of ∼0.85 g cm(3) , which were assembled by 1D nanofiber (NF) subunits, and further utilized as a long-life anode for advanced Li-ion batteries. The significant role of the mixed solvent of glycerin and water in the formation of such hierarchical mesoporous MRs was systematically investigated. After 488 cycles at a large current rate of 1000 mA g(-1) , the resulting ZnFe2 O4 MRs with high loading of ∼1.4 mg per electrode still preserved a reversible capacity as large as ∼542 mAh g(-1) . Furthermore, an initial charge capacity of ∼1150 mAh g(-1) is delivered by the ZnFe2 O4 anode at 100 mA g(-1) , resulting in a high Coulombic efficiency of ∼76 % for the first cycle. The superior Li-storage properties of the as-obtained ZnFe2 O4 were rationally associated with its mesoprous micro-/nanostructures and 1D nanoscaled building blocks, which accelerated the electron transportation, facilitated Li(+) transfer rate, buffered the large volume variations during repeated discharge/charge processes, and provided rich electrode-electrolyte sur-/interfaces for efficient lithium storage, particularly at high rates. PMID:26220562

  16. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the sixth meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and...

  17. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the seventh meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and...

  18. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE PAGESBeta

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize themore » particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  19. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    SciTech Connect

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.

  20. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  1. Nanostructured Molybdenum Oxides for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lee, Se-Hee; Deshpande, Rohit; Parilla, Phil; Jones, Kim; To, Bobby; Mahan, Harv; Dillon, Anne

    2007-03-01

    Lithium-ion batteries are the current power sources of choice for portable electronics. Although such batteries are commercially successful, they are not keeping pace with the rapid advances in computing technologies. Also, further improvement of performance and simultaneous reduction in cost as well as material toxicity remain the subject of intensive research. Here we report the synthesis and electrochemical performance of a novel molybdenum oxide nanoparticle anode that dramatically improves current Li-ion battery technologies. Crystalline MoOx nanoparticles have been grown by an economical hot-wire chemical-vapor-deposition (HWCVD) technique and a recently developed electrophoresis technique is employed for the fabrication of porous nanoparticle anodes. Our material exhibits a high reversible capacity of ˜600 mAh/g in the range 0.005-3.0 V with excellent cycling characteristics as well as high-rate capability. Both cycling stability and rate capability issues are addressed by employing these porous molybdenum oxide films that consist of nanoscale active particles. These materials will impact the next generations of rechargeable lithium batteries, not only for applications in consumer electronics, but also for clean energy storage and use in hybrid electric vehicles.

  2. A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries.

    PubMed

    Lee, Chi-Yuan; Peng, Huan-Chih; Lee, Shuo-Jen; Hung, I-Ming; Hsieh, Chien-Te; Chiou, Chuan-Sheng; Chang, Yu-Ming; Huang, Yen-Pu

    2015-01-01

    Lithium batteries are widely used in notebook computers, mobile phones, 3C electronic products, and electric vehicles. However, under a high charge/discharge rate, the internal temperature of lithium battery may rise sharply, thus causing safety problems. On the other hand, when the lithium battery is overcharged, the voltage and current may be affected, resulting in battery instability. This study applies the micro-electro-mechanical systems (MEMS) technology on a flexible substrate, and develops a flexible three-in-one microsensor that can withstand the internal harsh environment of a lithium battery and instantly measure the internal temperature, voltage and current of the battery. Then, the internal information can be fed back to the outside in advance for the purpose of safety management without damaging the lithium battery structure. The proposed flexible three-in-one microsensor should prove helpful for the improvement of lithium battery design or material development in the future. PMID:25996509

  3. A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries

    PubMed Central

    Lee, Chi-Yuan; Peng, Huan-Chih; Lee, Shuo-Jen; Hung, I-Ming; Hsieh, Chien-Te; Chiou, Chuan-Sheng; Chang, Yu-Ming; Huang, Yen-Pu

    2015-01-01

    Lithium batteries are widely used in notebook computers, mobile phones, 3C electronic products, and electric vehicles. However, under a high charge/discharge rate, the internal temperature of lithium battery may rise sharply, thus causing safety problems. On the other hand, when the lithium battery is overcharged, the voltage and current may be affected, resulting in battery instability. This study applies the micro-electro-mechanical systems (MEMS) technology on a flexible substrate, and develops a flexible three-in-one microsensor that can withstand the internal harsh environment of a lithium battery and instantly measure the internal temperature, voltage and current of the battery. Then, the internal information can be fed back to the outside in advance for the purpose of safety management without damaging the lithium battery structure. The proposed flexible three-in-one microsensor should prove helpful for the improvement of lithium battery design or material development in the future. PMID:25996509

  4. Carbon Nanotube Doped Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Raffaelle, Ryne P.; Difelice, Ron; van Derveer, William R.; Gennett, Tom; Maranchi, Jeff; Kumta, Prashant; Hepp, Aloysius F.

    2002-03-01

    We have characterized thin film lithium ion batteries that contain high purity single wall carbon nanotube-doped polymer anodes. Highly purified single-walled carbon nanotubes (SWCNT) were obtained through chemical refinement of soot generated by pulsed laser ablation. The purity of the nanotubes was determined via thermogravimetric analysis, two wavelength Raman spectroscopy, spectrophotometry, scanning electron microscopy and transmission electron microscopy. The specific surface area and lithium capacity of the SWCNT was compared to that of other conventional anode materials (i.e., carbon black, graphite, and multi-walled carbon nanotubes). The SWCNT exhibited a specific surface area that greatly exceeded the other carbonaceous materials. Anodes were prepared by casting thin films directly onto copper foil of several ionically conductive polymers (i.e., PAN, PVDF, PEO) doped with the SWCNT. The lithium-ion capacity of the materials was measured using a standard 3-electrode cell. The electrochemical discharge capacity of the purified single walled carbon nanotubes in PVDF was in excess of 1300 mAh/g after 30 charge/discharge cycles when tested using a current density of 20µA/cm^2. The SWCNT anodes were incorporated into all-polymer thin film batteries containing LiNiCoO_2-doped polymer cathodes. Cycling results on the various SWCNT polymer combinations will be presented.

  5. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  6. 76 FR 55799 - Outbound International Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... reflect these new limits. DATES: The final rule published on August 25, 2011 (76 FR 53056-56057), is... 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION: Final... maximum limits for the outbound mailing of lithium batteries to international, or APO, FPO or...

  7. Neutron scattering for analysis of processes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Balagurov, A. M.; Bobrikov, I. A.; Samoylova, N. Yu; Drozhzhin, O. A.; Antipov, E. V.

    2014-12-01

    The review is concerned with analysis and generalization of information on application of neutron scattering for elucidation of the structure of materials for rechargeable energy sources (mainly lithium-ion batteries) and on structural rearrangements in these materials occurring in the course of electrochemical processes. Applications of the main methods including neutron diffraction, small-angle neutron scattering, inelastic neutron scattering, neutron reflectometry and neutron introscopy are considered. Information on advanced neutron sources is presented and a number of typical experiments are outlined. The results of some studies of lithium-containing materials for lithium-ion batteries, carried out at IBR-2 pulsed reactor, are discussed. The bibliography includes 50 references.

  8. Thermal analysis of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Wan, C. C.; Wang, Y. Y.

    A detailed three-dimensional thermal model has been developed to examine the thermal behaviour of a lithium-ion battery. This model precisely considers the layered-structure of the cell stacks, the case of a battery pack, and the gap between both elements to achieve a comprehensive analysis. Both location-dependent convection and radiation are adopted at boundaries to reflect different heat dissipation performances on all surfaces. Furthermore, a simplified thermal model is proposed according to the examination of various simplification strategies and validation from the detailed thermal model. Based on the examination, the calculation speed of the simplified model is comparable with that of a one-dimensional model with a maximum error less than 0.54 K. These models successfully describe asymmetric temperature distribution inside a battery, and they predict an anomaly of temperature distribution on the surface if a metal case is used. Based on the simulation results from the detailed thermal model, radiation could contribute 43-63% at most to the overall heat dissipation under natural convection. Forced convection is effective in depressing the maximum temperature, and the temperature uniformity does not necessarily decrease infinitely when the extent of forced convection is enhanced. The metal battery case serves as a heat spreader, and the contact layer provides extra thermal resistance and heat capacity for the system. These factors are important and should be considered seriously in the design of battery systems.

  9. Lithium Ion Batteries Used for Nuclear Forensics

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Stapels, Christopher J.; Chen, X. Jie; Whitney, Chad; Holbert, Keith E.; Christian, James F.

    2013-10-01

    Nuclear forensics includes the study of materials used for the attribution a nuclear event. Analysis of the nuclear reaction products resulting both from the weapon and the material in the vicinity of the event provides data needed to identify the source of the nuclear material and the weapon design. The spectral information of the neutrons produced by the event provides information on the weapon configuration. The lithium battery provides a unique platform for nuclear forensics, as the Li-6 content is highly sensitive to neutrons, while the battery construction consists of various layers of materials. Each of these materials represents an element for a threshold detector scheme, where isotopes are produced in the battery components through various nuclear reactions that require a neutron energy above a fundamental threshold energy. This study looks into means for extracting neutron spectral information by understanding the isotopic concentration prior to and after exposure. The radioisotopes decay through gamma and beta emission, and radiation spectrometers have been used to measure the radiation spectra from the neutron exposed batteries. The batteries were exposed to various known neutron fields, and analysis was conducted to reconstruct the incident neutron spectra. This project is supported by the Defense Threat Reduction Agency, grant number HDTRA1-11-1-0028.

  10. Advances in the Application of Silicon and Germanium Nanowires for High-Performance Lithium-Ion Batteries.

    PubMed

    Kennedy, Tadhg; Brandon, Michael; Ryan, Kevin M

    2016-07-01

    Li-alloying materials such as Si and Ge nanowires have emerged as the forerunners to replace the current, relatively low-capacity carbonaceous based Li-ion anodes. Since the initial report of binder-free nanowire electrodes, a vast body of research has been carried out in which the performance and cycle life has significantly progressed. The study of such electrodes has provided invaluable insights into the cycling behavior of Si and Ge, as the effects of repeated lithiation/delithiation on the material can be observed without interference from conductive additives or binders. Here, some of the key developments in this area are looked at, focusing on the problems encountered by Li-alloying electrodes in general (e.g., pulverization, loss of contact with current collector etc.) and how the study of nanowire electrodes has overcome these issues. Some key nanowire studies that have elucidated the consequences of the alloying/dealloying process on the morphology of Si and Ge are also considered, in particular looking at the impact that effects such as pore formation and lithium-assisted welding have on performance. Finally, the challenges for the practical implementation of nanowire anodes within the context of the current understanding of such systems are discussed. PMID:26855084

  11. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Yanli; Yan, Dong; Xu, Huayun; Liu, Shuo; Yang, Jian; Qian, Yitai

    2015-02-01

    A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries.A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries. Electronic supplementary information (ESI) available: Infrared spectrogram (IR) of glucose treated MWCNT; TEM images of MWCNT@a-C treated by different concentrations of glucose; SEM and TEM images of the intermediate product obtained from the solvothermal reaction between thiourea and Co(Ac)2; EDS spectrum of MWCNT@a-C@Co9S8 composites; SEM and TEM images of MWCNT@Co9S8 nanocomposites obtained without the hydrothermal treatment by glucose; SEM and TEM images of Co9S8 nanoparticles; Galvanostatic discharge-charge profiles and cycling performance of MWCNT@a-C; TEM images

  12. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  13. Ionic liquids for rechargeable lithium batteries

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  14. Electrolytes for rechargeable lithium batteries. Research and development technical report

    SciTech Connect

    Hunger, H.F.

    1981-09-01

    Theoretical considerations predict increased stability of cyclic ethers and diethers against reductive cleavage by lithium if the ethers have 2 methyl substitution. Diethers are solvents with low viscosity which are desirable for high rate rechargeable lithium batteries. Synergistic, mixed solvent effects increase electrolyte conductance and rate capability of lithium intercalating cathodes.

  15. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.

    PubMed

    Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D; Archer, Lynden A

    2015-11-17

    modulus and stability requirements have to date proven to be insurmountable obstacles to progress. In this Account, we first review recent advances in continuum theory for dendrite growth and proliferation during metal electrodeposition. We show that the range of options for designing electrolytes and separators that stabilize electrodeposition is now substantially broader than one might imagine from previous literature accounts. In particular, separators designed at the nanoscale to constrain ion transport on length scales below a theory-defined cutoff, and structured electrolytes in which a fraction of anions are permanently immobilized to nanoparticles, to a polymer network or ceramic membrane are considered particularly promising for their ability to stabilize electrodeposition of lithium metal without compromising ionic conductivity or room temperature battery operation. We also review recent progress in designing surface passivation films for metallic lithium that facilitate fast deposition of lithium at the electrolyte/electrode interface and at the same time protect the lithium from parasitic side reactions with liquid electrolytes. A promising finding from both theory and experiment is that simple film-forming halide salt additives in a conventional liquid electrolyte can substantially extend the lifetime and safety of LMBs. PMID:26496667

  16. Policies governing the use of lithium batteries in the Navy

    NASA Technical Reports Server (NTRS)

    Bis, R. F.; Barnes, J. A.

    1983-01-01

    Lithium batteries offer many advantages for Navy systems but may also exhibit undesirable hazardous behavior. Safety problems have been traced to a variety of chemical and physical causes. The Navy has established a central safety office with responsibility for all lithium battery use. Before an item is approved for Navy use, it must pass both a design review and a set of end item tests. These reviews focus on complete systems which include a battery inside the end item. After system approval, specific regulations govern the transportation, storage, and disposal of the unit containing lithium batteries. Each of these areas is discussed in detail.

  17. Advanced technology development program for lithium-ion batteries : thermal abuse performance of 18650 Li-ion cells.

    SciTech Connect

    Crafts, Chris C.; Doughty, Daniel Harvey; McBreen, James.; Roth, Emanuel Peter

    2004-03-01

    Li-ion cells are being developed for high-power applications in hybrid electric vehicles currently being designed for the FreedomCAR (Freedom Cooperative Automotive Research) program. These cells offer superior performance in terms of power and energy density over current cell chemistries. Cells using this chemistry are the basis of battery systems for both gasoline and fuel cell based hybrids. However, the safety of these cells needs to be understood and improved for eventual widespread commercial application in hybrid electric vehicles. The thermal behavior of commercial and prototype cells has been measured under varying conditions of cell composition, age and state-of-charge (SOC). The thermal runaway behavior of full cells has been measured along with the thermal properties of the cell components. We have also measured gas generation and gas composition over the temperature range corresponding to the thermal runaway regime. These studies have allowed characterization of cell thermal abuse tolerance and an understanding of the mechanisms that result in cell thermal runaway.

  18. Energetics of lithium ion battery failure.

    PubMed

    Lyon, Richard E; Walters, Richard N

    2016-11-15

    The energy released by failure of rechargeable 18-mm diameter by 65-mm long cylindrical (18650) lithium ion cells/batteries was measured in a bomb calorimeter for 4 different commercial cathode chemistries over the full range of charge using a method developed for this purpose. Thermal runaway was induced by electrical resistance (Joule) heating of the cell in the nitrogen-filled pressure vessel (bomb) to preclude combustion. The total energy released by cell failure, ΔHf, was assumed to be comprised of the stored electrical energy E (cell potential×charge) and the chemical energy of mixing, reaction and thermal decomposition of the cell components, ΔUrxn. The contribution of E and ΔUrxn to ΔHf was determined and the mass of volatile, combustible thermal decomposition products was measured in an effort to characterize the fire safety hazard of rechargeable lithium ion cells. PMID:27420388

  19. Compatibility of polyacetylene with lithium battery materials

    SciTech Connect

    Not Available

    1982-07-01

    The object of this research is to evaluate polyacetylene (CHx) as a replacement for carbon as the cathode material in primary lithium/thionyl chloride (Li/SOC12) and lithium/sulfur dioxide (Li/SO2) batteries. The choice of the Li/SOC12 inorganic electrolyte cell is based on the fact that it is the highest energy density system known to date. By itself, the favorable ratio of obtainable work to weight is not sufficient. For Navy applications, the rate at which the cell supplies energy - the power density - is very important. CHx is a lightweight material with extremely high effective surface area (60 m squared/g) and good electrical conductivity when doped, thus making it a good candidate for an electrode in a high power density cell.

  20. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Li, Naichao

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  1. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Johnson, Christopher S.; Kang, Sun-Ho; Thackeray, Michael M.

    2009-12-22

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  2. The role of lithium batteries in modern health care

    NASA Astrophysics Data System (ADS)

    Holmes, Curtis F.

    Since the implantation of the first lithium-powered pacemaker in 1972, biomedical devices powered by lithium batteries have played a significant role in saving lives and providing health-improving therapy. Today a wide variety of devices performing functions from managing cardiac rhythm to relieving pain and administering drugs is available to clinicians. Newer devices such as ventricular assist devices and implantable hearing devices are powered by lithium ion secondary batteries.

  3. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, Paul A.

    1989-01-01

    The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.

  4. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Wenwu; Gan, Lin; Guo, Kai; Ke, Linbo; Wei, Yaqing; Li, Huiqiao; Shen, Guozhen; Zhai, Tianyou

    2016-04-01

    We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g-1, a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g-1 even at 20 A g-1. Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices.We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as

  5. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    PubMed

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material. PMID:26726470

  6. MultiLayer solid electrolyte for lithium thin film batteries

    SciTech Connect

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  7. Cooperative research on safety fundamentals of lithium batteries

    NASA Astrophysics Data System (ADS)

    Selman, J. Robert; Al Hallaj, Said; Uchida, Isamu; Hirano, Y.

    A cooperative research program on the thermal characterization and safety of lithium batteries is being carried out at IIT/Center for Electrochemical Science and Engineering and Tohoku University. This research includes experimental work for commercial lithium secondary batteries and performance prediction for scaled-up batteries. In this work, we present a set of thermal characterization experiments for lithium secondary battery cells under normal and abuse conditions. These show that the rise in cell temperature depends strongly on cell chemistry as well as discharge rate. Computer simulation of the cycling of scaled-up lithium batteries shows that the cell temperature profile also depends strongly on the surface cooling rate. An effective thermal management system is required to operate these batteries safely. This paper reviews the basic information needed for intrinsically safe design.

  8. Parameter estimation for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of

  9. Long life lithium batteries with stabilized electrodes

    DOEpatents

    Amine, Khalil; Liu, Jun; Vissers, Donald R.; Lu, Wenquan

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  10. Lithium batteries with organic slurry cathodes

    SciTech Connect

    Bruder, A.H.

    1984-08-21

    Electrical cells and batteries having lithium anodes and cathodes comprising an organic slurry of MnO/sub 2/ and carbon particles in an organic solvent in contact with a conductive plastic current collector, and a method of making the cathodes comprising the steps of heating MnO/sub 2/ to remove absorbed and adsorbed water and water of crystallization, cooling the dehydrated MnO/sub 2/, dispersing the cooled and dehydrated MnO/sub 2/ in an anhydrous solvent to form a slurry, depositing the slurry in discrete cathode patches on cell component substrates, and sealing the slurry patches into cells having substantially gas impervious cell enveloping boundaries.

  11. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  12. Visualizing lithium-ion migration pathways in battery materials.

    PubMed

    Filsø, Mette Ø; Turner, Michael J; Gibbs, Gerald V; Adams, Stefan; Spackman, Mark A; Iversen, Bo B

    2013-11-11

    The understanding of lithium-ion migration through the bulk crystal structure is crucial in the search for novel battery materials with improved properties for lithium-ion conduction. In this paper, procrystal calculations are introduced as a fast, intuitive way of mapping possible migration pathways, and the method is applied to a broad range of lithium-containing materials, including the well-known battery cathode materials LiCoO2 , LiMn2 O4 , and LiFePO4 . The outcome is compared with both experimental and theoretical studies, as well as the bond valence site energy approach, and the results show that the method is not only a strong, qualitative visualization tool, but also provides a quantitative measure of electron-density thresholds for migration, which are correlated with theoretically obtained activation energies. In the future, the method may be used to guide experimental and theoretical research towards materials with potentially high ionic conductivity, reducing the time spent investigating nonpromising materials with advanced theoretical methods. PMID:24123661

  13. Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Ganter, Matthew

    Energy storage devices are becoming an integral part of sustainable energy technology adoption, particularly, in alternative transportation (electric vehicles) and renewable energy technologies (solar and wind which are intermittent). The most prevalent technology exhibiting near-term impact are lithium ion batteries, especially in portable consumer electronics and initial electric vehicle models like the Chevy Volt and Nissan Leaf. However, new technologies need to consider the full life-cycle impacts from material production and use phase performance to the end-of-life management (EOL). This dissertation investigates the impacts of nanomaterials in lithium ion batteries throughout the life cycle and develops strategies to improve each step in the process. The embodied energy of laser vaporization synthesis and purification of carbon nanotubes (CNTs) was calculated to determine the environmental impact of the novel nanomaterial at beginning of life. CNTs were integrated into lithium ion battery electrodes as conductive additives, current collectors, and active material supports to increase power, energy, and thermal stability in the use phase. A method was developed to uniformly distribute CNT conductive additives in composites. Cathode composites with CNT additives had significant rate improvements (3x the capacity at a 10C rate) and higher thermal stability (40% reduction in exothermic energy released upon overcharge). Similar trends were also measured with CNTs in anode composites. Advanced free-standing anodes incorporating CNTs with high capacity silicon and germanium were measured to have high capacities where surface area reduction improved coulombic efficiencies and thermal stability. A thermal stability plot was developed that compares the safety of traditional composites with free-standing electrodes, relating the results to thermal conductivity and surface area effects. The EOL management of nanomaterials in lithium ion batteries was studied and a novel

  14. Electroanalytical Evaluation of Lithium Ion Batteries and Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Crain, Daniel Jacob

    Efficient solar energy conversion and electrical energy storage have been studied widely for decades. However, as materials development and process engineering for these devices have advanced through the years, some of the traditional characterization techniques have gradually fallen short of providing quantitative information that is necessary for further significant advancements in these fields. In this work a modern electroanalytical framework for characterization of silicon solar cells and lithium ion batteries is presented. Electroanalytical characterization of lithium ion battery electrodes is achieved through a strategic combination of the D.C. techniques of slow scan cyclic voltammetry, galvanostatic charge/discharge, Ragone Analysis with the A.C. technique of impedance spectroscopy (IS) coupled with complex nonlinear least squares (CNLS) analysis of impedance spectra. Primarily this investigation focuses on characterization of intercalating composite electrodes where the active material is either lithium manganese oxide (cathode,LiMn2O4) or lithium titanate (anode, Li4Ti5O12). Aspects of high power limitations are studied in detail to elucidate physical parameters that control electrode performance under rapid charge/discharge conditions. Electroanalytical evaluation of the p-n junction silicon solar cell with a back surface field (BSF) is accomplished through the use of linear sweep voltammetry (LSV) and IS combined with CNLS analysis. Although LSV has been previously used for characterization of silicon solar cells the use of impedance techniques is relatively new. Temperature and voltage dependence of the series resistance (Rs), diode quality factor (m), minority carrier lifetime and BSF electrical parameters obtained through IS are examined. The temperature dependence of results obtained from LSV such as the open circuit potential (Voc), short circuit current (Jsc), fill factor (FF) and conversion efficiency are also explored. Finally, a parative

  15. A strategic approach to recharging lithium-sulphur batteries for long cycle life

    NASA Astrophysics Data System (ADS)

    Su, Yu-Sheng; Fu, Yongzhu; Cochell, Thomas; Manthiram, Arumugam

    2013-12-01

    The success of rechargeable lithium-ion batteries has brought indisputable convenience to human society for the past two decades. However, unlike commercialized intercalation cathodes, high-energy-density sulphur cathodes are still in the stage of research because of the unsatisfactory capacity retention and long-term cyclability. The capacity degradation over extended cycles originates from the soluble polysulphides gradually diffusing out of the cathode region. Here we report an applicable way to recharge lithium-sulphur cells by a simple charge operation control that offers tremendous improvement with various lithium-sulphur battery systems. Adjusting the charging condition leads to long cycle life (over 500 cycles) with excellent capacity retention (>99%) by inhibiting electrochemical reactions along with severe polysulphide dissolution. This charging strategy and understanding of the reactions in different discharge steps will advance progress in the development of lithium-sulphur batteries.

  16. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.

    2015-12-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  17. Limiting factors to advancing thermal battery technology for naval applications

    NASA Astrophysics Data System (ADS)

    Davis, Patrick B.; Winchester, Clinton S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  18. Safety characteristics of lithium primary and secondary battery systems. Formulation of a lithium battery safety matrix

    NASA Astrophysics Data System (ADS)

    Bis, R. F.; Barnes, James A.; Zajac, William V.; Davis, Patrick B.; Murphy, Robert M.

    1986-07-01

    A study was conducted to assess the safety characteristics for both primary and secondary lithium electrochemical systems. Of particular interest is the behavior of specific cell designs of these systems when subjected to the electrical and thermal abuse test procedures prescribed in NAVSEANOTE 9310. These abusive tests include short circuit, forced overdischarge, charge, and incineration. The main intent of the report is the formulation of a lithium battery safety matrix wherein certain electrochemical system, cell designs, or cell types which have exhibited exceptionally safe characteristics under abusive conditions may be exempt from some or all of the NAVSEANOTE 9310 test procedures.

  19. Advanced batteries for electric vehicle applications

    SciTech Connect

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  20. Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery

    NASA Astrophysics Data System (ADS)

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-12-01

    We propose in this work a polyethylene glycol dimethyl ether (MW 500) dissolving lithium trifluoromethansulfonate (LiCF3SO3) salt as suitable electrolyte media for a safe and efficient use of the lithium metal anode in battery. Voltammetry and galvanostatic tests reveal significant enhancement of the electrolyte characteristics, in terms of cycling life and chemical stability, by the addition of lithium nitrate (LiNO3) to the solution. Furthermore, PFG NMR measurements suggest the applicability of the electrolyte in battery in terms of ionic conductivity, lithium transference number, ionic-association degree and self-diffusion coefficient. Accordingly, the electrolyte is employed in a lithium battery using lithium iron phosphate as the selected cathode. The battery delivers a stable capacity of 150 mAh g-1 and flat working voltage of 3.5 V, thus leading to a theoretical energy density referred to the cathode of 520 Wh kg-1. This battery is considered a suitable energy storage system for advanced applications requiring both high safety and high energy density.

  1. Recycling readiness of advanced batteries for electric vehicles

    SciTech Connect

    Jungst, R.G.

    1997-09-01

    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  2. Ceramic and polymeric solid electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.

  3. Life prediction and reliability assessment of lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Eom, Seung-Wook; Kim, Min-Kyu; Kim, Ick-Jun; Moon, Seong-In; Sun, Yang-Kook; Kim, Hyun-Soo

    Reliability assessment of lithium secondary batteries was mainly considered. Shape parameter (β) and scale parameter (η) were calculated from experimental data based on cycle life test. We also examined safety characteristics of lithium secondary batteries. As proposed by IEC 62133 (2002), we had performed all of the safety/abuse tests such as 'mechanical abuse tests', 'environmental abuse tests', 'electrical abuse tests'. This paper describes the cycle life of lithium secondary batteries, FMEA (failure modes and effects analysis) and the safety/abuse tests we had performed.

  4. Novel pseudo-delocalized anions for lithium battery electrolytes.

    PubMed

    Jónsson, Erlendur; Armand, Michel; Johansson, Patrik

    2012-05-01

    A novel anion concept of pseudo-delocalized anions, anions with distinct positive and negative charge regions, has been studied by a computer aided synthesis using DFT calculations. With the aim to find safer and better performing lithium salts for lithium battery electrolytes two factors have been evaluated: the cation-anion interaction strength via the dissociation reaction LiAn ⇌ Li(+) + An(-) and the anion oxidative stability via a vertical ionisation from anion to radical. Based on our computational results some of these anions have shown promise to perform well as lithium salts for modern lithium batteries and should be interesting synthetic targets for future research. PMID:22441354

  5. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-01-01

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural

  6. Lithium-Ion Polymer Rechargeable Battery Developed for Aerospace and Military Applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, orman H.

    1999-01-01

    A recently completed 3 -year project funded by the Defense Advanced Research Projects Agency (DARPA) under the Technology Reinvestment Program has resulted in the development and scaleup of new lithium-ion polymer battery technology for military and aerospace applications. The contractors for this cost-shared project were Lockheed Martin Missiles & Space and Ultralife Batteries, Inc. The NASA Lewis Research Center provided contract management and technical oversight. The final products of the project were a portable 15-volt (V), 10-ampere-hour (A-hr) military radio battery and a 30-V, 50-A-hr marine/aerospace battery. Lewis will test the 50-A-hr battery. The new lithium-ion polymer battery technology offers a threefold or fourfold reduction in mass and volume, relative to today s commonly used nickel-cadmium, nickel-hydrogen, and nickel-metal hydride batteries. This is of special importance for orbiting satellites. It has been determined for a particular commercial communications satellite that the replacement of 1 kg of battery mass with 1 kg of transponder mass could increase the annual revenue flow by $100 000! Since this lithium-ion polymer technology offers battery mass reductions on the order of hundreds of kilograms for some satellites, the potential revenue increases are impressive.

  7. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries.

    PubMed

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-01-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g(-1) at 0.2 C), good repeatability/rate capability (even >900 mAh g(-1) at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances. PMID:23572030

  8. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-04-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g-1 at 0.2 C), good repeatability/rate capability (even >900 mAh g-1 at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances.

  9. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    PubMed

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications. PMID:26709841

  10. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cao, Chengying; Tan, Lei; Liu, Weiwei; Ma, Jiquan; Li, Lei

    2014-02-01

    In this study, polydopamine (PDA) coated electrospun poly(vinyldiene fluoride) (PVDF) nanofibrous membranes used as separator for lithium-ion batteries are successfully prepared. Their morphology, chemical and electrochemical characterization are investigated. The morphology and porosity measurements of the membranes show that the PDA coating does not harm to the structure of the electrospun PVDF nanofibrous membranes. Due to the PDA coating, it makes the PVDF surface hydrophilic and thus increases the electrolyte uptake and ionic conductivity, resulting in the enhanced performance of batteries. The battery using the PDA coated PVDF nanofibrous separator exhibits better cycling performance and higher power capability than that the battery using the bare PVDF nanofibrous separator. This study underlines that the PDA-coating treatment provides a promising process for the fabrication of advanced electrospun nanofibers separator in the lithium-ion battery applications.

  11. Real-time observations of lithium battery reactions-operando neutron diffraction analysis during practical operation.

    PubMed

    Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji

    2016-01-01

    Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries. PMID:27357605

  12. Real-time observations of lithium battery reactions—operando neutron diffraction analysis during practical operation

    PubMed Central

    Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji

    2016-01-01

    Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries. PMID:27357605

  13. Prototype Lithium-Ion Battery Developed for Mars 2001 Lander

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2000-01-01

    In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.

  14. AGEING PROCEDURES ON LITHIUM BATTERIES IN AN INTERNATIONAL COLLABORATION CONTEXT

    SciTech Connect

    Jeffrey R. Belt; Ira Bloom; Mario Conte; Fiorentino Valerio Conte; Kenji Morita; Tomohiko Ikeya; Jens Groot

    2010-11-01

    The widespread introduction of electrically-propelled vehicles is currently part of many political strategies and introduction plans. These new vehicles, ranging from limited (mild) hybrid to plug-in hybrid to fully-battery powered, will rely on a new class of advanced storage batteries, such as those based on lithium, to meet different technical and economical targets. The testing of these batteries to determine the performance and life in the various applications is a time-consuming and costly process that is not yet well developed. There are many examples of parallel testing activities that are poorly coordinated, for example, those in Europe, Japan and the US. These costs and efforts may be better leveraged through international collaboration, such as that possible within the framework of the International Energy Agency. Here, a new effort is under development that will establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data. This paper reviews the present state-of-the-art in accelerated life testing in Europe, Japan and the US. The existing test procedures will be collected, compared and analyzed with the goal of international collaboration.

  15. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    NASA Astrophysics Data System (ADS)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  16. Development of aqueous-lithium batteries with a focus on cathodes

    NASA Astrophysics Data System (ADS)

    Vanvoorhis, Dewey J.

    Topics dealing with the advancement of the aqueous-lithium battery technology are discussed. First, results are presented from the characterization of various cathode candidates for the aqueous-lithium systems: both water and oxygen reducing. Among the water reducing cathodes, nickel and ruthenium cathodes have proven to be the best candidates. Planar nickel and ruthenium electrodes have been studied in 8M KOH using electrochemical impedance spectroscopy (EIS) and equivalent circuits at -1.2, -1.25, -1.35, -1.45, and -1.7 VSCE. Aging characteristics based on EIS are presented for the nickel and ruthenium electrodes at -1.25 and -1.45 V SCE. Electrochemical rate constants are also reported from the EIS data, which are based on the Volmer-Heyrovsky mechanism of the hydrogen evolution reaction (HER). The kinetic parameters obtained from the mechanistic model agree with both the AC results obtained at all five cathodic overpotentials tested and the DC experimental results form nickel in 8M KOH. Among the oxygen reducing cathodes, four commercially available air cathodes form E-TEK, ERC, and Alupower were used to characterize the lithium-air system for a wide range of discharge rates. Secondly, a commercially available cation exchange membrane, NafionRTM 90209, has proven to be an effective means of controlling the electrolyte concentration of the battery if operating in an ocean environment. Finally, the characterization of aqueous-lithium single-celled batteries is presented for both lithium-air and lithium-water batteries. A novel idea for a lithium-water battery is also described, and results are presented for 8 days of continuous prototype operation. The specific energy density of the prototype, 4 kW-hr/kg, has almost doubled that of previous designed lithium-water systems, and the faradaic efficiency of the prototype exceeds 90%. The lithium-water prototype demonstrated that the system is promising, and efforts should continue for its development.

  17. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries.

    PubMed

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-02-01

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g(-1), good cycling stability (around 803 mA h g(-1) at a current density of 200 mA g(-1) after 100 cycles), and stable rate performance (around 520 mA h g(-1) at a current density of 1000 mA g(-1)). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling. PMID:26781747

  18. Electrolyte compositions for lithium ion batteries

    DOEpatents

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  19. High cycle life secondary lithium battery

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Carter, Boyd J. (Inventor); Shen, David H. (Inventor); Somoano, Robert B. (Inventor)

    1985-01-01

    A secondary battery (10) of high energy density and long cycle is achieved by coating the separator (18) with a film (21) of cationic polymer such as polyvinyl-imidazoline. The binder of the positive electrode (14) such as an ethylene-propylene elastomer binder (26) containing particles (28) of TiS.sub.2 chalcogenide can also be modified to contain sulfone functional groups by incorporating liquid or solid sulfone materials such as 0.1 to 5 percent by weight of sulfolane into the binder. The negative lithium electrode (14), separator (18) and positive electrode (16) are preferably spirally wound and disposed within a sealed casing (17) containing terminals (32, 34). The modified separator and positive electrode are more wettable by the electrolytes in which a salt is dissolved in a polar solvent such as sulfolane.

  20. Bipolar and Monopolar Lithium-Ion Battery Technology at Yardney

    NASA Technical Reports Server (NTRS)

    Russell, P.; Flynn, J.; Reddy, T.

    1996-01-01

    Lithium-ion battery systems offer several advantages: intrinsically safe; long cycle life; environmentally friendly; high energy density; wide operating temperature range; good discharge rate capability; low self-discharge; and no memory effect.

  1. Bipolar rechargeable lithium battery for high power applications

    NASA Technical Reports Server (NTRS)

    Hossain, Sohrab; Kozlowski, G.; Goebel, F.

    1993-01-01

    Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly.

  2. Lithium-Ion rechargeable batteries on Mars Rover

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Ewell, R. C.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.

    2004-01-01

    NASA's Mars Rovers, Spirit and Opportunity, have been roving on the surface of Mars, capturing impressive images of its terrain and analyzing the drillings from Martian rocks, to answer the ever -puzzling questions of life beyond Earth and origin of our planets. These rovers are being enabled by an advanced rechargeable battery system, lithium-ion, for the first time on a space mission of this scale, for keeping the rover electronics warm, and for supporting nighttime experimentation and communications. These rover Li-ion batteries are characterized by their unique low temperature capability, in addition to the usual advantages associated with Li-ion chemistry in terms of mass, volume and energy efficiency. To enable a rapid insertion of this advanced Li-ion chemistry into flight missions, we have performed several performance assessment studies on several prototype cells over the last few years. These tests mainly focused primarily on the long-term performance characteristics, such as cycling and storage, as described in our companion paper. In addition, various tests have been performed on MER cells and engineering and proto flight batteries; under conditions relevant to these missions. For example, we have examined the performance of the cells in: a) an inverted orientation, as during integration and launch, and b) conditions of low rate discharge, between 3.0-2.5 V to support the mission clock. Likewise, we have determined the impedance of the proto-flight Rover battery assembly unit in detail, with a view to asses whether a current-limiting resistor would be unduly stressed, in the event of a shorting induced by a failed pyro. In this paper we will describe these studies in detail, as well as the performance of Li-ion batteries in Spirit and Opportunity rovers, during cruise and on Mars.

  3. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  4. Recent developments in anode materials for lithium batteries

    NASA Astrophysics Data System (ADS)

    Thackeray, M. M.; Vaughey, J. T.; Fransson, L. M. L.

    2002-03-01

    Lithium-ion batteries, preferred for their high energy and power, also present several challenges. Of particular concern are unsafe conditions that can arise in lithium-ion cells that operate with a fully lithiated graphite electrode. If the cells in those batteries are overcharged, especially in large-scale applications, thermal runaway, venting, fire, and explosion could result. This paper examines research into alternative, intermetallic electrode materials.

  5. Electrochemistry of dioxygen in lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Hardwick, Laurence

    2014-03-01

    The non-aqueous lithium-oxygen battery is one of a host of emerging opportunities available for enhanced energy storage. Unlike a conventional battery where the reagents are contained within the cell, the lithium-oxygen cell uses dioxygen from the atmosphere to electrochemically form the discharge product lithium peroxide. Degrees of reversible oxidation and formation of lithium peroxide has been demonstrated in a number of non-aqueous electrolyte classes, mostly notably in dimethysulfoxide based electrolytes, thus making the lithium-oxygen cell a potential energy storage device. This talk will present our groups recent results of the electrochemistry of dioxygen in non-aqueous electrolytes, of which particular electrolytes could have practical application within a lithium-oxygen cell. Discussion will touch upon how the electrochemistry can be related to electrode substrate and will be presented with in situ spectroscopic studies that identify intermediate and surface species during the oxygen reduction reaction. Support from the EPSRC is gratefully acknowledged

  6. 77 FR 28488 - Outbound International Mailings of Lithium Batteries and Other Dangerous Goods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... accordance with additional requirements listed in the Technical Instructions. Lithium-ion cells and lithium... for mailpieces containing lithium metal or lithium-ion cells or batteries and applies regardless of... lithium-ion cells and batteries (rechargeable), regardless of quantity, size, watt hours, and...

  7. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries. PMID:18849978

  8. Advanced Battery Manufacturing (VA)

    SciTech Connect

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  9. A metal-free, lithium-ion oxygen battery: a step forward to safety in lithium-air batteries.

    PubMed

    Hassoun, Jusef; Jung, Hun-Gi; Lee, Dong-Ju; Park, Jin-Bum; Amine, Khalil; Sun, Yang-Kook; Scrosati, Bruno

    2012-11-14

    A preliminary study of the behavior of lithium-ion-air battery where the common, unsafe lithium metal anode is replaced by a lithiated silicon-carbon composite, is reported. The results, based on X-ray diffraction and galvanostatic charge-discharge analyses, demonstrate the basic reversibility of the electrochemical process of the battery that can be promisingly cycled with a rather high specific capacity. PMID:23077970

  10. Evaluation of lithium-ion synergetic battery pack as battery charger

    SciTech Connect

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-09-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and a battery charger. In this paper, the authors compare the performance of the Synergetic Battery Pack as a battery charger with several simple conventional battery charging circuits via computer simulation. The factors of comparison were power factor, harmonic distortion, and circuit efficiency. The simulations showed that the SBP is superior to the conventional charging circuits since the power factor is unity and harmonic distortion is negligible.

  11. 77 FR 68069 - Outbound International Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... the final rule published on May 14, 2012, (77 FR 28259-28261), the Postal Service implemented new... 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION: Final... batteries internationally, or to and from an APO, FPO, or DPO destinations. DATES: Effective date:...

  12. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    PubMed

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  13. Non-aqueous electrolytes for lithium ion batteries

    SciTech Connect

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  14. Primary lithium battery technology and its application to NASA missions

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1979-01-01

    A description is given of the components, overall cell reactions, and performance characteristics of promising new ambient temperature lithium primary systems based on the Li-V205, Li-SO2, and Li-SOC12 couples. Development status of these systems is described in regard to availability and uncertainties in the areas of safety and selected performance characteristics. Studies show that use of lithium batteries would enhance a variety of missions and applications by decreasing power sytems weight and thereby increasing payload weight. In addition, the lithium batteries could enhance cost effectiveness of the missions.

  15. 77 FR 66084 - Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... Federal Aviation Administration Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice...

  16. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... Federal Aviation Administration Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice...

  17. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; Wen, Zhenhai; Yuan, Chris; Chen, Junhong

    2016-04-01

    Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g-1 in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g-1 at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g-1 at 8 C for 30 cycles, which is among the best reported rate capabilities.Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior

  18. Lithium-oxygen batteries-Limiting factors that affect performance

    NASA Astrophysics Data System (ADS)

    Padbury, Richard; Zhang, Xiangwu

    2011-05-01

    Lithium-oxygen batteries have recently received attention due to their extremely high theoretical energy densities, which far exceed that of any other existing energy storage technology. The significantly larger theoretical energy density of the lithium-oxygen batteries is due to the use of a pure lithium metal anode and the fact that the cathode oxidant, oxygen, is stored externally since it can be readily obtained from the surrounding air. Before the lithium-oxygen batteries can be realized as high performance, commercially viable products, there are still many challenges to overcome, from designing their cathode structure, to optimizing their electrolyte compositions and elucidating the complex chemical reactions that occur during charge and discharge. The scientific obstacles that are related to the performance of the lithium-oxygen batteries open up an exciting opportunity for researchers from many different backgrounds to utilize their unique knowledge and skills to bridge the knowledge gaps that exist in current research projects. This article is a summary of the most significant limiting factors that affect the performance of the lithium-oxygen batteries from the perspective of the authors. The article indicates the relationships that form between various limiting factors and highlights the complex yet captivating nature of the research within this field.

  19. Materials issues in lithium ion rechargeable battery technology

    SciTech Connect

    Doughty, D.H.

    1995-07-01

    Lithium ion rechargeable batteries are predicted to replace Ni/Cd as the workhorse consumer battery. The pace of development of this battery system is determined in large part by the availability of materials and the understanding of interfacial reactions between materials. Lithium ion technology is based on the use of two lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells and in 1983 for ambient temperature systems, it was not until Sony Energytech announced a new lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these electrochemical cells have the high energy density, high voltage and light weight of metallic lithium, but without the disadvantages of dendrite formation on charge, improving their safety and cycle life.

  20. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    PubMed

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode. PMID:26389522

  1. Challenges facing lithium batteries and electrical double-layer capacitors.

    PubMed

    Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A; Ji, Xiulei; Sun, Yang-Kook; Amine, Khalil; Yushin, Gleb; Nazar, Linda F; Cho, Jaephil; Bruce, Peter G

    2012-10-01

    Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and "load leveling" of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors. PMID:22965900

  2. High Performance Batteries Based on Hybrid Magnesium and Lithium Chemistry

    SciTech Connect

    Cheng, Yingwen; Shao, Yuyan; Zhang, Jiguang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2014-01-01

    Magnesium and lithium (Mg/Li) hybrid batteries that combine Mg and Li electrochemistry, consisting of a Mg anode, a lithium-intercalation cathode and a dual-salt electrolyte with both Mg2+ and Li+ ions, were constructed and examined in this work. Our results show that hybrid (Mg/Li) batteries were able to combine the advantages of Li-ion and Mg batteries, and delivered outstanding rate performance (83% for capacities at 15C and 0.1C) and superior cyclic stability (~5% fade after 3000 cycles).

  3. Doping-Enhanced Lithium Diffusion in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Wu, Shunnian; Wu, Ping

    2011-09-01

    We disclose a distortion-assisted diffusion mechanism in Li3N and Li2.5Co0.5N by first-principles simulations. A B2g soft mode at the Γ point is found in α-Li3N, and a more stable α'-Li3N (P3¯m1) structure, which is 0.71 meV lower in energy, is further derived. The same soft mode is inherited into Li2.5Co0.5N and is enhanced due to Co doping. Consequently, unlike the usual Peierls spin instability along Co-N chains, large lithium-ion displacements on the Li-N plane are induced by a set of soft modes. Such a distortion is expected to offer Li atoms a route to bypass the high diffusion barrier and promote Li-ion conductivity. In addition, we further illustrate abnormal Born effective charges along Co-N chains which result from the competition between the motions of electrons and ion cores. Our results provide future opportunities in both fundamental understanding and structural modifications of Li-ion battery materials.

  4. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  5. Use of lithium-ion batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Kennedy, B.; Patterson, D.; Camilleri, S.

    An account is given of the lithium-ion (Li-ion) battery pack used in the Northern Territory University's solar car, Fuji Xerox Desert Rose, which competed in the 1999 World Solar Challenge (WSC). The reasons for the choice of Li-ion batteries over silver-zinc batteries are outlined, and the construction techniques used, the management of the batteries, and the battery protection boards are described. Data from both pre-race trialling and race telemetry, and an analysis of both the coulombic and the energy efficiencies of the battery are presented. It is concluded that Li-ion batteries show a real advantage over other commercially available batteries for traction applications of this kind.

  6. Nickel-Hydrogen and Lithium Ion Space Batteries

    NASA Technical Reports Server (NTRS)

    Reid, Robert O., II

    2004-01-01

    The tasks of the Electrochemistry Branch of NASA Glenn Research Center are to improve and develop high energy density and rechargeable, life-long batteries. It is with these batteries that people across the globe are able to power their cell phones, laptop computers, and cameras. Here, at NASA Glenn Research Center, the engineers and scientists of the Electrochemistry branch are leading the way in the development of more powerful, long life batteries that can be used to power space shuttles and satellites. As of now, the cutting edge research and development is being done on nickel-hydrogen batteries and lithium ion batteries. Presently, nickel-hydrogen batteries are common types of batteries that are used to power satellites, space stations, and space shuttles, while lithium batteries are mainly used to power smaller appliances such as portable computers and phones. However, the Electrochemistry Branch at NASA Glenn Research Center is focusing more on the development of lithium ion batteries for deep space use. Because of the limitless possibilities, lithium ion batteries can revolutionize the space industry for the better. When compared to nickel-hydrogen batteries, lithium ion batteries possess more advantages than its counterpart. Lithium ion batteries are much smaller than nickel-hydrogen batteries and also put out more power. They are more energy efficient and operate with much more power at a reduced weight than its counterpart. Lithium ion cells are also cheaper to make, possess flexibility that allow for different design modifications. With those statistics in hand, the Electrochemistry Branch of NASA Glenn has decided to shut down its Nickel-Hydrogen testing for lithium ion battery development. Also, the blackout in the summer of 2003 eliminated vital test data, which played a part in shutting down the program. from the nickel-hydrogen batteries and compare it to past data. My other responsibilities include superheating the electrolyte that is used in the

  7. Model based condition monitoring in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Singh, Amardeep; Izadian, Afshin; Anwar, Sohel

    2014-12-01

    In this paper, a model based condition monitoring technique is developed for lithium-ion battery condition monitoring. Here a number of lithium-ion batteries are cycled using two separate over discharge test regimes and the resulting shift in battery parameters is recorded. The battery models are constructed using the equivalent circuit methodology. The condition monitoring setup consists of a model bank representing the different degree of parameter shift due to overdischarge in the lithium ion battery. Extended Kalman filters (EKF) are used to maintain increased robustness of the condition monitoring setup while estimating the terminal voltage of the battery cell. The information carrying residuals are generated and evaluation process is carried out in real-time using multiple model adaptive estimation (MMAE) methodology. The condition evaluation function is used to generate probabilities that indicate the presence of a particular operational condition. Using the test data, it is shown that the performance shift in lithium ion batteries due to over discharge can be accurately detected.

  8. Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Ni, Xiao; Feng, Kai; Zhang, Hongzhang; Li, Xianfeng; Zhang, Huamin

    2016-09-01

    The exploration of cathode materials with high capacity and power, fast charge/discharge rate, long lifespan and broad temperature adaptability is a challenge for the practical application of lithium ion batteries. Here, submicro-sheet Li3V2(PO4)3/C (LVP/C) cathode materials have been successfully synthesized via a simple and universal phase-change method. This designed melting process increases the crystallinity and decreases the Li+ diffusion distance, which effectively enhances the cycling stability and rate performances of the LVP/C cathode materials. The LVP/C cathode materials exhibit high discharge specific capacity of 130 mAh g-1 in the first cycle. The capacity retention is almost 100% after 100 cycles. In addition, at 10 C, more than 80% of initial discharge capacity is retained after 800 cycles, indicating excellent cycle performance at high rate. Moreover, the synthesized LVP/C materials perform excellent low-temperature properties. At -20 °C, the specific capacity can reach 105 mAh g-1 at 0.5 C. This study provides a novel template-free synthesis method for nano/micro materials.

  9. Coated/Sandwiched rGO/CoSx Composites Derived from Metal-Organic Frameworks/GO as Advanced Anode Materials for Lithium-Ion Batteries.

    PubMed

    Yin, Dongming; Huang, Gang; Zhang, Feifei; Qin, Yuling; Na, Zhaolin; Wu, Yaoming; Wang, Limin

    2016-01-22

    Rational composite materials made from transition metal sulfides and reduced graphene oxide (rGO) are highly desirable for designing high-performance lithium-ion batteries (LIBs). Here, rGO-coated or sandwiched CoSx composites are fabricated through facile thermal sulfurization of metal-organic framework/GO precursors. By scrupulously changing the proportion of Co(2+) and organic ligands and the solvent of the reaction system, we can tune the forms of GO as either a coating or a supporting layer. Upon testing as anode materials for LIBs, the as-prepared CoSx -rGO-CoSx and rGO@CoSx composites demonstrate brilliant electrochemical performances such as high initial specific capacities of 1248 and 1320 mA h g(-1) , respectively, at a current density of 100 mA g(-1) , and stable cycling abilities of 670 and 613 mA h g(-1) , respectively, after 100 charge/discharge cycles, as well as superior rate capabilities. The excellent electrical conductivity and porous structure of the CoSx /rGO composites can promote Li(+) transfer and mitigate internal stress during the charge/discharge process, thus significantly improving the electrochemical performance of electrode materials. PMID:26748911

  10. A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries.

    PubMed

    Zeng, Guobo; Shi, Nan; Hess, Michael; Chen, Xi; Cheng, Wei; Fan, Tongxiang; Niederberger, Markus

    2015-04-28

    High-capacity anode materials for lithium ion batteries (LIBs), such as spinel-type metal oxides, generally suffer from poor Li(+) and e(-) conductivities. Their drastic crystal structure and volume changes, as a result of the conversion reaction mechanism with Li, severely impede the high-rate and cyclability performance toward their practical application. In this article, we present a general and facile approach to fabricate flexible spinel-type oxide/reduced graphene oxide (rGO) composite aerogels as binder-free anodes where the spinel nanoparticles (NPs) are integrated in an interconnected rGO network. Benefiting from the hierarchical porosity, conductive network and mechanical stability constructed by interpenetrated rGO layers, and from the pillar effect of NPs in between rGO sheets, the hybrid system synergistically enhances the intrinsic properties of each component, yet is robust and flexible. Consequently, the spinel/rGO composite aerogels demonstrate greatly enhanced rate capability and long-term stability without obvious capacity fading for 1000 cycles at high rates of up to 4.5 A g(-1) in the case of CoFe2O4. This electrode design can successfully be applied to several other spinel ferrites such as MnFe2O4, Fe3O4, NiFe2O4 or Co3O4, all of which lead to excellent electrochemical performances. PMID:25783818

  11. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Zhang, Yangyang; Chen, Zhihang; Duan, Huanan; Xu, Biyi; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm-3), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g-1 at a specific current of 200 mA g-1. Even at the high specific current of 1000 mA g-1 after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g-1, about twice as much as that of SGF (297.6 mAh g-1) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc.

  12. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode.

    PubMed

    Tian, Ran; Zhang, Yangyang; Chen, Zhihang; Duan, Huanan; Xu, Biyi; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm(-3)), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g(-1) at a specific current of 200 mA g(-1). Even at the high specific current of 1000 mA g(-1) after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g(-1), about twice as much as that of SGF (297.6 mAh g(-1)) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc. PMID:26754468

  13. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries.

    PubMed

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; Wen, Zhenhai; Yuan, Chris; Chen, Junhong

    2016-04-21

    Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g(-1) in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g(-1) at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g(-1) at 8 C for 30 cycles, which is among the best reported rate capabilities. PMID:27029963

  14. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode

    PubMed Central

    Tian, Ran; Zhang, Yangyang; Chen, Zhihang; Duan, Huanan; Xu, Biyi; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm−3), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g−1 at a specific current of 200 mA g−1. Even at the high specific current of 1000 mA g−1 after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g−1, about twice as much as that of SGF (297.6 mAh g−1) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc. PMID:26754468

  15. Lithium plating in a commercial lithium-ion battery - A low-temperature aging study

    NASA Astrophysics Data System (ADS)

    Petzl, Mathias; Kasper, Michael; Danzer, Michael A.

    2015-02-01

    The formation of metallic lithium on the negative graphite electrode in a lithium-ion (Li-ion) battery, also known as lithium plating, leads to severe performance degradation and may also affect the cell safety. This study is focused on the nondestructive characterization of the aging behavior during long-term cycling at plating conditions, i.e. low temperature and high charge rate. A commercial graphite/LiFePO4 Li-ion battery is investigated in order to elucidate the aging effects of lithium plating for real-world purposes. It is shown that lithium plating can be observed as a loss of cyclable lithium which affects the capacity balance of the electrodes. In this way, lithium plating counteracts its own occurrence during prolonged cycling. The capacity losses due to lithium plating are therefore decreasing at higher cycle numbers and the capacity retention curve exhibits an inflection point. It is further shown that the observed capacity fade is partly reversible. Electrochemical impedance spectroscopy (EIS) reveals a significant increase of the ohmic cell resistance due to electrolyte consumption during surface film formation on the plated lithium. Additional cell opening provides important quantitative information regarding the thickness of the lithium layer and the corresponding mass of the plated lithium.

  16. Electrospun Nanofiber-Coated Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lee, Hun

    be directly used as novel battery separators for high performance of lithium-ion batteries. Coating polyolefin microporous membranes with electrospun nanofibers is a promising approach to obtain highperformance separators for advanced lithium-ion batteries.

  17. Secondary lithium batteries for space applications

    NASA Technical Reports Server (NTRS)

    Carter, B.; Khanna, S. K.; Yen, S. P. S.; Shen, D.; Somoano, R. B.

    1981-01-01

    Secondary lithium cells which use a LiAsF6-2-Me-THF electrolyte and a TiS2 intercalatable cathode exhibit encouraging cycle life at ambient temperature. Electrochemical and surface analytical studies indicate that the electrolyte is unstable in the presence of metallic lithium, leading to the formation of a lithium passivating film composed of lithium arsenic oxyfluorides and lithium fluorsilicates. The lithium cyclability remains as the most important problem to solve. Different electrolyte solvents, such as sulfolane, exhibit promising characteristics but lead to new compatibility problems with the other cell component materials.

  18. Solid state thin film battery having a high temperature lithium alloy anode

    DOEpatents

    Hobson, David O.

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  19. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    SciTech Connect

    Liu, Hua Kun

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  20. Lithium composite electrolyte FeS{sub 2} bipolar battery

    SciTech Connect

    Peled, E.; Golodnitsky, D.; Lang, J.; Lavi, Y.

    1994-12-31

    The goals are to develop and characterize a small laboratory prototype of a new lithium battery for electric vehicles (EV) and load leveling. This rechargeable battery consists of thin foils of: lithium anode, composite solid electrolyte (CSE) or composite polymer electrolyte (CPE) and a composite FeS{sub 2} (pyrite) cathode. Their battery has several advantages over other state of the art polymer electrolyte batteries: (1) The authors use a low cost cathode, pyrite is a natural ore, therefore it is environmentally friendly (2) Small prototype cells exhibited very high specific energy, projected to be 120 Wh/kg at C/5 to C/10 rate (three times larger than that of lead acid battery) and more than forty 100% charge-discharge cycles (3) their battery has an internal electrochemical overcharge protection mechanism (which is essential for EV batteries) (4) It was found that for both CSE and CPE the Li/electrolyte interfacial resistance is low and stable for up to 3,000h (CPE) and 700h CSE at 120 C. The long term projected specific energy for their battery is over 200 Wh/kg, five times larger than that of the lead acid battery and one of the highest among all batteries under development.

  1. Smart battery controller for lithium/sulfur dioxide batteries. Technical report, Jan 89-Apr 91

    SciTech Connect

    Atwater, T.; Bard, A.; Testa, B.; Shader, W.

    1992-08-01

    Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

  2. Non-aqueous electrolytes for lithium batteries

    SciTech Connect

    Bakos, V.W.; Steklenski, D.J.

    1989-02-14

    An electrochemical cell is described comprising a lithium anode, a cathode and an electrolyte having a conductivity, and reciprocal ohms per cm, of at least 3.5 in, comprising a lithium salt, propylene carbonate and 1,2-dimethoxypropane.

  3. Design modeling of lithium-ion battery performance

    NASA Astrophysics Data System (ADS)

    Nelson, Paul; Bloom, Ira; Amine, Khalil; Henriksen, Gary

    A computer design modeling technique has been developed for lithium-ion batteries to assist in setting goals for cell components, assessing materials requirements, and evaluating thermal management strategies. In this study, the input data for the model included design criteria from Quallion, LLC for Gen-2 18650 cells, which were used to test the accuracy of the dimensional modeling. Performance measurements on these cells were done at the electrochemical analysis and diagnostics laboratory (EADL) at Argonne National Laboratory. The impedance and capacity related criteria were calculated from the EADL measurements. Five batteries were designed for which the number of windings around the cell core was increased for each succeeding battery to study the effect of this variable upon the dimensions, weight, and performance of the batteries. The lumped-parameter battery model values were calculated for these batteries from the laboratory results, with adjustments for the current collection resistance calculated for the individual batteries.

  4. Design modeling of lithium-ion battery performance.

    SciTech Connect

    Nelson, P. A.; Bloom, I.; Amine, K.; Henriksen, G.; Chemical Engineering

    2002-08-22

    A computer design modeling technique has been developed for lithium-ion batteries to assist in setting goals for cell components, assessing materials requirements, and evaluating thermal management strategies. In this study, the input data for the model included design criteria from Quallion, LLC for Gen-2 18650 cells, which were used to test the accuracy of the dimensional modeling. Performance measurements on these cells were done at the electrochemical analysis and diagnostics laboratory (EADL) at Argonne National Laboratory. The impedance and capacity related criteria were calculated from the EADL measurements. Five batteries were designed for which the number of windings around the cell core was increased for each succeeding battery to study the effect of this variable upon the dimensions, weight, and performance of the batteries. The lumped-parameter battery model values were calculated for these batteries from the laboratory results, with adjustments for the current collection resistance calculated for the individual batteries.

  5. Performance analysis of lithium-ion battery/electrochemical capacitor hybrid systems

    NASA Astrophysics Data System (ADS)

    Sikha, Godfrey

    Electrochemical double layer capacitors are the most suitable power sources for high powered applications such as electric vehicles, power distribution systems, uninterrupted power supply, hybrid vehicles and other electronic devices due to their high power densities. However, their energy densities are considerably lower than those of high energy battery systems such as Lithium-ion. Although advanced battery systems and double layer electrochemical capacitors contrast with regard to energy-power relationship, in combination they can be utilized as an effective power source for various applications. So a systematic study of the performance of the combination of these energy sources (hybrid system) is indispensable. In this thesis, a hybrid system consisting of a lithium-ion battery coupled with a network of electrochemical capacitors was constructed and investigated in detail under pulse type of discharge. The impact of various operating parameters such as duty ratio, frequency, pulse current amplitude, number of capacitors in the capacitor network on the performance of the hybrid system was studied. To further understand and optimize the hybrid system a mathematical model for a lithium-ion/electrochemical capacitor network hybrid was developed from first principles. The prominent features of the model were its capability to predict the current shared by the battery and the capacitor network during discharge and its versatility to include any number of identical capacitors/batteries in series/parallel configuration. Specific energy and power relationships were simulated to identify the regime where the performance of the hybrids was better than the battery on a mass basis. The validity of the model was also tested against experimental data obtained from a Sony US 18650 lithium-ion battery/Maxwell PC100F electrochemical capacitor hybrid system. Finally a case study on the performance of the battery-alone system against a hybrid system was done for two different high

  6. Safer lithium ion batteries based on nonflammable electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Ziqi; Wu, Bingbin; Xiao, Lifen; Jiang, Xiaoyu; Chen, Yao; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-04-01

    The safety of lithium ion batteries has long been a critical obstacle for their high-power and large-scale applications because of the flammable nature of their carbon anode and organic carbonate electrolytes. To eliminate the potential safety hazards, lithium ion batteries should be built up with thermal-stable electrodes and nonflammable electrolytes. Here we report safer lithium ion batteries using nonflammable phosphonate electrolyte, thermal-stable LiFePO4 cathode and alloy anodes. Benefiting from the electrochemical compatibility and strong fire-retardancy of the phosphonate electrolyte, the cathode and anode materials in the nonflammable phosphonate electrolyte demonstrate similar charge-discharge performances with those in the conventional carbonate electrolyte, showing a great prospect for large-scale applications in electric vehicles and grid-scale electric energy storage.

  7. Recycling rice husks for high-capacity lithium battery anodes.

    PubMed

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  8. Recycling rice husks for high-capacity lithium battery anodes

    PubMed Central

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-01-01

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 108 tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  9. Reducing of internal resistance lithium ion battery using glucose addition

    NASA Astrophysics Data System (ADS)

    Salim, Andri Pratama; Hafidlullah, Noor; Purwanto, Agus

    2016-02-01

    There are two indicators of battery performance, i.e : capacity and the internal resistance of battery. In this research, the affect of glucose addition to decrease the internal resistance of lithium battery was investigated. The ratio of glucose addition were varied at weight ratio 1%, 3%, and 5% and one mixtures without glucose addition. Lithium ferri phosphate (LiFePO4), polyvinylidene fluoride (PVDF), acetylene black (AB) and glucose were materials that used in this study. Both of mixtures were mixed in the vacuum mixer until became homogeneous. The slurry was coated on an aluminium foil sheet and the coated thickness was 200 µm. The performance of battery lithium was examined by Eight Channel Battery Analyzer and the Internal resistance was examined by Internal Resistance of Battery Meter. The result from all analyzer were showed that the internal resistance reduced as well as the battery capacity. The best internal resistance value is owned by mixtures with 3wt% ratio glucose addition. It has an internal resistance value about 64 miliohm.

  10. Graphene composites as anode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, M.; Kovacevic, R.

    2013-03-01

    Since the world of mobile phones and laptops has significantly altered by a big designer named Steve Jobs, the electronic industries have strived to prepare smaller, thinner and lower weight products. The giant electronic companies, therefore, compete in developing more efficient hardware such as batteries used inside the small metallic or polymeric frame. One of the most important materials in the production lines is the lithium-based batteries which is so famous for its ability in recharging as many times as a user needs. However, this is not an indication of being long lasted, as many of the electronic devices are frequently being used for a long time. The performance, chemistry, safety and above all cost of the lithium ion batteries should be considered when the design of the compounds are at the top concern of the engineers. To increase the efficiency of the batteries a combination of graphene and nanoparticles is recently introduced and it has shown to have enormous technological effect in enhancing the durability of the batteries. However, due to very high electronic conductivity, these materials can be thought of as preparing the anode electrode in the lithiumion battery. In this paper, the various approaches to characterize different types of graphene/nanoparticles and the process of preparing the anode for the lithium-ion batteries as well as their electrical properties are discussed.

  11. Hybrid electrolytes with controlled network structures for lithium metal batteries.

    PubMed

    Pan, Qiwei; Smith, Derrick M; Qi, Hao; Wang, Shijun; Li, Christopher Y

    2015-10-21

    Solid polymer electrolytes (SPEs) with tunable network structures are prepared by a facile one-pot reaction of polyhedral oligomeric silsesquioxane and poly(ethylene glycol). These SPEs, with high conductivity and high modulus, exhibit superior resistance to lithium dendrite growth even at high current densities. Measurements of lithium metal batteries with a LiFePO4 cathode show excellent cycling stability and rate capability. PMID:26316140

  12. Nanowire-graphene hybrids for lithium-ion-battery

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; Khan, Md Ashiqur Rahaman; Karim, Hasanul; Morton, Philip; Wilson, Tavis; Mendoza, Miguel; Lin, Yirong

    2013-04-01

    Lithium ion batteries (LIB) have been receiving extensive attention due to the high specific energy density for wide applications such as electronic vehicles, commercial mobile electronics, and military applications. In LIB, graphite is the most commonly used anode material; however, lithium ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To overcome this obstacle, nanostructured anode assembly has been extensively studied to increase the lithium ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown propitious results for enhanced lithium intercalation. Recently, nanowire/graphene hybrids were developed for the enhancement of LIB performance; however, almost all previous efforts employed nanowires on graphene in a random fashion, which limited lithium ion diffusion rate. Therefore, we demonstrate a new approach by hydrothermally growing uniform nanowires on graphene aerogel to further improve the performance. This nanowire/graphene aerogel hybrid not only uses the high surface area of the graphene aerogel but also increases the specific surface area for electrodeelectrolyte interaction. Therefore, this new nanowire/graphene aerogel hybrid anode material could enhance the specific capacity and charge-discharge rate. Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) are used for materials characterization. Battery Analyzer and Potentio-galvanostat are used for measuring the electrical performance of the battery. The testing results show that nanowire graphene hybrid anode gives significantly improved performance compared to graphene anode.

  13. Electrochemical Study of Hollow Carbon Nanospheres as High-Rate and Low Temperature Negative Electrodes for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Cox, Jonathan David

    The continued advancements in portable electronics have demanded more advanced power sources. To date, lithium ion batteries have been the state-of-the-art for portable devices. One significant drawback of lithium ion batteries is the slow charging times and their performance at low temperatures. In this dissertation, we explore the electrochemical behavior of a new lithium ion, negative electrode active material, hollow carbon nanospheres (HCNS). HCNS are ˜50 nm in diameter hollow spheres with ˜5 - 10 nm graphic walls which have a nominal reversible capacity of ˜220 mAh/g. We assembled and cycled HCNS as a lithium ion anode material and compared it to graphite, currently used as the anode material in most commercial lithium ion batteries. The charging mechanism of HCNS is an intercalation of the lithium ions into the graphitic walls of the spheres, similar to graphite, determined by diffraction and electroanalytical techniques. However, the HCNS electrodes cycled at much higher charge and discharge rates than graphite. Additionally, we demonstrated HCNS cycling at low temperatures (-20 *C) in electrolytes not obtainable by graphite due to material exfoliation during cycling. Although, due to the large surface area of HCNS, the first cycle coulombic losses are very high. This work has resulted in an understanding of a potentially new lithium ion battery anode material with significantly better cycling attributes than the current anode material.

  14. Lithium-ion batteries: Runaway risk of forming toxic compounds

    NASA Astrophysics Data System (ADS)

    Hammami, Amer; Raymond, Nathalie; Armand, Michel

    2003-08-01

    Lithium-ion batteries are stabilized by an ultrathin protective film that is 10-50 nanometres thick and coats both electrodes. Here we artifically simulate the 'thermal-runaway' conditions that would arise should this coating be destroyed, which could happen in a battery large enough to overheat beyond 80 °C. We find that under these conditions the reaction of the battery electrolyte with the material of the unprotected positive electrode results in the formation of toxic fluoro-organic compounds. Although not a concern for the small units used in today's portable devices, this unexpected chemical hazard should be taken into account as larger and larger lithium-ion batteries are developed, for example for incorporation into electric-powered vehicles.

  15. Tannic-Acid-Coated Polypropylene Membrane as a Separator for Lithium-Ion Batteries.

    PubMed

    Pan, Lei; Wang, Haibin; Wu, Chaolumen; Liao, Chenbo; Li, Lei

    2015-07-29

    To solve the wetting capability issue of commercial polypropylene (PP) separators in lithium-ion batteries (LIBs), we developed a simple dipping surface-coating process based on tannic acid (TA), a natural plant polyphenol. Fourier transform infrared and X-ray photoelectron measurements indicate that the TA is coated successfully on the PP separators. Scanning electron microscopy images show that the TA coating does not destroy the microporous structure of the separators. After being coated with TA, the PP separators become more hydrophilic, which not only enhances the liquid electrolyte retention ability but also increases the ionic conductivity. The battery performance, especially for power capability, is improved after being coated with TA. It indicates that this TA-coating method provides a promising process by which to develop an advanced polymer membrane separator for lithium-ion batteries. PMID:26177514

  16. High capacity anode materials for lithium ion batteries

    SciTech Connect

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  17. Memory effect in a lithium-ion battery.

    PubMed

    Sasaki, Tsuyoshi; Ukyo, Yoshio; Novák, Petr

    2013-06-01

    Memory effects are well known to users of nickel-cadmium and nickel-metal-hydride batteries. If these batteries are recharged repeatedly after being only partially discharged, they gradually lose usable capacity owing to a reduced working voltage. Lithium-ion batteries, in contrast, are considered to have no memory effect. Here we report a memory effect in LiFePO4-one of the materials used for the positive electrode in Li-ion batteries-that appears already after only one cycle of partial charge and discharge. We characterize this memory effect of LiFePO4 and explain its connection to the particle-by-particle charge/discharge model. This effect is important for most battery uses, as the slight voltage change it causes can lead to substantial miscalculations in estimating the state of charge of batteries. PMID:23584142

  18. Lithium-sulfur dioxide batteries on Mars rovers

    NASA Technical Reports Server (NTRS)

    Ratnakumar, Bugga V.; Smart, M. C.; Ewell, R. C.; Whitcanack, L. D.; Kindler, A.; Narayanan, S. R.; Surampudi, S.

    2004-01-01

    NASA's 2003 Mars Exploration Rover (MER) missions, Spirit and Opportunity, have been performing exciting surface exploration studies for the past six months. These two robotic missions were aimed at examining the presence of water and, thus, any evidence of life, and at understanding the geological conditions of Mars, These rovers have been successfully assisted by primary lithium-sulfur dioxide batteries during the critical entry, descent, and landing (EDL) maneuvers. These batteries were located on the petals of the lander, which, unlike in the Mars Pathfinder mission, was designed only to carry the rover. The selection of the lithium-sulfur dioxide battery system for this application was based on its high specific energy and high rate discharge capability, combined with low heat evolution, as dictated by this application. Lithium-sulfur dioxide batteries exhibit voltage delay, which tends to increase at low discharge temperatures, especially after extended storage at warm temperatures, In the absence of a depassivation circuit, as provided on earlier missions, e.g., Galileo, we were required to depassivate the lander primary batteries in a unique manner. The batteries were brought onto a shunt-regulated bus set at pre-selected discharge voltages, thus affecting depassivation during constant discharge voltages. Several ground tests were preformed, on cells, cell strings and battery assembly with five parallel strings, to identify optimum shunt voltages and durations of depassivation. We also examined the repassivation of lithium anodes, subsequent to depassivation. In this paper, we will describe these studies, in detail, as well as the depassivation of the lander flight batteries on both Spirit and Opportunity rover prior to the EDL sequence and their performance during landing on Mars.

  19. The MOLICEL(R) rechargeable lithium system: Multicell battery aspects

    NASA Technical Reports Server (NTRS)

    Fouchard, D.; Taylor, J. B.

    1987-01-01

    MOLICEL rechargeable lithium cells were cycled in batteries using series, parallel, and series/parallel connections. The individual cell voltages and branch currents were measured to understand the cell interactions. The observations were interpreted in terms of the inherent characteristics of the Li/MoS2 system and in terms of a singular cell failure mode. The results confirm that correctly configured multicell batteries using MOLICELs have performance characteristics comparable to those of single cells.

  20. Renewable-Biomolecule-Based Full Lithium-Ion Batteries.

    PubMed

    Hu, Pengfei; Wang, Hua; Yang, Yun; Yang, Jie; Lin, Jie; Guo, Lin

    2016-05-01

    A renewable-biomolecule-based full lithium-ion battery is successfully fabricated for the first time. Naturally derivable emodin and humic acid based electrodes are used as cathode and anode, respectively. The as-assembled batteries exhibit superb specific capacity and substantial operating voltage capable of powering a wearable electronic watch, suggesting the great potential for practical applications with the significant merits of sustainability and biocompatibility. PMID:26989989

  1. Lithium battery electrodes with ultra-thin alumina coatings

    SciTech Connect

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  2. Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries

    SciTech Connect

    Lin, Zhan; Liu, Zengcai; Fu, Wujun; Dudney, Nancy J; Liang, Chengdu

    2013-01-01

    Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

  3. Cost savings for manufacturing lithium batteries in a flexible plant

    NASA Astrophysics Data System (ADS)

    Nelson, Paul A.; Ahmed, Shabbir; Gallagher, Kevin G.; Dees, Dennis W.

    2015-06-01

    The flexible plant postulated in this study would produce four types of batteries for electric-drive vehicles - a hybrid (HEV), 10-mile range and 40-mile range plug-in hybrids (PHEV), and a 150-mile range battery-electric (EV). The annual production rate of the plant is 235,000 battery packs (HEV: 100,000; PHEV10: 60,000; PHEV40: 45,000; EV: 30,000). The cost savings per battery pack calculated with the Argonne BatPaC model for this flex plant vs. dedicated plants range from 9% for the EV battery packs to 21% for the HEV packs including the battery management systems (BMS). The investment cost savings are even larger, ranging from 21% for EVs to 43% for HEVs. The costs of the 1.0-kWh HEV batteries are projected to approach 714 per unit and that of the EV batteries to approach 188 per kWh with the most favorable cell chemistries. The best single indicator of the cost of producing lithium-manganate spinel/graphite batteries in a flex plant is the total cell area of the battery. For the four batteries studied, the price range is 20-24 per m2 of cell area, averaging 21 per m2 for the entire flex plant.

  4. Electrode materials and lithium battery systems

    DOEpatents

    Amine, Khalil; Belharouak, Ilias; Liu, Jun

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  5. Optimal charging profiles for mechanically constrained lithium-ion batteries

    SciTech Connect

    Suthar, B; Ramadesigan, V; De, S; Braatz, RD; Subramanian, VR

    2014-01-01

    The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery using a single-particle model while incorporating intercalation-induced stress generation. In this paper, we focus on the problem of maximizing the charge stored in a given time while restricting the development of stresses inside the particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not exploit the changing dynamics of the system. Dynamic optimization based approaches have been used to derive optimal charging and discharging profiles with different objective functions. The progress made in understanding the capacity fade mechanisms has paved the way for inclusion of that knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical damage to the electrode particles during intercalation. In addition, an executable form of the code has been developed and provided. This code can be used to identify optimal charging profiles for any material and design parameters.

  6. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.

    PubMed

    Yu, Xingwen; Bi, Zhonghe; Zhao, Feng; Manthiram, Arumugam

    2015-08-01

    Lithium-sulfur (Li-S) batteries are receiving great attention as the most promising next-generation power source with significantly high charge-storage capacity. However, the implementation of Li-S batteries is hampered by a critical challenge because of the soluble nature of the intermediate polysulfide species in the liquid electrolyte. The use of traditional porous separators unavoidably allows the migration of the dissolved polysulfide species from the cathode to the lithium-metal anode and results in continuous loss of capacity. In this study, a LiSICON (lithium super ionic conductor) solid membrane is used as a cation-selective electrolyte for lithium-polysulfide (Li-PS) batteries to suppress the polysulfide diffusion. Ionic conductivity issue at the lithium metal/solid electrolyte interface is successfully addressed by insertion of a "soft", liquid-electrolyte integrated polypropylene interlayer. The solid LiSICON lithium-ion conductor maintains stable ionic conductivity during the electrochemical cycling of the cells. The Li-PS battery system with a hybrid solid/liquid electrolyte exhibits significantly enhanced cyclability relative to the cells with the traditional liquid-electrolyte integrated porous separator. PMID:26161547

  7. U.S. DOE FreedomCAR and Vehicle Technologies Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Interim Report

    SciTech Connect

    Jon P. Christophersen; Chet Motloch; Ira D. Bloom; Vince Battaglia; Ganesan Nagasubramanian; Tien Q. Duong

    2003-02-01

    The Advanced Technology Development Program is currently evaluating the performance of the second generation of Lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells consist of a baseline chemistry and one variant chemistry. These cells were distributed over a matrix consisting of three states-of-charge (SOC) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar-life cells are clamped at an opencircuit voltage corresponding to 60% SOC and undergo a once-per-day pulse profile. The cycle-life cells are continuously pulsed using a profile that is centered around 60% SOC. The accelerated-life cells are following the calendar-life test procedures, but using the cycle-life pulse profile. Life testing is interrupted every four weeks for reference performance tests (RPTs), which are used to quantify changes in capacity, resistance, and power. The RPTs consist of a C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy at 60% SOC. Capacity-, power-, and electrochemical impedance spectroscopy-based performance results are reported.

  8. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  9. Electrophoretic lithium iron phosphate/reduced graphene oxide composite for lithium ion battery cathode application

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Liu, Hao; Lu, Yi-Chun; Hou, Yanglong; Li, Quan

    2015-06-01

    A binder/additive free composite electrode of lithium iron phosphate/reduced graphene oxide with ultrahigh lithium iron phosphate mass ratio (91.5 wt% of lithium iron phosphate) is demonstrated using electrophoresis. The quasi-spherical lithium iron phosphate particles are uniformly connected to and/or wrapped by three-dimensional networks of reduced graphene oxide nanosheets, with intimate contact formed between the two. Enhanced capacity is achieved in the electrophoretic composite cathode, when compared to either the conventional one or composite cathode formed by mechanically mixing lithium iron phosphate and reduced graphene oxide. The present methodology is simple and does not disturb the active material growth process. It can be generally applied to a variety of active material systems for both cathode and anode applications in lithium ion batteries.

  10. Lithium barium titanate: A stable lithium storage material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lin, Xiaoting; Li, Peng; Shao, Lianyi; Shui, Miao; Wang, Dongjie; Long, Nengbing; Ren, Yuanlong; Shu, Jie

    2015-03-01

    A series of Li2BaTi6O14 samples are synthesized by a traditional solid-state method by calcining at different temperatures from 800 to 1000 °C. Structural analysis and electrochemical evaluation suggest that the optimum calcining temperature for Li2BaTi6O14 is 950 °C. The Li2BaTi6O14 calcined at 950 °C exhibits a high purity phase with an excellent reversible capacity of 145.7 mAh g-1 for the first cycle at a current density of 50 mA g-1. After 50 cycles, the reversible capacity can be maintained at 137.7 mAh g-1, with the capacity retention of 94.51%. Moreover, this sample also shows outstanding rate property with a high reversible capacity of 118 mAh g-1 at 300 mA g-1. The excellent electrochemical performance is attributed to the stable lithium storage host structure, decreased electrochemical resistance and improved lithium-ion diffusion coefficient. In-situ and ex-situ structure analysis shows that the electrochemical reaction of Li2BaTi6O14 with Li is a highly reversible lithiation-delithiation process. Therefore, Li2BaTi6O14 may be a promising alternative anode material for lithium-ion batteries.

  11. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    PubMed

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed. PMID:26265165

  12. Solid electrolyte: The key for high-voltage lithium batteries

    SciTech Connect

    Li, Juchuan; Ma, Cheng; Chi, Miaofang; Liang, Chengdu; Dudney, Nancy J.

    2014-10-14

    A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.

  13. Coating of porous carbon for use in lithium air batteries

    SciTech Connect

    Amine, Khalil; Lu, Jun; Du, Peng; Lei, Yu; Elam, Jeffrey W

    2015-04-14

    A cathode includes a carbon material having a surface, the surface having a first thin layer of an inert material and a first catalyst overlaying the first thin layer, the first catalyst including metal or metal oxide nanoparticles, wherein the cathode is configured for use as the cathode of a lithium-air battery.

  14. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    PubMed

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life. PMID:19739146

  15. Non-aqueous electrolyte for lithium-ion battery

    DOEpatents

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  16. A novel high energy density rechargeable lithium/air battery.

    PubMed

    Zhang, Tao; Imanishi, Nobuyuki; Shimonishi, Yuta; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    2010-03-14

    A novel rechargeable lithium/air battery was fabricated, which consisted of a water-stable multilayer Li-metal anode, acetic acid-water electrolyte, and a fuel-cell analogous air-diffusion cathode and possessed a high energy density of 779 W h kg(-1), twice that of the conventional graphite/LiCoO(2) cell. PMID:20177608

  17. Selective Recovery of Lithium from Cathode Materials of Spent Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Higuchi, Akitoshi; Ankei, Naoki; Nishihama, Syouhei; Yoshizuka, Kazuharu

    2016-07-01

    Selective recovery of lithium from four kinds of cathode materials, manganese-type, cobalt-type, nickel-type, and ternary-type, of spent lithium ion battery was investigated. In all cathode materials, leaching of lithium was improved by adding sodium persulfate (Na2S2O8) as an oxidant in the leaching solution, while the leaching of other metal ions (manganese, cobalt, and nickel) was significantly suppressed. Optimum leaching conditions, such as pH, temperature, amount of Na2S2O8, and solid/liquid ratio, for the selective leaching of lithium were determined for all cathode materials. Recovery of lithium from the leachate as lithium carbonate (Li2CO3) was then successfully achieved by adding sodium carbonate (Na2CO3) to the leachate. Optimum recovery conditions, such as pH, temperature, and amount of Na2CO3, for the recovery of lithium as Li2CO3 were determined for all cases. Purification of Li2CO3 was achieved by lixiviation in all systems, with purities of the Li2CO3 higher than 99.4%, which is almost satisfactory for the battery-grade purity of lithium.

  18. Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Hassoun, Jusef; Sun, Yang-Kook; Scrosati, Bruno

    In this work we investigate the electrochemical behavior of a new type of carbon-lithium sulfide composite electrode. Results based on cyclic voltammetry, charge (lithium removal)-discharge (lithium acceptance) demonstrate that this electrode has a good performance in terms of reversibility, cycle life and coulombic efficiency. XRD analysis performed in situ in a lithium cell shows that lithium sulfide can be converted into sulfur during charge and re-converted back into sulfide during the following discharge process. We also show that this electrochemical process can be efficiently carried out in polymer electrolyte lithium cells and thus, that the Li 2S-C composite can be successfully used as cathode for the development of novel types of rechargeable lithium-ion sulfur batteries where the reactive and unsafe lithium metal anode is replaced by a reliable, high capacity tin-carbon composite and the unstable organic electrolyte solution is replaced by a composite gel polymer membrane that is safe, highly conductive and able to control dendrite growth across the cell. This new Sn-C/Li 2S polymer battery operates with a capacity of 600 mAh g -1 and with an average voltage of 2 V, this leading to a value of energy density amounting to 1200 Wh kg -1.

  19. Challenges and prospects of lithium-sulfur batteries.

    PubMed

    Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng

    2013-05-21

    Electrical energy storage is one of the most critical needs of 21st century society. Applications that depend on electrical energy storage include portable electronics, electric vehicles, and devices for renewable energy storage from solar and wind. Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. As a result, Li-ion batteries have proven successful in the portable electronics market and will play a significant role in large-scale energy storage. Over the past two decades, Li-ion batteries based on insertion cathodes have reached a cathode capacity of ∼250 mA h g(-1) and an energy density of ∼800 W h kg(-1), which do not meet the requirement of ∼500 km between charges for all-electric vehicles. With a goal of increasing energy density, researchers are pursuing alternative cathode materials such as sulfur and O2 that can offer capacities that exceed those of conventional insertion cathodes, such as LiCoO2 and LiMn2O4, by an order of magnitude (>1500 mA h g(-1)). Sulfur, one of the most abundant elements on earth, is an electrochemically active material that can accept up to two electrons per atom at ∼2.1 V vs Li/Li(+). As a result, sulfur cathode materials have a high theoretical capacity of 1675 mA h g(-1), and lithium-sulfur (Li-S) batteries have a theoretical energy density of ∼2600 W h kg(-1). Unlike conventional insertion cathode materials, sulfur undergoes a series of compositional and structural changes during cycling, which involve soluble polysulfides and insoluble sulfides. As a result, researchers have struggled with the maintenance of a stable electrode structure, full utilization of the active material, and sufficient cycle life with good system efficiency. Although researchers have made significant progress on rechargeable Li-S batteries in the last decade, these cycle life and efficiency problems prevent their use in commercial cells. To overcome these persistent problems, researchers

  20. Electrochemical model based charge optimization for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Anwar, Sohel

    2016-05-01

    In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.

  1. Mitigating Thermal Runaway Risk in Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Jeevarajan, Judy; Russell, Samuel

    2014-01-01

    The JSC/NESC team has successfully demonstrated Thermal Runaway (TR) risk reduction in a lithium ion battery for human space flight by developing and implementing verifiable design features which interrupt energy transfer between adjacent electrochemical cells. Conventional lithium ion (li-Ion) batteries can fail catastrophically as a result of a single cell going into thermal runaway. Thermal runaway results when an internal component fails to separate electrode materials leading to localized heating and complete combustion of the lithium ion cell. Previously, the greatest control to minimize the probability of cell failure was individual cell screening. Combining thermal runaway propagation mitigation design features with a comprehensive screening program reduces both the probability, and the severity, of a single cell failure.

  2. Voltage hysteresis of lithium ion batteries caused by mechanical stress.

    PubMed

    Lu, Bo; Song, Yicheng; Zhang, Qinglin; Pan, Jie; Cheng, Yang-Tse; Zhang, Junqian

    2016-02-01

    The crucial role of mechanical stress in voltage hysteresis of lithium ion batteries in charge-discharge cycles is investigated theoretically and experimentally. A modified Butler-Volmer equation of electrochemical kinetics is proposed to account for the influence of mechanical stresses on electrochemical reactions in lithium ion battery electrodes. It is found that the compressive stress in the surface layer of active materials impedes lithium intercalation, and therefore, an extra electrical overpotential is needed to overcome the reaction barrier induced by the stress. The theoretical formulation has produced a linear dependence of the height of voltage hysteresis on the hydrostatic stress difference between lithiation and delithiation, under both open-circuit conditions and galvanostatic operation. Predictions of the electrical overpotential from theoretical equations agree well with the experimental data for thin film silicon electrodes. PMID:26799574

  3. Lithium ion batteries with titania/graphene anodes

    DOEpatents

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  4. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    PubMed Central

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  5. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    SciTech Connect

    Dunn, Jennifer B.; James, Christine; Gaines, Linda; Gallagher, Kevin; Dai, Qiang; Kelly, Jarod C.

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  6. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    PubMed Central

    Reddy, Arava Leela Mohana; Nagarajan, Subbiah; Chumyim, Porramate; Gowda, Sanketh R.; Pradhan, Padmanava; Jadhav, Swapnil R.; Dubey, Madan; John, George; Ajayan, Pulickel M.

    2012-01-01

    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered. PMID:23233879

  7. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery. PMID:26981849

  8. Thermal analysis and management of lithium-titanate batteries

    NASA Astrophysics Data System (ADS)

    Giuliano, Michael R.; Advani, Suresh G.; Prasad, Ajay K.

    2011-08-01

    Battery electric vehicles and hybrid electric vehicles demand batteries that can store large amounts of energy in addition to accommodating large charge and discharge currents without compromising battery life. Lithium-titanate batteries have recently become an attractive option for this application. High current thresholds allow these cells to be charged quickly as well as supply the power needed to drive such vehicles. These large currents generate substantial amounts of waste heat due to loss mechanisms arising from the cell's internal chemistry and ohmic resistance. During normal vehicle operation, an active cooling system must be implemented to maintain a safe cell temperature and improve battery performance and life. This paper outlines a method to conduct thermal analysis of lithium-titanate cells under laboratory conditions. Thermochromic liquid crystals were implemented to instantaneously measure the entire surface temperature field of the cell. The resulting temperature measurements were used to evaluate the effectiveness of an active cooling system developed and tested in our laboratory for the thermal management of lithium-titanate cells.

  9. Safety focused modeling of lithium-ion batteries: A review

    NASA Astrophysics Data System (ADS)

    Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F.

    2016-02-01

    Safety issues pertaining to Li-ion batteries justify intensive testing all along their value chain. However, progress in scientific knowledge regarding lithium based battery failure modes, as well as remarkable technologic breakthroughs in computing science, now allow for development and use of prediction tools to assist designers in developing safer batteries. Subsequently, this paper offers a review of significant modeling works performed in the area with a focus on the characterization of the thermal runaway hazard and their relating triggering events. Progress made in models aiming at integrating battery ageing effect and related physics is also discussed, as well as the strong interaction with modeling-focused use of testing, and the main achievements obtained towards marketing safer systems. Current limitations and new challenges or opportunities that are expected to shape future modeling activity are also put in perspective. According to market trends, it is anticipated that safety may still act as a restraint in the search for acceptable compromise with overall performance and cost of lithium-ion based and post lithium-ion rechargeable batteries of the future. In that context, high-throughput prediction tools capable of screening adequate new components properties allowing access to both functional and safety related aspects are highly desirable.

  10. Model-based condition monitoring for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Taesic; Wang, Yebin; Fang, Huazhen; Sahinoglu, Zafer; Wada, Toshihiro; Hara, Satoshi; Qiao, Wei

    2015-11-01

    Condition monitoring for batteries involves tracking changes in physical parameters and operational states such as state of health (SOH) and state of charge (SOC), and is fundamentally important for building high-performance and safety-critical battery systems. A model-based condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1) a fast upper-triangular and diagonal recursive least squares algorithm for parameter identification of the battery model, 2) a smooth variable structure filter for the SOC estimation, and 3) a recursive total least squares algorithm for estimating the maximum capacity, which indicates the SOH. The proposed solution enjoys advantages including high accuracy, low computational cost, and simple implementation, and therefore is suitable for deployment and use in real-time embedded battery management systems (BMSs). Simulations and experiments validate effectiveness of the proposed strategy.

  11. Robust recursive impedance estimation for automotive lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fridholm, Björn; Wik, Torsten; Nilsson, Magnus

    2016-02-01

    Recursive algorithms, such as recursive least squares (RLS) or Kalman filters, are commonly used in battery management systems to estimate the electrical impedance of the battery cell. However, these algorithms can in some cases run into problems with bias and even divergence of the estimates. This article illuminates problems that can arise in the online estimation using recursive methods, and lists modifications to handle these issues. An algorithm is also proposed that estimates the impedance by separating the problem in two parts; one estimating the ohmic resistance with an RLS approach, and another one where the dynamic effects are estimated using an adaptive Kalman filter (AKF) that is novel in the battery field. The algorithm produces robust estimates of ohmic resistance and time constant of the battery cell in closed loop with SoC estimation, as demonstrated by both in simulations and with experimental data from a lithium-ion battery cell.

  12. Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery.

    PubMed

    Zheng, Dong; Yang, Xiao-Qing; Qu, Deyang

    2016-09-01

    The reaction between polysulfides and a lithium anode in a Li-S battery was examined using HPLC. The results demonstrated that the polysulfide species with six sulfur atoms or more were reactive with regard to lithium metal. Although the reaction can be greatly inhibited by the addition of LiNO3 in the electrolyte, LiNO3 cannot form a stable protection layer on the Li anode to prevent the reaction during storage. PMID:27535337

  13. Lithium batteries with organic slurry cathodes

    SciTech Connect

    Bruder, A.H.

    1986-04-01

    This patent describes a laminar electrical cell. This cell consists of a sheet of conductive plastic, a separator, a cathode consisting essentially of a slurry of dewatered MnO/sub 2/ and carbon particles in a solution of a lithium salt in a substantially anhydrous organic solvent between and in contact with the conductive plastic sheet and the separator with the solution permeating the separator. The slurry is free of any binder material, and a thin sheet of lithium is in contact with the separator. The separator being interposed between the cathode and the lithium sheet.

  14. Electrochemical test methods for advanced battery and semiconductor technology

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Hung

    This dissertation consists of two studies. The first study was the evaluation of metallic materials for advanced lithium ion batteries and the second study was the determination of the dielectric constant k for the low-k materials. The advanced lithium ion battery is miniature for implantable medical devices and capable of being recharged from outside of the body using magnetic induction without physical connections. The stability of metallic materials employed in the lithium ion battery is one of the major safety concerns. Three types of materials---Pt-Ir alloy, Ti alloys, and stainless steels---were evaluated extensively in this study. The electrochemical characteristics of Pt-Ir alloy, Ti alloys, and stainless steels were evaluated in several types of battery electrolytes in order to determine the candidate materials for long-term use in lithium ion batteries. The dissolution behavior of these materials and the decomposition behavior of the battery electrolyte were investigated using the anodic potentiodynamic polarization (APP) technique. Lifetime prediction for metal dissolution was conducted using constant potential polarization (CPP) technique. The electrochemical impedance spectroscopy (EIS) technique was employed to investigate the metal dissolution behavior or the battery electrolyte decomposition at the open circuit potential (OCP). The scanning electron microscope (SEM) was used to observe the morphology changes after these tests. The effects of experimental factors on the corrosion behaviors of the metallic materials and stabilities of the battery electrolytes were also investigated using the 23 factorial design approach. Integration of materials having low dielectric constant k as interlayer dielectrics and/or low-resistivity conductors will partially solve the RC delay problem for the limiting performance of high-speed logic chips. The samples of JSR LKD 5109 material capped by several materials were evaluated by using EIS. The feasibility of using

  15. 76 FR 70531 - Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Federal Aviation Administration Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise...

  16. Layered electrodes for lithium cells and batteries

    DOEpatents

    Johnson; Christopher S. , Thackeray; Michael M. , Vaughey; John T. , Kahaian; Arthur J. , Kim; Jeom-Soo

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  17. Lithium-ion Battery Demonstration for the 2007 NASA Desert Research and Technology Studies (Desert RATS) Program

    NASA Technical Reports Server (NTRS)

    Bennett, William; Baldwin, Richard

    2007-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and produced five lithium-ion battery packs for demonstration in a portable life support system (PLSS) on spacesuit simulators. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, over-discharge and over-temperature. The 500-gram batteries were designed to deliver a constant power of 38 watts over 103 minutes of discharge time (130 Wh/kg). Battery design details are described and field and laboratory test results are summarized.

  18. Electronic structure calculations on lithium battery electrolyte salts.

    PubMed

    Johansson, Patrik

    2007-03-28

    New lithium salts for non-aqueous liquid, gel and polymeric electrolytes are crucial due to the limiting role of the electrolyte in modern lithium batteries. The solvation of any lithium salt to form an electrolyte solution ultimately depends on the strength of the cation-solvent vs. the cation-anion interaction. Here, the latter is probed via HF, B3LYP and G3 theory gas-phase calculations for the dissociation reaction: LiX <--> Li(+) + X(-). Furthermore, a continuum solvation method (C-PCM) has been applied to mimic solvent effects. Anion volumes were also calculated to facilitate a discussion on ion conductivities and cation transport numbers. Judging from the present results, synthesis efforts should target heterocyclic anions with a size of ca. 150 A(3) molecule(-1) to render new highly dissociative lithium salts that result in electrolytes with high cation transport numbers. PMID:17356757

  19. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  20. Modified natural graphite as anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Y. P.; Jiang, C.; Wan, C.; Holze, R.

    A concentrated nitric acid solution was used as an oxidant to modify the electrochemical performance of natural graphite as anode material for lithium ion batteries. Results of X-ray photoelectron spectroscopy, electron paramagnetic resonance, thermogravimmetry, differential thermal analysis, high resolution electron microscopy, and measurement of the reversible capacity suggest that the surface structure of natural graphite was changed, a fresh dense layer of oxides was formed. Some structural imperfections were removed, and the stability of the graphite structure increased. These changes impede decomposition of electrolyte solvent molecules, co-intercalation of solvated lithium ions and movement of graphene planes along the a-axis direction. Concomitantly, more micropores were introduced, and thus, lithium intercalation and deintercalation were favored and more sites were provided for lithium storage. Consequently, the reversible capacity and the cycling behavior of the modified natural graphite were much improved by the oxidation. Obviously, the liquid-solid oxidation is advantageous in controlling the uniformity of the products.

  1. Solid state lithium-iodine primary battery

    SciTech Connect

    Sekido, S.; Ninomiya, Y.; Sotomura, T.

    1984-01-10

    A solid-state primary cell comprising a lithium anode, an iodine cathode containing a charge transfer complex and a solid lithium iodide electrolyte doped with a 1-normal-alkyl-pyridinium iodide. The anode surface can be coated with LiOH or Li/sub 3/N. The iodine cathode comprises a complex of iodine and 1-normal-alkyl-pyridinium iodide and preferably contains titanium dioxide powder, alumina gel powder or silica gel powder admixed with the complex.

  2. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect

    Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  3. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    DOE PAGESBeta

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Goodenough, John B.; Sun, Xiao-Guang

    2015-04-27

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  4. Anodes for Rechargeable Lithium-Sulfur Batteries

    SciTech Connect

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  5. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    PubMed

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A

    2015-01-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries. PMID:26634644

  6. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles

    PubMed Central

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.

    2015-01-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries. PMID:26634644

  7. Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery

    SciTech Connect

    Ferrese, A; Newman, J

    2014-04-11

    This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasi steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.

  8. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  9. Polymer nanofiber-guided uniform lithium deposition for battery electrodes.

    PubMed

    Liang, Zheng; Zheng, Guangyuan; Liu, Chong; Liu, Nian; Li, Weiyang; Yan, Kai; Yao, Hongbin; Hsu, Po-Chun; Chu, Steven; Cui, Yi

    2015-05-13

    Lithium metal is one of the most promising candidates as an anode material for next-generation energy storage systems due to its highest specific capacity (3860 mAh/g) and lowest redox potential of all. The uncontrolled lithium dendrite growth that causes a poor cycling performance and serious safety hazards, however, presents a significant challenge for the realization of lithium metal-based batteries. Here, we demonstrate a novel electrode design by placing a three-dimensional (3D) oxidized polyacrylonitrile nanofiber network on top of the current collector. The polymer fiber with polar surface functional groups could guide the lithium ions to form uniform lithium metal deposits confined on the polymer fiber surface and in the 3D polymer layer. We showed stable cycling of lithium metal anode with an average Coulombic efficiency of 97.4% over 120 cycles in ether-based electrolyte at a current density of 3 mA/cm(2) for a total of 1 mAh/cm(2) of lithium. PMID:25822282

  10. Coupled Mechanical and Electrochemical Phenomena in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Cannarella, John

    Lithium-ion batteries are complee electro-chemo-mechanical systems owing to a number of coupled mechanical and electrochemical phenomena that occur during operation. In this thesis we explore these phenomena in the context of battery degradation, monitoring/diagnostics, and their application to novel energy systems. We begin by establishing the importance of bulk stress in lithium-ion batteries through the presentation of a two-year exploratory aging study which shows that bulk mechanical stress can significantly accelerate capacity fade. We then investigate the origins of this coupling between stress and performance by investigating the effects of stress in idealized systems. Mechanical stress is found to increase internal battery resistance through separator deformation, which we model by considering how deformation affects certain transport properties. When this deformation occurs in a spatially heterogeneous manner, local hot spots form, which accelerate aging and in some cases lead to local lithium plating. Because of the importance of separator deformation with respect to mechanically-coupled aging, we characterize the mechanical properties of battery separators in detail. We also demonstrate that the stress state of a lithium-ion battery cell can be used to measure the cell's state of health (SOH) and state of charge (SOC)--important operating parameters that are traditionally difficult to measure outside of a laboratory setting. The SOH is shown to be related to irreversible expansion that occurs with degradation and the SOC to the reversible strains characteristic of the cell's electrode materials. The expansion characteristics and mechanical properties of the constituent cell materials are characterized, and a phenomenological model for the relationship between stress and SOH/SOC is developed. This work forms the basis for the development of on-board monitoring of SOH/SOC based on mechanical measurements. Finally we study the coupling between mechanical

  11. Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions.

    PubMed

    Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan

    2016-05-23

    Lithium-sulfur batteries are among the most promising electrochemical energy storage devices of the near future. Especially the low price and abundant availability of sulfur as the cathode material and the high theoretical capacity in comparison to state-of-the art lithium-ion technologies are attractive features. Despite significant research achievements that have been made over the last years, fundamental (electro-) chemical questions still remain unanswered. This review addresses ten crucial questions associated with lithium-sulfur batteries and critically evaluates current research with respect to them. The sulfur-carbon composite cathode is a particular focus, but its complex interplay with other hardware components in the cell, such as the electrolyte and the anode, necessitates a critical discussion of other cell components. Modern in situ characterisation methods are ideally suited to illuminate the role of each component. This article does not pretend to summarise all recently published data, but instead is a critical overview over lithium-sulfur batteries based on recent research findings. PMID:27001631

  12. Multi-Scale Simulation and Optimization of Lithium Battery Performance

    NASA Astrophysics Data System (ADS)

    Golmon, Stephanie L.

    The performance and degradation of lithium batteries strongly depends on electrochemical, mechanical, and thermal phenomena. While a large volume of work has focused on thermal management, mechanical phenomena relevant to battery design are not fully understood. Mechanical degradation of electrode particles has been experimentally linked to capacity fade and failure of batteries; an understanding of the interplay between mechanics and electrochemistry in the battery is necessary in order to improve the overall performance of the battery. A multi-scale model to simulate the coupled electrochemical and mechanical behavior of Li batteries has been developed, which models the porous electrode and separator regions of the battery. The porous electrode includes a liquid electrolyte and solid active materials. A multi-scale finite element approach is used to analyze the electrochemical and mechanical performance. The multi-scale model includes a macro- and micro-scale with analytical volume-averaging methods to relate the scales. The macro-scale model describes Li-ion transport through the electrolyte, electric potentials, and displacements throughout the battery. The micro-scale considers the surface kinetics and electrochemical and mechanical response of a single particle of active material evaluated locally within the cathode region. Both scales are non-linear and dependent on the other. The electrochemical and mechanical response of the battery are highly dependent on the porosity in the electrode, the active material particle size, and discharge rate. Balancing these parameters can improve the overall performance of the battery. A formal design optimization approach with multi-scale adjoint sensitivity analysis is developed to find optimal designs to improve the performance of the battery model. Optimal electrode designs are presented which maximize the capacity of the battery while mitigating stress levels during discharge over a range of discharge rates.

  13. Advances and Future Challenges in Printed Batteries.

    PubMed

    Sousa, Ricardo E; Costa, Carlos M; Lanceros-Méndez, Senentxu

    2015-11-01

    There is an increasing interest in thin and flexible energy storage devices to meet modern society's needs for applications such as radio frequency sensing, interactive packaging, and other consumer products. Printed batteries comply with these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and microbatteries are also included in the area of printed batteries when fabricated using printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this Review. The state-of-the-art takes into account both the research and industrial levels. On the academic level, the research progress of printed batteries is divided into lithium-ion and Zn-manganese dioxide batteries and other battery types, with emphasis on the different materials for anode, cathode, and separator as well as in the battery design. With respect to the industrial state-of-the-art, materials, device formulations, and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed. PMID:26404647

  14. Investigation of lithium-thionyl chloride battery safety hazards

    NASA Astrophysics Data System (ADS)

    Attia, A. I.; Gabriel, K. A.; Burns, R. P.

    1983-01-01

    In the ten years since the feasibility of a lithium-thionyl chloride cell was first recognized (1) remarkable progress has been made in hardware development. Cells as large as 16,000 Ah (2) and batteries of 10.8 MWh (3) have been demonstrated. In a low rate configuration, energy densities of 500 to 600 Wh/kg are easily achieved. Even in the absence of reported explosions, safety would be a concern for such a dense energetic package; the energy density of a lithium-thionyl chloride cell is approaching that of dynamite (924 Wh/kg). In fact explosions have occurred. In general the hazards associated with lithium-thionyl chloride batteries may be divided into four categories: Explosions as a result of an error in battery design. Very large cells were in prototype development prior to a full appreciation of the hazards of the system. It is possible that some of the remaining safety issues are related to cell design; Explosions as a result of external physical abuse such as cell incineration and puncture; Explosions due to short circuiting which could lead to thermal runaway reactions. These problems appear to have been solved by changes in the battery design (4); and Explosions due to abnormal electrical operation (i.e., charging (5) and overdischarging (6) and in partially or fully discharged cells on storage (7 and 8).

  15. Systematic Effect for an Ultralong Cycle Lithium-Sulfur Battery.

    PubMed

    Wu, Feng; Ye, Yusheng; Chen, Renjie; Qian, Ji; Zhao, Teng; Li, Li; Li, Wenhui

    2015-11-11

    Rechargeable lithium-sulfur (Li-S) batteries are attractive candidates for energy storage devices because they have five times the theoretical energy storage of state-of-the-art Li-ion batteries. The main problems plaguing Li-S batteries are poor cycle life and limited rate capability, caused by the insulating nature of S and the shuttle effect associated with the dissolution of intermediate lithium polysulfides. Here, we report the use of biocell-inspired polydopamine (PD) as a coating agent on both the cathode and separator to address these problems (the "systematic effects"). The PD-modified cathode and separator play key roles in facilitating ion diffusion and keeping the cathode structure stable, leading to uniform lithium deposition and a solid electrolyte interphase. As a result, an ultralong cycle performance of more than 3000 cycles, with a capacity fade of only 0.018% per cycle, was achieved at 2 C. It is believed that the systematic modification of the cathode and separator for Li-S batteries is a new strategy for practical applications. PMID:26502268

  16. Metal-organic frameworks for lithium ion batteries and supercapacitors

    SciTech Connect

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  17. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.

    PubMed

    Ling, Min; Qiu, Jingxia; Li, Sheng; Yan, Cheng; Kiefel, Milton J; Liu, Gao; Zhang, Shanqing

    2015-07-01

    An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles. PMID:26061529

  18. Fabricating high performance lithium-ion batteries using bionanotechnology

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Hou, Yukun; He, Wen; Yang, Guihua; Cui, Jingjie; Liu, Shikun; Song, Xin; Huang, Zhen

    2015-02-01

    Designing, fabricating, and integrating nanomaterials are key to transferring nanoscale science into applicable nanotechnology. Many nanomaterials including amorphous and crystal structures are synthesized via biomineralization in biological systems. Amongst various techniques, bionanotechnology is an effective strategy to manufacture a variety of sophisticated inorganic nanomaterials with precise control over their chemical composition, crystal structure, and shape by means of genetic engineering and natural bioassemblies. This provides opportunities to use renewable natural resources to develop high performance lithium-ion batteries (LIBs). For LIBs, reducing the sizes and dimensions of electrode materials can boost Li+ ion and electron transfer in nanostructured electrodes. Recently, bionanotechnology has attracted great interest as a novel tool and approach, and a number of renewable biotemplate-based nanomaterials have been fabricated and used in LIBs. In this article, recent advances and mechanism studies in using bionanotechnology for high performance LIBs studies are thoroughly reviewed, covering two technical routes: (1) Designing and synthesizing composite cathodes, e.g. LiFePO4/C, Li3V2(PO4)3/C and LiMn2O4/C; and (2) designing and synthesizing composite anodes, e.g. NiO/C, Co3O4/C, MnO/C, α-Fe2O3 and nano-Si. This review will hopefully stimulate more extensive and insightful studies on using bionanotechnology for developing high-performance LIBs.

  19. Fabricating high performance lithium-ion batteries using bionanotechnology.

    PubMed

    Zhang, Xudong; Hou, Yukun; He, Wen; Yang, Guihua; Cui, Jingjie; Liu, Shikun; Song, Xin; Huang, Zhen

    2015-02-28

    Designing, fabricating, and integrating nanomaterials are key to transferring nanoscale science into applicable nanotechnology. Many nanomaterials including amorphous and crystal structures are synthesized via biomineralization in biological systems. Amongst various techniques, bionanotechnology is an effective strategy to manufacture a variety of sophisticated inorganic nanomaterials with precise control over their chemical composition, crystal structure, and shape by means of genetic engineering and natural bioassemblies. This provides opportunities to use renewable natural resources to develop high performance lithium-ion batteries (LIBs). For LIBs, reducing the sizes and dimensions of electrode materials can boost Li(+) ion and electron transfer in nanostructured electrodes. Recently, bionanotechnology has attracted great interest as a novel tool and approach, and a number of renewable biotemplate-based nanomaterials have been fabricated and used in LIBs. In this article, recent advances and mechanism studies in using bionanotechnology for high performance LIBs studies are thoroughly reviewed, covering two technical routes: (1) Designing and synthesizing composite cathodes, e.g. LiFePO4/C, Li3V2(PO4)3/C and LiMn2O4/C; and (2) designing and synthesizing composite anodes, e.g. NiO/C, Co3O4/C, MnO/C, α-Fe2O3 and nano-Si. This review will hopefully stimulate more extensive and insightful studies on using bionanotechnology for developing high-performance LIBs. PMID:25640923

  20. Electrochromic & magnetic properties of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng-Fei, Guo; Kun, Pan; Xue-Jin, Wang

    2016-01-01

    Progress in electrochromic lithium ion batteries (LIBs) is reviewed, highlighting advances and possible research directions. Methods for using the LIB electrode materials’ magnetic properties are also described, using several examples. Li4Ti5O12 (LTO) film is discussed as an electrochromic material and insertion compound. The opto-electrical properties of the LTO film have been characterized by electrical measurements and UV-Vis spectra. A prototype bi-functional electrochromic LIB, incorporating LTO as both electrochromic layer and anode, has also been characterized by charge- discharge measurements and UV-Vis transmittance. The results show that the bi-functional electrochromic LIB prototype works well. Magnetic measurement has proven to be a powerful tool to evaluate the quality of electrode materials. We introduce briefly the magnetism of solids in general, and then discuss the magnetic characteristics of layered oxides, spinel oxides, olivine phosphate LiFePO4, and Nasicon-type Li3Fe2(PO4)3. We also discuss what kind of impurities can be detected, which will guide us to fabricate high quality films and high performance devices. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201) and the Chinese Universities Scientific Fund (Grant No. 2015LX002).

  1. Advanced analytical electron microscopy for alkali-ion batteries

    SciTech Connect

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed review of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.

  2. Advanced analytical electron microscopy for alkali-ion batteries

    DOE PAGESBeta

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed reviewmore » of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.« less

  3. Basics and advances in battery systems

    SciTech Connect

    Nelson, J.P.; Bolin, W.D.

    1995-03-01

    One of the most common components in both the utility and industrial/commercial power system is the station battery. In many cases, the original design is marginal or inadequate; the maintenance and testing is practically nonexistent; but the system is called upon during emergency conditions and is expected to perform flawlessly. This paper will begin with the basic battery theory starting with the electrochemical cell. A working knowledge of the battery cell is important to understand typical problems such as hydrogen production, sulfating, and battery charging. The paper will then lead into a discussion of some of the common batteries and battery chargers. While this paper will concentrate primarily on the lead acid type of battery, the theory can be utilized on other types such as the Nickel-Cadmium. A reference will be made to industry standards and codes which are used for the design, installation, and maintenance of battery systems. Along with these standards will be a discussion of the design considerations, maintenance and testing, and, finally, some advanced battery system topics such as individual battery cell voltage equalizers and battery pulsing units. The goal of this paper is to provide the reader with a basic working understanding of a battery system. Only with that knowledge can a person be expected to design and/or properly maintain a battery system which may be called upon during an emergency to minimize the effects of a normal power outage, to minimize personnel hazards and to reduce property damage.

  4. Evaluation of slurry characteristics for rechargeable lithium-ion batteries

    SciTech Connect

    Cho, Ki Yeon; Kwon, Young Il; Youn, Jae Ryoun; Song, Young Seok

    2013-08-01

    Graphical abstract: - Highlights: • Lithium-ion battery slurries are prepared for rechargeable batteries. • The dispersion state of slurry constituents is identified. • Thermal, morphological, rheological, and electrical properties of slurries are analyzed. - Abstract: A multi-component slurry for rechargeable batteries is prepared by dispersing LiCoO{sub 2}, conductive additives, and polymeric binders in a solvent. The physical properties, including rheological, morphological, electrical, and spectroscopic features of battery slurries are investigated. The relationship between the measured physical properties and the internal structure of the slurry is analyzed. It is found that the rheological behavior of the slurry is determined by the interaction of active materials and binding materials (e.g., network structure) and that the dispersion state of conductive additives (e.g., agglomeration) also depends on the binder–carbon interaction.

  5. Flexible lithium-oxygen battery based on a recoverable cathode.

    PubMed

    Liu, Qing-Chao; Xu, Ji-Jing; Xu, Dan; Zhang, Xin-Bo

    2015-01-01

    Although flexible power sources are crucial for the realization next-generation flexible electronics, their application in such devices is hindered by their low theoretical energy density. Rechargeable lithium-oxygen (Li-O2) batteries can provide extremely high specific energies, while the conventional Li-O2 battery is bulky, inflexible and limited by the absence of effective components and an adjustable cell configuration. Here we show that a flexible Li-O2 battery can be fabricated using unique TiO2 nanowire arrays grown onto carbon textiles (NAs/CT) as a free-standing cathode and that superior electrochemical performances can be obtained even under stringent bending and twisting conditions. Furthermore, the TiO2 NAs/CT cathode features excellent recoverability, which significantly extends the cycle life of the Li-O2 battery and lowers its life cycle cost. PMID:26235205

  6. Flexible lithium-oxygen battery based on a recoverable cathode

    NASA Astrophysics Data System (ADS)

    Liu, Qing-Chao; Xu, Ji-Jing; Xu, Dan; Zhang, Xin-Bo

    2015-08-01

    Although flexible power sources are crucial for the realization next-generation flexible electronics, their application in such devices is hindered by their low theoretical energy density. Rechargeable lithium-oxygen (Li-O2) batteries can provide extremely high specific energies, while the conventional Li-O2 battery is bulky, inflexible and limited by the absence of effective components and an adjustable cell configuration. Here we show that a flexible Li-O2 battery can be fabricated using unique TiO2 nanowire arrays grown onto carbon textiles (NAs/CT) as a free-standing cathode and that superior electrochemical performances can be obtained even under stringent bending and twisting conditions. Furthermore, the TiO2 NAs/CT cathode features excellent recoverability, which significantly extends the cycle life of the Li-O2 battery and lowers its life cycle cost.

  7. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.

    PubMed

    Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan

    2016-04-01

    Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications. PMID:26627913

  8. A lithium-ion sulfur battery using a polymer, polysulfide-added membrane

    NASA Astrophysics Data System (ADS)

    Agostini, Marco; Hassoun, Jusef

    2015-01-01

    In this paper we report the performances of a lithium-ion sulfur battery characterized by a polymer configuration. The cell, based on a sulfur-carbon cathode, a Li-Sn-C nanostructured anode and a PEO-based, polysulfide-added electrolyte, shows very good electrochemical performances in terms of stability and delivered capacity. The remarkable cell performances are ascribed to the mitigation of the cathode dissolution process due to the buffer action ensured by the polysulfide added to the polymer electrolyte. This electrolyte configuration allows the achievement of a stable capacity ranging from 500 to 1500 mAh gS-1, depending on the cycling rate. The use of a polymer electrolyte and the replacement of the lithium metal with a Li-Sn-C nanostructured alloy are expected to guarantee high safety content, thus suggesting the battery here studied as advanced energy storage system.

  9. Packaging material for thin film lithium batteries

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  10. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  11. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  12. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOEpatents

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  13. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  14. The combustion behavior of large scale lithium titanate battery

    PubMed Central

    Huang, Peifeng; Wang, Qingsong; Li, Ke; Ping, Ping; Sun, Jinhua

    2015-01-01

    Safety problem is always a big obstacle for lithium battery marching to large scale application. However, the knowledge on the battery combustion behavior is limited. To investigate the combustion behavior of large scale lithium battery, three 50 Ah Li(NixCoyMnz)O2/Li4Ti5O12 batteries under different state of charge (SOC) were heated to fire. The flame size variation is depicted to analyze the combustion behavior directly. The mass loss rate, temperature and heat release rate are used to analyze the combustion behavior in reaction way deeply. Based on the phenomenon, the combustion process is divided into three basic stages, even more complicated at higher SOC with sudden smoke flow ejected. The reason is that a phase change occurs in Li(NixCoyMnz)O2 material from layer structure to spinel structure. The critical temperatures of ignition are at 112–121°C on anode tab and 139 to 147°C on upper surface for all cells. But the heating time and combustion time become shorter with the ascending of SOC. The results indicate that the battery fire hazard increases with the SOC. It is analyzed that the internal short and the Li+ distribution are the main causes that lead to the difference. PMID:25586064

  15. A closed loop process for recycling spent lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan

    2014-09-01

    As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.

  16. The combustion behavior of large scale lithium titanate battery

    NASA Astrophysics Data System (ADS)

    Huang, Peifeng; Wang, Qingsong; Li, Ke; Ping, Ping; Sun, Jinhua

    2015-01-01

    Safety problem is always a big obstacle for lithium battery marching to large scale application. However, the knowledge on the battery combustion behavior is limited. To investigate the combustion behavior of large scale lithium battery, three 50 Ah Li(NixCoyMnz)O2/Li4Ti5O12 batteries under different state of charge (SOC) were heated to fire. The flame size variation is depicted to analyze the combustion behavior directly. The mass loss rate, temperature and heat release rate are used to analyze the combustion behavior in reaction way deeply. Based on the phenomenon, the combustion process is divided into three basic stages, even more complicated at higher SOC with sudden smoke flow ejected. The reason is that a phase change occurs in Li(NixCoyMnz)O2 material from layer structure to spinel structure. The critical temperatures of ignition are at 112-121°C on anode tab and 139 to 147°C on upper surface for all cells. But the heating time and combustion time become shorter with the ascending of SOC. The results indicate that the battery fire hazard increases with the SOC. It is analyzed that the internal short and the Li+ distribution are the main causes that lead to the difference.

  17. Geosynchronous Performance of a Lithium-titanium Disulfide Battery

    NASA Technical Reports Server (NTRS)

    Otzinger, B.

    1985-01-01

    An ambient temperature rechargeable Lithium-Titanium disulfide (Li-TiS2) five cell battery has completed the first orbital year of accelerated synchronous orbit testing. A novel charge/discharge, state of charge (SOC) control scheme is utilized, together with taper current charge backup to overcome deleterious effects associated with high end of charge and low end of discharge voltages. It is indicated that 10 orbital years of simulated synchronous operation may be achieved. Preliminary findings associated with cell matching and battery performance are identified.

  18. Kirigami-based stretchable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing

    2015-06-01

    We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces.

  19. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  20. Kirigami-based stretchable lithium-ion batteries.

    PubMed

    Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing

    2015-01-01

    We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces. PMID:26066809

  1. Optimization of reserve lithium thionyl chloride battery electrochemical design parameters

    NASA Astrophysics Data System (ADS)

    Doddapaneni, N.; Godshall, N. A.

    The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15 percent) improved battery performance significantly (10 percent greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell performance is illustrated.

  2. Optimization of reserve lithium thionyl chloride battery electrochemical design parameters

    SciTech Connect

    Doddapaneni, N.; Godshall, N.A.

    1987-01-01

    The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15%) improved battery performance significantly (10% greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell peformance is illustrated. 5 refs., 9 figs., 3 tabs.

  3. Kirigami-based stretchable lithium-ion batteries

    PubMed Central

    Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing

    2015-01-01

    We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces. PMID:26066809

  4. Lithium ion secondary batteries; past 10 years and the future

    NASA Astrophysics Data System (ADS)

    Nishi, Yoshio

    Technologies of lithium ion secondary batteries (LIB) were pioneered by Sony. Since the introduction of LIB on the market first in the world in 1991, the LIB has been applied to consumer products as diverse as cellular phones, video cameras, notebook computers, portable minidisk players and others. Years of assiduous efforts and researches to improve LIB performances enabled LIB to play a leading role in the portable secondary battery market. In this article, the past 10 years' technological achievement is traced and future possibilities are discussed.

  5. New Solid Polymer Electrolytes for Improved Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  6. A 65 Ah rechargeable lithium molybdenum disulfide battery

    NASA Technical Reports Server (NTRS)

    Brandt, K.

    1986-01-01

    A rechargeable lithium molybdenum disulfide battery which has a number of superior performance characteristics which includes a high energy density, a high power density, and a long charge retention time was developed. The first cell sizes developed included a C size cell and an AA size cell. Over the last two years, a project to demonstrate the feasibility of the scale up to this technology to a BC size cell with 65 Ah capacity was undertaken. The objective was to develop, build, and test a .6 kWh storage battery consisting of 6 BC cells in series.

  7. Reactivity of carbon in lithium-oxygen battery positive electrodes.

    PubMed

    Itkis, Daniil M; Semenenko, Dmitry A; Kataev, Elmar Yu; Belova, Alina I; Neudachina, Vera S; Sirotina, Anna P; Hävecker, Michael; Teschner, Detre; Knop-Gericke, Axel; Dudin, Pavel; Barinov, Alexei; Goodilin, Eugene A; Shao-Horn, Yang; Yashina, Lada V

    2013-10-01

    Unfortunately, the practical applications of Li-O2 batteries are impeded by poor rechargeability. Here, for the first time we show that superoxide radicals generated at the cathode during discharge react with carbon that contains activated double bonds or aromatics to form epoxy groups and carbonates, which limits the rechargeability of Li-O2 cells. Carbon materials with a low amount of functional groups and defects demonstrate better stability thus keeping the carbon will-o'-the-wisp lit for lithium-air batteries. PMID:24004050

  8. Non aqueous electrolytes for lithium-sulfur dioxide batteries

    SciTech Connect

    Anantaraman, A.V.; Gardiner, C.L.

    1983-10-01

    Mixed organic solvent systems are of considerable interest for use in high energy density batteries. It has been observed that with a proper choice of solvents, one can achieve a drastic increase in cell performance-related properties such as dielectric constant, conductance, and viscosity. This paper presents a detailed investigation of the scope of mixed solvent systems with N-methyl pyrrolidinone (NMP) as the common solvent. Physical and thermodynamic properties such as density, viscosity, excess volume, and phase equilibria of mixed solvent systems with sulfur dioxide are studied, with a view to improving the performance and safety aspects of lithium/sulfur dioxide batteries.

  9. High rate lithium/thionyl chloride bipolar battery development

    NASA Technical Reports Server (NTRS)

    Russell, Philip G.; Goebel, F.

    1994-01-01

    Presented in viewgraph format are results and accomplishments on the development of lithium/thionyl chloride bipolar batteries. Results include the development of manufacturing capability for producing large quantities of uniform cathodes and bipolar plates; the development of assembly, sealing, and activation procedures for fabrication of battery modules containing up to 150 cells in bipolar configuration; and the successful demonstration of a 10.7 kW 150-cell module with constant power pulse discharge, 20 second pulse, and 10 percent duty cycle.

  10. Current status of environmental, health, and safety issues of lithium polymer electric vehicle batteries

    SciTech Connect

    Corbus, D; Hammel, C J

    1995-02-01

    Lithium solid polymer electrolyte (SPE) batteries are being investigated by researchers worldwide as a possible energy source for future electric vehicles (EVs). One of the main reasons for interest in lithium SPE battery systems is the potential safety features they offer as compared to lithium battery systems using inorganic and organic liquid electrolytes. However, the development of lithium SPE batteries is still in its infancy, and the technology is not envisioned to be ready for commercialization for several years. Because the research and development (R&D) of lithium SPE battery technology is of a highly competitive nature, with many companies both in the United States and abroad pursuing R&D efforts, much of the information concerning specific developments of lithium SPE battery technology is proprietary. This report is based on information available only through the open literature (i.e., information available through library searches). Furthermore, whereas R&D activities for lithium SPE cells have focused on a number of different chemistries, for both electrodes and electrolytes, this report examines the general environmental, health, and safety (EH&S) issues common to many lithium SPE chemistries. However, EH&S issues for specific lithium SPE cell chemistries are discussed when sufficient information exists. Although lithium batteries that do not have a SPE are also being considered for EV applications, this report focuses only on those lithium battery technologies that utilize the SPE technology. The lithium SPE battery technologies considered in this report may contain metallic lithium or nonmetallic lithium compounds (e.g., lithium intercalated carbons) in the negative electrode.

  11. Current status of environmental, health, and safety issues of lithium polymer electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Corbus, D.; Hammel, C. J.

    1995-02-01

    Lithium solid polymer electrolyte (SPE) batteries are being investigated by researchers worldwide as a possible energy source for future electric vehicles (EV's). One of the main reasons for interest in lithium SPE battery systems is the potential safety features they offer as compared to lithium battery systems using inorganic and organic liquid electrolytes. However, the development of lithium SPE batteries is still in its infancy, and the technology is not envisioned to be ready for commercialization for several years. Because the research and development (R&D) of lithium SPE battery technology is of a highly competitive nature, with many companies both in the United States and abroad pursuing R&D efforts, much of the information concerning specific developments of lithium SPE battery technology is proprietary. This report is based on information available only through the open literature (i.e., information available through library searches). Furthermore, whereas R&D activities for lithium SPE cells have focused on a number of different chemistries, for both electrodes and electrolytes, this report examines the general environmental, health, and safety (EH&S) issues common to many lithium SPE chemistries. However, EH&S issues for specific lithium SPE cell chemistries are discussed when sufficient information exists. Although lithium batteries that do not have a SPE are also being considered for EV applications, this report focuses only on those lithium battery technologies that utilize the SPE technology. The lithium SPE battery technologies considered in this report may contain metallic lithium or nonmetallic lithium compounds (e.g., lithium intercalated carbons) in the negative electrode.

  12. Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam

    PubMed Central

    Lin, Feng; Markus, Isaac M.; Doeff, Marca M.; Xin, Huolin L.

    2014-01-01

    The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi0.4Mn0.4Co0.18Ti0.02O2 particles, repeated electron beam irradiation induced a phase transition from an layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results. PMID:25027190

  13. Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Markus, Isaac M.; Doeff, Marca M.; Xin, Huolin L.

    2014-07-01

    The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi0.4Mn0.4Co0.18Ti0.02O2 particles, repeated electron beam irradiation induced a phase transition from an layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.

  14. Chemical and structural stability of lithium-ion battery electrode materials under electron beam.

    PubMed

    Lin, Feng; Markus, Isaac M; Doeff, Marca M; Xin, Huolin L

    2014-01-01

    The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi(0.4)Mn(0.4)Co(0.18)Ti(0.02)O2 particles, repeated electron beam irradiation induced a phase transition from an layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results. PMID:25027190

  15. Cold neutron depth profiling of lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Lamaze, G. P.; Chen-Mayer, H. H.; Becker, D. A.; Vereda, F.; Goldner, R. B.; Haas, T.; Zerigian, P.

    We report the characterization of two thin-film battery materials using neutron techniques. Neutron depth profiling (NDP) has been employed to determine the distribution of lithium and nitrogen simultaneously in lithium phosphorous oxynitride (LiPON) deposited by ion beam assisted deposition (IBAD). The depth profiles are based on the measurement of the energy of the charged particle products from the 6Li(n,α) 3H and 14N(n,p) 14C reactions for lithium and nitrogen, respectively. Lithium at the level of 10 22 atoms/cm 3 and N of 10 21 atoms/cm 3, distributed in the film thickness on the order of 1 μm, have been determined. This information provides insights into nitrogen incorporation and lithium concentration in the films under various fabrication conditions. NDP of lithium has also been performed on IBAD LiCoO 2 films, in conjunction with instrumental neutron activation analysis (INAA) to determine the cobalt concentration. The Li/Co ratio thus obtained serves as an ex situ control for the thin-film evaporation process. The non-destructive nature of the neutron techniques is especially suitable for repeated analysis of these materials and for actual working devices.

  16. Lithium-ion batteries with intrinsic pulse overcharge protection

    SciTech Connect

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  17. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  18. Monothioanthraquinone as an organic active material for greener lithium batteries

    NASA Astrophysics Data System (ADS)

    Iordache, Adriana; Maurel, Vincent; Mouesca, Jean-Marie; Pécaut, Jacques; Dubois, Lionel; Gutel, Thibaut

    2014-12-01

    In order to reduce the environmental impact of human activities especially transportation and portable electronics, a more sustainable way is required to produce and store electrical energy. Actually lithium battery is one of the most promising solutions for energy storage. Unfortunately this technology is based on the use of transition metal-based active materials for electrodes which are rare, expensive, extracted by mining, can be toxic and hard to recycle. Organic materials are an interesting alternative to replace inorganic counterparts due to their high electrochemical performances and the possibility to produce them from renewable resources. A quinone derivative is synthetized and investigated as novel active material for rechargeable lithium ion batteries which shows higher performances.

  19. Hierarchically porous graphene as a lithium-air battery electrode.

    PubMed

    Xiao, Jie; Mei, Donghai; Li, Xiaolin; Xu, Wu; Wang, Deyu; Graff, Gordon L; Bennett, Wendy D; Nie, Zimin; Saraf, Laxmikant V; Aksay, Ilhan A; Liu, Jun; Zhang, Ji-Guang

    2011-11-01

    The lithium-air battery is one of the most promising technologies among various electrochemical energy storage systems. We demonstrate that a novel air electrode consisting of an unusual hierarchical arrangement of functionalized graphene sheets (with no catalyst) delivers an exceptionally high capacity of 15000 mAh/g in lithium-O(2) batteries which is the highest value ever reported in this field. This excellent performance is attributed to the unique bimodal porous structure of the electrode which consists of microporous channels facilitating rapid O(2) diffusion while the highly connected nanoscale pores provide a high density of reactive sites for Li-O(2) reactions. Further, we show that the defects and functional groups on graphene favor the formation of isolated nanosized Li(2)O(2) particles and help prevent air blocking in the air electrode. The hierarchically ordered porous structure in bulk graphene enables its practical applications by promoting accessibility to most graphene sheets in this structure. PMID:21985448

  20. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  1. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    SciTech Connect

    and Ahmad Pesaran, Gi-Heon Kim

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data from accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.

  2. Modified carbon black materials for lithium-ion batteries

    DOEpatents

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  3. Novel forms of carbon as potential anodes for lithium batteries

    SciTech Connect

    Winans, R.E.; Carrado, K.A.

    1994-06-01

    The objective of this study is to design and synthesize novel carbons as potential electrode materials for lithium rechargeable batteries. A synthetic approach which utilizes inorganic templates is described and initial characterization results are discussed. The templates also act as a catalyst enabling carbon formation at low temperatures. This synthetic approach should make it easier to control the surface and bulk characteristics of these carbons.

  4. Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.

    SciTech Connect

    Hudak, Nicholas S.; Huber, Dale L.

    2010-12-01

    Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

  5. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM.

    PubMed

    Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping

    2015-01-01

    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090

  6. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM

    PubMed Central

    Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping

    2015-01-01

    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090

  7. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    PubMed Central

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R.

    2013-01-01

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed. PMID:23963203

  8. Solid-state graft copolymer electrolytes for lithium battery applications.

    PubMed

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-01-01

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (< 80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed. PMID:23963203

  9. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.

    PubMed

    Wu, Min; Cui, Yi; Bhargav, Amruth; Losovyj, Yaroslav; Siegel, Amanda; Agarwal, Mangilal; Ma, Ying; Fu, Yongzhu

    2016-08-16

    An organotrisulfide (RSSSR, R is an organic group) has three sulfur atoms which could be involved in multi-electron reduction reactions; therefore it is a promising electrode material for batteries. Herein, we use dimethyl trisulfide (DMTS) as a model compound to study its redox reactions in rechargeable lithium batteries. With the aid of XRD, XPS, and GC-MS analysis, we confirm DMTS could undergo almost a 4 e(-) reduction process in a complete discharge to 1.0 V. The discharge products are primarily LiSCH3 and Li2 S. The lithium cell with DMTS catholyte delivers an initial specific capacity of 720 mAh g(-1) DMTS and retains 82 % of the capacity over 50 cycles at C/10 rate. When the electrolyte/DMTS ratio is 3:1 mL g(-1) , the reversible specific energy for the cell including electrolyte can be 229 Wh kg(-1) . This study shows organotrisulfide is a promising high-capacity cathode material for high-energy rechargeable lithium batteries. PMID:27411083

  10. Interface Limited Lithium Transport in Solid-State Batteries.

    PubMed

    Santhanagopalan, Dhamodaran; Qian, Danna; McGilvray, Thomas; Wang, Ziying; Wang, Feng; Camino, Fernando; Graetz, Jason; Dudney, Nancy; Meng, Ying Shirley

    2014-01-16

    Understanding the role of interfaces is important for improving the performance of all-solid-state lithium ion batteries. To study these interfaces, we present a novel approach for fabrication of electrochemically active nanobatteries using focused ion beams and their characterization by analytical electron microscopy. Morphological changes by scanning transmission electron microscopy imaging and correlated elemental concentration changes by electron energy loss spectroscopy mapping are presented. We provide first evidence of lithium accumulation at the anode/current collector (Si/Cu) and cathode/electrolyte (LixCoO2/LiPON) interfaces, which can be accounted for the irreversible capacity losses. Interdiffusion of elements at the Si/LiPON interface was also witnessed with a distinct contrast layer. These results highlight that the interfaces may limit the lithium transport significantly in solid-state batteries. Fabrication of electrochemically active nanobatteries also enables in situ electron microscopy observation of electrochemical phenomena in a variety of solid-state battery chemistries. PMID:26270703

  11. Olivine Composite Cathode Materials for Improved Lithium Ion Battery Performance

    SciTech Connect

    Ward, R.M.; Vaughey, J.T.

    2006-01-01

    Composite cathode materials in lithium ion batteries have become the subject of a great amount of research recently as cost and safety issues related to LiCoO2 and other layered structures have been discovered. Alternatives to these layered materials include materials with the spinel and olivine structures, but these present different problems, e.g. spinels have low capacities and cycle poorly at elevated temperatures, and olivines exhibit extremely low intrinsic conductivity. Previous work has shown that composite structures containing spinel and layered materials have shown improved electrochemical properties. These types of composite structures have been studied in order to evaluate their performance and safety characteristics necessary for use in lithium ion batteries in portable electronic devices, particularly hybrid-electric vehicles. In this study, we extended that work to layered-olivine and spinel-olivine composites. These materials were synthesized from precursor salts using three methods: direct reaction, ball-milling, and a coreshell synthesis method. X-ray diffraction spectra and electrochemical cycling data show that the core-shell method was the most successful in forming the desired products. The electrochemical performance of the cells containing the composite cathodes varied dramatically, but the low overpotential and reasonable capacities of the spinel-olivine composites make them a promising class for the next generation of lithium ion battery cathodes.

  12. Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

    PubMed

    McCloskey, B D; Bethune, D S; Shelby, R M; Girishkumar, G; Luntz, A C

    2011-05-19

    Among the many important challenges facing the development of Li-air batteries, understanding the electrolyte's role in producing the appropriate reversible electrochemistry (i.e., 2Li(+) + O2 + 2e(-) ↔ Li2O2) is critical. Quantitative differential electrochemical mass spectrometry (DEMS), coupled with isotopic labeling of oxygen gas, was used to study Li-O2 electrochemistry in various solvents, including carbonates (typical Li ion battery solvents) and dimethoxyethane (DME). In conjunction with the gas-phase DEMS analysis, electrodeposits formed during discharge on Li-O2 cell cathodes were characterized using ex situ analytical techniques, such as X-ray diffraction and Raman spectroscopy. Carbonate-based solvents were found to irreversibly decompose upon cell discharge. DME-based cells, however, produced mainly lithium peroxide on discharge. Upon cell charge, the lithium peroxide both decomposed to evolve oxygen and oxidized DME at high potentials. Our results lead to two conclusions; (1) coulometry has to be coupled with quantitative gas consumption and evolution data to properly characterize the rechargeability of Li-air batteries, and (2) chemical and electrochemical electrolyte stability in the presence of lithium peroxide and its intermediates is essential to produce a truly reversible Li-O2 electrochemistry. PMID:26295320

  13. A highly efficient polysulfide mediator for lithium-sulfur batteries.

    PubMed

    Liang, Xiao; Hart, Connor; Pang, Quan; Garsuch, Arnd; Weiss, Thomas; Nazar, Linda F

    2015-01-01

    The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host--manganese dioxide nanosheets serve as the prototype--reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind 'higher' polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g(-1) at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely. PMID:25562485

  14. A highly efficient polysulfide mediator for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Hart, Connor; Pang, Quan; Garsuch, Arnd; Weiss, Thomas; Nazar, Linda F.

    2015-01-01

    The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host—manganese dioxide nanosheets serve as the prototype—reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind ‘higher’ polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g-1 at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely.

  15. The Science of Electrode Materials for Lithium Batteries

    SciTech Connect

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  16. Polymer nanocomposites for lithium battery applications

    DOEpatents

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  17. Development of a lithium secondary battery separator

    NASA Technical Reports Server (NTRS)

    Moore, J. A.; Willie, R.

    1985-01-01

    A nonporous membrane based on the polymerization of 2,3-dihydrofuran followed by crosslinking in situ was prepared. The material is compatible with rechargeable Li battery components and, when swollen with an appropriate solvent such as tetrahydrofuran, exhibits separator resistance and Li transport equivalent to Celgard.

  18. lithium-ion battery during oven tests

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Sun, Yiqiong; Jiang, Fangming

    2014-10-01

    A three dimensional thermal abuse model for graphite/LiPF6/LiCoO2 batteries is established particularly for oven tests. To investigate the influence of heat release condition and oven temperature on battery thermal behaviors, we perform a series of simulations with respect to a unit cell during oven thermal abuses of various oven temperatures and under various heat release conditions. Simulation results enable detailed analyses to thermal behaviors of batteries. It is found that during oven thermal abuse processes that do not get into thermal runaway, the negative electrode is the maximum heat generation rate zone; during oven thermal abuse processes that do get into thermal runaway, the positive electrode is the maximum heat generation rate zone. The positive-solvent reaction is found to be the major heat generation source causing thermal runaway. It is also found that the heat release condition and the oven temperature are combined to dictate thermal behaviors of the battery. The critical oven temperature that causes thermal runaway rises if the heat release condition is better and the critical heat release coefficient that can effectively restrain the occurrence of thermal runaway increases with the increase of oven temperature.

  19. Microprocessor controlled advanced battery management systems

    NASA Technical Reports Server (NTRS)

    Payne, W. T.

    1978-01-01

    The advanced battery management system described uses the capabilities of an on-board microprocessor to: (1) monitor the state of the battery on a cell by cell basis; (2) compute the state of charge of each cell; (3) protect each cell from reversal; (4) prevent overcharge on each individual cell; and (5) control dual rate reconditioning to zero volts per cell.

  20. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    SciTech Connect

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.