Sample records for advanced low-cost manufacturing

  1. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizingmore » composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  2. Additively Manufactured Low Cost Upper Stage Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Cooper, Ken; Ellis, David; Fikes, John; Jones, Zachary; Kim, Tony; Medina, Cory; Taminger, Karen; Willingham, Derek

    2016-01-01

    Over the past two years NASA's Low Cost Upper Stage Propulsion (LCUSP) project has developed Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. High pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design fabrication to be costly and time consuming due to the number of individual steps and different processes required. Under LCUSP, AM technologies in Sintered Laser Melting (SLM) GRCop-84 and Electron Beam Freeform Fabrication (EBF3) Inconel 625 have been significantly advanced, allowing the team to successfully fabricate a 25k-class regenerative chamber. Estimates of the costs and schedule of future builds indicate cost reductions and significant schedule reductions will be enabled by this technology. Characterization of the microstructural and mechanical properties of the SLM-produced GRCop-84, EBF3 Inconel 625 and the interface layer between the two has been performed and indicates the properties will meet the design requirements. The LCUSP chamber is to be tested with a previously demonstrated SLM injector in order to advance the Technology Readiness Level (TRL) and demonstrate the capability of the application of these processes. NASA is advancing these technologies to reduce cost and schedule for future engine applications and commercial needs.

  3. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2014-01-16

    ZACK JONES AND JIM LYDON OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S M2 SELECTIVE LASER MELTING SYSTEM. THE M2 IS CURRENTLY DEDICATED TO ADVANCED COPPER MATERIAL DEVELOPMENT FOR THE LOW COST UPPER STAGE PROGRAM.

  4. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2014-01-16

    QUINCY BEAN, JIM LYDON, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S M2 SELECTIVE LASER MELTING SYSTEM. THE M2 IS CURRENTLY DEDICATED TO ADVANCED COPPER MATERIAL DEVELOPMENT FOR THE LOW COST UPPER STAGE PROGRAM.

  5. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Arrieta, Victor M.

    2013-01-01

    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  6. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  7. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    NASA Astrophysics Data System (ADS)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  8. Recent advances in low-cost microfluidic platforms for diagnostic applications.

    PubMed

    Tomazelli Coltro, Wendell Karlos; Cheng, Chao-Min; Carrilho, Emanuel; de Jesus, Dosil Pereira

    2014-08-01

    The use of inexpensive materials and cost-effective manufacturing processes for mass production of microfluidic devices is very attractive and has spurred a variety of approaches. Such devices are particularly suited for diagnostic applications in limited resource settings. This review describes the recent and remarkable advances in the use of low-cost substrates for the development of microfluidic devices for diagnostics and clinical assays. Thus, a plethora of new and improved fabrication methods, designs, capabilities, detections, and applications of microfluidic devices fabricated with paper, plastic, and threads are covered. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  10. Automated packaging platform for low-cost high-performance optical components manufacturing

    NASA Astrophysics Data System (ADS)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  11. Cost analysis of advanced turbine blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  12. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    PubMed

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  14. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  15. Hot forming and quenching pilot process development for low cost and low environmental impact manufacturing.

    NASA Astrophysics Data System (ADS)

    Hall, Roger W.; Foster, Alistair; Herrmann Praturlon, Anja

    2017-09-01

    The Hot Forming and in-tool Quenching (HFQ®) process is a proven technique to enable complex shaped stampings to be manufactured from high strength aluminium. Its widespread uptake for high volume production will be maximised if it is able to wholly amortise the additional investment cost of this process compared to conventional deep drawing techniques. This paper discusses the use of three techniques to guide some of the development decisions taken during upscaling of the HFQ® process. Modelling of Process timing, Cost and Life-cycle impact were found to be effective tools to identify where development budget could be focused in order to be able to manufacture low cost panels of different sizes from many different alloys in a sustainable way. The results confirm that raw material cost, panel trimming, and artificial ageing were some of the highest contributing factors to final component cost. Additionally, heat treatment and lubricant removal stages played a significant role in the overall life-cycle assessment of the final products. These findings confirmed development priorities as novel furnace design, fast artificial ageing and low-cost alloy development.

  16. Manufacturing development of DC-10 advanced rudder

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1979-01-01

    The design, manufacture, and ground test activities during development of production methods for an advanced composite rudder for the DC-10 transport aircraft are described. The advanced composite aft rudder is satisfactory for airline service and a cost saving in a full production manufacturing mode is anticipated.

  17. Manufacturing of Low Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busby, Colin

    Over the past 20 years significant progress in membrane-electrode assembly (MEA) technology development for polymer electrolyte fuel cells (PEMFCs) has resulted in the PEMFC technology approaching a commercial reality for transportation applications. However, there remain two primary technical challenges to be addressed in the MEA. First and foremost is meeting the automotive cost targets: Producing a fuel cell stack cost competitive with today’s internal combustion engine. In addition to the material cost, MEA (and other components) and stack assembly production methods must be amenable for use in low cost, high speed, automotive assembly line. One impediment to this latter goalmore » is that stack components must currently go through a long and tedious conditioning procedure before they produce optimal power. This so-called “break-in” can take many hours, and can involve quite complex voltage, temperature and/or pressure steps. These break-in procedures must be simplified and the time required reduced if fuel cells are to become a viable automotive engine. The second challenge is to achieve the durability targets in real-world automotive duty cycle operations. Significant improvements in cost, break-in time, and durability for the key component of fuel cell stacks, MEAs were achieved in this project. Advanced modeling was used to guide design of the new MEA to maximize performance and durability. A new, innovative process and manufacturing approach utilizing direct in-line coating using scalable, cost-competitive, continuous high volume 3-layer rolled-good manufacturing processes was developed and validated by single cell and short stack testing. In addition, the direct coating methods employed were shown to reduce the cost for sacrificial films. Furthermore, Gore has demonstrated a 10 µm reinforced membrane that is used in the new low-cost process and can meet automotive power density and durability targets. Across a wide range of operating conditions

  18. Innovative hybrid optics: combining the thermal stability of glass with low manufacturing cost of polymers

    NASA Astrophysics Data System (ADS)

    Doushkina, Valentina

    2010-08-01

    Innovative hybrid glass-polymer optical solutions on a component, module, or system level offer thermal stability of glass with low manufacturing cost of polymers reducing component weight, enhancing the safety and appeal of the products. Narrow choice of polymer materials is compensated by utilizing sophisticated optical surfaces such as refractive, reflective, and diffractive substrates with spherical, aspherical, cylindrical, and freeform prescriptions. Current advancements in polymer technology and injection molding capabilities placed polymer optics in the heart of many high tech devices and applications including Automotive Industry, Defense & Aerospace; Medical/Bio Science; Projection Displays, Sensors, Information Technology, Commercial and Industrial. This paper is about integration of polymer and glass optics for enhanced optical performance with reduced number of components, thermal stability, and low manufacturing cost. The listed advantages are not achievable when polymers or glass optics are used as stand-alone. The author demonstrates that integration of polymer and glass on component or optical system level on one hand offers high resolution and diffraction limited image quality, similar to the glass optics with stable refractive index and stable thermal performance when design is athermalized within the temperature range. On the other hand, the integrated hybrid solution significantly reduces cost, weight, and complexity, just like the polymer optics. The author will describe the design and analyzes process of combining glass and polymer optics for variety of challenging applications such as fast optics with low F/#, wide field of view lenses or systems, free form optics, etc.

  19. Innovative manufacturing technologies for low-cost, high efficiency PERC-based PV modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelundur, Vijay

    2017-04-19

    The goal this project was to accelerate the deployment of innovative solar cell and module technologies that reduce the cost of PERC-based modules to best-in-class. New module integration technology was to be used to reduce the cost and reliance on conventional silver bus bar pastes and enhance cell efficiency. On the cell manufacturing front, the cost of PERC solar cells was to be reduced by introducing advanced metallization approaches to increase cell efficiency. These advancements will be combined with process optimization to target cell efficiencies in the range of 21 to 21.5%. This project will also explore the viability ofmore » a bifacial PERC solar cell design to enable cost savings through the use of thin silicon wafers. This project was terminated on 4/30/17 after four months of activity due financial challenges facing the recipient.« less

  20. 2D net shape weaving for cost effective manufacture of textile reinforced composites

    NASA Astrophysics Data System (ADS)

    Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.

    2017-10-01

    Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.

  1. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  2. Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Conghua

    2013-08-15

    Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate technology without using any preciousmore » metal. The technology will meet the performance and cost requirements for automobile applications. Through the Phase I project, TreadStone has identified the corrosion resistant and electrically conductive titanium oxide for the metal bipolar plate surface protection for automotive PEM fuel cell applications. TreadStone has overcome the manufacturing issues to apply the coating on metal substrate surface, and has demonstrated the feasibility of the coated stainless steel plates by ex-situ evaluation tests and the in-situ fuel cell long term durability test. The test results show the feasibility of the proposed nano-structured coating as the low cost metal bipolar plates of PEM fuel cells. The plan for further technology optimization is also outlined for the Phase II project.« less

  3. Manufacturing Large Membrane Mirrors at Low Cost

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space: With respect to the smoothness of their surfaces and the accuracy with which they retain their shapes, these mirrors approach the optical quality of heavier, more expensive conventional mirrors. Unlike conventional mirrors, these mirrors can be stowed compactly and later deployed to their full sizes. In typical cases, deployment would be effected by inflation. Potential terrestrial and outer-space applications for these mirrors include large astronomical telescopes, solar concentrators for generating electric power and thermal power, and microwave reflectors for communication, radar, and short-distance transmission of electric power. The relatively low cost of manufacturing these mirrors stems, in part, from the use of inexpensive tooling. Unlike in the manufacture of conventional mirrors, there is no need for mandrels or molds that have highly precise surface figures and highly polished surfaces. The surface smoothness is an inherent property of a polyimide film. The shaped area of the film is never placed in contact with a mold or mandrel surface: Instead the shape of a mirror is determined by a combination of (1) the shape of a fixture that holds the film around its edge and (2) control of manufacturing- process parameters. In a demonstration of this manufacturing concept, spherical mirrors having aperture diameters of 0.5 and 1.0 m were fabricated from polyimide films having thicknesses ranging from <20 m to 150 m. These mirrors have been found to maintain their preformed shapes following deployment.

  4. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrick, Adam

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already hadmore » the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today

  5. Advanced Manufacturing Processes in the Motor Vehicle Industry

    DOT National Transportation Integrated Search

    1983-05-01

    Advanced manufacturing processes, which include a range of automation and management techniques, are aiding U.S. motor vehicle manufacturers to reduce vehicle costs. This report discusses these techniques in general and their specific applications in...

  6. Low Cost Manufacturing Approach of High Temperature PMC Components

    NASA Technical Reports Server (NTRS)

    Kannmacher, Kevin

    1997-01-01

    The overall objective is to develop a satisfactory sheet molding compound (SMC) of a high temperature polyimide, such as PMR-11-50, VCAP-75, or NB2-76, and to develop compression molding processing parameters for a random, chopped fiber, high temperature, sheet molding compound that will be more affordable than the traditional hand lay-up fabrication methods. Compression molding will reduce manufacturing costs of composites by: (1) minimizing the conventional machining required after fabrication due to the use of full 360 deg matched tooling, (2) reducing fabrication time by minimizing the intensive hand lay-up operations associated with individual ply fabrication techniques, such as ply orientation and ply count and (3) possibly reducing component mold time by advanced B-staging prior to molding. This program is an integral part of Allison's T406/AE engine family's growth plan, which will utilize technologies developed under NASA's Sub-sonic Transport (AST) programs, UHPTET initiatives, and internally through Allison's IR&D projects. Allison is aggressively pursuing this next generation of engines, with both commercial and military applications, by reducing the overall weight of the engine through the incorporation of advanced, lightweight, high temperature materials, such as polymer matrix composites. This infusion of new materials into the engine is also a major factor in reducing engine cost because it permits the use of physically smaller structural components to achieve the same thrust levels as the generation that it replaced. A lighter, more efficient propulsion system translates to a substantial cost and weight savings to an airframe's structure.

  7. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    PubMed

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  8. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    PubMed Central

    Sidambe, Alfred T.

    2014-01-01

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy. PMID:28788296

  9. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offersmore » an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.« less

  10. Recent advances in microbial production of mannitol: utilization of low-cost substrates, strain development and regulation strategies.

    PubMed

    Zhang, Min; Gu, Lei; Cheng, Chao; Ma, Jiangfeng; Xin, Fengxue; Liu, Junli; Wu, Hao; Jiang, Min

    2018-02-26

    Mannitol has been widely used in fine chemicals, pharmaceutical industries, as well as functional foods due to its excellent characteristics, such as antioxidant protecting, regulation of osmotic pressure and non-metabolizable feature. Mannitol can be naturally produced by microorganisms. Compared with chemical manufacturing, microbial production of mannitol provides high yield and convenience in products separation; however the fermentative process has not been widely adopted yet. A major obstacle to microbial production of mannitol under industrial-scale lies in the low economical efficiency, owing to the high cost of fermentation medium, leakage of fructose, low mannitol productivity. In this review, recent advances in improving the economical efficiency of microbial production of mannitol were reviewed, including utilization of low-cost substrates, strain development for high mannitol yield and process regulation strategies for high productivity.

  11. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  12. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Iftikhar; Zhang, Pu

    For this Vehicle Technologies Incubator/Energy Storage R&D topic, Lambda Technologies teamed with Navitas Systems and proposed a new advanced drying process that promised a 5X reduction in electrode drying time and significant reduction in the cost of large format lithium batteries used in PEV's. The operating principle of the proposed process was to use penetrating radiant energy source Variable Frequency Microwaves (VFM), that are selectively absorbed by the polar water or solvent molecules instantly in the entire volume of the electrode. The solvent molecules are thus driven out of the electrode thickness making the process more efficient and much fastermore » than convective drying method. To evaluate the Advanced Drying Process (ADP) a hybrid prototype system utilizing VFM and hot air flow was designed and fabricated. While VFM drives the solvent out of the electrode thickness, the hot air flow exhausts the solvent vapors out of the chamber. The drying results from this prototype were very encouraging. For water based anodes there is a 5X drying advantage (time & length of oven) in using ADP over standard drying system and for the NMP based cathodes the reduction in drying time has 3X benefit. For energy savings the power consumption measurements were performed to ADP prototype and compared with the convection standard drying oven. The data collected demonstrated over 40% saving in power consumption with ADP as compared to the convection drying systems. The energy savings are one of the operational cost benefits possible with ADP. To further speed up the drying process, the ADP prototype was explored as a booster module before the convection oven and for the electrode material being evaluated it was possible to increase the drying speed by a factor of 4, which could not be accomplished with the standard dryer without surface defects and cracks. The instantaneous penetration of microwave in the entire slurry thickness showed a major advantage in rapid drying

  13. Need low-cost networking? Consider DeviceNet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, W.H.

    1996-11-01

    The drive to reduce production costs and optimize system performance in manufacturing facilities causes many end users to invest in network solutions. Because of distinct differences between the way tasks are performed and the way data are handled for various applications, it is clear than more than one network will be needed in most facilities. What is not clear is which network is most appropriate for a given application. The information layer is the link between automation and information environments via management information systems (MISs) and manufacturing execution systems (MESs) and manufacturing execution systems (MESs). Here the market has chosenmore » a de facto standard in Ethernet, primarily transmission control protocol/internet protocol (TCP/IP) and secondarily manufacturing messaging system (MMS). There is no single standard at the device layer. However, the DeviceNet communication standard has made strides to reach this goal. This protocol eliminates expensive hardwiring and provides improved communication between devices and important device-level diagnostics not easily accessible or available through hardwired I/O interfaces. DeviceNet is a low-cost communications link connecting industrial devices to a network. Many original equipment manufacturers and end users have chosen the DeviceNet platform for several reasons, but most frequently because of four key features: interchangeability; low cost; advanced diagnostics; insert devices under power.« less

  14. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.

    PubMed

    Li, Jia; Rossignol, Fabrice; Macdonald, Joanne

    2015-06-21

    Inkjet printing is emerging at the forefront of biosensor fabrication technologies. Parallel advances in both ink chemistry and printers have led to a biosensor manufacturing approach that is simple, rapid, flexible, high resolution, low cost, efficient for mass production, and extends the capabilities of devices beyond other manufacturing technologies. Here we review for the first time the factors behind successful inkjet biosensor fabrication, including printers, inks, patterning methods, and matrix types. We discuss technical considerations that are important when moving beyond theoretical knowledge to practical implementation. We also highlight significant advances in biosensor functionality that have been realised through inkjet printing. Finally, we consider future possibilities for biosensors enabled by this novel combination of chemistry and technology.

  15. Innovative manufacturing and materials for low cost lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator andmore » any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat

  16. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, materials costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structure. Key technologies, such as large crown panel fabrication, were pursued for low cost. An intricate bond panel design and manufacturing concept were selected based on the efforts of the Design Build Team. The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and use of low cost materials forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing costs by 18 pct. and weight by 45 pct. relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  17. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  18. Ohio Advanced Energy Manufacturing Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for

  19. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  20. Low-cost uncooled VOx infrared camera development

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Han, C. J.; Skidmore, George D.; Cook, Grady; Kubala, Kenny; Bates, Robert; Temple, Dorota; Lannon, John; Hilton, Allan; Glukh, Konstantin; Hardy, Busbee

    2013-06-01

    The DRS Tamarisk® 320 camera, introduced in 2011, is a low cost commercial camera based on the 17 µm pixel pitch 320×240 VOx microbolometer technology. A higher resolution 17 µm pixel pitch 640×480 Tamarisk®640 has also been developed and is now in production serving the commercial markets. Recently, under the DARPA sponsored Low Cost Thermal Imager-Manufacturing (LCTI-M) program and internal project, DRS is leading a team of industrial experts from FiveFocal, RTI International and MEMSCAP to develop a small form factor uncooled infrared camera for the military and commercial markets. The objective of the DARPA LCTI-M program is to develop a low SWaP camera (<3.5 cm3 in volume and <500 mW in power consumption) that costs less than US $500 based on a 10,000 units per month production rate. To meet this challenge, DRS is developing several innovative technologies including a small pixel pitch 640×512 VOx uncooled detector, an advanced digital ROIC and low power miniature camera electronics. In addition, DRS and its partners are developing innovative manufacturing processes to reduce production cycle time and costs including wafer scale optic and vacuum packaging manufacturing and a 3-dimensional integrated camera assembly. This paper provides an overview of the DRS Tamarisk® project and LCTI-M related uncooled technology development activities. Highlights of recent progress and challenges will also be discussed. It should be noted that BAE Systems and Raytheon Vision Systems are also participants of the DARPA LCTI-M program.

  1. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  2. The Science of and Advanced Technology for Cost-Effective Manufacture of High Precision Engineering Products. Volume 5. Automatic Generation of Process Outlines of Forming and Machining Processes.

    DTIC Science & Technology

    1986-08-01

    THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE Lfl OF HIGH PRECISION ENGINEERING PRODUCTS N iA6/*N ONR Contract No. 83K0385...ADVANCED TECHNOLOGY FOR1 COST-EFFECTIVE MANUFACTURE OF1’ HIGH PRECISION ENGINEERING PRODUCTS ONR Contract No. 83K0385 Final Report Vol. 5 AUTOMATIC...Ck 53N Drawing #: 03116-6233 Raw Material: Iiz’ 500mm diameter and 3000mm length Ma, rial Alloy steel. high carbon content, quenched to Min 45Rc

  3. Advances in low-cost long-wave infrared polymer windows

    NASA Astrophysics Data System (ADS)

    Weimer, Wayne A.; Klocek, Paul

    1999-07-01

    Recent improvements in engineered polymeric material compositions and advances in processing methodologies developed and patented at Raytheon Systems Company have produced long wave IR windows at exceptionally low costs. These UV stabilized, high strength windows incorporating subwavelength structured antireflection surfaces are enabling IR imaging systems to penetrate commercial markets and will reduce the cost of systems delivered to the military. The optical and mechanical properties of these windows will be discussed in detail with reference to the short and long-term impact on military IR imaging systems.

  4. Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie

    1999-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.

  5. Democratizing science with the aid of parametric design and additive manufacturing: Design and fabrication of a versatile and low-cost optical instrument for scattering measurement.

    PubMed

    Nadal-Serrano, Jose M; Nadal-Serrano, Adolfo; Lopez-Vallejo, Marisa

    2017-01-01

    This paper focuses on the application of rapid prototyping techniques using additive manufacturing in combination with parametric design to create low-cost, yet accurate and reliable instruments. The methodology followed makes it possible to make instruments with a degree of customization until now available only to a narrow audience, helping democratize science. The proposal discusses a holistic design-for-manufacturing approach that comprises advanced modeling techniques, open-source design strategies, and an optimization algorithm using free parametric software for both professional and educational purposes. The design and fabrication of an instrument for scattering measurement is used as a case of study to present the previous concepts.

  6. Democratizing science with the aid of parametric design and additive manufacturing: Design and fabrication of a versatile and low-cost optical instrument for scattering measurement

    PubMed Central

    Lopez-Vallejo, Marisa

    2017-01-01

    This paper focuses on the application of rapid prototyping techniques using additive manufacturing in combination with parametric design to create low-cost, yet accurate and reliable instruments. The methodology followed makes it possible to make instruments with a degree of customization until now available only to a narrow audience, helping democratize science. The proposal discusses a holistic design-for-manufacturing approach that comprises advanced modeling techniques, open-source design strategies, and an optimization algorithm using free parametric software for both professional and educational purposes. The design and fabrication of an instrument for scattering measurement is used as a case of study to present the previous concepts. PMID:29112987

  7. An Assessment of Technical and Production Risks of Candidate Low-Cost Attitude/Heading Reference Systems(AHRS)

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel; Burgess, Malcolm; Hammers, William

    1999-01-01

    This report provides an assessment of technical and production risks of candidate low-cost attitude/heading reference systems (AHRS) for use in the Advanced General Aviation Transport Experiments (AGATE) airplanes. A low-cost AHRS is a key component of modem "glass cockpit" flight displays for General Aviation (GA) aircraft. The technical capabilities of several candidate low-cost AHRS were examined and described along with the technical issues involved with using all solid-state components for attitude measurement. An economic model was developed which describes the expected profit, rate of return, and volume requirements for the manufacture of low-cost AHRS for GA aircraft in the 2000 to 2020 time frame. The model is the result of interviews with GA airframe manufacturers, avionics manufacturers and historical analysis of avionics of similar complexity. The model shows that a manufacturer will break even after three years of AHRS production, realizing an 18 percent rate of return (23 percent profit) on an investment of $3.5M over the 20 year period. A start-up production estimate showed costs of $6-12M for a new company to build and certify an AHRS from scratch, considered to be a high-risk proposition, versus $0.25-0.75M for an experienced avionics manufacturer to manufacture a design under license, a low-risk proposition.

  8. Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamer, John; Scott, David

    In this project, OLEDWorks developed and demonstrated the innovative high-performance deposition technology required to deliver dramatic reductions in the cost of manufacturing OLED lighting in production equipment. The current high manufacturing cost of OLED lighting is the most urgent barrier to its market acceptance. The new deposition technology delivers solutions to the two largest parts of the manufacturing cost problem – the expense per area of good product for organic materials and for the capital cost and depreciation of the equipment. Organic materials cost is the largest expense item in the bill of materials and is predicted to remain somore » through 2020. The high-performance deposition technology developed in this project, also known as the next generation source (NGS), increases material usage efficiency from 25% found in current Gen2 deposition technology to 60%. This improvement alone results in a reduction of approximately 25 USD/m 2 of good product in organic materials costs, independent of production volumes. Additionally, this innovative deposition technology reduces the total depreciation cost from the estimated value of approximately 780 USD/m 2 of good product for state-of-the-art G2 lines (at capacity, 5-year straight line depreciation) to 170 USD/m 2 of good product from the OLEDWorks production line.« less

  9. 2001 Industry Studies: Advanced Manufacturing

    DTIC Science & Technology

    2001-05-28

    oriented, 19 and manufacturers are employing the Internet and associated information technologies to better integrate supply chains and form extended...ways to compete in world markets . As part of this ongoing transformation, the broad implementation of advanced manufacturing technologies , processes...competitive advantages and better performance in world markets . Importantly, advanced manufacturing involves the innovative integration of new technology

  10. Advanced Initiation Systems Manufacturing Level 2 Milestone Completion Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, R; Schmidt, M

    2009-10-01

    Milestone Description - Advanced Initiation Systems Detonator Design and Prototype. Milestone Grading Criteria - Design new generation chip slapper detonator and manufacture a prototype using advanced manufacturing processes, such as all-dry chip metallization and solvent-less flyer coatings. The advanced processes have been developed for manufacturing detonators with high material compatibility and reliability to support future LEPs, e.g. the B61, and new weapons systems. Perform velocimetry measurements to determine slapper velocity as a function of flight distance. A prototype detonator assembly and stripline was designed for low-energy chip slappers. Pictures of the prototype detonator and stripline are shown. All-dry manufacturing processesmore » were used to address compatibility issues. KCP metallized the chips in a physical vapor deposition system through precision-aligned shadow masks. LLNL deposited a solvent-less polyimide flyer with a processes called SLIP, which stands for solvent-less vapor deposition followed by in-situ polymerization. LANL manufactured the high-surface-area (HSA) high explosive (HE) pellets. Test fires of two chip slapper designs, radius and bowtie, were performed at LLNL in the High Explosives Application Facility (HEAF). Test fires with HE were conducted to establish the threshold firing voltages. pictures of the chip slappers before and after test fires are shown. Velocimetry tests were then performed to obtain slapper velocities at or above the threshold firing voltages. Figure 5 shows the slapper velocity as a function of distance and time at the threshold voltage, for both radius and bowtie bridge designs. Both designs were successful at initiating the HE at low energy levels. Summary of Accomplishments are: (1) All-dry process for chip manufacture developed; (2) Solventless process for slapper materials developed; (3) High-surface area explosive pellets developed; (4) High performance chip slappers developed; (5) Low

  11. Low Cost Manufacturing of Composite Cryotanks

    NASA Technical Reports Server (NTRS)

    Meredith, Brent; Palm, Tod; Deo, Ravi; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This viewgraph presentation reviews research and development of cryotank manufacturing conducted by Northrup Grumman. The objectives of the research and development included the development and validation of manufacturing processes and technology for fabrication of large scale cryogenic tanks, the establishment of a scale-up and facilitization plan for full scale cryotanks, the development of non-autoclave composite manufacturing processes, the fabrication of subscale tank joints for element tests, the performance of manufacturing risk reduction trials for the subscale tank, and the development of full-scale tank manufacturing concepts.

  12. Low cost method for manufacturing a data acquisition system with USB connectivity

    NASA Astrophysics Data System (ADS)

    Niculescu, V.; Dobre, R. A.; Popovici, E.

    2016-06-01

    In the process of designing and manufacturing an electronic system the digital oscilloscope plays an essential role but it also represents one of the most expensive equipment present on the typical workbench. In order to make electronic design more accessible to students and hobbyists, an affordable data acquisition system was imagined. The paper extensively presents the development and testing of a low cost, medium speed, data acquisition system which can be used in a wide range of electronic measurement and debugging applications, assuring also great portability due to the small physical dimensions. Each hardware functional block and is thoroughly described, highlighting the challenges that occurred as well as the solutions to overcome them. The entire system was successfully manufactured using high quality components to assure increased reliability, and high frequency PCB materials and techniques were preferred. The measured values determined based on test signals were compared to the ones obtained using a digital oscilloscope available on the market and differences less than 1% were observed.

  13. The Automated Array Assembly Task of the Low-cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Grenon, L.; Pastirik, E. M.; Pryor, R. A.; Sparks, T. G.

    1978-01-01

    An advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner is discussed. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are given. A detailed cost analysis was performed to indicate future areas of fruitful cost reduction effort. Recommendations for advanced investigations are included.

  14. A manufacturing database of advanced materials used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Bao, Han P.

    1994-01-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  15. A manufacturing database of advanced materials used in spacecraft structures

    NASA Astrophysics Data System (ADS)

    Bao, Han P.

    1994-12-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  16. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saifee, T.; Konnerth, A. III

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction.more » The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.« less

  17. State-of-the-art low-cost solar reflector materials

    NASA Astrophysics Data System (ADS)

    Kennedy, C.; Jorgensen, G.

    1994-11-01

    Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.

  18. Space system production cost benefits from contemporary philosophies in management and manufacturing

    NASA Technical Reports Server (NTRS)

    Rosmait, Russell L.

    1991-01-01

    The cost of manufacturing space system hardware has always been expensive. The Engineering Cost Group of the Program Planning office at Marshall is attempting to account for cost savings that result from new technologies in manufacturing and management. The objective is to identify and define contemporary philosophies in manufacturing and management. The seven broad categories that make up the areas where technological advances can assist in reducing space system costs are illustrated. Included within these broad categories is a list of the processes or techniques that specifically provide the cost savings within todays design, test, production and operations environments. The processes and techniques listed achieve savings in the following manner: increased productivity; reduced down time; reduced scrap; reduced rework; reduced man hours; and reduced material costs. In addition, it should be noted that cost savings from production and processing improvements effect 20 to 40 pct. of production costs whereas savings from management improvements effects 60 to 80 of production cost. This is important because most efforts in reducing costs are spent trying to reduce cost in the production.

  19. Solar Photovoltaic Manufacturing Cost Analysis | Energy Analysis | NREL

    Science.gov Websites

    Solar Photovoltaic Manufacturing Cost Analysis Solar Photovoltaic Manufacturing Cost Analysis NREL's photovoltaic (PV) manufacturing cost analysis-part of our broader effort supporting manufacturing manufacturing sector, and is that growth sustainable? NREL's manufacturing cost analysis studies show that: U.S

  20. Current Developments in Cost Accounting/Performance Measuring Systems for Implementing Advanced Manufacturing Technology

    DTIC Science & Technology

    1989-11-01

    incomplete accounting of benefits, few strategic projects will * be adopted. Nanni , et al [21], provide similar discussion regarding a benefit analysis in...management tends to ignore the fact that minimizing costs within departments does not guarantee minimization of overall costs ( Nanni (21]). Sullivan, et...changes in the manufacturing environment. The author also remarks that these cost systems need to be modified or replaced by entirely new systems

  1. Advanced Manufacturing Research | NREL

    Science.gov Websites

    engineering research in advanced manufacturing is focused on the identification and development of advanced materials and advanced processes that drive the impact of new energy technologies. Our world-class strategies, and policy evaluation. We partner with industry to bridge innovation gaps in advanced

  2. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2016-03-17

    JOHNNIE CLARK, BRIAN WEST, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S XLINE SELECTIVE LASER MELTING SYSTEM. CURRENTLY ONE OF THE LARGEST METAL 3D PRINTERS, THE XLINE AT MARSHALL IS BEING USED TO DEVELOP AND CERTIFY NICKEL ALLOY 718 MATERIAL PROPERTIES AND LARGE MANUFACTURING TECH DEMOS FOR THE RS25 ENGINE AND THE COMMERCIAL CREWED VEHICLE PROJECTS.

  3. Work with Us | Advanced Manufacturing Research | NREL

    Science.gov Websites

    advanced manufacturing R&D project through analysis and our world-class facilities. Contact Us Headshot of a man Matthew Ringer Laboratory Program Manager, Advanced Manufacturing Email | 303-275-4469 facilities for your advanced manufacturing R&D projects. License Our Technologies See our technologies

  4. Research Projects | Advanced Manufacturing Research | NREL

    Science.gov Websites

    advanced manufacturing research through these projects. Photo of men working on turbine blades in a dome -shaped building. Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades At its Composites

  5. Mask cost of ownership for advanced lithography

    NASA Astrophysics Data System (ADS)

    Muzio, Edward G.; Seidel, Philip K.

    2000-07-01

    As technology advances, becoming more difficult and more expensive, the cost of ownership (CoO) metric becomes increasingly important in evaluating technical strategies. The International SEMATECH CoC analysis has steadily gained visibility over the past year, as it attempts to level the playing field between technology choices, and create a fair relative comparison. In order to predict mask cots for advanced lithography, mask process flows are modeled using bets-known processing strategies, equipment cost, and yields. Using a newly revised yield mode, and updated mask manufacture flows, representative mask flows can be built. These flows are then used to calculate mask costs for advanced lithography down to the 50 nm node. It is never the goal of this type of work to provide absolute cost estimates for business planning purposes. However, the combination of a quantifiable yield model with a clearly defined set of mask processing flows and a cost model based upon them serves as an excellent starting point for cost driver analysis and process flow discussion.

  6. Manufacturing cost/design trade-studies for flywheel

    NASA Astrophysics Data System (ADS)

    Noton, B. R.

    1982-12-01

    A procedure is described for enabling comparison of different flywheel designs based on both performance ratings, and manufacturing and inspection cost. Development of the methodology requires identification of all the steps in the manufacture and inspection of each design, the cost drivers, and the ground rules. A man-hour summary must also be provided. The approach to determine the recurring and nonrecurring manufacturing man-hours is presented. Cost drivers in composite manufacture are discussed as well as the approach to address cost driver data from industry. Some indications for cost driver data from industry. Some indications for cost reduction are included.

  7. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  8. Compensation of the impact of low-cost manufacturing techniques in the design of E-plane multiport waveguide junctions

    NASA Astrophysics Data System (ADS)

    San-Blas, A. A.; Roca, J. M.; Cogollos, S.; Morro, J. V.; Boria, V. E.; Gimeno, B.

    2016-06-01

    In this work, a full-wave tool for the accurate analysis and design of compensated E-plane multiport junctions is proposed. The implemented tool is capable of evaluating the undesired effects related to the use of low-cost manufacturing techniques, which are mostly due to the introduction of rounded corners in the cross section of the rectangular waveguides of the device. The obtained results show that, although stringent mechanical effects are imposed, it is possible to compensate for the impact of the cited low-cost manufacturing techniques by redesigning the matching elements considered in the original device. Several new designs concerning a great variety of E-plane components (such as right-angled bends, T-junctions and magic-Ts) are presented, and useful design guidelines are provided. The implemented tool, which is mainly based on the boundary integral-resonant mode expansion technique, has been successfully validated by comparing the obtained results to simulated data provided by a commercial software based on the finite element method.

  9. Development of low cost custom hybrid microcircuit technology

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1981-01-01

    Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.

  10. The complexity and cost of vaccine manufacturing - An overview.

    PubMed

    Plotkin, Stanley; Robinson, James M; Cunningham, Gerard; Iqbal, Robyn; Larsen, Shannon

    2017-07-24

    As companies, countries, and governments consider investments in vaccine production for routine immunization and outbreak response, understanding the complexity and cost drivers associated with vaccine production will help to inform business decisions. Leading multinational corporations have good understanding of the complex manufacturing processes, high technological and R&D barriers to entry, and the costs associated with vaccine production. However, decision makers in developing countries, donors and investors may not be aware of the factors that continue to limit the number of new manufacturers and have caused attrition and consolidation among existing manufacturers. This paper describes the processes and cost drivers in acquiring and maintaining licensure of childhood vaccines. In addition, when export is the goal, we describe the requirements to supply those vaccines at affordable prices to low-resource markets, including the process of World Health Organization (WHO) prequalification and supporting policy recommendation. By providing a generalized and consolidated view of these requirements we seek to build awareness in the global community of the benefits and costs associated with vaccine manufacturing and the challenges associated with maintaining consistent supply. We show that while vaccine manufacture may prima facie seem an economic growth opportunity, the complexity and high fixed costs of vaccine manufacturing limit potential profit. Further, for most lower and middle income countries a large majority of the equipment, personnel and consumables will need to be imported for years, further limiting benefits to the local economy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  12. Advanced manufacturing: Technology and international competitiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforcemore » requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.« less

  13. Cost Accounting in the Automated Manufacturing Environment

    DTIC Science & Technology

    1988-06-01

    1 NAVAL POSTGRADUATE SCHOOL M terey, California 0 DTIC II ELECTE R AD%$° NO 0,19880 -- THESIS COST ACCOUNTING IN THE AUTOMATED MANUFACTURING...PROJECT TASK WORK UNIT ELEMENT NO. NO NO ACCESSION NO 11. TITLE (Include Security Classification) E COST ACCOUNTING IN THE AUTOMATED MANUFACTURING...GROUP ’" Cost Accounting ; Product Costing ; Automated Manufacturing; CAD/CAM- CIM 19 ABSTRACT (Continue on reverse if necessary and identify by blo

  14. Fabrication of Low Cost Surface Acoustic Wave Sensors Using Direct Printing by Aerosol Inkjet

    DOE PAGES

    Morales-Rodriguez, Marissa E.; Joshi, Pooran C.; Humphries, James R.; ...

    2018-04-09

    Advancements in additive manufacturing techniques, printed electronics, and nanomaterials have made it possible for the cost-effective fabrication of sensors and systems. Low-cost sensors for continuous and real time monitoring of physical and chemical parameters will directly impact the energy-efficiency, safety, and manufacturing challenges of diverse technology sectors. In this paper, we present the design, printing, and characterization of a two-port surface acoustic wave (SAW) integrated on LiNbO 3 substrate. The aerosol jet printer was used for direct-writing of interdigitated transducers for SAW devices with center frequency in the range of 40-87 MHz. In conclusion, the linear response of a temperaturemore » sensor based on the SAW design shows promise for direct-writing of environmental sensors on low-temperature substrates.« less

  15. Fabrication of Low Cost Surface Acoustic Wave Sensors Using Direct Printing by Aerosol Inkjet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales-Rodriguez, Marissa E.; Joshi, Pooran C.; Humphries, James R.

    Advancements in additive manufacturing techniques, printed electronics, and nanomaterials have made it possible for the cost-effective fabrication of sensors and systems. Low-cost sensors for continuous and real time monitoring of physical and chemical parameters will directly impact the energy-efficiency, safety, and manufacturing challenges of diverse technology sectors. In this paper, we present the design, printing, and characterization of a two-port surface acoustic wave (SAW) integrated on LiNbO 3 substrate. The aerosol jet printer was used for direct-writing of interdigitated transducers for SAW devices with center frequency in the range of 40-87 MHz. In conclusion, the linear response of a temperaturemore » sensor based on the SAW design shows promise for direct-writing of environmental sensors on low-temperature substrates.« less

  16. The Institute for Advanced Composites Manufacturing Innovation | Wind |

    Science.gov Websites

    NREL The Institute for Advanced Composites Manufacturing Innovation The Institute for Advanced Composites Manufacturing Innovation Building on its 30-year history of collaboration with major wind turbine of the Institute for Advanced Composites Manufacturing Innovation (IACMI). Photo of a crowd of people

  17. Cost analysis of composite fan blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Stelson, T. S.; Barth, C. F.

    1980-01-01

    The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  18. Low Cost and Energy Efficient Methods for the Manufacture of Semi-Solid (SSM) Feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diran Apelian; Qingyue Pan; Makhlouf Makhlouf

    2005-11-07

    The SSM Consortium (now ACRC) at WPI has been carrying out fundamental, pre-competitive research in SSM for several years. Current and past research (at WPI) has generated many results of fundamental and applied nature, which are available to the SSM community. These include materials characterization, yield stress effects, alloy development, rheological properties, process modeling/simulation, semi-solid slurry formation, etc. Alternative method to produce SSM slurries at lower processing costs and with reduced energy consumption is a critical need. The production of low cost SSM feedstock will certainly lead to a dramatic increase in the tonnage of castings produced by SSM, andmore » will provide end users such as the transportation industry, with lighter, cheaper and high performance materials. In this program, the research team has addressed three critical issues in semi-solid processing. They are: (1) Development of low cost, reliable slurry-on-demand approaches for semi-solid processing; (2) Application of the novel permanent grain refining technology-SiBloy for the manufacture of high-quality SSM feedstock, and (3) Development of computational and modeling tools for semi-solid processing to enhance SSM process control. Salient results from these studies are summarized and detailed in our final technical report.« less

  19. Spacesuit glove manufacturing enhancements through the use of advanced technologies

    NASA Astrophysics Data System (ADS)

    Cadogan, David; Bradley, David; Kosmo, Joseph

    The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.

  20. Process and assembly plans for low cost commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, Stephen; Starkey, Val

    1991-01-01

    Cost and weight reduction for a composite structure is a result of selecting design concepts that can be built using efficient low cost manufacturing and assembly processes. Since design and manufacturing are inherently cost dependent, concurrent engineering in the form of a Design-Build Team (DBT) is essential for low cost designs. Detailed cost analysis from DBT designs and hardware verification must be performed to identify the cost drivers and relationships between design and manufacturing processes. Results from the global evaluation are used to quantitatively rank design, identify cost centers for higher ranking design concepts, define and prioritize a list of technical/economic issues and barriers, and identify parameters that control concept response. These results are then used for final design optimization.

  1. 77 FR 26509 - Request for Information on Proposed New Program: National Network for Manufacturing Innovation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ...): Refining standards, materials, and equipment for additive manufacturing to enable low- cost, low-volume...-01] Request for Information on Proposed New Program: National Network for Manufacturing Innovation...: Request for information. SUMMARY: The NIST-hosted Advanced Manufacturing National Program Office (AMNPO...

  2. Road to Grid Parity through Deployment of Low-Cost 21.5% N-Type Si Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velundur, Vijay

    This project seeks to develop and deploy differentiated 21.5% efficient n-type Si solar cells while reaching the SunShot module cost goal of ≤ $0.50/W. This objective hinges on development of enabling low cost technologies that simplify the manufacturing process and reduce overall processing costs. These comprise of (1) Boron emitter formation and passivation; (2) Simplified processing process for emitter and BSF layers; and (3) Advanced metallization for the front and back contacts.

  3. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2016-03-17

    KEN COOPER, TEAM LEAD OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH NICKEL ALLOY 718 PARTS FABRICATED USING THE M1 SELECTIVE LASER MELTING SYSTEM. THE M1 MACHINE IS DEDICATED TO BUILDING QUALIFICATION SAMPLES AND HARDWARE DEMONSTRATORS FOR THE RS25 ENGINE PROJECT.

  4. Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Conghua

    Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate coating technology without using anymore » precious metal. The technology must meet the performance and cost requirements for automobile applications.« less

  5. Advance Manufacturing Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  6. Overview of ARPA low-cost ceramic composites (LC{sup 3}) program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, P.N.

    1996-12-31

    Grumman is currently leading an approximate $10M ARPA cost-shared program aimed at developing low-cost fabrication methodology for manufacturing ceramic matrix composite (CMC) structural components. One of the program goals is to demonstrate the effectiveness of an advanced materials partnership. A vertically integrated collaboration now exists that combines the talents of three large private sector organizations, two smaller private sector organizations, three universities, and three federal government laboratories. Work in progress involves preceramic polymer (Blackglas{trademark}) CMC materials technology, RTM and pyrolysis process modeling & simulation, and utilization of low-cost approaches for fabricating a CMC demonstration engine seal component. This paper reviewsmore » the program organization, functioning, and some of the highlights of the technical work, which is of interest to the DoD as well as the commercial sector.« less

  7. Manufacturing cost/design system: A CAD/CAM dialogue

    NASA Technical Reports Server (NTRS)

    Loshigian, H. H.; Rachowitz, B. I.; Judson, D.

    1980-01-01

    The development of the Manufacturing Cost/Design System (MC/DS) will provide the aerospace design engineer a tool with which to perform heretofore impractical design manufacturing cost tradeoffs. The Air Force Integrated Computer Aided Manufacturing (ICAM) Office has initiated the development and demonstration of an MC/DS which, when fully implemented, will integrate both design and manufacturing data bases to provide real time visibility into the manufacturing costs associated with various design options. The first release of a computerized system will be made before the end of 1981.

  8. Methodology for Estimating Total Automotive Manufacturing Costs

    DOT National Transportation Integrated Search

    1983-04-01

    A number of methodologies for estimating manufacturing costs have been developed. This report discusses the different approaches and shows that an approach to estimating manufacturing costs in the automobile industry based on surrogate plants is pref...

  9. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles.

    PubMed

    Shou, Wan; Mahajan, Bikram K; Ludwig, Brandon; Yu, Xiaowei; Staggs, Joshua; Huang, Xian; Pan, Heng

    2017-07-01

    Currently, bioresorbable electronic devices are predominantly fabricated by complex and expensive vacuum-based integrated circuit (IC) processes. Here, a low-cost manufacturing approach for bioresorbable conductors on bioresorbable polymer substrates by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticle is reported. Laser sintering of Zn nanoparticles has been technically difficult due to the surface oxide on nanoparticles. To circumvent the surface oxide, a novel approach is discovered to print and sinter Zn nanoparticle facilitated by evaporation-condensation in confined domains. The printing process can be performed on low-temperature substrates in ambient environment allowing easy integration on a roll-to-roll platform for economical manufacturing of bioresorbable electronics. The fabricated Zn conductors show excellent electrical conductivity (≈1.124 × 10 6 S m -1 ), mechanical durability, and water dissolvability. Successful demonstration of strain gauges confirms the potential application in various environmentally friendly sensors and circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. LCX: Proposal for a low-cost commercial transport

    NASA Technical Reports Server (NTRS)

    Hartman, Troy; Hayatdavoudi, Maziar; Hettinga, Joel; Hooper, Matt; Nguyen, Phong

    1994-01-01

    The LCX has been developed in response to a request for proposal for an aircraft with 153 passenger capacity and a range of 3000 nautical miles. The goals of the LCX are to provide an aircraft which will achieve the stated mission requirements at the lowest cost possible, both for the manufacturer and the operator. Low cost in this request is defined as short and long term profitability. To achieve this objective, modern technologies attributing to low-cost operation without greatly increasing the cost of manufacturing were employed. These technologies include hybrid laminar flow control and the use of developing new manufacturing processes and philosophies. The LCX will provide a competitive alternative to the use of the Airbus A319/320/321 and the Boeing 737 series of aircraft. The LCX has a maximum weight of 150,000 lb. carried by a wing of 1140 ft(exp 2) and an aspect ratio of 10. The selling price of the LCX is 31 million in 1994 US dollars.

  11. Advances in High Temperature Materials for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  12. High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware

    NASA Technical Reports Server (NTRS)

    Gardner, John M.; Stelter, Christopher J.; Yashin, Edward A.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing (or 3D printing) via Fused Filament Fabrication (FFF), also known as Fused Deposition Modeling (FDM), is a process where material is placed in specific locations layer-by-layer to create a complete part. Printers designed for FFF build parts by extruding a thermoplastic filament from a nozzle in a predetermined path. Originally developed for commercial printers, 3D printing via FFF has become accessible to a much larger community of users since the introduction of Reprap printers. These low-cost, desktop machines are typically used to print prototype parts or novelty items. As the adoption of desktop sized 3D printers broadens, there is increased demand for these machines to produce functional parts that can withstand harsher conditions such as high temperature and mechanical loads. Materials meeting these requirements tend to possess better mechanical properties and higher glass transition temperatures (Tg), thus requiring printers with high temperature printing capability. This report outlines the problems and solutions, and includes a detailed description of the machine design, printing parameters, and processes specific to high temperature thermoplastic 3D printing.

  13. Low Life Cycle Cost Paratransit Vehicle Design Study

    DOT National Transportation Integrated Search

    1978-08-01

    A preliminary design and cost study was performed for a low life cycle cost paratransit vehicle. The manufacturing technique and cost analysis were based on limited production of 5000 units per year for a ten year period. The vehicle configuration re...

  14. Role of RIS/APC for manufacturing RFG/LSD. [Refinery Information Systems/Advanced Process Control, ReFormulated Gasoline/Low Sulfur Diesels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latour, P.R.

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer-integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions: performance measurement, optimization, scheduling, control and integration are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  15. Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications

    NASA Astrophysics Data System (ADS)

    Sunkoju, Sravan Kumar

    Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent

  16. Great Expectations in the Joint Advanced Manufacturing Region

    DTIC Science & Technology

    2016-12-01

    would be continuous experimentation and risk reduction prototyping. The entire manufacturing life cycle— design , testing, product development...on the back of a napkin, they decided to call their effort the Joint Advanced Manufacturing Region (JAMR) and manage it as an Integrated Product ... designed to support the continuous experimentation of advanced manufacturing tactics, tech- niques and procedures under actual operational or combat

  17. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less

  18. Low-cost fluorescence microscopy for point-of-care cell imaging

    NASA Astrophysics Data System (ADS)

    Lochhead, Michael J.; Ives, Jeff; Givens, Monique; Delaney, Marie; Moll, Kevin; Myatt, Christopher J.

    2010-02-01

    Fluorescence microscopy has long been a standard tool in laboratory medicine. Implementation of fluorescence microscopy for near-patient diagnostics, however, has been limited due to cost and complexity associated with traditional fluorescence microscopy techniques. There is a particular need for robust, low-cost imaging in high disease burden areas in the developing world, where access to central laboratory facilities and trained staff is limited. Here we describe a point-of-care assay that combines a disposable plastic cartridge with an extremely low cost fluorescence imaging instrument. Based on a novel, multi-mode planar waveguide configuration, the system capitalizes on advances in volume-manufactured consumer electronic components to deliver an imaging system with minimal moving parts and low power requirements. A two-color cell imager is presented, with magnification optimized for enumeration of immunostained human T cells. To demonstrate the system, peripheral blood mononuclear cells were stained with fluorescently labeled anti-human-CD4 and anti-human-CD3 antibodies. Registered images were used to generate fractional CD4+ and CD3+ staining and enumeration results that show excellent correlation with flow cytometry. The cell imager is under development as a very low cost CD4+ T cell counter for HIV disease management in limited resource settings.

  19. INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pack, Seongchan; Wilson, Daniel; Aitharaju, Venkat

    Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide variousmore » scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper« less

  20. Application of a design-build-team approach to low cost and weight composite fuselage structure

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Walker, T. H.; Willden, K. S.; Swanson, G. D.; Truslove, G.; Metschan, S. L.; Pfahl, C. L.

    1991-01-01

    Relationships between manufacturing costs and design details must be understood to promote the application of advanced composite technologies to transport fuselage structures. A team approach, integrating the disciplines responsible for aircraft structural design and manufacturing, was developed to perform cost and weight trade studies for a twenty-foot diameter aft fuselage section. Baseline composite design and manufacturing concepts were selected for large quadrant panels in crown, side, and keel areas of the fuselage section. The associated technical issues were also identified. Detailed evaluation of crown panels indicated the potential for large weight savings and costs competitive with aluminum technology in the 1995 timeframe. Different processes and material forms were selected for the various elements that comprise the fuselage structure. Additional cost and weight savings potential was estimated for future advancements.

  1. Evaluation of Advanced Polymers for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Carter, William G.; Kutchko, Cindy

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. (PPG) was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition, and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficientmore » mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and inherently low-cost.« less

  2. Development of an advanced uncooled 10-Gb DFB laser for volume manufacture

    NASA Astrophysics Data System (ADS)

    Burns, Gordon; Charles, Paul M.

    2003-03-01

    Optical communication systems operating at 10Gbit/s such as 10Gigabit Ethernet are becoming more and more important in Local Area Networks (LAN) and Metropolitan Area Networks (MAN). This market requires optical transceivers of low cost, size and power consumption. This drives a need for uncooled DFB lasers directly modulated at 10Gbit/s. This paper describes the development of a state of the art uncooled high speed DFB laser which is capable of being manufactured in high volume at the low cost demanded by the GbE market. A DFB laser was designed by developing technological building blocks within the 'conventional" InGaAsP materials system, using existing well proven manufacturing processes modules wherever possible, limiting the design risk to a few key areas where innovation was required. The temperature and speed performance of the InGaAsP SMQW active layer system was carefully optimized and then coupled with a low parasitic lateral confinement system. Using concurrent engineering, new processes were demonstrated to have acceptable process capability within a manufacturing fabrication environment, proving their ability to support high volume manufacturing requirements. The DFB laser fabricated was shown to operate at 100C chip temperature with an open eye at 10Gbit/s operation (with an extinction ratio >5dB). Up to 90C operation this DFB shows threshold current as low as 29mA, optical power as high as 13mW and it meets the 10Gb scaled Ethernet mask with extinction ratio >6dB. It was found that the high temperature dynamic behavior of these lasers could not be fully predicted from static test data. A production test strategy was therefore followed where equipment was designed to fully test devices/subassemblies at 100C and up to 20Gbit/s at key points in the product build. This facilitated the rapid optimisation of product yields upon manufacturing ramp up and minimization of product costs. This state of the art laser is now transferred into volume manufacture.

  3. Advanced Manufacturing Training: Mobile Learning Labs

    ERIC Educational Resources Information Center

    Vukich, John C.; Ackerman, Amanda A.

    2010-01-01

    Across Colorado, manufacturing employers forecast an on-going need not only for workers who are interested in career opportunities but who are prepared to enter the advanced manufacturing industry with the necessary high-tech skills. Additionally, employers report concerns about replacing retiring workers that take with them decades of…

  4. Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials

    NASA Technical Reports Server (NTRS)

    Hill, Charles S.

    2012-01-01

    The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.

  5. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs: Cost Assessment of Manufacturing/Design Concepts

    NASA Technical Reports Server (NTRS)

    Metschan, S.

    2000-01-01

    The objective of the Integral Airframe Structures (IAS) program was to demonstrate, for an integrally stiffened structural concept, performance and weight equal to "built-up" structure with lower manufacturing cost. This report presents results of the cost assessment for several design configuration/manufacturing method combinations. The attributes of various cost analysis models were evaluated and COSTRAN selected for this study. A process/design cost evaluation matrix was developed based on material, forming, machining, and assembly of structural sub-elements and assembled structure. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current built-up technology baseline. This would correspond to a total cost reduction of $1.7 million per ship set for a 777-sized airplane. However, there are important outstanding issues with regard to the cost of capacity of high technology machinery, and the ability to cost-effectively provide surface finish acceptable to the commercial aircraft industry. The projected high raw material cost of large extrusions also played an important role in the trade-off between plate and extruded concepts.

  6. Manufacturing Cost Levelization Model – A User’s Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Shehabi, Arman; Smith, Sarah Josephine

    The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modulesmore » that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on

  7. Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective.

    PubMed

    Thomas, Douglas

    2016-07-01

    There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective. The paper then goes on to propose an approach for examining and understanding the societal costs and benefits of this technology both from a monetary viewpoint and a resource consumption viewpoint. The final section discusses the trends in the adoption of additive manufacturing. Globally, there is an estimated $667 million in value added produced using additive manufacturing, which equates to 0.01 % of total global manufacturing value added. US value added is estimated as $241 million. Current research on additive manufacturing costs reveals that it is cost effective for manufacturing small batches with continued centralized production; however, with increased automation distributed production may become cost effective. Due to the complexities of measuring additive manufacturing costs and data limitations, current studies are limited in their scope. Many of the current studies examine the production of single parts and those that examine assemblies tend not to examine supply chain effects such as inventory and transportation costs along with decreased risk to supply disruption. The additive manufacturing system and the material costs constitute a significant portion of an additive manufactured product; however, these costs are declining over time. The current trends in costs and benefits have resulted in this technology representing 0.02 % of the relevant manufacturing industries in the US; however, as the costs of additive manufacturing systems decrease, this technology may become widely adopted and change the

  8. Low-cost satellite mechanical design and construction

    NASA Astrophysics Data System (ADS)

    Boisjolie-Gair, Nathaniel; Straub, Jeremy

    2017-05-01

    This paper presents a discussion of techniques for low-cost design and construction of a CubeSat mechanical structure that can serve as a basis for academic programs and a starting point for government, military and commercial large-scale sensing networks, where the cost of each node must be minimized to facilitate system affordability and lower the cost and associated risk of losing any node. Spacecraft Design plays a large role in manufacturability. An intentionally simplified mechanical design is presented which reduces machining costs, as compared to more intricate designs that were considered. Several fabrication approaches are evaluated relative to the low-cost goal.

  9. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices

    NASA Astrophysics Data System (ADS)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.

    2015-05-01

    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  10. Industrializing Autologous Adoptive Immunotherapies: Manufacturing Advances and Challenges

    PubMed Central

    Iyer, Rohin K.; Bowles, Paul A.; Kim, Howard; Dulgar-Tulloch, Aaron

    2018-01-01

    Cell therapy has proven to be a burgeoning field of investigation, evidenced by hundreds of clinical trials being conducted worldwide across a variety of cell types and indications. Many cell therapies have been shown to be efficacious in humans, such as modified T-cells and natural killer (NK) cells. Adoptive immunotherapy has shown the most promise in recent years, with particular emphasis on autologous cell sources. Chimeric Antigen Receptor (CAR)-based T-cell therapy targeting CD19-expressing B-cell leukemias has shown remarkable efficacy and reproducibility in numerous clinical trials. Recent marketing approval of Novartis' Kymriah™ (tisagenlecleucel) and Gilead/Kite's Yescarta™ (axicabtagene ciloleucel) by the FDA further underscores both the promise and legwork to be done if manufacturing processes are to become widely accessible. Further work is needed to standardize, automate, close, and scale production to bring down costs and democratize these and other cell therapies. Given the multiple processing steps involved, commercial-scale manufacturing of these therapies necessitates tighter control over process parameters. This focused review highlights some of the most recent advances used in the manufacturing of therapeutic immune cells, with a focus on T-cells. We summarize key unit operations and pain points around current manufacturing solutions. We also review emerging technologies, approaches and reagents used in cell isolation, activation, transduction, expansion, in-process analytics, harvest, cryopreservation and thaw, and conclude with a forward-look at future directions in the manufacture of adoptive immunotherapies.

  11. Industrializing Autologous Adoptive Immunotherapies: Manufacturing Advances and Challenges.

    PubMed

    Iyer, Rohin K; Bowles, Paul A; Kim, Howard; Dulgar-Tulloch, Aaron

    2018-01-01

    Cell therapy has proven to be a burgeoning field of investigation, evidenced by hundreds of clinical trials being conducted worldwide across a variety of cell types and indications. Many cell therapies have been shown to be efficacious in humans, such as modified T-cells and natural killer (NK) cells. Adoptive immunotherapy has shown the most promise in recent years, with particular emphasis on autologous cell sources. Chimeric Antigen Receptor (CAR)-based T-cell therapy targeting CD19-expressing B-cell leukemias has shown remarkable efficacy and reproducibility in numerous clinical trials. Recent marketing approval of Novartis' Kymriah™ (tisagenlecleucel) and Gilead/Kite's Yescarta™ (axicabtagene ciloleucel) by the FDA further underscores both the promise and legwork to be done if manufacturing processes are to become widely accessible. Further work is needed to standardize, automate, close, and scale production to bring down costs and democratize these and other cell therapies. Given the multiple processing steps involved, commercial-scale manufacturing of these therapies necessitates tighter control over process parameters. This focused review highlights some of the most recent advances used in the manufacturing of therapeutic immune cells, with a focus on T-cells. We summarize key unit operations and pain points around current manufacturing solutions. We also review emerging technologies, approaches and reagents used in cell isolation, activation, transduction, expansion, in-process analytics, harvest, cryopreservation and thaw, and conclude with a forward-look at future directions in the manufacture of adoptive immunotherapies.

  12. Development of hybrid lifecycle cost estimating tool (HLCET) for manufacturing influenced design tradeoff

    NASA Astrophysics Data System (ADS)

    Sirirojvisuth, Apinut

    In complex aerospace system design, making an effective design decision requires multidisciplinary knowledge from both product and process perspectives. Integrating manufacturing considerations into the design process is most valuable during the early design stages since designers have more freedom to integrate new ideas when changes are relatively inexpensive in terms of time and effort. Several metrics related to manufacturability are cost, time, and manufacturing readiness level (MRL). Yet, there is a lack of structured methodology that quantifies how changes in the design decisions impact these metrics. As a result, a new set of integrated cost analysis tools are proposed in this study to quantify the impacts. Equally important is the capability to integrate this new cost tool into the existing design methodologies without sacrificing agility and flexibility required during the early design phases. To demonstrate the applicability of this concept, a ModelCenter environment is used to develop software architecture that represents Integrated Product and Process Development (IPPD) methodology used in several aerospace systems designs. The environment seamlessly integrates product and process analysis tools and makes effective transition from one design phase to the other while retaining knowledge gained a priori. Then, an advanced cost estimating tool called Hybrid Lifecycle Cost Estimating Tool (HLCET), a hybrid combination of weight-, process-, and activity-based estimating techniques, is integrated with the design framework. A new weight-based lifecycle cost model is created based on Tailored Cost Model (TCM) equations [3]. This lifecycle cost tool estimates the program cost based on vehicle component weights and programmatic assumptions. Additional high fidelity cost tools like process-based and activity-based cost analysis methods can be used to modify the baseline TCM result as more knowledge is accumulated over design iterations. Therefore, with this

  13. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  14. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  15. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  16. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  17. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  18. Advanced Material Strategies for Next-Generation Additive Manufacturing

    PubMed Central

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  19. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    PubMed

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  20. Pollution prevention and the use of low-VOC/HAP coatings at wood furniture manufacturing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, A.M.; Spaight, J.L.; Jones, J.W.

    1999-07-01

    Midwest Research Institute, under a cooperative agreement with the Air Pollution Prevention and Control Division of the U.S. Environmental Protection Agency's (EPA's) National Risk Management Research Laboratory, is conducting a study to identify wood furniture and cabinet manufacturing facilities that have converted to low-volatile organic compound/hazardous air pollutant (VOC/HAP) coatings and to develop case studies for those facilities. The case studies include: (1) a discussion of the types of products each facility manufactures; (2) the types of low-VOC/HAP coatings each facility is using; (3) problems encountered in converting to low-VOC/HAP coatings; (4) equipment changes that were required; (5) the costsmore » associated with the conversion process, including capital costs associated with equipment purchases, research and development costs, and operating costs such as operator training in new application techniques; (6) advantages/disadvantages of the low-VOC/HAP coatings; and (7) customer feedback on products finished with the low-VOC/HAP coatings. The primary goals of the project are (1) to demonstrate that low-VOC/HAP coatings can be used successfully by many wood furniture manufacturing facilities, and (2) to assist other wood furniture manufacturing facilities in their conversion to low-VOC/HAP coatings, in particular facilities that do not have the resources to devote to extensive coatings research. This paper discusses the progress of the project and pollution prevention options at wood furniture manufacturing facilities and the regulatory requirements (e.g., the National Emissions Standards for Hazardous Air Pollutants [NESHAP] for Wood Furniture Manufacturing Operations) that these facilities face.« less

  1. Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective

    PubMed Central

    Thomas, Douglas

    2017-01-01

    There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective. The paper then goes on to propose an approach for examining and understanding the societal costs and benefits of this technology both from a monetary viewpoint and a resource consumption viewpoint. The final section discusses the trends in the adoption of additive manufacturing. Globally, there is an estimated $667 million in value added produced using additive manufacturing, which equates to 0.01 % of total global manufacturing value added. US value added is estimated as $241 million. Current research on additive manufacturing costs reveals that it is cost effective for manufacturing small batches with continued centralized production; however, with increased automation distributed production may become cost effective. Due to the complexities of measuring additive manufacturing costs and data limitations, current studies are limited in their scope. Many of the current studies examine the production of single parts and those that examine assemblies tend not to examine supply chain effects such as inventory and transportation costs along with decreased risk to supply disruption. The additive manufacturing system and the material costs constitute a significant portion of an additive manufactured product; however, these costs are declining over time. The current trends in costs and benefits have resulted in this technology representing 0.02 % of the relevant manufacturing industries in the US; however, as the costs of additive manufacturing systems decrease, this technology may become widely adopted and change the

  2. Space Manufacturing: The Next Great Challenge

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Curreri, Peter; Sharpe, Jonathan B.; Colberg, Wendell R.; Vickers, John H.

    1998-01-01

    Space manufacturing encompasses the research, development and manufacture necessary for the production of any product to be used in near zero gravity, and the production of spacecraft required for transporting research or production devices to space. Manufacturing for space, and manufacturing in space will require significant breakthroughs in materials and manufacturing technology, as well as in equipment designs. This report reviews some of the current initiatives in achieving space manufacturing. The first initiative deals with materials processing in space, e.g., processing non-terrestrial and terrestrial materials, especially metals. Some of the ramifications of the United States Microgravity Payloads fourth (USMP-4) mission are discussed. Some problems in non-terrestrial materials processing are mentioned. The second initiative is structures processing in space. In order to accomplish this, the International Space Welding Experiment was designed to demonstrate welding technology in near-zero gravity. The third initiative is advancements in earth-based manufacturing technologies necessary to achieve low cost access to space. The advancements discussed include development of lightweight material having high specific strength, and automated fabrication and manufacturing methods for these materials.

  3. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  4. Recent advances in photonics packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2006-02-01

    There are now over a dozen low-CTE materials with thermal conductivities between that of copper (400 w/m-K) and over 4X copper (1700 W/m-K). Most have low densities. For comparison, traditional low-CTE packaging materials like copper/tungsten have thermal conductivities that are little or no better than that of aluminum (200 W/m-K) and high densities. There are also low-density thermal insulators with low CTEs. Some advanced materials are low cost. Most do not outgas. They have a wide range of electrical properties that can be used to minimize electromagnetic emissions or provide EMI shielding. Several are now in commercial and aerospace applications, including laser diode packages; light-emitting diode (LED) packages; thermoelectric cooler bases, plasma displays; power modules; servers; laptops; heat sinks; thermally conductive, low-CTE printed circuit boards; and printed circuit board cold plates. Advanced material payoffs include: improved thermal performance, reliability, alignment and manufacturing yield; reduced thermal stresses and heating power requirements; simplified thermal design; enablement of hard solder direct attach; weight savings up to 85%; size reductions up to 65%; and lower cost. This paper discusses the large and increasing number of advanced packaging materials, including properties, development status, applications, increasing manufacturing yield, cost, lessons learned and future directions, including nanocomposites.

  5. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.

  6. The development of advanced manufacturing systems

    NASA Astrophysics Data System (ADS)

    Doumeingts, Guy; Vallespir, Bruno; Darricau, Didier; Roboam, Michel

    Various methods for the design of advanced manufacturing systems (AMSs) are reviewed. The specifications for AMSs and problems inherent in their development are first discussed. Three models, the Computer Aided Manufacturing-International model, the National Bureau of Standards model, and the GRAI model, are considered in detail. Hierarchical modeling tools such as structured analysis and design techniques, Petri nets, and the Icam definition method are used in the development of integrated manufacturing models. Finally, the GRAI method is demonstrated in the design of specifications for the production management system of the Snecma AMS.

  7. Low cost carbon fiber technology development for carbon fiber composite applications.

    DOT National Transportation Integrated Search

    2012-04-01

    The objective of this project was to further develop low cost carbon fiber for a variety of potential applications. Manufacturing feasi-bility of low cost carbon fibers/composites has been demonstrated. A number of technologies that are currently usi...

  8. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    NASA Technical Reports Server (NTRS)

    Ivanco, Marie L.; Domack, Marcia S.; Stoner, Mary Cecilia; Hehir, Austin R.

    2016-01-01

    Low Technology Readiness Levels (TRLs) and high levels of uncertainty make it challenging to develop cost estimates of new technologies in the R&D phase. It is however essential for NASA to understand the costs and benefits associated with novel concepts, in order to prioritize research investments and evaluate the potential for technology transfer and commercialization. This paper proposes a framework to perform a cost-benefit analysis of a technology in the R&D phase. This framework was developed and used to assess the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. Following the definition of a case study for a cryogenic tank cylinder of specified geometry, data was gathered through interviews with Subject Matter Experts (SMEs), with particular focus placed on production costs and process complexity. This data served as the basis to produce process flowcharts and timelines, mass estimates, and rough order-of-magnitude cost and schedule estimates. The scalability of the results was subsequently investigated to understand the variability of the results based on tank size. Lastly, once costs and benefits were identified, the Analytic Hierarchy Process (AHP) was used to assess the relative value of these achieved benefits for potential stakeholders. These preliminary, rough order-of-magnitude results predict a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Compared to the composite manufacturing technique, these results predict cost savings of 35 to 58 percent; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels

  9. Low-cost production of solar-cell panels

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Gallagher, B. D.; Sanchez, L. E.

    1980-01-01

    Large-scale production model combines most modern manufacturing techniques to produce silicon-solar-cell panels of low costs by 1982. Model proposes facility capable of operating around the clock with annual production capacity of 20 W of solar cell panels.

  10. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operationsmore » to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation

  11. Advanced Manufacturing Office Clean Water Processing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)’s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.

  12. Low cost composite manufacturing utilizing intelligent pultrusion and resin transfer molding (IPRTM)

    NASA Astrophysics Data System (ADS)

    Bradley, James E.; Wysocki, Tadeusz S., Jr.

    1993-02-01

    This article describes an innovative method for the economical manufacturing of large, intricately-shaped tubular composite parts. Proprietary intelligent process control techniques are combined with standard pultrusion and RTM methodologies to provide high part throughput, performance, and quality while substantially reducing scrap, rework costs, and labor requirements. On-line process monitoring and control is achieved through a smart tooling interface consisting of modular zone tiles installed on part-specific die assemblies. Real-time archiving of process run parameters provides enhanced SPC and SQC capabilities.

  13. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  14. Using Multi-Robot Systems for Engineering Education: Teaching and Outreach with Large Numbers of an Advanced, Low-Cost Robot

    ERIC Educational Resources Information Center

    McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.

    2013-01-01

    This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…

  15. Emerging low-cost LED thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl H.

    2004-10-01

    As chip size and power levels continue to increase, thermal management, thermal stresses and cost have become key LED packaging issues. Until recently, low-coefficient-of-thermal-expansion (CTE) materials, which are needed to minimize thermal stresses, had thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. Copper, which has a higher thermal conductivity (400 W/m-K), also has a high CTE, which can cause severe thermal stresses. We now have over a dozen low-CTE materials with thermal conductivities ranging between 400 and 1700 W/m-K, and almost a score with thermal conductivities at least 50% greater than that of aluminum. Some of these materials are low cost. Others have the potential to be low cost in high volume production. Emphasizing low cost, this paper reviews traditional packaging materials and the six categories of advanced materials: polymer matrix-, metal matrix-, ceramic matrix-, and carbon matrix composites; monolithic carbonaceous materials; and metal-metal composites/alloys. Topics include properties, status, applications, cost and likely future directions of new advanced materials, including carbon nanotubes and inexpensive graphite nanoplatelets.

  16. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made by the Low-Cost Silicon Solar Array Project during the period January through March 1978 is reported. It includes task reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations, and manufacturing techniques, plus the steps taken to integrate these efforts.

  17. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  18. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  19. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  20. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  1. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  2. Advanced manufacturing rules check (MRC) for fully automated assessment of complex reticle designs

    NASA Astrophysics Data System (ADS)

    Gladhill, R.; Aguilar, D.; Buck, P. D.; Dawkins, D.; Nolke, S.; Riddick, J.; Straub, J. A.

    2005-11-01

    Advanced electronic design automation (EDA) tools, with their simulation, modeling, design rule checking, and optical proximity correction capabilities, have facilitated the improvement of first pass wafer yields. While the data produced by these tools may have been processed for optimal wafer manufacturing, it is possible for the same data to be far from ideal for photomask manufacturing, particularly at lithography and inspection stages, resulting in production delays and increased costs. The same EDA tools used to produce the data can be used to detect potential problems for photomask manufacturing in the data. A production implementation of automated photomask manufacturing rule checking (MRC) is presented and discussed for various photomask lithography and inspection lines. This paper will focus on identifying data which may cause production delays at the mask inspection stage. It will be shown how photomask MRC can be used to discover data related problems prior to inspection, separating jobs which are likely to have problems at inspection from those which are not. Photomask MRC can also be used to identify geometries requiring adjustment of inspection parameters for optimal inspection, and to assist with any special handling or change of routing requirements. With this foreknowledge, steps can be taken to avoid production delays that increase manufacturing costs. Finally, the data flow implemented for MRC can be used as a platform for other photomask data preparation tasks.

  3. Case study project: The use of low-VOC/HAP coatings at wood furniture manufacturing facilities. Report for March 1995--March 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, A.M.; Jones, J.W.; Fields, J.L.

    1999-07-01

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted to low-VOC/HAP coatings and to develop case studies for those facilities. The case studies include a discussion of the types of products each facility manufactures; the types of low-VOC/HAP coatings each facility is using; problems encountered in converting to low-VOC/HAP coatings; equipment changes that were required; costs associated with the conversion process, including capital costs associated with equipment purchases, research and developmentmore » costs, and operating costs such as operator training in new application techniques;advantages/ disadvantages of the low-VOC/HAP coatings; and customer feedback on products finished with the low-VOC/HAP coatings. The paper discusses the progress of the study and pollution prevention options at wood furniture manufacturing facilities.« less

  4. Hacking for astronomy: can 3D printers and open-hardware enable low-cost sub-/millimeter instrumentation?

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl

    2014-07-01

    There have been several exciting developments in the technologies commonly used n in the hardware hacking community. Advances in low cost additive-manufacturing processes (i.e. 3D-printers) and the development of openhardware projects, which have produced inexpensive and easily programmable micro-controllers and micro-computers (i.e. Arduino and Raspberry Pi) have opened a new door for individuals seeking to make their own devices. Here we describe the potential for these technologies to reduce costs in construction and development of submillimeter/millimeter astronomical instrumentation. Specifically we have begun a program to measure the optical properties of the custom plastics used in 3D-printers as well as the printer accuracy and resolution to assess the feasibility of directly printing sub- /millimeter transmissive optics. We will also discuss low cost designs for cryogenic temperature measurement and control utilizing Arduino and Raspberry Pi.

  5. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, Katherine; Dalton, Luke; Roemer, Andy

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. Themore » majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.« less

  6. Producing optical (contact) lenses by a novel low cost process

    NASA Astrophysics Data System (ADS)

    Skipper, Richard S.; Spencer, Ian D.

    2005-09-01

    The rapid and impressive growth of China has been achieved on the back of highly labour intensive industries, often in manufacturing, and at the cost of companies and jobs in Europe and America. Approaches that worked well in the 1990's to reduce production costs in the developed countries are no longer effective when confronted with the low labour costs of China and India. We have looked at contact lenses as a product that has become highly available to consumers here but as an industry that has reduced costs by moving to low labour cost countries. The question to be answered was, "Do we have the skill to still make the product in the UK, and can we make it cheap enough to export to China?" if we do not, then contact lens manufacture will move to China sooner or later. The challenge to enter the markets of the BRIC (Brazil, Russia, India and China) countries is extremely exciting as here is the new money, high growth and here is a product that sells to those with disposable incomes. To succeed we knew we had to be radical in our approach; the radical step was very simple: to devise a process in which each step added value to the customer and not cost to the product. The presentation examines the processes used by the major producers and how, by applying good manufacturing practice sound scientific principles to them, the opportunity to design a new low cost patented process was identified.

  7. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  8. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors

    PubMed Central

    Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  9. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  10. Low Cost Upper Stage-Class Propulsion (LCUSP)

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    NASA is making space exploration more affordable and viable by developing and utilizing innovative manufacturing technologies. Technology development efforts at NASA in propulsion are committed to continuous innovation of design and manufacturing technologies for rocket engines in order to reduce the cost of NASA's journey to Mars. The Low Cost Upper Stage-Class Propulsion (LCUSP) effort will develop and utilize emerging Additive Manufacturing (AM) to significantly reduce the development time and cost for complex rocket propulsion hardware. Benefit of Additive Manufacturing (3-D Printing) Current rocket propulsion manufacturing techniques are costly and have lengthy development times. In order to fabricate rocket engines, numerous complex parts made of different materials are assembled in a way that allow the propellant to collect heat at the right places to drive the turbopump and simultaneously keep the thrust chamber from melting. The heat conditioned fuel and oxidizer come together and burn inside the combustion chamber to provide thrust. The efforts to make multiple parts precisely fit together and not leak after experiencing cryogenic temperatures on one-side and combustion temperatures on the other is quite challenging. Additive manufacturing has the potential to significantly reduce the time and cost of making rocket parts like the copper liner and Nickel-alloy jackets found in rocket combustion chambers where super-cold cryogenic propellants are heated and mixed to the extreme temperatures needed to propel rockets in space. The Selective Laser Melting (SLM) machine fuses 8,255 layers of copper powder to make a section of the chamber in 10 days. Machining an equivalent part and assembling it with welding and brazing techniques could take months to accomplish with potential failures or leaks that could require fixes. The design process is also enhanced since it does not require the 3D model to be converted to 2-D drawings. The design and fabrication process

  11. End-user perspective of low-cost sensors for outdoor air pollution monitoring.

    PubMed

    Rai, Aakash C; Kumar, Prashant; Pilla, Francesco; Skouloudis, Andreas N; Di Sabatino, Silvana; Ratti, Carlo; Yasar, Ansar; Rickerby, David

    2017-12-31

    Low-cost sensor technology can potentially revolutionise the area of air pollution monitoring by providing high-density spatiotemporal pollution data. Such data can be utilised for supplementing traditional pollution monitoring, improving exposure estimates, and raising community awareness about air pollution. However, data quality remains a major concern that hinders the widespread adoption of low-cost sensor technology. Unreliable data may mislead unsuspecting users and potentially lead to alarming consequences such as reporting acceptable air pollutant levels when they are above the limits deemed safe for human health. This article provides scientific guidance to the end-users for effectively deploying low-cost sensors for monitoring air pollution and people's exposure, while ensuring reasonable data quality. We review the performance characteristics of several low-cost particle and gas monitoring sensors and provide recommendations to end-users for making proper sensor selection by summarizing the capabilities and limitations of such sensors. The challenges, best practices, and future outlook for effectively deploying low-cost sensors, and maintaining data quality are also discussed. For data quality assurance, a two-stage sensor calibration process is recommended, which includes laboratory calibration under controlled conditions by the manufacturer supplemented with routine calibration checks performed by the end-user under final deployment conditions. For large sensor networks where routine calibration checks are impractical, statistical techniques for data quality assurance should be utilised. Further advancements and adoption of sophisticated mathematical and statistical techniques for sensor calibration, fault detection, and data quality assurance can indeed help to realise the promised benefits of a low-cost air pollution sensor network. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Low-Cost Data Acquisition System for Automobile Dynamics Applications

    PubMed Central

    González, Alejandro; Vinolas, Jordi

    2018-01-01

    This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources. PMID:29382039

  13. A Low-Cost Data Acquisition System for Automobile Dynamics Applications.

    PubMed

    González, Alejandro; Olazagoitia, José Luis; Vinolas, Jordi

    2018-01-27

    This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources.

  14. Low-cost CWDM transmitter package

    NASA Astrophysics Data System (ADS)

    Bhandarkar, Navin; Castillega, Jaime

    2005-03-01

    A low-cost coarse-wavelength-division multiplexer (CWDM) transmitter that combines four channels (wavelengths) in the infrared spectrum (~1310 nm) in a small form-factor un-cooled package is demonstrated. The package utilizes precision molded optics to multiplex beams from four grating-outcoupled surface-emitting (GSE) lasers into a single beam suitable for coupling into multimode fiber. This paper summarizes the optical and opto-mechanical design, fabrication and assembly of prototypes, and optical, thermal and electrical measurement results of the prototypes. This unique design enables multiplexing of wavelengths without the use of filters, waveguides, couplers and fiber splicing. Commercial fabrication and alignment technology is used to manufacture the package, resulting in a more robust, reliable and low-cost transmitter. The transmitter package is enabled by the unique characteristics of the long-wavelength GSE laser.

  15. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Steve

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing andmore » material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.« less

  16. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    The quality cost modeling (QCM) tool is intended to be a relatively simple-to-use device for obtaining a first-order assessment of the quality-cost relationship for a given process-material combination. The QCM curve is a plot of cost versus quality (an index indicating microstructural quality), which is unique for a given process-material combination. The QCM curve indicates the tradeoff between cost and performance, thus enabling one to evaluate affordability. Additionally, the effect of changes in process design, raw materials, and process conditions on the cost-quality relationship can be evaluated. Such results might indicate the most efficient means to obtain improved quality at reduced cost by process design refinements, the implementation of sensors and models for closed loop process control, or improvement in the properties of raw materials being fed into the process. QCM also allows alternative processes for producing the same or similar material to be compared in terms of their potential for producing competitively priced, high quality material. Aside from demonstrating the usefulness of the QCM concept, this is one of the main foci of the present research program, namely to compare processes for making continuous fiber reinforced, metal matrix composites (MMC's). Two processes, low pressure plasma spray deposition and tape casting are considered for QCM development. This document consists of a detailed look at the design of the QCM approach, followed by discussion of the application of QCM to each of the selected MMC manufacturing processes along with results, comparison of processes, and finally, a summary of findings and recommendations.

  17. Advanced Thermoplastic Polymers and Additive Manufacturing Applied to ISS Columbus Toolbox: Lessons Learnt and Results

    NASA Astrophysics Data System (ADS)

    Ferrino, Marinella; Secondo, Ottaviano; Sabbagh, Amir; Della Sala, Emilio

    2014-06-01

    In the frame of the International Space Station (ISS) Exploitation Program a new toolbox has been realized by TAS-I to accommodate the tools currently in use on the ISS Columbus Module utilizing full-scale prototypes obtained with 3D rapid prototyping. The manufacturing of the flight hardware by means of advanced thermoplastic polymer UL TEM 9085 and additive manufacturing Fused Deposition Modelling (FDM) technology represent innovative elements. In this paper, the results achieved and the lessons learned are analyzed to promote future technology know-how. The acquired experience confirmed that the additive manufacturing process allows to save time/cost and to realize new shapes/features to introduce innovation in products and future design processes for space applications.

  18. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    NASA Technical Reports Server (NTRS)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  19. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  20. Powder Injection Molding (PIM) for Low Cost Manufacturing of Intricate Parts to Net-Shape

    DTIC Science & Technology

    2006-05-01

    tungsten - or molybdenum-pseudoalloys, which can be net-shape manufactured only by PIM because of the tight dimension tolerances needed for the final...materials. Rhenium metal, for instance, which costs about US$ 800 /lb, offers the advantage of a high melting point. It can maintain reasonable...tubes, valves and thrusters of solid fluid propeller systems. Production of these components is however both expensive and difficult, as rhenium cannot

  1. Using Low Cost Environmental Sensors in Geoscience Education

    NASA Astrophysics Data System (ADS)

    Leeman, J.; Ammon, C. J.; Anandakrishnan, S.

    2014-12-01

    Advances in process technology have drastically reduced the cost of manufacturing almost every type of sensor and micro-controller, putting low-to-mid grade sensor technology in the reach of educators and hobbyists. We demonstrate how a low cost magnetometer and an Arduino micro-controller can be used in education. Students can easily connect the sensor to the Arduino and collect three-component magnetic field data. Experiments can easily be turned into long-term monitoring projects by connecting sensors to the internet and providing an Internet-of-Things interface to store and to display the data in near-real time. Low-cost sensors are generally much noisier than their research grade counterparts, but can still provide an opportunity for students to learn about fundamental concepts such as signal quality, sampling, averaging, and filtering and to gain hands-on, concrete experience with observations. Sensors can be placed at different locations and compared both qualitatively and quantitatively. For example, with an inexpensive magnetometer, students can examine diurnal magnetic field variations and look for magnetic storms. Magnetic field orientation can be calculated and compared to the predicted geomagnetic field orientation at a given location. Data can be stored in simple text files to facilitate analysis with any convenient package. We illustrate the idea using Python notebooks, allowing students to explore the data interactively and to learn the basic principles of programming and reproducible research. Using an Arduino encourages students to interact with open-source data collection hardware and to experiment with ways to quickly, cheaply, and effectively measure the environment. Analysis of these data can lead to a deeper understanding of both geoscience and data processing.

  2. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE PAGES

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; ...

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  3. Low-cost small scale parabolic trough collector design for manufacturing and deployment in Africa

    NASA Astrophysics Data System (ADS)

    Orosz, Matthew; Mathaha, Paul; Tsiu, Anadola; Taele, B. M.; Mabea, Lengeta; Ntee, Marcel; Khakanyo, Makoanyane; Teker, Tamer; Stephens, Jordan; Mueller, Amy

    2016-05-01

    Concentrating Solar Power is expanding its deployment on the African subcontinent, highlighting the importance of efforts to indigenize manufacturing of this technology to increase local content and therefore local economic benefits of these projects. In this study a design for manufacturing (DFM) exercise was conducted to create a locally produced parabolic trough collector (the G4 PTC). All parts were sourced or fabricated at a production facility in Lesotho, and several examples of the design were prototyped and tested with collaborators in the Government of Lesotho's Appropriate Technology Services division and the National University of Lesotho. Optical and thermal performance was simulated and experimentally validated, and pedagogical pre-commercial versions of the PTC have been distributed to higher education partners in Lesotho and Europe. The cost to produce the PTC is 180 USD/m2 for a locally manufactured heat collection element (HCE) capable of sustaining 250C operation at ~65% efficiency. A version with an imported evacuated HCE can operate at 300°C with 70% efficiency. Economically relevant applications for this locally produced PTC include industrial process heat and distributed generation scenarios where cogeneration is required.

  4. Superplastic forming of Al-Li alloys for lightweight, low-cost structures

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Wagner, John A.

    1991-01-01

    Superplastic forming of advanced aluminum alloys is being evaluated as an approach for fabricating low-cost, light-weight, cryogenic propellant tanks. Built-up structure concepts (with inherent reduced scrap rate) are under investigation to offset the additional raw material expenses incurred by using aluminum lithium alloys. This approach to fabrication offers the potential for significant improvements in both structural efficiency and overall manufacturing costs. Superplasticity is the ability of specially processed material to sustain very large forming strains without failure at elevated temperatures under controlled deformation conditions. It was demonstrated that superplastic forming technology can be used to fabricate complex structural components in a single operation and increase structural efficiency by as much as 60 percent compared to conventional configurations in skin-stiffened structures. Details involved in the application of this technology to commercial grade superplastic aluminum lithium material are presented. Included are identification of optimum forming parameters, development of forming procedures, and assessment of final part quality in terms of cavitation volume and thickness variation.

  5. Application of advanced technologies to small, short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

    1978-01-01

    The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

  6. Using 3D Printing (Additive Manufacturing) to Produce Low-Cost Simulation Models for Medical Training.

    PubMed

    Lichtenberger, John P; Tatum, Peter S; Gada, Satyen; Wyn, Mark; Ho, Vincent B; Liacouras, Peter

    2018-03-01

    This work describes customized, task-specific simulation models derived from 3D printing in clinical settings and medical professional training programs. Simulation models/task trainers have an array of purposes and desired achievements for the trainee, defining that these are the first step in the production process. After this purpose is defined, computer-aided design and 3D printing (additive manufacturing) are used to create a customized anatomical model. Simulation models then undergo initial in-house testing by medical specialists followed by a larger scale beta testing. Feedback is acquired, via surveys, to validate effectiveness and to guide or determine if any future modifications and/or improvements are necessary. Numerous custom simulation models have been successfully completed with resulting task trainers designed for procedures, including removal of ocular foreign bodies, ultrasound-guided joint injections, nerve block injections, and various suturing and reconstruction procedures. These task trainers have been frequently utilized in the delivery of simulation-based training with increasing demand. 3D printing has been integral to the production of limited-quantity, low-cost simulation models across a variety of medical specialties. In general, production cost is a small fraction of a commercial, generic simulation model, if available. These simulation and training models are customized to the educational need and serve an integral role in the education of our military health professionals.

  7. Multilevel integration of patternable low-κ material into advanced Cu BEOL

    NASA Astrophysics Data System (ADS)

    Lin, Qinghuang; Chen, S. T.; Nelson, A.; Brock, P.; Cohen, S.; Davis, B.; Fuller, N.; Kaplan, R.; Kwong, R.; Liniger, E.; Neumayer, D.; Patel, J.; Shobha, H.; Sooriyakumaran, R.; Purushothaman, S.; Spooner, T.; Miller, R.; Allen, R.; Wisnieff, R.

    2010-04-01

    In this paper, we wish to report, for the first time, on a simple, low-cost, novel way to form dual-damascene copper (Cu) on-chip interconnect or Back-End-Of-the-Line (BEOL) structures using a patternable low dielectric constant (low-κ) dielectric material concept. A patternable low-κ dielectric material combines the functions of a traditional resist and a dielectric material into one single material. It acts as a traditional resist during patterning and is subsequently converted to a low-κ dielectric material during a post-patterning curing process. No sacrificial materials (separate resists or hardmasks) and their related deposition, pattern transfer (etch) and removal (strip) are required to form dual-damascene BEOL patterns. We have successfully demonstrated multi-level dual-damascene integration of a novel patternable low-κ dielectric material into advanced Cu BEOL. This κ=2.7 patternable low-κ material is based on the industry standard SiCOH-based (silsesquioxane polymer) material platform and is compatible with 248 nm optical lithography. Multilevel integration of this patternable low-κ material at 45 nm node Cu BEOL fatwire levels has been demonstrated with very high electrical yields using the current manufacturing infrastructure.

  8. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    NASA Technical Reports Server (NTRS)

    Stoner, Mary Cecilia; Hehir, Austin R.; Ivanco, Marie L.; Domack, Marcia S.

    2016-01-01

    This cost-benefit analysis assesses the benefits of the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. These preliminary, rough order-of-magnitude results report a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Production cost savings of 35 to 58 percent were reported over the composite manufacturing technique used in this study for comparison; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels when compared with conventional metallic manufacturing. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. A case study compared these three alternatives for manufacturing a cylinder of specified geometry, with particular focus placed on production costs and process complexity, with cost analyses performed by the analogy and parametric methods. Furthermore, a scalability study was conducted for three tank diameters to assess the highest potential payoff of the ANNST process for manufacture of large-diameter cryogenic tanks. The analytical hierarchy process (AHP) was subsequently used with a group of selected subject matter experts to assess the value of the various benefits achieved by the ANNST method for potential stakeholders. The AHP study results revealed that decreased final cylinder mass and quality assurance were the most valued benefits of cylinder manufacturing methods, therefore emphasizing the relevance of the benefits achieved with the ANNST process for future projects.

  9. A review of the solar array manufacturing industry costing standards

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar array manufacturing industry costing standards model is designed to compare the cost of producing solar arrays using alternative manufacturing processes. Constructive criticism of the methodology used is intended to enhance its implementation as a practical design tool. Three main elements of the procedure include workbook format and presentation, theoretical model validity and standard financial parameters.

  10. Advances in compact manufacturing for shape and performance controllability of large-scale components-a review

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li

    2017-01-01

    Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.

  11. The Role of Advanced Manufacturing in Our Journey to Mars

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2017-01-01

    The National Additive Manufacturing Innovation Institute was launched in August 2012 as a result of President Obama's proposed need for a whole-of-government advanced manufacturing effort. Mission: To accelerate the adoption of additive manufacturing technologies to increase domestic manufacturing competitiveness. Funding: Five federal agencies - the Departments of Defense, Energy, and Commerce, the National Science Foundation, and NASA - jointly committed to invest $45 million.

  12. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  13. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE PAGES

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; ...

    2017-06-12

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  14. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  15. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  16. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    PubMed

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  18. Launching the dialogue: Safety and innovation as partners for success in advanced manufacturing.

    PubMed

    Geraci, C L; Tinkle, S S; Brenner, S A; Hodson, L L; Pomeroy-Carter, C A; Neu-Baker, N

    2018-06-01

    Emerging and novel technologies, materials, and information integrated into increasingly automated and networked manufacturing processes or into traditional manufacturing settings are enhancing the efficiency and productivity of manufacturing. Globally, there is a move toward a new era in manufacturing that is characterized by: (1) the ability to create and deliver more complex designs of products; (2) the creation and use of materials with new properties that meet a design need; (3) the employment of new technologies, such as additive and digital techniques that improve on conventional manufacturing processes; and (4) a compression of the time from initial design concept to the creation of a final product. Globally, this movement has many names, but "advanced manufacturing" has become the shorthand for this complex integration of material and technology elements that enable new ways to manufacture existing products, as well as new products emerging from new technologies and new design methods. As the breadth of activities associated with advanced manufacturing suggests, there is no single advanced manufacturing industry. Instead, aspects of advanced manufacturing can be identified across a diverse set of business sectors that use manufacturing technologies, ranging from the semiconductors and electronics to the automotive and pharmaceutical industries. The breadth and diversity of advanced manufacturing may change the occupational and environmental risk profile, challenge the basic elements of comprehensive health and safety (material, process, worker, environment, product, and general public health and safety), and provide an opportunity for development and dissemination of occupational and environmental health and safety (OEHS) guidance and best practices. It is unknown how much the risk profile of different elements of OEHS will change, thus requiring an evolution of health and safety practices. These changes may be accomplished most effectively through multi

  19. PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdan, Monjid

    The Department of Energy (DOE) has identified hydrogen production by electrolysis of water at forecourt stations as a critical technology for transition to the hydrogen economy; however, the cost of hydrogen produced by present commercially available electrolysis systems is considerably higher than the DOE 2015 and 2020 cost targets. Analyses of proton-exchange membrane (PEM) electrolyzer systems indicate that reductions in electricity consumption and electrolyzer stack and system capital cost are required to meet the DOE cost targets. The primary objective is to develop and demonstrate a cost-effective energy-based system for electrolytic generation of hydrogen. The goal is to increase PEMmore » electrolyzer efficiency and to reduce electrolyzer stack and system capital cost to meet the DOE cost targets for distributed electrolysis. To accomplish this objective, work was conducted by a team consisting of Giner, Inc. (Giner), Virginia Polytechnic Institute & University (VT), and domnick hunter group, a subsidiary of Parker Hannifin (Parker). The project focused on four (4) key areas: (1) development of a high-efficiency, high-strength membrane; (2) development of a long-life cell-separator; (3) scale-up of cell active area to 290 cm2 (from 160 cm²); and (4) development of a prototype commercial electrolyzer system. In each of the key stack development areas Giner and our team members conducted focused development in laboratory-scale hardware, with analytical support as necessary, followed by life-testing of the most promising candidate materials. Selected components were then scaled up and incorporated into low-cost scaled-up stack hardware. The project culminated in the fabrication and testing of a highly efficient electrolyzer system for production of 0.5 kg/hr hydrogen and validation of the stack and system in testing at the National Renewable Energy Laboratory (NREL).« less

  20. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment.

    PubMed

    Faraghat, Shabnam A; Hoettges, Kai F; Steinbach, Max K; van der Veen, Daan R; Brackenbury, William J; Henslee, Erin A; Labeed, Fatima H; Hughes, Michael P

    2017-05-02

    Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.

  1. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  2. Low Cost, Upper Stage-Class Propulsion

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    The low cost, upper stage-class propulsion (LCUSP) element will develop a high strength copper alloy additive manufacturing (AM) process as well as critical components for an upper stage-class propulsion system that will be demonstrated with testing. As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for substantially less money and much faster than traditionally done. However, several enabling technologies must be developed before that can happen. This activity will address these technologies and demonstrate the concept by designing, manufacturing, and testing the critical components of a rocket engine. The processes developed and materials' property data will be transitioned to industry upon completion of the activity. Technologies to enable the concept are AM copper alloy process development, AM post-processing finishing to minimize surface roughness, AM material deposition on existing copper alloy substrate, and materials characterization.

  3. Low Cost Structures, but How Much are we Paying for Them?

    NASA Astrophysics Data System (ADS)

    Gomez Molinero, Vincent

    2014-06-01

    Based on more than 37 years developing spacecraft structures - both for launchers starting with Ariane-1 up to the most modern ones and for satellites of any type - a critical review of the current trends, aiming specially to low cost solutions, will be presented.Airbus Defence and Space (CASA Espacio previously) has been developing structures for launchers and satellites during more than 4 decades. All types of spacecraft structures - primary and secondary ones, high stability ones and special critical cases like antenna reflectors, high stiffness structures and load carrying ones - have been developed using different types of materials and structural constructions. Although our main expertise is concentrated on composite structures, we have also developed many types of metallic ones, when the best solution was that one, not necessarily only based on pure technical reasons.From that perspective and experience, this paper tries to review the current trend of imposing the low cost as the main requirement for the development of satellites and launchers and its intrinsic characteristic of being a non- ending process: the spacecraft structures are never sufficiently cheaper.The main ways used today to justify low cost spacecraft structures will be reviewed trying to understand their rationale and some prejudices always present when the trade-off studies are performed. Some of the reviewed cost-killing factors will be (non-exhaustive list) Material type (i.e.: metallic vs composite). Low cost materials in general. Manufacturing process (i.e.: autoclave curing vs out-of-autoclave one). Automation in manufacturing. Automation in assembly. Automation in inspection and verification. Lean manufacturing techniques. Standardization. Some insight about how to solve this problem without losing our distinctive nature (we are developing high performance systems many of them unique prototypes and thought to work in environments not perfectly known and highly unknown in some cases

  4. Low-cost infrared glass for IR imaging applications

    NASA Astrophysics Data System (ADS)

    Graham, Amy G.; LeBlanc, Richard A.; Hilton, Ray A., Sr.

    2003-09-01

    With the advent of the uncooled detectors, the fraction of infrared (IR) imaging system cost due to lens elements has risen to the point where work was needed in the area of cost. Since these IR imaging systems often have tight packaging requirements which drive the optical elements to have complex surfaces, typical IR optical elements are costly to manufacture. The drive of our current optical material research is to lower the cost of the materials as well as the element fabrication for IR imaging systems. A low cost, moldable amorphous material, Amtir-4, has been developed and characterized. Ray Hilton Sr., Amorphous Materials Inc., Richard A. LeBlanc, Amy Graham and Others at Lockheed Martin Missiles and Fire Control Orlando (LMMFC-O) and James Johnson, General Electric Global Research Center (GE-GRC), along with others have been doing research for the past three years characterizing and designing IR imaging systems with this material. These IR imaging systems have been conventionally fabricated via diamond turning and techniques required to mold infrared optical elements have been developed with this new material, greatly reducing manufacturing costs. This paper will outline efforts thus far in incorporating this new material into prototype IR imaging systems.

  5. Very-Low-Cost, Rugged Vacuum System

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert; Sorensen, Paul; Passow, Christian; Bilski, Steve

    2013-01-01

    NASA, DoD, DHS, and commercial industry have a need for miniaturized, rugged, low-cost vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other miniature analytical instruments. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was created based on a very small, rugged, and inexpensive- to-manufacture molecular drag pump (MDP). The MDP is enabled by the development of a miniature, veryhigh- speed, rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. Such a pump represents an order-of-magnitude reduction in mass, volume, and cost over current, commercially available, state-ofthe- art vacuum pumps. The vacuum system consists of the MDP coupled to a ruggedized rough pump (for terrestrial applications or for planets with substantial atmospheres). The rotor in the MDP consists of a simple smooth cylinder of aluminum spinning at approximately 200,000 RPM inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the motor. The compressed gas then flows down channels in the motor housing to the exhaust port of the pump. The exhaust port of the pump is connected to a diaphragm or scroll pump. This pump delivers very high performance in a very small envelope. The design was simplified so that a smaller compression ratio, easier manufacturing process, and enhanced ruggedness can be achieved at the lowest possible cost. The machining of the rotor and stators is very simple compared to that necessary to fabricate TMP

  6. Low-Cost Opportunity for Small-Scale Manufacture of Hardwood Blanks

    Treesearch

    Bruce G. Hansen; Philip A. Araman

    1985-01-01

    We analyzed the manufacture of standard-size hardwood blanks from lumber on a relatively small scale by conventional processing. Requiring an investment of just over $200,000, the conventional mill can process 500 M bf (thousand board feet) of kiln-dried lumber annually. The study focused on the economics associated with manufacture of blanks from four species -...

  7. Low AC Loss YBCO Coated Conductor Geometry by Direct Inkjet Printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupich, Martin, Dr.; Duckworth, Robert, Dr.

    The second generation (2G) high temperature superconductors (HTS) wire offers potential benefits for many electric power applications, including ones requiring filamentized conductors with low ac loss, such as transformers and fault current limiters. However, the use of 2G wire in these applications requires the development of both novel multi-filamentary conductor designs with lower ac losses and the development of advanced manufacturing technologies that enable the low-cost manufacturing of these filamentized architectures. This Phase I SBIR project focused on testing inkjet printing as a potential low-cost, roll-to-roll manufacturing technique to fabricate potential low ac loss filamentized architectures directly on the 2Gmore » template strips.« less

  8. NASA Advances Technologies for Additive Manufacturing of GRCop-84 Copper Alloy

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Protz, Chris

    2017-01-01

    The Low Cost Upper Stage Propulsion project has successfully developed and matured Selective Laser Melting (SLM) Fabrication of the NASA developed GRCop-84 copper alloy. Several parts have been printed in house and at a commercial vendor, and these parts have been successfully machined and have undergone further fabrication steps to allow hot-fire testing. Hot-fire testing has demonstrated parts manufactured with this technique can survive and perform well in the relevant environments for liquid rocket propulsion systems.

  9. Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keshner, M. S.; Arya, R.

    2004-10-01

    Hewlett Packard has created a design for a ''Solar City'' factory that will process 30 million sq. meters of glass panels per year and produce 2.1-3.6 GW of solar panels per year-100x the volume of a typical, thin-film, solar panel manufacturer in 2004. We have shown that with a reasonable selection of materials, and conservative assumptions, this ''Solar City'' can produce solar panels and hit the price target of $1.00 per peak watt (6.5x-8.5x lower than prices in 2004) as the total price for a complete and installed rooftop (or ground mounted) solar energy system. This breakthrough in the pricemore » of solar energy comes without the need for any significant new invention. It comes entirely from the manufacturing scale of a large plant and the cost savings inherent in operating at such a large manufacturing scale. We expect that further optimizations from these simple designs will lead to further improvements in cost. The manufacturing process and cost depend on the choice for the active layer that converts sunlight into electricity. The efficiency by which sunlight is converted into electricity can range from 7% to 15%. This parameter has a large effect on the overall price per watt. There are other impacts, as well, and we have attempted to capture them without creating undue distractions. Our primary purpose is to demonstrate the impact of large-scale manufacturing. This impact is largely independent of the choice of active layer. It is not our purpose to compare the pro's and con's for various types of active layers. Significant improvements in cost per watt can also come from scientific advances in active layers that lead to higher efficiency. But, again, our focus is on manufacturing gains and not on the potential advances in the basic technology.« less

  10. Benchmarking DoD Use of Additive Manufacturing and Quantifying Costs

    DTIC Science & Technology

    2017-03-01

    46 VI. Cost Benefit ...developing a cost model. The US Army Logistics Innovation Agency published a study called “Additive Manufacturing Cost - Benefit Analysis”. This...to over fifteen thousand dollars on GSA Advantage. Desktop printers do not require extensive support equipment. 47    VI. Cost Benefit

  11. National Center for Advanced Manufacturing Overview

    NASA Technical Reports Server (NTRS)

    Vickers, John H.

    2000-01-01

    This paper presents a general overview of the National Center for Advanced Manufacturing, with an emphasis on Aerospace Materials, Processes and Environmental Technology. The topics include: 1) Background; 2) Mission; 3) Technology Development Approach; 4) Space Transportation Significance; 5) Partnering; 6) NCAM MAF Project; 7) NASA & Calhoun Community College; 8) Educational Development; and 9) Intelligent Synthesis Environment. This paper is presented in viewgraph form.

  12. National Center for Advanced Manufacturing Overview

    NASA Technical Reports Server (NTRS)

    Vickers, J.

    2001-01-01

    The National Center for Advanced Manufacturing (NCAM) is a strategy, organization, and partnership focused on long-term technology development. The NCAM initially will be a regional partnership, however the intent is national in scope. Benchmarking is needed to follow the concept to the finished project, not using trial and error. Significant progress has been made to date, and NCAM is setting the vision for the future.

  13. Plywood manufacturing cost trends, excluding wood, in Western U.S. mills: 1975-1988

    Treesearch

    Henry Spelter

    1989-01-01

    Plywood manufacturing costs have increased over the years with inflation. In recent years, new technologies that improve productivity and reduce costs have become available. Cost data published by the American Plywood Association (APA) show moderating rates of increase by 1983. New data from a sample of western U.S. mills show that nonwood manufacturing costs have...

  14. Design concepts for low-cost composite engine frames

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Design concepts for low-cost, lightweight composite engine frames were applied to the design requirements for the frame of commercial, high-bypass turbine engines. The concepts consist of generic-type components and subcomponents that could be adapted for use in different locations in the engine and to different engine sizes. A variety of materials and manufacturing methods were assessed with a goal of having the lowest number of parts possible at the lowest possible cost. The evaluation of the design concepts resulted in the identification of a hybrid composite frame which would weigh about 70 percent of the state-of-the-art metal frame and cost would be about 60 percent.

  15. Advances in solid dosage form manufacturing technology.

    PubMed

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.

  16. Low-cost ultra-thin broadband terahertz beam-splitter.

    PubMed

    Ung, Benjamin S-Y; Fumeaux, Christophe; Lin, Hungyen; Fischer, Bernd M; Ng, Brian W-H; Abbott, Derek

    2012-02-27

    A low-cost terahertz beam-splitter is fabricated using ultra-thin LDPE plastic sheeting coated with a conducting silver layer. The beam splitting ratio is determined as a function of the thickness of the silver layer--thus any required splitting ratio can be printed on demand with a suitable rapid prototyping technology. The low-cost aspect is a consequence of the fact that ultra-thin LDPE sheeting is readily obtainable, known more commonly as domestic plastic wrap or cling wrap. The proposed beam-splitter has numerous advantages over float zone silicon wafers commonly used within the terahertz frequency range. These advantages include low-cost, ease of handling, ultra-thin thickness, and any required beam splitting ratio can be readily fabricated. Furthermore, as the beam-splitter is ultra-thin, it presents low loss and does not suffer from Fabry-Pérot effects. Measurements performed on manufactured prototypes with different splitting ratios demonstrate a good agreement with our theoretical model in both P and S polarizations, exhibiting nearly frequency-independent splitting ratios in the terahertz frequency range.

  17. Advanced low-floor vehicle (ALFV) specification research.

    DOT National Transportation Integrated Search

    2015-08-01

    This report details the results of research on market comparison, operational cost efficiencies, and prototype tests conducted on : a novel design for an Advanced Low Floor Vehicle (ALFV), flex-route transit bus. Section I describes how the need for ...

  18. Manufacturing technology: Fabrication innovations

    NASA Astrophysics Data System (ADS)

    Mason, Nigel

    2008-05-01

    Advances at every stage of the manufacturing process are helping to reduce costs in the photovoltaics industry, but there is still a long way to go before photovoltaic cells reach their true potential.

  19. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA Lewis Research Center, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  20. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA LRC, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  1. Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)

    NASA Astrophysics Data System (ADS)

    Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter

    2016-09-01

    As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.

  2. Novel Low-Cost, Low-Power Miniature Thermionic Cathode Developed for Microwave/Millimeter Wave Tube and Cathode Ray Tube Applications

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    1999-01-01

    A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.

  3. Cost benefit of investment on quality in pharmaceutical manufacturing: WHO GMP pre- and post-certification of a Nigerian pharmaceutical manufacturer.

    PubMed

    Anyakora, Chimezie; Ekwunife, Obinna; Alozie, Faith; Esuga, Mopa; Ukwuru, Jonathan; Onya, Steve; Nwokike, Jude

    2017-09-18

    Pharmaceutical companies in Africa need to invest in both facilities and quality management systems to achieve good manufacturing practice (GMP) compliance. Compliance to international GMP standards is important to the attainment of World Health Organization (WHO) prequalification. However, most of the local pharmaceutical manufacturing companies may be deterred from investing in quality because of many reasons, ranging from financial constraints to technical capacity. This paper primarily evaluates benefits against the cost of investing in GMP, using a Nigerian pharmaceutical company, Chi Pharmaceuticals Limited, as a case study. This paper also discusses how to drive more local manufacturers to invest in quality to attain GMP compliance; and proffers practical recommendations for local manufacturers who would want to invest in quality to meet ethical and regulatory obligations. The cost benefit of improving the quality of Chi Pharmaceuticals Limited's facilities and system to attain WHO GMP certification for the production of zinc sulfate 20-mg dispersible tablets was calculated by dividing the annual benefits derived from quality improvement interventions by the annual costs of implementing quality improvement interventions, referred to as a benefit-cost ratio (BCR). Cost benefit of obtaining WHO GMP certification for the production of zinc sulfate 20-mg dispersible tablets was 5.3 (95% confidence interval of 5.0-5.5). Investment in quality improvement intervention is cost-beneficial for local manufacturing companies. Governments and regulators in African countries should support pharmaceutical companies striving to invest in quality. Collaboration of local manufacturing companies with global companies will further improve quality. Local pharmaceutical companies should be encouraged to key into development opportunities available for pharmaceutical companies in Africa.

  4. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Pettit, R. G.; Wang, J. J.; Toh, C.

    2000-01-01

    The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, however, because of the need to demonstrate damage tolerance, and by cost and manufacturing risks associated with the size and complexity of the parts. The Integral Airframe Structures (IAS) Program identified a feasible integrally stiffened fuselage concept and evaluated performance and manufacturing cost compared to conventional designs. An integral skin/stiffener concept was produced both by plate hog-out and near-net extrusion. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511 extrusion, and 7475-T7351 plate. Mechanical properties, structural details, and joint performance were evaluated as well as repair, static compression, and two-bay crack residual strength panels. Crack turning behavior was characterized through panel tests and improved methods for predicting crack turning were developed. Manufacturing cost was evaluated using COSTRAN. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current technology baseline.

  5. Investigation of low-cost ablative heat shield fabrication for space shuttles

    NASA Technical Reports Server (NTRS)

    Chandler, H. H.

    1972-01-01

    Improvements in the processes and design to reduce the manufacturing costs for low density ablative panels for the space shuttle are discussed. The areas that were studied included methods of loading honeycomb core, alternative reinforcement concepts, and the use of reusable subpanels. A review of previous studies on the fabrication of low-cost ablative panels and on permissible defects that do not affect thermal performance was conducted. Considerable differences in the quoted prices for ablative panels, even though the various contractors had reported similar fabrication times were discovered. How these cost differences arise from different estimating criteria and which estimating assumptions and other costs must be included in order to arrive at a realistic price are discussed.

  6. VAR and generalized impulse response analysis of manufacturing unit labor costs

    NASA Astrophysics Data System (ADS)

    Ewing, Bradley T.; Thompson, Mark A.

    2008-04-01

    This paper examines the relationship among manufacturing unit labor costs in the United States, United Kingdom, and Canada. The analysis is conducted within the context of an economic system utilizing the recently developed method of generalized impulse response analysis to simulate the responses of the cost series to disturbances. The results indicate that, while unit labor costs do not share a common stochastic trend, there are significant responses in the unit labor costs of each country to shocks in the costs of other countries that are not captured by standard interpretation of the multiple-equation model results. The findings indicate the presence of significant linkages among unit labor costs in the countries studied. The results are consistent with the economic environment of manufacturing operations being characterized by a competitive, integrated marketplace.

  7. Low-Cost Air Quality Monitoring Tools: From Research to Practice (A Workshop Summary)

    PubMed Central

    Griswold, William G.; RS, Abhijit; Johnston, Jill E.; Herting, Megan M.; Thorson, Jacob; Collier-Oxandale, Ashley; Hannigan, Michael

    2017-01-01

    In May 2017, a two-day workshop was held in Los Angeles (California, U.S.A.) to gather practitioners who work with low-cost sensors used to make air quality measurements. The community of practice included individuals from academia, industry, non-profit groups, community-based organizations, and regulatory agencies. The group gathered to share knowledge developed from a variety of pilot projects in hopes of advancing the collective knowledge about how best to use low-cost air quality sensors. Panel discussion topics included: (1) best practices for deployment and calibration of low-cost sensor systems, (2) data standardization efforts and database design, (3) advances in sensor calibration, data management, and data analysis and visualization, and (4) lessons learned from research/community partnerships to encourage purposeful use of sensors and create change/action. Panel discussions summarized knowledge advances and project successes while also highlighting the questions, unresolved issues, and technological limitations that still remain within the low-cost air quality sensor arena. PMID:29143775

  8. Low Cost Processing of Commingled Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Chiasson, Matthew Lee

    A low cost vacuum consolidation process has been investigated for use with commingled thermoplastic matrix composites. In particular, the vacuum consolidation behaviour of commingled polypropylene/glass fibre and commingled nylon/carbon fibre precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure. During processing, the consolidation of the laminate packs was measured by use of non-contact eddy current sensors. The consolidation curves are then used to tune an empirical consolidation model. The overall quality of the resulting laminates is also discussed. Dynamic mechanical analysis, differential scanning calorimetry and mechanical tensile testing were also performed in order to determine the effects of varying processing parameters on the physical and mechanical properties of the laminates. Through this analysis, it was determined that the nylon/carbon fibre blend was not suitable for vacuum consolidation, while the polypropylene/glass fibre blend is a viable option for vacuum consolidation. The ultimate goal of this work is to provide a foundation from which low cost unmanned aerial vehicle (UAV) components can be designed and manufactured from thermoplastic matrix composites using a low cost processing technique as an alternative to traditional thermoset composite materials.

  9. Designing a Low-Cost Multifunctional Infant Incubator.

    PubMed

    Tran, Kevin; Gibson, Aaron; Wong, Don; Tilahun, Dagmawi; Selock, Nicholas; Good, Theresa; Ram, Geetha; Tolosa, Leah; Tolosa, Michael; Kostov, Yordan; Woo, Hyung Chul; Frizzell, Michael; Fulda, Victor; Gopinath, Ramya; Prasad, J Shashidhara; Sudarshan, Hanumappa; Venkatesan, Arunkumar; Kumar, V Sashi; Shylaja, N; Rao, Govind

    2014-06-01

    Every year, an unacceptably large number of infant deaths occur in developing nations, with premature birth and asphyxia being two of the leading causes. A well-regulated thermal environment is critical for neonatal survival. Advanced incubators currently exist, but they are far too expensive to meet the needs of developing nations. We are developing a thermodynamically advanced low-cost incubator suitable for operation in a low-resource environment. Our design features three innovations: (1) a disposable baby chamber to reduce infant mortality due to nosocomial infections, (2) a passive cooling mechanism using low-cost heat pipes and evaporative cooling from locally found clay pots, and (3) insulated panels and a thermal bank consisting of water that effectively preserve and store heat. We developed a prototype incubator and visited and presented our design to our partnership hospital site in Mysore, India. After obtaining feedback, we have determined realistic, nontrivial design requirements and constraints in order to develop a new prototype incubator for clinical trials in hospitals in India. © 2014 Society for Laboratory Automation and Screening.

  10. The Economics of Big Area Addtiive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian; Lloyd, Peter D; Lindahl, John

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupledmore » with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.« less

  11. Low-Cost High-Pressure Hydrogen Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cropley, Cecelia C.; Norman, Timothy J.

    Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES)more » developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count

  12. Manufacturing and Cost Considerations in Multidisciplinary Aircraft Design (Research on Mathematical Modeling of Manufacturability Factors)

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1996-01-01

    The identification of airframe Manufacturability Factors/Cost Drivers (MFCD) and the method by which the relationships between MFCD and designer-controlled parameters could be properly modeled are described.

  13. “You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO

    NASA Astrophysics Data System (ADS)

    Baker, Adam M.; da Silva Curiel, Alex; Schaffner, Jake; Sweeting, Martin

    2005-07-01

    microsatellite from a typical 700 km sun-synchronous orbit to a lower or higher orbit using a low cost 40 N thrust concentrated hydrogen peroxide/kerosene bipropellant engine. A spin stabilized 'tug' concept capable of providing between 130 and 300 m/s of deltaV to the payload is described. Transfer of an enhanced microsatellite from LEO to lunar orbit using a novel, storable propellant solar thermal propulsion system under development at the Surrey Space Centre. The solar thermal propulsion unit is designed for low cost small satellite support and will be compared with a more traditional approach using and industry standard storable bipropellant chemical engine. Nanosatellite manoeuvring for formation flying using advanced low power electric propulsion. A colloid thruster system concept is planned for development jointly between SSTL, Queen Mary University London and Rutherford Appleton Laboratory, UK. The colloid thruster system is designed to complement an existing butane resistojet to give full 3-axis manoeuvrability to an upgraded SNAP nanosatellite platform which could be reflown in 2007 alongside ESA's Proba 2 technology demonstrator microsatellite. A comparison between low power resistojets, a colloid thruster system, and pulsed plasma thrusters for orbit manoeuvring of microsatellites will be made. This paper's final section will briefly describe some of the interplanetary missions which have been considered at the Surrey Space Centre, and will highlight the few as yet practical solutions for sending small spacecraft on high deltaV missions without the use of a costly upper stage.

  14. Space Optic Manufacturing - X-ray Mirror

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. This image shows a lightweight replicated x-ray mirror with gold coatings applied.

  15. NASA's National Center for Advanced Manufacturing

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  16. Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)

    NASA Astrophysics Data System (ADS)

    Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter

    2016-10-01

    As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.

  17. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  18. Low-cost solar array project progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1981-01-01

    The considered project is part of the DOE Photovoltaic Technology and Market Development Program. This program is concerned with the development and the utilization of cost-competitive photovoltaic systems. The project has the objective to develop, by 1986, the national capability to manufacture low-cost, long-life photovoltaic arrays at production rates that will realize economies of scale, and at a price of less than $0.70/watt. The array performance objectives include an efficiency greater than 10% and an operating lifetime longer than 20 years. The objective of the silicon material task is to establish the practicality of processes for producing silicon suitable for terrestrial photovoltaic applications at a price of $14/kg. The large-area sheet task is concerned with the development of process technology for sheet formation. Low-cost encapsulation material systems are being developed in connection with the encapsulation task. Another project goal is related to the development of economical process sequences.

  19. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    NASA Astrophysics Data System (ADS)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  20. SAMICS: Input data preparation. [Solar Array Manufacturing Industry Costing Standards

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.; Aster, R. W.

    1979-01-01

    The Solar Array Manufacturing Industry Costing Standards (SAMICS) provide standard formats, data, assumptions, and procedures for estimating the price that a manufacturer would have to charge for the product of a specified manufacturing process sequence. A line-by-line explanation is given of those standard formats which describe the economically important characteristics of the manufacturing processes and the technological structure of the companies and the industry. This revision provides an updated presentation of Format A Process Description, consistent with the October 1978 version of that form. A checklist of items which should be entered on Format A as direct expenses is included.

  1. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics

    PubMed Central

    Qiao, Guixiu; Weiss, Brian A.

    2016-01-01

    Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172

  2. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics.

    PubMed

    Qiao, Guixiu; Weiss, Brian A

    2016-01-01

    Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.

  3. Emerging Global Trends in Advanced Manufacturing

    DTIC Science & Technology

    2012-03-01

    facility. Such distributed manufacturing could be made accessible to large masses even in remote areas (Ehmann 2011). For example, Zara is a Spanish...consumers. It has tightened its supply-chain management so that the consumer “pulls” the design. Zara uses state-of-the-art IT and distribution...systems to collect data daily on trends so they can quickly turn out new designs. Zara keeps costs down by using existing materials in stock and through

  4. Manufacture of astroloy turbine disk shapes by hot isostatic pressing, volume 1

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1978-01-01

    The Materials in Advanced Turbine Engines project was conducted to demonstrate container technology and establish manufacturing procedures for fabricating direct Hot Isostatic Pressing (HIP) of low carbon Astroloy to ultrasonic disk shapes. The HIP processing procedures including powder manufacture and handling, container design and fabrication, and HIP consolidation techniques were established by manufacturing five HIP disks. Based upon dimensional analysis of the first three disks, container technology was refined by modifying container tooling which resulted in closer conformity of the HIP surfaces to the sonic shape. The microstructure, chemistry and mechanical properties of two HIP low carbon Astroloy disks were characterized. One disk was subjected to a ground base experimental engine test, and the results of HIP low carbon Astroloy were analyzed and compared to conventionally forged Waspaloy. The mechanical properties of direct HIP low carbon Astroloy exceeded all property goals and the objectives of reduction in material input weight and reduction in cost were achieved.

  5. Low-cost encapsulation materials for terrestrial solar cell modules

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Baum, B.; Willis, P.

    1979-01-01

    The paper presents the findings of material surveys intended to identify low cost materials which could be functional as encapsulants (by 1986) for terrestrial solar cell modules. Economic analyses have indicated that in order to meet the low cost goal of $2.70 per sq m, some or all of the following material technologies must be developed or advanced: (1) UV screening outer covers; (2) elastomeric acrylics; (3) weatherproofing and waterproofing of structural wood and paper products; (4) transparent UV stabilizers for the UV-sensitive transparent pottants; and (5) cost-effective utilization of silicone and fluorocarbon materials.

  6. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    NASA Astrophysics Data System (ADS)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  7. Assessment of Low-Cost Elevators for Near Term Application in Transit Stations

    DOT National Transportation Integrated Search

    1982-09-01

    This study of low-cost elevators for use in existing transit stations was commissioned by the Transportation Systems Center and included a four-day site study of screw column elevators manufactured by the Ebel Company of Brussels, Belgium. The site s...

  8. Impact of marketing, information system, modularity, and low-cost solution on the implementation of CIM in SMEs

    NASA Astrophysics Data System (ADS)

    Marri, Hussain B.; McGaughey, Ronald; Gunasekaran, Angappa

    2000-10-01

    Globalization can have a dramatic impact on manufacturing sector due to the fact that the majority of establishments in this industry are small to medium manufacturing companies. The role of Small and Medium Enterprises (SMEs) in the national economy has been emphasized all over the world, considering their contribution to the total manufacturing output and employment opportunities. The lack of marketing forces to regulate the operation of SMEs has been a fundamental cause of low efficiency for a long time. Computer Integrated Manufacturing (CIM) is emerging as one of the most promising opportunities for shrinking the time delays in information transfer and reducing manufacturing costs. CIM is the architecture for integrating the engineering, marketing and manufacturing functions through information system technologies. SMEs in general have not made full use of new technologies although their investments in CIM technology tended to be wider in scale and scope. Most of the SMEs only focus on the short-term benefit, but overlook a long- term and fundamental development on applications of new technologies. With the help of suitable information systems, modularity and low cost solutions, SMEs can compete in the global market. Considering the importance of marketing, information system, modularity and low cost solutions in the implementation of CIM in SMEs, a model has been developed and studied with the help of an empirical study conducted with British SMEs to facilitate the adoption of CIM. Finally, a summary of findings and recommendations are presented.

  9. Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator.

    PubMed

    Soriano-Heras, Enrique; Blaya-Haro, Fernando; Molino, Carlos; de Agustín Del Burgo, José María

    2018-06-01

    The purpose of this article is to develop a new concept of modular and operative prosthetic hand based on rapid prototyping and a novel shape-memory-alloy (SMA) actuator, thus minimizing the manufacturing costs. An underactuated mechanism was needed for the design of the prosthesis to use only one input source. Taking into account the state of the art, an underactuated mechanism prosthetic hand was chosen so as to implement the modifications required for including the external SMA actuator. A modular design of a new prosthesis was developed which incorporated a novel SMA actuator for the index finger movement. The primary objective of the prosthesis is achieved, obtaining a modular and functional low-cost prosthesis based on additive manufacturing executed by a novel SMA actuator. The external SMA actuator provides a modular system which allows implementing it in different systems. This paper combines rapid prototyping and a novel SMA actuator to develop a new concept of modular and operative low-cost prosthetic hand.

  10. Contrast in low-cost operational concepts for orbiting satellites

    NASA Astrophysics Data System (ADS)

    Walyus, Keith D.; Reis, James; Bradley, Arthur J.

    2002-12-01

    Older spacecraft missions, especially those in low Earth orbit with telemetry intensive requirements, required round-the-clock control center staffing. The state of technology relied on control center personnel to continually examine data, make decisions, resolve anomalies, and file reports. Hubble Space Telescope (HST) is a prime example of this description. Technological advancements in hardware and software over the last decade have yielded increases in productivity and operational efficiency, which result in lower cost. The re-engineering effort of HST, which has recently concluded, utilized emerging technology to reduce cost and increase productivity. New missions, of which NASA's Transition Region and Coronal Explorer Satellite (TRACE) is an example, have benefited from recent technological advancements and are more cost-effective than when HST was first launched. During its launch (1998) and early orbit phase, the TRACE Flight Operations Team (FOT) employed continually staffed operations. Yet once the mission entered its nominal phase, the FOT reduced their staffing to standard weekday business hours. Operations were still conducted at night and during the weekends, but these operations occurred autonomously without compromising their high standards for data collections. For the HST, which launched in 1990, reduced cost operations will employ a different operational concept, when the spacecraft enters its low-cost phase after its final servicing mission in 2004. Primarily due to the spacecraft"s design, the HST Project has determined that single-shift operations will introduce unacceptable risks for the amount of dollars saved. More importantly, significant cost-savings can still be achieved by changing the operational concept for the FOT, while still maintaining round-the-clock staffing. It"s important to note that the low-cost solutions obtained for one satellite may not be applicable for other satellites. This paper will contrast the differences between

  11. Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades |

    Science.gov Websites

    Turbine Blades Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades At its Composites Arkema's Elium liquid thermoplastic resin. Photo of men working on turbine blades in a dome-shaped building composite structures of wind turbine blades. Capabilities Learn more about NREL's IACMI projects and its

  12. Low-cost distributed solar-thermal-electric power generation

    NASA Astrophysics Data System (ADS)

    Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.

    2004-01-01

    Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.

  13. Workshop Report on Additive Manufacturing for Large-Scale Metal Components - Development and Deployment of Metal Big-Area-Additive-Manufacturing (Large-Scale Metals AM) System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Peter, William H.

    Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact ofmore » the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii

  14. PCS: a pallet costing system for wood pallet manufacturers (version 1.0 for Windows®)

    Treesearch

    A. Jefferson, Jr. Palmer; Cynthia D. West; Bruce G. Hansen; Marshall S. White; Hal L. Mitchell

    2002-01-01

    The Pallet Costing System (PCS) is a computer-based, Microsoft Windows® application that computes the total and per-unit cost of manufacturing an order of wood pallets. Information about the manufacturing facility, along with the pallet-order requirements provided by the customer, is used in determining production cost. The major cost factors addressed by PCS...

  15. Programmable Ultra Lightweight System Adaptable Radio (PULSAR) Low Cost Telemetry - Access from Space Advanced Technologies or Down the Middle

    NASA Technical Reports Server (NTRS)

    Sims. Herb; Varnavas, Kosta; Eberly, Eric

    2013-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, presently qualified satellite transponder applications were developed during the early 1960's space program. Programmable Ultra Lightweight System Adaptable Radio (PULSAR, NASA-MSFC SDR) technology revolutionizes satellite transponder technology by increasing data through-put capability by, at least, an order of magnitude. PULSAR leverages existing Marshall Space Flight Center SDR designs and commercially enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations will (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space transponders, (2) decrease power requirements, and (3) a commensurate volume reduction. Also, PULSAR increases flexibility to implement multiple transponder types by utilizing the same hardware with altered logic - no analog hardware change is required - all of which can be accomplished in orbit. This provides high capability, low cost, transponders to programs of all sizes. The final project outcome would be the introduction of a Technology Readiness Level (TRL) 7 low-cost CubeSat to SmallSat telemetry system into the NASA Portfolio.

  16. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  17. Low-cost/high-efficiency lasers for medical applications in the 14XX-nm regime

    NASA Astrophysics Data System (ADS)

    Callahan, J. J.; McIntyre, E.; Rafferty, C.; Yanushefski, L.; Bean, D. M.

    2011-03-01

    Laser therapy is becoming an increasingly popular method of treating numerous dermatological conditions. The widespread use of these devices is often limited by the cost and size. Low cost, portable lasers would expand the laser market further into homes, general practitioners, dermatologists, plastic surgeons, and 3rd world countries. There are numerous light devices currently on the market for hair removal and growth, acne reduction, and wrinkles. These devices are varied, from LEDs to intense pulsed light (IPL) to lasers. One particular disease is leishmaniasis, caused by a parasite carried by sand flies, most often occurring in third world countries. While there are drug therapies available, they sometimes require hospitalization for several days and are very expensive. An RF device has been FDA approved for treatment of leishmaniasis, but costs about $20,000 which is too expensive for widespread use. Since the method is heating the lesion, the same affect could be achieved using an infrared laser. Diode lasers have the capability to be produced in mass quantity for low costs, as shown by the ubiquity of diode lasers in the telecom industry and household appliances. Unfortunately, many diode lasers suffer from poor efficiency, particularly in wavelengths for dermatology. Advances are being made to improve wall plug efficiency of lasers to reduce waste heat and increase output power. In this paper, those efforts being made to develop manufacturing partners to lower the cost while increasing the production volume of long wavelength lasers will be discussed along with performance data and clinical results.

  18. Family System of Advanced Charring Ablators for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.

    2005-01-01

    Advanced Ablators Program Objectives: 1) Flight-ready(TRL-6) ablative heat shields for deep-space missions; 2) Diversity of selection from family-system approach; 3) Minimum weight systems with high reliability; 4) Optimized formulations and processing; 5) Fully characterized properties; and 6) Low-cost manufacturing. Definition and integration of candidate lightweight structures. Test and analysis database to support flight-vehicle engineering. Results from production scale-up studies and production-cost analyses.

  19. A Profile of Defense Manufacturing Costs and Enabling Technologies

    DTIC Science & Technology

    1992-01-01

    RECEIVE MODULE F Missiles 75mm Cadmium Zinc Telluride F 94 GHZ MILLIMETER WAVE TRANSCEIVER F COMPOSITES FOR PASSIVE THERMAL MANAGEMENT F COMPOSITES FOR... PASSIVE THERMAL MANAGEMENT F Design standards for surface mount devices I Electro-optic Components Advanced Manufacturing PrDcess I FIBER OPTIC

  20. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    NASA Astrophysics Data System (ADS)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  1. Advanced Low-Cost O2/H2 Engines for the SSTO Application

    NASA Technical Reports Server (NTRS)

    Goracke, B. David; Levack, Daniel J. H.; Nixon, Robert F.

    1994-01-01

    The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.

  2. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    PubMed

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  3. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries

    PubMed Central

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  4. Advances in LED packaging and thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  5. PowerGuard® manufacturing innovation and expansion

    NASA Astrophysics Data System (ADS)

    Dinwoodie, Thomas; Kleiner, Tim; O'Brien, Colleen; Quiroz, Maurice

    1999-03-01

    PowerLight Corporation, with support from the DOE's PVMaT program, has undertaken a comprehensive agenda to automate the manufacture of its PowerGuard PV roof tile system. The advanced manufacturing will lead to substantially reduced costs, quality improvements, and increased production capacity. Over the three years of the PVMaT contract, system costs are expected to fall 2.65/Wp, with annual production capability increasing from 5 to 16 MW. PowerLight is on schedule with meeting its objectives under this program.

  6. Low cost microfluidic device based on cotton threads for electroanalytical application.

    PubMed

    Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto

    2016-01-21

    Microfluidic devices are an interesting alternative for performing analytical assays, due to the speed of analyses, reduced sample, reagent and solvent consumption and less waste generation. However, the high manufacturing costs still prevent the massive use of these devices worldwide. Here, we present the construction of a low cost microfluidic thread-based electroanalytical device (μTED), employing extremely cheap materials and a manufacturing process free of equipment. The microfluidic channels were built with cotton threads and the estimated cost per device was only $0.39. The flow of solutions (1.12 μL s(-1)) is generated spontaneously due to the capillary forces, eliminating the use of any pumping system. To demonstrate the analytical performance of the μTED, a simultaneous determination of acetaminophen (ACT) and diclofenac (DCF) was performed by multiple pulse amperometry (MPA). A linear dynamic range (LDR) of 10 to 320 μmol L(-1) for both species, a limit of detection (LOD) and a limit of quantitation (LOQ) of 1.4 and 4.7 μmol L(-1) and 2.5 and 8.3 μmol L(-1) for ACT and DCF, respectively, as well as an analytical frequency of 45 injections per hour were reached. Thus, the proposed device has shown potential to extend the use of microfluidic analytical devices, due to its simplicity, low cost and good analytical performance.

  7. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalablemore » manufacture of said subwavelength coatings.« less

  8. Advances in photonics thermal management and packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  9. Real-time control for manufacturing space shuttle main engines: Work in progress

    NASA Technical Reports Server (NTRS)

    Ruokangas, Corinne C.

    1988-01-01

    During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.

  10. Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.

    1996-01-01

    Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.

  11. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visco, Steven J

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated tomore » transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It

  12. Technical considerations for designing low-cost, long-wave infrared objectives

    NASA Astrophysics Data System (ADS)

    Desroches, Gerard; Dalzell, Kristy; Robitaille, Blaise

    2014-06-01

    With the growth of uncooled infrared imaging in the consumer market, the balance between cost implications and performance criteria in the objective lens must be examined carefully. The increased availability of consumer-grade, long-wave infrared cameras is related to a decrease in military usage but it is also due to the decreasing costs of the cameras themselves. This has also driven up demand for low-cost, long-wave objectives that can resolve smaller pixels while maintaining high performance. Smaller pixels are traditionally associated with high cost objectives because of higher resolution requirements but, with careful consideration of all the requirements and proper selection of materials, costs can be moderated. This paper examines the cost/performance trade-off implications associated with optical and mechanical requirements of long-wave infrared objectives. Optical performance, f-number, field of view, distortion, focus range and thermal range all affect the cost of the objective. Because raw lens material cost is often the most expensive item in the construction, selection of the material as well as the shape of the lens while maintaining acceptable performance and cost targets were explored. As a result of these considerations, a low-cost, lightweight, well-performing objective was successfully designed, manufactured and tested.

  13. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    ERIC Educational Resources Information Center

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90…

  14. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms.

    PubMed

    Dou, Maowei; Sanjay, Sharma Timilsina; Benhabib, Merwan; Xu, Feng; Li, XiuJun

    2015-12-01

    Low-cost assays have broad applications ranging from human health diagnostics and food safety inspection to environmental analysis. Hence, low-cost assays are especially attractive for rural areas and developing countries, where financial resources are limited. Recently, paper-based microfluidic devices have emerged as a low-cost platform which greatly accelerates the point of care (POC) analysis in low-resource settings. This paper reviews recent advances of low-cost bioanalysis on paper-based microfluidic platforms, including fully paper-based and paper hybrid microfluidic platforms. In this review paper, we first summarized the fabrication techniques of fully paper-based microfluidic platforms, followed with their applications in human health diagnostics and food safety analysis. Then we highlighted paper hybrid microfluidic platforms and their applications, because hybrid platforms could draw benefits from multiple device substrates. Finally, we discussed the current limitations and perspective trends of paper-based microfluidic platforms for low-cost assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  16. Warranty Policies: Consumer Value Versus Manufacturer Costs.

    DTIC Science & Technology

    1981-04-28

    manufacturer’s point of view, the one quantity which stands out when comparing warranty policies is the profit per customer. Profit per item sold does not work...types of warranties but most seem to fall into one of two categories as defined by the Federal Trade Commission. These two categories are the "full...managerial decision of choosing the type and length of warranty to offer. This advance in "consumerism" will require increasing attention on the part of

  17. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, William G.; Rios, Orlando; Akers, Ronald R.

    To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those createdmore » using a resistive heated nozzle.« less

  18. A low cost method for hard x-ray grating interferometry.

    PubMed

    Du, Yang; Lei, Yaohu; Liu, Xin; Huang, Jianheng; Zhao, Zhigang; Guo, Jinchuan; Li, Ji; Niu, Hanben

    2016-12-07

    Grating interferometry is advantageous over conventional x-ray absorption imaging because it enables the detection of samples constituted by low atomic number elements (low-Z materials). Therefore, it has a potential application in biological science and medical diagnostics. The grating interferometry has some critical optics components such as absorption gratings which are conventionally manufactured by the lithography, electroplating, and molding (LIGA) technique and employing gold as the absorbent material in it. However, great challenge lies in its implementations for practical applications because of the cost and difficulty to achieve high aspect ratio absorbing grating devices. In this paper, we present a low-cost approach that involves using the micro-casting technique with bismuth (Bi) as the absorber in source grating and as well as filling cesium iodide thallium(CsI:Tl) in a periodically structured scintillator. No costly facilities as synchrotron radiation are required and cheap material is used in our approach. Our experiment using these components shows high quality complementary images can be obtained with contrast of absorption, phase and visibility. This alternative method conquers the limitation of costly grating devices for a long time and stands an important step towards the further practical application of grating interferometry.

  19. Low-cost directionally-solidified turbine blades, volume 1

    NASA Technical Reports Server (NTRS)

    Sink, L. W.; Hoppin, G. S., III; Fujii, M.

    1979-01-01

    A low cost process of manufacturing high stress rupture strength directionally-solidified high pressure turbine blades was successfully developed for the TFE731-3 Turbofan Engine. The basic processing parameters were established using MAR-M 247 and employing the exothermic directional-solidification process in trial castings of turbine blades. Nickel-based alloys were evaluated as directionally-solidified cast blades. A new turbine blade, disk, and associated components were then designed using previously determined material properties. Engine tests were run and the results were analyzed and compared to the originally established goals. The results showed that the stress rupture strength of exothermically heated, directionally-solidified MAR-M 247 turbine blades exceeded program objectives and that the performance and cost reduction goals were achieved.

  20. Cost Modeling for low-cost planetary missions

    NASA Technical Reports Server (NTRS)

    Kwan, Eric; Habib-Agahi, Hamid; Rosenberg, Leigh

    2005-01-01

    This presentation will provide an overview of the JPL parametric cost models used to estimate flight science spacecrafts and instruments. This material will emphasize the cost model approaches to estimate low-cost flight hardware, sensors, and instrumentation, and to perform cost-risk assessments. This presentation will also discuss JPL approaches to perform cost modeling and the methodologies and analyses used to capture low-cost vs. key cost drivers.

  1. Prepreg and Melt Infiltration Technology Developed for Affordable, Robust Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Petko, Jeannie F.

    2004-01-01

    Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.

  2. Low-Cost, Rugged High-Vacuum System

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert

    2012-01-01

    A need exists for miniaturized, rugged, low-cost high-vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other analytical instruments such as scanning electron microscopes. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was developed based on a very small, rugged, and inexpensive-to-manufacture molecular drag pump (MDP). The MDP is enabled by a miniature, very-high-speed (200,000 rpm), rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. The key advantages of the pump are reduced cost and improved ruggedness compared to other mechanical hig-hvacuum pumps. The machining of the rotor and stators is very simple compared to that necessary to fabricate rotor and stator blades for other pump designs. Also, the symmetry of the rotor is such that dynamic balancing of the rotor will likely not be necessary. Finally, the number of parts in the unit is cut by nearly a factor of three over competing designs. The new pump forms the heart of a complete vacuum system optimized to support analytical instruments in terrestrial applications and on spacecraft and planetary landers. The MDP achieves high vacuum coupled to a ruggedized diaphragm rough pump. Instead of the relatively complicated rotor and stator blades used in turbomolecular pumps, the rotor in the MDP consists of a simple, smooth cylinder of aluminum. This will turn at approximately 200,000 rpm inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the

  3. Integration of Photo-Patternable Low-κ Material into Advanced Cu Back-End-Of-The-Line

    NASA Astrophysics Data System (ADS)

    Lin, Qinghuang; Nelson, Alshakim; Chen, Shyng-Tsong; Brock, Philip; Cohen, Stephan A.; Davis, Blake; Kaplan, Richard; Kwong, Ranee; Liniger, Eric; Neumayer, Debra; Patel, Jyotica; Shobha, Hosadurga; Sooriyakumaran, Ratnam; Purushothaman, Sampath; Miller, Robert; Spooner, Terry; Wisnieff, Robert

    2010-05-01

    We report herein the demonstration of a simple, low-cost Cu back-end-of-the-line (BEOL) dual-damascene integration using a novel photo-patternable low-κ dielectric material concept that dramatically reduces Cu BEOL integration complexity. This κ=2.7 photo-patternable low-κ material is based on the SiCOH-based material platform and has sub-200 nm resolution capability with 248 nm optical lithography. Cu/photo-patternable low-κ dual-damascene integration at 45 nm node BEOL fatwire levels has been demonstrated with very high electrical yields using the current manufacturing infrastructure. The photo-patternable low-κ concept is, therefore, a promising technology for highly efficient semiconductor Cu BEOL manufacturing.

  4. A Low Cost Single Chip VDL Compatible Transceiver ASIC

    NASA Technical Reports Server (NTRS)

    Becker, Robert

    2004-01-01

    Recent trends in commercial communications system components have focussed almost exclusively on cellular telephone technology. As many of the traditional sources of receiver components have discontinued non-cellular telephone products, the designers of avionics and other low volume radio applications find themselves increasingly unable to find highly integrated components. This is particularly true for low power, low cost applications which cannot afford the lavish current consumption of the software defined radio approach increasingly taken by certified device manufacturers. In this paper, we describe a low power transceiver chip targeting applications from low VHF to low UHF frequencies typical of avionics systems. The chip encompasses a selectable single or double conversion design for the receiver and a low power IF upconversion transmitter. All local oscillators are synthesized and integrated into the chip. An on-chip I-Q modulator and demodulator provide baseband modulation and demodulation capability allowing the use of low power, fixed point signal processing components for signal demodulation. The goal of this program is to demonstrate a low cost VDL mode-3 transceiver using this chip to receive text weather information sent using 4-slot TDMA with no support for voice. The data will be sent from an experimental ground station. This work is funded by NASA Glenn Research Center.

  5. Pathways toward a low cost evacuated collector system

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.

    The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.

  6. Advanced Flaw Manufacturing and Crack Growth Control

    NASA Astrophysics Data System (ADS)

    Kemppainen, M.; Pitkänen, J.; Virkkunen, I.; Hänninen, H.

    2004-02-01

    Advanced artificial flaw manufacturing method has become available. The method produces true fatigue cracks, which are representative of most service-induced cracks. These cracks can be used to simulate behaviour of realistic cracks under service conditions. This paper introduces studies of the effects of different thermal loading cycles to crack opening and residual stress state as seen at the surface of the sample and in the ultrasonic signal. In-situ measurements were performed under dynamic thermal fatigue loading of a 20 mm long artificial crack.

  7. Design concepts for low-cost composite turbofan engine frame

    NASA Technical Reports Server (NTRS)

    Mitchell, S. C.; Stoffer, L. J.

    1980-01-01

    Design concepts for low cost, lightweight composite engine frames were applied to the design requirements for the frame of a commercial, high bypass engine. Four alternative composite frame design concepts identified which consisted of generic type components and subcomponents that could be adapted to use in different locations in the engine and the different engine sizes. A variety of materials and manufacturing methods were projected with a goal for the lowest number of parts at the lowest possible cost. After a preliminary evaluation of all four frame concepts, two designs were selected for an extended design and evaluation which narrowed the final selection down to one frame that was significantly lower in cost and slighty lighter than the other frame. An implementation plan for this lowest cost frame is projected for future development and includes prospects for reducing its weight with proposed unproven, innovative fabrication techniques.

  8. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  9. Silicon web process development. [for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.

  10. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  11. Strategic research on the sustainable development cost of manufacturing industry under the background of carbon allowance and trade policy

    NASA Astrophysics Data System (ADS)

    Ma, Zhongmin; Cheng, Mengting; Wang, Mei

    2017-08-01

    The important subjects of energy consumption and carbon emission are manufacturing enterprises, with the deepening of international cooperation, and the implementation of carbon limit and trade policy, costs of manufacturing industry will rise sharply. How can the manufacturing industry survive in this reform, and it has to be a problem that the managers of the manufacturing industry need to solve. This paper analyses sustainable development cost connotation and value basis on the basis of sustainable development concept, discusses the influence of carbon allowance and trade policy for cost strategy of manufacturing industry, thinks that manufacturing industry should highlight social responsibility and realize maximization of social value, implement cost strategy the sustainable development, and pointed out the implementation way.

  12. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  13. Using microwave Doppler radar in automated manufacturing applications

    NASA Astrophysics Data System (ADS)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help

  14. Low energy stage study. Volume 5: Program study cost elements and appendices. [orbital launching of space shuttle payloads

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The methodology and rationale used in the development of costs for engineering, manufacturing, testing and operating a low thrust system for placing automated shuttle payloads into earth orbits are described. Cost related information for the recommended propulsion approach is included.

  15. Affordable Design: A Methodolgy to Implement Process-Based Manufacturing Cost into the Traditional Performance-Focused Multidisciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.

    2000-01-01

    The primary objective of this paper is to demonstrate the use of process-based manufacturing and assembly cost models in a traditional performance-focused multidisciplinary design and optimization process. The use of automated cost-performance analysis is an enabling technology that could bring realistic processbased manufacturing and assembly cost into multidisciplinary design and optimization. In this paper, we present a new methodology for incorporating process costing into a standard multidisciplinary design optimization process. Material, manufacturing processes, and assembly processes costs then could be used as the objective function for the optimization method. A case study involving forty-six different configurations of a simple wing is presented, indicating that a design based on performance criteria alone may not necessarily be the most affordable as far as manufacturing and assembly cost is concerned.

  16. Color reproduction for advanced manufacture of soft tissue prostheses.

    PubMed

    Xiao, Kaida; Zardawi, Faraedon; van Noort, Richard; Yates, Julian M

    2013-11-01

    The objectives of this study were to develop a color reproduction system in advanced manufacture technology for accurate and automatic processing of soft tissue prostheses. The manufacturing protocol was defined to effectively and consistently produce soft tissue prostheses using a 3D printing system. Within this protocol printer color profiles were developed using a number of mathematical models for the proposed 3D color printing system based on 240 training colors. On this basis, the color reproduction system was established and their system errors including accuracy of color reproduction, performance of color repeatability and color gamut were evaluated using 14 known human skin shades. The printer color profile developed using the third-order polynomial regression based on least-square fitting provided the best model performance. The results demonstrated that by using the proposed color reproduction system, 14 different skin colors could be reproduced and excellent color reproduction performance achieved. Evaluation of the system's color repeatability revealed a demonstrable system error and this highlighted the need for regular evaluation. The color gamut for the proposed 3D printing system was simulated and it was demonstrated that the vast majority of skin colors can be reproduced with the exception of extreme dark or light skin color shades. This study demonstrated that the proposed color reproduction system can be effectively used to reproduce a range of human skin colors for application in advanced manufacture of soft tissue prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radaelli, Guido; Chachra, Gaurav; Jonnavittula, Divya

    In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The outputmore » of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.« less

  18. Mars Relay Satellite: Key to Enabling Low-Cost Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hastrup, R.; Cesarone, R.; Miller, A.

    1993-01-01

    Recently, there has been increasing evidence of a renewed focus on Mars exploration both by NASA and the international community. The thrust of this renewed interest appears to be manifesting itself in numerous low-cost missions employing small, light weight elements, which utilize advanced technologies including integrated microelectronics. A formidable problem facing these low-cost missions is communications with Earth. Providing adequate direct-link performance has very significant impacts on spacecraft power, pointing, mass and overall complexity. Additionally, for elements at or near the surface of Mars, there are serious connectivity constraints, especially at higher latitudes, which lose view of Earth for up to many months at a time. This paper will discuss the role a Mars relay satellite can play in enabling and enhancing low-cost missions to Mars...

  19. Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences.

    PubMed

    Zuniga, Jorge; Katsavelis, Dimitrios; Peck, Jean; Stollberg, John; Petrykowski, Marc; Carson, Adam; Fernandez, Cristina

    2015-01-20

    There is an increasing number of children with traumatic and congenital hand amputations or reductions. Children's prosthetic needs are complex due to their small size, constant growth, and psychosocial development. Families' financial resources play a crucial role in the prescription of prostheses for their children, especially when private insurance and public funding are insufficient. Electric-powered (i.e., myoelectric) and body-powered (i.e., mechanical) devices have been developed to accommodate children's needs, but the cost of maintenance and replacement represents an obstacle for many families. Due to the complexity and high cost of these prosthetic hands, they are not accessible to children from low-income, uninsured families or to children from developing countries. Advancements in computer-aided design (CAD) programs, additive manufacturing, and image editing software offer the possibility of designing, printing, and fitting prosthetic hands devices at a distance and at very low cost. The purpose of this preliminary investigation was to describe a low-cost three-dimensional (3D)-printed prosthetic hand for children with upper-limb reductions and to propose a prosthesis fitting methodology that can be performed at a distance. No significant mean differences were found between the anthropometric and range of motion measurements taken directly from the upper limbs of subjects versus those extracted from photographs. The Bland and Altman plots show no major bias and narrow limits of agreements for lengths and widths and small bias and wider limits of agreements for the range of motion measurements. The main finding of the survey was that our prosthetic device may have a significant potential to positively impact quality of life and daily usage, and can be incorporated in several activities at home and in school. This investigation describes a low-cost 3D-printed prosthetic hand for children and proposes a distance fitting procedure. The Cyborg Beast

  20. Feasibility and process scale-up low cost alumina fibers for advanced Re-usable Surface Insulation (RSI)

    NASA Technical Reports Server (NTRS)

    Pearson, A.

    1975-01-01

    The objective of this program was to establish feasibility of a process to produce low cost aluminum oxide fibers having sufficient strength, flexibility, and thermal stability for multiple re-use at temperatures to 1480 C in advanced RSI type heat shields for reentry vehicles. Using bench-scale processing apparatus, the Alcoa 'Saphiber' process was successfully modified to produce nominally 8 microns diameter polycrystalline alpha-alumina fiber. Thermal stability was demonstrated in vacuum reheating tests to 1371 C and in atmospheric reheating to 1483 C. Individual fiber properties of strength, modulus, and flexibility were not determined because of friability and short length of the fiber. Rigidized tile produced from fiber of nominally 8, 20 and 40 micron diameter had thermal conductivities significantly higher than those of RSI SiO2 or mullite at relatively low temperature but became comparable above about 1000 C. Tile densities were high due to short fiber length, especially in the coarser diameter fiber. No significant effect of fiber diameter on thermal properties could be determined form the data. Mechanical properties of tiles deteriorated as fiber diameter increased.

  1. Implementation of activity-based costing (ABC) to drive cost reduction efforts in a semiconductor manufacturing operation

    NASA Astrophysics Data System (ADS)

    Naguib, Hussein; Bol, Igor I.; Lora, J.; Chowdhry, R.

    1994-09-01

    This paper presents a case study on the implementation of ABC to calculate the cost per wafer and to drive cost reduction efforts for a new IC product line. The cost reduction activities were conducted through the efforts of 11 cross-functional teams which included members of the finance, purchasing, technology development, process engineering, equipment engineering, production control, and facility groups. The activities of these cross functional teams were coordinated by a cost council. It will be shown that these activities have resulted in a 57% reduction in the wafer manufacturing cost of the new product line. Factors contributed to successful implementation of an ABC management system are discussed.

  2. Manufacture of patient-specific vascular replicas for endovascular simulation using fast, low-cost method

    NASA Astrophysics Data System (ADS)

    Kaneko, Naoki; Mashiko, Toshihiro; Ohnishi, Taihei; Ohta, Makoto; Namba, Katsunari; Watanabe, Eiju; Kawai, Kensuke

    2016-12-01

    Patient-specific vascular replicas are essential to the simulation of endovascular treatment or for vascular research. The inside of silicone replica is required to be smooth for manipulating interventional devices without resistance. In this report, we demonstrate the fabrication of patient-specific silicone vessels with a low-cost desktop 3D printer. We show that the surface of an acrylonitrile butadiene styrene (ABS) model printed by the 3D printer can be smoothed by a single dipping in ABS solvent in a time-dependent manner, where a short dip has less effect on the shape of the model. The vascular mold is coated with transparent silicone and then the ABS mold is dissolved after the silicone is cured. Interventional devices can pass through the inside of the smoothed silicone vessel with lower pushing force compared to the vessel without smoothing. The material cost and time required to fabricate the silicone vessel is about USD $2 and 24 h, which is much lower than the current fabrication methods. This fast and low-cost method offers the possibility of testing strategies before attempting particularly difficult cases, while improving the training of endovascular therapy, enabling the trialing of new devices, and broadening the scope of vascular research.

  3. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  4. LSA Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  5. Collaborative Manufacturing for Small-Medium Enterprises

    NASA Astrophysics Data System (ADS)

    Irianto, D.

    2016-02-01

    Manufacturing systems involve decisions concerning production processes, capacity, planning, and control. In a MTO manufacturing systems, strategic decisions concerning fulfilment of customer requirement, manufacturing cost, and due date of delivery are the most important. In order to accelerate the decision making process, research on decision making structure when receiving order and sequencing activities under limited capacity is required. An effective decision making process is typically required by small-medium components and tools maker as supporting industries to large industries. On one side, metal small-medium enterprises are expected to produce parts, components or tools (i.e. jigs, fixture, mold, and dies) with high precision, low cost, and exact delivery time. On the other side, a metal small- medium enterprise may have weak bargaining position due to aspects such as low production capacity, limited budget for material procurement, and limited high precision machine and equipment. Instead of receiving order exclusively, a small-medium enterprise can collaborate with other small-medium enterprise in order to fulfill requirements high quality, low manufacturing cost, and just in time delivery. Small-medium enterprises can share their best capabilities to form effective supporting industries. Independent body such as community service at university can take a role as a collaboration manager. The Laboratory of Production Systems at Bandung Institute of Technology has implemented shared manufacturing systems for small-medium enterprise collaboration.

  6. Manufacturing Methods and Technology Program for Low Cost Hybrid Silicon Photodetector Modules

    DTIC Science & Technology

    1979-12-30

    RESEARCH LN EVEMN TECHNICAL REPORT 4 CORADOOM- 77- C -0489-F I CMANUFACTURING METHODS AND TECHNOLOGY PROGRAM FOR LOW COST HYBRID SILICON PHOTODETECTORS...rINAL REPORT OR US ARMY CONTRACT NO, DAAD07-77- C -0489 TITLED 11MM&TMud SURE FOR COS HYBRID SILICON PHOTODRTECTOR MODULS", DATED 79/12/30 Gentlemen...when it is no longer needed. Do not return it to the originator. D.-stributi-on! Availability COcas- :Dist c specia S I ’ Cb.A *"itI. -P0 ~~J~,+~1

  7. Automotive Manufacturers' Cost/Revenue, Financial and Risk Analysis : Projected Impact of Automobile Manufacturing on the Plastics Industry

    DOT National Transportation Integrated Search

    1979-08-01

    The report is part of a study to update the historical and projected cost/revenue analysis of the U.S. domestic automobile manufacturers. It includes the evaluation of the historical and projected financial data to assess the corporate financial posi...

  8. 'Fab-chips': a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics.

    PubMed

    Bhandari, Paridhi; Narahari, Tanya; Dendukuri, Dhananjaya

    2011-08-07

    Low cost and scalable manufacture of lab-on-chip devices for applications such as point-of-care testing is an urgent need. Weaving is presented as a unified, scalable and low-cost platform for the manufacture of fabric chips that can be used to perform such testing. Silk yarns with different properties are first selected, treated with the appropriate reagent solutions, dried and handloom-woven in one step into an integrated fabric chip. This platform has the unique advantage of scaling up production using existing and low cost physical infrastructure. We have demonstrated the ability to create pre-defined flow paths in fabric by using wetting and non-wetting silk yarns and a Jacquard attachment in the loom. Further, we show that yarn parameters such as the yarn twist frequency and weaving coverage area may be conveniently used to tune both the wicking rate and the absorptive capacity of the fabric. Yarns optimized for their final function were used to create an integrated fabric chip containing reagent-coated yarns. Strips of this fabric were then used to perform a proof-of-concept immunoassay with sample flow taking place by capillary action and detection being performed by a visual readout. This journal is © The Royal Society of Chemistry 2011

  9. Low Cost Simulator for Heart Surgery Training

    PubMed Central

    Silva, Roberto Rocha e; Lourenção, Artur; Goncharov, Maxim; Jatene, Fabio B.

    2016-01-01

    Objective Introduce the low-cost and easy to purchase simulator without biological material so that any institution may promote extensive cardiovascular surgery training both in a hospital setting and at home without large budgets. Methods A transparent plastic box is placed in a wooden frame, which is held by the edges using elastic bands, with the bottom turned upwards, where an oval opening is made, "simulating" a thoracotomy. For basic exercises in the aorta, the model presented by our service in the 2015 Brazilian Congress of Cardiovascular Surgery: a silicone ice tray, where one can train to make aortic purse-string suture, aortotomy, aortorrhaphy and proximal and distal anastomoses. Simulators for the training of valve replacement and valvoplasty, atrial septal defect repair and aortic diseases were added. These simulators are based on sewage pipes obtained in construction material stores and the silicone trays and ethyl vinyl acetate tissue were obtained in utility stores, all of them at a very low cost. Results The models were manufactured using inert materials easily found in regular stores and do not present contamination risk. They may be used in any environment and maybe stored without any difficulties. This training enabled young surgeons to familiarize and train different surgical techniques, including procedures for aortic diseases. In a subjective assessment, these surgeons reported that the training period led to improved surgical techniques in the surgical field. Conclusion The model described in this protocol is effective and low-cost when compared to existing simulators, enabling a large array of cardiovascular surgery training. PMID:28076623

  10. Low-Cost Composite Materials and Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  11. Low-cost oblique illumination: an image quality assessment.

    PubMed

    Ruiz-Santaquiteria, Jesus; Espinosa-Aranda, Jose Luis; Deniz, Oscar; Sanchez, Carlos; Borrego-Ramos, Maria; Blanco, Saul; Cristobal, Gabriel; Bueno, Gloria

    2018-01-01

    We study the effectiveness of several low-cost oblique illumination filters to improve overall image quality, in comparison with standard bright field imaging. For this purpose, a dataset composed of 3360 diatom images belonging to 21 taxa was acquired. Subjective and objective image quality assessments were done. The subjective evaluation was performed by a group of diatom experts by psychophysical test where resolution, focus, and contrast were assessed. Moreover, some objective nonreference image quality metrics were applied to the same image dataset to complete the study, together with the calculation of several texture features to analyze the effect of these filters in terms of textural properties. Both image quality evaluation methods, subjective and objective, showed better results for images acquired using these illumination filters in comparison with the no filtered image. These promising results confirm that this kind of illumination filters can be a practical way to improve the image quality, thanks to the simple and low cost of the design and manufacturing process. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Printable low-cost sensor systems for healthcare smart textiles

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.

    2011-04-01

    Smart textiles-based wearable health monitoring systems (ST-HMS) have been presented as elegant solutions to the requirements of individuals across a wide range of ages. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. Business and academic interests, all over the world, have fueled a great deal of work in the development of this technology since 1990. However, two important impediments to the development of ST-HMS are:-integration of flexible electrodes, flexible sensors, signal conditioning circuits and data logging or wireless transmission devices into a seamless garment and a means to mass manufacture the same, while keeping the costs low. Roll-to-roll printing and screen printing are two low cost methods for large scale manufacturing on flexible substrates and can be extended to textiles as well. These two methods are, currently, best suited for planar structures. The sensors, integrated with wireless telemetry, facilitate development of a ST-HMS that allows for unobtrusive health monitoring. In this paper, we present our results with planar screen printable sensors based on conductive inks which can be used to monitor EKG, abdominal respiration effort, blood pressure, pulse rate and body temperature. The sensor systems were calibrated, and tested for sensitivity, reliability and robustness to ensure reuse after washing cycles.

  13. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    PubMed Central

    Craw, Pascal; Mackay, Ruth E.; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S. Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  14. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  15. Producibility aspects of advanced composites for an L-1011 Aileron

    NASA Technical Reports Server (NTRS)

    Van Hamersveld, J.; Fogg, L. D.

    1976-01-01

    The design of advanced composite aileron suitable for long-term service on transport aircraft includes Kevlar 49 fabric skins on honeycomb sandwich covers, hybrid graphite/Kevlar 49 ribs and spars, and graphite/epoxy fittings. Weight and cost savings of 28 and 20 percent, respectively, are predicted by comparison with the production metallic aileron. The structural integrity of the design has been substantiated by analysis and static tests of subcomponents. The producibility considerations played a key role in the selection of design concepts with potential for low-cost production. Simplicity in fabrication is a major factor in achieving low cost using advanced tooling and manufacturing methods such as net molding to size, draping, forming broadgoods, and cocuring components. A broadgoods dispensing machine capable of handling unidirectional and bidirectional prepreg materials in widths ranging from 12 to 42 inches is used for rapid layup of component kits and covers. Existing large autoclaves, platen presses, and shop facilities are fully exploited.

  16. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  17. Compact and low-cost fiber optic thermometer

    NASA Astrophysics Data System (ADS)

    Sun, Mei H.

    1997-06-01

    Commercial fiberoptic thermometers have been available for a number of years. The early products were unreliable and high in price. However, the continuing effort in the development of new sensing techniques along with the breakthroughs made in many areas of optoelectronics in recent years have made the production of cost competitive and reliable systems feasible. A fluorescence decay time based system has been demonstrated to successfully meet both cost and performance requirements for various medical applications. A very critical element to the success of this low cost and compact fiberoptic thermometer is the fluorescent sensor material. The very high quantum efficiency, the operating wavelengths, and the temperature sensitivity helped significantly in simplifying the design requirements for the optics and the electronics. The one to eight channel unit contains one to eight modules of a simple optical assembly: an LED light source, a small lens, and a filter are housed in an injection molded plastic container. Both the electronics and the optics reside on a small printed circuit board of approximately 6 inches by 3 inches. This system can be packaged as a stand alone unit or embedded in original manufacturer equipment.

  18. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibilitymore » of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but

  19. Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, Rebecca; Carpenter Petri, Alberta C; Riddle, Matt

    Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristicmore » is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified

  20. Cost comparisons for the use of nonterrestrial materials in space manufacturing of large structures

    NASA Technical Reports Server (NTRS)

    Bock, E. H.; Risley, R. C.

    1979-01-01

    This paper presents results of a study sponsored by NASA to evaluate the relative merits of constructing solar power satellites (SPS) using resources obtained from the earth and from the moon. Three representative lunar resources utilization (LRU) concepts are developed and compared with a previously defined earth baseline concept. Economic assessment of the alternatives includes cost determination, economic threshold sensitivity to manufacturing cost variations, cost uncertainties, program funding schedule, and present value of costs. Results indicate that LRU for space construction is competitive with the earth baseline approach for a program requiring 100,000 metric tons per year of completed satellites. LRU can reduce earth-launched cargo requirements to less than 10% of that needed to build satellites exclusively from earth materials. LRU is potentially more cost-effective than earth-derived material utilization, due to significant reductions in both transportation and manufacturing costs. Because of uncertainties, cost-effectiveness cannot be ascertained with great confidence. The probability of LRU attaining a lower total program cost within the 30-year program appears to range from 57 to 93%.

  1. Utilization of UV Curing Technology to Significantly Reduce the Manufacturing Cost of LIB Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelker, Gary; Arnold, John

    2015-11-30

    Previously identified novel binders and associated UV curing technology have been shown to reduce the time required to apply and finish electrode coatings from tens of minutes to less than one second. This revolutionary approach can result in dramatic increases in process speeds, significantly reduced capital (a factor of 10 to 20) and operating costs, reduced energy requirements, and reduced environmental concerns and costs due to the virtual elimination of harmful volatile organic solvents and associated solvent dryers and recovery systems. The accumulated advantages of higher speed, lower capital and operating costs, reduced footprint, lack of VOC recovery, and reducedmore » energy cost is a reduction of 90% in the manufacturing cost of cathodes. When commercialized, the resulting cost reduction in Lithium batteries will allow storage device manufacturers to expand their sales in the market and thereby accrue the energy savings of broader utilization of HEVs, PHEVs and EVs in the U.S., and a broad technology export market is also envisioned.« less

  2. Advanced vehicles: Costs, energy use, and macroeconomic impacts

    NASA Astrophysics Data System (ADS)

    Wang, Guihua

    Advanced vehicles and alternative fuels could play an important role in reducing oil use and changing the economy structure. We developed the Costs for Advanced Vehicles and Energy (CAVE) model to investigate a vehicle portfolio scenario in California during 2010-2030. Then we employed a computable general equilibrium model to estimate macroeconomic impacts of the advanced vehicle scenario on the economy of California. Results indicate that, due to slow fleet turnover, conventional vehicles are expected to continue to dominate the on-road fleet and gasoline is the major transportation fuel over the next two decades. However, alternative fuels could play an increasingly important role in gasoline displacement. Advanced vehicle costs are expected to decrease dramatically with production volume and technological progress; e.g., incremental costs for fuel cell vehicles and hydrogen could break even with gasoline savings in 2028. Overall, the vehicle portfolio scenario is estimated to have a slightly negative influence on California's economy, because advanced vehicles are very costly and, therefore, the resulting gasoline savings generally cannot offset the high incremental expenditure on vehicles and alternative fuels. Sensitivity analysis shows that an increase in gasoline price or a drop in alternative fuel prices could offset a portion of the negative impact.

  3. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerflessmore » techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and

  4. Advanced Manufacturing at the Marshall Space Flight Center and Application to Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Carruth, Ralph

    2008-01-01

    There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.

  5. Advanced Manufacturing as an Online Case Study for Global Geography Education

    ERIC Educational Resources Information Center

    Glass, Michael R.; Kalafsky, Ronald V.; Drake, Dawn M.

    2013-01-01

    Advanced manufacturing continues to be an important sector for emerging and industrialized economies, therefore, remaining an important topic for economic geography education. This article describes a case study created for the Association of American Geographer's Center for Global Geography Education and its implementation. The international…

  6. Development of low-cost directionally-solidified turbine blades

    NASA Technical Reports Server (NTRS)

    Hoppin, G. S., III; Fujii, M.; Sink, L. W.

    1980-01-01

    A low-cost directionally solidified (DS) casting of turbine blades of high stress rupture is discussed. The process uses an exothermically heated mold; a newly designed solid blade was cast for the high-pressure turbine of the TFE731-3 turbofan engine. Ni-based alloys Mar-M 247 and Mar-M 200 + Hf were used. The solid DS blade replaced a conventionally cast IN100 component; a 40% cost saving is expected, with a 2.4% reduction in the takeoff specific fuel consumption. The DS Mar-M 247 blade has been selected for production in the TFE731-3B-100, and advanced version of the TFE731-3.

  7. Low cost booster and high performance orbit injection propulsion extended abstract

    NASA Technical Reports Server (NTRS)

    Sackheim, R. L.

    1994-01-01

    Space transportation is currently a major element of cost for communications satellite systems. For every dollar spent in manufacturing the satellite, somewhere between 1 and 3 dollars must be spent to launch the satellite into its initial operational orbit. This also makes the weight of the satellite a very critical cost factor because it is important to maximize the useful payload that is placed into orbit to maximize the return on the original investment. It seems apparent then, that tremendous economic advantage for satellite communications systems can be gained from improvements in two key highly leveraged propulsion areas. The first and most important economic improvement can be achieved by significantly lowering the cost of today's launch vehicles. The second gain that would greatly benefit the communications satellite business position is to increase both the useful (payload) weight placed into the orbit and the revenue generating lifetime of the satellite on-orbit. The point of this paper is to first explain that these two goals can best be achieved by cost reduction and performance increasing advancements in rocket propulsion for both the launch vehicle and for the satellite on-board apogee insertion and on-orbit velocity control systems.

  8. Suppression cost forecasts in advance of wildfire seasons

    Treesearch

    Jeffrey P. Prestemon; Karen Abt; Krista Gebert

    2008-01-01

    Approaches for forecasting wildfire suppression costs in advance of a wildfire season are demonstrated for two lead times: fall and spring of the current fiscal year (Oct. 1–Sept. 30). Model functional forms are derived from aggregate expressions of a least cost plus net value change model. Empirical estimates of these models are used to generate advance-of-season...

  9. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    NASA Technical Reports Server (NTRS)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  10. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    NASA Technical Reports Server (NTRS)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  11. Low-Noise Potential of Advanced Fan Stage Stator Vane Designs Verified in NASA Lewis Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    1999-01-01

    With the advent of new, more stringent noise regulations in the next century, aircraft engine manufacturers are investigating new technologies to make the current generation of aircraft engines as well as the next generation of advanced engines quieter without sacrificing operating performance. A current NASA initiative called the Advanced Subsonic Technology (AST) Program has set as a goal a 6-EPNdB (effective perceived noise) reduction in aircraft engine noise relative to 1992 technology levels by the year 2000. As part of this noise program, and in cooperation with the Allison Engine Company, an advanced, low-noise, high-bypass-ratio fan stage design and several advanced technology stator vane designs were recently tested in NASA Lewis Research Center's 9- by 15-Foot Low-Speed Wind Tunnel (an anechoic facility). The project was called the NASA/Allison Low Noise Fan.

  12. Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing.

    PubMed

    Zhang, Ping; Weeranoppanant, Nopphon; Thomas, Dale A; Tahara, Kohei; Stelzer, Torsten; Russell, Mary Grace; O'Mahony, Marcus; Myerson, Allan S; Lin, Hongkun; Kelly, Liam P; Jensen, Klavs F; Jamison, Timothy F; Dai, Chunhui; Cui, Yuqing; Briggs, Naomi; Beingessner, Rachel L; Adamo, Andrea

    2018-02-21

    As a demonstration of an alternative to the challenges faced with batch pharmaceutical manufacturing including the large production footprint and lengthy time-scale, we previously reported a refrigerator-sized continuous flow system for the on-demand production of essential medicines. Building on this technology, herein we report a second-generation, reconfigurable and 25 % smaller (by volume) continuous flow pharmaceutical manufacturing platform featuring advances in reaction and purification equipment. Consisting of two compact [0.7 (L)×0.5 (D)×1.3 m (H)] stand-alone units for synthesis and purification/formulation processes, the capabilities of this automated system are demonstrated with the synthesis of nicardipine hydrochloride and the production of concentrated liquid doses of ciprofloxacin hydrochloride, neostigmine methylsulfate and rufinamide that meet US Pharmacopeia standards. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Advances in the manufacturing, types, and applications of biosensors

    NASA Astrophysics Data System (ADS)

    Ravindra, Nuggehalli M.; Prodan, Camelia; Fnu, Shanmugamurthy; Padronl, Ivan; Sikha, Sushil K.

    2007-12-01

    In recent years, there have been significant technological advancements in the manufacturing, types, and applications of biosensors. Applications include clinical and non-clinical diagnostics for home, bio-defense, bio-remediation, environment, agriculture, and the food industry. Biosensors have progressed beyond the detection of biological threats such as anthrax and are finding use in a number of non-biological applications. Emerging biosensor technologies such as lab-on-a-chip have revolutionized the integration approaches for a very flexible, innovative, and user-friendly platform. An overview of the fundamentals, types, applications, and manufacturers, as well as the market trends of biosensors is presented here. Two case studies are discussed: one focused on a characterization technique—patch clamping and dielectric spectroscopy as a biological sensor—and the other about lithium phthalocyanine, a material that is being developed for in-vivo oxymetry.

  14. 38 CFR 36.4251 - Loans to finance the purchase of manufactured homes and the cost of necessary site preparation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Loans to finance the purchase of manufactured homes and the cost of necessary site preparation. 36.4251 Section 36.4251 Pensions... Manufactured Home Lot Loans § 36.4251 Loans to finance the purchase of manufactured homes and the cost of...

  15. 38 CFR 36.4251 - Loans to finance the purchase of manufactured homes and the cost of necessary site preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Loans to finance the purchase of manufactured homes and the cost of necessary site preparation. 36.4251 Section 36.4251 Pensions... Manufactured Home Lot Loans § 36.4251 Loans to finance the purchase of manufactured homes and the cost of...

  16. 38 CFR 36.4251 - Loans to finance the purchase of manufactured homes and the cost of necessary site preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Loans to finance the purchase of manufactured homes and the cost of necessary site preparation. 36.4251 Section 36.4251 Pensions... Manufactured Home Lot Loans § 36.4251 Loans to finance the purchase of manufactured homes and the cost of...

  17. 38 CFR 36.4251 - Loans to finance the purchase of manufactured homes and the cost of necessary site preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Loans to finance the purchase of manufactured homes and the cost of necessary site preparation. 36.4251 Section 36.4251 Pensions... Manufactured Home Lot Loans § 36.4251 Loans to finance the purchase of manufactured homes and the cost of...

  18. Recent advances in flexible low power cholesteric LCDs

    NASA Astrophysics Data System (ADS)

    Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.

    2006-05-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.

  19. Toward Cost-Effective Manufacturing of Silicon Solar Cells: Electrodeposition of High-Quality Si Films in a CaCl2 -based Molten Salt.

    PubMed

    Yang, Xiao; Ji, Li; Zou, Xingli; Lim, Taeho; Zhao, Ji; Yu, Edward T; Bard, Allen J

    2017-11-20

    Electrodeposition of Si films from a Si-containing electrolyte is a cost-effective approach for the manufacturing of solar cells. Proposals relying on fluoride-based molten salts have suffered from low product quality due to difficulties in impurity control. Here we demonstrate the successful electrodeposition of high-quality Si films from a CaCl 2 -based molten salt. Soluble Si IV -O anions generated from solid SiO 2 are electrodeposited onto a graphite substrate to form a dense film of crystalline Si. Impurities in the deposited Si film are controlled at low concentrations (both B and P are less than 1 ppm). In the photoelectrochemical measurements, the film shows p-type semiconductor character and large photocurrent. A p-n junction fabricated from the deposited Si film exhibits clear photovoltaic effects. This study represents the first step to the ultimate goal of developing a cost-effective manufacturing process for Si solar cells based on electrodeposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Low-Cost Nanocellulose-Reinforced High-Temperature Polymer Composites for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Tekinalp, Halil L.; Love, Lonnie J.

    2016-07-13

    ORNL worked with American Process Inc. to demonstrate the potential use of bio-based BioPlus ® lignin-coated cellulose nanofibrils (L-CNF) as a reinforcing agent in the development of polymer feedstock suitable for additive manufacturing. L-CNF-reinforced polylactic acid (PLA) testing coupons were prepared and up to 69% increase in tensile strength and 133% increase in elastic modulus were demonstrated.

  1. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

    PubMed Central

    Su, Wenjing; Cook, Benjamin S.; Fang, Yunnan; Tentzeris, Manos M.

    2016-01-01

    As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates. PMID:27713545

  2. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

    NASA Astrophysics Data System (ADS)

    Su, Wenjing; Cook, Benjamin S.; Fang, Yunnan; Tentzeris, Manos M.

    2016-10-01

    As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates.

  3. National Skill Standards for Advanced High Performance Manufacturing. Version 2.1.

    ERIC Educational Resources Information Center

    National Coalition for Advanced Manufacturing, Washington, DC.

    This document presents and discusses the national skill standards for advanced high-performance manufacturing that were developed during a project that was commissioned by the U.S. Department of Education. The introduction explains the need for national skill standards. Discussed in the next three sections are the following: benefits of national…

  4. Hughes integrated synthetic aperture radar: High performance at low cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayma, R.W.

    1996-11-01

    This paper describes the background and development of the low cost high-performance Hughes Integrated Synthetic Aperture Radar (HISAR{trademark}) which has a full range of capabilities for real-time reconnaissance, surveillance and earth resource mapping. HISAR uses advanced Synthetic Aperture Radar (SAR) technology to make operationally effective images of near photo quality, day or night and in all weather conditions. This is achieved at low cost by maximizing the use of commercially available radar and signal-processing equipment in the fabrication. Furthermore, HISAR is designed to fit into an executive-class aircraft making it available for a wide range of users. 4 refs., 8more » figs.« less

  5. New surface smoothing technologies for manufacturing of complex shaped glass components

    NASA Astrophysics Data System (ADS)

    Henkel, Sebastian; Schwager, Anne-Marie; Bliedtner, Jens; Götze, Kerstin; Rädlein, Edda; Schulze, Christian; Gerhardt, Martin; Fuhr, Michael

    2017-10-01

    The production of complex glass components with 2.5D or 3D-structures involves great effort and the need for advanced CNC-technology. Especially the final surface treatment, for generation of transparent surfaces, represents a timeconsuming and costly process. The ultrasonic-assisted grinding procedure is used to generate arbitrary shaped components and freeform-surfaces. The special kinematic principle, containing a high-frequency tool oscillation, enables efficient manufacturing processes. Surfaces produced in this way allow for application of novel smoothing methods, providing considerable advantages compared to classic polishing. It is shown, that manufacturing of transparent glass surfaces with low roughness down to Rq = 10 nm is possible, using an ultra-fine grinding process. By adding a CO2-laser polishing process, roughness can be reduced even further with a very short polishing time.

  6. Thermoplastic composite parts manufacture at Du Pont

    NASA Astrophysics Data System (ADS)

    Medwin, Steven J.; Coyle, Edward J.

    1993-01-01

    Low-cost routes to the manufacture of complex shaped composite parts have been defined using metal forming techniques and Du Pont's long discontinuous fiber (LDF) Technology. These manufacturing techniques include roll forming, stretch forming, and press forming. Near equivalence between the static, dynamic, and damage tolerance properties of LDF and continuous fiber composites have been demonstrated. Several examples are cited which demonstrate the potential for this technology to significantly reduce the cost of aerospace components.

  7. Does technology acceleration equate to mask cost acceleration?

    NASA Astrophysics Data System (ADS)

    Trybula, Walter J.; Grenon, Brian J.

    2003-06-01

    The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor sup-plier community and the manufacturers. INTERNATIONAL SEMATECH has revaluated the projected cost of advanced technology masks. Building on the methodology developed in 1996 for mask costs, this work provided a critical review of mask yields and factors relating to the manufacture of photolithography masks. The impact of the yields provided insight into the learning curve for leading edge mask manufac-turing. The projected mask set cost was surprising, and the ability to provide first and second year cost estimates provided additional information on technology introduction. From this information, the impact of technology acceleration can be added to the projected yields to evaluate the impact on mask costs.

  8. 10 CFR 440.20 - Low-cost/no-cost weatherization activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Low-cost/no-cost weatherization activities. 440.20 Section 440.20 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION WEATHERIZATION ASSISTANCE FOR LOW-INCOME PERSONS § 440.20 Low-cost/no-cost weatherization activities. (a) An eligible dwelling unit may be...

  9. Novel Low-Cost Sensor for Human Bite Force Measurement

    PubMed Central

    Fastier-Wooller, Jarred; Phan, Hoang-Phuong; Dinh, Toan; Nguyen, Tuan-Khoa; Cameron, Andrew; Öchsner, Andreas; Dao, Dzung Viet

    2016-01-01

    This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement. PMID:27509496

  10. Low-Cost and Large-Area Electronics, Roll-to-Roll Processing and Beyond

    NASA Astrophysics Data System (ADS)

    Wiesenhütter, Katarzyna; Skorupa, Wolfgang

    In the following chapter, the authors conduct a literature survey of current advances in state-of-the-art low-cost, flexible electronics. A new emerging trend in the design of modern semiconductor devices dedicated to scaling-up, rather than reducing, their dimensions is presented. To realize volume manufacturing, alternative semiconductor materials with superior performance, fabricated by innovative processing methods, are essential. This review provides readers with a general overview of the material and technology evolution in the area of macroelectronics. Herein, the term macroelectronics (MEs) refers to electronic systems that can cover a large area of flexible media. In stark contrast to well-established micro- and nano-scale semiconductor devices, where property improvement is associated with downscaling the dimensions of the functional elements, in macroelectronic systems their overall size defines the ultimate performance (Sun and Rogers in Adv. Mater. 19:1897-1916, 2007). The major challenges of large-scale production are discussed. Particular attention has been focused on describing advanced, short-term heat treatment approaches, which offer a range of advantages compared to conventional annealing methods. There is no doubt that large-area, flexible electronic systems constitute an important research topic for the semiconductor industry. The ability to fabricate highly efficient macroelectronics by inexpensive processes will have a significant impact on a range of diverse technology sectors. A new era "towards semiconductor volume manufacturing…" has begun.

  11. Estimating Drug Costs: How do Manufacturer Net Prices Compare with Other Common US Price References?

    PubMed

    Mattingly, T Joseph; Levy, Joseph F; Slejko, Julia F; Onwudiwe, Nneka C; Perfetto, Eleanor M

    2018-05-12

    Drug costs are frequently estimated in economic analyses using wholesale acquisition cost (WAC), but what is the best approach to develop these estimates? Pharmaceutical manufacturers recently released transparency reports disclosing net price increases after accounting for rebates and other discounts. Our objective was to determine whether manufacturer net prices (MNPs) could approximate the discounted prices observed by the U.S. Department of Veterans Affairs (VA). We compared the annual, average price discounts voluntarily reported by three pharmaceutical manufacturers with the VA price for specific products from each company. The top 10 drugs by total sales reported from company tax filings for 2016 were included. The discount observed by the VA was determined from each drug's list price, reported as WAC, in 2016. Descriptive statistics were calculated for the VA discount observed and a weighted price index was calculated using the lowest price to the VA (Weighted VA Index), which was compared with the manufacturer index. The discounted price as a percentage of the WAC ranged from 9 to 74%. All three indexes estimated by the average discount to the VA were at or below the manufacturer indexes (42 vs. 50% for Eli Lilly, 56 vs. 65% for Johnson & Johnson, and 59 vs. 59% for Merck). Manufacturer-reported average net prices may provide a close approximation of the average discounted price granted to the VA, suggesting they may be a useful proxy for the true pharmacy benefits manager (PBM) or payer cost. However, individual discounts for products have wide variation, making a standard discount adjustment across multiple products less acceptable.

  12. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berland, Brian; Hollingsworth, Russell

    of silica and a transparent conductive oxide demonstrated 90% visible transmission with high thermal infrared reflectivity characteristic of conventional low-e coatings. A slightly more complex stack provided high solar infrared reflection without sacrificing visible transmission or thermal infrared reflection. Successful completion of the effort produced a prototype integrated low-e, dynamic window film with characterized energy saving potential. Cost modeling for the passive bi-layer, low-e film projects a manufacturing cost of ~$0.50/ft2 for a plant with 10M ft2/yr capacity. The novel thin film processes developed here enable high deposition rate (low cost), optical quality oxide coatings at low temperatures. When combined with engineered materials, ITN’s coating will result in low-cost, low-e films that reflect a high degree of infrared radiation without substantially reducing the visible transmission. The resultant window film will improve the U-value and achieve SHGC improvements over bare glass. The new low-e coating will be particularly attractive when combined with an electrochromic film. Low-e coating design guided by energy savings modeling allows customization of the product for different climate zones.« less

  13. Large Scale Screening of Low Cost Ferritic Steel Designs For Advanced Ultra Supercritical Boiler Using First Principles Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Lizhi

    Advanced Ultra Supercritical Boiler (AUSC) requires materials that can operate in corrosive environment at temperature and pressure as high as 760°C (or 1400°F) and 5000psi, respectively, while at the same time maintain good ductility at low temperature. We develop automated simulation software tools to enable fast large scale screening studies of candidate designs. While direct evaluation of creep rupture strength and ductility are currently not feasible, properties such as energy, elastic constants, surface energy, interface energy, and stack fault energy can be used to assess their relative ductility and creeping strength. We implemented software to automate the complex calculations tomore » minimize human inputs in the tedious screening studies which involve model structures generation, settings for first principles calculations, results analysis and reporting. The software developed in the project and library of computed mechanical properties of phases found in ferritic steels, many are complex solid solutions estimated for the first time, will certainly help the development of low cost ferritic steel for AUSC.« less

  14. Near Net Shape Rapid Manufacture & Repair by LENS(registered trademark)

    DTIC Science & Technology

    2006-05-01

    J. Vlcek, “Property Investigation of Laser Cladded , Laser Sintered and Electron Beam Sintered Ti 6Al 4V”, AVT-139 Specialists Meeting on Cost...manufactured from advanced materials such as titanium alloys, superalloys or special steels are critical to the performance of the armed forces...10 years, CAD driven, additive manufacturing technologies have been developed. The leading technology for defence applications is Laser Engineered

  15. Low-Cost Photolithographic Fabrication of Nanowires and Microfilters for Advanced Bioassay Devices

    PubMed Central

    Doan, Nhi M.; Qiang, Liangliang; Li, Zhe; Vaddiraju, Santhisagar; Bishop, Gregory W.; Rusling, James F.; Papadimitrakopoulos, Fotios

    2015-01-01

    Integrated microfluidic devices with nanosized array electrodes and microfiltration capabilities can greatly increase sensitivity and enhance automation in immunoassay devices. In this contribution, we utilize the edge-patterning method of thin aluminum (Al) films in order to form nano- to micron-sized gaps. Evaporation of high work-function metals (i.e., Au, Ag, etc.) on these gaps, followed by Al lift-off, enables the formation of electrical uniform nanowires from low-cost, plastic-based, photomasks. By replacing Al with chromium (Cr), the formation of high resolution, custom-made photomasks that are ideal for low-cost fabrication of a plurality of array devices were realized. To demonstrate the feasibility of such Cr photomasks, SU-8 micro-pillar masters were formed and replicated into PDMS to produce micron-sized filters with 3–4 µm gaps and an aspect ratio of 3. These microfilters were capable of retaining 6 µm beads within a localized site, while allowing solvent flow. The combination of nanowire arrays and micro-pillar filtration opens new perspectives for rapid R&D screening of various microfluidic-based immunoassay geometries, where analyte pre-concentration and highly sensitive, electrochemical detection can be readily co-localized. PMID:25774709

  16. Advances in infrastructure support for flat panel display manufacturing

    NASA Astrophysics Data System (ADS)

    Bardsley, James N.; Ciesinski, Michael F.; Pinnel, M. Robert

    1997-07-01

    The success of the US display industry, both in providing high-performance displays for the US Department of Defense at reasonable cost and in capturing a significant share of the global civilian market, depends on maintaining technological leadership and on building efficient manufacturing capabilities. The US Display Consortium (USDC) was set up in 1993 by the US Government and private industry to guide the development of the infrastructure needed to support the manufacturing of flat panel displays. This mainly involves the supply of equipment and materials, but also includes the formation of partnerships and the training of a skilled labor force. Examples are given of successful development projects, some involving USDC participation, others through independent efforts of its member companies. These examples show that US-based companies can achieve leadership positions in this young and rapidly growing global market.

  17. Low-cost far infrared bolometer camera for automotive use

    NASA Astrophysics Data System (ADS)

    Vieider, Christian; Wissmar, Stanley; Ericsson, Per; Halldin, Urban; Niklaus, Frank; Stemme, Göran; Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Jakobsen, Henrik; Kvisterøy, Terje; Franks, John; VanNylen, Jan; Vercammen, Hans; VanHulsel, Annick

    2007-04-01

    A new low-cost long-wavelength infrared bolometer camera system is under development. It is designed for use with an automatic vision algorithm system as a sensor to detect vulnerable road users in traffic. Looking 15 m in front of the vehicle it can in case of an unavoidable impact activate a brake assist system or other deployable protection system. To achieve our cost target below €100 for the sensor system we evaluate the required performance and can reduce the sensitivity to 150 mK and pixel resolution to 80 x 30. We address all the main cost drivers as sensor size and production yield along with vacuum packaging, optical components and large volume manufacturing technologies. The detector array is based on a new type of high performance thermistor material. Very thin Si/SiGe single crystal multi-layers are grown epitaxially. Due to the resulting valence barriers a high temperature coefficient of resistance is achieved (3.3%/K). Simultaneously, the high quality crystalline material provides very low 1/f-noise characteristics and uniform material properties. The thermistor material is transferred from the original substrate wafer to the read-out circuit using adhesive wafer bonding and subsequent thinning. Bolometer arrays can then be fabricated using industry standard MEMS process and materials. The inherently good detector performance allows us to reduce the vacuum requirement and we can implement wafer level vacuum packaging technology used in established automotive sensor fabrication. The optical design is reduced to a single lens camera. We develop a low cost molding process using a novel chalcogenide glass (GASIR®3) and integrate anti-reflective and anti-erosion properties using diamond like carbon coating.

  18. Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1982-01-01

    The feasibility of using MERL 76, an advanced high strength direct hot isostatic pressed powder metallurgy superalloy, as a full scale component in a high technology, long life, commercial turbine engine were demonstrated. The component was a JT9D first stage turbine disk. The JT9D disk rim temperature capability was increased by at least 22 C and the weight of JT9D high pressure turbine rotating components was reduced by at least 35 pounds by replacement of forged Superwaspaloy components with hot isostatic pressed (HIP) MERL 76 components. The process control plan and acceptance criteria for manufacture of MERL 76 HIP consolidated components were generated. Disk components were manufactured for spin/burst rig test, experimental engine tests, and design data generation, which established lower design properties including tensile, stress-rupture, 0.2% creep and notched (Kt = 2.5) low cycle fatigue properties, Sonntag, fatigue crack propagation, and low cycle fatigue crack threshold data. Direct HIP MERL 76, when compared to conventionally forged Superwaspaloy, is demonstrated to be superior in mechanical properties, increased rim temperature capability, reduced component weight, and reduced material cost by at least 30% based on 1980 costs.

  19. A study of power generation from a low-cost hydrokinetic energy system

    NASA Astrophysics Data System (ADS)

    Davila Vilchis, Juana Mariel

    The kinetic energy in river streams, tidal currents, or other artificial water channels has been used as a feasible source of renewable power through different conversion systems. Thus, hydrokinetic energy conversion systems are attracting worldwide interest as another form of distributed alternative energy. Because these systems are still in early stages of development, the basic approaches need significant research. The main challenges are not only to have efficient systems, but also to convert energy more economically so that the cost-benefit analysis drives the growth of this alternative energy form. One way to view this analysis is in terms of the energy conversion efficiency per unit cost. This study presents a detailed assessment of a prototype hydrokinetic energy system along with power output costs. This experimental study was performed using commercial low-cost blades of 20 in diameter inside a tank with water flow speed up to 1.3 m/s. The work was divided into two stages: (a) a fixed-pitch blade configuration, using a radial permanent magnet generator (PMG), and (b) the same hydrokinetic turbine, with a variable-pitch blade and an axial-flux PMG. The results indicate that even though the efficiency of a simple blade configuration is not high, the power coefficient is in the range of other, more complicated designs/prototypes. Additionally, the low manufacturing and operation costs of this system offer an option for low-cost distributed power applications.

  20. Predicting Production Costs for Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  1. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    PubMed

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. Published by Elsevier B.V.

  2. Novel concepts for low-cost and high-efficient thin film solar cells

    NASA Astrophysics Data System (ADS)

    Gómez, D.; Menéndez, A.; Sánchez, P.; Martínez, A.; Andrés, L. J.; Menéndez, M. F.; Campos, N.; García, A.; Sánchez, B.

    2011-09-01

    This work presents the activities carried out at ITMA Materials Technology related to the building integration of thin film (TF) photovoltaics (PV). Three different approaches have been developed in order to achieve high efficient solar cells at low manufacturing costs: (i) a new route for manufacturing monolithical silicon based thin film solar cells on building materials, (ii) the use of metallic nanoparticles for light trapping (plasmonic effects and light scattering) and (iii) the luminescent sol-gel coating on glass for solar concentration. In the first case, amorphous silicon modules (single junction) have been successfully manufactured at lab scale on steel and commercial ceramic substrates with efficiencies of 5.4% and 4.0%, respectively. Promising initial attempts have been also made in ethylene tetrafluoroethylene (ETFE), a polymer with high potential in textile architecture. In a similar way, the development of nanotechnology based coatings (metallic nanoparticles and luminescent materials) represent the most innovative part of the work and some preliminary results are showed.

  3. Reducing workers' compensation costs for latex allergy and litigation against glove manufacturing companies.

    PubMed

    Edlich, Richard F; Mason, Shelley S; Swainston, Erin; Dahlstrom, Jill J; Gubler, K; Long, William B

    2009-01-01

    It has been well documented in the medical literature that powdered medical gloves can have serious consequences to patients and health-care workers. Adverse reactions to natural latex gloves, such as contact dermatitis and urticaria, occupational asthma, and anaphylaxis, have been documented as a significant cause of Workers' Compensation claims among health-care workers. While the cost of examination and surgical gloves is significant, this factor must be considered with the total cost of Workers' Compensation claims and possible litigation bestowed upon hospitals and glove manufacturing companies. In the United States, Canada, Belgium, and Germany, medical leaders have documented the dangers of powdered latex gloves and have implemented transition programs that are reducing Workers' Compensation claims filed by health-care workers. While attorneys view litigation against powdered glove manufacturers as the "next big tort", the authors of this article were not able to document all compensation costs to disabled workers because many settlements do not allow the claimant to disclose this information.

  4. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Andrew Kramer

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition regionmore » at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.« less

  5. Advanced manufacturing technology effectiveness: A review of literature and some issues

    NASA Astrophysics Data System (ADS)

    Goyal, Sanjeev; Grover, Sandeep

    2012-09-01

    Advanced manufacturing technology (AMT) provides advantages to manufacturing managers in terms of flexibility, quality, reduced delivery times, and global competitiveness. Although a large number of publications had presented the importance of this technology, only a few had delved into related literature review. Considering the importance of this technology and the recent contributions by various authors, the present paper conducts a more comprehensive review. Literature was reviewed in a way that will help researchers, academicians, and practitioners to take a closer look at the implementation, evaluation, and justification of the AMT. The authors reviewed various papers, proposed a different classification scheme, and identified certain gaps that will provide hints for further research in AMT management.

  6. Particle swarm optimization algorithm based low cost magnetometer calibration

    NASA Astrophysics Data System (ADS)

    Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.

    2011-12-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments

  7. Design, Development and Hotfire Testing of Monolithic Copper and Bimetallic Additively Manufactured Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Barnett, Greg; Brandsmeier, Will; Greene, Sandy Elam; Protz, Chris

    2016-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM) otherwise commonly referred to as additive manufacturing. The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for the GRCop-84 copper-alloy commensurate with powder bed additive manufacturing, evaluate bimetallic deposition and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. As a direct spin off of this program, NASA is working with industry partners to further develop the printing process for the GRCop-84 material in addition to the C-18150 (CuCrZr) material. To advance the process further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic additively manufactured chambers. A 1.2k sized thrust-chamber was designed and developed to compare the printing process of the GRCop-84 and C-18150 SLM materials. A series of similar MCC liners also completed development with an Inconel 625 jacket bonded to the GRcop-84 liner evaluating direct metal deposition (DMD) laser and arc-based techniques. This paper describes the design, development, manufacturing and testing of these combustion chambers and associated lessons learned throughout the design and development process.

  8. Advanced Fuel Cycle Cost Basis – 2017 Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B. W.; Ganda, F.; Williams, K. A.

    This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less

  9. The Benefits, Limitations, and Cost-Effectiveness of Advanced Technologies in the Management of Patients With Diabetes Mellitus

    PubMed Central

    Vigersky, Robert A.

    2015-01-01

    Background: Hypoglycemia mitigation is critical for appropriately managing patients with diabetes. Advanced technologies are becoming more prevalent in diabetes management, but their benefits have been primarily judged on the basis of hemoglobin A1c. A critical appraisal of the effectiveness and limitations of advanced technologies in reducing both A1c and hypoglycemia rates has not been previously performed. Methods: The cost of hypoglycemia was estimated using literature rates of hypoglycemia events resulting in hospitalizations. A literature search was conducted on the effect on A1c and hypoglycemia of advanced technologies. The cost-effectiveness of continuous subcutaneous insulin infusion (CSII) and real-time continuous glucose monitors (RT-CGM) was reviewed. Results: Severe hypoglycemia in insulin-using patients with diabetes costs $4.9-$12.7 billion. CSII reduces A1c in some but not all studies. CSII improves hypoglycemia in patients with high baseline rates. Bolus calculators improve A1c and improve the fear of hypoglycemia but not hypoglycemia rates. RT-CGM alone and when combined with CSII improve A1c with a neutral effect on hypoglycemia rates. Low-glucose threshold suspend systems reduce hypoglycemia with a neutral effect on A1c, and low-glucose predictive suspend systems reduce hypoglycemia with a small increase in plasma glucose levels. In short-term studies, artificial pancreas systems reduce both hypoglycemia rates and plasma glucose levels. CSII and RT-CGM are cost-effective technologies, but their wide adoption is limited by cost, psychosocial, and educational factors. Conclusions: Most currently available technologies improve A1c with a neutral or improved rate of hypoglycemia. Advanced technologies appear to be cost-effective in diabetes management, especially when including the underlying cost of hypoglycemia. PMID:25555391

  10. III-Vs at Scale: A PV Manufacturing Cost Analysis of the Thin Film Vapor-Liquid-Solid Growth Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Maxwell; Horowitz, Kelsey; Woodhouse, Michael

    The authors present a manufacturing cost analysis for producing thin-film indium phosphide modules by combining a novel thin-film vapor-liquid-solid (TF-VLS) growth process with a standard monolithic module platform. The example cell structure is ITO/n-TiO2/p-InP/Mo. For a benchmark scenario of 12% efficient modules, the module cost is estimated to be $0.66/W(DC) and the module cost is calculated to be around $0.36/W(DC) at a long-term potential efficiency of 24%. The manufacturing cost for the TF-VLS growth portion is estimated to be ~$23/m2, a significant reduction compared with traditional metalorganic chemical vapor deposition. The analysis here suggests the TF-VLS growth mode could enablemore » lower-cost, high-efficiency III-V photovoltaics compared with manufacturing methods used today and open up possibilities for other optoelectronic applications as well.« less

  11. Affordable Manufacturing Technologies Being Developed for Actively Cooled Ceramic Components

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1999-01-01

    Efforts to improve the performance of modern gas turbine engines have imposed increasing service temperature demands on structural materials. Through active cooling, the useful temperature range of nickel-base superalloys in current gas turbine engines has been extended, but the margin for further improvement appears modest. Because of their low density, high-temperature strength, and high thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, high processing costs have proven to be a major obstacle to their widespread application. Advanced rapid prototyping technology, which is developing rapidly, offers the possibility of an affordable manufacturing approach.

  12. Manufacturing Process for OLED Integrated Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Cheng-Hung; McCamy, James; Ashtosh, Ganjoo

    2017-01-27

    The primary objective of this project is to demonstrate manufacturing processes for technologies that will enable commercialization of a large-area and low-cost “integrated substrate” product for rigid OLED SSL lighting. The integrated substrate product will consist of a low cost, float glass substrate combined with a transparent conductive anode film layer, and light out-coupling (internal and external extraction layers) structures. In combination, these design elements will enable an integrated substrate meeting or exceeding 2015 performance targets for cost ($60/m2), extraction efficiency (50%) and sheet resistance (<10 ohm/sq).

  13. SmallSat Precision Navigation with Low-Cost MEMS IMU Swarms

    NASA Technical Reports Server (NTRS)

    Christian, John; Bishop, Robert; Martinez, Andres; Petro, Andrew

    2015-01-01

    The continued advancement of small satellite-based science missions requires the solution to a number of important technical challenges. Of particular note is that small satellite missions are characterized by tight constraints on cost, mass, power, and volume that make them unable to fly the high-quality Inertial Measurement Units (IMUs) required for orbital missions demanding precise orientation and positioning. Instead, small satellite missions typically fly low-cost Micro-Electro-Mechanical System (MEMS) IMUs. Unfortunately, the performance characteristics of these MEMS IMUs make them ineffectual in many spaceflight applications when employed in a single IMU system configuration.

  14. Low-cost failure sensor design and development for water pipeline distribution systems.

    PubMed

    Khan, K; Widdop, P D; Day, A J; Wood, A S; Mounce, S R; Machell, J

    2002-01-01

    This paper describes the design and development of a new sensor which is low cost to manufacture and install and is reliable in operation with sufficient accuracy, resolution and repeatability for use in newly developed systems for pipeline monitoring and leakage detection. To provide an appropriate signal, the concept of a "failure" sensor is introduced, in which the output is not necessarily proportional to the input, but is unmistakably affected when an unusual event occurs. The design of this failure sensor is based on the water opacity which can be indicative of an unusual event in a water distribution network. The laboratory work and field trials necessary to design and prove out this type of failure sensor are described here. It is concluded that a low-cost failure sensor of this type has good potential for use in a comprehensive water monitoring and management system based on Artificial Neural Networks (ANN).

  15. Costs to physician offices of providing medications to medically indigent patients via pharmaceutical manufacturer prescription assistance programs.

    PubMed

    Clay, Patrick; Vaught, Eric; Glaros, Alan; Mangum, Stacy; Hansen, Daniel; Lindsey, Cameron

    2007-01-01

    Prescription assistance programs (PAPs) are offered by pharmaceutical manufacturers to provide medications at no out-of-pocket cost to various categories of medically indigent patients. some PAPs require only 1 application whereas others require as many as 4 applications per year per drug per patient, depending on the manufacturer's requirements. to measure the costs incurred by a medical clinic that provides chronic prescription medications via PAPs. this project was conducted in a free-standing, inner-city, Midwestern health clinic on the PAP application process for 1 representative drug for 32 pharmaceutical manufacturers that offered PAPs for drugs taken on a long-term basis for chronic conditions. time and motion studies were conducted using a medical assistant with the greatest amount of PAP experience. Assessment of time-to-access and time-to-complete forms was performed outside of normal clinic business hours to avoid interruptions. Personnel time costs also included receipt and delivery of drug to the patient (drug distribution time), which were assessed during normal business hours for actual medications received for 10 patients and included the time required to notify the patient of the arrival of the drug and to dispense the medication to the patient. supply costs for this PAP service included printing and copying costs. submission costs associated with mailing or faxing the documents were determined and calculated using the price of materials only. total application cost was calculated by adding the personnel time cost, supply cost, and submission cost. Annual PAP time was the time spent completing PAPs for 1 medication for 1 patient for 1 year. the time and resources required and the associated costs were aggregated separately for the pharmaceutical manufacturers that required 1, 2, or 4 applications per drug per patient per year. The total average application cost for all 32 companies was $25.18 [SD, $17.23]. Personnel time costs accounted for half

  16. Advanced technology commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Walker, T. H.; Johnson, R. W.

    1991-01-01

    Boeing's program for Advanced Technology Composite Aircraft Structure (ATCAS) has focused on the manufacturing and performance issues associated with a wide body commercial transport fuselage. The primary goal of ATCAS is to demonstrate cost and weight savings over a 1995 aluminum benchmark. A 31 foot section of fuselage directly behind the wing to body intersection was selected for study purposes. This paper summarizes ATCAS contract plans and review progress to date. The six year ATCAS program will study technical issues for crown, side, and keel areas of the fuselage. All structural details in these areas will be included in design studies that incorporate a design build team (DBT) approach. Manufacturing technologies will be developed for concepts deemed by the DBT to have the greatest potential for cost and weight savings. Assembly issues for large, stiff, quadrant panels will receive special attention. Supporting technologies and mechanical tests will concentrate on the major issues identified for fuselage. These include damage tolerance, pressure containment, splices, load redistribution, post-buckled structure, and durability/life. Progress to date includes DBT selection of baseline fuselage concepts; cost and weight comparisons for crown panel designs; initial panel fabrication for manufacturing and structural mechanics research; and toughened material studies related to keel panels. Initial ATCAS studies have shown that NASA's Advanced Composite Technology program goals for cost and weight savings are attainable for composite fuselage.

  17. Advances in management of low-risk febrile neutropenia.

    PubMed

    Teuffel, Oliver; Sung, Lillian

    2012-02-01

    To describe and discuss the most recent advances in the management of low-risk febrile neutropenia in children with cancer. Several risk stratification tools for children with febrile neutropenia have been developed, although none of these tools have been directly compared and few have been validated in independent populations. However, there is good evidence that, for pediatric patients with febrile neutropenia at low risk for severe infection, outpatient management is a well tolerated and efficacious alternative to inpatient care. Moreover, major progress has been made in obtaining and understanding perceived quality of life and preferences for outpatient management in pediatric cancer patients. Many parents prefer inpatient management although child quality of life is, in general, anticipated to be higher with outpatient intravenous therapy. Finally, outpatient strategies are more cost-effective as compared with traditional management in hospital. Outpatient management is a well tolerated and cost-effective strategy for low-risk febrile neutropenia in children with cancer, although parental preferences are highly variable for outpatient versus inpatient management. Future research should examine the effectiveness of outpatient strategies through conduct of large cohort studies. Other future work could focus on development of decision aids and other tools to facilitate ambulatory approaches.

  18. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  19. Advanced Metalworking Solutions for Naval Systems That Go in Harm’s Way.

    DTIC Science & Technology

    2011-01-01

    Cox, Titanium Fabrication Corporation, MMC, NSWCCD, ABS, and NMC. Navy Metalworking Center • Advanced Metallic Materials NMC has a successful record...Current efforts involve titanium , high-strength steel, and other alternate materials. 4 ADVANcED METALLic MATEriALS A cost-effective manufacturing solution...Manufacturing and Sustainment Technologies (iMAST). Improved shaft cladding materials and processes, which will increase the life of the main propulsion

  20. Cost-efficient manufacturing of composite structures

    NASA Technical Reports Server (NTRS)

    Freeman, W. Tom; Davis, John G.; Johnston, Norman J.

    1991-01-01

    The Advanced Composites Technology (ACT) program is seeking research breakthroughs that will allow structures made of graphite epoxy materials to replace metals in the wings and fuselages of future aircrafts. NASA's goals are to reduce acquisition cost by 20 to 25 percent, structural weight for a resized aircraft by 40 to 50 percent, and the number of parts by half compared to current production aluminum aircraft. The innovative structural concepts, materials, and fabrication techniques emerging from the ACT program are described, and the relationship between aerospace developments and industrial, commercial, and sporting goods applications are discussed.

  1. A flexible architecture for advanced process control solutions

    NASA Astrophysics Data System (ADS)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue

  2. An experiment in remote manufacturing using the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Tsatsoulis, Costas; Frost, Victor

    1991-01-01

    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic.

  3. Gender differences on the job satisfaction in the phase of implementing advanced manufacturing technology in the Chinese manufacturing firms.

    PubMed

    Yu, Na; Shen, Li Ming; Lewark, Siegfried

    2012-01-01

    This research gave an effort to study on gender differences in the job satisfaction for technological innovation at Chinese manufacturing firm. The exploratory study was conducted in four Chinese furniture manufacturing firms, which are all in the phases of introducing advanced manufacturing system. The results of statistical analysis show that general satisfaction of female employees to their jobs is significantly higher than male employees. In addition, supervisory satisfaction of female employees is significantly higher than male employees. The findings of the study reveal that activities are suggested to be carried out to increase the job satisfaction of male employees, especially improve communication and relationship between the managerial and the non-managerial levels in the innovation process. In addition, the higher job satisfaction of female employees could be considered a positive factor for the successful implementation of AMT in the technological innovation, although male employees are still dominated work force in the case study firms.

  4. Investigation of Low Cost Sensor-Based Leak Detection System for Fence Line Applications

    EPA Science Inventory

    With recent technological advances, low-cost time-resolved sensors may become effective tools to support time-integrated passive sampling strategies by helping to decipher origin of emissions in real-time. As part of the Petroleum Refinery Risk and Technology Review, New Source ...

  5. Scale-up of 2G wire manufacturing at American Superconductor Corporation

    NASA Astrophysics Data System (ADS)

    Fleshler, S.; Buczek, D.; Carter, B.; Cedrone, P.; DeMoranville, K.; Gannon, J.; Inch, J.; Li, X.; Lynch, J.; Otto, A.; Podtburg, E.; Roy, D.; Rupich, M.; Sathyamurthy, S.; Schreiber, J.; Thieme, C.; Thompson, E.; Tucker, D.; Nagashima, K.; Ogata, M.

    2009-10-01

    American Superconductor Corporation (AMSC) has developed the base technology and a manufacturing line for initial volume production of low-cost second generation high temperature superconductor (2G HTS) wire for commercial and military applications. The manufacturing line is based on reel-to-reel processing of wide HTS strips using rolling assisted bi-axially textured substrate (RABiTS™) for the template and Metal Organic Deposition (MOD) for the HTS layer. AMSC’s wide strip process is a low cost manufacturing technology since multiple wires are produced in a single manufacturing pass by slitting the wide strip to narrower width in the last stage of the manufacturing process. Industry standard 4.4 mm wide wires are produced by laminating metallic foils, such as copper, stainless steel or any other material, to the HTS insert wire, and are chosen to tailor the electrical, thermal and mechanical properties of the wire for specific applications. The laminated, 4.4 mm wide wires are known as “344 superconductors.” In this paper, we summarize the status of AMSC’s manufacturing capability, the performance of the wire presently being produced, as well as the cost and technical advantages of AMSC’s manufacturing approach. In addition, future direction for research and development to improve electrical performance is presented.

  6. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor

    PubMed Central

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-01-01

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor’s working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from −40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz/°C℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications. PMID:29439393

  7. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    PubMed

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  8. Managing Risk on a Technology Development Project/Advanced Mirror System Demonstrator

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Stahl, Phil (Technical Monitor)

    2002-01-01

    The risk management study applied to the Advanced Mirror System Demonstrator (AMSD), a precursor mirror technology development for the Next Generation Space Telescope (NGST) is documented. The AMSD will be developed as a segment of a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. The technology gained from the program will support the risk mitigation strategy for the NGST, as well as other government agency space mirror programs.

  9. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

    PubMed

    Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu

    2014-12-23

    Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.

  10. Facilities | Advanced Manufacturing Research | NREL

    Science.gov Websites

    , and black building with two people walking in front of it. Energy Systems Integration Facility Its projects. Photo of a large, warehouse-like, lab space with several people in hard hats operating equipment with a few people and manufacturing equipment, including spools and web lines. Manufacturing Laboratory

  11. Low Cost Airline Service Revolution

    DOT National Transportation Integrated Search

    1996-04-01

    This study concentrates on new entry by airlines with low cost operating : strategies. Low cost strategies have been the most successful in competing : with network carriers whose very size confers certain competitive advantages. : The purposes of th...

  12. Products from NASA's In-Space Propulsion Technology Program Applicable to Low-Cost Planetary Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Vento, Daniel; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle M.

    2011-01-01

    Since September 2001 NASA s In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Also under development are several technologies for low cost sample return missions. These include a low cost Hall effect thruster (HIVHAC) which will be completed in 2011, light weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA s future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.

  13. LOW-COST COMPOSITES IN VEHICLE MANUFACTURE - Natural-fiber-reinforced polymer composites in automotive applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holbery, Jim; Houston, Dan

    In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybridmore » glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.« less

  14. Third NASA Advanced Composites Technology Conference, volume 1, part 1

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1993-01-01

    This document is a compilation of papers presented at the Third NASA Advanced Composites Technology (ACT) Conference. The ACT Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. Papers sponsored by the Department of Defense on the Design and Manufacturing of Low Cost Composites (DMLCC) are also included in Volume 2 of this document.

  15. Computers in manufacturing

    NASA Astrophysics Data System (ADS)

    Hudson, C. A.

    1982-02-01

    CAD/CAM advances and applications for enhancing productivity in industry are explored. Wide-spread use of CAD/CAM devices are projected to occur by the time period 1992-1997, resulting in a higher percentage of technicians in the manufacturing process, while the cost of computers and software will continue to fall and become more widely available. Computer aided design is becoming a commercially viable system for design and geometric modeling, engineering analysis, kinematics, and drafting, and efforts to bridge the gap between CAD and CAM are indicated, with particular attention given to layering, wherein individual monitoring of different parts of the manufacturing process can be effected without crossover of unnecessary information. The potentials and barriers to the use of robotics are described, with the added optimism that displaced workers to date have moved up to jobs of higher skill and interest.

  16. Low-cost high purity production

    NASA Technical Reports Server (NTRS)

    Kapur, V. K.

    1978-01-01

    Economical process produces high-purity silicon crystals suitable for use in solar cells. Reaction is strongly exothermic and can be initiated at relatively low temperature, making it potentially suitable for development into low-cost commercial process. Important advantages include exothermic character and comparatively low process temperatures. These could lead to significant savings in equipment and energy costs.

  17. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andrew M.; Greene, William D.

    2017-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. During the ABEDRR effort, the Dynetics Team has modified flight-proven Apollo-Saturn F-1 engine components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically-produced engine that could potentially both replace the RD-180 on Atlas V and satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article

  18. Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery

    PubMed Central

    Zhang, Peipei; Xia, Junfei; Luo, Sida

    2018-01-01

    Micro/nanoparticles have great potentials in biomedical applications, especially for drug delivery. Existing studies identified that major micro/nanoparticle features including size, shape, surface property and component materials play vital roles in their in vitro and in vivo applications. However, a demanding challenge is that most conventional particle synthesis techniques such as emulsion can only generate micro/nanoparticles with a very limited number of shapes (i.e., spherical or rod shapes) and have very loose control in terms of particle sizes. We reviewed the advanced manufacturing techniques for producing micro/nanoparticles with precisely defined characteristics, emphasizing the use of these well-controlled micro/nanoparticles for drug delivery applications. Additionally, to illustrate the vital roles of particle features in therapeutic delivery, we also discussed how the above-mentioned micro/nanoparticle features impact in vitro and in vivo applications. Through this review, we highlighted the unique opportunities in generating controllable particles via advanced manufacturing techniques and the great potential of using these micro/nanoparticles for therapeutic delivery. PMID:29670013

  19. Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebak, Raul B.; Lou, Xiaoyuan

    Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows

  20. Research of low cost wind generator rotors

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Ross, R. S.

    1978-01-01

    A feasibility program determined that it would be possible to significantly reduce the cost of manufacturing wind generator rotors by making them of cast urethane. Several high modulus urethanes which were structurally tested were developed. A section of rotor was also cast and tested showing the excellent aerodynamic surface which results. A design analysis indicated that a cost reduction of almost ten to one can be achieved with a small weight increase to achieve the same structural integrity as expected of current rotor systems.

  1. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  2. Establishment of reference costs for occupational health services and implementation of cost management in Japanese manufacturing companies.

    PubMed

    Nagata, Tomohisa; Mori, Koji; Aratake, Yutaka; Ide, Hiroshi; Nobori, Junichiro; Kojima, Reiko; Odagami, Kiminori; Kato, Anna; Hiraoka, Mika; Shiota, Naoki; Kobayashi, Yuichi; Ito, Masato; Tsutsumi, Akizumi; Matsuda, Shinya

    2016-07-22

    We developed a standardized cost estimation method for occupational health (OH) services. The purpose of this study was to set reference OH services costs and to conduct OH services cost management assessments in two workplaces by comparing actual OH services costs with the reference costs. Data were obtained from retrospective analyses of OH services costs regarding 15 OH activities over a 1-year period in three manufacturing workplaces. We set the reference OH services costs in one of the three locations and compared OH services costs of each of the two other workplaces with the reference costs. The total reference OH services cost was 176,654 Japanese yen (JPY) per employee. The personnel cost for OH staff to conduct OH services was JPY 47,993, and the personnel cost for non-OH staff was JPY 38,699. The personnel cost for receipt of OH services-opportunity cost-was JPY 19,747, expense was JPY 25,512, depreciation expense was 34,849, and outsourcing cost was JPY 9,854. We compared actual OH services costs from two workplaces (the total OH services costs were JPY 182,151 and JPY 238,023) with the reference costs according to OH activity. The actual costs were different from the reference costs, especially in the case of personnel cost for non-OH staff, expense, and depreciation expense. Using our cost estimation tool, it is helpful to compare actual OH services cost data with reference cost data. The outcomes help employers make informed decisions regarding investment in OH services.

  3. Establishment of reference costs for occupational health services and implementation of cost management in Japanese manufacturing companies

    PubMed Central

    Nagata, Tomohisa; Mori, Koji; Aratake, Yutaka; Ide, Hiroshi; Nobori, Junichiro; Kojima, Reiko; Odagami, Kiminori; Kato, Anna; Hiraoka, Mika; Shiota, Naoki; Kobayashi, Yuichi; Ito, Masato; Tsutsumi, Akizumi; Matsuda, Shinya

    2016-01-01

    Objectives: We developed a standardized cost estimation method for occupational health (OH) services. The purpose of this study was to set reference OH services costs and to conduct OH services cost management assessments in two workplaces by comparing actual OH services costs with the reference costs. Methods: Data were obtained from retrospective analyses of OH services costs regarding 15 OH activities over a 1-year period in three manufacturing workplaces. We set the reference OH services costs in one of the three locations and compared OH services costs of each of the two other workplaces with the reference costs. Results: The total reference OH services cost was 176,654 Japanese yen (JPY) per employee. The personnel cost for OH staff to conduct OH services was JPY 47,993, and the personnel cost for non-OH staff was JPY 38,699. The personnel cost for receipt of OH services-opportunity cost-was JPY 19,747, expense was JPY 25,512, depreciation expense was 34,849, and outsourcing cost was JPY 9,854. We compared actual OH services costs from two workplaces (the total OH services costs were JPY 182,151 and JPY 238,023) with the reference costs according to OH activity. The actual costs were different from the reference costs, especially in the case of personnel cost for non-OH staff, expense, and depreciation expense. Conclusions: Using our cost estimation tool, it is helpful to compare actual OH services cost data with reference cost data. The outcomes help employers make informed decisions regarding investment in OH services. PMID:27170449

  4. Additive Manufacturing for Affordable Rocket Engines

    NASA Technical Reports Server (NTRS)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  5. Systematic review of drug administration costs and implications for biopharmaceutical manufacturing.

    PubMed

    Tetteh, Ebenezer; Morris, Stephen

    2013-10-01

    The acquisition costs of biologic drugs are often considered to be relatively high compared with those of nonbiologics. However, the total costs of delivering these drugs also depend on the cost of administration. Ignoring drug administration costs may distort resource allocation decisions because these affect cost effectiveness. The objectives of this systematic review were to develop a framework of drug administration costs that considers both the costs of physical administration and the associated proximal costs; and, as a case example, to use this framework to evaluate administration costs for biologics within the UK National Health Service (NHS). We reviewed literature that reported estimates of administration costs for biologics within the UK NHS to identify how these costs were quantified and to examine how differences in dosage forms and regimens influenced administration costs. The literature reviewed were identified by searching the Centre for Review and Dissemination Databases (DARE, NHS EED and HTA); EMBASE (The Excerpta Medica Database); MEDLINE (using the OVID interface); Econlit (EBSCO); Tufts Medical Center Cost Effectiveness Analysis (CEA) Registry; and Google Scholar. We identified 4,344 potentially relevant studies, of which 43 studies were selected for this systematic review. We extracted estimates of the administration costs of biologics from these studies. We found evidence of variation in the way that administration costs were measured, and that this affected the magnitude of costs reported, which could then influence cost effectiveness. Our findings suggested that manufacturers of biologic medicines should pay attention to formulation issues and their impact on administration costs, because these affect the total costs of healthcare delivery and cost effectiveness.

  6. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  7. Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies

    DOE PAGES

    Coons, James E.; Kalb, Daniel M.; Dale, Taraka; ...

    2014-08-31

    Among the most formidable challenges to algal biofuels is the ability to harvest algae and extract intracellular lipids at low cost and with a positive energy balance. Here, we construct two paradigms that contrast energy requirements and costs of conventional and cutting-edge Harvesting and Extraction (H&E) technologies. By application of the parity criterion and the moderate condition reference state, an energy–cost paradigm is created that allows 1st stage harvesting technologies to be compared with easy reference to the National Alliance for Advanced Biofuels and Bioproducts (NAABB) target of $0.013/gallon of gasoline equivalent (GGE) and to the U.S. DOE's Bioenergy Technologiesmore » Office 2022 cost metrics. Drawing from the moderate condition reference state, a concentration-dependency paradigm is developed for extraction technologies, making easier comparison to the National Algal Biofuels Technology Roadmap (NABTR) target of less than 10% total energy. This monograph identifies cost-bearing factors for a variety of H&E technologies, describes a design basis for ultrasonic harvesters, and provides a framework to measure future technological advancements toward reducing H&E costs. Finally, we show that ultrasonic harvesters and extractors are uniquely capable of meeting both NAABB and NABTR targets. Ultrasonic technologies require further development and scale-up before they can achieve low-cost performance at industrially relevant scales. But, the advancement of this technology would greatly reduce H&E costs and accelerate the commercial viability of algae-based biofuels.« less

  8. Low-cost thermo-electric infrared FPAs and their automotive applications

    NASA Astrophysics Data System (ADS)

    Hirota, Masaki; Ohta, Yoshimi; Fukuyama, Yasuhiro

    2008-04-01

    This paper describes three low-cost infrared focal plane arrays (FPAs) having a 1,536, 2,304, and 10,800 elements and experimental vehicle systems. They have a low-cost potential because each element consists of p-n polysilicon thermocouples, which allows the use of low-cost ultra-fine microfabrication technology commonly employed in the conventional semiconductor manufacturing processes. To increase the responsivity of FPA, we have developed a precisely patterned Au-black absorber that has high infrared absorptivity of more than 90%. The FPA having a 2,304 elements achieved high resposivity of 4,300 V/W. In order to reduce package cost, we developed a vacuum-sealed package integrated with a molded ZnS lens. The camera aiming the temperature measurement of a passenger cabin is compact and light weight devices that measures 45 x 45 x 30 mm and weighs 190 g. The camera achieves a noise equivalent temperature deviation (NETD) of less than 0.7°C from 0 to 40°C. In this paper, we also present a several experimental systems that use infrared cameras. One experimental system is a blind spot pedestrian warning system that employs four infrared cameras. It can detect the infrared radiation emitted from a human body and alerts the driver when a pedestrian is in a blind spot. The system can also prevent the vehicle from moving in the direction of the pedestrian. Another system uses a visible-light camera and infrared sensors to detect the presence of a pedestrian in a rear blind spot and alerts the driver. The third system is a new type of human-machine interface system that enables the driver to control the car's audio system without letting go of the steering wheel. Uncooled infrared cameras are still costly, which limits their automotive use to high-end luxury cars at present. To promote widespread use of IR imaging sensors on vehicles, we need to reduce their cost further.

  9. Manufacturing of Wearable Sensors for Human Health and Performance Monitoring

    NASA Astrophysics Data System (ADS)

    Alizadeh, Azar

    2015-03-01

    Continuous monitoring of physiological and biological parameters is expected to improve performance and medical outcomes by assessing overall health status and alerting for life-saving interventions. Continuous monitoring of these parameters requires wearable devices with an appropriate form factor (lightweight, comfortable, low energy consuming and even single-use) to avoid disrupting daily activities thus ensuring operation relevance and user acceptance. Many previous efforts to implement remote and wearable sensors have suffered from high cost and poor performance, as well as low clinical and end-use acceptance. New manufacturing and system level design approaches are needed to make the performance and clinical benefits of these sensors possible while satisfying challenging economic, regulatory, clinical, and user-acceptance criteria. In this talk we will review several recent design and manufacturing efforts aimed at designing and building prototype wearable sensors. We will discuss unique opportunities and challenges provided by additive manufacturing, including 3D printing, to drive innovation through new designs, faster prototyping and manufacturing, distributed networks, and new ecosystems. We will also show alternative hybrid self-assembly based integration techniques for low cost large scale manufacturing of single use wearable devices. Coauthors: Prabhjot Singh and Jeffrey Ashe.

  10. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  11. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    NASA Astrophysics Data System (ADS)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-05-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  12. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    NASA Astrophysics Data System (ADS)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-04-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  13. Warranty optimisation based on the prediction of costs to the manufacturer using neural network model and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Stamenkovic, Dragan D.; Popovic, Vladimir M.

    2015-02-01

    Warranty is a powerful marketing tool, but it always involves additional costs to the manufacturer. In order to reduce these costs and make use of warranty's marketing potential, the manufacturer needs to master the techniques for warranty cost prediction according to the reliability characteristics of the product. In this paper a combination free replacement and pro rata warranty policy is analysed as warranty model for one type of light bulbs. Since operating conditions have a great impact on product reliability, they need to be considered in such analysis. A neural network model is used to predict light bulb reliability characteristics based on the data from the tests of light bulbs in various operating conditions. Compared with a linear regression model used in the literature for similar tasks, the neural network model proved to be a more accurate method for such prediction. Reliability parameters obtained in this way are later used in Monte Carlo simulation for the prediction of times to failure needed for warranty cost calculation. The results of the analysis make possible for the manufacturer to choose the optimal warranty policy based on expected product operating conditions. In such a way, the manufacturer can lower the costs and increase the profit.

  14. Advanced Ablative Insulators and Methods of Making Them

    NASA Technical Reports Server (NTRS)

    Congdon, William M.

    2005-01-01

    Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.

  15. Cost-utility analysis of an advanced pressure ulcer management protocol followed by trained wound, ostomy, and continence nurses.

    PubMed

    Kaitani, Toshiko; Nakagami, Gojiro; Iizaka, Shinji; Fukuda, Takashi; Oe, Makoto; Igarashi, Ataru; Mori, Taketoshi; Takemura, Yukie; Mizokami, Yuko; Sugama, Junko; Sanada, Hiromi

    2015-01-01

    The high prevalence of severe pressure ulcers (PUs) is an important issue that requires to be highlighted in Japan. In a previous study, we devised an advanced PU management protocol to enable early detection of and intervention for deep tissue injury and critical colonization. This protocol was effective for preventing more severe PUs. The present study aimed to compare the cost-effectiveness of the care provided using an advanced PU management protocol, from a medical provider's perspective, implemented by trained wound, ostomy, and continence nurses (WOCNs), with that of conventional care provided by a control group of WOCNs. A Markov model was constructed for a 1-year time horizon to determine the incremental cost-effectiveness ratio of advanced PU management compared with conventional care. The number of quality-adjusted life-years gained, and the cost in Japanese yen (¥) ($US1 = ¥120; 2015) was used as the outcome. Model inputs for clinical probabilities and related costs were based on our previous clinical trial results. Univariate sensitivity analyses were performed. Furthermore, a Bayesian multivariate probability sensitivity analysis was performed using Monte Carlo simulations with advanced PU management. Two different models were created for initial cohort distribution. For both models, the expected effectiveness for the intervention group using advanced PU management techniques was high, with a low expected cost value. The sensitivity analyses suggested that the results were robust. Intervention by WOCNs using advanced PU management techniques was more effective and cost-effective than conventional care. © 2015 by the Wound Healing Society.

  16. High resolution image processing on low-cost microcomputers

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1993-01-01

    Recent advances in microcomputer technology have resulted in systems that rival the speed, storage, and display capabilities of traditionally larger machines. Low-cost microcomputers can provide a powerful environment for image processing. A new software program which offers sophisticated image display and analysis on IBM-based systems is presented. Designed specifically for a microcomputer, this program provides a wide-range of functions normally found only on dedicated graphics systems, and therefore can provide most students, universities and research groups with an affordable computer platform for processing digital images. The processing of AVHRR images within this environment is presented as an example.

  17. A Manufacturing Cost and Supply Chain Analysis of SiC Power Electronics Applicable to Medium-Voltage Motor Drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey; Remo, Timothy; Reese, Samantha

    Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG powermore » modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.« less

  18. The Balsa bullet: A high speed, low-cost general aviation aircraft for Aeroworld

    NASA Technical Reports Server (NTRS)

    Eastland, Kevin; Greenwood, Sean; Kelly, Dan; Leonard, Chuck; Rooff, John; Scherock, Jeff

    1994-01-01

    The Balsa Bullet is a high speed, low cost six passenger general aviation aircraft. It will cruise at a speed of 55 ft/s with a maximum speed of 75 ft/s for distances in excess of 27000 feet. This range and speed combination provide The Balsa Bullet with the capability to service any two existing airports in Aeroworld in an efficient and timely manner. Overall, three major design drivers have been identified by the design team. The first is to provide a low cost airplane to the Aeroworld market. Maintaining the low cost objective will not simply meet the mission objective, but will also make the Bullet an economically viable option for a wide number of consumers. The Balsa Bullet has a total manufacturing cost of $1000 with a price to the consumer of only $2562. The second major driver is high speed performance. Once again this driver exists not only to meet the mission objective given Long Shot Aeronautics but it provides a desirable feature to the consumer, pride in owning the fastest aircraft in Aeroworld. The third design driver identified is the capability to service any runway in Aeroworld necessitating the ability to takeoff within 28 ft, the length of the shortest runways in Aeroworld. These design drivers provide three great reasons for the general public to purchase a Bullet.

  19. Proposal for a low cost close air support aircraft for the year 2000: The Raptor

    NASA Technical Reports Server (NTRS)

    Brown, Jerome D.; Dewitt, Ward S.; Mcdonald, Mark; Riley, John W.; Roberts, Anthony E.; Watson, Sean; Whelan, Margaret M.

    1991-01-01

    The Raptor is a proposed low cost Close Air Support (CAS) aircraft for the U.S. Military. The Raptor incorporates a 'cranked arrow' wing planform, and uses canards instead of a traditional horizontal tail. The Raptor is designed to be capable of responsive delivery of effective ordnance in close proximity to friendly ground forces during the day, night, and 'under the weather' conditions. Details are presented of the Raptor's mission, configuration, performance, stability and control, ground support, manufacturing, and overall cost to permit engineering evaluation of the proposed design. A description of the design process and analysis methods used is also provided.

  20. Advanced methods of low cost mission design for Jovian moons exploration

    NASA Astrophysics Data System (ADS)

    Grushevskii, Alexey; Koryanov, Victor; Tuchin, Andrey; Golubev, Yury; Tuchin, Denis

    2016-07-01

    DeltaV-low-cost gravity assists tours mission design of for the Jovian Moons exploration is considered (orbiters and probes around Io, Europa, Ganymede, Callisto), taking radiation hazard into account. Limited dynamic opportunities of using flybys require multiple gravity assists. Relevance of regular creation of optimum scenarios - sequences of passing of celestial bodies with definition of conditions of their execution is obvious. This work is devoted to the description of criteria for creation of such chains. New Multi-Tisserand coordinates [1,2] for this purpose are introduced for the best study of features for the radiation hazard decrease and the spacecraft asymptotic velocity reduction. One of main problems of the Jovian system mission design (JIMO, JUICE, Laplas P) is that the reduction of the asymptotic velocity of the spacecraft with respect to the satellite for the Jovian moon's capture is impossible. A valid reason is in the invariance of Jacobi integral and Tisserand parameter in a restricted three-body model (RTBP) [3]. Furthermore, the same-body flybys tour falls into the hazard radiation zone according the Tisserand-Poincaré graph. Formalized beam's algorithm to overcome this "problem of the ballistic destiny" with using full ephemeris model and with several coupled RTBP engaging has been implemented. Withal low-cost reduction of the spacecraft asymptotic velocity for the capture of the moon is required. The corresponding numerical scheme was developed with using Tisserand-Poincaré graph and the simulation of tens of millions of options. The Delta V-low cost searching was utilized also with help of the modeling of the multiple rebounds (cross gravity assists) of the beam of trajectories. The techniques are developed by the authors specifically to the needs of the mission "Laplas P" of Roscosmos. If we have answers to the questions "what kind of gravity assists", we need answer on the question "when". New Multi-Tisserand coordinates for this

  1. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2018-05-18

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  2. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-10-01

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system thatmore » can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.« less

  3. Low cost monocrystalline silicon sheet fabrication for solar cells by advanced ingot technology

    NASA Technical Reports Server (NTRS)

    Fiegl, G. F.; Bonora, A. C.

    1980-01-01

    The continuous liquid feed (CLF) Czochralski furnace and the enhanced I.D. slicing technology for the low-cost production of monocrystalline silicon sheets for solar cells are discussed. The incorporation of the CLF system is shown to improve ingot production rate significantly. As demonstrated in actual runs, higher than average solidification rates (75 to 100 mm/hr for 150 mm 1-0-0 crystals) can be achieved, when the system approaches steady-state conditions. The design characteristics of the CLF furnace are detailed, noting that it is capable of precise control of dopant impurity incorporation in the axial direction of the crystal. The crystal add-on cost is computed to be $11.88/sq m, considering a projected 1986 25-slice per cm conversion factor with an 86% crystal growth yield.

  4. Present Status and Future Growth of Advanced Maintenance Technology and Strategy in US Manufacturing.

    PubMed

    Jin, Xiaoning; Weiss, Brian A; Siegel, David; Lee, Jay

    2016-01-01

    The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality targets and 2) to understand the present level of maintenance technologies and strategies that are being incorporated into these practices. A study is performed to contrast the impact of various industry-specific factors on the effectiveness and profitability of the implementation of prognostics and health management technologies, and maintenance strategies using both surveys and case studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises (SMEs) to large-sized manufacturing enterprises in various industries. The results obtained provide important insights on the different impacts of specific factors on the successful adoption of these technologies between SMEs and large manufacturing enterprises. The varying degrees of success with respect to current maintenance programs highlight the opportunity for larger manufacturers to improve maintenance practices and consider the use of advanced prognostics and health management (PHM) technology. This paper also provides the existing gaps, barriers, future trends, and roadmaps for manufacturing PHM technology and maintenance strategy.

  5. Present Status and Future Growth of Advanced Maintenance Technology and Strategy in US Manufacturing

    PubMed Central

    Jin, Xiaoning; Weiss, Brian A.; Siegel, David; Lee, Jay

    2016-01-01

    The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality targets and 2) to understand the present level of maintenance technologies and strategies that are being incorporated into these practices. A study is performed to contrast the impact of various industry-specific factors on the effectiveness and profitability of the implementation of prognostics and health management technologies, and maintenance strategies using both surveys and case studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises (SMEs) to large-sized manufacturing enterprises in various industries. The results obtained provide important insights on the different impacts of specific factors on the successful adoption of these technologies between SMEs and large manufacturing enterprises. The varying degrees of success with respect to current maintenance programs highlight the opportunity for larger manufacturers to improve maintenance practices and consider the use of advanced prognostics and health management (PHM) technology. This paper also provides the existing gaps, barriers, future trends, and roadmaps for manufacturing PHM technology and maintenance strategy. PMID:28058173

  6. Low-Cost, Light Weight, Thin Film Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Ganapathi, G.; Palisoc, A.; Nesmith, B.; Greschik, G.; Gidanian, K.; Kindler, A.

    2013-01-01

    This research addresses a cost barrier towards achieving a solar thermal collector system with an installed cost of $75/sq m and meet the Department of Energy's (DOE's) performance targets for optical errors, operations during windy conditions and lifetime. Current concentrators can cost as much as 40-50% of the total installed costs for a CSP plant. In order to reduce the costs from current $200-$250/sq m, it is important to focus on the overall system. The reflector surface is a key cost driver, and our film-based polymer reflector will help significantly in achieving DOE's cost target of $75/sq m. The ease of manufacturability, installation and replacement make this technology a compelling one to develop. This technology can be easily modified for a variety of CSP options including heliostats, parabolic dishes and parabolic troughs.

  7. Development of low-cost open source 3D gel printer "RepRap SWIM-ER"

    NASA Astrophysics Data System (ADS)

    Sato, Kei; Basher, Samiul; Ota, Takafumi; Tase, Taishi; Takamatsu, Kyuichiro; Saito, Azusa; Khosla, Ajit; Kawakami, Masaru; Furuawa, Hidemitsu

    2017-04-01

    Gels are soft and wet materials having low friction, good biocompatibility, and material permeability. It is expected that gel materials will be used as new kinds of industrial materials in the engineering and medical applications. But it cannot build a complicated shape. Soft & Wet Matter Engineering Laboratory developed a 3D gel Printer "SWIM-ER", has enabled modeling of complex shapes of the gel. However, this is expensive. Therefore not all of the gel researchers and the companies have such a device. To solve this problem, we manufacture a low-cost open-source 3D gel printer "RepRap SWIM-ER" from the RepRap. We made the components required to manufacture the "RepRap SWIM-ER" from the 3D printer and chose a light source. In addition, we produced the P-DN gel for RepRap SWIM-ER and conducted the molding test to confirm whether RepRap SWIM-ER can used it.

  8. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer

    PubMed Central

    Andrade-Delgado, Laura; Telich-Tarriba, Jose E.; Fuente-del-Campo, Antonio; Altamirano-Arcos, Carlos A.

    2018-01-01

    Summary: Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively (P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies. PMID:29464171

  9. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer.

    PubMed

    Rendón-Medina, Marco A; Andrade-Delgado, Laura; Telich-Tarriba, Jose E; Fuente-Del-Campo, Antonio; Altamirano-Arcos, Carlos A

    2018-01-01

    Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively ( P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies.

  10. Investigation of a Low Cost Sensor-Based Leak Detection System for Fence Line Applications

    EPA Science Inventory

    With recent technological advances, low-cost time-resolved sensors may become effective tools to support time-integrated passive sampling strategies by helping to decipher origin of emissions in real-time. As part of the Petroleum Refinery Risk and Technology Review, New Source P...

  11. Design, Manufacture and Test of Cryotank Components

    NASA Technical Reports Server (NTRS)

    McCarville, Douglas A.; Guzman, Juan C.; Dillon. Alexandra K.; Jackson, Justin R.; Birkland, Jordan O.

    2017-01-01

    On the composite cryotank technology development (CCTD) project, the Boeing Company built two cryotanks as a means of advancing technology and manufacturing readiness levels (TRL and MRL) and lowering the risk of fabricating full-scale fuel containment vessels.1 CCTD focused on upper stage extended duration applications where long term storage of propellants is required. The project involved the design, analysis, fabrication, and test of manufacturing demonstration units (MDU), a 2.4 m (precursor) and a 5.5 m composite cryotank. Key design features included one-piece wall construction to minimize overall weight (eliminating the need for a bellyband joint), 3-dimensionally (3D) reinforced y-joint material to alleviate stress concentrations at the tank to skirt interface and a purge-able ?uted core skirt to carry high axial launch loads. The tanks were made with OoA curing pre-impregnated (prepreg) carbon/epoxy (C/E) slit-tape tow (STT) that contained thin micro-crack resistant plies in the tank wall center to impede permeation. The tanks were fabricated at Boeing's Seattle-based Advanced Development Center (ADC) using RAFP and multipiece break-down tooling. The tooling was designed and built by Janicki Industries (JI) at Sedro Woolley, Washington. Tank assemblage consisted of co-bonded dome covers, one-piece ?uted core skirts and mechanical fastened cover/sump. Ultrasonic inspection was performed after every cure or bond and a structural health monitoring system (SHMS) was installed to identify potential impact damage events (in-process and/or during transportation). The tanks were low temperature tested at NASA's George C. Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The testing, which consisted of a sequence of ?ll/drain pressure and thermal cycles using LH2, was successfully concluded in 2012 on the 2.4 m tank and in 2014 on the 5.5 m tank. Structural, thermal, and permeation performance data was obtained. 2 Critical design features and

  12. Seminar for High School Students “Practice on Manufacturing Technology by Advanced Machine Tools”

    NASA Astrophysics Data System (ADS)

    Marui, Etsuo; Yamawaki, Masao; Taga, Yuken; Omoto, Ken'ichi; Miyaji, Reiji; Ogura, Takahiro; Tsubata, Yoko; Sakai, Toshimasa

    The seminar ‘Practice on Manufacturing Technology by Advanced Machine Tools’ for high school students was held at the supporting center for technology education of Gifu University, under the sponsorship of the Japan Society of Mechanical Engineers. This seminar was held, hoping that many students become interested in manufacturing through the experience of the seminar. Operating CNC milling machine and CNC wire-cut electric discharge machine, they made original nameplates. Participants made the program to control CNC machine tools themselves. In this report, some valuable results obtained through such experience are explained.

  13. Development of advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.

  14. A multidisciplinary approach to the development of low-cost high-performance lightwave networks

    NASA Technical Reports Server (NTRS)

    Maitan, Jacek; Harwit, Alex

    1991-01-01

    Our research focuses on high-speed distributed systems. We anticipate that our results will allow the fabrication of low-cost networks employing multi-gigabit-per-second data links for space and military applications. The recent development of high-speed low-cost photonic components and new generations of microprocessors creates an opportunity to develop advanced large-scale distributed information systems. These systems currently involve hundreds of thousands of nodes and are made up of components and communications links that may fail during operation. In order to realize these systems, research is needed into technologies that foster adaptability and scaleability. Self-organizing mechanisms are needed to integrate a working fabric of large-scale distributed systems. The challenge is to fuse theory, technology, and development methodologies to construct a cost-effective, efficient, large-scale system.

  15. A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques.

    PubMed

    Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina

    2017-04-11

    nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.

  16. A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques

    PubMed Central

    Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina

    2017-01-01

    nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters. PMID:28398225

  17. Development of low-cost high-performance multispectral camera system at Banpil

    NASA Astrophysics Data System (ADS)

    Oduor, Patrick; Mizuno, Genki; Olah, Robert; Dutta, Achyut K.

    2014-05-01

    Banpil Photonics (Banpil) has developed a low-cost high-performance multispectral camera system for Visible to Short- Wave Infrared (VIS-SWIR) imaging for the most demanding high-sensitivity and high-speed military, commercial and industrial applications. The 640x512 pixel InGaAs uncooled camera system is designed to provide a compact, smallform factor to within a cubic inch, high sensitivity needing less than 100 electrons, high dynamic range exceeding 190 dB, high-frame rates greater than 1000 frames per second (FPS) at full resolution, and low power consumption below 1W. This is practically all the feature benefits highly desirable in military imaging applications to expand deployment to every warfighter, while also maintaining a low-cost structure demanded for scaling into commercial markets. This paper describes Banpil's development of the camera system including the features of the image sensor with an innovation integrating advanced digital electronics functionality, which has made the confluence of high-performance capabilities on the same imaging platform practical at low cost. It discusses the strategies employed including innovations of the key components (e.g. focal plane array (FPA) and Read-Out Integrated Circuitry (ROIC)) within our control while maintaining a fabless model, and strategic collaboration with partners to attain additional cost reductions on optics, electronics, and packaging. We highlight the challenges and potential opportunities for further cost reductions to achieve a goal of a sub-$1000 uncooled high-performance camera system. Finally, a brief overview of emerging military, commercial and industrial applications that will benefit from this high performance imaging system and their forecast cost structure is presented.

  18. The effect of adopting new storage methods for extending product validity periods on manufacturers expected inventory costs.

    PubMed

    Chen, Po-Yu

    2014-01-01

    The validness of the expiration dates (validity period) that manufacturers provide on food product labels is a crucial food safety problem. Governments must study how to use their authority by implementing fair awards and punishments to prompt manufacturers into adopting rigorous considerations, such as the effect of adopting new storage methods for extending product validity periods on expected costs. Assuming that a manufacturer sells fresh food or drugs, this manufacturer must respond to current stochastic demands at each unit of time to determine the purchase amount of products for sale. If this decision maker is capable and an opportunity arises, new packaging methods (e.g., aluminum foil packaging, vacuum packaging, high-temperature sterilization after glass packaging, or packaging with various degrees of dryness) or storage methods (i.e., adding desiccants or various antioxidants) can be chosen to extend the validity periods of products. To minimize expected costs, this decision maker must be aware of the processing costs of new storage methods, inventory standards, inventory cycle lengths, and changes in relationships between factors such as stochastic demand functions in a cycle. Based on these changes in relationships, this study established a mathematical model as a basis for discussing the aforementioned topics.

  19. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  20. C-130 Advanced Technology Center wing box conceptual design/cost study

    NASA Technical Reports Server (NTRS)

    Whitehead, R. S.; Foreman, C. R.; Silva, K.

    1992-01-01

    A conceptual design was developed by Northrop/LTV for an advanced C-130 Center Wing Box (CWB) which could meet the severe mission requirements of the SOF C-130 aircraft. The goals for the advanced technology CWB relative to the current C-130H CWB were: (1) the same acquisition cost; (2) lower operating support costs; (3) equal or lower weight; (4) a 30,000 hour service life for the SOF mission; and (5) minimum impact on the current maintenance concept. Initially, the structural arrangement, weight, external and internal loads, fatigue spectrum, flutter envelope and design criteria for the SOF C-130 aircraft CWB were developed. An advanced materials assessment was then conducted to determine the suitability of advanced materials for a 1994 production availability and detailed trade studies were performed on candidate CWB conceptual designs. Finally, a life-cycle cost analysis was performed on the advanced CWB. The study results showed that a hybrid composite/metallic CWB could meet the severe SOF design requirements, reduce the CWB weight by 14 pct., and was cost effective relative to an all metal beefed up C-130H CWB.

  1. Cost studies for commercial fuselage crown designs

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Smith, P. J.; Truslove, G.; Willden, K. S.; Metschan, S. L.; Pfahl, C. L.

    1991-01-01

    Studies were conducted to evaluate the cost and weight potential of advanced composite design concepts in the crown region of a commercial transport. Two designs from each of three design families were developed using an integrated design-build team. A range of design concepts and manufacturing processes were included to allow isolation and comparison of cost centers. Detailed manufacturing/assembly plans were developed as the basis for cost estimates. Each of the six designs was found to have advantages over the 1995 aluminum benchmark in cost and weight trade studies. Large quadrant panels and cobonded frames were found to save significant assembly labor costs. Comparisons of high- and intermediate-performance fiber systems were made for skin and stringer applications. Advanced tow placement was found to be an efficient process for skin lay up. Further analysis revealed attractive processes for stringers and frames. Optimized designs were informally developed for each design family, combining the most attractive concepts and processes within that family. A single optimized design was selected as the most promising, and the potential for further optimization was estimated. Technical issues and barriers were identified.

  2. Historic (1971-1975) Cost-Revenue Analysis of the Automotive Operations of the Major U.S Automotive Products Manufacturers

    DOT National Transportation Integrated Search

    1979-01-01

    A cost-revenue analysis is performed for the manufacture of automotive vehicles for the four major U.S. automotive manufacturers: American Motors Corp., Chrysler Corp., Ford Motor Co., and General Motors Corp. The analysis used a "top-down" methodolo...

  3. A Low Cost Sensor Controller for Health Monitoring

    NASA Astrophysics Data System (ADS)

    Birbas, M.; Petrellis, N.; Gioulekas, F.

    2015-09-01

    Aging population can benefit from health care systems that allow their health and daily life to be monitored by expert medical staff. Blood pressure, temperature measurements or more advanced tests like Electrocardiograms (ECG) can be ordered through such a healthcare system while urgent situations can be detected and alleviated on time. The results of these tests can be stored with security in a remote cloud or database. Such systems are often used to monitor non-life threatening patient health problems and their advantage in lowering the cost of the healthcare services is obvious. A low cost commercial medical sensor kit has been used in the present work, trying to improve the accuracy and stability of the sensor measurements, the power consumption, etc. This Sensor Controller communicates with a Gateway installed in the patient's residence and a tablet or smart phone used for giving instructions to the patient through a comprehensive user interface. A flexible communication protocol has been defined supporting any short or long term sensor sampling scenario. The experimental results show that it is possible to achieve low power consumption by applying apropriate sleep intervals to the Sensor Controller and by deactivating periodically some of its functionality.

  4. The Current State of Additive Manufacturing in Wind Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Margaret; Palmer, Sierra; Lee, Dominic

    Wind power is an inexhaustible form of energy that is being captured throughout the U.S. to power the engine of our economy. A robust, domestic wind industry promises to increase U.S. industry growth and competitiveness, strengthen U.S. energy security independence, and promote domestic manufacturing nationwide. As of 2016, ~82GW of wind capacity had been installed, and wind power now provides more than 5.5% of the nation’s electricity and supports more than 100,000 domestic jobs, including 500 manufacturing facilities in 43 States. To reach the U.S. Department of Energy’s (DOE’s) 2015 Wind Vision study scenario of wind power serving 35% ofmore » the nation's end-use demand by 2050, significant advances are necessary in all areas of wind technologies and market. An area that can greatly impact the cost and rate of innovation in wind technologies is the use of advanced manufacturing, with one of the most promising areas being additive manufacturing (AM). Considering the tremendous promise offered by advanced manufacturing, it is the purpose of this report to identify the use of AM in the production and operation of wind energy systems. The report has been produced as a collaborative effort for the DOE Wind Energy Technology Office (WETO), between Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL).« less

  5. Electronic manufacturing and packaging in Japan

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John A.; Meieran, Eugene S.; Pecht, Michael; Peeples, John W.; Tummala, Rao R.

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies. Japan has established this marked competitive advantage in electronics as a consequence of developing low-cost, high-volume consumer products. Japan's infrastructure, and the remarkable cohesiveness of vision and purpose in government and industry, are key factors in the success of Japan's electronics industry. Although Japan will continue to dominate consumer electronics in the foreseeable future, opportunities exist for the United States and other industrial countries to capture an increasingly large part of the market. The JTEC panel has identified no insurmountable barriers that would prevent the United States from regaining a significant share of the consumer electronics market; in fact, there is ample evidence that the United States needs to aggressively pursue high-volume, low-cost electronic assembly, because it is a critical path leading to high-performance electronic systems.

  6. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.

    PubMed

    Nuñez, Isaac; Matute, Tamara; Herrera, Roberto; Keymer, Juan; Marzullo, Timothy; Rudge, Timothy; Federici, Fernán

    2017-01-01

    The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators) and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here are available under

  7. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering

    PubMed Central

    Herrera, Roberto; Keymer, Juan; Marzullo, Timothy; Rudge, Timothy

    2017-01-01

    The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study, we describe an imaging system that integrates low-cost and open-source hardware, software and genetic resources. The multi-fluorescence imaging system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics. This device allows imaging in scales ranging from single colonies to entire plates. We developed a set of genetic components (e.g. promoters, coding sequences, terminators) and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, we screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins. We found CyOFP1, mBeRFP and sfGFP to be the most compatible set for 3-channel fluorescent imaging. We developed open source Python code to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, we tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology. We also assessed its potential use in a high school environment to teach biology, hardware design, optics, and programming. Together, these results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. All the resources developed here are available under

  8. Low-Cost Propellant Launch to Earth Orbit from a Tethered Balloon

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2006-01-01

    Propellant will be more than 85% of the mass that needs to be lofted into Low Earth Orbit (LEO) in the planned program of Exploration of the Moon, Mars, and beyond. This paper describes a possible means for launching thousands of tons of propellant per year into LEO at a cost 15 to 30 times less than the current launch cost per kilogram. The basic idea is to mass-produce very simple, small and relatively low-performance rockets at a cost per kilogram comparable to automobiles, instead of the 25X greater cost that is customary for current launch vehicles that are produced in small quantities and which are manufactured with performance near the limits of what is possible. These small, simple rockets can reach orbit because they are launched above 95% of the atmosphere, where the drag losses even on a small rocket are acceptable, and because they can be launched nearly horizontally with very simple guidance based primarily on spin-stabilization. Launching above most of the atmosphere is accomplished by winching the rocket up a tether to a balloon. A fuel depot in equatorial orbit passes over the launch site on every orbit (approximately every 90 minutes). One or more rockets can be launched each time the fuel depot passes overhead, so the launch rate can be any multiple of 6000 small rockets per year, a number that is sufficient to reap the benefits of mass production.

  9. Third NASA Advanced Composites Technology Conference, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1993-01-01

    This document is a compilation of papers presented at the Third NASA Advanced Composites Technology (ACT) Conference held at Long Beach, California, 8-11 June 1992. The ACT Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. Papers sponsored by the Department of Defense on the Design and Manufacturing of Low Cost Composites (DMLCC) are also included in Volume 2 of this document.

  10. Possibility of material cost reduction toward development of low-cost second-generation superconducting wires

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru; Horii, Shigeru; Doi, Toshiya

    2017-10-01

    Two approaches to reducing the material cost of second-generation superconducting wires are proposed in this paper: (1) instead of the electrical stabilizing layers of silver and copper presently used on the superconducting layer, a Nb-doped SrTiO3 conductive buffer layer and cube-textured Cu are proposed as an advanced architecture, and (2) the use of an electromagnetic (EM) steel tape as a metal substrate of coated conductors in a conventional architecture. In structures fabricated without using electrical stabilizing layers on the superconducting layer, the critical current density achieved at 77 K in a self-field was approximately 2.6 MA/cm2. On the other hand, in the case of using EM steel tapes, although the critical current density was far from practical at the current stage, the biaxial alignment of YBa2Cu3O y (YBCO) and buffer layers was realized without oxidation on the metal surface. In this study, the possibility of material cost reduction has been strongly indicated toward the development of low-cost second-generation superconducting wires in the near future.

  11. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-06-27

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.

  12. Low-Cost, Rapidly Responsive, Controllable, and Reversible Photochromic Hydrogel for Display and Storage.

    PubMed

    Yang, Yongqi; Guan, Lin; Gao, Guanghui

    2018-04-25

    Traditional optoelectronic devices without stretchable performance could be limited for substrates with irregular shape. Therefore, it is urgent to explore a new generation of flexible, stretchable, and low-cost intelligent vehicles as visual display and storage devices, such as hydrogels. In the investigation, a novel photochromic hydrogel was developed by introducing the negatively charged ammonium molybdate as a photochromic unit into polyacrylamide via ionic and covalent cross-linking. The hydrogel exhibited excellent properties of low cost, easy preparation, stretchable deformation, fatigue resistance, high transparency, and second-order response to external signals. Moreover, the photochromic and fading process of hydrogels could be precisely controlled and repeated under the irradiation of UV light and exposure of oxygen at different time and temperature. The photochromic hydrogel could be considered applied for artificial intelligence system, wearable healthcare device, and flexible memory device. Therefore, the strategy for designing a soft photochromic material would open a new direction to manufacture flexible and stretchable devices.

  13. Air Force Manufacturing Technology Electronics Program, FY72-FY85.

    DTIC Science & Technology

    1985-04-01

    magnetic films of the composition Yl.52 EuO.30 TmO.30 CaO.88 Fe4.12 012 on 1.5 inch and 2.0 inch gadolinium gallium garnet substrates. Ten film were...volume manufacturing of hybrid MIC’s. A systematic integrated cost effective approach to testing, trimming/matching, fabri - cation, and assembly is...ESTABLISH MANUFACTURING METHODS FOR LOW COST HIGH RELIABILITY FABRI - CATION AND ACTIVATION OF OXIDE CATHODES FOR USE IN SPACE TRAVELING WAVE TUBES

  14. Researchers View the Small Low Cost Engine and the Large Quiet Engine

    NASA Image and Video Library

    1972-02-21

    Researchers Robert Cummings, left, and Harold Gold with the small Low Cost Engine in the shadow of the much larger Quiet Engine at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The two engines were being studied in different test cells at the Propulsion Systems Laboratory. Jet engines had proven themselves on military and large transport aircraft, but their use on small general aviation aircraft was precluded by cost. Lewis undertook a multiyear effort to develop a less expensive engine to fill this niche using existing technologies. Lewis researchers designed a four-stage, axial-flow engine constructed from sheet metal. It was only 11.5 inches in diameter and weighed 100 pounds. The final design specifications were turned over to a manufacturer in 1972. Four engines were created, and, as expected, the fabrication and assembly of the engine were comparatively inexpensive. In 1973 the Low Cost Engine had its first realistic analysis in the Propulsion Systems Laboratory altitude tank. The engine successfully operated at speeds up to Mach 1.24 and simulated altitudes of 30,000 feet. NASA released the engine to private industry in the hope that design elements would be incorporated into future projects and reduce the overall cost of small jet aircraft. Small jet and turboprop engines became relatively common in general aviation aircraft by the late 1970s.

  15. Enhancing cell and gene therapy manufacture through the application of advanced fluorescent optical sensors (Review).

    PubMed

    Harrison, Richard P; Chauhan, Veeren M

    2017-12-15

    Cell and gene therapies (CGTs) are examples of future therapeutics that can be used to cure or alleviate the symptoms of disease, by repairing damaged tissue or reprogramming defective genetic information. However, despite the recent advancements in clinical trial outcomes, the path to wide-scale adoption of CGTs remains challenging, such that the emergence of a "blockbuster" therapy has so far proved elusive. Manufacturing solutions for these therapies require the application of scalable and replicable cell manufacturing techniques, which differ markedly from the existing pharmaceutical incumbent. Attempts to adopt this pharmaceutical model for CGT manufacture have largely proved unsuccessful. The most significant challenges facing CGT manufacturing are process analytical testing and quality control. These procedures would greatly benefit from improved sensory technologies that allow direct measurement of critical quality attributes, such as pH, oxygen, lactate and glucose. In turn, this would make manufacturing more robust, replicable and standardized. In this review, the present-day state and prospects of CGT manufacturing are discussed. In particular, the authors highlight the role of fluorescent optical sensors, focusing on their strengths and weaknesses, for CGT manufacture. The review concludes by discussing how the integration of CGT manufacture and fluorescent optical sensors could augment future bioprocessing approaches.

  16. Advanced LIGO low-latency searches

    NASA Astrophysics Data System (ADS)

    Kanner, Jonah; LIGO Scientific Collaboration, Virgo Collaboration

    2016-06-01

    Advanced LIGO recently made the first detection of gravitational waves from merging binary black holes. The signal was first identified by a low-latency analysis, which identifies gravitational-wave transients within a few minutes of data collection. More generally, Advanced LIGO transients are sought with a suite of automated tools, which collectively identify events, evaluate statistical significance, estimate source position, and attempt to characterize source properties. This low-latency effort is enabling a broad multi-messenger approach to the science of compact object mergers and other transients. This talk will give an overview of the low-latency methodology and recent results.

  17. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses,more » a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.« less

  18. Advanced photovoltaic concentrator system low-cost prototype module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminar, N.R.; McEntee, J.; Curchod, D.

    1991-09-01

    This report describes the continued development of an extruded lens and the development of a PV receiver, both of which will be used in the Solar Engineering Applications Corporation (SEA) 10X concentrator. These efforts were pare of a pre-Concentrator Initiative Program. The 10X concentrator consists of an inexpensive, extruded linear Fresnel lens which focuses on one-sun cells which are adhesive-bonded to an anodized aluminum heat sink. Module sides are planned to be molded along with the lens and are internally reflective for improved on- and off-track performance. End caps with molded-in bearings complete the module. Ten modules are mounted inmore » a stationary frame for simple, single-axis tracking in the east-west direction. This configuration an array, is shipped completely assembled and requires only setting on a reasonably flat surface, installing 4 fasteners, and hooking up the wires. Development of the 10-inch wide extruded lens involved one new extrusion die and a series of modifications to this die. Over 76% lens transmission was measured which surpassed the program goal of 75%. One-foot long receiver sections were assembled and subjected to evaluation tests at Sandia National Laboratories. A first group had some problem with cell delamination and voids but a second group performed very well, indicating that a full size receiver would pass the full qualification test. Cost information was updated and presented in the report. The cost study indicated that the Solar Engineering Applications Corporation concentrator system can exceed the DOE electricity cost goals of less than 6cents per KW-hr. 33 figs., 11 tabs.« less

  19. ABLE project: Development of an advanced lead-acid storage system for autonomous PV installations

    NASA Astrophysics Data System (ADS)

    Lemaire-Potteau, Elisabeth; Vallvé, Xavier; Pavlov, Detchko; Papazov, G.; Borg, Nico Van der; Sarrau, Jean-François

    In the advanced battery for low-cost renewable energy (ABLE) project, the partners have developed an advanced storage system for small and medium-size PV systems. It is composed of an innovative valve-regulated lead-acid (VRLA) battery, optimised for reliability and manufacturing cost, and an integrated regulator, for optimal battery management and anti-fraudulent use. The ABLE battery performances are comparable to flooded tubular batteries, which are the reference in medium-size PV systems. The ABLE regulator has several innovative features regarding energy management and modular series/parallel association. The storage system has been validated by indoor, outdoor and field tests, and it is expected that this concept could be a major improvement for large-scale implementation of PV within the framework of national rural electrification schemes.

  20. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  1. Advance market commitments for vaccines against neglected diseases: estimating costs and effectiveness.

    PubMed

    Berndt, Ernst R; Glennerster, Rachel; Kremer, Michael R; Lee, Jean; Levine, Ruth; Weizsäcker, Georg; Williams, Heidi

    2007-05-01

    The G8 is considering committing to purchase vaccines against diseases concentrated in low-income countries (if and when desirable vaccines are developed) as a way to spur research and development on vaccines for these diseases. Under such an 'advance market commitment,' one or more sponsors would commit to a minimum price to be paid per person immunized for an eligible product, up to a certain number of individuals immunized. For additional purchases, the price would eventually drop to close to marginal cost. If no suitable product were developed, no payments would be made. We estimate the offer size which would make revenues similar to the revenues realized from investments in typical existing commercial pharmaceutical products, as well as the degree to which various model contracts and assumptions would affect the cost-effectiveness of such a commitment. We make adjustments for lower marketing costs under an advance market commitment and the risk that a developer may have to share the market with subsequent developers. We also show how this second risk could be reduced, and money saved, by introducing a superiority clause to a commitment. Under conservative assumptions, we document that a commitment comparable in value to sales earned by the average of a sample of recently launched commercial products (adjusted for lower marketing costs) would be a highly cost-effective way to address HIV/AIDS, malaria, and tuberculosis. Sensitivity analyses suggest most characteristics of a hypothetical vaccine would have little effect on the cost-effectiveness, but that the duration of protection conferred by a vaccine strongly affects potential cost-effectiveness. Readers can conduct their own sensitivity analyses employing a web-based spreadsheet tool. Copyright (c) 2006 John Wiley & Sons, Ltd.

  2. Small low mass advanced PBR's for propulsion

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Todosow, M.; Ludewig, H.

    1993-10-01

    The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.

  3. Low-cost multispectral imaging for remote sensing of lettuce health

    NASA Astrophysics Data System (ADS)

    Ren, David D. W.; Tripathi, Siddhant; Li, Larry K. B.

    2017-01-01

    In agricultural remote sensing, unmanned aerial vehicle (UAV) platforms offer many advantages over conventional satellite and full-scale airborne platforms. One of the most important advantages is their ability to capture high spatial resolution images (1-10 cm) on-demand and at different viewing angles. However, UAV platforms typically rely on the use of multiple cameras, which can be costly and difficult to operate. We present the development of a simple low-cost imaging system for remote sensing of crop health and demonstrate it on lettuce (Lactuca sativa) grown in Hong Kong. To identify the optimal vegetation index, we recorded images of both healthy and unhealthy lettuce, and used them as input in an expectation maximization cluster analysis with a Gaussian mixture model. Results from unsupervised and supervised clustering show that, among four widely used vegetation indices, the blue wide-dynamic range vegetation index is the most accurate. This study shows that it is readily possible to design and build a remote sensing system capable of determining the health status of lettuce at a reasonably low cost (advances in UAV technology, this system could lead to yield increases for lettuce growers.

  4. Quadrivalent influenza vaccines in low and middle income countries: Cost-effectiveness, affordability and availability.

    PubMed

    Hendriks, Jan; Hutubessy, Raymond C W; Grohmann, Gary; Torelli, Guido; Friede, Martin; Kieny, Marie-Paule

    2018-06-27

    In high-income countries, there is an increased tendency to replace inactivated seasonal trivalent influenza (TIV) vaccines with quadrivalent (QIV) vaccines as these are considered to give a greater public health benefit. In addition, several recent studies from the USA and Europe indicate that replacement with QIV might also be cost-effective; however, the situation in low- and middle-income countries (LMIC) is less clear as few studies have investigated this aspect. The paper by de Boer et al. (2008) describes a dynamic modelling study commissioned by WHO that suggests that in LMICs, under certain conditions, QIV might also be more cost-effective than TIV. In this commentary, we discuss some important aspects that policymakers in LMICs might wish to take into account when considering replacing TIV by QIV. Indeed, from the data presented in the paper by de Boer et al. it can be inferred that replacing QIV for TIV would mean a 25-29% budget increase for seasonal influenza vaccination in South Africa and Vietnam, resulting in an incremental influenza-related health impact reduction of only 7-8% when a 10% symptomatic attack rate is assumed. We argue that national health budget considerations in LMIC might lead decision-makers to choose other investments with higher health impact for a budget equivalent to roughly a quarter of the yearly TIV immunization costs. In addition to an increased annual cost that would be associated with a decision to replace TIV with QIV, there would be an increased pressure on manufacturers to produce QIV in time for the influenza season requiring manufacturers to produce some components of the seasonal vaccine at risk prior to the WHO recommendations for influenza vaccines. Unless the current uncertainties, impracticalities and increased costs associated with QIVs are resolved, TIVs are likely to remain the more attractive option for many LMICs. Each country should establish its context-specific process for decision-making based on

  5. Low-cost directionally-solidified turbine blades, volume 2. [TFE731-3 turbofan engine

    NASA Technical Reports Server (NTRS)

    Dennis, R. E.; Hoppin, G. S., III; Hurst, L. G.

    1979-01-01

    An endothermically heated technology was used to manufacture low cost, directionally solidified, uncooled nickel-alloy blades for the TFE731-3 turbofan engine. The MAR-M 247 and MER-M 100+Hf blades were finish processed through heat treatment, machining, and coating operations prior to 150 hour engine tests consisting of the following sequences: (1) 50 hours of simulated cruise cycling (high fatigue evaluation); (2) 50 hours at the maximum continuous power rating (stress rupture endurance (low cycle fatigue). None of the blades visually showed any detrimental effects from the test. This was verified by post test metallurgical evaluation. The specific fuel consumption was reduced by 2.4% with the uncooled blades.

  6. Weight and cost forecasting for advanced manned space vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  7. Japan's technology and manufacturing infrastructure

    NASA Astrophysics Data System (ADS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-02-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  8. Japan's technology and manufacturing infrastructure

    NASA Technical Reports Server (NTRS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-01-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  9. Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Zhang, Guangjun

    2013-11-01

    Additive manufacturing based on gas metal arc welding is an advanced technique for depositing fully dense components with low cost. Despite this fact, techniques to achieve accurate control and automation of the process have not yet been perfectly developed. The online measurement of the deposited bead geometry is a key problem for reliable control. In this work a passive vision-sensing system, comprising two cameras and composite filtering techniques, was proposed for real-time detection of the bead height and width through deposition of thin walls. The nozzle to the top surface distance was monitored for eliminating accumulated height errors during the multi-layer deposition process. Various image processing algorithms were applied and discussed for extracting feature parameters. A calibration procedure was presented for the monitoring system. Validation experiments confirmed the effectiveness of the online measurement system for bead geometry in layered additive manufacturing.

  10. Additive and Photochemical Manufacturing of Copper

    PubMed Central

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733

  11. Additive and Photochemical Manufacturing of Copper

    NASA Astrophysics Data System (ADS)

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-12-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.

  12. Low-Cost alpha Alane for Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabian, Tibor; Petrie, Mark; Crouch-Baker, Steven

    This project was directed towards the further development of the Savannah River National Laboratory (SRNL) lab-scale electrochemical synthesis of the hydrogen storage material alpha-alane and Ardica Technologies-SRI International (SRI) chemical downstream processes that are necessary to meet DoE cost metrics and transition alpha-alane synthesis to an industrial scale. Ardica has demonstrated the use of alpha-alane in a fuel-cell system for the U.S. Army WFC20 20W soldier power system that has successfully passed initial field trials with individual soldiers. While alpha-alane has been clearly identified as a desirable hydrogen storage material, cost-effective means for its production and regeneration on a scalemore » of use applicable to the industry have yet to be established. We focused on three, principal development areas: 1. The construction of a comprehensive engineering techno-economic model to establish the production costs of alpha-alane by both electrochemical and chemical routes at scale. 2. The identification of critical, cost-saving design elements of the electrochemical cell and the quantification of the product yields of the primary electrochemical process. A moving particle-bed reactor design was constructed and operated. 3. The experimental quantification of the product yields of candidate downstream chemical processes necessary to produce alpha-alane to complete the most cost-effective overall manufacturing process. Our techno-economic model shows that under key assumptions most 2015 and 2020 DOE hydrogen storage system cost targets for low and medium power can be achieved using the electrochemical alane synthesis process. To meet the most aggressive 2020 storage system cost target, $1/g, our model indicates that 420 metric tons per year (MT/y) production of alpha-alane is required. Laboratory-scale experimental work demonstrated that the yields of two of the three critical component steps within the overall “electrochemical process” were

  13. Advanced Computing for Manufacturing.

    ERIC Educational Resources Information Center

    Erisman, Albert M.; Neves, Kenneth W.

    1987-01-01

    Discusses ways that supercomputers are being used in the manufacturing industry, including the design and production of airplanes and automobiles. Describes problems that need to be solved in the next few years for supercomputers to assume a major role in industry. (TW)

  14. The automated array assembly task of the low-cost silicon solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.

    1980-01-01

    Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.

  15. An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Cui, Tianhong

    2011-02-01

    The flexible cancer sensor based on layer-by-layer self-assembled graphene reported in this letter demonstrates features including ultrahigh sensitivity and low cost due to graphene material properties in nature, self-assembly technique, and polyethylene terephthalate substrate. According to the conductance change of self-assembled graphene, the label free and labeled graphene sensors are capable of detecting very low concentrations of prostate specific antigen down to 4 fg/ml (0.11 fM) and 0.4 pg/ml (11 fM), respectively, which are three orders of magnitude lower than carbon nanotube sensors under the same conditions of design, manufacture, and measurement.

  16. A Pilot Computer-Aided Design and Manufacturing Curriculum that Promotes Engineering

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Elizabeth City State University (ECSU) is located in a community that is mostly rural in nature. The area is economically deprived when compared to the rest of the state. Many businesses lack the computerized equipment and skills needed to propel upward in today's technologically advanced society. This project will close the ever-widening gap between advantaged and disadvantaged workers as well as increase their participation with industry, NASA and/or other governmental agencies. Everyone recognizes computer technology as the catalyst for advances in design, prototyping, and manufacturing or the art of machining. Unprecedented quality control and cost-efficiency improvements are recognized through the use of computer technology. This technology has changed the manufacturing industry with advanced high-tech capabilities needed by NASA. With the ever-widening digital divide, we must continue to provide computer technology to those who are socio-economically disadvantaged.

  17. Low cost attitude control system scanwheel development

    NASA Astrophysics Data System (ADS)

    Bialke, William; Selby, Vaughn

    1991-03-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  18. Low cost attitude control system scanwheel development

    NASA Technical Reports Server (NTRS)

    Bialke, William; Selby, Vaughn

    1991-01-01

    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.

  19. Additive Manufacturing for Highly Efficient Window Inserts CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roschli, Alex C.; Chesser, Phillip C.; Love, Lonnie J.

    ORNL partnered with the Mackinac Technology Company to demonstrate how additive manufacturing can be used to create highly energy efficient window inserts for retrofit in pre-existing buildings. Many early iterations of the window inserts were fabricated using carbon fiber reinforced thermoplastics and polycarbonate films as a stand in for the low-e coated films produced by the Mackinac Technology Company. After demonstration of the proof of concept, i.e. custom window inserts with tensioned film, the materials used for the manufacture of the frames was more closely examined. Hollow particle-filled syntactic foam and low-density polymer composites formed by expandable microspheres were exploredmore » as the materials used to additively manufacture the frames of the inserts. It was concluded that low-cost retrofit window inserts in custom sizes could be easily fabricated using large scale additive manufacturing. Furthermore, the syntactic and expanded foams developed and tested satisfy the mechanical performance requirements for the application.« less

  20. Low-Cost, Distributed Environmental Monitors for Factory Worker Health

    PubMed Central

    Thomas, Geb W.; Sousan, Sinan; Tatum, Marcus; Liu, Xiaoxing; Zuidema, Christopher; Fitzpatrick, Mitchell; Koehler, Kirsten A.; Peters, Thomas M.

    2018-01-01

    An integrated network of environmental monitors was developed to continuously measure several airborne hazards in a manufacturing facility. The monitors integrated low-cost sensors to measure particulate matter, carbon monoxide, ozone and nitrogen dioxide, noise, temperature and humidity. The monitors were developed and tested in situ for three months in several overlapping deployments, before a full cohort of 40 was deployed in a heavy vehicle manufacturing facility for a year of data collection. The monitors collect data from each sensor and report them to a central database every 5 min. The work includes an experimental validation of the particle, gas and noise monitors. The R2 for the particle sensor ranges between 0.98 and 0.99 for particle mass densities up to 300 μg/m3. The R2 for the carbon monoxide sensor is 0.99 for concentrations up to 15 ppm. The R2 for the oxidizing gas sensor is 0.98 over the sensitive range from 20 to 180 ppb. The noise monitor is precise within 1% between 65 and 95 dBA. This work demonstrates the capability of distributed monitoring as a means to examine exposure variability in both space and time, building an important preliminary step towards a new approach for workplace hazard monitoring. PMID:29751534

  1. Organizational Considerations for Advanced Manufacturing Technology

    ERIC Educational Resources Information Center

    DeRuntz, Bruce D.; Turner, Roger M.

    2003-01-01

    In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…

  2. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    AM. Alternative powders can be made by blending or re-spheroidizing HDH and CPTi powders. Machine modifications were performed to allow the testing and manufacturing with these low cost alternative powders. A comparison was made between alternative powders and gas atomized powders. Powders were compared in terms of morphology and at the microstructural level. Flowability of different powder blends was also measured. Finally, a comparison of parts fabricated from the multiple powder blends and gas atomized powder was made. It has been demonstrated that powder blending can produce fully dense parts in the Arcam system by utilizing the double melt technique or HIPing the built pars. The double melt technique increased the density of the sample part and modified the microstructure into finer martensitic grains. The HIP process can make a part fully dense regardless of what percentage of HDH powder blending is used. The HIP process yielded the same microstructure, regardless of the grain structure it started with. This research allows for the reduction of costs using titanium powders in the EBM system, but can also be implemented with more costly elements and alloys using other metal AM technologies. This includes niobium, tantalum, and nickel-based superalloys for use in various industries.

  3. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.

    1976-01-01

    The cost/benefits of advance commercial gas turbine materials are described. Development costs, estimated payoffs and probabilities of success are discussed. The materials technologies investigated are: (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.

  4. Low-cost commercial transport

    NASA Technical Reports Server (NTRS)

    Mcpherson, J.

    1991-01-01

    The topics presented are covered in viewgraph form. The objectives are to develop and validate technology, design tools and methodologies to enable the low cost commercial development and operational uses of hydrogen and hydrocarbon fueled liquid engines, low pressure booster engines and hybrid engines.

  5. An incidence model of the cost of advanced prostate cancer in Spain.

    PubMed

    Hart, W M; Nazir, J; Baskin-Bey, E

    2014-02-01

    Prostate cancer (PCa) is the second leading cancer diagnosed among men. In Spain the incidence of PCa was 70.75 cases per 100,000 males. Advanced PCa has spread outside of the prostate capsule and may involve other parts of the body. The aim of this study was to estimate the lifetime costs of a cohort of advanced PCa patients diagnosed in Spain in 2012. A partitioned economic model was developed in EXCEL incorporating Spanish incidence, mortality, and cost data supplemented with data from the international literature. Progression from Stage III to Stage IV was permitted. Costs were discounted at the standard rate of 3%. Lifetime costs were presented on an individual basis and for the entire cohort of newly diagnosed Stage III and Stage IV PCa patients. Lifetime costs for advanced PCa were ∼€19,961 per patient (mean survival of 8.4 years). Using the projected incident cases for 2012 (3047), the total cost for the incident cohort of patients in 2012 would amount to €61 million. These results were more sensitive to changes in the ongoing costs (post-initial 12 months) of Stage III PCa, the rate of progression from Stage III to Stage IV, and the discount rate applied to costs. This study provides an estimate of the lifetime costs of advanced PCa in Spain and a framework for further research. The study is limited by the availability of long-term Spanish data and the need to make inferences from international studies. However, until long-term prospective or observational data do become available in Spain, based on the assumptions, the current results indicate that the burden of advanced PCa in Spain is substantial. Any treatments that could potentially reduce the economic burden of the disease should be of interest to healthcare decision makers.

  6. 78 FR 15114 - Group Lotus plc; Grant of Petition for a Temporary Exemption From an Advanced Air Bag Requirement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... went into effect, low volume manufacturers now have access to advanced air bag technology. Accordingly, NHTSA has concluded that the expense of advanced air bag technology is not now sufficient, in and of... into effect, low volume manufacturers now have access to advanced air bag technology.\\14\\ Accordingly...

  7. Cost effective technology

    NASA Astrophysics Data System (ADS)

    Miller, S. C.

    1989-09-01

    With relation to advanced technology for gas turbines, the overall process of product definition and development, concentrating particularly on the integration of activities between engineering design and manufacturing, is surveyed. The development of new philosophies in each of these spheres of activity is concluded to be cost effective technology and to make a highly significant contribution to the competitiveness and profitability of the industry.

  8. Integrated flexible manufacturing program for manufacturing automation and rapid prototyping

    NASA Technical Reports Server (NTRS)

    Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.

    1993-01-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  9. Product pricing in the Solar Array Manufacturing Industry - An executive summary of SAMICS

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1978-01-01

    Capabilities, methodology, and a description of input data to the Solar Array Manufacturing Industry Costing Standards (SAMICS) are presented. SAMICS were developed to provide a standardized procedure and data base for comparing manufacturing processes of Low-cost Solar Array (LSA) subcontractors, guide the setting of research priorities, and assess the progress of LSA toward its hundred-fold cost reduction goal. SAMICS can be used to estimate the manufacturing costs and product prices and determine the impact of inflation, taxes, and interest rates, but it is limited by its ignoring the effects of the market supply and demand and an assumption that all factories operate in a production line mode. The SAMICS methodology defines the industry structure, hypothetical supplier companies, and manufacturing processes and maintains a body of standardized data which is used to compute the final product price. The input data includes the product description, the process characteristics, the equipment cost factors, and production data for the preparation of detailed cost estimates. Activities validating that SAMICS produced realistic price estimates and cost breakdowns are described.

  10. Performance of a Low-Cost, Low-Concentration Photovoltaic Module

    NASA Astrophysics Data System (ADS)

    Shell, Kara A.; Brown, Scott A.; Schuetz, Mark A.; Davis, Bob J.; French, Roger H.

    2011-12-01

    In order to significantly reduce the cost of solar power, Replex Plastics has developed a low-cost, low-concentration PV module incorporating acrylic mirror reflectors. The reflectors are compound parabolic concentrators designed for use with low-accuracy single axis trackers. The prototypes use crystalline silicon photovoltaic cells and achieved 7.1x concentration over a receiver without reflectors. The 1×1.6 m module used 1/10th the silicon of a standard module and produced a max power of 140 W.

  11. Targeted Structural Optimization with Additive Manufacturing of Metals

    NASA Technical Reports Server (NTRS)

    Burt, Adam; Hull, Patrick

    2015-01-01

    The recent advances in additive manufacturing (AM) of metals have now improved the state-of-the-art such that traditionally non-producible parts can be readily produced in a cost-effective way. Because of these advances in manufacturing technology, structural optimization techniques are well positioned to supplement and advance this new technology. The goal of this project is to develop a structural design, analysis, and optimization framework combined with AM to significantly light-weight the interior of metallic structures while maintaining the selected structural properties of the original solid. This is a new state-of-the-art capability to significantly reduce mass, while maintaining the structural integrity of the original design, something that can only be done with AM. In addition, this framework will couple the design, analysis, and fabrication process, meaning that what has been designed directly represents the produced part, thus closing the loop on the design cycle and removing human iteration between design and fabrication. This fundamental concept has applications from light-weighting launch vehicle components to in situ resource fabrication.

  12. Large area, low cost space solar cells with optional wraparound contacts

    NASA Technical Reports Server (NTRS)

    Michaels, D.; Mendoza, N.; Williams, R.

    1981-01-01

    Design parameters for two large area, low cost solar cells are presented, and electron irradiation testing, thermal alpha testing, and cell processing are discussed. The devices are a 2 ohm-cm base resistivity silicon cell with an evaporated aluminum reflector produced in a dielectric wraparound cell, and a 10 ohm-cm silicon cell with the BSF/BSR combination and a conventional contact system. Both cells are 5.9 x 5.9 cm and require 200 micron thick silicon material due to mission weight constraints. Normalized values for open circuit voltage, short circuit current, and maximum power calculations derived from electron radiation testing are given. In addition, thermal alpha testing values of absorptivity and emittance are included. A pilot cell processing run produced cells averaging 14.4% efficiencies at AMO 28 C. Manufacturing for such cells will be on a mechanized process line, and the area of coverslide application technology must be considered in order to achieve cost effective production.

  13. Future X Pathfinder: Quick, Low Cost Flight Testing for Tomorrow's Launch Vehicles

    NASA Technical Reports Server (NTRS)

    London, John, III; Sumrall, Phil

    1999-01-01

    The DC-X and DC-XA Single Stage Technology flight program demonstrated the value of low cost rapid prototyping and flight testing of launch vehicle technology testbeds. NASA is continuing this important legacy through a program referred to as Future-X Pathfinder. This program is designed to field flight vehicle projects that cost around $100M each, with a new vehicle flying about every two years. Each vehicle project will develop and extensively flight test a launch vehicle technology testbed that will advance the state of the art in technologies directly relevant to future space transportation systems. There are currently two experimental, or "X" vehicle projects in the Pathfinder program, with additional projects expected to follow in the near future. The first Pathfinder project is X-34. X-34 is a suborbital rocket plane capable of flights to Mach 8 and 75 kilometers altitude. There are a number of reusable launch vehicle technologies embedded in the X-34 vehicle design, such as composite structures and propellant tanks, and advanced reusable thermal protection systems. In addition, X-34 is designed to carry experiments applicable to both the launch vehicle and hypersonic aeronautics community. X-34 is scheduled to fly later this year. The second Pathfinder project is the X-37. X-37 is an orbital space plane that is carried into orbit either by the Space Shuttle or by an expendable launch vehicle. X-37 provides NASA access to the orbital and orbital reentry flight regimes with an experimental testbed vehicle. The vehicle will expose embedded and carry-on advanced space transportation technologies to the extreme environments of orbit and reentry. Early atmospheric approach and landing tests of an unpowered version of the X-37 will begin next year, with orbital flights beginning in late 2001. Future-X Pathfinder is charting a course for the future with its growing fleet of low-cost X- vehicles. X-34 and X-37 are leading the assault on high launch costs and

  14. Ultra Low-Cost Radar

    NASA Astrophysics Data System (ADS)

    Davies, P.; da Silva Curiel, A.; Eves, S.; Sweeting, M.; Thompson, A.; Hall, D.

    From early 2003, Surrey Satellite Technology Limited (SSTL), together with its partners from Algeria, Nigeria and Turkey, has operated the Disaster Monitoring Constellation (DMC). During this period we have demonstrated the utility of a low-cost satellite system that uses optical sensors and is capable of providing daily imaging globally. For example, DMC data has been used operationally in the relief work in Darfur and following the Asian Tsunami. In addition to the use of the DMC to support disasters, the DMC has also been extensively used by the consortium members in support of national imaging needs and some residual system capacity has been provided to commercial customers. In the same timeframe, EADS Astrium Ltd has developed the technologies needed to implement the low-cost radar satellites of the MicroSAR range of synthetic aperture radar (SAR) satellites. EADS Astrium Ltd and SSTL are now looking to combine their expertises in low cost space technology and extend the capability of the DMC constellation by including a complementary small satellite radar sensor. The product of this activity is a satellite design that strikes an appropriate balance between revisit frequency and resolution. Hence, by comparison with other small satellite SAR concepts, the satellite described in this paper will provide broader area coverage at spatial resolutions in the region of 10 - 15m. Most significantly, perhaps, as a result of the specific cost targets imposed at the beginning of the design process, the satellite can provide this level of performance at a lower cost than other comparable space-based radar systems and significantly lower than larger, more performant, space-based radar systems.

  15. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  16. Modeling the Downstream Processing of Monoclonal Antibodies Reveals Cost Advantages for Continuous Methods for a Broad Range of Manufacturing Scales.

    PubMed

    Hummel, Jonathan; Pagkaliwangan, Mark; Gjoka, Xhorxhi; Davidovits, Terence; Stock, Rick; Ransohoff, Thomas; Gantier, Rene; Schofield, Mark

    2018-01-17

    The biopharmaceutical industry is evolving in response to changing market conditions, including increasing competition and growing pressures to reduce costs. Single-use (SU) technologies and continuous bioprocessing have attracted attention as potential facilitators of cost-optimized manufacturing for monoclonal antibodies. While disposable bioprocessing has been adopted at many scales of manufacturing, continuous bioprocessing has yet to reach the same level of implementation. In this study, the cost of goods of Pall Life Science's integrated, continuous bioprocessing (ICB) platform is modeled, along with that of purification processes in stainless-steel and SU batch formats. All three models include costs associated with downstream processing only. Evaluation of the models across a broad range of clinical and commercial scenarios reveal that the cost savings gained by switching from stainless-steel to SU batch processing are often amplified by continuous operation. The continuous platform exhibits the lowest cost of goods across 78% of all scenarios modeled here, with the SU batch process having the lowest costs in the rest of the cases. The relative savings demonstrated by the continuous process are greatest at the highest feed titers and volumes. These findings indicate that existing and imminent continuous technologies and equipment can become key enablers for more cost effective manufacturing of biopharmaceuticals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The GLC8 - A miniature low cost ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Godart, D.-F.; Peghaire, J.-P.

    SAGEM is enlarging its family of ring laser gyros (RLG) which already includes a triangular 32-cm path-length gyro and a square 16-cm path-length gyro, in order to meet the increasing demand for low cost, medium accuracy strap-down inertial measurement units for applications such as short- and medium-range tactical missiles as well as aided navigation systems for aircrafts and land vehicles. Based on the experience acquired in the past 13 years in the RLG field, and especially in mirror manufacturing, SAGEM developed the GLC8 which has a square 8-cm path length cavity, central piezoelectric dither. It incorporates two cathodes, a single anode, and is technologically designed to minimize production-costs while optimizing the performance to global device size ratio. This gyro is characterized by a bias and a scale-factor stability respectively better than 0.5 deg/h and 100 ppm (1 sigma), and has an operating lifetime compatible with the most demanding relevant applications and a high robustness to mechanical environments.

  18. A low cost, customizable turbidostat for use in synthetic circuit characterization.

    PubMed

    Takahashi, Chris N; Miller, Aaron W; Ekness, Felix; Dunham, Maitreya J; Klavins, Eric

    2015-01-16

    Engineered biological circuits are often disturbed by a variety of environmental factors. In batch culture, where the majority of synthetic circuit characterization occurs, environmental conditions vary as the culture matures. Turbidostats are powerful characterization tools that provide static culture environments; however, they are often expensive, especially when purchased in custom configurations, and are difficult to design and construct in a lab. Here, we present a low cost, open source multiplexed turbidostat that can be manufactured and used with minimal experience in electrical or software engineering. We demonstrate the utility of this system to profile synthetic circuit behavior in S. cerevisiae. We also demonstrate the flexibility of the design by showing that a fluorometer can be easily integrated.

  19. Preliminary study of advanced turboprop and turboshaft engines for light aircraft. [cost effectiveness

    NASA Technical Reports Server (NTRS)

    Knip, G.; Plencner, R. M.; Eisenberg, J. D.

    1980-01-01

    The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit.

  20. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  1. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  2. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  3. Analysis of variability in additive manufactured open cell porous structures.

    PubMed

    Evans, Sam; Jones, Eric; Fox, Pete; Sutcliffe, Chris

    2017-06-01

    In this article, a novel method of analysing build consistency of additively manufactured open cell porous structures is presented. Conventionally, methods such as micro computed tomography or scanning electron microscopy imaging have been applied to the measurement of geometric properties of porous material; however, high costs and low speeds make them unsuitable for analysing high volumes of components. Recent advances in the image-based analysis of open cell structures have opened up the possibility of qualifying variation in manufacturing of porous material. Here, a photogrammetric method of measurement, employing image analysis to extract values for geometric properties, is used to investigate the variation between identically designed porous samples measuring changes in material thickness and pore size, both intra- and inter-build. Following the measurement of 125 samples, intra-build material thickness showed variation of ±12%, and pore size ±4% of the mean measured values across five builds. Inter-build material thickness and pore size showed mean ranges higher than those of intra-build, ±16% and ±6% of the mean material thickness and pore size, respectively. Acquired measurements created baseline variation values and demonstrated techniques suitable for tracking build deviation and inspecting additively manufactured porous structures to indicate unwanted process fluctuations.

  4. Algolcam: Low Cost Sky Scanning with Modern Technology

    NASA Astrophysics Data System (ADS)

    Connors, Martin; Bolton, Dempsey; Doktor, Ian

    2016-01-01

    , it offers great potential for analysis and discovery. The use of low cost cutting edge technology makes Algolcam particularly interesting for enhancing the advanced undergraduate learning experience in astronomy.

  5. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    PubMed Central

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  6. Development of a low cost high precision three-layer 3D artificial compound eye.

    PubMed

    Zhang, Hao; Li, Lei; McCray, David L; Scheiding, Sebastian; Naples, Neil J; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas; Yi, Allen Y

    2013-09-23

    Artificial compound eyes are typically designed on planar substrates due to the limits of current imaging devices and available manufacturing processes. In this study, a high precision, low cost, three-layer 3D artificial compound eye consisting of a 3D microlens array, a freeform lens array, and a field lens array was constructed to mimic an apposition compound eye on a curved substrate. The freeform microlens array was manufactured on a curved substrate to alter incident light beams and steer their respective images onto a flat image plane. The optical design was performed using ZEMAX. The optical simulation shows that the artificial compound eye can form multiple images with aberrations below 11 μm; adequate for many imaging applications. Both the freeform lens array and the field lens array were manufactured using microinjection molding process to reduce cost. Aluminum mold inserts were diamond machined by the slow tool servo method. The performance of the compound eye was tested using a home-built optical setup. The images captured demonstrate that the proposed structures can successfully steer images from a curved surface onto a planar photoreceptor. Experimental results show that the compound eye in this research has a field of view of 87°. In addition, images formed by multiple channels were found to be evenly distributed on the flat photoreceptor. Additionally, overlapping views of the adjacent channels allow higher resolution images to be re-constructed from multiple 3D images taken simultaneously.

  7. Who Purchases Low-Cost Alcohol in Australia?

    PubMed

    Callinan, Sarah; Room, Robin; Livingston, Michael; Jiang, Heng

    2015-11-01

    Debates surrounding potential price-based polices aimed at reducing alcohol-related harms tend to focus on the debate concerning who would be most affected-harmful or low-income drinkers. This study will investigate the characteristics of people who purchase low-cost alcohol using data from the Australian arm of the International Alcohol Control study. 1681 Australians aged 16 and over who had consumed alcohol and purchased it in off-licence premises were asked detailed questions about both practices. Low-cost alcohol was defined using cut-points of 80¢, $1.00 or $1.25 per Australian standard drink. With a $1.00 cut-off low income (OR = 2.1) and heavy drinkers (OR = 1.7) were more likely to purchase any low-cost alcohol. Harmful drinkers purchased more, and low-income drinkers less, alcohol priced at less than $1.00 per drink than high income and moderate drinkers respectively. The relationship between the proportion of units purchased at low cost and both drinker category and income is less clear, with hazardous, but not harmful, drinkers purchasing a lower proportion of units at low cost than moderate drinkers. The impact of minimum pricing on low income and harmful drinkers will depend on whether the proportion or total quantity of all alcohol purchased at low cost is considered. Based on absolute units of alcohol, minimum unit pricing could be differentially effective for heavier drinkers compared to other drinkers, particularly for young males. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  8. Design of high-reliability low-cost amorphous silicon modules for high energy yield

    NASA Astrophysics Data System (ADS)

    Jansen, Kai W.; Varvar, Anthony; Twesme, Edward; Berens, Troy; Dhere, Neelkanth G.

    2008-08-01

    For PV modules to fulfill their intended purpose, they must generate sufficient economic return over their lifetime to justify their initial cost. Not only must modules be manufactured at a low cost/Wp with a high energy yield (kWh/kWp), they must also be designed to withstand the significant environmental stresses experienced throughout their 25+ year lifetime. Based on field experience, the most common factors affecting the lifetime energy yield of glass-based amorphous silicon (a-Si) modules have been identified; these include: 1) light-induced degradation; 2) moisture ingress and thin film corrosion; 3) transparent conductive oxide (TCO) delamination; and 4) glass breakage. The current approaches to mitigating the effect of these degradation mechanisms are discussed and the accelerated tests designed to simulate some of the field failures are described. In some cases, novel accelerated tests have been created to facilitate the development of improved manufacturing processes, including a unique test to screen for TCO delamination. Modules using the most reliable designs are tested in high voltage arrays at customer and internal test sites, as well as at independent laboratories. Data from tests at the Florida Solar Energy Center has shown that a-Si tandem modules can demonstrate an energy yield exceeding 1200 kWh/kWp/yr in a subtropical climate. In the same study, the test arrays demonstrated low long-term power loss over two years of data collection, after initial stabilization. The absolute power produced by the test arrays varied seasonally by approximately +/-7%, as expected.

  9. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    PubMed

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  10. Icarus Rewaxed: A high speed, low-cost general aviation aircraft for Aeroworld

    NASA Technical Reports Server (NTRS)

    Farrens, Bryan; Hueckel, Macy; Fulkerson, Dan; Barents, Matt; Capozzi, Brian; Ramsey, Keri

    1994-01-01

    Icarus Rewaxed is a single engine, six passenger, general aviation airplane. With a cruise velocity of 72 ft/s, the Icarus can compete with the performance of any other airplane in its class with an eye on economics and safety. It has a very competitive initial price ($3498.00) and cost per flight ($6.36-8.40). Icarus can serve all airports in Aeroworld with a takeoff distance of 25.4 feet and maximum range of 38,000 feet. It is capable of taking off from an unprepared field with a grass depth of 3 inches. Icarus Rewaxed fills the market need for a high-speed, low cost aircraft. It provides customers with a general aviation craft that can compete in the existing performance market with the added security of an advanced structure. With the use of advanced materials, the maneuvering capability of the Icarus is increased, as it can withstand greater load factors than previous aircraft.

  11. Plastic Cubesat: An innovative and low-cost way to perform applied space research and hands-on education

    NASA Astrophysics Data System (ADS)

    Piattoni, Jacopo; Candini, Gian Paolo; Pezzi, Giulio; Santoni, Fabio; Piergentili, Fabrizio

    2012-12-01

    This paper describes the design and the manufacturing of a Cubesat platform based on a plastic structure. The Cubesat structure has been realized in plastic material (ABS) using a "rapid prototyping" technique. The "rapid prototyping" technique has several advantages including fast implementation, accuracy in manufacturing small parts and low cost. Moreover, concerning the construction of a small satellite, this technique is very useful thanks to the accuracy achievable in details, which are sometimes difficult and expensive to realize with the use of tools machine. The structure must be able to withstand the launch loads. For this reason, several simulations using an FEM simulation and an intensive vibration test campaign have been performed in the system development and test phase. To demonstrate that this structure is suitable for hosting a complete satellite system, offering innovative integrated solutions, other subsystems have been developed and assembled. Despite its small size, this single unit (1U) Cubesat has a system for active attitude control, a redundant telecommunication system, a payload camera and a photovoltaic system based on high efficiency solar cells. The developed communication subsystem has small dimensions, low power consumption and low cost. An example of the innovations introduced is the antenna system, which has been manufactured inside the ABS structure. The communication protocol which has been implemented, the AX.25 protocol, is mainly used by radio amateurs. The communication system has the capability to transmit both telemetry and data from the payload, in this case a microcamera. The attitude control subsystem is based on an active magnetic system with magnetorquers for detumbling and momentum dumping and three reaction wheels for fine control. It has a total dimension of about 50×50×50 mm. A microcontroller implements the detumbling control law autonomously taking data from integrated magnetometers and executes pointing

  12. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  13. Molecular diagnostics for low resource settings

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.

    2010-03-01

    As traditional high quality diagnostic laboratories are not widely available or affordable in developing country health care settings, microfluidics-based point-of-care diagnostics may be able to address the need to perform complex assays in under-resourced areas. Many instrument-based as well as non-instrumented microfluidic prototype diagnostics are currently being developed. In addition to various engineering challenges, the greatest remaining issue is the search for truly low-cost disposable manufacturing methods. Diagnostics for global health, and specifically microfluidics and molecular-based low resource diagnostics, have become a very active research area over the last five years, thanks in part to new funding that became available from the Bill and Melinda Gates Foundation, the National Institutes of Health, and other sources. This has led to a number of interesting prototype devices that are now in advanced development or clinical validation. These devices include disposables and instruments that perform multiplexed PCR-based lab-on-a-chips for enteric, febrile, and vaginal diseases, as well as immunoassays for diseases such as malaria, HIV, and various sexually transmitted diseases. More recently, instrument-free diagnostic disposables based on isothermal nucleic acid amplification have been developed as well. Regardless of platform, however, the search for truly low-cost manufacturing methods that would result in cost of goods per disposable of around US1/unit at volume remains a big challenge. This talk will give an overview over existing platform development efforts as well as present some original research in this area at PATH.

  14. Additive Manufacturing and Casting Technology Comparison: Mechanical Properties, Productivity and Cost Benchmark

    NASA Astrophysics Data System (ADS)

    Vevers, A.; Kromanis, A.; Gerins, E.; Ozolins, J.

    2018-04-01

    The casting technology is one of the oldest production technologies in the world but in the recent years metal additive manufacturing also known as metal 3D printing has been evolving with huge steps. Both technologies have capabilities to produce parts with internal holes and at first glance surface roughness is similar for both technologies, which means that for precise dimensions parts have to be machined in places where precise fit is necessary. Benchmark tests have been made to find out if parts which are produced with metal additive manufacturing can be used to replace parts which are produced with casting technology. Most of the comparative tests have been made with GJS-400-15 grade which is one of the most popular cast iron grades. To compare mechanical properties samples have been produced using additive manufacturing and tested for tensile strength, hardness, surface roughness and microstructure and then the results have been compared with the samples produced with casting technology. In addition, both technologies have been compared in terms of the production time and production costs to see if additive manufacturing is competitive with the casting technology. The original paper has been written in the Latvian language as part of the Master Thesis within the framework of the production technology study programme at Riga Technical University.

  15. A low-cost, high-field-strength magnetic resonance imaging-compatible actuator.

    PubMed

    Secoli, Riccardo; Robinson, Matthew; Brugnoli, Michele; Rodriguez y Baena, Ferdinando

    2015-03-01

    To perform minimally invasive surgical interventions with the aid of robotic systems within a magnetic resonance imaging scanner offers significant advantages compared to conventional surgery. However, despite the numerous exciting potential applications of this technology, the introduction of magnetic resonance imaging-compatible robotics has been hampered by safety, reliability and cost concerns: the robots should not be attracted by the strong magnetic field of the scanner and should operate reliably in the field without causing distortion to the scan data. Development of non-conventional sensors and/or actuators is thus required to meet these strict operational and safety requirements. These demands commonly result in expensive actuators, which mean that cost effectiveness remains a major challenge for such robotic systems. This work presents a low-cost, high-field-strength magnetic resonance imaging-compatible actuator: a pneumatic stepper motor which is controllable in open loop or closed loop, along with a rotary encoder, both fully manufactured in plastic, which are shown to perform reliably via a set of in vitro trials while generating negligible artifacts when imaged within a standard clinical scanner. © IMechE 2015.

  16. Cost-effectiveness of Pembrolizumab in Second-line Advanced Bladder Cancer.

    PubMed

    Sarfaty, Michal; Hall, Peter S; Chan, Kelvin K W; Virik, Kiran; Leshno, Moshe; Gordon, Noa; Moore, Assaf; Neiman, Victoria; Rosenbaum, Eli; Goldstein, Daniel A

    2018-03-22

    Immune-modulating drugs have recently been introduced to the second-line setting of advanced bladder cancer. Pembrolizumab increases overall survival and is associated with less toxicity compared with chemotherapy in this setting based on the Keynote 045 study. The high cost of immunotherapy necessitates an assessment of its value by considering both efficacy and cost. To estimate the cost-effectiveness of pembrolizumab for the second-line treatment of advanced bladder cancer from the perspective of payers in multiple countries. We developed a Markov model to compare the cost and effectiveness of pembrolizumab with those of chemotherapy in the second-line treatment of advanced bladder cancer based on the Keynote 045 study. Drug costs were acquired for the United States (US), United Kingdom (UK), Canada, and Australia. All costs were converted from local currency to US dollars at the exchange rates in September 2017. Health outcomes were measured in quality-adjusted life-years (QALYs). Pembrolizumab generated a gain of 0.36-0.37 QALYs compared with chemotherapy. Our analysis established the following incremental cost-effectiveness ratios (ICERs) for pembrolizumab versus chemotherapy in second-line advanced bladder cancer treatment: US $122 557/QALY; UK $91 995/QALY; Canada $90 099/QALY; and Australia $99 966/QALY. The willingness-to-pay (WTP) thresholds per QALY are considered to be around 100 000-150 000 US dollars for the US, 20 000-50 000 pounds for the UK (US$25 000-65 000), 20 000 -100 000 CAD for Canada (US$16 000-80 000), and 40 000-75 000 AUD for Australia (US$32 000-60 000). Cost-effectiveness and WTP thresholds vary between countries. Compared with the other countries examined, US drug prices were found to be the highest, leading to the highest ICER. With standard WTP thresholds, pembrolizumab may be considered cost-effective in the US but not in the other countries examined. This article assessed the cost-effectiveness of pembrolizumab for the treatment

  17. A Low-Cost Production Method of FeSi2 Power Generation Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Inoue, Hiroyuki; Kobayashi, Takahide; Kato, Masahiko; Yoneda, Seiji

    2016-03-01

    A method is proposed to reduce the production cost of power generation thermoelectric modules. FeSi2 is employed as the thermoelectric material because of its low cost, low environmental load, and oxidation resistance. The raw materials were prepared in the composition of Fe0.96Si2.1Co0.04 for n-type and Fe0.92Si2.1Mn0.08 for p-type, which were added with 0.5 wt.% Cu as the starting materials. They were sintered without pressure at 1446 K to be formed into elements. The Seebeck coefficient and resistivity at room temperature were determined to be -182 μV/K and 0.13 mΩm for n-type, and 338 μV/K and 1.13 mΩm for p-type, respectively. The brazing conditions of the direct joining between the element and the solder were examined. Pastes of BNi-6, BNi-7 or TB-608T were tried as the solder. TB-608T was useable for metallizing of insulation substrates and joining of thermoelectric elements in order to manufacture thermoelectric modules. The joining strength was determined to be 50 MPa between the alumina plate and the elements. No mechanical failure was observed in the modules after repetition of 10 or more exposures to a heat source of 670 K. No change was found in the internal resistance. The present production method will provide modules with high durability and low production cost, which will enable high-power multi-stage cascade modules at a reasonable cost.

  18. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process.

    PubMed

    Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S; Jazar, Reza N; Khayyam, Hamid

    2018-03-05

    To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.

  19. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process

    PubMed Central

    Golkarnarenji, Gelayol; Naebe, Minoo; Badii, Khashayar; Milani, Abbas S.; Jazar, Reza N.; Khayyam, Hamid

    2018-01-01

    To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR) and Artificial Neural Network (ANN), were studied and compared, with a limited dataset obtained to predict physical property (density) of oxidative stabilized PAN fiber (OPF) in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large. PMID:29510592

  20. Uncertainty in air quality observations using low-cost sensors

    NASA Astrophysics Data System (ADS)

    Castell, Nuria; Dauge, Franck R.; Dongol, Rozina; Vogt, Matthias; Schneider, Philipp

    2016-04-01

    due to changes in the environmental conditions. Currently there is a lack of testing to ensure adequate sensor performance prior to marketing such instruments. Even when manufacturers provide detailed specification sheets, there is little guarantee that the specifications can actually be met in real-world conditions. Data quality is a pertinent concern, especially when citizens are collecting and interpreting the data by themselves. Poor or unknown data quality can lead to incorrect or inappropriate decisions. We present the experiences gained within the EU project CITI-SENSE, where low-cost sensors are one of the tools employed to empower citizens in air quality issues.