Sample records for advanced maillard reaction

  1. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms.

    PubMed

    Lund, Marianne N; Ray, Colin A

    2017-06-14

    Maillard reactions lead to changes in food color, organoleptic properties, protein functionality, and protein digestibility. Numerous different strategies for controlling Maillard reactions in foods have been attempted during the past decades. In this paper, recent advances in strategies for controlling the Maillard reaction and subsequent downstream reaction products in food systems are critically reviewed. The underlying mechanisms at play are presented, strengths and weaknesses of each strategy are discussed, and reasonable reaction mechanisms are proposed to reinforce the evaluations. The review includes strategies involving addition of functional ingredients, such as plant polyphenols and vitamins, as well as enzymes. The resulting trapping or modification of Maillard targets, reactive intermediates, and advanced glycation endproducts (AGEs) are presented with their potential unwanted side effects. Finally, recent advances in processing for control of Maillard reactions are discussed.

  2. Advanced Maillard reaction end products are associated with Alzheimer disease pathology.

    PubMed Central

    Smith, M A; Taneda, S; Richey, P L; Miyata, S; Yan, S D; Stern, D; Sayre, L M; Monnier, V M; Perry, G

    1994-01-01

    During aging long-lived proteins accumulate specific post-translational modifications. One family of modifications, termed Maillard reaction products, are initiated by the condensation between amino groups of proteins and reducing sugars. Protein modification by the Maillard reaction is associated with crosslink formation, decreased protein solubility, and increased protease resistance. Here, we present evidence that the characteristic pathological structures associated with Alzheimer disease contain modifications typical of advanced Maillard reaction end products. Specifically, antibodies against two Maillard end products, pyrraline and pentosidine, immunocytochemically label neurofibrillary tangles and senile plaques in brain tissue from patients with Alzheimer disease. In contrast, little or no staining is observed in apparently healthy neurons of the same brain. The Maillard-reaction-related modifications described herein could account for the biochemical and insolubility properties of the lesions of Alzheimer disease through the formation of protein crosslinks. Images PMID:8202552

  3. Microwave-assisted Maillard reactions for the preparation of advanced glycation end products (AGEs).

    PubMed

    Visentin, Sonja; Medana, Claudio; Barge, Alessandro; Giancotti, Valeria; Cravotto, Giancarlo

    2010-05-21

    The application of microwaves as an efficient form of volumetric heating to promote organic reactions was recognized in the mid-1980 s. It has a much longer history in the food research and industry where microwave irradiation was studied in depth to optimize food browning and the development of desirable flavours from Maillard reactions. The microwave-promoted Maillard reaction is a challenging synthetic method to generate molecular diversity in a straightforward way. In this paper we present a new rapid and efficient one-pot procedure for the preparation of pentosidine and other AGEs under microwave irradiation.

  4. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review.

    PubMed

    Aalaei, Kataneh; Rayner, Marilyn; Sjöholm, Ingegerd

    2018-01-23

    Maillard reaction is an extensively studied, yet unresolved chemical reaction that occurs as a result of application of the heat and during the storage of foods. The formation of advanced glycation end products (AGEs) has been the focus of several investigations recently. These molecules which are formed at the advanced stage of the Maillard reaction, are suspected to be involved in autoimmune diseases in humans. Therefore, understanding to which extent this reaction occurs in foods, is of vital significance. Because of their composition, milk products are ideal media for this reaction, especially when application of heat and prolonged storage are considered. Thus, in this work several chemical approaches to monitor this reaction in an early stage are reviewed. This is mostly done regarding available lysine blockage which takes place in the very beginning of the reaction. The most popular methods and their applications to various products are reviewed. The methods including their modifications are described in detail and their findings are discussed. The present paper provides an insight into the history of the most frequently-used methods and provides an overview on the indicators of the Maillard reaction in the early stage with its focus on milk products and especially milk powders.

  5. Fluorescence from the maillard reaction and its potential applications in food science.

    PubMed

    Matiacevich, Silvia B; Santagapita, Patricio R; Buera, M Pilar

    2005-01-01

    The chemistry of the Maillard reaction involves a complex set of steps, and its interpretation represents a challenge in basic and applied aspects of Food Science. Fluorescent compounds have been recognized as important early markers of the reaction in food products since 1942. However, the recent advances in the characterization of fluorophores' development were observed in biological and biomedical areas. The in vivo non-enzymatic glycosylation of proteins produces biological effects, promoting health deterioration. The characteristic fluorescence of advanced glycosylation end products (AGEs) is similar to that of Maillard food products and represents an indicator of the level of AGE-modified proteins, but the structure of the fluorescent groups is, typically, unknown. Application of fluorescence measurement is considered a potential tool for addressing key problems of food deterioration as an early marker or index of the damage of biomolecules. Fluorophores may be precursors of the brown pigments and/or end products. A general scheme of the Maillard reaction is proposed in this article, incorporating the pool concept. A correct interpretation of the effect of environmental and compositional conditions and their influences on the reaction kinetics may help to define the meaning of fluorescence development for each particular system.

  6. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    PubMed

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  7. Pathways of the Maillard reaction under physiological conditions.

    PubMed

    Henning, Christian; Glomb, Marcus A

    2016-08-01

    Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.

  8. Role of pyridoxamine in the formation of the Amadori/Heyns compounds and aggregates during the glycation of beta-lactoglobulin with galactose and tagatose.

    PubMed

    Corzo-Martínez, Marta; Moreno, F Javier; Olano, Agustín; Villamiel, Mar

    2010-01-13

    The effect of pyridoxamine on the Maillard reaction during the formation of conjugates of beta-lactoglobulin with galactose and tagatose under controlled conditions (pH 7, 0.44 aw, 40 and 50 degrees C, for 6 days) has been studied, for the first time, by means of the changes in reducing carbohydrates, formation of Amadori or Heyns compounds, and aggregates and browning development. The results showed the formation of interaction products between pyridoxamine and galactose or tagatose either in the presence or in the absence of beta-lactoglobulin, indicating that pyridoxamine competes with the free amino groups of beta-lactoglobulin for the carbonyl group of both carbohydrates. Thus, a small inhibitory effect of pyridoxamine on the initial stages of the Maillard reaction was pointed out. Furthermore, much lower aggregation and color formation rates were observed in the conjugates of beta-lactoglobulin galactose/tagatose with pyridoxamine than without this compound, supporting its potent inhibitory effect on the advanced and final stages of the Maillard reaction. These findings reveal the usefulness of food-grade inhibitors of the advanced stages of the Maillard reaction, such as pyridoxamine, that, in combination with mild storage conditions, could lead to the formation of safer neoglycoconjugates without impairing their nutritional quality.

  9. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    PubMed Central

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.; Baynes, John W.; Metz, Thomas O.

    2009-01-01

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression. PMID:19093874

  10. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease.

    PubMed

    Zhang, Qibin; Ames, Jennifer M; Smith, Richard D; Baynes, John W; Metz, Thomas O

    2009-02-01

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.

  11. Effects of sterilization, packaging, and storage on vitamin C degradation, protein denaturation, and glycation in fortified milks.

    PubMed

    Gliguem, H; Birlouez-Aragon, I

    2005-03-01

    Monitoring the nutritional quality of dietetic milk throughout its shelf life is particularly important due to the high susceptibility of some vitamins to oxidation, and the continuous development of the Maillard reaction during storage. The objective of this paper was to evaluate the vitamin C content and protein modification by denaturation and glycation on fortified milk samples (growth milks) destined for 1- to 3-yr-old children. The influences of the sterilization process, formulation, packaging, and storage duration at ambient temperature in the dark were studied. Vitamin C degradation was particularly influenced by type of packaging. The use of a 3-layered opaque bottle was associated with complete oxidation of vitamin C after 1 mo of storage, whereas in the 6-layered opaque bottle, which has an oxygen barrier, the vitamin C content slowly decreased to reach 25% of the initial concentration after 4 mo of storage. However, no significant effect of vitamin C degradation during storage could be observed in terms of Maillard reaction, despite the fact that a probable impact occurred during sterilization. Furosine content and the FAST (fluorescence of advanced Maillard products and soluble tryptophan) index-indicators of the early and advanced Maillard reaction, respectively-were significantly higher in the in-bottle sterilized milk samples compared with UHT samples, and in fortified milk samples compared with cow milk. However, after 1 mo, the impact of storage was predominant, increasing the furosine level and the FAST index at similar levels for the differently processed samples. The early Maillard reaction developed continuously throughout the storage period.In conclusion, only packaging comprising an oxygen and light barrier is compatible with vitamin C fortification of milk. Furthermore, short storage time or low storage temperature is needed to retard vitamin C degradation, protein denaturation, and development of the Maillard reaction.

  12. Age-related accumulation of Maillard reaction products in human articular cartilage collagen.

    PubMed

    Verzijl, N; DeGroot, J; Oldehinkel, E; Bank, R A; Thorpe, S R; Baynes, J W; Bayliss, M T; Bijlsma, J W; Lafeber, F P; Tekoppele, J M

    2000-09-01

    Non-enzymic modification of tissue proteins by reducing sugars, the so-called Maillard reaction, is a prominent feature of aging. In articular cartilage, relatively high levels of the advanced glycation end product (AGE) pentosidine accumulate with age. Higher pentosidine levels have been associated with a stiffer collagen network in cartilage. However, even in cartilage, pentosidine levels themselves represent <1 cross-link per 20 collagen molecules, and as such cannot be expected to contribute substantially to the increase in collagen network stiffness. In the present study, we investigated a broad range of Maillard reaction products in cartilage collagen in order to determine whether pentosidine serves as an adequate marker for AGE levels. Not only did the well-characterized AGEs pentosidine, N(epsilon)-(carboxymethyl)lysine, and N(epsilon)-(carboxyethyl)lysine increase with age in cartilage collagen (all P<0.0001), but also general measures of AGE cross-linking, such as browning and fluorescence (both P<0.0001), increased. The levels of these AGEs are all higher in cartilage collagen than in skin collagen. As a functional measure of glycation the digestibility of articular collagen by bacterial collagenase was investigated; digestibility decreased linearly with age, proportional to the extent of glycation. Furthermore, the arginine content and the sum of the hydroxylysine and lysine content of cartilage collagen decrease significantly with age (P<0.0001 and P<0. 01 respectively), possibly due to modification by the Maillard reaction. The observed relationship between glycation and amino acid modification has not been reported previously in vivo. Our present results indicate that extensive accumulation of a variety of Maillard reaction products occurs in cartilage collagen with age. Altogether our results support the hypothesis that glycation contributes to stiffer and more brittle cartilage with advancing age.

  13. Age-related accumulation of Maillard reaction products in human articular cartilage collagen.

    PubMed Central

    Verzijl, N; DeGroot, J; Oldehinkel, E; Bank, R A; Thorpe, S R; Baynes, J W; Bayliss, M T; Bijlsma, J W; Lafeber, F P; Tekoppele, J M

    2000-01-01

    Non-enzymic modification of tissue proteins by reducing sugars, the so-called Maillard reaction, is a prominent feature of aging. In articular cartilage, relatively high levels of the advanced glycation end product (AGE) pentosidine accumulate with age. Higher pentosidine levels have been associated with a stiffer collagen network in cartilage. However, even in cartilage, pentosidine levels themselves represent <1 cross-link per 20 collagen molecules, and as such cannot be expected to contribute substantially to the increase in collagen network stiffness. In the present study, we investigated a broad range of Maillard reaction products in cartilage collagen in order to determine whether pentosidine serves as an adequate marker for AGE levels. Not only did the well-characterized AGEs pentosidine, N(epsilon)-(carboxymethyl)lysine, and N(epsilon)-(carboxyethyl)lysine increase with age in cartilage collagen (all P<0.0001), but also general measures of AGE cross-linking, such as browning and fluorescence (both P<0.0001), increased. The levels of these AGEs are all higher in cartilage collagen than in skin collagen. As a functional measure of glycation the digestibility of articular collagen by bacterial collagenase was investigated; digestibility decreased linearly with age, proportional to the extent of glycation. Furthermore, the arginine content and the sum of the hydroxylysine and lysine content of cartilage collagen decrease significantly with age (P<0.0001 and P<0. 01 respectively), possibly due to modification by the Maillard reaction. The observed relationship between glycation and amino acid modification has not been reported previously in vivo. Our present results indicate that extensive accumulation of a variety of Maillard reaction products occurs in cartilage collagen with age. Altogether our results support the hypothesis that glycation contributes to stiffer and more brittle cartilage with advancing age. PMID:10947951

  14. The Maillard reaction and its control during food processing. The potential of emerging technologies.

    PubMed

    Jaeger, H; Janositz, A; Knorr, D

    2010-06-01

    The Maillard reaction between reducing sugars and amino acids is a common reaction in foods which undergo thermal processing. Desired consequences like the formation of flavor and brown color of some cooked foods but also the destruction of essential amino acids and the production of anti-nutritive compounds require the consideration of the Maillard reaction and relevant mechanisms for its control. This paper aims to exemplify the recent advances in food processing with regard to the controllability of heat-induced changes in the food quality. Firstly, improved thermal technologies, such as ohmic heating, which allows direct heating of the product and overcoming the heat transfer limitations of conventional thermal processing are presented in terms of their applicability to reduce the thermal exposure during food preservation. Secondly, non-thermal technologies such as high hydrostatic pressure and pulsed electric fields and their ability to extend the shelf life of food products without the application of heat, thus also preserving the quality attributes of the food, will be discussed. Finally, an innovative method for the removal of Maillard reaction substrates in food raw materials by the application of pulsed electric field cell disintegration and extraction as well as enzymatic conversion is presented in order to demonstrate the potential of the combination of processes to control the occurrence of the Maillard reaction in food processing. (c) 2009 Elsevier Masson SAS. All rights reserved.

  15. Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?

    PubMed

    Del Turco, Serena; Basta, Giuseppina

    2016-01-01

    Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.

  16. [Proteins modified in the nonenzymatically glycosylation reaction (AGE-proteins)--new markers for diabetes?].

    PubMed

    Zdrojewicz, Z; Januszewski, A; Kwiatkowska, D

    1994-01-01

    Paper present a recent review on the formation and clinical significance of advanced glycosylation end products, produced in nonenzymatically glycosylation, called Maillard reaction. The special attention was paid to AGEs role in diabetic and aging processes. Instant of occurring of AGEs in circulation or increase of AGE receptor concentration are many years faster than clinical pathology of vessels, nervous or kidneys connect with diabetes or aging. May be in the future it will be possible to decrease the consequence of Maillard reaction by using pharmacology drugs.

  17. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.

    2008-12-18

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide on overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identificationmore » of new markers of disease development and progression.« less

  18. Effects of medium-chain triacylglycerols on Maillard reaction in bread baking.

    PubMed

    Toyosaki, Toshiyuki

    2018-06-01

    To investigate the relationship between the fatty acid composition of medium-chain triacylglycerols (MCTs) and the Maillard reaction induced during bread baking, a comparison with various fatty acids was conducted. Saturated fatty acids had a remarkable inhibitory effect on the amount of advanced glycation end products (AGEs) generated from the Maillard reaction in bread baking compared to unsaturated fatty acids. The amount of AGEs produced by each fatty acid (mg kg -1 ) was as follows: C18:0, 18.7; C12:0, 35.2; C16:0, 21.4; C18:0, 38.2; C18:1, 68.7; C18:2, 80.1; C20:4, 80.8; C22:4, 89.8. Saturated fatty acids were possibly involved in the Maillard reaction and, as a result, acted to inhibit it. In the case of unsaturated fatty acids, amounts of AGEs during the Maillard reaction in baking tended to increase as the degree of unsaturation increased. In other words, there was a positive correlation between the degree of unsaturation and the amount of AGEs. It was also confirmed that the air pore distribution in baked bread was closely related to AGEs. These results led us to conclude that the fatty acid composition of the added lipids also influences properties that determine the tastiness of bread. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Investigations on the Maillard reaction of dextrins during aging of Pilsner type beer.

    PubMed

    Rakete, Stefan; Klaus, Alexander; Glomb, Marcus A

    2014-10-08

    Although Maillard reaction plays a pivotal role during preparation of food, only few investigations concerning the role of carbohydrate degradation in beer aging have been carried out. The formation of Maillard specific precursor structures and their follow-up products during degradation of low molecular carbohydrate dextrins in the presence of proline and lysine was studied in model incubations and in beer. Twenty-one α-dicarbonyl compounds were identified and quantitated as reactive intermediates. The oxidative formation of 3-deoxypentosone as the precursor of furfural from oligosaccharides was verified. N-Carboxymethylproline and N-formylproline were established as novel proline derived Maillard advanced glycation end products. Formation of N-carboxymethylproline and furfural responded considerably to the presence of oxygen and was positively correlated to aging of Pilsner type beer. The present study delivers an in-depth view on the mechanisms behind the formation of beer relevant aging parameters.

  20. Explore the reaction mechanism of the Maillard reaction: a density functional theory study.

    PubMed

    Ren, Ge-Rui; Zhao, Li-Jiang; Sun, Qiang; Xie, Hu-Jun; Lei, Qun-Fang; Fang, Wen-Jun

    2015-05-01

    The mechanism of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. The Maillard reaction is a cascade of consecutive and parallel reaction. In the present model system study, glucose and glycine were taken as the initial reactants. On the basis of previous experimental results, the mechanisms of Maillard reaction have been proposed, and the possibility for the formation of different compounds have been evaluated through calculating the relative energy changes for different steps of reaction under different pH conditions. Our calculations reveal that the TS3 in Amadori rearrangement reaction is the rate-determining step of Maillard reaction with the activation barriers of about 66.7 and 68.8 kcal mol(-1) in the gaseous phase and aqueous solution, respectively. The calculation results are in good agreement with previous studies and could provide insights into the reaction mechanism of Maillard reaction, since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.

  1. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    PubMed

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Formation of early and advanced Maillard reaction products correlates to the ripening of cheese.

    PubMed

    Spanneberg, Robert; Salzwedel, Grit; Glomb, Marcus A

    2012-01-18

    The present study deals with the characterization of the ripening of cheese. A traditional German acid curd cheese was ripened under defined conditions at elevated temperature, and protein and amino acid modifications were investigated. Degree of proteolysis and analysis of early [Amadori compound furosine (6)] and advanced [N(ε)-carboxymethyllysine (4), N(ε)-carboxyethyllysine (5)] Maillard reaction products confirmed the maturation to proceed from the rind to the core of the cheese. Whereas 6 was decreased, 4 and 5 increased over time. Deeper insight into the Maillard reaction during the ripening of cheese was achieved by the determination of selected α-dicarbonyl compounds. Especially methylglyoxal (2) showed a characteristic behavior during storage of the acid curd cheese. Decrease of this reactive structure was directly correlated to the formation of 5. To extend the results of experimental ripening to commercial cheeses, different aged Gouda types were investigated. Maturation times of the samples ranged from 6 to 8 weeks (young) to more than 1 year (aged). Again, increase of 5 and decrease of 2 were able to describe the ripening of this rennet coagulated cheese. Therefore, both chemical parameters are potent markers to characterize the degree of maturation, independent of coagulation.

  3. Study on fluorescence of Maillard reaction compounds in breakfast cereals.

    PubMed

    Delgado-Andrade, Cristina; Rufián-Henares, José A; Morales, Francisco J

    2006-09-01

    During the advanced stage of the Maillard reaction (MR) in food processing and cooking, Amadori rearrangement products undergo dehydration and fission and fluorescent substances are formed. Free and total (free + linked to the protein backbone) fluorescence (FIC) due to Maillard compounds in 60 commercial breakfast cereals was evaluated. Pronase was used for efficient release of linked fluorescent Maillard compounds from the protein backbone. Results were correlated with some heat-induced markers of the extent of the MR or sugar caramelisation during cereal processing, such as hydroxymethylfurfural, furfural, glucosilisomaltol and furosine. The effect of sample composition (dietary-fibre added, protein, etc.) on levels of FIC, expressed as fluorescence intensity (FI) per milligram of sample, is discussed. FIC is significantly correlated to the protein content of the sample and fluorescent Maillard compounds are mainly linked to the protein backbone. The ratio of total-FIC to free-FIC was 10.4-fold for corn-based, wheat-based and multicereal-based breakfast cereals but significantly higher in rice-based samples. Addition of dietary fibre or honey increased the FIC values. Data support the usefulness of FIC measurement as an unspecific heat-induced marker in breakfast cereals.

  4. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    PubMed

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  5. Bimolecular interaction of argpyrimidine (a Maillard reaction product) in in vitro non-enzymatic protein glycation model and its potential role as an antiglycating agent.

    PubMed

    Bhattacherjee, Abhishek; Dhara, Kaliprasanna; Chakraborti, Abhay Sankar

    2017-09-01

    Non- enzymatic glycation, also known as Maillard reaction, is one of the most important and investigated reactions in biochemistry. Maillard reaction products (MRPs) like protein-derived advanced glycation end products (AGEs) are often referred to cause pathophysiological complications in human systems. On contrary, several MRPs are exogenously used as antioxidant, antimicrobial and flavouring agents. In the preset study, we have shown that argpyrimidine, a well-established AGE, interacts with bovine serum albumin (BSA) and glucose individually in standard BSA-glucose model system and successfully inhibits glycation of the protein. Bimolecular interaction of argpyrimidine with glucose or BSA has been studied independently. Chromatographic purification, different spectroscopic studies and molecular modeling have been used to evaluate the nature and pattern of interactions. Binding of argpyrimidine with BSA prevents incorporation of glucose inside the native protein. Argpyrimidine can also directly entrap glucose. Both these interactions may be associated with the antiglycation potential of argpyrimidine, indicating a beneficial function of an AGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Discovery of Amadori-Type Conjugates in a Peptide Maillard Reaction and Their Corresponding Influence on the Formation of Pyrazines.

    PubMed

    Zou, Tingting; Liu, Jianbin; Song, Huanlu; Liu, Ye

    2018-06-01

    Knowledge of the role of peptides in the Maillard reaction is rather limited. In this study, peptide Maillard reaction model systems were established. Volatile and nonvolatile MRPs (Maillard reaction products) were investigated by GC-O-MS and LC-MS. Carbohydrate module labeling (CAMOLA) experiments were performed to elucidate the carbon skeleton of these compounds. Results showed that the peptide reaction system generated more pyrazines than the free amino acid group. Several new Amadori-type conjugates were identified as novel Maillard reaction products that could greatly influence the formation of pyrazines. Our work suggested anew mechanism involving these Amadori-type conjugates and subsequent investigation revealed that the conjugates could be important intermediate products in the reaction between dicarbonyl and dipeptide. Our findings demonstrate anew pyrazine generation mechanism in the dipeptide Maillard reaction. We found that a dipeptide Maillard reaction system generated more pyrazines than a reaction system composed of free amino acids. New cross-linked peptide-sugar compounds were identified and found to impact the formation of pyrazines. The results of this study may help in the preparation of thermal reaction flavors using enzymatically hydrolyzed vegetable/animal proteins, which contain a considerable amount of peptides, as one of the major reactants. © 2018 Institute of Food Technologists®.

  7. Prebiotic significance of the Maillard reaction

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Bajagic, Milica; Zhu, William; Cody, George D.

    2005-09-01

    The Maillard reaction was studied from a prebiotic point of view. We have shown that the Maillard reaction between ribose and common amino acids occurs readily in the solid state at 65°C. The C-13 NMR spectra of the solid insoluble Maillard products of ribose and serine, or alanine or isoleucine were compared to the spectrum of the insoluble organic carbon on Murchison.

  8. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    PubMed

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P < 0.05); however, browning intensity and absorbance at 294 nm increased because of the Maillard reaction (P < 0.05). The ACE inhibitory activity improved greatly within 2 h (from 63.48% to 90.23%), which was mainly due to carbonyl ammonia condensation reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  9. Structural characterization of bovine beta-lactoglobulin-galactose/tagatose Maillard complexes by electrophoretic, chromatographic, and spectroscopic methods.

    PubMed

    Corzo-Martínez, Marta; Moreno, F Javier; Olano, Agustín; Villamiel, Mar

    2008-06-11

    To investigate the influence of the type of carbonyl group of the sugar on the structural changes of proteins during glycation, an exhaustive structural characterization of glycated beta-lactoglobulin with galactose (aldose) and tagatose (ketose) has been carried out. Conjugates were prepared via Maillard reaction at 40 and 50 degrees C, pH 7, and a w = 0.44. The progress of the Maillard reaction was followed by indirect formation of Amadori and Heyns compounds, advanced glycation end products, and brown polymers. The structural characterization of glycoconjugates was conducted by using a number of analytical techniques such as RP-HPLC, isoelectric focusing, MALDI-ToF, SDS-PAGE, size exclusion chromatography, and spectrofluorimetry (tryptophan fluorescence). In addition, the surface hydrophobicity of the beta-lactoglobulin glycoconjugates was also assessed. The results showed a higher reactivity of galactose than tagatose to form the glycoconjugates, probably due to the higher electrophilicity of the aldehyde group. At 40 degrees C, more aggregation was produced when beta-lactoglobulin was conjugated with tagatose as compared to galactose. However, at 50 degrees C hardly any difference was observed in the aggregation produced by galactose and tagatose. These results afford more insight into the importance of the functional group of the carbohydrate moiety during the formation of protein-carbohydrate conjugates via Maillard reaction.

  10. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review.

    PubMed

    de Oliveira, Fabíola Cristina; Coimbra, Jane Sélia Dos Reis; de Oliveira, Eduardo Basílio; Zuñiga, Abraham Damian Giraldo; Rojas, Edwin E Garcia

    2016-05-18

    The products formed by glycosylation of food proteins with carbohydrates via the Maillard reaction, also known as conjugates, are agents capable of changing and improving techno-functional characteristics of proteins. The Maillard reaction uses the covalent bond between a group of a reducing carbohydrates and an amino group of a protein. This reaction does not require additional chemicals as it occurs naturally under controlled conditions of temperature, time, pH, and moisture. Moreover, there is growing interest in modifying proteins for industrial food applications. This review analyses the current state of art of the Maillard reaction on food protein functionalities. It also discusses the influence of the Maillard reaction on the conditions and formulation of reagents that improve desirable techno-functional characteristics of food protein.

  11. Influence of thermally processed carbohydrate/amino acid mixtures on the fermentation by Saccharomyces cerevisiae.

    PubMed

    Tauer, Andreas; Elss, Sandra; Frischmann, Matthias; Tellez, Patricia; Pischetsrieder, Monika

    2004-04-07

    The production of alcoholic beverages such as Tequila, Mezcal, whiskey, or beer includes the fermentation of a mash containing Maillard reaction products. Because excessive heating of the mash can lead to complications during the following fermentation step, the impact of Maillard products on the metabolism of Saccharomyces cerevisiae was investigated. For this purpose, fermentation was carried out in a model system in the presence and absence of Maillard reaction products and formation of ethanol served as a marker for the progression of fermentation. We found that increasing amounts of Maillard products reduced the formation of ethanol up to 80%. This effect was dependent on the pH value during the Maillard reaction, reaction time, as well as the carbohydrate and amino acid component used for the generation of Maillard reaction products. Another important factor is the pH value during fermentation: The inhibitory effect of Maillard products was not detectable at a pH of 4 and increased with higher pH-values. These findings might be of relevance for the production of above-mentioned beverages.

  12. New functionalities of Maillard reaction products as emulsifiers and encapsulating agents, and the processing parameters: a brief review.

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Alitheen, Noorjahan Banu Mohamed; Tan, Chin-Ping; Lai, Oi-Ming

    2017-03-01

    Non-enzymatic browning has been a wide and interesting research area in the food industry, ranging from the complexity of the reaction to its applications in the food industry as well as its ever-debatable health effects. This review provides a new perspective to the Maillard reaction apart from its ubiquitous function in enhancing food flavour, taste and appearance. It focuses on the recent application of Maillard reaction products as an inexpensive and excellent source of emulsifiers as well as superior encapsulating matrices for the entrapment of bioactive compounds. Additionally, it will also discuss the latest approaches employed to perform the Maillard reaction as well as several important reaction parameters that need to be taken into consideration when conducting the Maillard reaction. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction.

    PubMed

    Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang

    2013-01-01

    The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.

  14. Vitamin C mediates chemical aging of lens crystallins by the Maillard reaction in a humanized mouse model

    PubMed Central

    Fan, Xingjun; Reneker, Lixing W.; Obrenovich, Mark E.; Strauch, Christopher; Cheng, Rongzhu; Jarvis, Simon M.; Ortwerth, Beryl J.; Monnier, Vincent M.

    2006-01-01

    Senile cataracts are associated with progressive oxidation, fragmentation, cross-linking, insolubilization, and yellow pigmentation of lens crystallins. We hypothesized that the Maillard reaction, which leads browning and aroma development during the baking of foods, would occur between the lens proteins and the highly reactive oxidation products of vitamin C. To test this hypothesis, we engineered a mouse that selectively overexpresses the human vitamin C transporter SVCT2 in the lens. Consequently, lenticular levels of vitamin C and its oxidation products were 5- to 15-fold elevated, resulting in a highly compressed aging process and accelerated formation of several protein-bound advanced Maillard reaction products identical with those of aging human lens proteins. These data strongly implicate vitamin C in lens crystallin aging and may serve as a model for protein aging in other tissues particularly rich in vitamin C, such as the hippocampal neurons and the adrenal gland. The hSVCT2 mouse is expected to facilitate the search for drugs that inhibit damage by vitamin C oxidation products. PMID:17075057

  15. The Maillard Reaction Reduced the Sensitization of Tropomyosin and Arginine Kinase from Scylla paramamosain, Simultaneously.

    PubMed

    Han, Xin-Yu; Yang, Huang; Rao, Shi-Tao; Liu, Guang-Yu; Hu, Meng-Jun; Zeng, Bin-Chang; Cao, Min-Jie; Liu, Guang-Ming

    2018-03-21

    The Maillard reaction was established to reduce the sensitization of tropomyosin (TM) and arginine kinase (AK) from Scylla paramamosain, and the mechanism of the attenuated sensitization was investigated. In the present study, the Maillard reaction conditions were optimized for heating at 100 °C for 60 min (pH 8.5) with arabinose. A low level of allergenicity in mice was shown by the levels of allergen-specific antibodies, and more Th1 and less Th2 cells cytokines produced and associated transcription factors with the Maillard reacted allergen (mAllergen). The tolerance potency in mice was demonstrated by the increased ratio of Th1/Th2 cytokines. Moreover, mass spectrometry analysis showed that some key amino acids of IgE-binding epitopes (K 112 , R 125 , R 133 of TM; K 33 , K 118 , R 202 of AK) were modified by the Maillard reaction. The Maillard reaction with arabinose reduced the sensitization of TM and AK, which may be due to the masked epitopes.

  16. Birnessite catalysis of the Maillard Reaction: Its significance in natural humification

    NASA Astrophysics Data System (ADS)

    Jokic, A.; Frenkel, A. I.; Vairavamurthy, M. A.; Huang, P. M.

    Although mineral colloids are known to play a significant role in transforming organic matter in soils and sediments, there still are many gaps in our understanding of the mechanisms of organic-mineral interactions. In this study, we investigated the role of a major oxide-mineral birnessite (a form of Mn(IV) oxide) in catalyzing the condensation reaction between sugars and amino acids, the Maillard reaction, for forming humic substances. The Maillard reaction is perceived to be a major pathway in natural humification. Using a suite of spectroscopic methods (including ESR, XANES, EXAFS and 13C NMR), our results show that Mn(IV) oxide markedly accelerates the Maillard reaction between glucose and glycine at ranges of temperatures and pH typical of natural environments. These results demonstrate the importance of manganese oxide catalysis in the Maillard reaction, and its significance in the natural abiotic formation of humic substances.

  17. Baking, ageing, diabetes: a short history of the Maillard reaction.

    PubMed

    Hellwig, Michael; Henle, Thomas

    2014-09-22

    The reaction of reducing carbohydrates with amino compounds described in 1912 by Louis-Camille Maillard is responsible for the aroma, taste, and appearance of thermally processed food. The discovery that non-enzymatic conversions also occur in organisms led to intensive investigation of the pathophysiological significance of the Maillard reaction in diabetes and ageing processes. Dietary Maillard products are discussed as "glycotoxins" and thus as a nutritional risk, but also increasingly with regard to positive effects in the human body. In this Review we give an overview of the most important discoveries in Maillard research since it was first described and show that the complex reaction, even after over one hundred years, has lost none of its interdisciplinary actuality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Contribution of Histidine and Lysine to the Generation of Volatile Compounds in Jinhua Ham Exposed to Ripening Conditions Via Maillard Reaction.

    PubMed

    Zhu, Chao-Zhi; Zhao, Jing-Li; Tian, Wei; Liu, Yan-Xia; Li, Miao-Yun; Zhao, Gai-Ming

    2018-01-01

    To evaluate the role of Maillard reactions in the generation of flavor compounds in Jinhua ham, the reactions of glucose and ethanal with histidine and lysine, respectively, were studied by simulating the ripening conditions of Jinhua ham. The volatile products produced were analyzed using solid phase microextraction-gas chromatography/mass spectrometry. The results showed that 8 volatile compounds were generated by the reaction of glucose and histidine and 10 volatile compounds were generated by the reaction of glucose and lysine. Reactions of ethanal with lysine and with histidine both generated 31 volatile compounds that contributed to the flavor of Jinhua ham. This indicates that histidine and lysine related to Maillard reactions possibly play important roles in the generation of the unique flavor compounds in Jinhua ham. This research demonstrates that free amino acids participate in the generation of volatile compounds from Jinhua ham via the Maillard reaction and provides a basic mechanism to explain flavor formation in Jinhua ham. Jinhua ham is a well-known traditional Chinese dry-cured meat product. However, the formation of the compounds comprising its special flavor is not well understood. Our results indicate that Maillard reactions occur in Jinhua ham under ripening conditions. This work illustrates the contribution of Maillard reactions to the flavor of Jinhua ham. © 2017 Institute of Food Technologists®.

  19. Forty years of furosine - forty years of using Maillard reaction products as indicators of the nutritional quality of foods.

    PubMed

    Erbersdobler, Helmut F; Somoza, Veronika

    2007-04-01

    The Maillard reaction products (MRPs) most widely used as markers of the nutritional quality of foods are furosine, N(epsilon)-carboxymethyllysine (CML), hydroxymethylfurfural, pyrraline, pentosidine and pronyl-lysine. One of the MRPs identified first was furosine, which was quantified in foods 40 years ago as a chemical indicator of the Amadori compound N(epsilon)-fructoselysine. Since then, furosine has gained broad attention by food chemists and biomedical researchers, as its formation upon heat treatment is well characterised. Moreover, it represents the Amadori products from early Maillard reactions in which amino acids react with reducing carbohydrates, resulting in a loss of their availability. This is of importance for the essential amino acid lysine, which is also the limiting amino acid in many proteins. In order to evaluate the nutritional quality of a protein, the concomitant analysis of free - and nutritionally available - lysine and the amount of lysine reacted to form the respective MRP is essential, even for mildly processed foods. The other chemical markers of heat treatment such as CML, pyrraline, pentosidine or pronyl-lysine seem to be useful markers of the advanced stages of Maillard reactions. Compared to the conditions in which furosine is formed, these compounds are generated under more severe conditions of heat treatment. However, the concentrations analysed are significantly lower than those of furosine. Therefore, the nutritional evaluation of a food protein should include not only furosine, but also other chemical markers of heat treatment such as, for example, CML, pyrraline and pentosidine.

  20. Investigation of the Maillard Reaction between Polysaccharides and Proteins from Longan Pulp and the Improvement in Activities.

    PubMed

    Han, Miao-Miao; Yi, Yang; Wang, Hong-Xun; Huang, Fei

    2017-06-05

    The purpose of this study was to investigate the Maillard reaction between polysaccharides and proteins from longan pulp and the effects of reaction on their in vitro activities. The polysaccharide-protein mixtures of fresh longan pulp (LPPMs) were co-prepared by an alkali extraction-acid precipitation method. They were then dry-heated under controlled conditions for monitoring the characterization of the Maillard reaction by the measurement of the free amino group content, ultraviolet-visible spectrum, Fourier transform infrared spectrum and molecular weight distribution. All the physicochemical analyses indicated the development of the Maillard reaction between polysaccharides and proteins. The in vitro activity evaluation indicated that the Maillard reaction could effectively enhance the antioxidant, antitumor and immunostimulating activities of LPPMs. The enhancement of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power displayed both a positive correlation with the reaction time ( p < 0.05). LPPMs dry-heated for three days obtained relatively strong inhibitory activity against HepG2 cells and SGC7901 cells, as well as strong immunostimulating effects on the nitric oxide production and tumor necrosis factor α secretion of macrophages. Maillard-type intermacromolecular interaction is suggested to be an effective and controllable method for improving the functional activities of polysaccharides and proteins from longan pulp.

  1. A study of the tyramine/glucose Maillard reaction: Variables, characterization, cytotoxicity and preliminary application.

    PubMed

    Jiang, Wei; Chen, Yaxin; He, Xiaoxia; Hu, Shiwei; Li, Shijie; Liu, Yu

    2018-01-15

    The tyramine/glucose Maillard reaction was proposed as an emerging tool for tyramine reduction in a model system and two commercial soy sauce samples. The model system was composed of tyramine and glucose in buffer solutions with or without NaCl. The results showed that tyramine was reduced in the model system, and the reduction rate was affected by temperature, heating time, initial pH value, NaCl concentration, initial glucose concentration and initial tyramine concentration. Changes in fluorescence intensity and ultraviolet-visible (UV-vis) absorption spectra showed three stages of the Maillard reaction between tyramine and glucose. Cytotoxicity assay demonstrated that tyramine/glucose Maillard reaction products (MRPs) were significantly less toxic than that of tyramine (p<0.05). Moreover, tyramine concentration in soy sauce samples was significantly reduced when heated with the addition of glucose (p<0.05). Experimental results showed that the tyramine/glucose Maillard reaction is a promising method for tyramine reduction in foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Impact of phloretin and phloridzin on the formation of Maillard reaction products in aqueous models composed of glucose and L-lysine or its derivatives.

    PubMed

    Ma, Jinyu; Peng, Xiaofang; Ng, Kwan-Ming; Che, Chi-Ming; Wang, Mingfu

    2012-02-01

    In the present study, the effects of phloretin and phloridzin on the formation of Maillard reaction products in a lysine-glucose model with different reactant ratios were systematically investigated. In terms of the formation of Maillard-type volatiles, phloretin and phloridzin treatmen could significantly reduce their generation, where the effects depend on the ratio of lysine to glucose used in the model systems. Phloretin and phloridzin could also affect the colour development of Maillard reactions; especially phloretin, which could significantly promote the formation of brown products in the system with the lowest ratio of lysine to glucose. Based on the carbon module labelling (CAMOLA) technique and HPLC-DAD-ESI/MS analysis, it was found that phloretin and phloridzin could actively participate in the Maillard reaction and directly react with different reactive carbonyl species. The effect of phloretin and phloridzin treatment in both N(α)-acetyllysine-glucose (AC-glu), and N-acetyl-gly-lys methyl ester acetate salt-glucose (AG-glu) model systems, which are close to the Maillard reactions occurring in real food, where the free amino groups of lysine residues were considered as the reactive site, were further investigated. Similar impacts on the formation of Maillard-type volatiles and brown products as in the lysine-glucose models were observed which can also be explained by the capability of phloretin and phloridzin to quench sugar fragments formed in these model reactions.

  3. Maillard-reaction-induced modification and aggregation of proteins and hardening of texture in protein bar model systems.

    PubMed

    Zhou, Peng; Guo, Mufan; Liu, Dasong; Liu, Xiaoming; Labuza, Teodore P

    2013-03-01

    The hardening of high-protein bars causes problems in their acceptability to consumers. The objective of this study was to determine the progress of the Maillard reaction in model systems of high-protein nutritional bars containing reducing sugars, and to illustrate the influences of the Maillard reaction on the modification and aggregation of proteins and the hardening of bar matrices during storage. The progress of the Maillard reaction, glycation, and aggregation of proteins, and textural changes in bar matrices were investigated during storage at 25, 35, and 45 °C. The initial development of the Maillard reaction caused little changes in hardness; however, further storage resulted in dramatic modification of protein with formation of high-molecular-weight polymers, resulting in the hardening in texture. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula minimized the changes in texture. The hardening of high-protein bars causes problems in their acceptability to consumers. Maillard reaction is one of the mechanisms contributing to the hardening of bar matrix, particularly for the late stage of storage. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula will minimize the changes in texture. © 2013 Institute of Food Technologists®

  4. Optimization of Maillard Reaction between Glucosamine and Other Precursors by Measuring Browning with a Spectrophotometer.

    PubMed

    Ogutu, Benrick; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Hong, Dong-Lee; Lee, Yang-Bong

    2017-09-01

    The individual Maillard reactions of glucose, glucosamine, cyclohexylamine, and benzylamine were studied at a fixed temperature of 120°C under different durations by monitoring the absorbance of the final products at 425 nm. Glucosamine was the most individually reactive compound, whereas the reactions of glucose, cyclohexylamine, and benzylamine were not significantly different from each other. Maillard reactions of reaction mixtures consisting of glucosamine-cyclohexylamine, glucosamine-benzylamine, glucose-cyclohexylamine, and glucose-benzylamine were also studied using different concentration ratios under different durations at a fixed temperature of 120°C and pH 9. Maillard reactions in the pairs involving glucosamine were observed to be more intense than those of the pairs involving glucose. Finally, with respect to the concentration ratios, it was observed that in most instances, optimal activity was realized, when the reaction mixtures were in the ratio of 1:1.

  5. Optimization of Maillard Reaction between Glucosamine and Other Precursors by Measuring Browning with a Spectrophotometer

    PubMed Central

    Ogutu, Benrick; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Hong, Dong-Lee; Lee, Yang-Bong

    2017-01-01

    The individual Maillard reactions of glucose, glucosamine, cyclohexylamine, and benzylamine were studied at a fixed temperature of 120°C under different durations by monitoring the absorbance of the final products at 425 nm. Glucosamine was the most individually reactive compound, whereas the reactions of glucose, cyclohexylamine, and benzylamine were not significantly different from each other. Maillard reactions of reaction mixtures consisting of glucosamine-cyclohexylamine, glucosamine-benzylamine, glucose-cyclohexylamine, and glucose-benzylamine were also studied using different concentration ratios under different durations at a fixed temperature of 120°C and pH 9. Maillard reactions in the pairs involving glucosamine were observed to be more intense than those of the pairs involving glucose. Finally, with respect to the concentration ratios, it was observed that in most instances, optimal activity was realized, when the reaction mixtures were in the ratio of 1:1. PMID:29043219

  6. Effect of Maillard reaction products on the physical and antimicrobial properties of edible films based on ε-polylysine and chitosan.

    PubMed

    Wang, Yingying; Liu, Fuguo; Liang, Chunxuan; Yuan, Fang; Gao, Yanxiang

    2014-11-01

    Edible films based on Maillard reaction products (MRPs) of ε-polylysine and chitosan, without the use of any plasticiser, were prepared by solution casting. The effect of Maillard reaction parameters (reaction time and the ratio of polylysine/chitosan) of ε-polylysine and chitosan on the structure, moisture content, water solubility, total colour difference and mechanical properties of edible films formed by MRPs were systematically evaluated. Scanning electron microscopy confirmed that edible films prepared by the MRPs of ε-polylysine and chitosan through the Maillard reaction exhibited a more compact and dense structure than those from the mixture of biopolymers without the presence of MRPs. The tensile strength and % elongation values of films from the mixture were decreased significantly with the rise of ε-polylysine (P < 0.05). The moisture content of the films was not significantly affected by Maillard reaction, whereas water solubility was decreased and total colour difference was increased significantly (P < 0.05) with the extension of Maillard reaction time. In addition, antimicrobial activity of chitosan films against E. coli and S. aureus. could be achieved by incorporating ε-polylysine into chitosan. These films can ensure food quality and safety, especially for coating highly perishable foods, such as meat products. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  7. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology

    PubMed Central

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-01-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter’s L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R2) for their absorbance, Hunter’s L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter’s b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter’s b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine. PMID:28401086

  8. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    PubMed

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  9. Iterated reaction graphs: simulating complex Maillard reaction pathways.

    PubMed

    Patel, S; Rabone, J; Russell, S; Tissen, J; Klaffke, W

    2001-01-01

    This study investigates a new method of simulating a complex chemical system including feedback loops and parallel reactions. The practical purpose of this approach is to model the actual reactions that take place in the Maillard process, a set of food browning reactions, in sufficient detail to be able to predict the volatile composition of the Maillard products. The developed framework, called iterated reaction graphs, consists of two main elements: a soup of molecules and a reaction base of Maillard reactions. An iterative process loops through the reaction base, taking reactants from and feeding products back to the soup. This produces a reaction graph, with molecules as nodes and reactions as arcs. The iterated reaction graph is updated and validated by comparing output with the main products found by classical gas-chromatographic/mass spectrometric analysis. To ensure a realistic output and convergence to desired volatiles only, the approach contains a number of novel elements: rate kinetics are treated as reaction probabilities; only a subset of the true chemistry is modeled; and the reactions are blocked into groups.

  10. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins

    PubMed Central

    Teodorowicz, Malgorzata; van Neerven, Joost

    2017-01-01

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers’ choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins. PMID:28777346

  11. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins.

    PubMed

    Teodorowicz, Malgorzata; van Neerven, Joost; Savelkoul, Huub

    2017-08-04

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers' choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins.

  12. The importance of the Maillard-metal complexes and their silicates in astrobiology

    NASA Astrophysics Data System (ADS)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  13. Evolution of the Maillard Reaction in Glutamine or Arginine-Dextrinomaltose Model Systems.

    PubMed

    Pastoriza, Silvia; Rufián-Henares, José Ángel; García-Villanova, Belén; Guerra-Hernández, Eduardo

    2016-12-07

    Enteral formulas are foods designed for medical uses to feed patients who are unable to eat normally. They are prepared by mixing proteins, amino acids, carbohydrates and fats and submitted to sterilization. During thermal treatment, the Maillard reaction takes place through the reaction of animo acids with reducing sugars. Thus, although glutamine and arginine are usually added to improve the nutritional value of enteral formulas, their final concentration may vary. Thus, in the present paper the early, intermediate, and advanced states of the Maillard reaction were studied in model systems by measuring loss of free amino acids through the decrease of fluorescence intensity with o -phtaldialdehyde (OPA), 5-Hydroximethylfurfural (HMF), furfural, glucosylisomaltol, fluorescence, and absorbance at 420 nm. The systems were prepared by mixing glutamine or arginine with dextrinomaltose (similar ingredients to those used in special enteral formula), and heated at 100 °C, 120 °C and 140 °C for 0 to 30 min. The recorded changes in the concentration of furanic compounds was only useful for longer heating times of high temperatures, while absorbance and fluorescence measurements were useful in all the assayed conditions. In addition, easiness and sensitivity of absorbance and fluorescence make them useful techniques that could be implemented as indicators for monitoring the manufacture of special enteral formulas. Glucosylisomaltol is a useful indicator to monitor the manufacture of glutamine-enriched enteral formulas.

  14. Detection of Maillard reaction products by a coupled HPLC-Fraction collector technique and FTIR characterization of Cu(II)-complexation with the isolated species

    NASA Astrophysics Data System (ADS)

    Ioannou, Aristos; Daskalakis, Vangelis; Varotsis, Constantinos

    2017-08-01

    The isolation of reaction products of asparagine with reducing sugars at alkaline pH and high temperature has been probed by a combination of high performance liquid chromatography (HPLC) coupled with a Fraction Collector. The UV-vis and FTIR spectra of the isolated Maillard reaction products showed structure-sensitive changes as depicted by deamination events and formation of asparagine-saccharide conjugates. The initial reaction species of the Asn-Gluc reaction were also characterized by Density Functional Theory (DFT) methods. Evidence for Cu (II) metal ion complexation with the Maillard reaction products is supported by UV-vis and FTIR spectroscopy.

  15. Maillard reaction products from chitosan-xylan ionic liquid solution.

    PubMed

    Luo, Yuqiong; Ling, Yunzhi; Wang, Xiaoying; Han, Yang; Zeng, Xianjie; Sun, Runcang

    2013-10-15

    A facile method is reported to prepare Maillard reaction products (MRPs) from chitosan and xylan in co-solvent ionic liquid. UV absorbance and fluorescence changes were regarded as indicators of the occurrence of Maillard reaction. FT-IR, NMR, XRD and TG were used to investigate the structure of chitosan-xylan conjugate. The results revealed that when chitosan reacted with xylan in ionic liquid, the hydrogen bonds in chitosan were destroyed, the facts resulted in the formation of chitosan-xylan MRPs. Moreover, when the mass ratio of chitosan to xylan was 1:1, the Maillard reaction proceeded easily. In addition, relatively high antioxidant property was also noted for the chitosan-xylan conjugate with mass ratio 1:1. So the obtained chitosan-xylan MRP is a promising antioxidant agent for food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Investigation of Possible Maillard Reaction Between Acyclovir and Dextrose upon Dilution Prior to Parenteral Administration.

    PubMed

    Siahi Shadbad, Mohammad Reza; Ghaderi, Faranak; Hatami, Leila; Monajjemzadeh, Farnaz

    2016-12-01

    In this study the stability of parenteral acyclovir (ACV) when diluted in dextrose (DEX) as large volume intravenous fluid preparation (LVIF) was evaluated and the possible Maillard reaction adducts were monitored in the recommended infusion time. Different physicochemical methods were used to evaluate the Maillard reaction of dextrose with ACV to track the reaction in real infusion condition. Other large volume intravenous fluids were checked regarding the diluted drug stability profile. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and mass data proved the reaction of glucose with dextrose. A Maillard-specific high performance liquid chromatography (HPLC) method was used to track the reaction in real infusion condition in vitro. The nucleophilic reaction occurred in diluted parenteral preparations of acyclovir in 5% dextrose solutions. The best diluent solution was also selected as sodium chloride and introduced based on drug stability and also its adsorption onto different infusion sets (PVC or non PVC) to provide an acceptable administration protocol in clinical practices. Although, the Maillard reaction was proved and successfully tracked in diluted solutions, and the level of drug loss when diluted in dextrose was reported to be between 0.27 up to 1.03% of the initial content. There was no drug adsorption to common infusion sets. The best diluent for parenteral acyclovir is sodium chloride large volume intravenous fluid.

  17. Regulatory Notes on Impact of Excipients on Drug Products and the Maillard Reaction.

    PubMed

    Chowdhury, Dipak K; Sarker, Haripada; Schwartz, Paul

    2018-02-01

    In general, it is an important criterion that excipients remain inert throughout the shelf life of the formulated pharmaceutical product. However, depending on the functionality in chemical structure of active drug and excipients, they may undergo interaction. The well-known Maillard reaction occurs between a primary amine with lactose at high temperature to produce brown pigments. The reactivity of Maillard reaction may vary depending on the concentration as well as other conditions. Commercially, there are products where the active pharmaceutical ingredient is a primary amine and contains less than 75% lactose along with inactive excipients. This product does not show Maillard reaction during its shelf life of around 2 years at ambient conditions. However, when the same type of product contains more than 95 % lactose as an excipient, then there is a possibility of interactions though it is not visible in the initial year. Therefore, this regulatory note discusses involvement of different factors of a known drug-excipient interactions with case studies and provides an overview on how the concentration of lactose in the pharmaceutical product is important in addition to temperature and moisture in Maillard reaction.

  18. Tracking the behavior of Maillard browning in lysine/arginine-sugar model systems under high hydrostatic pressure.

    PubMed

    Ma, Xiao-Juan; Gao, Jin-Yan; Tong, Ping; Li, Xin; Chen, Hong-Bing

    2017-12-01

    High-pressure processing is gaining popularity in the food industry. However, its effect on the Maillard reaction during high-pressure-assisted pasteurization and sterilization is not well documented. This study aimed to investigate the effects of high hydrostatic pressure on the Maillard reaction during these processes using amino acid (lysine or arginine)-sugar (glucose or fructose) solution models. High pressure retarded the intermediate and final stages of the Maillard reaction in the lysine-sugar model. For the lysine-glucose model, the degradation rate of Amadori compounds was decelerated, while acceleration was observed in the arginine-sugar model. Increased temperature not only accelerated the Maillard reaction over time but also formed fluorescent compounds with different emission wavelengths. Lysine reacted with the sugars more readily than arginine under the same conditions. In addition, it was easier for lysine to react with glucose, whereas arginine reacted more readily with fructose under high pressure. High pressure exerts different effects on lysine-sugar and arginine-sugar models. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. On the Maillard reaction of meteoritic amino acids

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Bajagic, Milica; Liesch, Patrick J.; Philip, Ajish; Cody, George D.

    2006-08-01

    We have performed the Maillard reaction of a series of meteoritic amino acids with sugar ribose under simulated prebiotic conditions, in the solid state at 65°C and at the room temperature. Many meteoritic amino acids are highly reactive with ribose, even at the room temperature. We have isolated high molecular weight products that are insoluble in water, and have studied their structure by the IR (infrared) and solid-state C-13 NMR (nuclear magnetic resonance) spectroscopic methods. The functional groups and their distribution were similar among these products, and were comparable to the previously isolated insoluble organic materials from the Maillard reaction of the common amino acids with ribose. In addition, there were some similarities with the insoluble organic material that is found on Murchison. Our results suggest that the Maillard products may contribute to the composition of the part of the insoluble organic material that is found on Murchison. We have also studied the reaction of sodium silicate solution with the Maillard mixtures, to elucidate the process by which the organic compounds are preserved under prebiotic conditions.

  20. Identification of Maillard reaction induced chemical modifications on Ara h 1

    USDA-ARS?s Scientific Manuscript database

    The Maillard reaction is a non-enzymatic glycation reaction between proteins and reducing sugars that can modify nut allergens during thermal processing. These modifications can alter the structural and immunological properties of these allergens, and may result in increased IgE binding. Here, we ...

  1. A study of different indicators of Maillard reaction with whey proteins and different carbohydrates under adverse storage conditions.

    PubMed

    Leiva, Graciela E; Naranjo, Gabriela B; Malec, Laura S

    2017-01-15

    This study examined different indicators of each stage of Maillard reaction under adverse storage conditions in a system with whey proteins and lactose or glucose. The analysis of lysine loss by the o-phthaldialdehyde method can be considered a good indicator of the early stage, showing considerable differences in reactivity when systems with mono and disaccharides were analyzed. Capillary electrophoresis proved to be a sensitive method for evaluating the extent of glycosylation of the native proteins, providing valuable information when the loss of lysine was not significant. The estimation of the Amadori compound from the determination of total 5-hydroxymethyl-2-furfuraldehyde would have correlate well with reactive lysine content if the advanced stages of the reaction had not been reached. For assessing the occurrence of the intermediate and final stages, the measurement of free 5-hydroxymethyl-2-furfuraldehyde and color, proved not to be suitable for storage conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The browning value changes and spectral analysis on the Maillard reaction product from glucose and methionine model system

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat

    2018-01-01

    D-glucose has been understood to provide the various effect on the reactivity in Maillard reaction resulting in the changes in physical performance of food product. Therefore this research was done to analyse physical appearance of Maillard reaction product made of D-glucose and methionine as a model system. The changes in browning value and spectral analysis model system were determined. The glucose-methionine model system was produced through the heating treatment at 50°C and RH 70% for 24 hours. The data were collected for every three hour using spectrophotometer. As result, browning value was elevated with the increase of heating time and remarkably high if compare to the D-glucose only. Furthermore, the spectral analysis showed that methionine turned the pattern of peak appearance. As conclusion, methionine raised the browning value and changed the pattern of spectral analysis in Maillard reaction model system.

  3. Low molecular weight anti-carboxymethyl lysine reactive bands in cashew extracts

    USDA-ARS?s Scientific Manuscript database

    The Maillard Reaction is the non-enzymatic browning of foods during thermal processing, and is a result of the reaction of reducing sugar carbonyl groups and primary amine groups of proteins. Maillard Reaction products are unstable, and Amadori rearrangements result in a network of chemical modifica...

  4. Anti-inflammatory effect of sugar-amino acid Maillard reaction products on intestinal inflammation model in vitro and in vivo.

    PubMed

    Oh, Jun-Gu; Chun, Su-Hyun; Kim, Da Hyun; Kim, Jin Hye; Shin, Hye Soo; Cho, Yong Soo; Kim, Yong Ki; Choi, Hee-Don; Lee, Kwang-Won

    2017-09-08

    The Maillard reaction is a nonenzymatic reaction between an amino acid and a reducing sugar that usually occurs upon heating. This reaction occurs routinely in cooking, generates numerous products, which are collectively referred to as Maillard reaction products (MRPs) contributing to aroma and color features. Advanced glycation end-products (AGEs) transformed from MRPs are participated in many types of inflammation reaction. In this study, various sugar-amino acid MRPs were prepared from three different amino acids (lysine, arginine, and glycine) and sugars (glucose, fructose, and galactose) for 1 h with heating at 121 °C. Treatment of lipopolysaccharide-stimulated RAW264.7 macrophages with the MRPs decreased nitric oxide (NO) expression compared to control without MRPs treatment. MRPs derived from lysine and galactose (Lys-Gal MRPs) significantly inhibited NO expression. The retentate fraction of Lys-Gal MRPs with cut-off of molecular weight of 3-10 kDa (LGCM) suppressed NO expression more effectively than did Lys-Gal MRPs. The anti-inflammatory effect of LGCM was evaluated using a co-culture system consisting of Caco-2 (apical side) and RAW264.7 or THP-1 (basolateral side) cells to investigate the gut inflammation reaction by stimulated macrophage cells. In this system, LGCM prevented a decreased transepithelial electrical resistance, and decreased both tumor necrosis factor-α production in macrophages and interleukin (IL)-8 and IL-1β mRNA expression in Caco-2 cells. In co-culture and in vivo dextran sulfate sodium (DSS)-induced colitis model study, we also observed the anti-inflammatory activity of LGCM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of the Maillard Reaction on the Immunoreactivity of Amandin in Food Matrices.

    PubMed

    Chhabra, Guneet S; Liu, Changqi; Su, Mengna; Venkatachalam, Mahesh; Roux, Kenneth H; Sathe, Shridhar K

    2017-10-01

    Amandin is the major storage protein and allergen in almond seeds. Foods, containing almonds, subjected to thermal processing typically experience Maillard browning reaction. The resulting destruction of amino groups, protein glycation, and/or denaturation may alter amandin immunoreactivity. Amandin immunoreactivity of variously processed almond containing foods was therefore the focus of the current investigation. Commercial and laboratory prepared foods, including those likely to have been subjected to Maillard browning, were objectively assessed by determining Hunter L * , a * , b * values. The L * values for the tested samples were in the range of 31.75 to 85.28 consistent with Maillard browning. Three murine monoclonal antibodies, 4C10, 4F10, and 2A3, were used to determine the immunoreactivity of the targeted samples using immunoassays (ELISA, Western blot, dot blot). The tested foods did not exhibit cross-reactivity indicating that the immunoassays were amandin specific. For sandwich ELISAs, ratio (R) of sample immunoreactivity to reference immunoreactivity was calculated. The ranges of R values were 0.67 to 15.19 (4C10), 1.00 to 11.83 (4F10), and 0.77 to 23.30 (2A3). The results of dot blot and Western blot were consistent with those of ELISAs. Results of these investigations demonstrate that amandin is a stable marker protein for almond detection regardless of the degree of amandin denaturation and/or destruction as a consequence of Maillard reaction encountered under the tested processing conditions. Foods containing almond are often subjected to processing prior to consumption. Amandin, the major allergen in almond, may experience Maillard reaction. Understanding the change in amandin immunoreactivity as a result of Maillard reaction is important for amandin detection and production of hypoallergenic food products. © 2017 Institute of Food Technologists®.

  6. The functional properties of chitosan-glucose-asparagine Maillard reaction products and mitigation of acrylamide formation by chitosans.

    PubMed

    Sung, Wen-Chieh; Chang, Yu-Wei; Chou, Yu-Hao; Hsiao, Hsin-I

    2018-03-15

    This research aims to clarify the interactions that occur in a food model system consisting of glucose, asparagine and chitosans. Low molecular weight chitosan exerted a potent inhibitory effect (46.8%) on acrylamide and Maillard reaction products (MRPs) (>52.6%), respectively. Compared to a previous study conducted using the fructose system, the novel findings of this research demonstrate that the formation of acrylamide and Maillard reaction products was lower with glucose than with fructose when they were used as reducing sugars in food model systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of Maillard reaction on allergenicity of buckwheat allergen Fag t 3 during thermal processing.

    PubMed

    Yang, Zhen-Huang; Li, Chen; Li, Yu-Ying; Wang, Zhuan-Hua

    2013-04-01

    Fag t 3 is a major allergenic protein in tartary buckwheat. The Maillard reaction commonly occurs in food processing, but few studies have been conducted on the influence of thermal processing on the allergenic potential of buckwheat allergen. The aim of the present study was to investigate the effects of autologous plant polysaccharides on the immunoreactivity of buckwheat Fag t 3 (11S globulin) following the Maillard reaction. Fag t 3 and crude polysaccharides were prepared from tartary buckwheat (Fagopyrum tataricum) flour. After heating, the polysaccharides were covalently linked to Fag t 3 via a Maillard reaction, and the IgE/IgG-binding properties of Fag t 3 decreased dramatically, with significant changes also being observed in the electrophoretic mobility, secondary structure and solubility of the glycated Fag t 3. The great influence of glycation on IgE/IgG binding to Fag t 3 was correlated with a significant change in the structure and epitopes of the allergenic protein. These data indicated that conjugation of polysaccharides to Fag t 3 markedly reduced the allergen's immunoreactivity. Glycation that occurs via the Maillard reaction during the processing of buckwheat food may be an efficient method to reduce Fag t 3 allergenicity. © 2012 Society of Chemical Industry.

  8. Evaluation of the extent of initial Maillard reaction during cooking some vegetables by direct measurement of the Amadori compounds.

    PubMed

    Yu, Jiahao; Zhang, Shuqin; Zhang, Lianfu

    2018-01-01

    During vegetable cooking, one of the most notable and common chemical reactions is the Maillard reaction, which occurs as a result of thermal treatment and dehydration. Amadori compound determination provides a very sensitive indicator for early detection of quality changes caused by the Maillard reaction, as well as to retrospectively assess the heat treatment or storage conditions to which the product has been subjected. In this paper, a hydrophilic interaction liquid chromatographic-electrospray ionization-tandem mass spectrometric method was developed for the analysis of eight Amadori compounds, and the initial steps of the Maillard reaction during cooking (steaming, frying and baking) bell pepper, red pepper, yellow onion, purple onion, tomato and carrot were also assessed by quantitative determination of these Amadori compounds. These culinary treatments reduced moisture and increased the total content of Amadori compounds, which was not dependent on the type of vegetable or cooking method. Moreover, the effect of steaming on Amadori compound content and water loss was less than that by baking and frying vegetables. Further studies showed that the combination of high temperature and short time may lead to lower formation of Amadori compounds when baking vegetables. Culinary methods differently affected the extent of initial Maillard reaction when vegetables were made into home-cooked products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A

    2016-01-01

    Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.

  10. Preventive effect of fermented Maillard reaction products from milk proteins in cardiovascular health.

    PubMed

    Oh, N S; Kwon, H S; Lee, H A; Joung, J Y; Lee, J Y; Lee, K B; Shin, Y K; Baick, S C; Park, M R; Kim, Y; Lee, K W; Kim, S H

    2014-01-01

    The aim of this study was to determine the dual effect of Maillard reaction and fermentation on the preventive cardiovascular effects of milk proteins. Maillard reaction products (MRP) were prepared from the reaction between milk proteins, such as whey protein concentrates (WPC) and sodium caseinate (SC), and lactose. The hydrolysates of MRP were obtained from fermentation by lactic acid bacteria (LAB; i.e., Lactobacillus gasseri H10, L. gasseri H11, Lactobacillus fermentum H4, and L. fermentum H9, where human-isolated strains were designated H1 to H15), which had excellent proteolytic and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities (>20%). The antioxidant activity of MRP was greater than that of intact proteins in assays of the reaction with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and trivalent ferric ions; moreover, the effect of MRP was synergistically improved by fermentation. The Maillard reaction dramatically increased the level of antithrombotic activity and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitory effect of milk proteins, but did not change the level of activity for micellar cholesterol solubility. Furthermore, specific biological properties were enhanced by fermentation. Lactobacillus gasseri H11 demonstrated the greatest activity for thrombin and HMGR inhibition in Maillard-reacted WPC, by 42 and 33%, respectively, whereas hydrolysates of Maillard-reacted SC fermented by L. fermentum H9 demonstrated the highest reduction rate for micellar cholesterol solubility, at 52%. In addition, the small compounds that were likely released by fermentation of MRP were identified by size-exclusion chromatography. Therefore, MRP and hydrolysates of fermented MRP could be used to reduce cardiovascular risks. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Maillard reaction of lactose and fluoxetine hydrochloride, a secondary amine.

    PubMed

    Wirth, D D; Baertschi, S W; Johnson, R A; Maple, S R; Miller, M S; Hallenbeck, D K; Gregg, S M

    1998-01-01

    Analysis of commercially available generic formulations of fluoxetine HCl revealed the presence of lactose as the most common excipient. We show that such formulations are inherently less stable than formulations with starch as the diluent due to the Maillard reaction between the drug, a secondary amine hydrochloride, and lactose. The Amadori rearrangement product was isolated and characterized; the characterization was aided by reduction with sodium borohydride and subsequent characterization of this reduced adduct. The lactose-fluoxetine HCl reaction was examined in aqueous ethanol and in the solid state, in which factors such as water content, lubricant concentration, and temperature were found to influence the degradation. N-Formylfluoxetine was identified as a major product of this Maillard reaction and it is proposed that N-formyl compounds be used as markers for this drug-excipient interaction since they are easy to prepare synthetically. Many characteristic volatile products of the Maillard reaction have been identified by GC/MS, including furaldehyde, maltol, and 2,3-dihydro-3,5-dihydroxy-6-methyl-4 H-pyran-4-one. Close similarity between the degradation products of simple mixtures and formulated generic products was found; however, at least one product decomposed at a rate nearly 10 times that predicted from the simple models. Maillard products have also been identified in unstressed capsules. The main conclusion is that drugs which are secondary amines (not just primary amines as sometimes reported) undergo the Maillard reaction with lactose under pharmaceutically relevant conditions. This finding should be considered during the selection of excipients and stability protocols for drugs which are secondary amines or their salts, just as it currently is for primary amines.

  12. Analysis of the Maillard reaction in human hair using Fourier transform infrared spectroscopic imaging and a focal-plane array detector.

    PubMed

    Jung, In-Keun; Park, Sang-Chul; Bin, Sung-Ah; Roh, Young Sup; Lee, John Hwan; Kim, Boo-Min

    2016-03-01

    The Maillard reaction has been well researched and used in the food industry and the fields of environmental science and organic chemistry. Here, we induced the Maillard reaction inside human hair and analyzed its effects by using Fourier transform infrared spectroscopy with a focal-plane array (FTIR-FPA) detector. We used arginine (A), glycine (G), and D-xylose (X) to generate the Maillard reaction by dissolving them in purified water and heating it to 150 °C. This label-free process generated a complex compound (named AGX after its ingredients) with a monomer structure, which was determined by using nuclear magnetic resonance (NMR) and FTIR-FPA. This compound was stable in hair and substantially increased its tensile strength. To our knowledge, we are the first to report the formation of this monomer in human hair, and our study provides insights into a new method that could be used to improve the condition of damaged or aging hair.

  13. Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (Chlamys farreri) mantle hydrolysates-ribose Maillard reaction products.

    PubMed

    Han, Jia-Run; Yan, Jia-Nan; Sun, Shi-Guang; Tang, Yue; Shang, Wen-Hui; Li, Ao-Ting; Guo, Xiao-Kun; Du, Yi-Nan; Wu, Hai-Tao; Zhu, Bei-Wei; Xiong, Youling L

    2018-09-30

    The objective of the present study was to improve the utilization of scallop (Chlamys farreri) byproducts by using Maillard reaction. Scallop mantle hydrolysates (SMHs) were prepared using neutrase then reacted with ribose. Thirty-four peptides were identified from SMHs by UPLC-Q-TOF-MS, and the abundance of Asp and Lys suggested the strong Maillard reactivity. The formation of Schiff's base as well as modification of amide I, II and III bands in Maillard reaction products (MRPs) was confirmed by ultraviolet-visible, fluorescence, and Fourier transform infrared spectroscopy. Thirty volatile compounds were produced by the reaction of SMHs with ribose. Moreover, MRPs with enhanced radical scavenging and anti-linoleic acid peroxidation activities over SMHs promoted the survival and reduced the DNA damage of HepG2 cells treated with hydrogen peroxide. These results suggest that SMHs-ribose MRPs can be potentially used as food antioxidant for suppressing of lipid oxidation or protecting of cell from oxidative damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The influence of emulsion structure on the Maillard reaction of ghee.

    PubMed

    Newton, Angela E; Fairbanks, Antony J; Golding, Matt; Andrewes, Paul; Gerrard, Juliet A

    2015-04-15

    Food systems, such as cream and butter, have an emulsion or emulsion-like structure. When these food emulsions are heated to high temperatures to make products such as ghee, the Maillard reaction forms a range of volatile flavour compounds. The objective of this paper was to unravel the specific influence of emulsion structure on the Maillard reaction pathways that occur during the cooking of ghee using model systems. Switching the dispersed phase from oil to water provided a means of altering the ratios of volatile compounds produced in the cooked samples. The oil-in-water emulsion generated a volatile compound profile similar to that of the fat containing two phase model matrix, whereas the water-in-oil emulsion produced a different ratio of these compounds. The ability to generate different volatile compound profiles through the use of inverted emulsion structures could point to a new avenue for control of the Maillard reaction in high temperature food systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. High-intensity ultrasound production of Maillard reaction flavor compounds in a cysteine-xylose model system.

    PubMed

    Ong, Olivia X H; Seow, Yi-Xin; Ong, Peter K C; Zhou, Weibiao

    2015-09-01

    Application of high intensity ultrasound has shown potential in the production of Maillard reaction odor-active flavor compounds in model systems. The impact of initial pH, sonication duration, and ultrasound intensity on the production of Maillard reaction products (MRPs) by ultrasound processing in a cysteine-xylose model system were evaluated using Response Surface Methodology (RSM) with a modified mathematical model. Generation of selected MRPs, 2-methylthiophene and tetramethyl pyrazine, was optimal at an initial pH of 6.00, accompanied with 78.1 min of processing at an ultrasound intensity of 19.8 W cm(-2). However, identification of volatiles using gas chromatography-mass spectrometry (GC/MS) revealed that ultrasound-assisted Maillard reactions generated fewer sulfur-containing volatile flavor compounds as compared to conventional heat treatment of the model system. Likely reasons for this difference in flavor profile include the expulsion of H2S due to ultrasonic degassing and inefficient transmission of ultrasonic energy. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Characterisation of Maillard reaction products derived from LEKFD--a pentapeptide found in β-lactoglobulin sequence, glycated with glucose--by tandem mass spectrometry, molecular orbital calculations and gel filtration chromatography coupled with continuous photodiode array.

    PubMed

    Yamaguchi, Keiko; Homma, Takeshi; Nomi, Yuri; Otsuka, Yuzuru

    2014-02-15

    Maillard reaction peptides (MRPs) contribute to taste, aroma, colour, texture and biological activity. However, peptide degradation or the cross-linking of MRPs in the Maillard reaction has not been investigated clearly. A peptide of LEKFD, a part of β-lactoglobulin, was heated at 110 °C for 24h with glucose and the reaction products were analysed by HPLC with ODS, ESI-MS, ESI-MS/MS and HPLC with gel-filtration column and DAD detector. In the HPLC fractions, an imminium ion of LEK*FD, a pyrylium ion or a hydroxymethyl furylium ion of LEK*FD, and KFD and EK were detected by ESI-MS. Therefore, those products may be produced by the Maillard reaction. The molecular orbital of glycated LEKFD at the lysine epsilon-amino residue with Schiff base form was calculated by MOPAC. HPLC with gel-filtration column showed cross-linking and degradation of peptides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    PubMed Central

    Tamanna, Nahid; Mahmood, Niaz

    2015-01-01

    Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs). Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods. PMID:26904661

  18. Effects of odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves.

    PubMed

    Zhou, Lanxi; Ohata, Motoko; Arihara, Keizo

    2016-06-15

    Effects of the odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves were investigated in the present study. Equimolar solutions of glucose and glycine were adjusted to pH 7 and pH 9 and heated at 90 °C for 30 min. The odor generated from the glycine/glucose Maillard reaction significantly decreased negative moods. Its effects on brainwaves differed according to pH; alpha brainwave distribution was increased after inhalation of the odor generated at pH 7, whereas it was decreased by the odor generated at pH 9. The effects on mood and brainwaves were also measured after inhalation of model solutions, which comprised of potent odorants determined by aroma extract dilution analysis (AEDA), and the results were similar to those obtained with the Maillard reaction samples. Therefore, odors constructed by potent odorants could influence human mood and brainwaves. Among all potent odorants, 2,3-dimethylpyrazine and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) were identified as the strongest, and high pH values resulted in higher yields of these odorants. Furthermore, DMHF was identified as the putative agent responsible for the decrease in alpha brainwave distribution after smelling the pH-9 Maillard reaction sample since higher concentrations of DMHF resulted in a similar effect.

  19. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  20. Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life.

    PubMed

    Zieliński, Henryk; del Castillo, Maria Dolores; Przygodzka, Małgorzata; Ciesarova, Zuzana; Kukurova, Kristina; Zielińska, Danuta

    2012-12-15

    Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life were investigated in this study. In particular, the changes in antioxidants content, antioxidative and reducing capacity, and Maillard reaction development in rye ginger cakes after long-term storage were addressed. Ginger cakes produced according to the traditional and current recipe were stored for 5 years at room temperature in a dark place. The total phenolic compounds (TPC), inositol hexaphosphate (IP6), reduced (GSH) and oxidised glutathione (GSSG) contents, antioxidant and reducing capacity and Maillard reaction products (MRPs) were determined in ginger cakes after storage and then compared to those measured after baking. After long-term storage a decrease in TPC and IP6 contents in cakes was noted. In contrast, an increase in antioxidative and reducing capacity of stored cakes was observed. Long-term storage induced formation of furosine, advanced and final Maillard reaction products and caused changes in both reduced and oxidised forms of glutathione. After long-term storage the modest changes in furosine, FAST index and browning in ginger cake formulated with dark rye flour may suggest that this product is the healthiest among others. Therefore, traditional rye ginger cakes can be considered as an example of a healthy food that is also relatively stable during long term storage as noted by the small chemical changes observed in its composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Mutagenicity of heated sugar-casein systems: effect of the Maillard reaction.

    PubMed

    Brands, C M; Alink, G M; van Boekel, M A; Jongen, W M

    2000-06-01

    The formation of mutagens after the heating of sugar-casein model systems at 120 degrees C was examined by the Ames test, using Salmonella typhimurium strain TA100. Several sugars (glucose, fructose, galactose, tagatose, lactose, and lactulose) were compared in their mutagenicities. Mutagenicity could be fully ascribed to Maillard reaction products and strongly varied with the kind of sugar. The differences in mutagenicity among the sugar-casein systems were caused by a difference in reaction rate and a difference in reaction mechanism. Sugars with a comparable reaction mechanism (glucose and galactose) showed a higher mutagenic activity corresponding with a higher Maillard reactivity. Disaccharides showed no mutagenic activity (lactose) or a lower mutagenic activity (lactulose) than their corresponding monosaccharides. Ketose sugars (fructose and tagatose) showed a remarkably higher mutagenicity compared with their aldose isomers (glucose and galactose), which was due to a difference in reaction mechanism.

  2. Implications of the Maillard reaction on bovine alpha-lactalbumin and its proteolysis during in vitro infant digestion.

    PubMed

    Joubran, Yousef; Moscovici, Alice; Portmann, Reto; Lesmes, Uri

    2017-06-21

    This study investigated the functionality and digestibility of Maillard reaction products (MRPs) of alpha-lactalbumin (α-la), a major whey protein and component of infant formulas. The impact of different carbohydrates (glucose, galactose or galacto-oligosaccharides (GOS)) and heating duration was studied. SDS-PAGE, UV and color measurements monitored reaction extent, which varied between carbohydrates whereby galactose reacted more readily than glucose. Surface hydrophobicity and antioxidant capacity were found to be significantly (p < 0.05) higher following Maillard conjugation, with GOS-based MRPs elevating antioxidant capacity ∼50-fold compared to α-la. In addition, the digestive proteolysis of MRPs was evaluated using an infant in vitro gastro-duodenal model. SDS-PAGE analyses of digesta revealed Maillard conjugation generally increased α-la's susceptibility to proteolysis. Interestingly, GOS-based MRPs presented an optimization challenge, since heating for 12 h delayed proteolysis, while extended heating resulted in the highest susceptibility to proteolysis. Proteomic analyses further demonstrated the differences in enzymatic cleavage patterns and helped identify bioactive peptides rendered bioaccessible during the digestion of α-la or its MRPs. Bioinformatic mining of the proteomic data using PeptideRanker also gave rise to two potentially novel bioactive peptides, FQINNKIW and GINYWLAHKALCS. Finally, antioxidant capacity of luminal contents, measured by DPPH, revealed Maillard conjugation increased the antioxidant capacity of both gastric and duodenal digesta. Overall, this work draws a link between the Maillard reaction, digestive proteolysis and the bioaccessibility of bioactive peptides and antioxidant species in the infant alimentary canal. This could help rationally process infant formulas towards improved nutritional and extra-nutritional benefits.

  3. Heat damage and in vitro starch digestibility of puffed wheat kernels.

    PubMed

    Cattaneo, Stefano; Hidalgo, Alyssa; Masotti, Fabio; Stuknytė, Milda; Brandolini, Andrea; De Noni, Ivano

    2015-12-01

    The effect of processing conditions on heat damage, starch digestibility, release of advanced glycation end products (AGEs) and antioxidant capacity of puffed cereals was studied. The determination of several markers arising from Maillard reaction proved pyrraline (PYR) and hydroxymethylfurfural (HMF) as the most reliable indices of heat load applied during puffing. The considerable heat load was evidenced by the high levels of both PYR (57.6-153.4 mg kg(-1) dry matter) and HMF (13-51.2 mg kg(-1) dry matter). For cost and simplicity, HMF looked like the most appropriate index in puffed cereals. Puffing influenced starch in vitro digestibility, being most of the starch (81-93%) hydrolyzed to maltotriose, maltose and glucose whereas only limited amounts of AGEs were released. The relevant antioxidant capacity revealed by digested puffed kernels can be ascribed to both the new formed Maillard reaction products and the conditions adopted during in vitro digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Maillard reaction products in bread: A novel semi-quantitative method for evaluating melanoidins in bread.

    PubMed

    Helou, Cynthia; Jacolot, Philippe; Niquet-Léridon, Céline; Gadonna-Widehem, Pascale; Tessier, Frédéric J

    2016-01-01

    The aim of this study was to test the methods currently in use and to develop a new protocol for the evaluation of melanoidins in bread. Markers of the early and advanced stages of the Maillard reaction were also followed in the crumb and the crust of bread throughout baking, and in a crust model system. The crumb of the bread contained N(ε)-fructoselysine and N(ε)-carboxymethyllysine but at levels 7 and 5 times lower than the crust, respectively. 5-Hydroxymethylfurfural was detected only in the crust and its model system. The available methods for the semi-quantification of melanoidins were found to be unsuitable for their analysis in bread. Our new method based on size exclusion chromatography and fluorescence measures soluble fluorescent melanoidins in bread. These melanoidin macromolecules (1.7-5.6 kDa) were detected intact in both crust and model system. They appear to contribute to the dietary fibre in bread. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Assessment of heat treatment of dairy products by MALDI-TOF-MS.

    PubMed

    Meltretter, Jasmin; Birlouez-Aragon, Inès; Becker, Cord-Michael; Pischetsrieder, Monika

    2009-12-01

    The formation of the Amadori product from lactose (protein lactosylation) is a major parameter to evaluate the quality of processed milk. Here, MALDI-TOF-MS was used for the relative quantification of lactose-adducts in heated milk. Milk was heated at a temperature of 70, 80, and 100 degrees C between 0 and 300 min, diluted, and subjected directly to MALDI-TOF-MS. The lactosylation rate of alpha-lactalbumin increased with increasing reaction temperature and time. The results correlated well with established markers for heat treatment of milk (concentration of total soluble protein, soluble alpha-lactalbumin and beta-lactoglobulin at pH 4.6, and fluorescence of advanced Maillard products and soluble tryptophan index; r=0.969-0.997). The method was also applied to examine commercially available dairy products. In severely heated products, protein pre-purification by immobilized metal affinity chromatography improved spectra quality. Relative quantification of protein lactosylation by MALDI-TOF-MS proved to be a very fast and reliable method to monitor early Maillard reaction during milk processing.

  6. Changes in the physicochemical characteristics, including flavour components and Maillard reaction products, of non-centrifugal cane brown sugar during storage.

    PubMed

    Asikin, Yonathan; Kamiya, Asahiro; Mizu, Masami; Takara, Kensaku; Tamaki, Hajime; Wada, Koji

    2014-04-15

    Changes in the quality attributes of non-centrifugal cane brown sugar represented by physicochemical characteristics as well as flavour components and Maillard reaction products (MRPs) were monitored every 3 months over 1 year of storage. Stored cane brown sugar became darker, and its moisture content and water activity (a(w)) increased during storage. Fructose and glucose levels decreased as non-enzymatic browning via the Maillard reaction occurred in the stored sample, and a similar trend was also discovered in aconitic and acetic acids. Stored cane brown sugar lost its acidic and sulfuric odours (58.70-39.35% and 1.85-0.08%, respectively); subsequently, the nutty and roasted aroma increased from 26.52% to 38.59% due to the volatile MRPs. The browning rate of stored cane brown sugar was positively associated with the development of volatile MRPs (Pearson's coefficient = 0.860), whereas the amount of 3-deoxyglucosone, an intermediate product of the Maillard reaction, had a lower association with the brown colour due to its relatively slow degradation rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate.

    PubMed

    Yu, Min; He, Shudong; Tang, Mingming; Zhang, Zuoyong; Zhu, Yongsheng; Sun, Hanju

    2018-03-15

    Four peptide fractions PF1 (>5;kDa), PF2 (3-5;kDa), PF3 (1-3;kDa), PF4 (<1;kDa) were isolated from soybean hydrolysate using the ultrafiltration method. Then, d-xylose and l-cysteine were reacted with specific peptide solution at 120;°C for 2;h, and the molecular weight distribution (MWD), pH, colour, browning intensity, DPPH radical-scavenging activity, free amino acids and sensory characteristics of corresponding Maillard reaction products (MRPF1, MRPF2, MRPF3 and MRPF4) were evaluated, respectively. Peptides with low molecular weight showed higher contribution to the changes of pH, colour and browning intensity during Maillard reaction. The DPPH radical-scavenging activity of PF4 was significantly improved after Maillard reaction. Aroma volatiles and PLSR analysis suggested MRPF3 had the best sensory characteristics with higher contents of umami amino acids and lower of bitter amino acids, therefore it could be deduced that the umami and meaty characteristics were correlated with the peptides of 1-3;kDa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Okara promoted acrylamide and carboxymethyl-lysine formation in bakery products.

    PubMed

    Palermo, Mariantonella; Fiore, Alberto; Fogliano, Vincenzo

    2012-10-10

    Soybeans are widely used in bakery products because of their technological advantages and, recently, soybean-containing products have been marketed as functional foods thanks to several health benefits. Okara is a soybean-based ingredient obtained after elimination of the water-soluble component from ground soybeans. In this paper the effect of okara addition to bakery products on the formation of some potentially harmful Maillard reaction products was evaluated. Cookies obtained by replacing 15% of wheat flour with okara showed a visible browning increase and a more intense Maillard reaction development as shown by higher concentrations of 5-hydroxymethyl-2-furaldehyde (HMF) (+100%), acrylamide (+60%), and carboxymethyl-lysine (CML) (+400%) with respect to the control. This phenomenon could be related to the presence in okara of about 50% of insoluble dietary fiber: the fiber reduces water activity during cooking, thus promoting Maillard reaction. To confirm this hypothesis, cookies obtained by replacing 7% of wheat flour with three different types of dietary fiber (cellulose, chitosan, and pea fiber) were prepared: these experimental cookies showed higher Maillard reaction product concentration with respect to the control and, in particular, HMF and CML values were directly related to the fiber water-holding capacity (WHC). To extend the observation to the food market, a sampling of soybean-containing commercial bakery products was analyzed by comparing the concentrations of Maillard reaction products with those of similar bakery products without soy. Soybean-containing samples showed higher concentrations of acrylamide and CML than corresponding controls.

  9. Evaluation of the Flavor Contribution of Products of the Maillard Reaction

    DTIC Science & Technology

    the Maillard - type reaction between the products of autoxidized polyunsaturated fatty acids and free amino groups of phospholipids and within meat...intermolecular browning-type reaction with free amino groups, polymerization, etc., are liable to occur. Changes in these labile substances are known...proteins, and between the free amino groups of phospholipids and the monosaccharides present in meat. The reaction was elucidated and its products characterized and evaluated for its contribution to meat flavor.

  10. Contribution of crosslinking products in the flavour enhancer processing: the new concept of Maillard peptide in sensory characteristics of Maillard reaction systems.

    PubMed

    Karangwa, Eric; Murekatete, Nicole; Habimana, Jean de Dieu; Masamba, Kingsley; Duhoranimana, Emmanuel; Muhoza, Bertrand; Zhang, Xiaoming

    2016-06-01

    In this study, the flavour-enhancing properties of the Maillard reaction products (MRPs) for different systems consisted of different peptides (sunflower, SFP; corn, CP and soyabean SP) with, xylose and cysteine were investigated. Maillard systems from peptides of sunflower, corn and soyabean with xylose and cysteine were designated as PXC, MCP and MSP, respectively. The Maillard systems were prepared at pH of 7.4 using temperature of 120C for 2 h. Results showed that all systems were significantly different in all sensory attributes. The highest scores for mouthfulness and continuity were observed for MCP with the lowest peptides distribution between 1000 and 5000 Da, known as Maillard peptide. This revealed that the MCP with the lowest Maillard peptide content had the strongest "Kokumi" effect compared to the other MRPsand demonstrated that "kokumi effect" of MRPs was contributed by not only the "Maillard peptide" defined by the molecular weight (1000-5000 Da). Results on sensory evaluation after fractionation of PXC followed by enzymatic hydrolysis showed no significant differences between PXC, P-PXC and their hydrolysates. This observation therefore confirmed that the presence of other contributors attributed to the "Kokumi" effect rather than the Maillard peptide. It can be deduced that the unhydrolyzed crosslinking products might have contributed to the "Kokumi" effect of MRPs. The structures of four probable crosslinking compounds were proposed and the findings have provided new insights in the sensory characteristics of xylose, cysteine and sunflower peptide MRPs.

  11. Testing isotopic labeling with [¹³C₆]glucose as a method of advanced glycation sites identification.

    PubMed

    Kielmas, Martyna; Kijewska, Monika; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-12-01

    The Maillard reaction occurring between reducing sugars and reactive amino groups of biomolecules leads to the formation of a heterogeneous mixture of compounds: early, intermediate, and advanced glycation end products (AGEs). These compounds could be markers of certain diseases and of the premature aging process. Detection of Amadori products can be performed by various methods, including MS/MS techniques and affinity chromatography on immobilized boronic acid. However, the diversity of the structures of AGEs makes detection of these compounds more difficult. The aim of this study was to test a new method of AGE identification based on isotope (13)C labeling. The model protein (hen egg lysozyme) was modified with an equimolar mixture of [(12)C(6)]glucose and [(13)C(6)]glucose and then subjected to reduction of the disulfide bridges followed by tryptic hydrolysis. The digest obtained was analyzed by LC-MS. The glycation products were identified on the basis of characteristic isotopic patterns resulting from the use of isotopically labeled glucose. This method allowed identification of 38 early Maillard reaction products and five different structures of the end glycation products. This isotopic labeling technique combined with LC-MS is a sensitive method for identification of advanced glycation end products even if their chemical structure is unknown. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Functional improvements in dried egg white through the Maillard reaction.

    PubMed

    Handa, A; Kuroda, N

    1999-05-01

    The effects of the Maillard reaction on the functional properties of dried egg white (DEW) were investigated. Maillard-reacted DEW (M-DEW) was prepared by storing sugar-preserved DEW (SP-DEW) at 55 degrees C and 35% relative humidity for 0-12 days. The M-DEW developed an excellent gelling property, and hydrogen sulfide production from heat-induced M-DEW gels decreased. Surface sulfhydryl (SH) group content of M-DEW increased while total SH group and alpha-helix contents decreased with increasing heating time in the dry state. Breaking strength, breaking strain, water-holding capacity, and hydrogen sulfide of heat-induced M-DEW gels significantly correlated with surface and total SH group contents in M-DEW. SDS-PAGE revealed that M-DEW proteins were polymerized in which covalent bonds were involved. The present study demonstrated that the Maillard reaction partially unfolds and polymerizes proteins of SP-DEW and, consequently, improved gelling property of SP-DEW under certain controlled conditions.

  13. A novel thiamine-derived pigment, pyrizepine, formed by the Maillard reaction.

    PubMed

    Igoshi, Asuka; Noda, Kyoko; Murata, Masatsune

    2018-04-26

    To find a Maillard pigment derived from thiamine, a solution containing glucose and thiamine was heated and analyzed with high-performance liquid chromatography equipped with diode-array detection. As a result, a unique peak showing an absorption maximum at 380 nm was detected. This peak was then isolated from a reaction solution containing glucose, lysine and thiamine, and was identified as 1-(2-methyl-6,9-dihydro-5H-pyrimido[4,5-e][1,4]diazepin-7-yl)ethan-1-one using instrumental analyses. This compound, named pyrizepine, was a novel yellow pigment having a fused ring consisting of pyrimidine and diazepine. Pyrizepine was a major low-molecular-weight pigment in the reaction solution. The structure suggests that pyrizepine is formed by condensation reaction between a degradation product of thiamine and a tetrosone derivative formed from glucose by the Maillard reaction.

  14. Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: Inhibition by Maillard reaction.

    PubMed

    Moreira, Ana S P; Nunes, Fernando M; Simões, Cristiana; Maciel, Elisabete; Domingues, Pedro; Domingues, M Rosário M; Coimbra, Manuel A

    2017-07-15

    Under roasting conditions, polysaccharides depolymerize and also are able to polymerize, forming new polymers through non-enzymatic transglycosylation reactions (TGRs). TGRs can also occur between carbohydrates and aglycones, such as the phenolic compounds present in daily consumed foods like coffee. In this study, glycosidically-linked phenolic compounds were quantified in coffee melanoidins, the polymeric nitrogenous brown-colored compounds formed during roasting, defined as end-products of Maillard reaction. One third of the phenolics present were in glycosidically-linked form. In addition, the roasting of solid-state mixtures mimicking coffee beans composition allowed the conclusion that proteins play a regulatory role in TGRs extension and, consequently, modulate melanoidins composition. Overall, the results obtained showed that TGRs are a main mechanism of phenolics incorporation in melanoidins and are inhibited by amino groups through Maillard reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ovalbumin Modified with Pyrraline, a Maillard Reaction Product, shows Enhanced T-cell Immunogenicity*

    PubMed Central

    Heilmann, Monika; Wellner, Anne; Gadermaier, Gabriele; Ilchmann, Anne; Briza, Peter; Krause, Maren; Nagai, Ryoji; Burgdorf, Sven; Scheurer, Stephan; Vieths, Stefan; Henle, Thomas; Toda, Masako

    2014-01-01

    The Maillard reaction (also referred to as “glycation”) takes place between reducing sugars and compounds with free amino groups during thermal processing of foods. In the final stage of the complex reaction cascade, the so-called advanced glycation end products (AGEs) are formed, including proteins with various glycation structures. It has been suggested that some AGEs could have immunostimulatory effects. Here, we aimed to identify specific glycation structure(s) that could influence the T-cell immunogenicity and potential allergenicity of food allergens, using ovalbumin (OVA, an egg white allergen) as a model allergen. OVA was specifically modified with representative glycation structures: Nϵ-carboxymethyl lysine (CM-OVA), Nϵ-carboxyethyl lysine (CE-OVA), pyrraline (Pyr-OVA), or methylglyoxal-derived arginine derivatives (MGO-OVA). As well as AGE-OVA, a crude glycation product in thermal incubation of OVA with glucose, only Pyr-OVA, and not other modified OVAs, was efficiently taken up by bone marrow-derived murine dendritic cells (BMDCs). The uptake of Pyr-OVA was reduced in scavenger receptor class A (SR-A)-deficient BMDCs, but not in cells treated with inhibitors of scavenger receptor class B, galectin-3, or blocking antibodies against CD36, suggesting that pyrraline binds to SR-A. Compared with other modified OVAs, Pyr-OVA induced higher activation of OVA-specific CD4+ T-cells in co-culture with BMDCs. Furthermore, compared with native OVA, AGE-OVA and Pyr-OVA induced higher IgE production in mice. Pyrraline could induce better allergen uptake by DCs via association with SR-A and subsequently enhance CD4+ T-cell activation and IgE production. Our findings help us to understand how Maillard reaction enhances the potential allergenicity of food allergens. PMID:24505139

  16. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    ERIC Educational Resources Information Center

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  17. Relative quantification of N(epsilon)-(Carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry.

    PubMed

    Kislinger, Thomas; Humeny, Andreas; Peich, Carlo C; Zhang, Xiaohong; Niwa, Toshimitsu; Pischetsrieder, Monika; Becker, Cord-Michael

    2003-01-01

    The nonenzymatic glycation of proteins by reducing sugars, also known as the Maillard reaction, has received increasing recognition from nutritional science and medical research. In this study, we applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to perform relative and simultaneous quantification of the Amadori product, which is an early glycation product, and of N(epsilon)-(carboxymethyl)lysine and imidazolone A, two important advanced glycation end products. Therefore, native lysozyme was incubated with d-glucose for increasing periods of time (1, 4, 8, and 16 weeks) in phosphate-buffered saline pH 7.8 at 50 degrees C. After enzymatic digestion with endoproteinase Glu-C, the N-terminal peptide fragment (m/z 838; amino acid sequence KVFGRCE) and the C-terminal peptide fragment (m/z 1202; amino acid sequence VQAWIRGCRL) were used for relative quantification of the three Maillard products. Amadori product, N(epsilon)-(carboxymethyl)lysine, and imidazolone A were the main glycation products formed under these conditions. Their formation was dependent on glucose concentration and reaction time. The kinetics were similar to those obtained by competitive ELISA, an established method for quantification of N(epsilon)-(carboxymethyl)lysine and imidazolone A. Inhibition experiments showed that coincubation with N(alpha)-acetylargine suppressed formation of imidazolone A but not of the Amadori product or N(epsilon)-(carboxymethyl)lysine. The presence of N(alpha)-acetyllysine resulted in the inhibition of lysine modifications but in higher concentrations of imidazolone A. o-Phenylenediamine decreased the yield of the Amadori product and completely inhibited the formation of N(epsilon)-(carboxymethyl)lysine and imidazolone A. MALDI-TOF-MS proved to be a new analytical tool for the simultaneous, relative quantification of specific products of the Maillard reaction. For the first time, kinetic data of defined products on specific sites of glycated protein could be measured. This characterizes MALDI-TOF-MS as a valuable method for monitoring the Maillard reaction in the course of food processing.

  18. The Maillard reaction of a shrimp by-product protein hydrolysate: chemical changes and inhibiting effects of reactive oxygen species in human HepG2 cells.

    PubMed

    Zha, Fengchao; Wei, Binbin; Chen, Shengjun; Dong, Shiyuan; Zeng, Mingyong; Liu, Zunying

    2015-06-01

    Recently, much attention has been given to improving the antioxidant activity of protein hydrolysates via the Maillard reaction, but little is known about the cellular antioxidant activity of Maillard reaction products (MRPs) from protein hydrolysates. We first investigated chemical characterization and the cellular antioxidant activity of MRPs in a shrimp (Litopenaeus vannamei) by-product protein hydrolysate (SBH)-glucose system at 110 °C for up to 10 h of heating. Solutions of SBH and glucose were also heated alone as controls. The Maillard reaction greatly resulted in the increase of hydroxymethylfurfural (HMF) and browning intensity, high molecular weight fraction, and reduction of the total amino acid in SBH with the heating time, which correlated well with the free radical scavenging activity of MRPs. MRPs had stronger inhibiting effects on oxidative stress of human HepG2 cells than the original SBH, and its cellular antioxidant activity strongly correlated with free radical scavenging activity, but less affected by the browning intensity and HMF level. The caramelization of glucose partially affected the HMF level and free radical scavenging activity of MRPs, but it was not related to the cellular antioxidant activity. The cellular antioxidant activity of MRPs for 5 h of heating time appeared to reach a maximum level, which was mainly due to carbonyl ammonia condensation reaction. In conclusion, the Maillard reaction is a potential method to increase the cellular antioxidant activity of a shrimp by-product protein hydrolysate, but the higher HMF levels and the lower amino acid content in MRPs should also be considered.

  19. Lysine-Derived Protein-Bound Heyns Compounds in Bakery Products.

    PubMed

    Treibmann, Stephanie; Hellwig, Anne; Hellwig, Michael; Henle, Thomas

    2017-12-06

    Fructose and dicarbonyl compounds resulting from fructose in heated foods have been linked to pathophysiological pathways of several metabolic disorders. Up to now, very little has been known about the Maillard reaction of fructose in food. Heyns rearrangement compounds (HRCs), the first stable intermediates of the Maillard reaction between amino components and fructose, have not yet been quantitated as protein-bound products in food. Therefore, the HRCs glucosyllysine and mannosyllysine were synthesized and characterized by NMR. Protein-bound HRCs in cookies containing various sugars and in commercial bakery products were quantitated after enzymatic hydrolysis by RP-HPLC-ESI-MS/MS in the multiple reaction monitoring mode through application of the standard addition method. Protein-bound HRCs were quantitated for the first time in model cookies and in commercial bakery products containing honey, banana, and invert sugar syrup. Concentrations of HRCs from 19 to 287 mg/kg were found, which were similar to or exceeded the content of other frequently analyzed Maillard reaction products, such as N-ε-carboxymethyllysine (10-76 mg/kg), N-ε-carboxyethyllysine (2.5-53 mg/kg), and methylglyoxal-derived hydroimidazolone 1 (10-218 mg/kg) in the analyzed cookies. These results show that substantial amounts of HRCs form during food processing. Analysis of protein-bound HRCs in cookies is therefore useful to evaluate the Maillard reaction of fructose.

  20. Accumulation of Maillard reaction products in skin collagen in diabetes and aging.

    PubMed Central

    Dyer, D G; Dunn, J A; Thorpe, S R; Bailie, K E; Lyons, T J; McCance, D R; Baynes, J W

    1993-01-01

    To investigate the contribution of glycation and oxidation reactions to the modification of insoluble collagen in aging and diabetes, Maillard reaction products were measured in skin collagen from 39 type 1 diabetic patients and 52 nondiabetic control subjects. Compounds studied included fructoselysine (FL), the initial glycation product, and the glycoxidation products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine, formed during later Maillard reactions. Collagen-linked fluorescence was also studied. In nondiabetic subjects, glycation of collagen (FL content) increased only 33% between 20 and 85 yr of age. In contrast, CML, pentosidine and fluorescence increased five-fold, correlating strongly with age. In diabetic patients, collagen FL was increased threefold compared with nondiabetic subjects, correlating strongly with glycated hemoglobin but not with age. Collagen CML, pentosidine and fluorescence were increased up to twofold in diabetic compared with control patients: this could be explained by the increase in glycation alone, without invoking increased oxidative stress. There were strong correlations among CML, pentosidine and fluorescence in both groups, providing evidence for age-dependent chemical modification of collagen via the Maillard reaction, and acceleration of this process in diabetes. These results support the description of diabetes as a disease characterized by accelerated chemical aging of long-lived tissue proteins. PMID:8514858

  1. Physicochemical Changes and Glycation Reaction in Intermediate-Moisture Protein-Sugar Foods with and without Addition of Resveratrol during Storage.

    PubMed

    Sheng, Zhanwu; Gu, Mantun; Hao, Wangjun; Shen, Yixiao; Zhang, Weimin; Zheng, Lili; Ai, Binling; Zheng, Xiaoyan; Xu, Zhimin

    2016-06-22

    An intermediate-moisture food (IMF) model consisting of whey protein isolate and glucose and an IMF model fortified with resveratrol were used to study the effect of resveratrol on physicochemical changes and glycation of protein-sugar-rich foods during storage. The water activity (aw) of the storage was controlled at 0.75 or 0.56. The browning rate or hardness of fortified IMFs was significantly lower than that of IMFs after 45-day storage. The rate of Maillard reaction in the samples stored at aw 0.56 was higher than that of samples stored at aw 0.75. The fortified IMFs had lower levels of AGEs (advanced glycation end products), CML (N(ε)-(carboxymethyl)-l-lysine), and insoluble protein during storage. The inhibition capability of resveratrol against glycation was also confirmed by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), liquid chromatography mass spectrometry (LC-MS), and Fourier transform infrared spectroscopy (FTIR) analysis to monitor glycated proteins and protein aggregation in the samples. The results of this study suggested that resveratrol could be used as an inhibitor to reduce the formation of undesirable AGEs and other Maillard reaction products in foods during storage.

  2. The use of asparaginase to reduce acrylamide levels in cooked food.

    PubMed

    Xu, Fei; Oruna-Concha, Maria-Jose; Elmore, J Stephen

    2016-11-01

    Strategies proposed for reducing the formation of the suspected carcinogen acrylamide in cooked foods often rely on a reduction in the extent of the Maillard reaction, in which acrylamide is formed from the reaction between asparagine and reducing sugars. However, the Maillard reaction also provides desirable sensory attributes of cooked foods. Mitigation procedures that modify the Maillard reaction may negatively affect flavour and colour. The use of asparaginase to convert asparagine to aspartic acid may provide a means to reduce acrylamide formation, while maintaining sensory quality. This review collates research on the use of enzymes, asparaginase in particular, to mitigate acrylamide formation. Asparaginase is a powerful tool for the food industry and it is likely that its use will increase. However, the potential adverse effects of asparaginase treatment on sensory properties of cooked foods and the need to achieve sufficient enzyme-substrate contact remain areas for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Two novel pyrrolooxazole pigments formed by the Maillard reaction between glucose and threonine or serine.

    PubMed

    Noda, Kyoko; Murata, Masatsune

    2017-02-01

    Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300-360 nm under acidic and neutral conditions and at 320-390 nm under alkaline conditions.

  4. On the time behaviour of the concentration of pyrazinium radical cations in the early stage of the Maillard reaction

    NASA Astrophysics Data System (ADS)

    Stoesser, Reinhard; Klein, Jeannette; Peschke, Simone; Zehl, Andrea; Cämmerer, Bettina; Kroh, Lothar W.

    2007-08-01

    During the early stage of the Maillard reaction pyrazinium radical cations were detected by ESR within the reaction system D-glucose/glycine. The spectra were characterized by completely resolved hyperfine structure. The partial pressure of oxygen and the radical concentrations were measured directly in the reaction mixture by ESR using solutions of the spin probe TEMPOL and of DPPH, respectively. There are quantitative and qualitative relations of the actual concentration of the radical ions to the partial pressure of oxygen, the temperature-time regime and the mechanical mixing of the reaction system. These macroscopic parameters significantly affect both the induction period and the velocity of the time-dependent formation of free radicals. From in situ variations of p(O 2) and p(Ar) including the connected mixing effects caused by the passing the gases through the reaction mixture, steric and chemical effects of the stabilization of the radical ions were established. The determination of suitable and relevant conditions for stabilization and subsequent radical reactions contributes to the elucidation of the macroscopically known antioxidant activity of Maillard products.

  5. Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard reaction products at different nutritional and environmental conditions.

    PubMed

    Kumar, Vineet; Chandra, Ram

    2018-02-02

    Maillard reactions products (MRPs) are a major colorant of distillery effluent. It is major source of environmental pollution due to its complex structure and recalcitrant nature. This study has revealed that sucrose glutamic acid-Maillard reaction products (SGA-MRPs) showed many absorption peaks between 200 and 450 nm. The absorption maximum peak was noted at 250 nm in spectrophotometric detection. This indicated the formation of variable molecular weight Maillard products during the SGA-MRPs formation at high temperature. The identified aerobic bacterial consortium consisting Klebsiella pneumoniae (KU726953), Salmonella enterica (KU726954), Enterobacter aerogenes (KU726955), Enterobacter cloaceae (KU726957) showed optimum production of MnP and laccase at 120 and 144 h of growth, respectively. The potential bacterial consortium showed decolourisation of Maillard product up to 70% in presence of glucose (1%), peptone (0.1%) at optimum pH (8.1), temperature (37 °C) and shaking speed (180 rpm) within 192 h of incubation. The reduction of colour of Maillard product correlated with shifting of absorption peaks in UV-Vis spectrophotometry analysis. Further, the changing of functional group in FT-IR data showed appearance of new peaks and GC-MS analysis of degraded sample revealed the depolymerisation of complex MRPs. The toxicity evaluation using seed of Phaseolus mungo L. showed reduction of toxicity of MRPs after bacterial treatment. Hence, this study concluded that developed bacterial consortium have capability for decolourisation of MRPs due to high content of MnP and laccase.

  6. Drugs of abuse that mediate advanced glycation end product formation: a chemical link to disease pathology.

    PubMed

    Treweek, Jennifer B; Dickerson, Tobin J; Janda, Kim D

    2009-05-19

    Nicotine and methamphetamine are frequently abused in modern society, despite the increasing evidence of their addictive, neuropharmacological, and toxic effects. Tobacco, the most widely abused substance, is the leading cause of preventable death in the United States, killing nearly half a million Americans annually. A methamphetamine epidemic has also spread during the past decade; severe neurotoxicity and addictiveness contribute to the drug's notoriety. Although the majority of research on these two drugs is of pharmacological and neurobiological motivation, further study of these molecules from a chemical perspective may provide novel mechanistic insight into either their addictive potential or their pathological effects. For example, nicotine and methamphetamine share a common structural feature, a secondary amine, suggesting that these molecules could possess similar (or analogous) in vivo reactivity. Discoveries concerning the synthetic requirements for aqueous aldol catalysis and the feasibility of the enamine mechanism under physiological conditions have given rise to the hypothesis that ingested molecules, such as abused drugs, could participate in reactions utilizing an enamine intermediate in vivo. The chemical reactivity of exogenous drugs with amine functionalities was initially examined in the context of the Maillard reaction, or nonenzymatic browning. The heating of reducing sugars with amino acids yields a brown solution; studies of this reaction were originally applied to food chemistry for the production of distinct flavors and aromas. Further research has since revealed numerous instances in which the in vivo production of advanced glycation end products (AGEs) through the Maillard reaction contribute to the pathology of disease states. Specifically, the modification of long-lived proteins by glycation and glycoxidation and the accumulation of these AGEs compromise the original function of such proteins and change the mechanical properties of affected tissue. In this Account, we summarize our investigations into the capacity for exogenous compounds to initiate the Maillard reaction and the corresponding physiological and immunological impact of the drug-conjugated AGEs that form. Many of the pathological components of diabetes, atherosclerosis, cancer, macular degeneration, Alzheimer's disease, and even the normal aging process are attributable to AGEs and their potential for aggregate formation in the vasculature. A deeper understanding of AGEs, and particularly glycated proteins, will provide fundamental mechanistic insight into disease origins.

  7. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    PubMed

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Contribution of sulfur-containing compounds to the colour-inhibiting effect and improved antioxidant activity of Maillard reaction products of soybean protein hydrolysates.

    PubMed

    Huang, Meigui; Liu, Ping; Song, Shiqing; Zhang, Xiaoming; Hayat, Khizar; Xia, Shuqin; Jia, Chengsheng; Gu, Fenglin

    2011-03-15

    Light-coloured and savoury-tasting flavour enhancers are attractive to both consumers and food producers. The aim of this study was to investigate the colour-inhibiting effect of L-cysteine and thiamine during the Maillard reaction of soybean peptide and D-xylose. The correlation between volatile compounds and antioxidant activity of the corresponding products was also studied. Colour formation was markedly suppressed by cysteine. Compared with peptide/xylose (PX), the taste profile of Maillard reaction products (MRPs) derived from peptide/xylose/cysteine (PXC) and peptide/xylose/cysteine/thiamine (PXCT) was stronger, including umami, mouthfulness, continuity, meaty and overall acceptance. PXC and PXCT also exihibited distinctly higher antioxidant activity. Principal component analysis was applied to investigate the correlation between antioxidant activity and volatile compounds. Of 88 volatile compounds identified, 55 were significantly correlated with antioxidant activity by two principal components (accounting for 85.05% of the total variance). Effective colour control of the Maillard reaction by L-cysteine may allow the production of healthier (higher antioxidant activity) and tastier foods to satisfy consumers' and food producers' demands. Light-coloured products might be used as functional flavour enhancers in various food systems. Copyright © 2010 Society of Chemical Industry.

  9. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean.

    PubMed

    Zilić, Slađana; Mogol, Burçe Ataç; Akıllıoğlu, Gül; Serpen, Arda; Delić, Nenad; Gökmen, Vural

    2014-01-15

    The Maillard reaction indicators furosine, hydroxymethylfurfural (HMF), acrylamide and color were determined to evaluate heat effects induced during extrusion, infrared and microwave heating of soybean. In addition, the present paper aimed to study changes in the phenolic compounds, as well as in the overall antioxidant properties of different soybean products in relation to heating at 45-140 °C during the processes. Soybean proteins were highly sensible to Maillard reaction and furosine was rapidly formed under slight heating conditions during extrusion and infrared heating. Microwave heating at lower temperatures for a longer time yielded lower acrylamide levels in the final soybean products, as a result of its partial degradation. However, during infrared heating, acrylamide formation greatly increased with decreasing moisture content. After a short time of extrusion and infrared heating at 140 °C and microwave heating at 135 °C for 5 min, concentrations of HMF increased to 11.34, 26.21 and 34.97 µg g(-1), respectively. The heating conditions caused formation of acrylamide, HMF and furosine in high concentration. The results indicate that the complex structure of soybeans provides protection of phenolic compounds from thermal degradation, and that Maillard reaction products improved the antioxidant properties of heat-treated soybean. © 2013 Society of Chemical Industry.

  10. The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction

    NASA Astrophysics Data System (ADS)

    Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro

    2007-11-01

    The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.

  11. Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity.

    PubMed

    Li, Dongmei; Na, Xiaokang; Wang, Haitao; Xie, Yisha; Cong, Shuang; Song, Yukun; Xu, Xianbing; Zhu, Bei-Wei; Tan, Mingqian

    2018-02-14

    Food-borne nanoparticles have received great attention because of their unique physicochemical properties and potential health risk. In this study, carbon dots (CDs) formed during one of the most important chemical reactions in the food processing field, the Maillard reaction from the model system including glucose and lysine, were investigated. The CDs purified from Maillard reaction products emitted a strong blue fluorescence under ultraviolet light with a fluorescent quantum yield of 16.30%. In addition, they were roughly spherical, with sizes of around 4.3 nm, and mainly composed of carbon, oxygen, hydrogen, and nitrogen. Their surface groups such as hydroxyl, amino, and carboxyl groups were found to possibly enable CDs to scavenge DPPH and hydroxyl radicals. Furthermore, the cytotoxicity assessment of CDs showed that they could readily enter HepG2 cells while causing negligible cell death at low concentration. However, high CDs concentrations were highly cytotoxic and led to cell death via interference of the glycolytic pathway.

  12. Probing Conformational Change of Bovine Serum Albumin–Dextran Conjugates under Controlled Dry Heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Shuqin; Li, Yunqi; Zhao, Qin

    2015-04-29

    The time-dependent conformational change of bovine serum album (BSA) during Maillard reaction with dextran under controlled dry heating has been studied by small-angle X-ray scattering, fluorescence spectroscopy, dynamic light scattering, and circular dichroism analysis. Through the research on the radii of gyration (R g), intrinsic fluorescence, and secondary structure, conjugates with dextran coating were found to inhibit BSA aggregation and preserve the secondary structure of native BSA against long-time heat treatment during Maillard reaction. The results suggested that the hydrophilic dextran was conjugated to the compact protein surface and enclosed it and more dextran chains were attached to BSA withmore » the increase of the heating time. The study presented here will be beneficial to the understanding of the conformational evolution of BSA molecules during the dry-heating Maillard reaction and to the control of the protein–polysaccharide conjugate structure.« less

  13. Food-Grade Synthesis of Maillard-Type Taste Enhancers Using Natural Deep Eutectic Solvents (NADES).

    PubMed

    Kranz, Maximilian; Hofmann, Thomas

    2018-01-28

    The increasing demand for healthier food products, with reduced levels of table salt, sugar, and mono sodium glutamate, reinforce the need for novel taste enhancers prepared by means of food-grade kitchen-type chemistry. Although several taste modulating compounds have been discovered in processed foods, their Maillard-type ex food production is usually not exploited by industrial process reactions as the yields of target compounds typically do not exceed 1-2%. Natural deep eutectic solvents (NADES) are reported for the first time to significantly increase the yields of the taste enhancers 1-deoxy-ᴅ-fructosyl-N-β-alanyl-ʟ-histidine (49% yield), N-(1-methyl-4-oxoimidazolidin-2-ylidene) aminopropionic acid (54% yield) and N²-(1-carboxyethyl) guanosine 5'-monophosphate (22% yield) at low temperature (80-100 °C) within a maximum reaction time of 2 h. Therefore, NADES open new avenues to a "next-generation culinary chemistry" overcoming the yield limitations of traditional Maillard chemistry approaches and enable a food-grade Maillard-type generation of flavor modulators.

  14. A potential fluorescent probe: Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detection of Hg(2+) and biothiols.

    PubMed

    Dong, Jiang Xue; Song, Xiao Fang; Shi, Yan; Gao, Zhong Feng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2016-07-15

    Maillard reactions and their fluorescent products have drawn much attention in the fields of food and life science, however, the application of fluorescent products separated from the reaction as an indicator for detection of certain substances in sensor field has not been mentioned. In this article, we report on an easy-to-synthesize and water-soluble fluorescent probe separated from the typical Maillard reaction products of glutathione and ascorbic acid, with excellent stability and high quantum yield (18.2%). The further application of the probe has been explored for dual detection of Hg(2+) and biothiols including cysteine, homocysteine, and glutathione, which is based on Hg(2+)-induced fluorescence quenching of the Maillard reaction fluorescent products (MRFPs) and the fluorescence recovery as the introduction of biothiols. This sensing system exhibits a good selectivity and sensitivity, and the linear ranges for Hg(2+), cysteine, homocysteine, and glutathione are 0.05-12, 0.5-10, 0.3-20, and 0.3-20μM, respectively. The detection limits for Hg(2+), cysteine, homocysteine, and glutathione are 22, 47, 96, and 30nM at a signal-to-noise ratio of 3, respectively. Furthermore, the practical applications of this sensor for Hg(2+) and biothiols determination in water samples and human plasma sample have been demonstrated with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effects of Maillard reaction on flavor and safety of Chinese traditional food: roast duck.

    PubMed

    Zhou, Yiming; Xie, Fan; Zhou, Xiaoli; Wang, Yuqiang; Tang, Wen; Xiao, Ying

    2016-04-01

    Roast duck is one kind of representative roast food whose flavor is mainly produced by the Maillard reaction. However, some potentially toxic compounds are generated in the thermal process and are a potential health risk. The aim of this work was to analyze the effects of the Maillard reaction on flavor and safety of a Chinese traditional food: roast duck. Ducks with different roasting times (0, 10, 20, 30, 40, 50 and 60 min) were analyzed. The 40 and 50 min roast ducks exhibited an acceptable degree of sensory attributes, but the 60 min roast duck showed the most abundant aroma compounds. Antioxidant activities were observed to increase with roasting, and the 60 min roast duck showed the highest antioxidant activities (1,1-diphenylpicryhydrazyl, 39.3 µmol Trolox g(-1) sample). The highest content of acrylamide (0.21 µg g(-1)) and 5-hydroxymethylfurfural (0.089 µg g(-1)) were detected in the 50 and 60 min roast duck extract, respectively. Furthermore, water extract from 60 min roast ducks manifested a higher lactose dehydrogenase release ratio (51.9%) and greatly increased cell apoptosis. The drastic Maillard reaction in duck induced by long roasting time could be advantageous for color, aroma and antioxidant activities in roast ducks, but might be not beneficial to health. © 2015 Society of Chemical Industry.

  16. Interface-related attributes of the Maillard reaction-born glycoproteins.

    PubMed

    Karbasi, Mehri; Madadlou, Ashkan

    2017-01-19

    Interfacial behavior of proteins which is a chief parameter to their emulsifying and foaming properties can be tailored through the Maillard reaction. The reaction can increase protein solubility at isoelectric point and ought to be controlled for example by high pressure processing to suppress melanoidins formation. Branched and long saccharides bring considerable steric hindrance which is associated with their site of conjugation to proteins. Conjugation with high molecular weight polysaccharides (such as 440 kDa dextran) may indeed increase the thickness of globular proteins interfacial film up to approximately 25 nm. However, an overly long saccharide can shield protein charge and slow down the electrophoretic mobility of conjugate. Maillard conjugation may decrease the diffusion rate of proteins to interface, allowing further unfolding at interface. As well, it can increase desorption iteration of proteins from interface. In addition to tempering proteins adsorption to interface, Maillard conjugation influences the rheology of protein membranes. Oligosaccharides (especially at higher glycation degrees) decrease the elastic modulus and Huggins constant of protein film; whereas, monosaccharides yield a more elastic interface. Accordingly, glycation of random coil proteins has been exploited to stiffen the corresponding interfacial membrane. Partial hydrolysis of proteins accompanied with anti-solvent-triggered nanoparticulation either before or after conjugation is a feasible way to enhance their emulsifying activity.

  17. Chemical and antioxidant properties of casein peptide and its glucose Maillard reaction products in fish oil-in-water emulsions.

    PubMed

    Dong, Shiyuan; Wei, Binbin; Chen, Bingcan; McClements, D Julian; Decker, Eric A

    2011-12-28

    Maillard reaction products (MRPs) were prepared by reacting casein peptides with different concentrations of glucose at 80 °C for up to 12 h. The chemical properties of MRPs and their effects on lipid oxidation in fish oil-in-water emulsions were investigated. Increasing browning development and absorbance in 294 nm in the MRPs caused an increase in DPPH radical scavenging, but a decrease in iron chelation, which could be related to the loss of free amino groups in the peptides. The MRPs produced with longer reaction time or higher glucose concentrations were less effective in inhibiting lipid oxidation in emulsions at pH 7.0 compared to casein peptides alone. However, the antioxidant activity of MRPs in emulsions at pH 3.0 was not decreased by prolonged heating. The bitterness of MRPs was less than that of the original casein peptides, and bitterness decreased with increasing heating time and glucose concentrations. Therefore, the Maillard reaction was a potential method to reduce the bitterness of casein peptides while not strongly decreasing their antioxidant activity.

  18. In situ formation of the amino sugars 1-amino-1-deoxy-fructose and 2-amino-2-deoxy-glucose under Maillard reaction conditions in the absence of ammonia.

    PubMed

    Nashalian, Ossanna; Yaylayan, Varoujan A

    2016-04-15

    Replacing amino acids with their binary metal complexes during the Maillard reaction can initiate various processes, including the oxidative degradation of their glucose conjugates, generating 1-amino-1-deoxy-fructose and its derivatives. These reactive amino sugars are not easily accessible under Maillard reaction conditions and are only formed in the presence of ammonia. To explore the generality of this observation and to study in particular the ability of fructose to generate glucosamine, the amino acid-metal complexes were heated in aqueous solutions with three aldohexoses and two ketohexoses at 110°C for 2 h and the dry residues were analysed by ESI/qTOF/MS/MS. All the sugars generated relatively intense ions at [M+H](+) 180 (C6H14NO5); those ions originating from ketohexoses exhibited MS/MS fragmentations identical to glucosamine and those originating form aldohexoses showed ions identical to fructosamine. Furthermore, the amino sugars were found to form fructosazine, react with other sugars and undergo dehydration reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of ultrasound pretreatment and Maillard reaction on structure and antioxidant properties of ultrafiltrated smooth-hound viscera proteins-sucrose conjugates.

    PubMed

    Abdelhedi, Ola; Mora, Leticia; Jemil, Ines; Jridi, Mourad; Toldrá, Fidel; Nasri, Moncef; Nasri, Rim

    2017-09-01

    The effect of ultrasound (US) pre-treatment on the evolution of Maillard reaction (MR), induced between low molecular weight (LMW) peptides and sucrose, was studied. LMW peptides (<1kDa) were obtained by the ultrafiltration of smooth hound viscera protein hydrolysates, produced by Neutrase, Esperase and Purafect. MR was induced by heating the LMW peptides in the presence of sucrose for 2h at 90°C, without or with US pre-treatment. During the reaction, a marked decrease in pH values, coupled to the increase in colour of the Maillard reaction products (MRPs), were recorded. In addition, after sonication, the glycation degree was significantly enhanced in Esperase-derived peptides/sucrose conjugates (p<0.05). Moreover, results showed that thermal heating, particularly after US treatment, reduced the bitter taste and enhanced the antioxidant capacities of the resulting conjugates. Hence, it could be concluded that US leads to efficient mixing of sugar-protein solution and efficient heat/mass transfer, contributing to increase the MR rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Maillard Proteomics: Opening New Pages

    PubMed Central

    Soboleva, Alena; Schmidt, Rico; Vikhnina, Maria; Grishina, Tatiana; Frolov, Andrej

    2017-01-01

    Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs) represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer’s disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus), proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress. PMID:29231845

  1. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    PubMed

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. An analysis of the changes on intermediate products during the thermal processing of black garlic.

    PubMed

    Yuan, Heng; Sun, Linjuan; Chen, Min; Wang, Jun

    2018-01-15

    The thermal processing of black garlic was simulated. Fresh garlic was incubated at 55°C with 80% humidity and sampled every 5 or 10days. The changes in relevant products were as follows: the fructan content was decreased by 84.79%, and the fructose content was increased by 508.11%. The contents of Maillard reaction intermediate products were first increased and then decreased. The colour of garlic gradually became dark and the pH decreased from 6.13 to 4.00. By analyzing these changes, the mechanism of black garlic formation and the changes on the Maillard reaction were revealed. The sweetness of black garlic resulted mainly from the fructose that was produced, and the black colour was largely due to the Maillard reaction between fructose/glucose and amino acids. An understanding of this process is useful to explain the formation mechanism of black garlic and could lead to better control of the quality of black garlic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Odors generated from the Maillard reaction affect autonomic nervous activity and decrease blood pressure through the olfactory system.

    PubMed

    Zhou, Lanxi; Ohata, Motoko; Owashi, Chisato; Nagai, Katsuya; Yokoyama, Issei; Arihara, Keizo

    2018-02-01

    Systolic blood pressure (SBP) of rats decreases significantly following exposure to the odor generated from the Maillard reaction of protein digests with xylose. This study identified active odorants that affect blood pressure and demonstrated the mechanism of action. Among the four potent odorants that contribute most to the odor of the Maillard reaction sample, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 5-methyl-2-pyrazinemethanol (MPM) decreased SBP significantly. The earliest decrease in blood pressure was observed 5 min after exposure to DMHF. Application of zinc sulfate to the nasal cavity eliminated the effect. Furthermore, gastric vagal (parasympathetic) nerve activity was elevated and renal sympathetic nerve activity was lowered after exposure to DMHF. It is indicated that DMHF affects blood pressure through the olfactory system, and the mechanism for the effect of DMHF on blood pressure involves the autonomic nervous system. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I.

    PubMed

    Troise, Antonio Dario; Buonanno, Martina; Fiore, Alberto; Monti, Simona Maria; Fogliano, Vincenzo

    2016-12-01

    Thermal treatments and storage influence milk quality, particularly in low lactose milk as the higher concentration of reducing sugars can lead to the increased formation of the Maillard reaction products (MRPs). The control of the Amadori products (APs) formation is the key step to mitigate the Maillard reaction (MR) in milk. The use of fructosamine oxidases, (Faox) provided promising results. In this paper, the effects of Faox I were evaluated by monitoring the concentration of free and bound MRPs in low lactose milk during shelf life. Results showed that the enzyme reduced the formation of protein-bound MRPs down to 79% after six days at 37°C. Faox I lowered the glycation of almost all the free amino acids resulting effective on basic and polar amino acids. Data here reported corroborate previous findings on the potentiality of Faox enzymes in controlling the early stage of the MR in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Impact of the Maillard reaction on the antioxidant capacity of bovine lactoferrin.

    PubMed

    Joubran, Yousef; Mackie, Alan; Lesmes, Uri

    2013-12-15

    Studies raise the notion that the Maillard reaction (MR) may be harnessed to modify the antioxidant capacity of alimentary proteins. However, little is known about the impact of MR on bioactive proteins. Glucose and fructose were used as model moieties reacting with lactoferrin (LF). UV absorbance and SDS-PAGE analyses were used to monitor MR progression during 36 h of mild thermal processing (60 °C, 79% RH). FTIR and CD did not reveal changes in LF structure; However, dynamic light scattering showed MR increased mean particle sizes and sample turbidity at 3

  6. Colour and surface fluorescence development and their relationship with Maillard reaction markers as influenced by structural changes during cornflakes production.

    PubMed

    Farroni, Abel; Buera, María Del Pilar

    2012-12-01

    The aim of this work was to study colour and surface fluorescence development in relation to the chemical markers for the Maillard reaction at the cooking, flaking and toasting stages of cornflake production process. Colour was measured by a calibrated computer vision system. Surface fluorescence was measured on compressed samples. Aqueous extracted Maillard reaction markers (hydroxymethylfurfural, carboxymethyl-lysine, absorbance at 420nm and total fluorescence) were measured on protease hydrolyzed samples. Sample microstructure was observed by scanning electron microscopy. During cooking the colour coordinates L(∗) and b(∗) decreased and a(∗) increased. After flaking, the samples appeared lighter, while the pigment concentration, fluorescence and hydroxymethylfurfural did not change. Toasting generated bubbles in the matrix and L(∗) apparently increased, although brown pigment concentration increased. Pigment concentration did not correlate with surface colour due to the destruction or generation of interfaces. Surface and microstructure effects can be avoided by milling and compressing the samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Sensory characteristics and consumer acceptability of beef stock containing glutathione Maillard reaction products prepared at various conditions.

    PubMed

    Kwon, G Y; Hong, J H; Kim, Y S; Lee, S M; Kim, K O

    2011-01-01

    The sensory characteristics and consumer acceptability of beef soup samples containing 9 types of glutathione Maillard reaction products (GMRPs) were investigated to examine the effects of the GMRPs produced under different reaction conditions on the flavor of the beef soup. The sensory characteristics of the beef stocks were examined using descriptive analysis. In consumer testing, 50 consumers evaluated the overall acceptability and flavor intensities of beef odor, salty taste, beef flavor, and seasoning flavor in the beef soup samples. It was found that the reaction conditions, including sugar type and pH, affected the sensory characteristics of the beef stock containing the GMRPs. The samples containing the GMRPs reacted at pH 7 were characterized with strong beef flavor, chestnut flavor, and cooked rice flavor. However, the GMRP reacted with xylose at pH 7 (XM7) was significantly stronger in beef-related sensory characteristics than the GMRPs reacted with glucose or fructose at pH 7 (GM7 and FM7). The samples containing the GMRPs reacted at pH 3 had strong acid-related attributes whereas the GMRPs reacted at pH 11 exhibited strong sulfur-related attributes and a bitter taste. Overall, the beef soup containing XM7, which was perceived as having a strong beef odor and flavor, was rated the highest consumer acceptability score. This suggests that XM7 has feasibility as a flavor enhancer. To elucidate its effectiveness further, it is required to apply XM7 in various food systems at varying levels and to compare its flavor enhancing effects with other flavor enhancers such as monosodium L-glutamate in future studies. Practical Application: This study characterized sensory attributes of glutathione Maillard reaction products (GMRPs) reacted under various conditions and evaluated their potential as a flavor enhancer by examining consumer acceptability of beef stock containing the GMRPs. This study showed that the GMRP reacted with xylose at pH 7 had strong 71 beef flavor and the highest consumer acceptability score. The results of this study will provide valuable information for understanding sensory aspect of flavors generated by Maillard reaction of GSH and sugars, since most studies on Maillard reaction focused on chemical reactions. Also, the outcome of this study will help flavor and food industries' efforts to develop a new flavor enhancer for use in a variety of processed food products.

  8. Maillard reaction products from highly heated food prevent mast cell number increase and inflammation in a mouse model of colitis.

    PubMed

    Al Amir, Issam; Dubayle, David; Héron, Anne; Delayre-Orthez, Carine; Anton, Pauline M

    2017-12-01

    Links between food and inflammatory bowel diseases (IBDs) are often suggested, but the role of food processing has not been extensively studied. Heat treatment is known to cause the loss of nutrients and the appearance of neoformed compounds such as Maillard reaction products. Their involvement in gut inflammation is equivocal, as some may have proinflammatory effects, whereas other seem to be protective. As IBDs are associated with the recruitment of immune cells, including mast cells, we raised the hypothesis that dietary Maillard reaction products generated through heat treatment of food may limit the colitic response and its associated recruitment of mast cells. An experimental model of colitis was used in mice submitted to mildly and highly heated rodent food. Adult male mice were divided in 3 groups and received nonheated, mildly heated, or highly heated chow during 21 days. In the last week of the study, each group was split into 2 subgroups, submitted or not (controls) to dextran sulfate sodium (DSS) colitis. Weight variations, macroscopic lesions, colonic myeloperoxidase activity, and mucosal mast cell number were evaluated at the end of the experiment. Only highly heated chow significantly prevented DSS-induced weight loss, myeloperoxidase activity, and mast cell number increase in the colonic mucosa of DSS-colitic mice. We suggest that Maillard reaction products from highly heated food may limit the occurrence of inflammatory phases in IBD patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects of cationic species on visual color formation in model Maillard reactions of pentose sugars and amino acids.

    PubMed

    Rizzi, George P

    2008-08-27

    Effects of cationic species on Maillard browning were examined after heating (ca. 100 degrees C) aqueous pH 7.2 buffered solutions of amino acids and pentose sugars. Metallic ions of Group I metals (Li, Na, K, Rb and Cs) produced a small increase in browning (A420), but somewhat greater effects were observed with ions of Group II metals Ca and Mg. Browning was suppressed by triethylammonium ion, but unaffected by a salt of the stronger base, guanidine. The quaternary amine salt choline chloride produced enhanced browning and served as a model for phospholipid involvement in Maillard reactions. With alpha,omega-diamino acids increases in browning were observed which related to lowered pK2 values resulting from positively charged omega-substituents in these molecules.

  10. Using an enzymatic galactose assay to detect lactose glycation extents of two proteins caseinate and soybean protein isolate via the Maillard reaction.

    PubMed

    Wang, Xiao-Peng; Zhao, Xin-Huai

    2017-06-01

    Glycation of food proteins via the Maillard reaction has been widely studied in the recent years; however, the amount of saccharide connected to proteins is usually not determined. An enzymatic galactose assay was proposed firstly in this study to detect lactose glycation extents of caseinate and soybean protein isolate (SPI) during the Maillard reaction at two temperatures and different times. The separated glycated proteins were hydrolysed to release galactose necessary for the enzymatic assay and glycation calculation. Caseinate and SPI both obtained the highest lactose glycation extents at 100 °C or 121 °C by a reaction time of 180 or 20 min. Short- and long-time reaction resulted in lower glycation extents. During the reaction, three chemical indices (absorbences at 294/490 nm and fluorescence intensities) of reaction mixtures increased continually, but another index reactable NH 2 of glycated proteins showed the opposite trend. In general, changing profiles of the four indices were inconsistent with those profiles of lactose glycation extents of glycated proteins, implying practical limitation of the four indices in studies. This proposed enzymatic assay could directly detect lactose glycation of the two proteins, and thus was more useful than the four chemical indices to monitor glycation of the two proteins. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II.

    PubMed

    Ilchmann, Anne; Burgdorf, Sven; Scheurer, Stephan; Waibler, Zoe; Nagai, Ryoji; Wellner, Anne; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Henle, Thomas; Kurts, Christian; Kalinke, Ulrich; Vieths, Stefan; Toda, Masako

    2010-01-01

    The Maillard reaction occurs between reducing sugars and proteins during thermal processing of foods. It produces chemically glycated proteins termed advanced glycation end products (AGEs). The glycation structures of AGEs are suggested to function as pathogenesis-related immune epitopes in food allergy. This study aimed at defining the T-cell immunogenicity of food AGEs by using ovalbumin (OVA) as a model allergen. AGE-OVA was prepared by means of thermal processing of OVA in the presence of glucose. Activation of OVA-specific CD4(+) T cells by AGE-OVA was evaluated in cocultures with bone marrow-derived murine myeloid dendritic cells (mDCs) as antigen-presenting cells. The uptake mechanisms of mDCs for AGE-OVA were investigated by using inhibitors of putative cell-surface receptors for AGEs, as well as mDCs deficient for these receptors. Compared with the controls (native OVA and OVA thermally processed without glucose), AGE-OVA enhanced the activation of OVA-specific CD4(+) T cells on coculture with mDCs, indicating that the glycation of OVA enhanced the T-cell immunogenicity of the allergen. The mDC uptake of AGE-OVA was significantly higher than that of the controls. We identified scavenger receptor class A type I and II (SR-AI/II) as a mediator of the AGE-OVA uptake, whereas the receptor for AGEs and galectin-3 were not responsible. Importantly, the activation of OVA-specific CD4(+) T cells by AGE-OVA was attenuated on coculture with SR-AI/II-deficient mDCs. SR-AI/II targets AGE-OVA to the MHC class II loading pathway in mDCs, leading to an enhanced CD4(+) T-cell activation. The Maillard reaction might thus play an important role in the T-cell immunogenicity of food allergens. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  12. Protective Effects of Maillard Reaction Products of Whey Protein Concentrate against Oxidative Stress through an Nrf2-Dependent Pathway in HepG2 Cells.

    PubMed

    Pyo, Min Cheol; Yang, Sung-Yong; Chun, Su-Hyun; Oh, Nam Su; Lee, Kwang-Won

    2016-09-01

    Whey protein concentrate (WPC), which contains α-lactalbumin and β-lactoglobulin, is utilized widely in the food industry. The Maillard reaction is a complex reaction that produces Maillard reaction products (MRPs), which are associated with the formation of antioxidant compounds. In this study, the hepatoprotection activity of MRPs of WPC against oxidative stress through the nuclear factor-E2-related factor 2 (Nrf2)-dependent antioxidant pathway in HepG2 cells was examined. Glucose-whey protein concentrate conjugate (Glc-WPC) was obtained from Maillard reaction between WPC and glucose. The fluorescence intensity of Glc-WPC increased after 7 d compared to native WPC, and resulted in loss of 48% of the free amino groups of WPC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of Glc-WPC showed the presence of a high-molecular-weight portion. Treatment of HepG2 cells with Glc-WPC increased cell viability in the presence of oxidative stress, inhibited the generation of intracellular reactive oxygen species by tert-butyl hydroperoxide (t-BHP), and increased the glutathione level. Nrf2 translocation and Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H)-quinone oxidoreductase 1 (NOQ1), heme oxygenase-1 (HO-1), glutamate-L-cysteine ligase (GCL)M and GCLC mRNA levels were increased by Glc-WPC. Also, Glc-WPC increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK). The results of this study demonstrate that Glc-WPC activates the Nrf2-dependent pathway through the phosphorylation of ERK1/2 and JNK in HepG2 cells, and induces production of antioxidant enzymes and phase II enzymes.

  13. Prior lactose glycation of caseinate via the Maillard reaction affects in vitro activities of the pepsin-trypsin digest toward intestinal epithelial cells.

    PubMed

    Wang, X P; Zhao, X H

    2017-07-01

    The well-known Maillard reaction in milk occurs between lactose and milk proteins during thermal treatment, and its effects on milk nutrition and safety have been well studied. A lactose-glycated caseinate was prepared via this reaction and digested using 2 digestive proteases, pepsin and trypsin. The glycated caseinate digest was assessed for its in vitro activities on rat intestinal epithelial cells in terms of growth proliferation, anti-apoptotic effect, and differentiation induction using caseinate digest as reference, to verify potential effects of the Maillard reaction on these activities of caseinate digest to the cells. Two digests had proliferative and anti-apoptotic effects, and reached the highest effects at 0.02 g/L of digest concentration with treatment time of 24 h. In comparison with caseinate digest, glycated caseinate digest always showed weaker proliferative (5.3-14.2%) and anti-apoptotic (5.9-39.0%) effects, and was more toxic to the cells at 0.5 g/L of digest concentration with treatment time of 48 h. However, glycated caseinate digest at 2 incubation times of 4 to 7 d showed differentiation induction higher than caseinate digest, as it could confer the cells with increased activities in lactase (16.3-26.6%), sucrase (22.4-31.2%), and alkaline phosphatase (17.4-24.8%). Transmission electron microscopy observation results also confirmed higher differentiation induction of glycated caseinate digest. Amino acid loss and lactose glycation partially contributed to these decreased and enhanced activities of glycated caseinate digest, respectively. The Maillard reaction of caseinate and lactose is thus shown in this study to have effects on the activities of caseinate digest to intestinal epithelial cells. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Studies on absorption and elimination of dietary maillard reaction products.

    PubMed

    Förster, Anke; Kühne, Yvonne; Henle, Thomas

    2005-06-01

    A nine-day dietary study involving 18 healthy volunteers was performed in order to investigate the influence of nutrition on the urinary excretion of the Maillard reaction products (MRPs) fructoselysine, pyrraline, and pentosidine. From day two through day eight, most types of Maillard product-containing food had to be avoided. On day five, participants were divided into four groups, three of them receiving a test meal (pretzel sticks, brewed coffee, or custard) containing defined amounts of MRPs. The fourth group served as a control. Urine samples taken over a 24-h period were analyzed for MRPs using chromatographic means. As a result of the MRP-free diet, urinary excretion of free pyrraline and fructoselysine, which was calculated from furosine analysis, were lowered about 90%. Excretion of pentosidine decreased about 40%. Consumption of pretzel sticks and coffee on day five resulted in increased amounts of pyrraline and pentosidine in urine samples on days five to seven. Related to the supplied amounts of pyrraline, about 50% were recovered in the urine samples after ingestion of the pretzel sticks. For pentosidine, 60% of the ingested free derivative from coffee brew and 2% of the peptide-bound amino acid ingested with the bakery product were recovered in the urine samples, indicating a better bioavailability for free pentosidine compared to the protein-bound form. For peptide-bound Amadori products, no influence on the excretion was observed after ingestion of the test foods, indicating degradation in the intestine or plasma to yet-unknown metabolites. In conclusion, differences concerning the excretion rate of individual MRPs point to individual resorption and metabolic pathways. These results are of importance for the discussion of a possible (patho)physiological role of dietary advanced glycation end products (AGEs).

  15. Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology.

    PubMed

    Yang, Sung-Yong; Kim, Se-Wook; Kim, Yoonsook; Lee, Sang-Hoon; Jeon, Hyeonjin; Lee, Kwang-Won

    2015-06-01

    Halibut is served on sushi and as sliced raw fish fillets. We investigated the optimal conditions of the Maillard reaction (MR) with ribose using response surface methodology to reduce the allergenicity of its protein. A 3-factored and 5-leveled central composite design was used, where the independent variables were substrate (ribose) concentration (X1, %), reaction time (X2, min), and pH (X3), while the dependent variables were browning index (Y1, absorbance at 420nm), DPPH scavenging (Y2, EC50 mg/mL), FRAP (Y3, mM FeSO4/mg extract) and β-hexosaminidase release (Y4, %). The optimal conditions were obtained as follows: X1, 28.36%; X2, 38.09min; X3, 8.26. Maillard reaction products of fish protein hydrolysate (MFPH) reduced the amount of nitric oxide synthesis compared to the untreated FPH, and had a significant anti-allergy effect on β-hexosaminidase and histamine release, compared with that of the FPH control. We concluded that MFPH, which had better antioxidant and anti-allergy activities than untreated FPH, can be used as an improved dietary source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Impacts of glutathione Maillard reaction products on sensory characteristics and consumer acceptability of beef soup.

    PubMed

    Hong, J H; Jung, D W; Kim, Y S; Lee, S M; Kim, K O

    2010-10-01

    The sensory characteristics and consumer acceptability of beef soup with added glutathione Maillard reaction products (GMRPs) were investigated to examine the effects of the GMRPs on beef-soup flavor compared to soups made with glutathione (GSH) and monosodium glutamate (MSG), a control (CON), or a control soup made with 150% beef content (CON150). The sensory characteristics of the beef soups were examined by descriptive analysis. The overall acceptabilities of the beef soups were rated by consumers. Principal component analysis was performed on descriptive data as explanatory variables with overall acceptability as a supplementary variable to observe the relationships between the descriptive data and consumer acceptability, as well as the relationships between the beef-soup samples and their sensory attributes. The samples containing GMRPs had "beef flavor" that was stronger than the CON and MSG samples, and comparable to that of the GSH sample and CON150. The GMRP samples had stronger "green onion flavor,"garlic flavor," and "boiled egg white flavor" than the other samples. The beef soup containing MSG was preferred to CON, CON150, and GSH. The samples with GMRPs were least favored because of their pronounced metallic and astringent notes. The results of this study imply the feasibility of GMRPs as a flavor enhancer since the soups containing these compounds showed more complex flavor profiles than GSH. However, future studies are required to optimize the MR conditions that produce GMRPs without undesirable characteristics. Practical Application: This study examined the practicability of the Maillard reaction products between glutathione (GSH) and glucose (GP) or fructose (FP) as a flavor enhancer by investigating the sensory characteristics and consumer acceptability evoked by them in a beef-soup system. This study helps flavor and food industry to develop a new flavor enhancer by providing practical information, such as beef flavor-enhancing effect of FP and GP compared to that by increasing beef content or adding GSH or MSG. In addition, it is expected that the outcome of this study, such as sensory attributes of and consumer responses to GSH Maillard reaction products, compliments previous studies that mostly focused on chemical analysis of Maillard reaction.

  17. Inhibition of enzymatic browning in actual food systems by the Maillard reaction products.

    PubMed

    Mogol, Burçe Ataç; Yildirim, Asli; Gökmen, Vural

    2010-12-01

    The Maillard reaction occurring between amino acids and sugars produces neo-formed compounds having certain levels of antioxidant activity depending on the reaction conditions and the type of reactants. The objective of this study was to investigate enzymatic browning inhibition capacity of Maillard reaction products (MRPs) formed from different amino acids including arginine (Arg), histidine (His), lysine (Lys) and proline (Pro). The inhibitory effects of the MRPs on polyphenol oxidase (PPO) were determined. The total antioxidant capacity (TAC) of MRPs derived from different amino acids were in the order Arg > His > Lys > Pro. The TAC and PPO inhibition of MRPs were evaluated as a function of temperature (80-120 °C), time (1-6 h) and pH (2-12). Arg-Glc and His-Glc MRPs exhibited strong TAC and PPO inhibition. Increasing temperature (up to 100 °C) and time also increased TAC and PPO inhibition. Kinetics analysis indicated a mixed type inhibition of PPO by MRPs. The results indicate that the MRPs derived from Arg and His under certain reaction conditions significantly prevent enzymatic browning in actual food systems. The intermediate compounds capable of preventing enzymatic browning are reductones and dehydroreductones, as confirmed by liquid chromatographic-mass spectrometric analyses. Copyright © 2010 Society of Chemical Industry.

  18. Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs).

    PubMed

    Ioannou, Aristos; Varotsis, Constantinos

    2017-01-01

    High performance liquid chromatography (HPLC) coupled with a Fraction Collector was employed to isolate Maillard reaction products (MRPs) formed in model systems comprising of asparagine and monosaccharides in the 60-180°C range. The primary MRP which is detected at 60°C is important for Acrylamide content and color/aroma development in foods and also in the field of food biotechnology for controlling the extent of the Maillard reaction with temperature. The discrete fractions of the reaction products were reacted with Hemoglobin (Hb) and Myoglobin (Mb) at physiological conditions and the reaction adducts were monitored by UV-vis and Attenuated Total Reflection-Fourier transform infrared (FTIR) spectrophotometry. The UV-vis kinetic profiles revealed the formation of a Soret transition characteristic of a low-spin six-coordinated species and the ATR-FTIR spectrum of the Hb-MRP and Mb-MRP fractions showed modifications in the protein Amide I and II vibrations. The UV-vis and the FTIR spectra of the Hb-MRPs indicate that the six-coordinated species is a hemichrome in which the distal E7 Histidine is coordinated to the heme Fe and blocks irreversibly the ligand binding site. Although the Mb-MRPs complex is a six-coordinated species, the 1608 cm-1 FTIR band characteristic of a hemichrome was not observed.

  19. Controlling the Maillard reaction by reactant encapsulation: sodium chloride in cookies.

    PubMed

    Fiore, Alberto; Troise, Antonio Dario; Ataç Mogol, Burçe; Roullier, Victor; Gourdon, Anthony; El Mafadi Jian, Samira; Hamzalioğlu, Berat Aytül; Gökmen, Vural; Fogliano, Vincenzo

    2012-10-31

    Formation of Maillard reaction products (MRPs) including 5-hydroxymethylfurfural (HMF) and acrylamide has been an intensive area of research in recent decades. The presence of reactants such as sodium chloride may influence the Maillard reaction (MR) pathways through the dehydration of various key intermediates. The aim of this work was to test the potential of ingredient encapsulation to mitigate the MR by investigating the case of sodium chloride encapsulation on the HMF formation in cookies. Thirteen cookies were prepared with recipes containing free or encapsulated NaCl. Increasing NaCl concentration from 0 to 0.65% increases HMF concentration up to 75%, whereas in the presence of encapsulated NaCl the reduction of HMF varied from 18 to 61% due to the inhibition of sucrose pyrolytic decomposition and the fructofuranosyl cation formation. Data demonstrated that the more heat-resistant the lipid-based coating was, the more pronounced the reduction of HMF formation. The results showed that encapsulation represents a useful approach to prevent the formation of potentially harmful compounds in thermally processed foods.

  20. A stimuli-responsive fluorescence platform for simultaneous determination of D-isoascorbic acid and Tartaric acid based on Maillard reaction product

    NASA Astrophysics Data System (ADS)

    Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong

    2018-05-01

    An activatable fluorescence monitoring platform based on a novel Maillard reaction product from D-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of D-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO4, resulting from a new complex (GLA-KMnO4) formation between GLA and KMnO4. Upon addition of D-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for D-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for D-isoascorbic acid or tartaric acid, because the detection limits were 5.9 μM and 21.5 μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of D-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results.

  1. Maillard reaction products as antimicrobial components for packaging films.

    PubMed

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates.

    PubMed

    Ifeduba, Ebenezer A; Akoh, Casimir C

    2016-05-15

    The antioxidant capacity of Maillard reaction (MR)-modified gelatin (GE)-gum arabic (GA) coacervates was optimized to produce microcapsules with superior oxidative stability compared to the unmodified control. MR was used to crosslink GE and GA, with or without maltodextrin (MD), to produce anti-oxidative Maillard reaction products (MRP) which was used to encapsulate stearidonic acid soybean oil (SDASO) by complex coacervation. Biopolymer blends (GE-GA [1:1, w/w] or GE-GA-MD [2:2:1, w/w/w]) were crosslinked by dry-heating at 80°C for 4, 8, or 16h. Relationships between the extent of browning, Trolox equivalent antioxidant capacity (TEAC), and the total oxidation (TOTOX) of encapsulated SDASO were fitted to quadratic models. The [GE-GA-MD] blends exhibited higher browning rates and TEAC values than corresponding [GE-GA] blends. Depending on the type of biopolymer blend and dry-heating time, TOTOX values of SDASO in MRP-derived microcapsules were 29-87% lower than that of the non-crosslinked control after 30 days of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products.

    PubMed

    Troise, Antonio Dario; Wiltafsky, Markus; Fogliano, Vincenzo; Vitaglione, Paola

    2018-05-01

    The quantification of protein bound Maillard reaction products (MRPs) is still a challenge in food chemistry. Protein hydrolysis is the bottleneck step: it is time consuming and the protein degradation is not always complete. In this study, the quantitation of free amino acids and Amadori products (APs) was compared to the percentage of blocked lysine by using chemometric tools. Eighty thermally treated soybean samples were analyzed by mass spectrometry to measure the concentration of free amino acids, free APs and the protein-bound markers of the Maillard reaction (furosine, Nε-(carboxymethyl)-l-lysine, Nε-(carboxyethyl)-l-lysine, total lysine). Results demonstrated that Discriminant Analysis (DA) and Correlated Component Regression (CCR) correctly estimated the percent of blocked lysine in a validation and prediction set. These findings indicate that the measure of free markers reflects the extent of protein damage in soybean samples and it suggests the possibility to obtain rapid information on the quality of the industrial processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Engineering and biotechnological aspects for the manufacturing of high quality fried potato products.

    PubMed

    Reimerdes, Ernst H; Franke, Knut

    2006-04-01

    Fried potato products have become very popular foods over the last decades. High quality standards have been established for these products by the food industry including uniform brown color and crispness. During frying, Maillard reactions takes place which contribute to color and taste development in these products. However, safety aspects are also influenced by these reactions, e.g., acrylamide formation. Maintaining high safety standards as well as the expected quality requires systematic research based on an integrated approach including all relevant variables, e.g., raw material properties, processing conditions and equipment concepts. Selected results of these investigations are presented and discussed, regarding influence of composition, e.g., precursor levels for Maillard reactions, treatment of raw materials and addition of reactants to frying fat. It has been demonstrated that a combined treatment of the potato sticks by coating of product surfaces and partial pre-drying can be successfully applied to produce well-browned French fries with lower acrylamide contents. Reductions up to 75% could be reached compared to samples without treatment. Furthermore, addition of a water/oil emulsion containing glutamine in the aqueous phase has been shown to influence Maillard reactions at the product surface, resulting in lower acrylamide contents at the same state of browning.

  5. Density functional computational studies on the glucose and glycine Maillard reaction: Formation of the Amadori rearrangement products

    NASA Astrophysics Data System (ADS)

    Jalbout, Abraham F.; Roy, Amlan K.; Shipar, Abul Haider; Ahmed, M. Samsuddin

    Theoretical energy changes of various intermediates leading to the formation of the Amadori rearrangement products (ARPs) under different mechanistic assumptions have been calculated, by using open chain glucose (O-Glu)/closed chain glucose (A-Glu and B-Glu) and glycine (Gly) as a model for the Maillard reaction. Density functional theory (DFT) computations have been applied on the proposed mechanisms under different pH conditions. Thus, the possibility of the formation of different compounds and electronic energy changes for different steps in the proposed mechanisms has been evaluated. B-Glu has been found to be more efficient than A-Glu, and A-Glu has been found more efficient than O-Glu in the reaction. The reaction under basic condition is the most favorable for the formation of ARPs. Other reaction pathways have been computed and discussed in this work.0

  6. Maillard reaction products as "natural antibrowning" agents in fruit and vegetable technology.

    PubMed

    Billaud, Catherine; Maraschin, Christelle; Chow, Yin-Naï; Chériot, Sophie; Peyrat-Maillard, Marie-Nöelle; Nicolas, Jacques

    2005-07-01

    The effects of Maillard reaction products (MRPs), synthesized from a sugar (pentose, hexose, or disaccharide) and either a cysteine-related compound, an amino acid, or a sulfur compound, were investigated on polyphenoloxidase (PPO) activity from apple, mushroom, and eggplant. The optimal conditions for the production of inhibitory MRPs were performed using two-factor and five-level central experimental designs. It resulted that thiol-derived MRPs were highly prone to give rise to inhibitory compounds of PPO activity. Technological assays were also performed to test the efficiency of selected MRPs in the prevention of enzymatic browning in raw and minimally processed fruits and vegetables.

  7. A stimuli-responsive fluorescence platform for simultaneous determination of d-isoascorbic acid and Tartaric acid based on Maillard reaction product.

    PubMed

    Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong

    2018-05-05

    An activatable fluorescence monitoring platform based on a novel Maillard reaction product from d-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of d-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO 4 , resulting from a new complex (GLA-KMnO 4 ) formation between GLA and KMnO 4 . Upon addition of d-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for d-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for d-isoascorbic acid or tartaric acid, because the detection limits were 5.9μM and 21.5μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of d-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effect of Maillard browning reaction on protein utilization and plasma amino acid response by rainbow trout (Salmo gairdneri).

    PubMed

    Plakas, S M; Lee, T C; Wolke, R E; Meade, T L

    1985-12-01

    The effect of the Maillard browning reaction in the diet of rainbow trout (Salmo gairdneri) on growth and amino acid availability was investigated. Chemical and enzymatic hydrolysis methods were applied for the detection of the losses of amino acids in a model protein browning system. Arginine and lysine exhibited the greatest losses in the mixture of fish protein isolate and glucose stored for 40 d at 37 degrees C. The apparent digestibility and absorption of individual amino acids, particularly lysine, was lower in trout fed browned protein than in those fed the control protein. Plasma lysine levels were significantly depressed, while the plasma levels of glucose and most other amino acids were elevated in relation to the loss in nutritive value of dietary protein after browning. The early Maillard reaction derivative of lysine, epsilon-deoxy-fructosyl-lysine, was recovered from browned protein (by using the in vitro enzymatic hydrolysis procedure) and from the plasma of trout fed browned protein. Analysis of plasma free amino acids provided an indication of lysine bioavailability and identified lysine as the first-limiting amino acid in the diets containing browned protein.

  9. Antiglycation and antioxidation properties of Juglans regia and Calendula officinalis: possible role in reducing diabetic complications and slowing down ageing.

    PubMed

    Ahmad, Haroon; Khan, Ibrar; Wahid, Abdul

    2012-09-01

    Accumulation of advanced glycation end products (AGEs) in the body due to the non-enzymatic glycation of proteins and oxidation is associated with aging and diabetes mellitus. In this study we wanted to investigate the antiglycation and antioxidation potential of two medicinal plants: Juglans regia and Calendula officinalis. In-vitro investigation was carried out to discover the antiglycation and antioxidation potential of J. regia and C. officinalis. Using an Ultraviolet Double-beam Spectrophotometer, we evaluated the antiglycation property of the crude methanolic extracts of J. regia and C. officinalis by assessing their ability to inhibit the Maillard reaction. Employing the same instrument we also measured the antioxidation potential of these plant extracts using the nitric oxide (NO) free radical-scavenging assay. J. regia had greater antiglycation ability, with a minimum inhibitory concentration (MIC50) of 28 microg/mL as compared with that of C. officinalis (270 microg/mL). C. officinalis had greater antioxidation potential (26.10, 22.07 and 16.06% at 0.5 mg, 0.25 mg and 0.125 mg, respectively, as compared with 18.15, 16.50 and 16.06% of J. regia, respectively). J. regia and C. officinalis inhibited the Maillard reaction and prevented oxidation in-vitro. Hence, the extracts of these plants could have therapeutic uses in curbing chronic diabetic complications and slowing down aging.

  10. Methylglyoxal-induced modification causes aggregation of myoglobin

    NASA Astrophysics Data System (ADS)

    Banerjee, Sauradipta; Maity, Subhajit; Chakraborti, Abhay Sankar

    2016-02-01

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) in a time-dependent manner (7 to 18 days incubation at 25 °C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7 days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14 days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18 days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications.

  11. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.

    PubMed

    Hellwig, Michael; Rückriemen, Jana; Sandner, Daniel; Henle, Thomas

    2017-05-03

    As a unique feature, honey from the New Zealand manuka tree (Leptospermum scoparium) contains substantial amounts of dihydroxyacetone (DHA) and methylglyoxal (MGO). Although MGO is a reactive intermediate in the Maillard reaction, very little is known about reactions of MGO with honey proteins. We hypothesized that the abundance of MGO should result in a particular pattern of protein-bound Maillard reaction products (MRPs) in manuka honey. A protein-rich high-molecular-weight fraction was isolated from 12 manuka and 8 non-manuka honeys and hydrolyzed enzymatically. By HPLC-MS/MS, 8 MRPs, namely, N-ε-fructosyllysine, N-ε-maltulosyllysine, carboxymethyllysine, carboxyethyllysine (CEL), pyrraline, formyline, maltosine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1), were quantitated. Compared to non-manuka honeys, the manuka honeys were characterized by high concentrations of CEL and MG-H1, whereas the formation of N-ε-fructosyllysine was suppressed, indicating concurrence reactions of glucose and MGO at the ε-amino group of protein-bound lysine. Up to 31% of the lysine and 8% of the arginine residues, respectively, in the manuka honey protein can be modified to CEL and MG-H1, respectively. CEL and MG-H1 concentrations correlated strongly with the MGO concentration of the honeys. Manuka honey possesses a special pattern of protein-bound MRPs, which might be used to prove the reliability of labeled MGO levels in honeys and possibly enable the detection of fraudulent MGO or DHA addition to honey.

  12. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity.

    PubMed

    Yin, Zi; Sun, Qian; Zhang, Xi; Jing, Hao

    2014-05-01

    A blue colour can be formed in the xylose (Xyl) and glycine (Gly) Maillard reaction (MR) model system. However, there are fewer studies on the reaction conditions for the blue Maillard reaction products (MRPs). The objective of this study is to investigate characteristic colour formation and antioxidant activities in four different MR model systems and to determine the optimum reaction conditions for the blue colour formation in a Xyl-Gly MR model system, using the random centroid optimisation program. The blue colour with an absorbance peak at 630 nm appeared before browning in the Xyl-Gly MR model system, while no blue colour formation but only browning was observed in the xylose-alanine, xylose-aspartic acid and glucose-glycine MR model systems. The Xyl-Gly MR model system also showed higher antioxidant activity than the other three model systems. The optimum conditions for blue colour formation were as follows: xylose and glycine ratio 1:0.16 (M:M), 0.20 mol L⁻¹ NaHCO₃, 406.1 mL L⁻¹ ethanol, initial pH 8.63, 33.7°C for 22.06 h, which gave a much brighter blue colour and a higher peak at 630 nm. A characteristic blue colour could be formed in the Xyl-Gly MR model system and the optimum conditions for the blue colour formation were proposed and confirmed. © 2013 Society of Chemical Industry.

  13. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases.

    PubMed

    Gugliucci, Alejandro

    2017-01-01

    Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS. © 2017 American Society for Nutrition.

  14. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases12

    PubMed Central

    2017-01-01

    Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS. PMID:28096127

  15. Repeated Oral Exposure to N ε-Carboxymethyllysine, a Maillard Reaction Product, Alleviates Gut Microbiota Dysbiosis in Colitic Mice.

    PubMed

    ALJahdali, Nesreen; Gadonna-Widehem, Pascale; Delayre-Orthez, Carine; Marier, David; Garnier, Benjamin; Carbonero, Franck; Anton, Pauline M

    2017-12-01

    Diet is suggested to participate in the etiology of inflammatory bowel diseases (IBD). Repeated exposure to Maillard reaction products (MRPs), molecules resulting from reduction reactions between amino acids and sugars during food heating, has been reported to be either potentially detrimental or beneficial to health. The aim of this study is to determine the effect of repeated oral ingestion of N ε -carboxymethyllysine (CML), an advanced MRP, on the onset of two models of experimental IBD and on the gut microbiota composition of mice. Mice received either saline (control) or N ε -carboxymethyllysine daily for 21 days. For the last week of treatment, each group was split into subgroups, receiving dextran sulfate sodium salt (DSS) or trinitrobenzenesulfonic acid (TNBS) to induce colitis. Intensity of inflammation was quantified, and cecal microbiota characterized by bacterial 16S ribosomal RNA (rRNA) amplicon sequencing. Daily oral administration of N ε -carboxymethyllysine did not induce intestinal inflammation and had limited impact on gut microbiota composition (Bacteroidaceae increase, Lachnospiraceae decrease). DSS and TNBS administration resulted in expected moderate experimental colitis with a shift of Bacteroidetes/Firmicutes ratio and a significant Proteobacteria increase but with distinct profiles: different Proteobacteria taxa for DSS, but mainly Enterobacteriaceae for TNBS. While N ε -carboxymethyllysine exposure failed to prevent the inflammatory response, it allowed maintenance of healthy gut microbiota profiles in mice treated with DSS (but not TNBS). Repeated oral exposure to CML limits dysbiosis in experimental colitis. IBD patients may modulate their microbiota profile by regulating the level and type of dietary MRP consumption.

  16. Advanced glycation endproducts form during ovalbumin digestion in the presence of fructose: Inhibition by chlorogenic acid.

    PubMed

    Bains, Yasmin; Gugliucci, Alejandro; Caccavello, Russell

    2017-07-01

    One mechanism by which fructose could exert deleterious effects is through intestinal formation and absorption of pro-inflammatory advanced glycation endproducts via the Maillard reaction. We employed simulated stomach and duodenum digestion of ovalbumin (OVA) to test the hypothesis that advanced glycation endproducts (AGEs) are formed by fructose during simulated digestion of a ubiquitous food protein under model physiological conditions. OVA was subjected to simulated gastric and intestinal digestion using standard models, in presence of fructose or glucose (0-100mM). Peptide fractions were analyzed by fluorescence spectroscopy and intensity at Excitation: λ370nm, Emission: λ 440nm. AGE adducts formed between fructose and OVA, evidenced by the peptide fractions (<5kDa) at times (30min) and concentration ranges (10mM) plausibly found in the intestines, whereas no reaction occurs with glucose. The reaction was inhibited by chlorogenic acid at concentrations compatible with those found in the gut. The reaction was also inhibited by aminoguanidine, a specific antiglycation agent. Our study showed fructose-AGE formation on a ubiquitous dietary protein under model physiological conditions. Our study also suggests ways to decrease the damage: enteral fructose-AGE formation may be partially inhibited by co-intake of beverages, fruits and vegetables with concentrations of phenolics high enough to serve as anti-glycation agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Degradations and Rearrangement Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  18. Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction

    NASA Astrophysics Data System (ADS)

    Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun

    2012-12-01

    Nisin-carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin-carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin-dextran conjugates possessed better antioxidant potential than nisin-glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry.

  19. Maillard-Reaction-Functionalized Egg Ovalbumin Stabilizes Oil Nanoemulsions.

    PubMed

    Liu, Gang; Yuan, Dan; Wang, Qi; Li, Wanrong; Cai, Jie; Li, Shuyi; Lamikanra, Olusola; Qin, Xinguang

    2018-04-25

    Egg white proteins are an excellent source of nutrition, with high biological and technological values. However, their limited functional properties prevent their widespread industrial applications. In this study, the ovalbumin functionality was improved via glycation by Maillard reaction with d-lactose. The free amino groups and sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile were determined, confirming that glycation occurred between ovalbumin and lactose. The emulsification of the conjugate was 2.69-fold higher than that of ovalbumin at pH 7.0 after glycation. The thermal stability also improved remarkably. The glycated protein products were used to form an oil-water nanoemulsion for polymethoxyflavone-rich aged orange peel oil. The resulting nanoemulsion showed good pH, thermal, and storage stabilities.

  20. Development of microwave assisted spectrophotometric method for the determination of glucose

    NASA Astrophysics Data System (ADS)

    Ali, Asif; Hussain, Zahid; Arain, Muhammad Balal; Shah, Nasrullah; Khan, Khalid Mohammad; Gulab, Hussain; Zada, Amir

    2016-01-01

    A spectrophotometric method was developed based on the microwave assisted synthesis of Maillard product. Various conditions of the reaction were optimized by varying the relative concentration of the reagents, operating temperature and volume of solutions used in the reaction in the microwave synthesizer. The absorbance of the microwave synthesized Maillard product was measured in the range of 360-740 nm using UV-Visible spectrophotometer. Based on the maximum absorbance, 370 nm was selected as the optimum wave length for further studies. The LOD and LOQ of glucose was found 3.08 μg mL- 1 and 9.33 μg mL- 1 with standard deviation of ± 0.05. The developed method was also applicable to urine sample.

  1. Development of a heat-processing method for koji to enhance its antioxidant activity.

    PubMed

    Okutsu, Kayu; Yoshizaki, Yumiko; Takamine, Kazunori; Tamaki, Hisanori; Ito, Kiyoshi; Sameshima, Yoshihiro

    2012-03-01

    We developed a heat-processing method to enhance the antioxidant activity of koji. The superoxide anion scavenging activity (SOSA) and oxygen radical absorbance capacity (ORAC) of heat-processed koji (HP-koji) at 55 °C for 7 days were 4.9 times and 4.2 times, respectively, those of unheated koji. These results showed that heat processing effectively enhances the antioxidant activity of koji. Analysis of the antioxidant activities of koji subjected to a range of temperatures (45-75 °C) revealed that the SOSA is enhanced by heating at higher temperatures, which might be catalyzed by Maillard reaction, whereas the ORAC was enhanced by heating at lower temperatures, which might be catalyzed by an enzymatic reaction. Assuming these enhancements in antioxidant activities are contributed by both Maillard and enzyme reactions, we hypothesized that the antioxidant activity of HP-koji could be more effectively amplified by heating at a higher temperature after the progression of the enzymatic reaction at a moderate temperature. Therefore, we evaluated the effect of heating of koji in a stepwise manner, first at 55 °C for 2 days and then at 75 °C for 5days. The antioxidant activities of stepwise-heated HP-koji were higher than those of koji heated at either 55 °C or 75 °C. The SOSA and ORAC of stepwise-heated HP-koji were 94 times and 6 times, respectively, those of unheated koji. This result suggests that enzymatic reaction followed by Maillard reaction can effectively enhance the antioxidant activity of HP-koji. Thus, we developed a novel heat-processing method to enhance the antioxidant activity of koji. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Free and Protein-Bound Maillard Reaction Products in Beer: Method Development and a Survey of Different Beer Types.

    PubMed

    Hellwig, Michael; Witte, Sophia; Henle, Thomas

    2016-09-28

    The Maillard reaction is important for beer color and flavor, but little is known about the occurrence of individual glycated amino acids in beer. Therefore, seven Maillard reaction products (MRPs), namely, fructosyllysine, maltulosyllysine, pyrraline, formyline, maltosine, MG-H1, and argpyrimidine, were synthesized and quantitated in different types of beer (Pilsner, dark, bock, wheat, and nonalcoholic beers) by HPLC-ESI-MS/MS in the multiple reaction monitoring mode through application of the standard addition method. Free MRPs were analyzed directly. A high molecular weight fraction was isolated by dialysis and hydrolyzed enzymatically prior to analysis. Maltulosyllysine was quantitated for the first time in food. The most important free MRPs in beer are fructosyllysine (6.8-27.0 mg/L) and maltulosyllysine (3.7-21.8 mg/L). Beer contains comparatively high amounts of late-stage free MRPs such as pyrraline (0.2-1.6 mg/L) and MG-H1 (0.3-2.5 mg/L). Minor amounts of formyline (4-230 μg/L), maltosine (6-56 μg/L), and argpyrimidine (0.1-4.1 μg/L) were quantitated. Maltulosyllysine was the most significant protein-bound MRP, but both maltulosyllysine and fructosyllysine represent only 15-60% of the total protein-bound lysine-derived Amadori products. Differences in the patterns of protein-bound and free individual MRPs and the ratios between them were identified, which indicate differences in their chemical, biochemical, and microbiological stabilities during the brewing process.

  3. Sodium sulfite pH-buffering effect for improved xylose-phenylalanine conversion to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine during an aqueous Maillard reaction.

    PubMed

    Cui, Heping; Duhoranimana, Emmanuel; Karangwa, Eric; Jia, Chengsheng; Zhang, Xiaoming

    2018-04-25

    The yield of the Maillard reaction intermediate (MRI), prepared in aqueous medium, is usually unsatisfactory. However, the addition of sodium sulfite could improve the conversion of xylose-phenylalanine (Xyl-Phe) to the MRI (N-(1-deoxy-d-xylulos-1-yl)-phenylalanine) in aqueous medium. Sodium sulfite (Na 2 SO 3 ) showed a significant pH-buffering effect during the Maillard reaction, which accounted for its facilitation of the N-(1-deoxy-d-xylulos-1-yl)-phenylalanine yield. The results revealed that the pH could be maintained at a relatively high level (above 7.0) for an optimized pH-buffering effect when Na 2 SO 3 (4.0%) was added before the reaction of Xyl-Phe. Thus, the conversion of Xyl-Phe to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine increased from 47.23% to 74.86%. Furthermore, the addition moment of Na 2 SO 3 and corresponding solution pH were crucial factors in regulating the pH-buffering effect of Na 2 SO 3 on N-(1-deoxy-d-xylulos-1-yl)-phenylalanine yield. Based on the pH-buffering effect of Na 2 SO 3 and maintaining the optimal pH 7.4 relatively stable, the conversion of Xyl-Phe to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine was successfully improved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Metabolomic approach for determination of key volatile compounds related to beef flavor in glutathione-Maillard reaction products.

    PubMed

    Lee, Sang Mi; Kwon, Goo Young; Kim, Kwang-Ok; Kim, Young-Suk

    2011-10-10

    The non-targeted analysis, combining gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF/MS) and sensory evaluation, was applied to investigate the relationship between volatile compounds and the sensory attributes of glutathione-Maillard reaction products (GSH-MRPs) prepared under different reaction conditions. Volatile compounds in GSH-MRPs correlating to the sensory attributes were determined using partial least-squares (PLS) regression. Volatile compounds such as 2-methylfuran-3-thiol, 3-sulfanylpentan-2-one, furan-2-ylmethanethiol, 2-propylpyrazine, 1-furan-2-ylpropan-2-one, 1H-pyrrole, 2-methylthiophene, and 2-(furan-2-ylmethyldisulfanylmethyl)furan could be identified as possible key contributors to the beef-related attributes of GSH-MRPs. In this study, we demonstrated that the unbiased non-targeted analysis based on metabolomic approach allows the identification of key volatile compounds related to beef flavor in GSH-MRPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Heat damaged forages: effects on forage energy content

    USDA-ARS?s Scientific Manuscript database

    Traditionally, educational materials describing the effects of heat damage within baled hays have focused on reduced bioavailability of crude protein as a result of Maillard reactions. These reactions are not simple, but actually occur in complex, multi-step pathways. Typically, the initial step inv...

  6. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.

    PubMed

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-11-15

    The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display.

    PubMed

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-06

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  8. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    NASA Astrophysics Data System (ADS)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  9. Detection of AGEs as markers for carbohydrate metabolism and protein denaturation.

    PubMed

    Nagai, Ryoji; Shirakawa, Jun-Ichi; Fujiwara, Yukio; Ohno, Rei-Ichi; Moroishi, Narumi; Sakata, Noriyuki; Nagai, Mime

    2014-07-01

    Approximately 100 years have passed since the Maillard reaction was first reported in the field of food chemistry as a condensation reaction between reducing sugars and amino acids. This reaction is thought to progress slowly primarily from glucose with proteins in vivo. An early-stage product, called the "Amadori product", is converted into advanced glycation end products. Those accumulate in the body in accordance with age, with such accumulation being enhanced by lifestyle-related diseases that result in the denaturation of proteins. Recent studies have demonstrated that intermediate carbonyls are generated by several pathways, and rapidly generate many glycation products. However, accurate quantification of glycation products in vivo is difficult due to instability and differences in physicochemical properties. In this connection, little is known about the relationship between the structure of glycation products and pathology. Furthermore, the interaction between proteins modified by glycation and receptors for advanced glycation end products is also known to induce the production of several inflammatory cytokines. Therefore, those inhibitors have been developed over the world to prevent lifestyle-related diseases. In this review, we describe the process of protein denaturation induced by glycation and discuss the possibility of using the process as a marker of age-related diseases.

  10. Discovery and structure determination of a novel Maillard-derived sweetness enhancer by application of the comparative taste dilution analysis (cTDA).

    PubMed

    Ottinger, Harald; Soldo, Tomislav; Hofmann, Thomas

    2003-02-12

    Application of a novel screening procedure, the comparative taste dilution analysis (cTDA), on the non-solvent-extractable reaction products formed in a thermally processed aqueous solution of glucose and l-alanine led to the discovery of the presence of a sweetness-enhancing Maillard reaction product. Isolation, followed by LC-MS and 1D- and 2D-NMR measurements, and synthesis led to its unequivocal identification as N-(1-carboxyethyl)-6-(hydroxymethyl)pyridinium-3-ol inner salt. This so-called alapyridaine, although being tasteless itself, is the first nonvolatile, sweetness-enhancing Maillard reaction product reported in the literature. Depending on the pH value, the detection thresholds of sweet sugars, amino acids, and aspartame, respectively, were found to be significantly decreased when alapyridaine was present; for example, the threshold of glucose decreased by a factor of 16 in an equimolar mixture of glucose and alapyridaine. Studies on the influence of the stereochemistry on taste-enhancing activity revealed that the (+)-(S)-alapyridaine is the physiologically active enantiomer, whereas the (-)-(R)-enantiomer did not affect sweetness perception at all. Thermal processing of aqueous solutions of alapyridaine at 80 degrees C demonstrated a high thermal and hydrolytic stability of that sweetness enhancer; for example, more than 90 or 80% of alapyridaine was recovered when heated for 5 h at pH 7.0, 5.0, or 3.0, respectively.

  11. In vitro antioxidant and cytoprotective properties of Maillard reaction products from phloridzin-amino acid model systems.

    PubMed

    Han, Linna; Li, Feng; Yu, Qijian; Li, Dapeng

    2018-01-01

    The aim of this study was to investigate in vitro antioxidant activities and cytoprotective effect of Maillard reaction products (MRPs) from phloridzin (Pz)-amino acid model systems. Their structures were also characterised by Fourier transform-infrared spectroscopy (FTIR). MRPs were prepared from the Pz-methionine (Met), Pz-lysine (Lys), Pz-isoleucine (Ile), Pz-histidine (His) or Pz-glutamic acid (Glu) model system. The Pz-Lys MRPs, rich in antioxidant potency, were subjected to ultrafiltration to yield four MRPs fractions with different molecular weights (Mw). The fraction with Mw 30-50 kDa had significantly (P < 0.05) higher antioxidant activity than other fractions. Moreover, it significantly (P < 0.05) attenuated the 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH)-elicited decrease in cell viability in HepG2 cells in a concentration-dependent manner. FTIR analysis indicated that the fraction with Mw 30-50 kDa had the strong stretching vibration for the OH, NH, CH, CO and CC groups, suggesting the formation of intermediate MRPs during Maillard reaction. The results obtained in this study may provide some basis for the purported health-promoting effects of MRPs and their potential application as antioxidant agents in food industry. Also, it is important for our understanding of the variation of bioactive substances in food during thermal processing. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [Vigna radiate (L.)] protein isolates and glucose and on structural and physico-chemical properties of conjugates.

    PubMed

    Wang, Zhongjiang; Han, Feifei; Sui, Xiaonan; Qi, Baokun; Yang, Yong; Zhang, Hui; Wang, Rui; Li, Yang; Jiang, Lianzhou

    2016-03-30

    The objective of this study was to determine the effect of ultrasound treatment on the wet heating Maillard reaction between mung bean protein isolates (MBPIs) and glucose, and on structural and physico-chemical properties of the conjugates. The degree of glycosylation of MBPI-glucose conjugates treated by ultrasound treatment and wet heating (MBPI-GUH) was higher than that of MBPI-glucose conjugates only treated by wet heating (MBPI-GH). Solubility, emulsification activity, emulsification stability and surface hydrophobicity of MBPI-GUH were higher than that of MBPI-GH. Grafted MBPIs had a lower content of α-helix and unordered coil, but a higher content of β-sheet and β-turn structure than MBPIs. No significant structural changes were observed in β-turn and random coil structure of MBPI-GUH, while α-helix content increased with ultrasonic time, and decreased at 300 W ultrasonic power with the increase of β-sheet. MBPI-GUH had a less compact tertiary structure compared to MBPI-GH and MBPI. Grafting MBPIs with glucose formed conjugates of higher molecular weight, while no significant changes were observed in electrophoresis profiles of MBPI-GUH. Ultrasound-assisted wet heating Maillard reaction between MBPIs and glucose could be a promising way to improve functional properties of MBPIs. © 2015 Society of Chemical Industry.

  13. Chemical Changes in Proteins Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal…

  14. Evidence of a glycemic threshold for the formation of pentosidine in diabetic dog lens but not in collagen.

    PubMed

    Nagaraj, R H; Kern, T S; Sell, D R; Fogarty, J; Engerman, R L; Monnier, V M

    1996-05-01

    The relationship between long-term glycemic control and the advanced Maillard reaction was investigated in dura mater collagen and lens proteins from dogs that were diabetic for 5 years. Diabetic dogs were assigned prospectively to good, moderate, and poor glycemic control and maintained by insulin. Biochemical changes were determined at study exit. Mean levels of collagen digestibility by pepsin decreased (NS) whereas collagen glycation (P < 0.001), pentosidine cross-links (P < 0.001), and collagen fluorescence (P = 0.02) increased with increasing mean HbA1 values. Similarly, mean levels of lens crystallin glycation (P < 0.001), fluorescence (P < 0.001), and the specific advanced lens Maillard product 1 (LM-1) (P < 0.001) and pentosidine (P < 0.005) increased significantly with poorer glycemic control. Statistical analysis revealed very high Spearman correlation coefficients between collagen and lens changes. Whereas pentosidine cross-links were significantly elevated in collagen from diabetic dogs with moderate levels of HbA1 (i.e., 8.0 +/- 0.4%), lens pentosidine levels were normal in this group and were elevated (P < 0.001) only in the animals with poor glycemic control (HbA1 = 9.7 +/- 0.6%). Thus, whereas protein glycation and advanced glycation in the extracellular matrix and in the lens are generally related to the level of glycemic control, there is evidence for a tissue-specific glycemic threshold for pentosidine formation, i.e., glycoxidation, in the lens. This threshold may be in part linked to a dramatic acceleration in crystallin glycation with HbA1 values of > 8.0% and/or a loss of lens membrane permeability. This study provides support at the molecular level for the growing concept that glycemic thresholds may be involved in the development of some of the complications in diabetes.

  15. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.

    PubMed

    Xu, Haining; Zhang, Xiaoming; Karangwa, Eric; Xia, Shuqin

    2017-09-01

    Up to now, only limited research on enzymatic browning inhibition capacity (BIC) of Maillard reaction products (MRPs) has been reported and there are still no overall and systematic researches on MRPs derived from different amino acids. In the present study, BIC and antioxidant capacity, including 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and Fe 2+ reducing power activity, of the MRPs derived from 12 different amino acids and three reducing sugars were investigated. The MRPs of cysteine (Cys), cystine, arginine (Arg) and histidine (His) showed higher BIC compared to other amino acids. Lysine (Lys)-MRPs showed the highest absorbance value at 420 nm (A 420 ) but very limited BIC, whereas Cys-MRPs, showed the highest BIC and the lowest A 420 . The A 420 can roughly reflect the trend of BIC of MRPs from different amino acids, except Cys and Lys. MRPs from tyrosine (Tyr) showed the most potent antioxidant capacity but very limited BIC, whereas Cys-MRPs showed both higher antioxidant capacity and BIC compared to other amino acids. Partial least squares regression analysis showed positive and significant correlation between BIC and Fe 2+ reducing power of MRPs from 12 amino acids with glucose or fructose, except Lys, Cys and Tyr. The suitable pH for generating efficient browning inhibition compounds varies depending on different amino acids: acidic pH was favorable for Cys, whereas neutral and alkaline pH were suitable for His and Arg, respectively. Increasing both heating temperature and time over a certain range could improve the BIC of MRPs of Cys, His and Arg, whereas any further increase deteriorates their browning inhibition efficiencies. The types of amino acid, initial pH, temperature and time of the Maillard reaction were found to greatly influence the BIC and antioxidant capacity of the resulting MRPs. There is no clear relationship between BIC and the antioxidant capacity of MRPs when reactant type and processing parameters of the Maillard reaction are considered as variables. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Glycation of β-lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems.

    PubMed

    Kong, Yanghui; Li, Xiaoming; Zheng, Tiesong; Lv, Lishuang

    2015-09-15

    Advanced glycation end products (AGEs), which are formed in β-lactoglobulin (β-lg) glycation systems via the Maillard reaction, have been implicated in diabetes-related long-term complications. In the present study, we found that reaction conditions, including temperature, time, pH, reactant type and molar ratio of beta-lg to a sugar/MGO/GO, can significantly affect the formation of AGEs. Using SDS-PAGE, we further demonstrated that genistein, a natural isoflavone found in a number of plants including soybeans and kudzu, can efficiently inhibit cross-links of the glycated β-lg, and suppress the formation AGEs in a dose-dependent manner by trapping reactive dicarbonyl compounds. The products formed from genistein and methylglyoxal (MGO) in the β-lg-MGO assay were analyzed using LC/MS. Both mono-MGO and di-MGO adducts of genistein were detected with this method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Evaluation of maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems.

    PubMed

    Dennis, Cara; Karim, Faris; Smith, J Scott

    2015-02-01

    Heterocyclic amines (HCAs), highly mutagenic and potentially carcinogenic by-products, form during Maillard browning reactions, specifically in muscle-rich foods. Chemical model systems allow examination of in vitro formation of HCAs while eliminating complex matrices of meat. Limited research has evaluated the effects of Maillard reaction parameters on HCA formation. Therefore, 4 essential Maillard variables (precursors molar concentrations, water amount, sugar type, and sugar amounts) were evaluated to optimize a model system for the study of 4 HCAs: 2-amino-3-methylimidazo-[4,5-f]quinoline, 2-amino-3-methylimidazo[4,5-f]quinoxaline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline. Model systems were dissolved in diethylene glycol, heated at 175 °C for 40 min, and separated using reversed-phase liquid chromatography. To define the model system, precursor amounts (threonine and creatinine) were adjusted in molar increments (0.2/0.2, 0.4/0.4, 0.6/0.6, and 0.8/0.8 mmol) and water amounts by percentage (0%, 5%, 10%, and 15%). Sugars (lactose, glucose, galactose, and fructose) were evaluated in several molar amounts proportional to threonine and creatinine (quarter, half, equi, and double). The precursor levels and amounts of sugar were significantly different (P < 0.05) in regards to total HCA formation, with 0.6/0.6/1.2 mmol producing higher levels. Water concentration and sugar type also had a significant effect (P < 0.05), with 5% water and lactose producing higher total HCA amounts. A model system containing threonine (0.6 mmol), creatinine (0.6 mmol), and glucose (1.2 mmol), with 15% water was determined to be the optimal model system with glucose and 15% water being a better representation of meat systems. © 2015 Institute of Food Technologists®

  18. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.

    PubMed

    Kanzler, Clemens; Schestkowa, Helena; Haase, Paul T; Kroh, Lothar W

    2017-10-11

    In this study, the Maillard reaction of maltose and d-glucose in the presence of l-alanine was investigated in aqueous solution at 130 °C and pH 5. The reactivity of both carbohydrates was compared in regards of their degradation, browning, and antioxidant activity. In order to identify relevant differences in the reaction pathways, the concentrations of selected intermediates such as 1,2-dicarbonyl compounds, furans, furanones, and pyranones were determined. It was found, that the degradation of maltose predominantly yields 1,2-dicarbonyls that still carry a glucosyl moiety and thus subsequent reactions to HMF, furfural, and 2-acetylfuran are favored due to the elimination of d-glucose, which is an excellent leaving group in aqueous solution. Consequently, higher amounts of these heterocycles are formed from maltose. 3-deoxyglucosone and 3-deoxygalactosone represent the only relevant C 6 -1,2-dicarbonyls in maltose incubations and are produced in nearly equimolar amounts during the first 60 min of heating as byproducts of the HMF formation.

  19. Assessment of Maillard reaction evolution, prebiotic carbohydrates, antioxidant activity and α-amylase inhibition in pulse flours.

    PubMed

    Moussou, Nadia; Corzo-Martínez, Marta; Sanz, María Luz; Zaidi, Farid; Montilla, Antonia; Villamiel, Mar

    2017-03-01

    In this paper, the quality of bean, chickpea, fava beans, lentil and pea flours from Algeria has been evaluated. Maillard reaction (MR) indicators, modifications in the carbohydrate and protein fractions, antioxidant activity and α-amylase inhibitor of raw, toasted and stored samples were evaluated. Fava beans, beans and peas showed higher content of raffinose family oligosaccharides while chickpeas and lentils showed higher polyol content. Toasting and storage caused slightly change in pulse quality; MR showed slight losses of lysine but increased antioxidant activity. Moreover, inhibition of α-amylase was slightly augmented during processing; this could increase the undigested carbohydrates that reach the colon, modulating the glycemic response. These results point out the suitability of these flours for preparing high-quality foodstuffs intended for a wide spectrum of the population, including hyperglycemic and gluten intolerant individuals.

  20. Antioxidative, Antibacterial, and Food Functional Properties of the Half-Fin Anchovy Hydrolysates-Glucose Conjugates Formed via Maillard Reaction.

    PubMed

    Song, Ru; Yang, Peiyu; Wei, Rongbian; Ruan, Guanqiang

    2016-06-20

    The antioxidative, antibacterial, and food functional properties of the half-fin anchovy hydrolysates (HAHp)-glucose conjugates formed by Maillard reaction (MR) were investigated, respectively. Results of sugar and amino acid contents loss rates, browning index, and molecular weight distribution indicated that the initial pH of HAHp played an important role in the process of MR between HAHp and glucose. HAHp-glucose Maillard reaction products (HAHp-G MRPs) demonstrated enhanced antioxidative activities of reducing power and scavenging DPPH radicals compared to control groups. HAHp-G MRPs produced from the condition of pH 9.6 displayed the strongest reducing power. The excellent scavenging activity on DPPH radicals was found for HAHp(5.6)-G MRPs which was produced at pH 5.6. Additionally, HAHp(5.6)-G MRPs showed variable antibacterial activities against Escherichia coli, Pseudomonas fluorescens, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Bacillus megaterium, and Sarcina lutea, with the MIC values ranging from 8.3 to 16.7 μg/mL. Result of scanning electron microscopy (SEM) on E. coli suggested that HAHp(5.6)-G MRPs exhibited antibacterial activity by destroying the cell integrity through membrane permeabilization. Moreover, HAHp(5.6)-G MRPs had excellent foaming ability and stability at alkaline conditions of pH 8.0, and showed emulsion properties at acidic pH 4.0. These results suggested that specific HAHp-G MRPs should be promising functional ingredients used in foods.

  1. A combination of quantitative marinating and Maillard reaction to enhance volatile flavor in Chinese marinated chicken.

    PubMed

    Wei, Xiuli; Wang, Chunqing; Zhang, Chunhui; Li, Xia; Wang, Jinzhi; Li, Hai; Tang, Chunhong

    2017-02-01

    A combination of quantitative marinating and Maillard reaction was investigated by adding d-xylose, l-cysteine and thiamine to the marinated brine of quantitative marinating, which was expected to enhance the volatile flavor of Chinese marinated chicken. Response surface methodology was used to optimize parameters, in which response was sensory evaluation scores of marinated chicken. A Box-Behnken center design was applied to the optimized added contents. The optimized contents were d-xylose (1-5‰), l-cysteine (1-5‰) and thiamine (1-3‰). Analysis of variance indicated that a second-order polynomial equation could predict the experimental data well (R 2  = 0.94), and sensory evaluation scores were significantly affected by the added amount of d-xylose, l-cysteine and thiamine. The optimal conditions that maximized the sensory evaluation score of Chinese marinated chicken were found to be 4.96‰ d-xylose, 2.28‰ l-cysteine and 2.66‰ thiamine (w/w). Given these optimal conditions, a number of meat-like flavor compounds such as 2-pentyl-furan, benzothiazole and 4-methyl-5-thiazoleethanol were identified by gas chromatographic-mass spectrometric analysis. Our results suggested that a combination of quantitative marinating and Maillard reaction might be a promising method to enhance the volatile flavor, especially meat-like flavor, of Chinese marinated chicken. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Effects of Maillard reaction products in a glucose-glycine alcoholic solution on antioxidative and antimutagenic activities.

    PubMed

    Ko, Chih-Yuan; Chen, Xiao-Yu; Chang, Wen-Chang; Zeng, Yi-Ming; Lin, Ru-Hai; Zhang, Xiao-Bin; Wu, James Swi-Bea; Shen, Szu-Chuan

    2018-04-12

    Marinating meat with alcohol, such as wine and beer, is a common culinary practice in cultures worldwide. This study we use a model marination solution comprising 0.2 M glucose-0.2 M glycine buffered to pH 4.3 containing either 0% or 50% ethanol and mimicked the cooking process by heating for 12 h. Antioxidative and antimutagenic characteristics of Maillard reaction products (MRPs) were investigated. Reducing power, antioxidant activity (Fe 2+ chelating ability) and free radical neutralization ability generated from DPPH and ABTS were determined. Ames testing was performed. Results indicate that MRPs from aqueous and alcoholic solution exhibit four antioxidative assays in a dose-dependent manner from 0.16 to 10.00 mg mL -1 . However, MRPs from the alcoholic model was superior. In Ames testing, MRPs from both models are neither toxic nor mutagenic at the test concentrations of 0.63-10.00 mg plate -1 . However, MRPs from the alcoholic model exhibited a higher inhibitory effect on the direct-acting mutagen 4-NQNO compared to the aqueous model. This result is consistent with the observation that MRPs with higher antioxidative capacity exhibit superior antimutagenic activity, suggesting that there are more different products in the alcoholic model. Our results add to the current knowledge about the antioxidative and antimutagenic properties of Maillard reaction products arising when food is cooked in the presence of ethanol. This article is protected by copyright. All rights reserved.

  3. Investigation of CO2 precursors in roasted coffee.

    PubMed

    Wang, Xiuju; Lim, Loong-Tak

    2017-03-15

    Two CO 2 formation pathways (chlorogenic acid (CGA) degradation and Maillard reaction) during coffee roasting were investigated. CGA is shown not a major contributor to CO 2 formation, as heating of this compound under typical roasting conditions did not release a large quantity of CO 2 . However, heating of a CGA moiety, caffeic acid, resulted in high yield of CO 2 (>98%), suggesting that CGA hydrolysis could be the rate limiting step for CO 2 formation from CGA. A large amount of CO 2 was detected from glycine-sucrose model system under coffee roasting conditions, implying the importance of Maillard reactions in CO 2 formation. Further studies on the heating of various components isolated from green coffee beans showed that CO 2 was generated from various green coffee components, including water insoluble proteins and polysaccharides. Around 50% of CO 2 was formed from thermal reactions of lower molecular weight compounds that represent ∼25% by weight in green coffee. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. An invertebrate hyperglycemic model for the identification of anti-diabetic drugs.

    PubMed

    Matsumoto, Yasuhiko; Sumiya, Eriko; Sugita, Takuya; Sekimizu, Kazuhisa

    2011-03-30

    The number of individuals diagnosed with type 2 diabetes mellitus, which is caused by insulin resistance and/or abnormal insulin secretion, is increasing worldwide, creating a strong demand for the development of more effective anti-diabetic drugs. However, animal-based screening for anti-diabetic compounds requires sacrifice of a large number of diabetic animals, which presents issues in terms of animal welfare. Here, we established a method for evaluating the anti-diabetic effects of compounds using an invertebrate animal, the silkworm, Bombyx mori. Sugar levels in silkworm hemolymph increased immediately after feeding silkworms a high glucose-containing diet, resulting in impaired growth. Human insulin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, decreased the hemolymph sugar levels of the hyperglycemic silkworms and restored growth. Treatment of the isolated fat body with human insulin in an in vitro culture system increased total sugar in the fat body and stimulated Akt phosphorylation. These responses were inhibited by wortmannin, an inhibitor of phosphoinositide 3 kinase. Moreover, AICAR stimulated AMPK phosphorylation in the silkworm fat body. Administration of aminoguanidine, a Maillard reaction inhibitor, repressed the accumulation of Maillard reaction products (advanced glycation end-products; AGEs) in the hyperglycemic silkworms and restored growth, suggesting that the growth defect of hyperglycemic silkworms is caused by AGE accumulation in the hemolymph. Furthermore, we identified galactose as a hypoglycemic compound in jiou, an herbal medicine for diabetes, by monitoring its hypoglycemic activity in hyperglycemic silkworms. These results suggest that the hyperglycemic silkworm model is useful for identifying anti-diabetic drugs that show therapeutic effects in mammals.

  5. The Analysis of AGEs and ALEs by Mass Spectrometry: What does the Future Hold?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, Thomas O.

    2009-09-15

    In 1912, Louis-Camille Maillard described a reaction between amino acids and reducing sugars that produced a discolored (brown) reaction mixture in the presence of heat [1]. This complex network of reactions between reducing sugars and free amine groups on amino acids or proteins came to be known as the Maillard reaction and was the domain of food chemists for the next 50 years. Work in the 1960s began a very exciting era in the field. A few years earlier, several groups [2-5] reported on the heterogeneity of normal human adult hemoglobin (HbA) as determined chromatographically, and Allen et al weremore » the first to use cation-exchange chromatography to separate a previously observed fast moving component (HbAI) into three fractions that they termed AIa, AIb, and AIc. An increase in the fast moving HbAI of four diabetic patients was subsequently reported by Huisman and Dozy in 1962 [6], and the link between diabetes and increased HbAI was later strengthened by Rahbar’s observation of increased HbAI – the majority of which is HbAIc – in 47 cases of diabetes [7]. Bookchin and Gallop determined that HbAIc consisted of a hexose bound to both β-chains [8], and Bunn and colleagues subsequently proposed that glucose binds to the N-terminal amine groups of the β-chain valine residues in the form of a Schiff base, which then rearranges to form an Amadori compound [9]. Thus, while Maillard chemistry was known to occur during the heating and processing of food, the identification of Amadori-modified hemoglobin proved that it also occurred in vivo (after all, as John Baynes likes to point out, humans are essentially low temperature ovens with long cooking cycles!).« less

  6. Effects of pH on the formation of 4(5)-Methylimidazole in glucose/ammonium sulfate and glucose/ammonium sulfite caramel model reactions.

    PubMed

    Wu, Xinlan; Kong, Fansheng; Huang, Minghui; Yu, Shujuan

    2015-10-01

    The objective of the present study was to detail the change of 4(5)-Methylimidazole (4-MI) in sulfite and sulfate reactions with different initial pH values. Glucose/ammonium sulfate and glucose/ammonium sulfite reaction systems with initial pH conditions 4.9, 5.9, 6.9, 8.0 and 8.6, were heated at 100°C for 2h, respectively. Higher concentration of methylglyoxal (MGO) and 4-MI was detected in thermal treated glucose/ammonium sulfite reaction system than that in sulfate system. The SO 3 2- reacting with MGO and other precursors of 4-MI at higher pH conditions prevented 4-MI formation. However, no inhibition of 4-MI was found at lower pH conditions due to higher reactivity of the nucleophilic NH 4 + than SO 3 2- . The browning intensity of the sulfite system changed scarcely at higher pH values, which was possibly caused by the polyreaction between SO 3 2- and carbonyl, instead of the intermolecular polymerisation of carbonyl in the advanced stage of the Maillard reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Changes in physical, chemical and functional properties of whey protein isolate (WPI) and sugar beet pectin (SBP) conjugates formed by controlled dry-heating

    USDA-ARS?s Scientific Manuscript database

    A Maillard type reaction in the dry state was utilized to create conjugates between whey protein isolate (WPI) and sugar beet pectin (SBP) to achieve improved functional properties including solubility, colloidal stability and oil-in-water emulsion stability. To optimize the reaction conditions, mi...

  8. Fructosamine: Structure, Analysis, and Clinical Usefulness

    DTIC Science & Technology

    1987-09-09

    reaction of amino acids and reducing sugars to fbrm The nonenzymatic glycation of hemoglobin having been stable ketoamine adducts (5). The Maillard ...clature for any reaction linking a sugar to a protein (I1 control. Unlike glycated hemoglobin, which reflects the aver- Thus "glycated" protein is...fructosamine is a ketoamine, a derivative of the nonenzy- Introduction matic reaction product of a sugar (usually glucose) and a protein (usually

  9. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods.

    PubMed

    Rannou, Cécile; Laroque, Delphine; Renault, Emilie; Prost, Carole; Sérot, Thierry

    2016-12-01

    The Maillard reaction (MR) occurs widely during food manufacture and storage, through controlled or uncontrolled pathways. Its consequences are ambiguous depending on the nature and processing of the food products. The MR is often used by food manufacturer to develop appealing aromas, colour or texture in food products (cereal based food, coffee, meat…). However, despite some positive aspects, the MR could decrease the nutritional value of food, generate potentially harmful compounds (e.g. acrylamide, furans, heterocyclic amines) or modify aroma or colour although it is not desired (milk, fruit juice). This paper presents a review of the different solutions available to control or moderate the MR in various food products from preventive to removal methods. A brief reminder of the role and influence of the MR on food quality and safety is also provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Role of Maillard products in the chronic complications of diabetes mellitus. Bioclinical applications].

    PubMed

    Trivin, F

    1998-01-01

    The formation of Maillard products is increased in the diabetes mellitus. These advanced glycated end products (AGEs) alter metabolic functions of macromolecules and increase free radical formation while decreasing free radical-scavenging enzyme activity. The elimination of AGEs is insured by the macrophage cells equipped with appropriate receptors (RAGE) and cleared by kidneys. The knowledge of these molecular mechanisms had allowed the emergence of biochemical analytes such as 3-deoxyglucosone, pentosidine, and carboxymethyl-lysine, as markers of the ris of micro- and macro-angiopathy, the main chronic complications of the diabetes mellitus.

  11. Chemical characteristics and enhanced hepatoprotective activities of Maillard reaction products derived from milk protein-sugar system.

    PubMed

    Oh, Nam Su; Young Lee, Ji; Lee, Hyun Ah; Joung, Jae Yeon; Shin, Yong Kook; Kim, Sae Hun; Kim, Younghoon; Lee, Kwang Won

    2016-02-01

    The objective of this study was to investigate the characteristics, antioxidative properties, and hepatoprotective effects of Maillard reaction products (MRP) from milk protein reacted with sugars. The MRP were obtained from milk protein, whey protein concentrates and sodium caseinate, using 2 types of sugars, lactose and glucose, by heating the mixture at 55°C for 7d in a sodium phosphate buffer (pH 7.4). Changes in the chemical modification of the milk protein were monitored by measuring the protein-bound carbonyls and PAGE protein profiles. The results showed that the amount of protein-bound carbonyls increased after Maillard reaction (MR). In addition, sodium dodecyl sulfate-PAGE analysis indicated a formation of high-molecular weight complexes through MR. The modification sites induced by MR of milk protein were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of tryptic-digested gel spots of MRP. As a result, modification and their localization in AA sequence of MRP was identified. Also, the MRP showed higher antioxidant activities than the intact milk protein, and they reduced intracellular reactive oxygen species production and inhibited the depletion of the reduced glutathione concentrations in the HepG2 cells. In particular, glucose-sodium caseinate MRP showed the highest biological activities among all MRP. Therefore, these results suggest that the MRP from milk protein reacting with sugars possess effective antioxidant activity and have a protective ability against oxidative damage. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Concentrations of pentosidine, an advanced glycation end-product, in umbilical cord blood.

    PubMed

    Tsukahara, Hirokazu; Ohta, Naoko; Sato, Shuko; Hiraoka, Masahiro; Shukunami, Ken-Ichi; Uchiyama, Mayumi; Kawakami, Hisako; Sekine, Kyouichi; Mayumi, Mitsufumi

    2004-07-01

    Advanced glycation end-products (AGEs) are formed over several weeks to months by non-enzymatic glycation and oxidation ("glycoxidation") reactions between carbohydrate-derived carbonyl groups and protein amino groups, known as the Maillard reaction. Pentosidine is one of the best-characterized AGEs and is accepted as a satisfactory marker for glycoxidation in vivo. The present study was intended to measure pentosidine concentrations in umbilical cord blood from newborns with various gestational ages using our recently established high-performance liquid chromatography method [Tsukahara, H. et al. (2003) Pediatr. Res. 54, 419-424]. Our study demonstrates, for the first time, that pentosidine is detected in most of the umbilical blood samples. This study also shows that the umbilical blood concentrations of pentosidine are considerably lower than normal adult values, but that they increase with gestation progression and fetal growth. Umbilical pentosidine concentrations were significantly elevated in newborns of mothers with preeclampsia compared to those of mothers without preeclampsia. We conclude that accumulation of AGEs and oxidative stress occurs in fetal tissues and organs in utero at the early stage of human life and that their accumulation is augmented in the maternal preeclampsic condition.

  13. Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline.

    PubMed Central

    Miyata, S; Monnier, V

    1992-01-01

    Pyrraline is one of the major Maillard compounds resulting from the reaction of glucose with amino compounds at slightly acidic pH. For in vivo studies, monoclonal pyrraline antibodies were raised after immunization of Balb/c mice with keyhole limpet hemocyamin-caproyl pyrraline conjugate. Of 660 hybridoma clones from one donor, 260 produced an antibody to the free hapten, two of which named Pyr-A and Pyr-B also cross-reacted with L-lysyl pyrraline. Using Pyr-B antibody and an ELISA, a gradual increase in pyrraline immunoreactivity was observed in serum albumin incubated with glucose or 3-deoxyglucosone. Plasma pyrraline levels increased fourfold (P less than 0.001) in Sprague-Dawley rats upon induction of diabetes with streptozotocin and were twofold increased in randomly selected plasmas from diabetic humans. Highly specific pyrraline immunoreactivity was detected in sclerosed glomeruli from diabetic and old normal kidneys as well as in renal arteries with arteriolosclerosis and in perivascular and peritubular sclerosed extracellular matrix and basement membranes. The preferential localization of pyrraline immunoreactivity in the extracellular matrix strengthens the notion that the advanced glycosylation reaction may contribute to decreased turnover and thickening of the extracellular matrix in diabetes and aging. Images PMID:1556177

  14. Yeast Metabolites of Glycated Amino Acids in Beer.

    PubMed

    Hellwig, Michael; Beer, Falco; Witte, Sophia; Henle, Thomas

    2018-06-01

    Glycation reactions (Maillard reactions) during the malting and brewing processes are important for the development of the characteristic color and flavor of beer. Recently, free and protein-bound Maillard reaction products (MRPs) such as pyrraline, formyline, and maltosine were found in beer. Furthermore, these amino acid derivatives are metabolized by Saccharomyces cerevisiae via the Ehrlich pathway. In this study, a method was developed for quantitation of individual Ehrlich intermediates derived from pyrraline, formyline, and maltosine. Following synthesis of the corresponding reference material, the MRP-derived new Ehrlich alcohols pyrralinol (up to 207 μg/L), formylinol (up to 50 μg/L), and maltosinol (up to 6.9 μg/L) were quantitated for the first time in commercial beer samples by reverse phase high performance liquid chromatography tandem mass spectrometry in the multiple reaction monitoring mode. This is equivalent to ca. 20-40% of the concentrations of the parent glycated amino acids. The metabolites were almost absent from alcohol-free beers and malt-based beverages. Two previously unknown valine-derived pyrrole derivatives were characterized and qualitatively identified in beer. The metabolites investigated represent new process-induced alkaloids that may influence brewing yeast performance due to structural similarities to quorum sensing and metal-binding molecules.

  15. Characterization and emulsifying properties of β-lactoglobulin-gum Acacia Seyal conjugates prepared via the Maillard reaction.

    PubMed

    Bi, Binwei; Yang, Hao; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2017-01-01

    Gum Acacia Seyal (ASY) is less valued than is gum Acacia Senegal, due to its poor emulsifying ability. The present study investigated the Maillard reaction between ASY and β-lactoglobulin (BLG) and its impact on the emulsifying properties of ASY. The reaction products of BLG/ASY mixture (r=1/4), prepared by dry-heating at 60°C and a relative humidity of 79%, as a function of incubation time, were characterized by SDS-PAGE, GPC-MALLS and DSC. The results showed that 12-24h of dry-heating under the given conditions was sufficient for conjugation, meanwhile avoiding the formation of deeply coloured and insoluble melanoidins. More than 64% of the protein was incorporated into ASY, resulting in a two-fold increase in arabinogalactan-protein (AGP) content and 3.5 times increase in weight-average molecular mass of ASY. The conjugation with BLG markedly improved the stability of ASY-stabilized emulsions and their resistance against severe conditions, such as low pH and high saline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Update on the National Acrylamide Project

    USDA-ARS?s Scientific Manuscript database

    Acrylamide, a suspected human carcinogen that may delay fetal development, is a Maillard reaction product that forms when carbohydrate-rich foods are cooked at high temperatures. Processed potato products, including French fries and potato chips, make a substantial contribution to total dietary acry...

  17. Extending the spectrum of α-dicarbonyl compounds in vivo.

    PubMed

    Henning, Christian; Liehr, Kristin; Girndt, Matthias; Ulrich, Christof; Glomb, Marcus A

    2014-10-10

    Maillard α-dicarbonyl compounds are known as central intermediates in advanced glycation end product (AGE) formation. Glucose is the primary source of energy for the human body, whereas l-threo-ascorbic acid (vitamin C) is an essential nutrient, involved in a variety of enzymatic reactions. Thus, the Maillard degradation of glucose and ascorbic acid is of major importance in vivo. To understand the complex mechanistic pathways of AGE formation, it is crucial to extend the knowledge on plasma concentrations of reactive key α-dicarbonyl compounds (e.g. 1-deoxyglucosone). With the present work, we introduce a highly sensitive LC-MS/MS multimethod for human blood plasma based on derivatization with o-phenylenediamine under acidic conditions. The impact of workup and reaction conditions, particularly of pH, was thoroughly evaluated. A comprehensive validation provided the limit of detection, limit of quantitation, coefficients of variation, and recovery rates. The method includes the α-dicarbonyls 1-deoxyglucosone, 3-deoxyglucosone, glucosone, Lederer's glucosone, dehydroascorbic acid, 2,3-diketogulonic acid, 1-deoxypentosone, 3-deoxypentosone, 3,4-dideoxypentosone, pentosone, 1-deoxythreosone, 3-deoxythreosone, threosone, methylglyoxal, glyoxal; the α-keto-carboxylic acids pyruvic acid and glyoxylic acid; and the dicarboxylic acid oxalic acid. The method was then applied to the analyses of 15 healthy subjects and 24 uremic patients undergoing hemodialysis. The comparison of the results revealed a clear shift in the product spectrum. In most cases, the plasma levels of target analytes were significantly higher. Thus, this is the first time that a complete spectrum of α-dicarbonyl compounds relevant in vivo has been established. The results provide further insights into the chemistry of AGE formation and will be helpful to find specific markers to differentiate between the various precursors of glycation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats

    PubMed Central

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-01-01

    Aim To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. Methods At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. Results MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Conclusion Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life. PMID:25891868

  19. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats.

    PubMed

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-04-01

    To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life.

  20. Synthesis, optimization and structural characterization of a chitosan-glucose derivative obtained by the Maillard reaction.

    PubMed

    Gullón, Beatriz; Montenegro, María I; Ruiz-Matute, Ana I; Cardelle-Cobas, Alejandra; Corzo, Nieves; Pintado, Manuela E

    2016-02-10

    Chitosan (Chit) was submitted to the Maillard reaction (MR) by co-heating a solution with glucose (Glc). Different reaction conditions as temperature (40, 60 and 80 °C), Glc concentration (0.5%, 1%, and 2%, w/v), and reaction time (72, 52 and 24h) were evaluated. Assessment of the reaction extent was monitored by measuring changes in UV absorbance, browning and fluorescence. Under the best conditions, 2% (w/v) of Chit, 2% (w/v) of Glc at 60°C and 32 h of reaction time, a chitosan-glucose (Chit-Glc) derivative was purified and submitted to structural characterization to confirm its formation. Analysis of its molecular weight (MW) and the degree of substitution (DS) was carried out by HPLC-Size Exclusion Chromatography (SEC) and a colloid titration method, respectively. FT-IR and (1)H NMR were also used to analyze the functional groups and evaluate the introduction of Glc into the Chit molecule. According to our objectives, the results obtained in this work allowed to better understand the key parameters influencing the MR with Chit as well as to confirm the successful introduction of Glc into the Chit molecule obtaining a Chit-Glc derivative with a DS of 64.76 ± 4.40% and a MW of 210.37 kDa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Application of the Organic Synthetic Designs to Astrobiology

    NASA Astrophysics Data System (ADS)

    Kolb, V. M.

    2009-12-01

    In this paper we propose a synthesis of the heterocyclic compounds and the insoluble materials on the meteorites. Our synthetic scheme involves the reaction of sugars and amino acids, the so-called Maillard reaction. We have developed this scheme based on the combined analysis of the regular and retrosynthetic organic synthetic principles. The merits of these synthetic methods for the prebiotic design are addressed.

  2. Acrylamide in processed potato products

    USDA-ARS?s Scientific Manuscript database

    Trace amounts of acrylamide are found in many foods cooked at high temperatures. Acrylamide in processed potato products is formed from reducing sugars and asparagine and is a product of the Maillard reaction. Processed potato products including fries and chips are relatively high in acrylamide comp...

  3. Heat Damaged Forages: Effects on Forage Quality

    USDA-ARS?s Scientific Manuscript database

    Traditionally, heat damage in forages has been associated with alterations in forage protein quality as a result of Maillard reactions, and most producers and nutritionists are familiar with this concept. However, this is not necessarily the most important negative consequence of spontaneous heating...

  4. Digestibility of Glyoxal-Glycated β-Casein and β-Lactoglobulin and Distribution of Peptide-Bound Advanced Glycation End Products in Gastrointestinal Digests.

    PubMed

    Zhao, Di; Li, Lin; Le, Thao T; Larsen, Lotte Bach; Su, Guoying; Liang, Yi; Li, Bing

    2017-07-19

    This work reports the influence of glyoxal (GO)-derived glycation on the gastrointestinal enzymatic hydrolysis of β-lactoglobulin and β-casein. Reduced digestibility of glycated proteins was found in both gastric and intestinal stage. Distribution of Maillard reaction products in digests with different molecular weight ranges was investigated subsequently. The colorless and brown MRPs largely presented in the digests smaller than 20 kDa. However, the resistance of fluorescent advanced glycation end products (AGEs) to enzymatic hydrolysis gradually increased during glycation, rendering fluorescent AGEs largely present in the digests larger than 20 kDa. No free N (ε)-carboxymethyllysine (CML) was detected in digests. The relative amount of CML in digests larger than 1 kDa was higher than that of Lys, demonstrating the hindrance of CML to enzymatic hydrolysis. This study highlights the resistance of GO-derived AGEs to digestive proteases via blockage of tryptic cleavage sites or steric hindrance, which is a barrier to the absorption of dietary AGEs.

  5. Preparation, characterization and toxicology properties of α- and β-chitosan Maillard reaction products nanoparticles.

    PubMed

    Zhang, Hongcai; Zhang, Yiwen; Bao, Erjaing; Zhao, Yanyun

    2016-08-01

    In this study, β-chitosan (CS) Maillard reaction (MR) NPs was prepared to improve the water solubility of CS NPs. The α- and β-CS MR was firstly induced by high intensity ultrasound-assisted (UA) water-bath heating at 80°C for 8h. The α- and β-CS Maillard reaction products (MRPs NPs were then prepared by ionic gelation method between the positively charged primary amino groups of CS and the negatively charged groups of sodium tripolyphosphate (TPP). The α- and β-CS MRPs NPs had particle size of 42.49 and 61.74nm, and Zeta-potential of 27.43 and 35.13mV, respectively. The prepared α- and β-CS MRPs NPs was characterized by transmission electron microscope (TEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA)-differential scanning calorimetry (DSC) to verify whether α- and β-CS MRPs has been incorporated into the CS NPs. The α- and β-CS MRPs NPs exhibited no significant difference (p>0.05) in antioxidant activity compared with α- and β-CS MRPs at the same concentration based on reducing power, DPPH radical scavenging activity, and ORAC values. The cytotoxicity test of α- and β-CS MRPs NPs showed good cell viability (70.86-99.16%) of human pulmonary microvascular endothelial cells (HLMVEC) at the concentration range from 0.12 to 1mg/mL, and fluorescein-5-isothiocyanate (FITC)-α- and β-CS MRPs NPs maintained the morphological characteristics of living cells. These results showed that α- and β-CS MRPs NPs can be used as water-soluble antioxidant substances for applications in food and other fields. Copyright © 2016. Published by Elsevier B.V.

  6. Taste-Active Maillard Reaction Products in Roasted Garlic (Allium sativum).

    PubMed

    Wakamatsu, Junichiro; Stark, Timo D; Hofmann, Thomas

    2016-07-27

    In order to gain first insight into candidate Maillard reaction products formed upon thermal processing of garlic, mixtures of glucose and S-allyl-l-cysteine, the major sulfur-containing amino acid in garlic, were low-moisture heated, and nine major reaction products were isolated. LC-TOF-MS, 1D/2D NMR, and CD spectroscopy led to their identification as acortatarin A (1), pollenopyrroside A (2), epi-acortatarin A (3), xylapyrroside A (4), 5-hydroxymethyl-1-[(5-hydroxymethyl-2-furanyl)methyl]-1H-pyrrole-2-carbalde-hyde (5), 3-(allylthio)-2-(2-formyl-5-hydroxymethyl-1H-pyrrol-1-yl)propanoic acid (6), (4S)-4-(allylthiomethyl)-3,4-dihydro-3-oxo-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (7), (2R)-3-(allylthio)-2-[(4R)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl]propanoic acid (8), and (2R)-3-(allylthio)-2-((4S)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl)propanoic acid (9). Among the Maillard reaction products identified, compounds 5-9 have not previously been published. The thermal generation of the literature known spiroalkaloids 1-4 is reported for the first time. Sensory analysis revealed a bitter taste with thresholds between 0.5 and 785 μmol/kg for 1-5 and 7-9. Compound 6 did not show any intrinsic taste (water) but exhibited a strong mouthfullness (kokumi) enhancing activity above 186 μmol/kg. LC-MS/MS analysis showed 1-9 to be generated upon pan-frying of garlic with the highest concentration of 793.7 μmol/kg found for 6, thus exceeding its kokumi threshold by a factor of 4 and giving evidence for its potential taste modulation activity in processed garlic preparations.

  7. Glycosylated a-lactalbumin-based nanocomplex for curcumin: physicochemical stability and DPPH-scavenging activity

    USDA-ARS?s Scientific Manuscript database

    Low stability at high salt concentrations, iso-electric point, and high temperature restricted the application of proteins as stabilizers in nutraceutical encapsulation. Protein-polysaccharide conjugates made with Maillard reaction may be better alternatives. In this study, the characteristics of cu...

  8. Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide.

    PubMed

    Xu, Changmou; Yagiz, Yavuz; Marshall, Sara; Li, Zheng; Simonne, Amarat; Lu, Jiang; Marshall, Maurice R

    2015-09-01

    Acrylamide is a byproduct of the Maillard reaction and is formed in a variety of heat-treated commercial starchy foods. It is known to be toxic and potentially carcinogenic to humans. Muscadine grape polyphenols and standard phenolic compounds were examined on the reduction of acrylamide in an equimolar asparagine/glucose chemical model, a potato chip model, and a simulated physiological system. Polyphenols were found to significantly reduce acrylamide in the chemical model, with reduced rates higher than 90% at 100 μg/ml. In the potato chip model, grape polyphenols reduced the acrylamide level by 60.3% as concentration was increased to 0.1%. However, polyphenols exhibited no acrylamide reduction in the simulated physiological system. Results also indicated no significant correlation between the antioxidant activities of polyphenols and their acrylamide inhibition. This study demonstrated muscadine grape extract can mitigate acrylamide formation in the Maillard reaction, which provides a new value-added application for winery pomace waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste.

    PubMed

    Wang, Tengfei; Zhai, Yunbo; Zhu, Yun; Peng, Chuan; Xu, Bibo; Wang, Tao; Li, Caiting; Zeng, Guangming

    2018-01-01

    The influence of temperature (180-260°C) on the fate of nitrogen during hydrothermal carbonization (HTC) of food waste (FW) was assessed. The distribution and evolution of nitrogen in aqueous products and bio-oil, as well as hydrochar, were conducted. Results suggested that elevated temperature enhanced the deamination and the highest ammonium concentration (929.75mg/L) was acquired at 260°C. At temperatures above 220°C, the total N in the hydrochar became stable, whereas the mass percentage of N increased. Amines and heterocyclic-N compounds from protein cracking and Maillard reactions were identified as the main nitrogen-containing compounds in the bio-oil. As to the hydrochar, increasing temperature resulted in condensed nitrogen-containing aromatic heterocycles (e.g. pyridine-N and quaternary-N). In particular, remarkable Maillard reactions at 180°C and the highest temperature at 260°C enhanced nitrogen incorporation (i.e. quaternary-N) into hydrochar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Influence of Sulfur Fertilization on the Antioxidant Activities of Onion Juices Prepared by Thermal Treatment

    PubMed Central

    Koh, Eunmi; Surh, Jeonghee

    2016-01-01

    Two onions (Sulfur-1 and Sulfur-4) cultivated with different sulfur applications were thermally processed to elucidate the effects of heat treatment on browning index and antioxidant activity. Sulfur-4 onion had higher sulfur content compared with the Sulfur-1 onion. After thermal processing, browning intensity was different between the two onions juices, with lower values observed for Sulfur-4 onion juice. This suggests that sulfur inhibits the Maillard browning reaction. The total reducing capacity of the juices increased at higher thermal processing temperatures; however, it was also lower in the Sulfur-4 onion juice. This suggests that the heat treatment of onions enhanced their antioxidant activity, but the effect was offset in the Sulfur-4 onion juice presumably due to higher sulfur content. This study indicates that sulfur, a core element for the functionality of onions, can decrease the antioxidant activity of thermally processed onions because of its potential as a Maillard reaction inhibitor. PMID:27390734

  11. Autoxidation of packed almonds as affected by maillard reaction volatile compounds derived from roasting.

    PubMed

    Severini, C; Gomes, T; De Pilli, T; Romani, S; Massini, R

    2000-10-01

    Shelled almonds of two Italian varieties, Romana and Pizzuta, peeled and unpeeled, were roasted and packed under different conditions: air (control), vacuum, and Maillard reaction volatile compounds (MRVc) derived from the roasting process. Samples were stored for approximately 8 months at room temperature, without light, and, at regular intervals, were collected and analyzed to evaluate the progress of lipid oxidation. Peroxide values, triglyceride oligopolymers, and oxidized triglycerides were evaluated during the storage time. Results showed that, although the MRVc atmosphere did not protect the lipid fraction of almonds as well as the vacuum condition; nevertheless, it was more protective than the control atmosphere, showing an antioxidant effect. The effect of the natural coating was a strong protection against lipid oxidation; in fact, only the unpeeled samples showed peroxide values lower than the threshold of acceptability (25 milliequiv of O(2)/kg of oil). Moreover, at the end of the storage period, Pizzuta almonds showed a greater deterioration than those of the Romana variety.

  12. Antioxidative capacity and binding affinity of the complex of green tea catechin and beta-lactoglobulin glycated by the Maillard reaction.

    PubMed

    Perusko, Marija; Al-Hanish, Ayah; Mihailovic, Jelena; Minic, Simeon; Trifunovic, Sara; Prodic, Ivana; Cirkovic Velickovic, Tanja

    2017-10-01

    Major green tea catechin, epigallocatechin-3-gallate (EGCG), binds non-covalently to numerous dietary proteins, including beta-lactoglobulin of cow's milk. The effects of glycation of proteins via Maillard reaction on the binding capacity for polyphenols and the antiradical properties of the formed complexes have not been studied previously. Binding constant of BLG glycated by milk sugar lactose to EGCG was measured by the method of fluorophore quenching. Binding of EGCG was confirmed by CD and FTIR. The antioxidative properties of the complexes were examined by measuring ABTS radical scavenging capacity, superoxide anion scavenging capacity and total reducing power assay. Glycation of BLG does not significantly influence the binding constant of EGCG for the protein. Conformational changes were observed for both native and glycated BLG upon complexation with EGCG. Masking effect of polyphenol complexation on the antioxidative potential of the protein was of the similar degree for both glycated BLG and native BLG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of Maillard Conjugates on the Physical Stability of Zein Nanoparticles Prepared by Liquid Antisolvent Coprecipitation.

    PubMed

    Davidov-Pardo, Gabriel; Joye, Iris J; Espinal-Ruiz, Mauricio; McClements, David Julian

    2015-09-30

    Protein nanoparticles are often not very stable in a complex food matrix because they are primarily stabilized by electrostatic repulsion. In this study, we envisaged the stabilization of zein nanoparticles through Maillard conjugation reactions with polysaccharides of different molecular mass. Zein nanoparticles (0.5% w/v) containing resveratrol (0.025% w/v grape skin extract) were produced by liquid antisolvent precipitation and coated with Maillard conjugates (MC) of sodium caseinate and different molecular mass carbohydrates during particle production. Zein nanoparticles coated with conjugated polysaccharides of 2.8, 37, and 150 kDa had diameters of 198 ± 5, 176 ± 6, and 180 ± 3 nm, respectively. The encapsulation efficiency (∼83%) was not affected by conjugation, but the conjugates significantly improved particle stability against changes in pH (2.0-9.0), CaCl2 addition (up to 100 mM), and heat treatment (30-90 °C, 30 min). Zein nanoparticles coated by MC may therefore be suitable delivery systems for hydrophobic bioactive molecules in a wide range of commercial products.

  14. Role of choline and glycine betaine in the formation of N,N-dimethylpiperidinium (mepiquat) under Maillard reaction conditions.

    PubMed

    Bessaire, Thomas; Tarres, Adrienne; Stadler, Richard H; Delatour, Thierry

    2014-01-01

    This study is the first to examine the role of choline and glycine betaine, naturally present in some foods, in particular in cereal grains, to generate N,N-dimethylpiperidinium (mepiquat) under Maillard conditions via transmethylation reactions involving the nucleophile piperidine. The formation of mepiquat and its intermediates piperidine - formed by cyclisation of free lysine in the presence of reducing sugars - and N-methylpiperidine were monitored over time (240°C, up to 180 min) using high-resolution mass spectrometry in a model system comprised of a ternary mixture of lysine/fructose/alkylating agent (choline or betaine). The reaction yield was compared with data recently determined for trigonelline, a known methylation agent present naturally in coffee beans. The role of choline and glycine betaine in nucleophilic displacement reactions was further supported by experiments carried out with stable isotope-labelled precursors (¹³C- and deuterium-labelled). The results unequivocally demonstrated that the piperidine ring of mepiquat originates from the carbon chain of lysine, and that either choline or glycine betaine furnishes the N-methyl groups. The kinetics of formation of the corresponding demethylated products of both choline and glycine betaine, N,N-demethyl-2-aminoethanol and N,N-dimethylglycine, respectively, were also determined using high-resolution mass spectrometry.

  15. Genetic, Physiological, and Environmental Factors Affecting Acrylamide Concentration in Fried Potato Products

    USDA-ARS?s Scientific Manuscript database

    The discovery of acrylamide in processed potato products has brought increased interest in the controlling Maillard reaction precursors (reducing sugars and amino acids) in potato tubers. Because of their effects on nonenzymatic browning of fried potato products, reducing sugars and amino acids have...

  16. Acacia gum as modifier of thermal stability, solubility and emulsifying properties of α-lactalbumin.

    PubMed

    de Oliveira, Fabíola Cristina; Dos Reis Coimbra, Jane Sélia; de Oliveira, Eduardo Basílio; Rodrigues, Marina Quadrio Raposo Branco; Sabioni, Rachel Campos; de Souza, Bartolomeu Warlene Silva; Santos, Igor José Boggione

    2015-03-30

    Protein-polysaccharide conjugates often display improved techno-functional properties when compared to their individual involved biomolecules. α-Lactalbumin:acacia gum (α-la:AG) conjugates were prepared via Maillard reaction by the dry-heating method. Conjugate formation was confirmed using results of absorbance, o-phthalaldehyde test, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography. Techno-functional properties (emulsifying characteristics, solubility, and thermal stability) were evaluated for α-la, α-la/AG mixtures and α-la:AG conjugates. Conjugate thermal stability was improved compared to pure α-la treated at the same conditions of conjugate formation. Response surface methodology was used to establish models to predict solubility and emulsifying activity as functions of the salt concentration, pH and reaction time. α-la:AG conjugate solubility is affected in a complex manner by the three factors analyzed. Emulsifying activity index (EAI) of α-la is significantly affected by pH, while the α-la:AG EAI is affected by the three analyzed factors. Both solubility and EAI are maximized with pH 8.0, NaCl concentration of 0.3 mol L(-1) and two days of Maillard reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effect of L-asparaginase on acrylamide mitigation in a fried-dough pastry model.

    PubMed

    Kukurová, Kristína; Morales, Francisco J; Bednáriková, Alena; Ciesarová, Zuzana

    2009-12-01

    A dough resembling traditional Spanish rosquillas was used as a model to represent classical fried-dough pastry to investigate the effects of asparaginase and heat treatment on amino acid levels and acrylamide mitigation. Wheat-based dough was deep fried at 180 and 200 degrees C for 4, 6, and 8 min. Two recipes were formulated by addition of different asparaginase levels (100 and 500 U/kg flour) to the dough. The temperature/time profile of the frying process, moisture, sugars, amino acids, acrylamide, and some indicators of the Maillard reaction (hydroxymethylfurfural, color, free fluorescence compounds, and browning) were determined to investigate the extent of the reaction and the effect on reactants. At the both levels of asparaginase used, 96-97% of the asparagine present was converted to aspartic acid, and consequently the acrylamide level was very efficiently reduced (up to 90%). The asparaginase also affected the content of glutamine and glutamic acid in dough, resulting in a 37% increase in glutamic acid compared with the untreated sample. Concerning color, browning and Maillard reaction parameters, no significant changes between untreated and enzymatically treated samples were observed, pointing out the potential industrial and domestic enzyme application.

  18. Formation of the reduced form of furaneol® (2,5-dimethyl-4-hydroxy-tetrahydrofuran-3-one) during the Maillard reaction through catalysis of amino acid metal salts.

    PubMed

    Nashalian, Ossanna; Wang, Xi; Yaylayan, Varoujan A

    2016-11-01

    Under pyrolytic conditions the acidity/basicity of Maillard reaction mixtures can be controlled through the use of hydrochloride or sodium salts of amino acids to generate a diversity of products. When the degradation of glucose was studied under pyrolytic conditions using excess sodium glycinate the reaction was found to generate a major unknown peak having a molecular ion at m/z 130. Subsequent in-depth isotope labelling studies indicated that acetol was an important precursor of this compound under pyrolytic and aqueous heating conditions. The dimerisation and cyclisation of acetol into 2,5-dimethyl-4-hydroxy-tetrahydrofuran-3-one was found to be catalysed by amino acid metal salts. Also, ESI/qTOF/MS studies indicated that the unknown peak has expected molecular formula of C6H10O3. Finally, a peak having the same retention time and mass spectrum was also generated pyrolytically when furaneol® was reduced with NaBH4 confirming the initial hypothesis regarding the unknown peak to be the reduced form of furaneol®. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Chocolate HILIC phases: development and characterization of novel saccharide-based stationary phases by applying non-enzymatic browning (Maillard reaction) on amino-modified silica surfaces.

    PubMed

    Schuster, Georg; Lindner, Wolfgang

    2011-06-01

    Novel saccharide-based stationary phases were developed by applying non-enzymatic browning (Maillard Reaction) on aminopropyl silica material. During this process, the reducing sugars glucose, lactose, maltose, and cellobiose served as "ligand primers". The reaction cascade using cellobiose resulted in an efficient chromatographic material which further served as our model Chocolate HILIC column. (Chocolate refers to the fact that these phases are brownish.) In this way, an amine backbone was introduced to facilitate convenient manipulation of selectivity by additional attractive or repulsive ionic solute-ligand interactions in addition to the typical HILIC retention mechanism. In total, six different test sets and five different mobile phase compositions were investigated, allowing a comprehensive evaluation of the new polar column. It became evident that, besides the so-called HILIC retention mechanism based on partition phenomena, additional adsorption mechanisms, including ionic interactions, take place. Thus, the new column is another example of a HILIC-type column characterized by mixed-modal retention increments. The glucose-modified materials exhibited the relative highest overall hydrophobicity of all grafted Chocolate HILIC columns which enabled retention of lipophilic analytes with high water content mobile phases.

  20. Corn fiber gum and milk protein conjugates with improved emulsion stability

    USDA-ARS?s Scientific Manuscript database

    Corn fiber gum (CFG), an alkaline hydrogen peroxide extract of the corn kernel milling by-product “corn fiber” was covalently conjugated with Beta-lactoglobulin (Beta-LG) and whey protein isolate (WPI). Covalent coupling of CFG to protein was achieved by dry heating reaction (Maillard-type) of CFG ...

  1. Progress and successes of the Specialty Crop Research Initiative on acrylamide reduction in processed potato products

    USDA-ARS?s Scientific Manuscript database

    Acrylamide, a suspected human carcinogen, is a Maillard reaction product that forms when carbohydrate-rich foods are cooked at high temperatures. Processed potato products, including French fries and potato chips, make a substantial contribution to total dietary acrylamide. Health safety concerns ra...

  2. Assessment of taurine bioavailability in pelleted and extruded diets with red drum Sciaenops ocellatus

    USDA-ARS?s Scientific Manuscript database

    Taurine has been reported to be efficacious in supporting growth of carnivorous fish species, particularly when supplemented to diets primarily containing plant feedstuffs. Although taurine may become unavailable to some extent by heat and moisture, and is susceptible to the Maillard reaction with r...

  3. Anti-glycation activities of phenolic constituents from Silybum marianum (Milk Thistle) flower in vitro and on human explants.

    PubMed

    Shin, Seoungwoo; Lee, Jung-A; Kim, Minkyung; Kum, Hyunwoo; Jung, Eunsun; Park, Deokhoon

    2015-02-19

    Glycation is an ageing reaction of naturally occurring sugars with dermal proteins, with clinical signs appearing in vivo around age 30, and increasing steadily/regularly with age. The suppleness of the dermis is affected by the formation of bridges between proteins and sugars (Maillard's reaction). The accumulation of advanced glycation end products (AGEs) in skin plays a very important role in skin ageing. Therefore, natural compounds or extracts that possess antiglycation activities may have great anti-ageing potential. In the present study, Silybum marianum flower extract (SMFE) was demonstrated to possess antiglycation activity. We found that SMFE inhibits glycation reaction between BSA and glucose. In addition, antiglycation activity of SMFE was confirmed in a human skin explants model. SMFE reduced Nε-(carboxymethyl) lysine (CML) expression, whereas SMFE stimulated fibrillin-1 expression compared to treatment with methyglyoxal. An active ingredient contributing to the observed activities was identified as silibinin. The antiglycation activity of silibinin was dose-dependent. The beneficial effects of silibinin may be applied to prevention or management of AGE-mediated pathologies, targeting in a pleiotropic and complementary way the biochemical and cellular bases of skin aging.

  4. Amides are novel protein modifications formed by physiological sugars.

    PubMed

    Glomb, M A; Pfahler, C

    2001-11-09

    The Maillard reaction, or nonenzymatic browning, proceeds in vivo, and the resulting protein modifications (advanced glycation end products) have been associated with various pathologies. Despite intensive research only very few structures have been established in vivo. We report here for the first time N(6)-[2-[(5-amino-5-carboxypentyl)amino]-2-oxoethyl]lysine (GOLA) and N(6)-glycoloyllysine (GALA) as prototypes for novel amide protein modifications produced by reducing sugars. Their identity was confirmed by independent synthesis and coupled liquid chromatography/mass spectrometry. Model reactions with N(alpha)-t-butoxycarbonyl-lysine showed that glyoxal and glycolaldehyde are immediate precursors, and reaction pathways are directly linked to N(epsilon)-carboxymethyllysine via glyoxal-imine structures. GOLA, the amide cross-link, and 1,3-bis(5-amino-5-carboxypentyl)imidazolium salt (GOLD), the imidazolium cross-link, share a common intermediate. The ratio of GOLA to GOLD is greater when glyoxal levels are low at constant lysine concentrations. GOLA and GALA formation from the Amadori product of glucose and lysine depends directly upon oxidation. With the advanced glycation end product inhibitors aminoguanidine and pyridoxamine we were able to dissect oxidative fragmentation of the Amadori product as a second mechanism of GOLA formation exactly coinciding with N(epsilon)-carboxymethyllysine synthesis. In contrast, the formation of GALA appears to depend solely upon glyoxal-imines. After enzymatic hydrolysis GOLA was found at 66 pmol/mg of brunescent lens protein. This suggests amide protein modifications as important markers of pathophysiological processes.

  5. Maillard neoglycans as inhibitors for in vitro adhesion of F4+ enterotoxigenic Escherichia coli to piglet intestinal cells.

    PubMed

    Sarabia-Sainz, Héctor Manuel; Mata Haro, Verónica; Sarabia Sainz, José Andre-I; Vázquez-Moreno, Luz; Montfort, Gabriela Ramos-Clamont

    2017-01-01

    Adhesion of enterotoxigenic (ETEC) E. coli to host intestinal cells is mediated by lectin-like fimbriae that bind to specific glycan moieties on the surfaces of enterocytes. To prevent in vitro binding of E. coli F4 fimbriae (F4 ETEC + ) to piglet enterocytes, neoglycans were synthesized by the Maillard reaction conjugating lactose (Lac), galacto-oligosaccharides (GOS) or chitin oligosaccharides (Ochit) to porcine serum albumin (PSA). Neoglycans were characterized by SDS-PAGE, intrinsic tryptophan fluorescence and recognition by plant lectins, as well as by F4 ETEC variants. Electrophoretic patterns suggested the binding to PSA of 63, 13 and 2 molecules of Lac, GOS and Ochit, respectively. All neoglycans displayed quenching of tryptophan fluorescence consistent with the degree of glycation estimated by SDS-PAGE. Plant lectins recognized the neoglycans according to their specificity, whereas antigenic variants of F4 ETEC (ab, ac and ad) recognized PSA-Ochit and PSA-Lac with higher affinity than that for GOS. Neoglycans partially hindered the in vitro binding of F4 + ETEC to piglet enterocytes in a dose-dependent manner. The most effective blocking was observed with PSA-Lac that partially inhibited the adhesion of bacteria to enterocytes in a dose dependent manner, as quantified by flow cytometry. Increased production of the cytokines IL-6 and TNF-α was observed in response to F4 + ETEC infection of enterocytes and production was reduced in the presence of PSA-Ochit and PSA-GOS. These results suggest that neoglycans synthesized by the Maillard reaction could be useful in the prophylaxis of diarrhea in piglets.

  6. Hydroxyurea-Lactose Interaction Study: In Silico and In Vitro Evaluation.

    PubMed

    Bachchhao, Kunal B; Patil, R R; Patil, C R; Patil, Dipak D

    2017-11-01

    The Maillard reaction between hydroxyurea (a primary amine-containing drug) and lactose (used as an excipient) was explored. The adduct of these compounds was synthesized by heating hydroxyurea with lactose monohydrate at 60 °C in borate buffer (pH 9.2) for 12 h. Synthesis of the adduct was confirmed using UV-visible spectroscopy and Fourier transform infrared, differential scanning calorimetry, high-pressure liquid chromatography, and liquid chromatography-mass spectrometry studies. An in silico investigation of how the adduct formation affected the interactions of hydroxyurea with its biological target oxyhemoglobin, to which it binds to generate nitric oxide and regulates fetal hemoglobin synthesis, was carried out. The in silico evaluations were complemented by an in vitro assay of the anti-sickling activity. Co-incubation of hydroxyurea with deoxygenated blood samples reduced the percentage of sickled cells from 38% to 12 ± 1.6%, whereas the percentage of sickled cells in samples treated with the adduct was 17 ± 1.2%. This indicated loss of anti-sickling activity in the case of the adduct. This study confirmed that hydroxyurea can participate in a Maillard reaction if lactose is used as a diluent. Although an extended study at environmentally feasible temperatures was not carried out in the present investigation, the partial loss of the anti-sickling activity of hydroxyurea was investigated along with the in silico drug-target interactions. The results indicated that the use of lactose in hydroxyurea formulations needs urgent reconsideration and that lactose must be replaced by other diluents that do not form Maillard adducts.

  7. Effect of theanine and polyphenols enriched fractions from decaffeinated tea dust on the formation of Maillard reaction products and sensory attributes of breads.

    PubMed

    Culetu, Alina; Fernandez-Gomez, Beatriz; Ullate, Monica; del Castillo, Maria Dolores; Andlauer, Wilfried

    2016-04-15

    The antiglycoxidative properties of theanine (TEF) and polyphenols enriched fractions (PEF) prepared from tea dust were tested in a model system composed of bovine serum albumin (BSA) and methylglyoxal (MGO). PEF caused a decrease in available free amino groups of BSA in presence and absence of MGO, suggesting the simultaneous occurrence of glycoxidation reaction and phenols-protein interaction. The presence of PEF and TEF inhibited formation of fluorescent advanced glycation end-products (AGEs). Moreover, theanine (TB) and polyphenol-enriched bread (PB) were formulated. A significant increase in free amino groups was observed in TBs with a dose-response effect, while addition of PEF in bread produced a significant decrease (p<0.05). PEF efficiently reduced fluorescent AGE formation in breads compared with TEF. The results are in line with the simplified model systems. PEF used as food ingredient allows obtaining a tasty food possessing health promoting properties and lower content of potential harmful compounds (AGEs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Identification, synthesis, isolation and characterization of new impurity in metoprolol tartrate tablets.

    PubMed

    Reddy, R Buchi; More, Kishor R; Gupta, Leena; Jha, Mukesh S; Magar, Laki

    2016-01-05

    A new unknown impurity was observed in accelerated stability studies of Metoprolol tartrate tablets. This impurity has been identified, synthesized and characterized through different spectral studies and confirmed as an adduct of lactose and Metoprolol formed by Maillard reaction. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Robust SERS Enhancement Factor Statistics Using Rotational Correlation Spectroscopy

    DTIC Science & Technology

    2012-05-02

    Polymer coatings quench the reaction , preventing further aggregation when a Raman active molecule is added. (B) The bulk Raman spectrum of MBA in...Schrof, W. J. Phys. Chem. A 2001, 105, 3673. (12) Jiang, J.; Bosnick, K.; Maillard , M.; Brus, L. J. Phys. Chem. B 2003, 107, 9964. (13) Talley, C. E

  10. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage.

    PubMed

    Oral, Rasim Alper; Dogan, Mahmut; Sarioglu, Kemal

    2014-01-01

    Using a glucose-glycine and asparagine-fructose system as a Maillard reaction model, the effects of seven polyphenols and solid phase extracts of three plants on the formation of furans and acrylamide were investigated. The polyphenols and extracts were used in biscuit formulation and acrylamide formation was observed. They were used for the storage of the glycine-glucose model system at three different temperatures. The addition of some of the extracts and polyphenols significantly decreased furan formation to different extents. All phenolic compounds and plant extracts decreased in the range of 30.8-85% in the model system except for oleuropein, and all of them decreased in the range of 10.3-19.2% in biscuit. Total furan formation was inhibited by caffeic acid, punicalagin, epicatechin, ECE and PPE during storage. This study evaluated and found the inhibitory effect on the formation of furans and acrylamide in Maillard reactions by the use of some plant extracts and polyphenols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Analysis of amino acids and carbohydrates in green coffee.

    PubMed

    Murkovic, Michael; Derler, Karin

    2006-11-30

    The analysis of carbohydrates and amino acids in green coffee is of the utmost importance since these two classes of compounds act as precursors of the Maillard reaction during which the colour and aroma are formed. During the course of the Maillard reaction potentially harmful substances like acrylamide or 5-hydroxymethyl-furfural accrue as well. The carbohydrates were analysed by anion-exchange chromatography with pulsed amperometric detection and the amino acids by reversed phase chromatography after derivatization with 6-amino-quinolyl-N-hydroxysuccinimidyl carbamate and fluorescence detection. Both methods had to be optimized to obtain a sufficient resolution of the analytes for identification and quantification. Sucrose is the dominant carbohydrate in green coffee with a concentration of up to 90 mg/g (mean = 73 mg/g) in arabica beans and significantly lower amounts in robusta beans (mean=45 mg/g). Alanine is the amino acid with the highest concentration (mean = 1200 microg/g) followed by asparagine (mean = 680 microg/g) in robusta and 800 microg/g and 360 microg/g in arabica respectively. In general, the concentration of amino acids is higher in robusta than in arabica.

  12. Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides.

    PubMed

    Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed

    2017-04-15

    Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. 2-Furoylmethyl amino acids as indicators of Maillard reaction during the elaboration of black garlic.

    PubMed

    Ríos-Ríos, Karina L; Vázquez-Barrios, M Estela; Gaytán-Martínez, Marcela; Olano, Agustín; Montilla, Antonia; Villamiel, Mar

    2018-02-01

    This study reports the formation of 2-furomethyl-amino acids (2-FM-AA) as indicators of Maillard reaction (MR) in black garlic elaboration, followed by the determination of furosine by ion-pair RP-HPLC-UV. The method was assessed for accuracy, repeatability and detection and quantitation limits indicating its adequacy. Traditional procedure of black garlic obtainment and the inclusion of convective drying (CDP) and ohmic heating (OHP) were assayed. For comparison purposes, three commercial black garlic samples were used. Together with furosine (2-FM-lysine), 2-furoylmethyl-γ-aminobutyric acid and 2-FM-arginine were detected. Levels of furosine were higher in CDP (46.6-110.1mg/100g protein) than in OHP (13.7-42.0mg/100g protein) samples, probably due to the most severe processing conditions used in the former. These results highlight the suitability of 2-FM-AA as chemical indicators to monitor the process of black garlic elaboration in order to obtain high quality products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chemical properties of commercially available honey species and the functional properties of caramelization and Maillard reaction products derived from these honey species.

    PubMed

    Nagai, T; Kai, N; Tanoue, Y; Suzuki, N

    2018-02-01

    The chemical parameters and the functionalities of six monofloral honeys of different botanical and geographical origins were investigated. Vitamins B 1 , B 2 , and C and the protein content of majority of honeys were distinguishable from general honey. Honeys not only were rich in a variety of functional components like flavonoids but also had strong anti-oxidant activities, scavenging activities against ROS, and anti-hypertensive and anti-allergic activities. Honeys were heated at 100 °C for 24 h and their browning intensity during heating process was observed to vary with botanical origin. The functional properties of caramelization and maillard reaction (MR) products derived from honeys during heating were evaluated. The browning of honeys progressed regardless of honey species. Anti-oxidant activities and scavenging activities against superoxide and DPPH radicals of products drastically increased, but ACE and hyaluronidase activities gradually decreased with passage of heating time. It concluded that the products, mainly melanoidins, produced simultaneously to browning process in caramelization and MR contributed to the expression of its useful function.

  15. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel.

    PubMed

    Lin, Jau-Tien; Liu, Shih-Chun; Hu, Chao-Chin; Shyu, Yung-Shin; Hsu, Chia-Ying; Yang, Deng-Jye

    2016-01-01

    Roasting treatment increased levels of unsaturated fatty acids (linoleic, oleic and elaidic acids) as well as saturated fatty acids (palmitic and stearic acids) in almond (Prunus dulcis) kernel oils with temperature (150 or 180 °C) and duration (5, 10 or 20 min). Nonetheless, higher temperature (200 °C) and longer duration (10 or 20 min) roasting might result in breakdown of fatty acids especially for unsaturated fatty acids. Phenolic components (total phenols, flavonoids, condensed tannins and phenolic acids) of almond kernels substantially lost in the initial phase; afterward these components gradually increased with roasting temperature and duration. Similar results also observed for their antioxidant activities (scavenging DPPH and ABTS(+) radicals and ferric reducing power). The changes of phenolic acid and flavonoid compositions were also determined by HPLC. Maillard reaction products (estimated with non-enzymatic browning index) also increased with roasting temperature and duration; they might also contribute to enhancing the antioxidant attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Odour characteristics of seafood flavour formulations produced with fish by-products incorporating EPA, DHA and fish oil.

    PubMed

    Peinado, I; Miles, W; Koutsidis, G

    2016-12-01

    Thermal degradation of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids was investigated. As a novelty, EPA, DHA or fish oil (FO) were incorporated as ω-fatty acid sources into model systems containing fish powder produced via Maillard reactions. Aroma composition of the resulting products was determined and complemented with sensory evaluation. Heating of the oils led to a fast decrease of both, EPA and DHA, and to the development of characteristic volatile compounds including hexanal, 2,4-heptadienal and 4-heptenal, the most abundant being (E,E)-2,4-heptadienal (132±44-329±122μmol/g). EPA and DHA addition to the model systems increased the concentration of these characteristic volatile compounds. However, it did not have a considerable impact on the development of characteristic Maillard reaction products, such as pyrazines and some aldehydes. Finally, the results of the sensory evaluation illustrated that panellists would chose samples fortified with FO as the ones with a more pleasant aroma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations.

    PubMed

    Dack, Rachael E; Black, Gary W; Koutsidis, Georgios; Usher, St John

    2017-10-01

    The effect of Maillard reaction products (MRPs), formed during the production of dark malts, on the synthesis of higher alcohols and esters in beer fermentations was investigated by headspace solid-phase microextraction GC-MS. Higher alcohol levels were significantly (p<0.05) higher in dark malt fermentations, while the synthesis of esters was inhibited, due to possible suppression of enzyme activity and/or gene expression linked to ester synthesis. Yeast strain also affected flavour synthesis with Saccharomyces cerevisiae strain A01 producing considerably lower levels of higher alcohols and esters than S288c and L04. S288c produced approximately double the higher alcohol levels and around twenty times more esters compared to L04. Further investigations into malt type-yeast strain interactions in relation to flavour development are required to gain better understanding of flavour synthesis that could assist in the development of new products and reduce R&D costs for the industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Acute oral safety study of sodium caseinate glycosylated via maillard reaction with galactose in rats.

    PubMed

    Anadón, Arturo; Martínez, Maria A; Ares, Irma; Castellano, Victor; Martínez-Larrañaga, Maria R; Corzo-Martínez, Marta; Moreno, F Javier; Villamiel, Mar

    2014-03-01

    In order to potentially use sodium caseinate (SC) glycated with galactose (Gal) in the food industry as a new functional ingredient with proved technological and biological properties, an evaluation of oral acute toxicity has been carried out. An acute safety study with SC-Gal glycoconjugates in the Wistar rat with a single oral gavage dose of 2,000 mg/kg of body weight was conducted. The SC-Gal glycoconjugates were well tolerated; no adverse effects or mortality was observed during the 2-week observation period. No abnormal signs, behavioral changes, body weight changes, or alterations in food and water consumption occurred. After this period, no changes in hematological and serum chemistry parameters, organ weights, or gross pathology or histopathology were detected. It was concluded that SC-Gal glycoconjugates obtained via the Maillard reaction were well tolerated in rats at an acute oral dose of 2,000 mg/kg of body weight. The SC-Gal glycoconjugates have a low order of acute toxicity, and the oral 50 % lethal dose for male and female rats is in excess of 2,000 mg/kg of body weight.

  19. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Wiltafsky, Markus; Fogliano, Vincenzo

    2015-12-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Proteomic characterization of intermediate and advanced glycation end-products in commercial milk samples.

    PubMed

    Renzone, Giovanni; Arena, Simona; Scaloni, Andrea

    2015-03-18

    The Maillard reaction consists of a number of chemical processes affecting the structure of the proteins present in foods. We previously accomplished the proteomic characterization of the lactosylation targets in commercial milk samples. Although characterizing the early modification derivatives, this analysis did not describe the corresponding advanced glycation end-products (AGEs), which may be formed from the further oxidation of former ones or by reaction of oxidized sugars with proteins, when high temperatures are exploited. To fill this gap, we have used combined proteomic procedures for the systematic characterization of the lactosylated and AGE-containing proteins from the soluble and milk fat globule membrane fraction of various milk products. Besides to confirm all lactulosyl-lysines described previously, 40 novel lactosylation sites were identified. More importantly, 308 additional intermediate and advanced glyco-oxidation derivatives (including cross-linking adducts) were characterized in 31 proteins, providing the widest qualitative inventory of modified species ascertained in commercial milk samples so far. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyllysine and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Depending on thermal treatment, a variable number of modification sites was identified within each protein; their number increased with harder food processing conditions. Among the modified proteins, species involved in assisting the delivery of nutrients, defense response against pathogens and cellular proliferation/differentiation were highly affected by AGE formation. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, abates the bioavailability of the essential amino acids and eventually affects food digestibility. These aspects are of particular importance in products intended for infant diet, such as milk powders and infant formulas. We used combined shotgun proteomic procedures for the systematic characterization of intermediate and advanced glycoxidation protein products in various raw and commercial milk samples. Several hundreds of modified species were characterized as deriving from 31 milk proteins, providing the widest qualitative inventory of assigned components in this fluid. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyl-lysine, and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Proteins involved in nutrient delivery, defense response against pathogens and cellular proliferation/differentiation were highly subjected to intermediate and advanced glyco-oxidation modification. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, diminishes the bioavailability of the essential amino acids, eventually affects food digestibility and determines a potential increase of specific allergens. These information are important points of interest to connect the extent of the Maillard reaction present in different commercial samples with the potential nutritional aspects mentioned above. These themes have to be fully evaluated in a next future for a complete estimation of the nutritional and toxicological properties of the dairy products deriving from severe heat processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.

    PubMed

    Chen, Hengye; Virk, Muhammad Safiullah; Chen, Fusheng

    2016-06-01

    The concentration of advanced glycation end products (AGEs) in foods, which are formed by Maillard reaction, has demonstrated as risk factors associated with many chronic diseases. The AGEs inhibitory activities of five common phenolic acids (protocatechuic acid, dihydroferulic acid, p-coumaric acid, p-hydroxybenzoic acid and salicylic acid) with different chemical properties had been investigated in two food simulation systems (glucose-bovine serum albumin (BSA) and oleic acid-BSA). The results substantiated that the AGEs inhibitory abilities of phenolic acids in the oleic acid BSA system were much better than the glucose-BSA system for their strong reducing powers and structures. Among them, dihydrogenferulic acid showed strong inhibition of AGEs formation in oleic acid-BSA system at 0.01 mg/mL compared to nonsignificant AGEs inhibitory effect in oleic acid-BSA system at 10-fold higher concentration (0.1 mg/mL). This study suggests that edible plants rich in phenolic acids may be used as AGEs inhibitor during high-fat cooking.

  2. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products.

    PubMed

    Delgado-Andrade, Cristina; Pastoriza de la Cueva, Silvia; Peinado, M Jesús; Rufián-Henares, José Ángel; Navarro, M Pilar; Rubio, Luis A

    2017-10-01

    Bread crust (BC) is one of the major sources of Maillard reaction products (MRPs) in the Western diet. This work was designed to analyze the impact of diets containing important levels of MRPs from BC on intestinal bacterial growth and short chain fatty acids (SCFAs) production in adult rats. Additionally, the pools of compounds excreted in feces attending to their molecular weights were analyzed. Rats were fed for 88days a control diet or diets containing BC or its soluble high molecular weight (HMW), soluble low molecular weight (LMW) or insoluble fractions, respectively. Intestinal (cecum) microbiota composition was determined by qPCR analysis. Consumption of the BC diet lowered (P<0.05) Lactobacillus spp. and Bifidobacterium spp. log 10 counts (8 and 14%, respectively), an effect for which soluble LMW and HMW fractions of BC seemed to be responsible. In these same animals, Escherichia/Shigella counts increased by around 45% (P<0.05), a fact which correlated with a higher production of formic acid in feces (r=0.8197, P=0.0458), and likely caused by the combined consumption of all MRPs contained in the BC. A significant 5-fold increment (P<0.05) was detected in the fecal proportion of propionic acid in the BC group, one of the products that have largely been associated with anti-inflammatory actions. Regarding the distribution of MRPs in feces, only the LMW fed group exhibited a predominance of those ranging between 90,000-1000Da, whereas the rest of the groups presented higher amounts of products above 90,000Da. It is concluded that dietary Maillard reaction products are in vivo fermented by the gut microbiota, thereby changing both the pattern of SCFAs production and the microbiota composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Maillard reaction products enriched food extract reduce the expression of myofibroblast phenotype markers.

    PubMed

    Ruhs, Stefanie; Nass, Norbert; Somoza, Veronika; Friess, Ulrich; Schinzel, Reinhard; Silber, Rolf-Edgar; Simm, Andreas

    2007-04-01

    Advanced glycation end products (AGE) are associated with a wide range of degenerative diseases. The present investigation aimed at analysing the influence of AGE containing nutritional extracts on cardiac fibroblasts (CFs) as the major cell type responsible for cardiac fibrosis. Mice CFs were treated with bread crust extract (BCE) which contained significant amounts of a variety of AGE modifications. BCE treatment with up to 30 mg/mL did not impair cell viability. Furthermore, BCE induced a moderate elevation of reactive oxygen species (ROS) production and activation of redox sensitive pathways like the p42/44(MAPK), p38(MAPK) and NF-kappaB but did not alter Akt kinase phosphorylation. Expression of smooth muscle alpha-actin and tropomyosin-1, which represent markers for myofibroblast differentiation, was reduced after bread crust treatment. These data suggest a putative antifibrotic effect of melanoidin-rich food.

  4. The antioxidative effect of bread crust in a mouse macrophage reporter cell line.

    PubMed

    Pötzsch, Sandy; Dalgalarrondo, Michele; Bakan, Benedicte; Marion, Didier; Somoza, Veronika; Stangl, Gabriele; Silber, Rolf-Edgar; Simm, Andreas; Navarrete Santos, Alexander

    2014-10-01

    Free radicals and oxidative stress are important factors in the biology of aging and responsible for the development of age-related diseases. One way to reduce the formation of free radicals is to boost the antioxidative system by nutrition. Heat treatment of food promote the Maillard reaction which is responsible for their characteristic color and taste. During the Maillard reaction reducing sugars react with proteins in a non-enzymatic way leading to the formation of advanced glycation end products (AGEs). As an AGE-rich source our group used bread crust (BCE) to investigate the effect of AGEs on the antioxidant defense. It is well known that the NF-kB pathway is activated by treatment of cells with AGEs. Therefore for stimulation with the BCE we used the macrophage reporter cell line RAW/NF-kB/SEAPorter™. Amino acid analysis and LC-MS/MS by Orbitrap Velo was used to determine the bioactive compounds in the soluble BCE. The radical scavenging effect was conducted by the DPPH-assay. BCE induced the NF-kB pathway in RAW/NF-kB/SEAPorter™ cells and also showed a concentration-dependent antioxidative capacity by the DPPH-assay. With the LC/MS and amino acid analyses, we identified the presence of gliadin in BCE confirmed by using specific gliadin antibodies. By immunoprecipitation (IP) with an antibody against γ-gliadin and western blot probing against the AGE carboxymethyllysine (CML) the presence of AGE-gliadin in BCE was confirmed. Stimulation of the RAW/NF-kB/SEAPorter™ cells with the γ-gliadin depleted fractions did not activate the NF-kB pathway. CML-modified gliadin in the BCE is a bioactive compound of the bread crust which is responsible for the antioxidative capacity and for the induction of the NF-kB pathway in mouse macrophages. Copyright © 2014. Published by Elsevier Inc.

  5. Aldimine Formation Reaction, the First Step of the Maillard Early-phase Reaction, Might be Enhanced in Variant Hemoglobin, Hb Himeji.

    PubMed

    Koga, Masafumi; Inada, Shinya; Shimizu, Sayoko; Hatazaki, Masahiro; Umayahara, Yutaka; Nishihara, Eijun

    2015-01-01

    Hb Himeji (β140Ala→Asp) is known as a variant hemoglobin in which glycation is enhanced and HbA1c measured by immunoassay shows a high value. The phenomenon of enhanced glycation in Hb Himeji is based on the fact that the glycation product of variant hemoglobin (HbX1c) shows a higher value than HbA1c. In this study, we investigated whether aldimine formation reaction, the first step of the Maillard early-phase reaction, is enhanced in Hb Himeji in vitro. Three non-diabetic subjects with Hb Himeji and four non-diabetic subjects without variant hemoglobin were enrolled. In order to examine aldimine formation reaction, whole blood cells were incubated with 500 mg/dl of glucose at 37°C for 1 hour and were analyzed by high-performance liquid chromatography. Both HbA1c and HbX1c were not increased in this condition. After incubation with glucose, labile HbA1c (LA1c) fraction increased in the controls (1.1±0.3%). In subjects with Hb Himeji increases in the labile HbX1c (LX1c) fraction as well as the LA1c fraction were observed, and the degree of increase in the LX1c fraction was significantly higher than that of the LA1c fraction (1.8±0.1% vs. 0.5±0.2%, P<0.01). We have shown for the first time that aldimine (LX1c) formation reaction might be enhanced in Hb Himeji in vitro. The 140th amino acid in β chain of hemoglobin is suggested to be involved in aldimine formation reaction. © 2015 by the Association of Clinical Scientists, Inc.

  6. Extensive Variation in Fried Chip Color and Tuber Composition in Cold-Stored Tubers of Wild Potato (Solanum) Germplasm

    USDA-ARS?s Scientific Manuscript database

    Cold-induced sweetening and browning in the Maillard reaction have driven extensive research in the areas of plant physiology, biochemistry, and food science in Solanum tuberosum. To date, research in these areas excluded wild relatives of potato. This is the first assessment of cold-stored tuber c...

  7. Antimicrobial Mechanism of Action of Surfactant Lipid Preparations in Enteric Gram-Negative Bacilli

    DTIC Science & Technology

    2001-12-25

    The addition of EDTA/Tris to the reaction the bacterial cells in the assay time (15min). W60C (1%) mixture results in chelation of ions, facilitating... Maillard , J.Y. (1999) Do antisep- Hamouda, T., Hayes, M.M., Cao, Z. et al. (1999) A novel surfac- tics and disinfectants select for antibiotic resistance

  8. Controlled release of B-carotene in B-lactoglobulin-dextran conjugates nanoparticles in vitro digestion and the transport with Caco-2 monolayers

    USDA-ARS?s Scientific Manuscript database

    Undesirable aggregation of nanoparticles stabilized by proteins may may occur at the protein’s isoelectric point when the particle has zero net charge. Aggregation may be reduced bychanging the isoelectric point by conjugation of free amino groups with reducing sugars (Maillard reaction). Alternativ...

  9. Aerosol-Forming Reactions of Glyoxal, Methylglyoxal and Amino Acids in Clouds

    NASA Astrophysics Data System (ADS)

    de Haan, D. O.; Smith, K. W.; Stroik, D. R.; Corrigan, A. L.; Lee, F. E.; Phan, J. T.; Conley, A. C.

    2008-12-01

    Glyoxal and methylglyoxal are two common aldehydes present in fog and cloud water. Amino acids are present in clouds at similar concentrations. Here we present bulk and aerosol mass spectroscopic data demonstrating that irreversible reactions between glyoxal and amino acids, triggered by droplet evaporation, produce N-derivatized imidazole compounds along with deeply colored Maillard reaction products. These reactions can occur in the dark and in the absence of oxidants. Reactions between methylglyoxal and amino acids produce analogous methylated products plus oligomers with masses up to m/z = 1000. These reactions, which go to completion on the 10-min-timescale of cloud processing, could be significant sources of secondary organic aerosol and humic-like substances (HULIS or brown carbon).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, C.J.; Thorpe, S.R.; Baynes, J.W.

    Lysozyme (LZM) was used as a model protein for studies on the effects of oxygen on the Maillard reaction. During a 4 wk incubation in 0.25 M glucose (0.2 M phosphate buffer, pH 7.4, 37/sup 0/C) the kinetics of glycation of LZM were similar under air and N/sub 2/, yielding approx.2 mol Lys modified per mol LZM. Fructoselysine (FL) was the major Lys derivative formed under air and N/sub 2/, while N/sup epsilon/-carboxymethyllysine (CML) accounted for approx.30% of FL formed at 4 wk under air. A loss of 1 mol Arg per mol LZM was also observed under both airmore » and N/sub 2/, with greater loss from LZM dimer vs. monomer, suggesting a role for Arg in the crosslinking reaction. Dimer and monomer did not differ in content of Lys, FL or CML (under air), but dimer was 4 times as fluorescent as monomer, suggesting that crosslink structures are fluorescent. Despite significant differences in kinetics of crosslinking, browning and development of fluorescence of LZM under air vs. N/sub 2/, products formed had similar absorbance and fluorescence spectra. Based on inhibition by chelators and radical scavengers, the more rapid crosslinking and development of fluorescence under air was shown to result from oxygen radical reactions. These results indicate that both radical and non-radical processes may contribute to the Maillard reaction, but that the browning, fluorescence and crosslinking of protein may proceed in the absence of oxygen and oxygen radicals.« less

  11. Storage stability of cauliflower soup powder: The effect of lipid oxidation and protein degradation reactions.

    PubMed

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-09-15

    Soups based on cauliflower soup powders, prepared by dry mixing of ingredients and rapeseed oil, showed a decrease in quality, as evaluated by a sensory panel, during the storage of the soup powder in the dark for up to 12weeks under mildly accelerated conditions of 40°C and 75% relative humidity. Antioxidant, shown to be effective in protecting the rapeseed bulk oil, used for the powder preparation, had no effect on storage stability of the soup powder. The freshly prepared soup powder had a relatively high concentration of free radicals, as measured by electron spin resonance spectroscopy, which decreased during storage, and most remarkably during the first two weeks of storage, with only marginal increase in lipid hydroperoxides as primary lipid oxidation products, and without any increase in secondary lipid oxidation products. Analyses of volatiles by SPME-GC-MS revealed a significant increase in concentrations of 2-methyl- and 3-methyl butanals, related to Maillard reactions, together with an increase in 2-acetylpyrrole concentration. The soup powders became more brown during storage, as indicated by a decreasing Hunter L-value, in accord with non-enzymatic browning reactions. A significant increase in the concentrations of dimethyl disulfide in soup powder headspace indicated free radical-initiated protein oxidation. Protein degradation, including Maillard reactions and protein oxidation, is concluded to be more important than lipid oxidation in determining the shelf-life of dry cauliflower soup powder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Chemical properties and reactive oxygen and nitrogen species quenching activities of dry sugar-amino acid maillard reaction mixtures exposed to baking temperatures.

    PubMed

    Chen, Xiu-Min; Liang, Ningjian; Kitts, David D

    2015-10-01

    Maillard reaction products (MRPs) derived from 10 different, dry sugar-amino acid reaction model systems were examined for changes in color index (E), sugar loss, and formation of α-dicarbonyl compounds; the changes were correlated with relative activities to quench both reactive oxygen (ROS) and reactive nitrogen (RNS) species. Reducing sugars, xylose, ribose, fructose, glucose, and non-reducing sucrose were reacted with glycine (Xyl-Gly, Rib-Gly, Fru-Gly, Glc-Gly, and Suc-Gly), or lysine (Xyl-Lys, Rib-Lys, Fru-Lys, Glc-Lys, and Suc-Lys), respectively, at temperatures of 150°C and 180°C for time periods ranging from 5 to 60min. ROS quenching capacity was negatively correlated with color index (E) (r=-0.604, P<0.001), and positively correlated with sugar loss (r=0.567, P<0.001). MRPs also exhibited activity to quench RNS as assessed by nitric oxide (NO) inhibition in differentiated Caco-2 cells that were induced with interferon-γ (IFN-γ) and phorbol ester (PMA) cocktail. We also showed a correlation between RNS and color index, sugar loss, and ROS quenching activities for MR mixtures that were heated for a short time (e.g. 10min) at 150°C. MRP quenching of ROS was largely influenced by sugar type, whereas, RNS quenching was dependent more so on the interaction between reactants and reaction conditions used to generate MRPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Control of Maillard-type off-flavor development in ultrahigh-temperature-processed bovine milk by phenolic chemistry.

    PubMed

    Kokkinidou, Smaro; Peterson, Devin G

    2014-08-13

    The application of phenolic compounds to suppress Maillard chemistry and off-flavor development in ultrahigh-termperature (UHT)-processed milk during processing and storage was investigated. Five phenolic compounds were examined for structure-reactivity relationships (catechin, genistein, daidzein, 1,2,3-trihydroxybenzene, and 1,3,5-trihydroxybenzene). The levels of key transient Maillard reaction (MR) intermediates (reactive carbonyl species) and select off-flavor markers (methional, 2-acetyl-2-thiazoline, 2-acetyl-1-pyrroline) were quantified by LC-MS/MS and GC-MS/ToF, respectively. The addition of phenolic compounds prior to UHT processing significantly reduced the concentration of MR intermediates and related off-flavor compounds compared to a control sample (p < 0.05). All phenolic compounds demonstrated unique structure reactivity and, notably, those with a more activated A-ring for aromatic electrophilic substitution (catechin, genistein, and 1,3,5-trihydroxybenzene) showed the strongest suppression effect on the off-flavor markers and reactive carbonyl species. Sensory studies were in agreement with the analytical data. The cooked flavor intensity was rated lower for the recombination model samples of the catechin-treated UHT milk compared to the control UHT milk. Additionally, consumer acceptability studies showed catechin-treated UHT milk to have significantly higher liking scores when compared the control sample (Fisher's LSD = 0.728).

  14. Chemiluminescence development after initiation of Maillard reaction in aqueous solutions of glycine and glucose: nonlinearity of the process and cooperative properties of the reaction system

    NASA Astrophysics Data System (ADS)

    Voeikov, Vladimir L.; Naletov, Vladimir I.

    1998-06-01

    Nonenzymatic glycation of free or peptide bound amino acids (Maillard reaction, MR) plays an important role in aging, diabetic complications and atherosclerosis. MR taking place at high temperatures is accompanied by chemiluminescence (CL). Here kinetics of CL development in MR proceeding in model systems at room temperature has been analyzed for the first time. Brief heating of glycine and D-glucose solutions to t greater than 93 degrees Celsius results in their browning and appearance of fluorescencent properties. Developed In solutions rapidly cooled down to 20 degrees Celsius a wave of CL. It reached maximum intensity around 40 min after the reaction mixture heating and cooling it down. CL intensity elevation was accompanied by certain decoloration of the solution. Appearance of light absorbing substances and development of CL depended critically upon the temperature of preincubation (greater than or equal to 93 degrees Celsius), initial pH (greater than or equal to 11,2), sample volume (greater than or equal to 0.5 ml) and reagents concentrations. Dependence of total counts accumulation on a system volume over the critical volume was non-monotonous. After reaching maximum values CL began to decline, though only small part of glucose and glycin had been consumed. Brief heating of such solutions to the critical temperature resulted in emergence of a new CL wave. This procedure could be repeated in one and the same reaction system for several times. Whole CL kinetic curve best fitted to lognormal distribution. Macrokinetic properties of the process are characteristic of chain reactions with delayed branching. Results imply also, that self-organization occurs in this system, and that the course of the process strongly depends upon boundary conditions and periodic interference in its course.

  15. [Advanced glycation end products: A risk factor for human health].

    PubMed

    Wautier, M-P; Tessier, F J; Wautier, J-L

    2014-11-01

    Advanced glycation end products (AGE) result from a chemical reaction between the carbonyl group of reducing sugar and the nucleophilic NH2 of a free amino acid or a protein; lysine and arginine being the main reactive amino acids on proteins. Following this first step, a molecular rearrangement occurs, rearrangement of Amadori resulting to the formation of Maillard products. Glycation can cause the clouding of the lens by inducing reactions crosslinking proteins. Specialized receptors (RAGE, Galectin 3…) bind AGE. The binding to the receptor causes the formation of free radicals, which have a deleterious effect because they are powerful oxidizing agents, but also play the role of intracellular messenger, altering the cell functions. This is especially true at the level of endothelial cells: the attachment of AGE to RAGE receptor causes an increase in vascular permeability. AGE binding to endothelium RAGE and to monocytes-macrophages, led to the production of cytokines, growth factors, to the expression of adhesion molecules, and the production of procoagulant activity. Diabetic retinopathy is related to excessive secretion of vascular growth factor (vascular endothelial growth factor [VEGF]). AGE-RAGE receptor binding causes the synthesis and secretion of VEGF. Increased permeability, facilitation of leukocyte migration, the production of reactive oxygen species, cytokines and VEGF suggest that the AGE could be an element of a cascade of reactions responsible for the diabetic angiopathy and vascular damages observed during aging and chronic renal failure. Balanced diet or some drugs can limit the deleterious effect of AGE. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. [Experiences with the enzymatic determination of sugar and sugar substitutes in dietetic cake for diabetics (author's transl)].

    PubMed

    Klingebiel, L; Grossklaus, R; Pahlke, G

    1979-11-01

    Sorbitol and fructose were determined enzymatically in home-made and commercially produced cake for diabetics. In some commercial products, a loss of fructose depending upon the baking period was found. This loss of fructose is to be attributed to the Maillard reaction. The findings were confirmed by comparative studies will a reference cake.

  17. Formation of Sphere-like Au Nanoparticles on Substrate with Laser Illumination and Their Surface Plasmon Behaviors

    DTIC Science & Technology

    2010-09-17

    depends on the material type of the substrate and the metal melting temperature. Based on the reaction -free theory, the contact angle of an Au...Luo, Q.; Zhang, X. Nano Lett. 2004, 4, 1085-1088. (13) Maillard , M.; Huang, P.; Brus, L. Nano Lett. 2003, 3, 1611-1615. (14) Jin, R.; Cao, Y. C.; Hao

  18. 1H NMR and SPME-GC/MS study of hydrolysis, oxidation and other reactions occurring during in vitro digestion of non-oxidized and oxidized sunflower oil. Formation of hydroxy-octadecadienoates.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2017-01-01

    Both fresh and slightly oxidized sunflower oils, as models of omega-6 rich lipids, were submitted to in vitro gastrointestinal digestion and studied by 1 H NMR and SPME-GC/MS. Changes in lipolysis degree, lipid composition and oxidative level were studied by 1 H NMR. Three quantitative approaches were used and several equations were newly developed. In oxidized oil digestates slightly lower hydrolysis and a higher advance of oxidation took place during digestion. This latter was evidenced by a greater decrease of lipid unsaturation degree and enhanced generation of oxidation products (cis,trans-hydroperoxy-octadecadienoates, cis,trans- and trans,trans-hydroxy-octadecadienoates). For the first time, the generation of hydroxy-octadecadienoates during in vitro digestion is reported. Furthermore, SPME-GC/MS study of non-digested and digested samples headspaces confirmed that lipid oxidation occurred: abundances of volatile markers increased (including potentially toxic alpha,beta-unsaturated aldehydes), especially in oxidized oils digestates. Markers of Maillard-type and esterification reactions were also detected in the digestates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Glycation Reactions of Casein Micelles.

    PubMed

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  20. Dietary Maillard reaction products and their fermented products reduce cardiovascular risk in an animal model.

    PubMed

    Oh, N S; Park, M R; Lee, K W; Kim, S H; Kim, Y

    2015-08-01

    This study examined the effects of Maillard reaction products (MRP) and MRP fermented by lactic acid bacteria on antioxidants and their enhancement of cardiovascular health in ICR mouse and rat models. In previous in vitro studies, the selected lactic acid bacteria were shown to significantly affect the activity of MRP. The expression of genes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) related to antioxidant activity was upregulated by Maillard-reacted sodium caseinate (cMRP), and cMRP fermented by Lactobacillus fermentum H9 (F-cMRP) synergistically increased the expression of catalase and superoxide dismutase when compared with the high-cholesterol-diet group. Bleeding time, the assay for determination of antithrombotic activity, was significantly prolonged by Maillard-reacted whey protein concentration (wMRP) and wMRP fermented by Lactobacillus gasseri H10 (F-wMRP), similar to the bleeding time of the aspirin group (positive control). In addition, the acute pulmonary thromboembolism-induced mice overcame severe body paralysis or death in both the wMRP and the F-wMRP groups. In the serum-level experiment, cMRP and F-cMRP significantly reduced the serum total and low-density lipoprotein cholesterol levels and triglycerides but had only a slight effect on high-density lipoprotein cholesterol. The levels of aspartate transaminase and alanine transaminase also declined in the cMRP and F-cMRP intake groups compared with the high-cholesterol-diet group. In particular, F-cMRP showed the highest reducing effects on triglycerides, aspartate transaminase, and alanine transaminase. Moreover, the expression of cholesterol-related genes in the F-cMRP group demonstrated greater effects than for the cMRP group in the level of cholesterol 7 α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and low-density lipoprotein receptors compared with the high-cholesterol-diet group. The protective role of cMRP and F-cMRP in the high-cholesterol group may have been the result of an antioxidative defense mechanism that regulated cholesterol synthesis and metabolism. Therefore, F-cMRP and cMRP have the potential to play preventive and therapeutic roles in the management of cardiovascular disease. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Cation or Solvent-Induced Supermolecular Phthalocyanine Formation: Crown Ether Substituted Phthalocyanines.

    DTIC Science & Technology

    1987-06-01

    38.) of slightly bluish green powder (Anal, see Table I). tH NMR(CDCl 3 ) 8.02(8H,s), 4.7-3.6(64H,m), - 3.41(2H,s). ZnCRPc was obtained by reaction of...J.P.; Bencosme, S.; Evitt, E., Sessler, J. Chem. Phys. 1984, 86, 161. Mialoco, C.; Giannotti, A., Maillard , P.; Momeuteau, M. Chem. Phys. Lett. 1984

  2. Assessment of protein quality of soybean meal and 00-rapeseed meal toasted in the presence of lignosulfonate by amino acid digestibility in growing pigs and Maillard reaction products.

    PubMed

    Hulshof, T G; Bikker, P; van der Poel, A F B; Hendriks, W H

    2016-03-01

    An experiment was conducted to determine protein quality in processed protein sources using the content of AA, -methylisourea (OMIU)-reactive Lys, Maillard reaction products (MRP), and cross-link products; the standardized ileal digestibility (SID) of CP and AA; and growth performance in growing pigs as criteria. Differences in protein quality were created by secondary toasting (at 95°C for 30 min) of soybean meal (SBM) and rapeseed meal (RSM) in the presence of lignosulfonate resulting in processed SBM (pSBM) and processed RSM (pRSM). The processing treatment was used as a model for overprocessed protein sources. Ten growing pigs were each fed 1 of the 4 diets containing SBM, pSBM, RSM, or pRSM in each of 3 periods. Ileal chyme was collected at the end of each period and analyzed for CP, AA, and OMIU-reactive Lys. Diets were analyzed for furosine and carboxymethyllysine (CML) as an indicator for MRP and lysinoalanine (LAL), which is a cross-link product. The SBM and RSM diets contained furosine, CML, and LAL, indicating that the Maillard reaction and cross-linking had taken place in SBM and RSM, presumably during the oil extraction/desolventizing process. The amounts of furosine, CML, and LAL were elevated in pSBM and pRSM due to further processing. Processing resulted in a reduction in total and OMIU-reactive Lys contents and a decrease in G:F from 0.52 to 0.42 for SBM and 0.46 to 0.39 for RSM ( = 0.006), SID of CP from 83.9 to 71.6% for SBM and 74.9 to 64.6% for RSM ( < 0.001), and SID of AA ( < 0.001), with the largest effects for total and OMIU-reactive Lys. The effects of processing could be substantial and should be taken into account when using processed protein sources in diets for growing pigs. The extent of protein damage may be assessed by additional analyses of MRP and cross-link products.

  3. Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes.

    PubMed

    Pamplona, Reinald; Ilieva, Ekaterina; Ayala, Victoria; Bellmunt, Maria Josep; Cacabelos, Daniel; Dalfo, Esther; Ferrer, Isidre; Portero-Otin, Manuel

    2008-04-01

    Nonenzymatic protein modifications are generated from direct oxidation of amino acid side chains and from reaction of the nucleophilic side chains of specific amino acids with reactive carbonyl species. These reactions give rise to specific markers that have been analyzed in different neurodegenerative diseases sharing protein aggregation, such as Alzheimer's disease, Pick's disease, Parkinson's disease, dementia with Lewy bodies, Creutzfeldt-Jakob disease, and amyotrophic lateral sclerosis. Collectively, available data demonstrate that oxidative stress homeostasis, mitochondrial function, and energy metabolism are key factors in determining the disease-specific pattern of protein molecular damage. In addition, these findings suggest the lack of a "gold marker of oxidative stress," and, consequently, they strengthen the need for a molecular dissection of the nonenzymatic reactions underlying neurodegenerative processes.

  4. Possibility of the Nonenzymatic Browning (Maillard) Reaction in the ISM

    NASA Astrophysics Data System (ADS)

    Jalbout, Abraham F.; Shipar, M. Abul Haider

    2008-04-01

    The possibility of the occurrence of the nonenzymatic browning reaction in the gaseous phase in the interstellar medium has been investigated by using Density Functional Theory computations. Mechanisms for the reactions between formaldehyde ( Fald) + glycine ( Gly), Fald + NH 3 and Fald + methylamine ( MeAm) have been proposed, and the possibility of the formation of different compounds in the proposed mechanisms has been evaluated through calculating the Gibb's free energy changes for different steps of the reaction, by following the total mass balance. The Fald + Gly reaction under basic conditions is found as the most favorable for producing 1-methyl-amino methene or 1-methyl-amino methelene ( MAM). The reaction under acidic conditions is found to be the least favorable for producing MAM. The Fald + NH 3 reaction is found to be plausible for the production of MeAm, which can participate by reaction with Fald, resulting in the formation of MAM.

  5. Porphyrin involvement in redshift fluorescence in dentin decay

    NASA Astrophysics Data System (ADS)

    Slimani, A.; Panayotov, I.; Levallois, B.; Cloitre, T.; Gergely, C.; Bec, N.; Larroque, C.; Tassery, H.; Cuisinier, F.

    2014-05-01

    The aim of this study was to evaluate the porphyrin involvement in the red fluorescence observed in dental caries with Soprolife® light-induced fluorescence camera in treatments mode (SOPRO, ACTEON Group, La Ciotat, France) and Vistacam® camera (DÜRR DENTAL AG, Bietigheim-Bissingen, Germany). The International Caries Detection and Assessment System (ICDAS) was used to rand the samples. Human teeth cross-sections, ranked from ICDAS score 0 to 6, were examined by epi-fluorescence microscopy and Confocal Raman microscopy. Comparable studies were done with Protoporphyrin IX, Porphyrin I and Pentosidine solutions. An RGB analysis of Soprolife® images was performed using ImageJ Software (1.46r, National Institutes of Health, USA). Fluorescence spectroscopy and MicroRaman spectroscopy revealed the presence of Protoporphyrin IX, in carious enamel, dentin and dental plaque. However, the presence of porphyrin I and pentosidine cannot be excluded. The results indicated that not only porphyrin were implicated in the red fluorescence, Advanced Glygation Endproducts (AGEs) of the Maillard reaction also contributed to this phenomenon.

  6. Maillard reaction products derived from thiol compounds as inhibitors of enzymatic browning of fruits and vegetables: the structure-activity relationship.

    PubMed

    Billaud, C; Maraschin, C; Peyrat-Maillard, M-N; Nicolas, J

    2005-06-01

    Some thiol-derived Maillard reaction products (MRPs) may exert antioxidant activity, depending on the reaction conditions as well as on the sugar and the sulphydryl compound. Recently, we reported that MRPs derived from glucose or fructose with cysteine (CSH) or glutathione (GSH) mixtures greatly inhibited polyphenoloxidases (PPOs), oxidoreductases responsible for discoloration of fresh or minimally processed fruits and vegetables. Glucose and GSH were shown to be the most active in producing inhibitory MRPs. Therefore, we examined the way in which the nature of the reactants affected their synthesis, in order to establish a structure-activity relationship for the inhibitory products. Various aqueous (0.083 M, 0.125 M, or 0.25 M) mixtures of a sugar (hexose, pentose, or diholoside) with either a CSH-related compound (CSH, GSH, N-acetyl-cysteine, cysteamine, cysteic acid, methyl-cysteine, cysteine methyl ester), an amino acid (gamma-glutamic acid, glycine, methionine), or other sulfur compound (thiourea, 1,4-dithiothreitol, 2-mercaptoethanol) were heated at 103 degrees C for 14 h. Soluble MRPs were compared for their ability to inhibit apple PPO activity. In the presence of CSH, the rated sugars (same molar concentration) ranked as to inhibitory effect were pentoses > sucrose > hexoses > or = maltose. In the presence of glucose, the simultaneous presence of an amino group, a carboxyl group, and a free thiol group on the same molecule seemed essential for the production of highly inhibitory compounds.

  7. Reduction of 5-hydroxymethylfurfural formation by flavan-3-ols in Maillard reaction models and fried potato chips.

    PubMed

    Qi, Yajing; Zhang, Hao; Wu, Gangcheng; Zhang, Hui; Wang, Li; Qian, Haifeng; Qi, Xiguang

    2018-04-13

    5-Hydroxymethylfurfural (HMF) is regarded as a thermal process contaminant in foods. Six flavan-3-ol fractions were isolated or semisynthesized from sorghum, cranberry and grape seed. Their unit compositions, interflavan linkages and degree of polymerization (DP) were characterized. The aim of this study was to investigate the effect of flavan-3-ols on the formation of HMF in chemical reaction models and fried potato chips. Results showed that all flavan-3-ols significantly mitigated the HMF formation at concentrations of 50, 100 and 200 μg mL -1 in chemical model system, and the inhibition was positively related to dose. Using the food model, HMF content was reduced by about 50% when potato chips were soaked in an optimal concentration of 0.1 mg mL -1 flavan-3-ol solutions before frying. Based on the same mass concentration, B-type flavan-3-ols mitigated more HMF than A-type, and oligomeric proanthocyanidins had stronger inhibitory activity than polymers. At suitable addition levels (0.01-0.1 mg mL -1 ), the browning of auto-oxidized flavan-3-ols under high temperature compensated the anti-browning effect along with the supressing of Maillard reaction, therefore color of fried potato chips was not affected. The present study demonstrates that flavan-3-ols could be effective addtives for reducing HMF levels in fried potato chips without changing sensory properties. This article is protected by copyright. All rights reserved.

  8. Crosslines, fluorophores in the AGE-related cross-linked proteins.

    PubMed

    Ienaga, K; Nakamura, K; Hochi, T; Nakazawa, Y; Fukunaga, Y; Kakita, H; Nakano, K

    1995-01-01

    We can summarize our results as follows: (1) A pair of fluorescent crosslines were isolated from the Maillard reaction mixture; (2) AGE-proteins contained crossline-like structures, and (3) crossline-like immunoreactivities were accumulated in renal tissues of diabetic rats. From these results we concluded that fluorophores in AGE proteins have crossline-like structures and we had the first indication that XLs could be markers for renal disorders.

  9. The impact of raw materials and baking conditions on Maillard reaction products, thiamine, folate, phytic acid and minerals in white bread.

    PubMed

    Helou, Cynthia; Gadonna-Widehem, Pascale; Robert, Nathalie; Branlard, Gérard; Thebault, Jacques; Librere, Sarah; Jacquot, Sylvain; Mardon, Julie; Piquet-Pissaloux, Agnès; Chapron, Sophie; Chatillon, Antoine; Niquet-Léridon, Céline; Tessier, Frédéric J

    2016-06-15

    The aim of this study was to develop a white bread with improved nutrient contents and reduced levels of potentially harmful Maillard reaction products such as N(ε)-carboxymethyllysine (CML) and 5-hydroxymethylfurfural (HMF). Assays were carried out through a full factorial experimental design allowing the simultaneous analysis of four factors at two levels: (1) wheat flour extraction rates (ash content: 0.60%-0.72%), (2) leavening agents (bakers' yeast - bakers' yeast and sourdough), (3) prebaking and (4) baking conditions (different sets of time and temperature). The baking conditions affected HMF and CML as well as certain mineral contents. A reduced baking temperature along with a prolonged heat treatment was found to be favourable for reducing both the CML (up to 20%) and HMF concentrations (up to 96%). The presence of sourdough decreased the formation of CML (up to 28%), and increased the apparent amounts of calcium (up to 8%) and manganese (up to 17.5%) probably through acidification of the dough. The extraction rate of flours as well as interactions between multiple factors also affected certain mineral content. However, compounds like folate, thiamine, copper, zinc, iron and phytic acid were not affected by any of the factors studied.

  10. Physicochemical Characterization of a Heat Treated Calcium Alginate Dry Film Prepared with Chicken Stock.

    PubMed

    Báez, Germán D; Piccirilli, Gisela N; Ballerini, Griselda A; Frattini, Agustín; Busti, Pablo A; Verdini, Roxana A; Delorenzi, Néstor J

    2017-04-01

    Solid sodium alginate was dissolved into chicken stock in order to give a final alginate concentration of 0.9 percent (w/v). Calcium ions present in chicken stock were enough to induce ionic gelation. After drying, Fourier transform infrared spectroscopy, thickness and mechanical properties of films obtained were determined. Calcium alginate-chicken stock films were heated at 130 °C for different times between 0 and 15 min. Mechanical and optical studies, differential scanning calorimetry, visual aspect and scanning electron microscopy were carried out to describe physicochemical properties of heat treated films. Heating developed a maroon ochre color and increased the brittleness (crispness) of the films related to the intensity of the treatment. Differential scanning thermometry and study on appearance of the films suggested that Maillard reactions may be responsible for the observed changes. Maillard reactions mainly occurred between reducing sugar monomers and free amino groups of gelatin peptides present in the chicken stock, and between alginate and gelatin peptides to a lesser extent. In addition, the plasticizing effect of fat added with chicken stock was also studied. These studies suggest a potential use of heat treated chicken stock films as a substitute of roasted chicken skin. © 2017 Institute of Food Technologists®.

  11. Maillard Conjugation of Sodium Alginate to Whey Protein for Enhanced Resistance to Surfactant-Induced Competitive Displacement from Air-Water Interfaces.

    PubMed

    Cai, Bingqing; Saito, Anna; Ikeda, Shinya

    2018-01-24

    Whey protein adsorbed to an interface forms a viscoelastic interfacial film but is displaced competitively from the interface by a small-molecule surfactant added afterward. The present study evaluated the impact of the covalent conjugation of high- or low-molecular-weight sodium alginate (HA or LA) to whey protein isolate (WPI) via the Maillard reaction on the ability of whey protein to resist surfactant-induced competitive displacement from the air-water interface. Surfactant added after the pre-adsorption of conjugate to the interface increased surface pressure. At a given surface pressure, the WPI-LA conjugate showed a significantly higher interfacial area coverage and lower interfacial film thickness compared to those of the WPI-HA conjugate or unconjugated WPI. The addition of LA to the aqueous phase had little effect on the interfacial area and thickness of pre-adsorbed WPI. These results suggest the importance of the molecular weight of the polysaccharide moiety in determining interfacial properties of whey protein-alginate conjugates.

  12. Chemistry of Amadori rearrangement products: analysis, synthesis, kinetics, reactions, and spectroscopic properties.

    PubMed

    Yaylayan, V A; Huyghues-Despointes, A

    1994-01-01

    The chemistry of the key intermediate in the Maillard reaction, the Amadori rearrangements product, is reviewed covering the areas of synthesis, chromatographic analyses, chemical and spectroscopic methods of characterization, reactions, and kinetics. Synthetic strategies involving free and protected sugars are described in detail with specific synthetic procedures. GC- and HPLC-based separations of Amadori products are discussed in relation to the type of columns employed and methods of detection. Applications of infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy for structural elucidation of Amadori products are also reviewed. In addition, mass spectrometry of free, protected, and protein-bound Amadori products under different ionization conditions are presented. The mechanism of acid/base catalyzed thermal degradation reactions of Amadori compounds, as well as their kinetics of formation, are critically evaluated.

  13. Rare, medium, or well done? The effect of heating and food matrix on food protein allergenicity.

    PubMed

    Nowak-Wegrzyn, Anna; Fiocchi, Alessandro

    2009-06-01

    To review recent advances in the area of food allergen processing and the effect on protein allergenicity. Heating generally decreases protein allergenicity by destroying conformational epitopes. In peanut and shrimp, heat-induced Maillard reaction (glycation) may increase allergenicity. The majority of milk and egg-allergic children tolerate extensively heated (baked with wheat matrix) milk and egg. Introduction of extensively heated milk and egg proteins is associated with decreasing sizes of skin prick test wheals and increasing serum food-specific IgG4 levels. Heating and other methods of food processing have different effects on food allergens, even those contained in the same complex food. Structural homology does not reliably predict the effect of processing on allergenicity, and individual food allergens have to be tested. Interactions with other proteins, fat, and carbohydrates in the food matrix are complex and poorly understood. Introduction of extensively heated milk and egg proteins into the diet of allergic children may represent an alternative approach to oral tolerance induction. Better characterization of these aspects of food allergy is critical for elucidation of food protein interactions with the gut-associated lymphoid tissue, the ability to induce IgE sensitization, the potential to trigger hypersensitivity reactions, and different clinical phenotypes of food allergy with regard to severity and persistence.

  14. The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution.

    PubMed

    Monnier, V M; Glomb, M; Elgawish, A; Sell, D R

    1996-07-01

    Considerable interest has been focused in recent years on the mechanism of collagen cross-linking by high glucose in vitro and in vivo. Experiments in both diabetic humans and in animals have shown that over time collagen becomes less soluble, less digestible by collagenase, more stable to heat-induced denaturation, and more glycated. In addition, collagen becomes more modified by advanced products of the Maillard reaction, i.e., immunoreactive advanced glycation end products and the glycoxidation markers carboxymethyllysine and pentosidine. Mechanistic studies have shown that collagen cross-linking in vitro can be uncoupled from glycation by the use of antioxidants and chelating agents. Experiments in the authors' laboratory revealed that approximately 50% of carboxymethyllysine formed in vitro originates from pathways other than oxidation of Amadori products, i.e., most likely the oxidation of Schiff base-linked glucose. In addition, the increase in thermal stability of rat tail tendons exposed to high glucose in vitro or in vivo was found to strongly depend on H2O2 formation. The final missing piece of the puzzle is that of the structure of the major cross-link. We speculate that it is a nonfluorescent nonultraviolet active cross-link between two lysine residues, which includes a fragmentation product of glucose linked in a nonreducible bond labile to both strong acids and bases.

  15. Sensory characteristics and consumer acceptability of beef stock containing the glutathione-xylose Maillard reaction product and/or monosodium glutamate.

    PubMed

    Hong, Jae-Hee; Kwon, Koo-Young; Kim, Kwang-Ok

    2012-06-01

    This study was conducted to investigate the sensory characteristics and consumer acceptability of beef stock samples containing GSH-xylose Maillard reaction product (GX) and/or monosodium glutamate (MSG) with varying levels of salt (NaCl). The sensory characteristics of the beef stock samples were examined using a descriptive analysis. Total of 50 consumers evaluated overall acceptability and flavor intensities of beef odor, salty taste, beef flavor, and seasoning flavor in the samples. Samples containing both GX and MSG (GX-MSG), GX only (GX), and GX with higher salt level (GX-NaCl) had stronger "beef odor/flavor,"sulfur odor/flavor," and "chestnut odor/flavor" than those of the other samples, whereas beef stocks containing MSG, salt only (CON), and CON with higher salt level (CON-NaCl) had stronger "potato odor/flavor" and "soy sauce odor/flavor" than those of the other samples. The consumers liked GX-MSG and MSG the most. Overall liking scores of GX-NaCl and CON-NaCl were significantly higher than that of CON. GX was not significantly preferred to CON. Partial least square regression results showed that salty, MSG, and sweet tastes had more significant impact on consumer perception of the beef and spice flavors and the liking score than strong beef odor/flavor of GX. However, high hedonic ratings of GX-MSG, which contained half the doses of GX and MSG used for the GX and MSG samples, suggest that the combination of GX and MSG had a synergistic effect on flavor enhancement of beef stock. Due to increasing needs for food products that provide more health benefits but maintain palatability, the food industry is looking for a new type of flavor enhancer. The Maillard reaction product of xylose and glutathione (GX), a tripeptide known to increase complexity and mouthfulness, was examined for its potential as a flavor enhancer. GX enhanced beef flavor significantly and salty taste somewhat at a weak suprathreshold level. With adjusting salty taste intensity by adding MSG at a weak suprathreshold level and/or increasing NaCl by 0.05% to 0.1%, GX significantly increased consumer acceptability. © 2012 Institute of Food Technologists®

  16. The Comparison of the Contents of Sugar, Amadori, and Heyns Compounds in Fresh and Black Garlic.

    PubMed

    Yuan, Heng; Sun, Linjuan; Chen, Min; Wang, Jun

    2016-07-01

    Black garlic is produced through thermal processing and is used as a healthy food throughout the world. Compared with fresh garlic, there are obvious changes in the color, taste, and biological functions of black garlic. To analyze and explain these changes, the contents of water-soluble sugars, fructan, and the key intermediate compounds (Heyns and Amadori) of the Maillard reaction in fresh raw garlic and black garlic were investigated, which were important to control and to evaluate the quality of black garlic. The results showed that the fructan contents in the black garlics were decreased by more than 84.6% compared with the fresh raw garlics, which translated into changes in the fructose and glucose contents. The water-soluble sugar content was drastically increased by values ranging from 187.79% to 790.96%. Therefore, the taste of the black garlic became very sweet. The sucrose content in black garlic was almost equivalent to fresh garlic. The Amadori and Heyns compounds were analyzed by HPLC-MS/MS in multiple reaction monitoring mode using the different characteristic fragment ions of Heyns and Amadori compounds. The total content of the 3 main Amadori and 3 Heyns compounds in black garlic ranged from 762.53 to 280.56 μg/g, which was 40 to 100-fold higher than the values in fresh raw garlic. This result was significant proof that the Maillard reaction in black garlic mainly utilized fructose and glucose, with some amino acids. © 2016 Institute of Food Technologists®

  17. The kinetics of thermal generation of flavour.

    PubMed

    Parker, Jane K

    2013-01-01

    Control and optimisation of flavour is the ultimate challenge for the food and flavour industry. The major route to flavour formation during thermal processing is the Maillard reaction, which is a complex cascade of interdependent reactions initiated by the reaction between a reducing sugar and an amino compound. The complexity of the reaction means that researchers turn to kinetic modelling in order to understand the control points of the reaction and to manipulate the flavour profile. Studies of the kinetics of flavour formation have developed over the past 30 years from single- response empirical models of binary aqueous systems to sophisticated multi-response models in food matrices, based on the underlying chemistry, with the power to predict the formation of some key aroma compounds. This paper discusses in detail the development of kinetic models of thermal generation of flavour and looks at the challenges involved in predicting flavour. Copyright © 2012 Society of Chemical Industry.

  18. Stability of Individual Maillard Reaction Products in the Presence of the Human Colonic Microbiota.

    PubMed

    Hellwig, Michael; Bunzel, Diana; Huch, Melanie; Franz, Charles M A P; Kulling, Sabine E; Henle, Thomas

    2015-08-05

    Maillard reaction products (MRPs) are taken up in substantial amounts with the daily diet, but the majority are not transported across the intestinal epithelium. The aim of this study was to obtain first insights into the stability of dietary MRPs in the presence of the intestinal microbiota. Four individual MRPs, namely, N-ε-fructosyllysine (FL), N-ε-carboxymethyllysine (CML), pyrraline (PYR), and maltosine (MAL), were anaerobically incubated with fecal suspensions from eight human volunteers at 37 °C for up to 72 h. The stability of the MRPs was measured by HPLC with UV and MS/MS detections. The Amadori product FL could no longer be detected after 4 h of incubation. Marked interindividual differences were observed for CML metabolism: Depending on the individual, at least 40.7 ± 1.5% of CML was degraded after 24 h of incubation, and the subjects could thus be tentatively grouped into fast and slow metabolizers of this compound. PYR was degraded by 20.3 ± 4.4% during 24 h by all subjects. The concentration of MAL was not significantly lowered in the presence of fecal suspensions. In no case could metabolites be identified and quantified by different mass spectrometric techniques. This is the first study showing that the human colonic microbiota is able to degrade selected glycated amino acids and possibly use them as a source of energy, carbon, and/or nitrogen.

  19. Antioxidant and chelating capacity of Maillard reaction products in amino acid-sugar model systems: applications for food processing.

    PubMed

    Mondaca-Navarro, Blanca A; Ávila-Villa, Luz A; González-Córdova, Aarón F; López-Cervantes, Jaime; Sánchez-Machado, Dalia I; Campas-Baypoli, Olga N; Rodríguez-Ramírez, Roberto

    2017-08-01

    Maillard reaction products (MRP) have gained increasing interest owing to their both positive and negative effects on human health. Aqueous amino acid-sugar model systems were studied in order to evaluate the antioxidant and chelating activity of MRP under conditions similar to those of food processing. Amino acids (cysteine, glycine, isoleucine and lysine) combined with different sugars (fructose or glucose) were heated to 100 and 130 °C for 30, 60 and 90 min. Antioxidant capacity was evaluated via ABTS and DPPH free radical scavenging assays, in addition to Fe 2+ and Cu 2+ ion chelating capacity. In the ABTS assay, the cysteine-fructose model system presented the highest antioxidant activity at 7.05 µmol mL -1 (130 °C, 60 min), expressed in Trolox equivalents. In the DPPH assay, the cysteine-glucose system presented the highest antioxidant activity at 3.79 µmol mL -1 (100 °C, 90 min). The maximum rate of chelation of Fe 2+ and Cu 2+ was 96.31 and 59.44% respectively in the lysine-fructose and cysteine-glucose systems (100 °C, 30 min). The model systems presented antioxidant and chelating activity under the analyzed temperatures and heating times, which are similar to the processing conditions of some foods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Effects of dietary bread crust Maillard reaction products on calcium and bone metabolism in rats.

    PubMed

    Roncero-Ramos, Irene; Delgado-Andrade, Cristina; Haro, Ana; Ruiz-Roca, Beatriz; Morales, Francisco J; Navarro, María Pilar

    2013-06-01

    Maillard reaction products (MRP) consumption has been related with the development of bone degenerative disorders, probably linked to changes in calcium metabolism. We aimed to investigate the effects of MRP intake from bread crust on calcium balance and its distribution, and bone metabolism. During 88 days, rats were fed control diet or diets containing bread crust as source of MRP, or its soluble high molecular weight, soluble low molecular weight or insoluble fractions (bread crust, HMW, LMW and insoluble diets, respectively). In the final week, a calcium balance was performed, then animals were sacrified and some organs removed to analyse calcium levels. A second balance was carried out throughout the experimental period to calculate global calcium retention. Biochemical parameters and bone metabolism markers were measured in serum or urine. Global calcium bioavailability was unmodified by consumption of bread crust or its isolate fractions, corroborating the previously described low affinity of MRP to bind calcium. Despite this, a higher calcium concentration was found in femur due to smaller bones having a lower relative density. The isolate consumption of the fractions altered some bone markers, reflecting a situation of increased bone resorption or higher turnover; this did not take place in the animals fed the bread crust diet. Thus, the bread crust intake does not affect negatively calcium bioavailability and bone metabolism.

  1. Advanced glycation end products, physico-chemical and sensory characteristics of cooked lamb loins affected by cooking method and addition of flavour precursors.

    PubMed

    Roldan, Mar; Loebner, Jürgen; Degen, Julia; Henle, Thomas; Antequera, Teresa; Ruiz-Carrascal, Jorge

    2015-02-01

    The influence of the addition of a flavour enhancer solution (FES) (d-glucose, d-ribose, l-cysteine and thiamin) and of sous-vide cooking or roasting on moisture, cooking loss, instrumental colour, sensory characteristics and formation of Maillard reaction (MR) compounds in lamb loins was studied. FES reduced cooking loss and increased water content in sous-vide samples. FES and cooking method showed a marked effect on browning development, both on the meat surface and within. FES led to tougher and chewier texture in sous-vide cooked lamb, and enhanced flavour scores of sous-vide samples more markedly than in roasted ones. FES added meat showed higher contents of furosine; 1,2-dicarbonyl compounds and 5-hydroxymethylfurfural did not reach detectable levels. N-ε-carboxymethyllysine amounts were rather low and not influenced by the studied factors. Cooked meat seems to be a minor dietary source of MR products, regardless the presence of reducing sugars and the cooking method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Protein Hydrolysates as Hypoallergenic, Flavors and Palatants for Companion Animals

    NASA Astrophysics Data System (ADS)

    Nagodawithana, Tilak W.; Nelles, Lynn; Trivedi, Nayan B.

    Early civilizations have relied upon their good sense and experience to develop and improve their food quality. The discovery of soy sauce centuries ago can now be considered one of the earliest protein hydrolysates made by man to improve palatability of foods. Now, it is well known that such savory systems are not just sources for enjoyment but complex semiotic systems that direct the humans to satisfy the body's protein need for their sustenance. Recent developments have resulted in a wide range of cost effective savory flavorings, the best known of which are autolyzed yeast extracts and hydrolyzed vegetable proteins. New technologies have helped researchers to improve the savory characteristics of yeast extracts through the application of Maillard reaction and by generating specific flavor enhancers through the use of enzymes. An interesting parallel exists in the pet food industry, where a similar approach is taken in using animal protein hydrolysates to create palatability enhancers via Maillard reaction scheme. Protein hydrolysates are also utilized extensively as a source of nutrition to the elderly, young children and immuno-compromised patient population. These hydrolysates have an added advantage in having peptides small enough to avoid any chance of an allergenic reaction which sometimes occur with the consumption of larger sized peptides or proteins. Accordingly, protein hydrolysates are required to have an average molecular weight distribution in the range 800-1,500 Da to make them non-allergenic. The technical challenge for scientists involved in food and feed manufacture is to use an appropriate combination of enzymes within the existing economic constraints and other physical factors/limitations, such as heat, pH, and time, to create highly palatable, yet still nutritious and hypoallergenic food formulations.

  3. Pentosidine formation in skin correlates with severity of complications in individuals with long-standing IDDM.

    PubMed

    Sell, D R; Lapolla, A; Odetti, P; Fogarty, J; Monnier, V M

    1992-10-01

    Pentosidine is an advanced glycosylation end product and protein cross-link that results from the reaction of pentoses with proteins. Recent data indicate that long-term glycation of proteins with glucose also leads to pentosidine formation through sugar fragmentation. In this study, the relationship between the severity of diabetic complications and pentosidine formation was investigated in collagen from skin-punch biopsies from 25 nondiabetic control subjects and 41 IDDM patients with diabetes duration greater than 17 yr. Pentosidine was significantly elevated in all IDDM patients versus control subjects (P less than 0.0001). It correlated strongly with age (P less than 0.0001) and weakly with duration (P less than 0.082). Age-adjusted pentosidine levels were highest in grade 2 (severe) versus grade 1 and 0 complication in all four parameters tested (retinopathy, proteinuria, arterial stiffness, and joint stiffness). Significant differences were found for retinopathy (P less than 0.014) and joint stiffness (P less than 0.041). The highest degree of association was with the cumulative grade of individual complication (P less than 0.005), determined by summing indexes of all four parameters. Pentosidine also was significantly elevated in the serum of IDDM patients compared with control subjects (P less than 0.0001), but levels were not significantly correlated with age, diabetes duration, complication, or skin collagen pentosidine (P greater than 0.05). A high correlation between pentosidine levels and long-wave collagen-linked fluorescence also was observed, suggesting that pentosidine is a generalized marker of accelerated tissue modification by the advanced glycosylation/Maillard reaction, which is enhanced in IDDM patients with severe complications.

  4. Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress

    PubMed Central

    Colville, Louise

    2012-01-01

    The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography–mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss. PMID:23175670

  5. Assessing the effects of severe heat treatment of milk on calcium bioavailability: in vitro and in vivo studies.

    PubMed

    Seiquer, I; Delgado-Andrade, C; Haro, A; Navarro, M P

    2010-12-01

    Thermal processing of milk is a common practice. As milk is the main source of dietary calcium, this study aimed to assess the effects of overheating milk on calcium availability. Thus, thermally damaged milk (overheated, OH, milk; 3 cycles of sterilization at 116 °C, 16 min) was compared with UHT milk (150 °C, 6s) in 2 types of assays: in vitro and in vivo (rats). In addition, the greater Maillard reaction rate associated with thermal treatment in OH milk was confirmed by determining specific (furosine) and unspecific markers (CieLab color). A negative effect on calcium solubility was observed after in vitro digestion of OH milk compared with UHT milk. Feeding rats the diet containing OH milk as the protein source led to significantly lower values of apparent calcium absorption and retention than those found among animals fed the UHT milk diet. Whereas reducing the absorption appears to result mainly from the decreased food intake, the negative effect on retention seems to be due to factors derived from milk thermal damage, such as the formation of Maillard reaction products. It was concluded that milk-processing conditions warrant special attention to prevent impaired dietary calcium utilization. This may be especially important in situations where milk and dairy products are the main dietary components, such as in early infancy. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Increase in the free radical scavenging capability of bitter gourd by a heat-drying process.

    PubMed

    Wei, Lu; Shaoyun, Wang; Shutao, Liu; Jianwu, Zhou; Lijing, Ke; Pingfan, Rao

    2013-12-01

    Bitter gourd (Momordica charantia Linn.) is widely regarded as one of the best remedy foods for diabetes. The positive effect of bitter gourd on diabetes has been attributed in part to the remarkable free radical scavenging activity of its boiled water extract from sun-dried fruits. It is well known that a heat process significantly influences the antioxidant activity of fresh fruits. However, the heat drying processes of bitter gourd have not been studied so far. Here, we show that the free radical scavenging capability of bitter gourd extract significantly increases after the heat drying process, while the content of flavonoids and phenols, which are generally regarded as the main antioxidant components in bitter gourd, remain unaffected. Furthermore, the content of free amino acids and the total reducing sugar were found to decrease with increasing browning index, indicating the progression of the Maillard reaction, products of which are known to possess significant antioxidant activity. Therefore, it suggests that Maillard reaction products may be the main contributors to the increase in antioxidant capability. Finally, the bitter gourd extract with the higher antioxidant activity, was shown to manifest a corresponding higher proliferation activity on NIT-1 beta-cells. These results suggest that controllable conditions in the heat-drying processing of fresh bitter gourd fruit is of significance for enhancing the total free radical scavenging capacity, beta-cell proliferation activity and possibly the anti-diabetic activity of this fruit.

  7. Skin beautification with oral non-hydrolized versions of carnosine and carcinine: Effective therapeutic management and cosmetic skincare solutions against oxidative glycation and free-radical production as a causal mechanism of diabetic complications and skin aging.

    PubMed

    Babizhayev, Mark A; Deyev, Anatoliy I; Savel'yeva, Ekaterina L; Lankin, Vadim Z; Yegorov, Yegor E

    2012-10-01

    Advanced glycation Maillard reaction end products (AGEs) are causing the complications of diabetes and skin aging, primarily via adventitious and cross-linking of proteins. Long-lived proteins such as structural collagen are particularly implicated as pathogenic targets of AGE processes. The formation of α-dicarbonyl compounds represents an important step for cross-linking proteins in the glycation or Maillard reaction. The purpose of this study was to investigate the contribution of glycation coupled to the glycation free-radical oxidation reactions as markers of protein damage in the aging of skin tissue proteins and diabetes. To elucidate the mechanism for the cross-linking reaction, we studied the reaction between a three-carbon α-dicarbonyl compound, methylglyoxal, and amino acids using EPR spectroscopy, a spectrophotometric kinetic assay of superoxide anion production at the site of glycation and a chemiluminescence technique. The transglycating activity, inhibition of transition metal ions peroxidative catalysts, resistance to hydrolysis of carnosine mimetic peptide-based compounds with carnosinase and the protective effects of carnosine, carcinine and related compounds against the oxidative damage of proteins and lipid membranes were assessed in a number of biochemical and model systems. A 4-month randomized, double-blind, controlled study was undertaken including 42 subjects where the oral supplement of non-hydrolized carnosine (Can-C Plus® formulation) was tested against placebo for 3 months followed by a 1-month supplement-free period for both groups to assess lasting effects. Assessment of the age-related skin parameters and oral treatment efficacy measurements included objective skin surface evaluation with Visioscan® VC 98 and visual assessment of skin appearance parameters. The results together confirm that a direct one-electron transfer between a Schiff base methylglyoxal dialkylimine (or its protonated form) and methylglyoxal is responsible for the generation of the cross-linked radical cation and the radical counteranion of methylglyoxal. Under aerobic conditions, molecular oxygen can then accept an electron from the methylglyoxal anion to generate the superoxide radical anion causing the propagation of oxidative stress chain reactions in the presence of transition metal ions. Carnosine stabilized from enzymatic hydrolysis, carcinine and leucyl-histidylhydrazide in patented formulations thereof, demonstrate the Schiff bases' transglycating activities concomitant with glycation site specific antioxidant activities and protection of proprietary antioxidant enzymes in the skin during aging and with diabetes lesions. During oral supplementation with stabilized from enzymatic hydrolysis carnosine (Can-C Plus® formulation), the skin parameters investigated showed a continuous and significant improvement in the active group during the 3 months of supplementation as compared to placebo. Visual investigation showed improvement of the overall skin appearance and a reduction of fine lines. No treatment-related side effects were reported. The finding that already-formed AGE cross-links can be pharmacologically severed and attendant pathology thereby reversed by non-hydrolized carnosine or carcinine in patented oral formulations thereof has broad implications for the skin beautification and therapeutics of the complications of diabetes and skin diseases associated with aging.

  8. Modelling the Maillard reaction during the cooking of a model cheese.

    PubMed

    Bertrand, Emmanuel; Meyer, Xuân-Mi; Machado-Maturana, Elizabeth; Berdagué, Jean-Louis; Kondjoyan, Alain

    2015-10-01

    During processing and storage of industrial processed cheese, odorous compounds are formed. Some of them are potentially unwanted for the flavour of the product. To reduce the appearance of these compounds, a methodological approach was employed. It consists of: (i) the identification of the key compounds or precursors responsible for the off-flavour observed, (ii) the monitoring of these markers during the heat treatments applied to the cheese medium, (iii) the establishment of an observable reaction scheme adapted from a literature survey to the compounds identified in the heated cheese medium (iv) the multi-responses stoichiokinetic modelling of these reaction markers. Systematic two-dimensional gas chromatography time-of-flight mass spectrometry was used for the semi-quantitation of trace compounds. Precursors were quantitated by high-performance liquid chromatography. The experimental data obtained were fitted to the model with 14 elementary linked reactions forming a multi-response observable reaction scheme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Investigation of variations in the acrylamide and N(ε) -(carboxymethyl) lysine contents in cookies during baking.

    PubMed

    Cheng, Lu; Jin, Cheng; Zhang, Ying

    2014-05-01

    Baking processing is indispensable to determine special sensory prosperities of cookies and induces the formation of some beneficial components such as antioxidants. However, the formation of some Maillard reaction-derived chemical hazards, such as acrylamide (AA) and N(ε) -(carboxymethyl) lysine (CML) in cookies is also a significant consequence of baking processing from a food safety standpoint. This study investigated the effects of baking conditions on the formation of AA and CML, as well as the antioxidant activity (AOA) of cookies. Cookies were baked at various baking temperatures (155 to 230 °C) and times (1.5 to 31 min). AA and CML contents were determined by ultra-performance liquid chromatography-tandem mass spectrometry, respectively. The highest level of AA was obtained in the cookies baked at 155 °C/21 min and 205 °C/11 min (328.93 ± 3.10 μg/kg and 329.29 ± 5.29 μg/kg), while the highest level of CML was obtained in the cookies baked at 230 °C/1.5 min (118.05 ± 0.21 mg/kg). AA was prone to form at relatively low temperature range (155 to 205 °C), however, CML at relatively high temperature range (205 to 230 °C). The CML content was much higher than the AA content in the same set of cookies, by about 2 to 3 orders of magnitude. The AOA of cookies increased at more severe baking conditions. According to the AA and CML content, AOA and sensory properties of cookies, the temperature-time regime of 180 °C/16 min might be a compromised selection. However, only optimizing the baking condition was not enough for manufacture of high-quality cookies. Cookies, a kind of widely consumed bakery products in the world, contain some potentially harmful compounds, like acrylamide (AA) and N(ε) -(carboxymethyl) lysine (CML). AA in cookies has led to public health concern and several research efforts. But CML, another Maillard reaction-derived chemical hazard, has been neglected so far, even though its content is much higher than that of AA in cookies. The results contribute to further insight into the Maillard reaction and are useful for the selection of baking conditions to produce high-quality cookies with lower AA and CML contents, higher AOA, and better sensory properties. © 2014 Institute of Food Technologists®

  10. Small angle scattering from protein/sugar conjugates

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew; White, John

    2006-11-01

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5 mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75 A˚ for beta casein in solution and around 80 A˚ for the sucrose conjugate.

  11. Temperature Influence on Acetyllysine Interaction with Glucose in Model Systems due to Maillard Reaction

    DTIC Science & Technology

    1992-01-01

    present experiments have per- Dry foods (such as milk chocolate, yogurt products , dried fruits, mitted us to compute an E, of 44 kcal/mol from zero order...Interpretation of the data was complicated by del et at., 1955; Hsu and Fennema, 1989; Kim et al., 1981; the - presence of two reactive groups, the alpha and the...6.4 acetate buffer in 6% (v/v) acetonitrlle-water) - Eluent B (60% incubation, the withdrawal times were 0, 4, 8, Z4, 72, 144, 288, 576, (v/v

  12. Optimization of β-cyclodextrin-based extraction of antioxidant and anti-browning activities from thyme leaves by response surface methodology.

    PubMed

    Favre, Leonardo Cristian; Dos Santos, Cristina; López-Fernández, María Paula; Mazzobre, María Florencia; Buera, María Del Pilar

    2018-11-01

    Thyme (Thymus vulgaris) has been demonstrated to extend the shelf-life of food products, being also a potential source of bioactive compounds. The aim of this research was to optimize the ultrasound assisted extraction employing β-cyclodextrin aqueous solutions as no-contaminant technology and Response Surface Methodology to obtain thyme extracts with the maximum antioxidant capacity. The optimal extraction conditions were: a solution of β-ciclodextrin 15 mM, an ultrasonic treatment time of 5.9 min at a temperature of 36.6 °C. They resulted in an extract with a polyphenolic content of 189.3 mg GAE/mL, an antioxidant activity (DPPH) of 14.8 mg GAE/mL, and ferric reducing/antioxidant power (FRAP) of 3.3 mg GAE/mL. Interestingly, the extract demonstrated to inhibit the production of Maillard browning products and can be considered a potential antiglycant agent. The obtained data is important for developing eco-friendly technologies in order to obtain natural antioxidant extracts with a potential inhibitory capacity of Maillard glycation reaction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Amino Acids Inhibitory Effects and Mechanism on 2-Amino-1-Methyl-6-Phenylimidazo [4,5-b]Pyridine (PhIP) Formation in the Maillard Reaction Model Systems.

    PubMed

    Linghu, Ziyi; Karim, Faris; Smith, J Scott

    2017-12-01

    This study was to investigate the inhibitory effects of amino acids (AAs) on the formation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) and to evaluate the inhibition mechanism of PhIP in Maillard model systems. Different AAs were individually added into model systems heat-treated at 180 °C/1 h. The PhIP, phenylacetaldehyde (PheAce), and pyrazines derivatives were determined using HPLC and GC-MS. AAs significantly reduced (P < 0.05) PhIP levels in a dose-dependent response, ranking as: Trp = Lys > Pro > Leu > Met > Val > Ile > Thr > Phe > Asp, at the highest molar ratio. The PheAce content was gradually reduced with increasing AAs levels, suggesting that AAs may inhibit PhIP formation through scavenging the available PheAce. A correlation between PhIP inhibition and PheAce-scavenging activity of AAs was observed when PheAce and AAs were heated. The variety and quantity of pyrazines formed are highly depending on the type of AAs. © 2017 Institute of Food Technologists®.

  14. Generation of Maillard compounds from inulin during the thermal processing of Agave tequilana Weber Var. azul.

    PubMed

    Mancilla-Margalli, Norma A; López, Mercedes G

    2002-02-13

    During the cooking process of Agave tequilana Weber var. azul to produce tequila, besides the hydrolysis of inulin to generate fermentable sugars, many volatiles, mainly Maillard compounds, are produced, most of which may have a significant impact on the overall flavor of tequila. Exudates (agave juice) from a tequila company were collected periodically, and color, Brix, fructose concentration, and reducing sugars were determined as inulin breakdown took place. Maillard compounds were obtained by extraction with CH(2)Cl(2), and the extracts were analyzed by GC-MS. Increments in color, Brix, and reducing sugars were observed as a function of time, but a decrease in fructose concentration was found. Many Maillard compounds were identified in the exudates, including furans, pyrans, aldehydes, and nitrogen and sulfur compounds. The most abundant Maillard compounds were methyl-2-furoate, 2,3-dihydroxy-3,5-dihydro-6-methyl-4(H)-pyran-4-one, and 5-(hydroxymethyl)furfural. In addition, a series of short- and long-chain fatty acids was also found. A large number of the volatiles in A. tequilana Weber var. azul were also detected in tequila extracts, and most of these have been reported as a powerful odorants, responsible for the unique tequila flavor.

  15. Meat flavor precursors and factors influencing flavor precursors--A systematic review.

    PubMed

    Khan, Muhammad Issa; Jo, Cheorun; Tariq, Muhammad Rizwan

    2015-12-01

    Flavor is the sensory impression sensed by taste and smell buds and is a leading factor determining the meat quality and purchasing decision of the consumer. Meat flavor is characteristic of volatiles produced as a result of reactions of non-volatile components that are induced thermally. The water soluble compounds having low molecular weight and meat lipids are important precursors of cooked meat flavor. The Maillard reaction, lipid oxidation, and vitamin degradation are leading reactions during cooking which develop meat flavor from uncooked meat with little aroma and bloody taste. The pre-slaughter and postmortem factors like animal breed, sex, age, feed, aging and cooking conditions contribute to flavor development of cooked meat. The objective of this review is to highlight the flavor chemistry, meat flavor precursors and factors affecting meat flavor precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fish in Vitro Digestion: Influence of Fish Salting on the Extent of Lipolysis, Oxidation, and Other Reactions.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2017-02-01

    A study of the various chemical reactions which take place during fish in vitro digestion and the potential effect of fish salting on their extent is addressed for the first time. Farmed European sea bass fillets, raw, brine-salted or dry-salted, were digested using a gastrointestinal in vitro model. Fish lipid extracts before and after digestion were analyzed by 1 H NMR, and the headspace composition of the digestates was investigated by SPME-GC/MS. During digestion, not only lipolysis, but also fish lipid oxidation took place. This latter was evidenced by the generation of conjugated dienes supported on chains having also hydroperoxy- and hydroxy-groups (primary oxidation compounds), by the increase of volatile secondary oxidation products, and by the decrease of the antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT). Likewise, esterification and Maillard-type reactions also occurred. Salting, and especially dry-salting, enhanced all these reactions, except for lipolysis, during digestion.

  17. Structured fluids as microreactors for flavor formation by the Maillard reaction.

    PubMed

    Vauthey, S; Milo, C; Frossard, P; Garti, N; Leser, M E; Watzke, H J

    2000-10-01

    Thermal reactions of cysteine/furfural and cysteine/ribose mixtures were studied in model systems to gain more insight into the influence of structured fluids such as L(2) microemulsions and cubic phases on the generation of aroma compounds. Formation of 2-furfurylthiol from cysteine/furfural was particularly efficient in L(2) microemulsions and cubic phases compared to aqueous systems. The reaction led to the formation of two new sulfur compounds, which were identified as 2-(2-furyl)thiazolidine and, tentatively, N-(2-mercaptovinyl)-2-(2-furyl)thiazolidine. Similarly, generation of 2-furfurylthiol and 2-methyl-3-furanthiol from cysteine/ribose mixtures was strongly enhanced in structured fluids. The cubic phase was shown to be even more efficient in flavor generation than the L(2) microemulsion. It was denoted "cubic catalyst" or "cubic selective microreactor". The obtained results are interpreted in terms of a surface and curvature control of the reactions defined by the structural properties of the formed surfactant associates.

  18. Technical Performance and Economic Evaluation of Evaporative and Membrane-Based Concentration for Biomass-Derived Sugars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, David A.; Stickel, Jonathan J.; Grundl, Nicholas J.

    Several conversion pathways of lignocellulosic biomass to advanced biofuels require or benefit from using concentrated sugar syrups of 600 g/L or greater. And while concentration may seem straightforward, thermal sugar degradation and energy efficiency remain major concerns. This study evaluated the trade-offs in product recovery, energy consumption, and economics between evaporative and membrane-based concentration methods. The degradation kinetics of xylose and glucose were characterized and applied to an evaporator process simulation. Though significant sugar loss was predicted for certain scenarios due to the Maillard reaction, industrially common falling-film plate evaporators offer short residence times (<5 min) and are expected tomore » limit sugar losses. Membrane concentration experiments characterized flux and sugar rejection, but diminished flux occurred at >100 g/L. A second step using evaporation is necessary to achieve target concentrations. Techno-economic process model simulations evaluated the overall economics of concentrating a 35 g/L sugar stream to 600 g/L in a full-scale biorefinery. A two-step approach of preconcentrating using membranes and finishing with an evaporator consumed less energy than evaporation alone but was more expensive because of high capital expenses of the membrane units.« less

  19. Technical Performance and Economic Evaluation of Evaporative and Membrane-Based Concentration for Biomass-Derived Sugars

    DOE PAGES

    Sievers, David A.; Stickel, Jonathan J.; Grundl, Nicholas J.; ...

    2017-09-18

    Several conversion pathways of lignocellulosic biomass to advanced biofuels require or benefit from using concentrated sugar syrups of 600 g/L or greater. And while concentration may seem straightforward, thermal sugar degradation and energy efficiency remain major concerns. This study evaluated the trade-offs in product recovery, energy consumption, and economics between evaporative and membrane-based concentration methods. The degradation kinetics of xylose and glucose were characterized and applied to an evaporator process simulation. Though significant sugar loss was predicted for certain scenarios due to the Maillard reaction, industrially common falling-film plate evaporators offer short residence times (<5 min) and are expected tomore » limit sugar losses. Membrane concentration experiments characterized flux and sugar rejection, but diminished flux occurred at >100 g/L. A second step using evaporation is necessary to achieve target concentrations. Techno-economic process model simulations evaluated the overall economics of concentrating a 35 g/L sugar stream to 600 g/L in a full-scale biorefinery. A two-step approach of preconcentrating using membranes and finishing with an evaporator consumed less energy than evaporation alone but was more expensive because of high capital expenses of the membrane units.« less

  20. Thermoinactivation Mechanism of Glucose Isomerase

    NASA Astrophysics Data System (ADS)

    Lim, Leng Hong; Saville, Bradley A.

    In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.

  1. Free Maillard Reaction Products in Milk Reflect Nutritional Intake of Glycated Proteins and Can Be Used to Distinguish "Organic" and "Conventionally" Produced Milk.

    PubMed

    Schwarzenbolz, Uwe; Hofmann, Thomas; Sparmann, Nina; Henle, Thomas

    2016-06-22

    Using LC-MS/MS and isotopically labeled standard substances, quantitation of free Maillard reaction products (MRPs), namely, N(ε)-(carboxymethyl)lysine (CML), 5-(hydroxymethyl)-1H-pyrrole-2-carbaldehyde (pyrraline, PYR), N(δ)-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H), and N(ε)-fructosyllysine (FL), in bovine milk was achieved. Considerable variations in the amounts of the individual MRPs were found, most likely as a consequence of the nutritional uptake of glycated proteins. When comparing commercial milk samples labeled as originating from "organic" or "conventional" farming, respectively, significant differences in the content of free PYR (organic milk, 20-300 pmol/mL; conventional milk, 400-1000 pmol/mL) were observed. An analysis of feed samples indicated that rapeseed and sugar beet are the main sources for MRPs in conventional farming. Furthermore, milk of different dairy animals (cow, buffalo, donkey, goat, ewe, mare, camel) as well as for the first time human milk was analyzed for free MRPs. The distribution of their concentrations, with FL and PYR as the most abundant in human milk and with a high individual variability, also points to a nutritional influence. As the components of concentrated feed do not belong to the natural food sources of ruminants and equidae, free MRPs in milk might serve as indicators for an adequate animal feeding in near-natural farming and can be suitable parameters to distinguish between an "organic" and "conventional" production method of milk.

  2. Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial proteins: effects of caloric and methionine restriction.

    PubMed

    Naudí, Alba; Jové, Mariona; Cacabelos, Daniel; Ayala, Victoria; Cabre, Rosanna; Caro, Pilar; Gomez, José; Portero-Otín, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-02-01

    Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N (ε)-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.

  3. Modern proteomic methodologies for the characterization of lactosylation protein targets in milk.

    PubMed

    Arena, Simona; Renzone, Giovanni; Novi, Gianfranco; Paffetti, Alessandro; Bernardini, Giulia; Santucci, Annalisa; Scaloni, Andrea

    2010-10-01

    Heat treatment of milk induces the Maillard reaction between lactose and proteins; in this context, β-lactoglobulin and α-lactalbumin adducts have been used as markers to monitor milk quality. Since some milk proteins have been reported as essential for the delivery of microelements and, being resistant against proteolysis in the gastrointestinal tract, also contributing to the acquired immune response against pathogens and the stimulation of cellular proliferation, it is crucial to systematically determine the milk subproteome affected by the Maillard reaction for a careful evaluation of aliment functional properties. This is more important when milk is the unique nutritional source, as in infant diet. To this purpose, a combination of proteomic procedures based on analyte capture by combinatorial peptide ligand libraries, selective trapping of lactosylated peptides by m-aminophenylboronic acid-agarose chromatography and collision-induced dissociation and electron transfer dissociation MS was used for systematic identification of the lactosylated proteins in milk samples subjected to different thermal treatments. An exhaustive modification of proteins was observed in milk powdered preparations for infant nutrition. Globally, this approach allowed the identification of 271 non-redundant modification sites in 33 milk proteins, which also included low-abundance components involved in nutrient delivery, defence response against virus/microorganisms and cellular proliferative events. A comparison of the modified peptide identification percentages resulting from electron transfer dissociation or collision-induced dissociation fragmentation spectra confirmed the first activation mode as most advantageous for the analysis of lactosylated proteins. Nutritional, biological and toxicological consequences of these findings are discussed on the basis of the recent literature on this subject, emphasizing their impact on newborn diet.

  4. Fucoidan as an inhibitor of thermally induced collagen glycation examined by acetate electrophoresis.

    PubMed

    Pielesz, Anna; Paluch, Jadwiga

    2014-08-01

    Non-enzymatic glycation (Maillard reaction) in vitro could be a simple method to obtain glycoconjugates for studying their biological properties. Hence, fucoidan was retained by acetate electrophoresis indicating a strong interaction with the protein. A loss of colour in fucoidan bands was found for samples incubated with collagen as compared with samples of free fucoidan. Also under in vitro conditions at 100°C - simulating a sudden burn incident - fucoidan binds with collagen as a result of the Maillard reaction. In contrast, the colour of the fucoidan bands intensified for samples incubated with collagen, with the addition of glucose. Electrophoretic analyses were carried out after heating the samples to a temperature simulating a burn incident. The bands were found to intensify for samples incubated with collagen during a 30-day-long incubation. Thus, spontaneous in vitro glycation - i.e. without the addition of glucose - was confirmed. This process is highly intensified both by the temperature and time of incubation. For a sample incubated in vitro in a fucoidan solution containing glucose, glycation was confirmed in a preliminary FTIR and acetate electrophoresis examinations, occurring in collagen obtained from chicken skins. In particular, a new band emerging around 1746 cm(-1) was observed for above samples, as was its increasing intensity, as compared with samples without the addition of glucose. In the collagen glycation assay, while glucose reacts with collagen and forms cross-linked aggregates, fucoidan decreases the process of aggregation and recovery of native collagen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: is there oxidative stress in uremia?

    PubMed

    Miyata, T; Fu, M X; Kurokawa, K; van Ypersele de Strihou, C; Thorpe, S R; Baynes, J W

    1998-10-01

    Advanced glycation end products (AGEs), formed by non-enzymatic glycation and oxidation (glycoxidation) reactions, have been implicated in the pathogenesis of several diseases, including normoglycemic uremia. AGE research in uremia has focused on the accumulation of carbohydrate-derived adducts generated by the Maillard reaction. Recent studies, however, have demonstrated that one AGE, the glycoxidation product carboxymethyllysine (CML), could be derived not only from carbohydrates but also from oxidation of polyunsaturated fatty acids in vitro, raising the possibility that both carbohydrate and lipid autoxidation might be increased in uremia. To address this hypothesis, we applied gas chromatography-mass spectrometry and high performance liquid chromatography to measure protein adducts formed in uremic plasma by reactions between carbonyl compounds and protein amino groups: pentosidine derived from carbohydrate-derived carbonyls, malondialdehyde (MDA)-lysine derived from lipid-derived carbonyls, and CML originating possibly from both sources. All three adducts were elevated in uremic plasma. Plasma CML levels were mainly (>95%) albumin bound. Their levels were not correlated with fructoselysine levels and were similar in diabetic and non-diabetic patients on hemodialysis, indicating that their increase was not driven by glucose. Pentosidine and MDA-lysine were also increased in plasma to the same extent in diabetic and non-diabetic hemodialysis patients. Statistical analysis indicated that plasma levels of CML correlated weakly (P < 0.05) with those of pentosidine and MDA-lysine, but that pentosidine and MDA-lysine varied independently (P > 0.5). These data suggest that the increased levels of AGEs in blood, and probably in tissues, reported in uremia implicate a broad derangement in non-enzymatic biochemistry involving alterations in autoxidation of both carbohydrates and lipids.

  6. Alterations in nonenzymatic biochemistry in uremia: origin and significance of "carbonyl stress" in long-term uremic complications.

    PubMed

    Miyata, T; van Ypersele de Strihou, C; Kurokawa, K; Baynes, J W

    1999-02-01

    Advanced glycation end products (AGEs), formed during Maillard or browning reactions by nonenzymatic glycation and oxidation (glycoxidation) of proteins, have been implicated in the pathogenesis of several diseases, including diabetes and uremia. AGEs, such as pentosidine and carboxymethyllysine, are markedly elevated in both plasma proteins and skin collagen of uremic patients, irrespective of the presence of diabetes. The increased chemical modification of proteins is not limited to AGEs, because increased levels of advanced lipoxidation end products (ALEs), such as malondialdehydelysine, are also detected in plasma proteins in uremia. The accumulation of AGEs and ALEs in uremic plasma proteins is not correlated with increased blood glucose or triglycerides, nor is it determined by a decreased removal of chemically modified proteins by glomerular filtration. It more likely results from increased plasma concentrations of small, reactive carbonyl precursors of AGEs and ALEs, such as glyoxal, methylglyoxal, 3-deoxyglucosone, dehydroascorbate, and malondialdehyde. Thus, uremia may be described as a state of carbonyl overload or "carbonyl stress" resulting from either increased oxidation of carbohydrates and lipids (oxidative stress) or inadequate detoxification or inactivation of reactive carbonyl compounds derived from both carbohydrates and lipids by oxidative and nonoxidative chemistry. Carbonyl stress in uremia may contribute to the long-term complications associated with chronic renal failure and dialysis, such as dialysis-related amyloidosis and accelerated atherosclerosis. The increased levels of AGEs and ALEs in uremic blood and tissue proteins suggest a broad derangement in the nonenzymatic biochemistry of both carbohydrates and lipids.

  7. Vitamin C degradation products and pathways in the human lens.

    PubMed

    Nemet, Ina; Monnier, Vincent M

    2011-10-28

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p < 0.05). In water-insoluble proteins, only 3-deoxythreosone and threosone were detected, whereby the level of 3-deoxythreosone was ∼20 times higher than the level of threosone. The identification of 3-deoxythreosone as the major degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo.

  8. Systemic activation of NF-κB driven luciferase activity in transgenic mice fed advanced glycation end products modified albumin.

    PubMed

    Nass, Norbert; Bayreuther, Kristina; Simm, Andreas

    2017-04-01

    Advanced glycation end products (AGEs) are stable end products of the Maillard reaction and accumulate with progressing ageing and degenerative diseases. Significant amounts of AGE-modified peptides are also consumed with processed food. AGEs bind to specific receptors, especially the receptor of AGEs (RAGE). Activation of RAGE then evokes intracellular signalling, finally resulting in the activation of the NF-κB transcription factor and therefore a proinflammatory state. We here analysed, whether NF-κB is activated in short term upon feeding an AGE-modified protein in-vivo. Transgenic mice expressing firefly luciferase under the control of an NF-κB responsive promoter were intraperitoneally injected or fed with AGE-modified- or control albumin and luciferase expression was analysed by in-vivo imaging and by in-vitro by determination of luciferase enzyme activity in heart, lung, gut, spleen, liver and kidney. In all organs, an activation of the luciferase reporter gene was observed in response to AGE-BSA feeding, however with different intensity and timing. The gut exhibited highest luciferase activity and this activity peaked 6-8 h post AGE-feeding. In heart and kidney, luciferase activity increased for up to 12 h post feeding. All other organs tested, exhibited highest activity at 10 h after AGE-consumption. Altogether, these data demonstrate that feeding AGE-modified protein resulted in a transient and systemic activation of the NF-κB reporter.

  9. Identification and quantification of selected chemicals in laser pyrolysis products of mammalian tissues

    NASA Astrophysics Data System (ADS)

    Spleiss, Martin; Weber, Lothar W.; Meier, Thomas H.; Treffler, Bernd

    1995-01-01

    Liver and muscle tissue have been irradiated with a surgical CO2-laser. The prefiltered fumes were adsorbed on different sorbents (activated charcoal type NIOSH and Carbotrap) and desorbed with different solvents (carbondisulphide and acetone). Analysis was done by gas chromatography/mass spectrometry. An updated list of identified substances is shown. Typical Maillard reaction products as found in warmed over flavour as aldehydes, aromatics, heterocyclic and sulphur compounds were detected. Quantification of some toxicological relevant substances is presented. The amounts of these substances are given in relation to the laser parameters and different tissues for further toxicological assessment.

  10. Glycation of whey protein with dextrans of different molar mass: Effect on immunoglobulin E-binding capacity with blood sera obtained from patients with cow milk protein allergy.

    PubMed

    Xu, Lei; Gong, Yuansheng; Gern, James E; Ikeda, Shinya; Lucey, John A

    2018-05-16

    A growing concern around the world is the number of people who are suffering from food protein allergies. One potential approach to decrease protein allergenicity is to block IgE-binding epitopes of the protein allergen by attachment of polysaccharides via the Maillard reaction (i.e., glycation). Protein glycation has been extensively studied to modify various functional properties. We wanted to examine whether glycates could reduce IgE binding in patients with cow milk protein allergy and to explore how the size (molar mass; M W ) of the polysaccharide affects this IgE-binding capacity. Glycation was performed using the initial step of the Maillard reaction performed in aqueous solutions. The specific goal of this study was to reduce the IgE-binding capacity of whey protein isolate (WPI) through glycation with dextran (DX). Blood sera were obtained from 8 patients who had been diagnosed with cow milk protein allergy, and a composite sera sample was used for IgE-binding analysis by the ImmunoCap (Phadia, Uppsala, Sweden) method. The WPI was glycated with DX of M W ranging from 1 to 2,000 kDa, and the M W of purified glycates was determined using size-exclusion chromatography coupled with multiangle laser light scattering. The WPI to DX molar ratios in the glycates made from DX that had M W values of 1, 3.5, 10 (G10), 150, 500, and 2,000 kDa were 1:4, 1:3, 1:2, 1:1.5, 1:1, and 1:1, respectively. With the increase in the M W of DX, there was an increase in the M W values of the corresponding glycates but a decrease in the number of bound DX. The WPI-DX glycates had lower whey protein IgE-binding capacity than native WPI, with the lowest IgE-binding capacity obtained in the G10 glycate. The DX binding ratios and morphology results from atomic force microscopy images suggested that glycation of WPI with small-M W DX resulted in extensive protein surface coverage, probably due to the attachment of up to 4 DX molecules per whey protein. The lower IgE binding of the G10 glycate was likely due to greater steric hindrance (or a physical barrier) at the surface of the protein. In summary, our results demonstrate that glycating WPI with DX via Maillard reaction can potentially be used to decrease the allergenicity of whey protein. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. The health and technological implications of a better control of neoformed contaminants by the food industry.

    PubMed

    Birlouez-Aragon, I; Morales, F; Fogliano, V; Pain, J-P

    2010-06-01

    The recent discovery of the presence of variable amounts of the carcinogenic compound acrylamide in a wide range of severely heat-treated food products, such as fried potatoes, biscuits, bread and coffee or malt, as a result of the heat process, has induced an important research in the area of the Maillard reaction in food. The interaction between a specific food composition and the heat process applied results in the development of complex oxidation and glycation reactions, which give rise to a mixture of flavoured compounds and possible neoformed contaminants (NFC). Recommendations by the European Commission aim at monitoring the content of major NFC, such as acrylamide and furan, in a list of food products commercialized in Europe. On the other hand, the Commission for European Normalization (CEN) has created recently a new workgroup (WG13) responsible for normalization of analytical method for NFC assessment. The European collective research ICARE was carried out to identify the possible health consequences of the ingestion of heat-treated products, characterize the reaction kinetics leading to NFC and evaluate some mitigation procedures proposed by the CIAA toolbox, and finally develop a simple, rapid and non destructive control method based on fluorescence acquisition on the crushed food products and chemometric analysis of the spectral information. This paper summarizes the objectives and essential results obtained in the scope of the project, highlighting the need for evaluating the distribution of NFC in food products commercialized in Europe, as well as the impact of the food formula/recipe and process on Maillard derived NFC food levels. The potential of the Fluoralys sensor regarding its ability to control food contamination with NFC is presented. A decrease in NFC concentration of heat processed food should allow significantly limiting the exposure of populations to NFC and consequently the potential related health risk. (c) 2009 Elsevier Masson SAS. All rights reserved.

  12. Beef flavor: a review from chemistry to consumer.

    PubMed

    Kerth, Chris R; Miller, Rhonda K

    2015-11-01

    This paper briefly reviews research that describes the sensation, generation and consumer acceptance of beef flavor. Humans sense the five basic tastes in their taste buds, and receptors in the nasal and sinus cavities sense aromas. Additionally, trigeminal senses such as metallic and astringent are sensed in the oral and nasal cavities and can have an effect on the flavor of beef. Flavors are generated from a complex interaction of tastes, tactile senses and aromas taken collectively throughout the tongue, nasal, sinus and oral cavities. Cooking beef generates compounds that contribute to these senses and result in beef flavor, and the factors that are involved in the cookery process determine the amount and type of these compounds and therefore the flavor generated. A low-heat, slow cooking method generates primarily lipid degradation products, while high-heat, fast cookery generates more Maillard reaction products. The science of consumer acceptance, cluster analyses and drawing relationships among all flavor determinants is a relatively new discipline in beef flavor. Consumers rate beef that has lipid degradation products generated from a low degree of doneness and Maillard flavor products from fast, hot cookery the highest in overall liking, and current research has shown that strong relationships exist between beef flavor and consumer acceptability, even more so than juiciness or tenderness. © 2015 Society of Chemical Industry.

  13. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone.

  14. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus.

    PubMed Central

    McCance, D R; Dyer, D G; Dunn, J A; Bailie, K E; Thorpe, S R; Baynes, J W; Lyons, T J

    1993-01-01

    Glycation, oxidation, and browning of proteins have all been implicated in the development of diabetic complications. We measured the initial Amadori adduct, fructoselysine (FL); two Maillard products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine; and fluorescence (excitation = 328 nm, emission = 378 nm) in skin collagen from 39 type 1 diabetic patients (aged 41.5 +/- 15.3 [17-73] yr; duration of diabetes 17.9 +/- 11.5 [0-46] yr, [mean +/- SD, range]). The measurements were related to the presence of background (n = 9) or proliferative (n = 16) retinopathy; early nephropathy (24-h albumin excretion rate [AER24] > or = 20 micrograms/min; n = 9); and limited joint mobility (LJM; n = 20). FL, CML, pentosidine, and fluorescence increased progressively across diabetic retinopathy (P < 0.05, P < 0.001, P < 0.05, P < 0.01, respectively). FL, CML, pentosidine, and fluorescence were also elevated in patients with early nephropathy (P < 0.05, P < 0.001, P < 0.01, P < 0.01, respectively). There was no association with LJM. Controlling for age, sex, and duration of diabetes using logistic regression, FL and CML were independently associated with retinopathy (FL odds ratio (OR) = 1.06, 95% confidence interval (CI) = 1.01-1.12, P < 0.05; CML OR = 6.77, 95% CI = 1.33-34.56, P < 0.05) and with early nephropathy (FL OR = 1.05, 95% CI = 1.01-1.10, P < 0.05; CML OR = 13.44, 95% CI = 2.00-93.30, P < 0.01). The associations between fluorescence and retinopathy and between pentosidine and nephropathy approached significance (P = 0.05). These data show that FL and Maillard products in skin correlate with functional abnormalities in other tissues and suggest that protein glycation and oxidation (glycoxidation) may be implicated in the development of diabetic retinopathy and early nephropathy. PMID:8514859

  15. Identifying genes involved in the interaction of Aggregatibacter actinomycetemcomitans with Maillard reaction products (MRP)

    NASA Astrophysics Data System (ADS)

    Jaha, Raniah Abdulmohsen

    Aggregatibacter (Actinobacillus) actinomycelemcomitcrns is a gram-negative bacterium that is a facultative anaerobe which can grow in either aerobic or anaerobic conditions. The bacteria cause localized aggressive periodontitis that can result in the loss of teeth and endocarditis, which is an infection of the heart valves. A rich medium is an essential requirement for its growth. There arc some difficulties associated with growing the bacteria as they easily switch from the rough to smooth phenotype under no specific conditions. The bacteria start to lose viability after about 19 hours of growth in broth or about three days on plates. Colonies in the dense part of the streak on plates die earlier. It was shown that acid secreted by the colonies is responsible for the loss of viability as the bacteria are extremely sensitive to low pH. Autoclaving the growth medium for A. actinomycetemcomitans causes the bacteria to grow slowly because of the formation of Maillard reaction products (MRPs). A method has been developed to make the A. actinomycetemcomitans growth medium using the microwave instead of the autoclave. This method produces much less of the inhibitory product since the heating time is only six minutes, compared to more than an hour when using the autoclave. Two approaches were sought in this research. The first approach was the identification of genes responsible for the interaction between the MRP and A. actinomycetemcomitans. The gene responsible for this interaction was found to be a Lys M protein which is found in many genes responsible for the cell wall integrity. The second approach was to develop a new drug made of glucose and lysine with a minimum inhibitory concentration as 75mM.

  16. Galactose Is the Limiting Factor for the Browning or Discoloration of Cheese during Storage.

    PubMed

    Igoshi, Asuka; Sato, Yui; Kameyama, Kumi; Murata, Masatsune

    2017-01-01

    The browning or discoloration of cheese is often observed during long-time ripening or aging. In the present study, we identified galactose as a limiting factor for the browning, and clarified the involvement of the Maillard reaction for the discoloration. A precursor of browning of Cheddar cheese was isolated by procedures of solvent extraction and chromatography. D-Galactose and D-lactose were identified as a precursor of browning of Cheddar cheese A and B, respectively. Cheddar cheese (A, B, and C), sugar-added cheese, and nine kinds of retail cheese were stored at 4 to 70ºC for 0 to 10 d, before the L*-, a*-, and b*-values and sugar contents of each sample were measured. Cheese to which galactose was added turned brown more intensively during storage than the non-added control and the other sugar-added cheese. The more galactose was added, the more intensive the browning of the cheese appeared. The decrease in galactose correlated with the ΔL*-, Δa*-, Δb*-, and ΔE-values indicating the browning or discoloration of cheese samples. The decrease in sugars of nine kinds of retail cheese during storage also correlated with the ΔL*-, Δa*-, and ΔE-values of these cheese samples. These results clearly indicate that sugars, especially galactose, in cheese are an important factor for the browning of cheese during storage. In general, a high amount of amino acids, peptides, and proteins exists in ripe or mature cheese. Therefore, sugars, especially galactose, were considered to be the limiting factor for the Maillard reaction causing the browning of ripe or mature cheese during storage.

  17. Antioxidant activity and inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from ribose-histidine Maillard reaction products on aldose reductase and tyrosinase.

    PubMed

    Hwang, Seung Hwan; Wang, Zhiqiang; Suh, Hong-Won; Lim, Soon Sung

    2018-03-01

    This study aimed to better understand the functional properties of ribose and 20 amino acid Maillard reaction products (MRPs). The ABTS + radical scavenging ability of the ribose-20 amino acid MRPs was evaluated. Among the MRPs, ribose-histidine MRPs (RH-MRPs) showed the highest inhibitory activities on the ABTS + radical scavenging ability, aldose reductase (AR), and tyrosinase compared to other MRPs. Functional compounds with antioxidant and AR inhibitory activities have been recognized as an important strategy in the prevention and treatment of diabetic complications, and the search for tyrosinase inhibitors is important for the treatment of hyperpigmentation, development of skin-whitening agents, and use as preservatives in the food industry. On this basis, we sought to isolate and identify compounds with inhibitory activities against AR and tyrosinase. RH-MRPs were heated at 120 °C for 2 h and fractionated using four solvents: methylene chloride (MC), ethyl acetate, n-butanol, and water. The highest inhibitions were found in the MC fraction. The two compounds from this fraction were purified by silica gel column and preparative thin layer chromatography, and identified as 2-hydroxy-3-methylcyclopent-2-enone and furan-3-carboxylic acid. AR inhibition, tyrosinase inhibition, and ABTS + scavenging (IC 50 ) of 2-hydroxy-3-methylcyclopent-2-enone were 4.47, 721.91 and 9.81 μg mL -1 , respectively. In this study, inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from RH-MRP were demonstrated on AR, tyrosinase, and its antioxidant activity for the first time. RH-MRP and its constituents can be developed as beneficial functional food sources and cosmetic materials and should be investigated further as potential functional food sources.

  18. Formation of 2-alkyl-(2H)-thiapyrans and 2-alkylthiophenes in cooked beef and lamb.

    PubMed

    Elmore, J S; Mottram, D S

    2000-06-01

    2-Alkyl-(2H)-thiapyrans and 2-alkylthiophenes have been identified in the volatiles of cooked beef and lamb. The quantities of both groups of compounds were higher in the meat of animals fed lipid supplements high in n-3 polyunsaturated fatty acids. 2-Alkyl-(2H)-thiapyrans were formed when (E,E)-2,4-dienals (C(6)-C(11)) and hydrogen sulfide were heated at 140 degrees C for 30 min. This confirmed their proposed route of formation in cooked meat from lipid-derived aldehydes and hydrogen sulfide; the latter was produced from the degradation of cysteine, via the Maillard reaction. The mass spectra and NMR spectra of these thiapyrans are reported for the first time. Although 2-alkyl-(2H)-thiapyrans were found to have only low odor potency, the reactions by which they are formed may have important implications for meat flavor. These reactions may remove potent aroma compounds and their intermediates from meat, thus modifying the overall aroma profile.

  19. Characterization of galactomannan derivatives in roasted coffee beverages.

    PubMed

    Nunes, Fernando M; Reis, Ana; Domingues, M Rosário M; Coimbra, Manuel A

    2006-05-03

    In this work, the galactomannans from roasted coffee infusions were purified by 50% ethanol precipitation, anion exchange chromatography, and phenylboronic acid-immobilized Sepharose chromatography. Specific enzymatic hydrolysis of the beta-(1-->4)-D-mannan backbone allowed us to conclude that the galactomannans of roasted coffee infusions are high molecular weight supports of low molecular weight brown compounds. Also, the molecular weight of the brown compounds linked to the galactomannan increases with the increase of the coffee degree of roast. The reaction pathways of galactomannans during the coffee roasting process were inferred from the detection of specific chemical markers by gas chromatography-electron impact mass spectrometry and/or electrospray ionization tandem mass spectrometry. Maillard reaction, caramelization, isomerization, oxidation, and decarboxylation pathways were identified by detection of Amadori compounds, 1,6-beta-anhydromannose, fructose, glucose, mannonic acid, 2-ketogluconic acid, and arabinonic acid in the reducing end of the obtained oligosaccharides. The implication of the several competitive reaction pathways is discussed and related to the structural changes of the galactomannans present in the roasted coffee infusions.

  20. Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose rom Thermotoga neapolitana.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2008-06-01

    Chitopearl beads were used as immobilization supports for D-tagatose production from D-galactose by L-arabinose isomerase from Thermotoga neapolitana because chitopearl beads were more stable than alginate beads at temperatures above 60 degrees C. The pH and temperature for the maximum isomerization of galactose were 7.5 and 90 degrees C, respectively. In thermostability experiments, the half-lives of the immobilized enzyme at 70, 75, 80, 85, and 90 degrees C were 388, 106, 54, 36, and 22 h, respectively. The reaction temperature was determined to be 70 degrees C because the enzyme is highly stable up to 70 degrees C during the reaction. When the reaction time, galactose concentration, and temperature were increased, the pH of a mixture containing enzyme and galactose decreased by the Maillard reaction, resulting in decreased tagatose production. With pH control at 7.5, tagatose production (138 g/L) at 70 degrees C in a stirred tank reactor containing immobilized enzyme and 300 g/L galactose increased two times higher, comparing that without pH control.

  1. Intact carbohydrate structures as part of the melanoidin skeleton.

    PubMed

    Cämmerer, Bettina; Jalyschko, Walentina; Kroh, Lothar W

    2002-03-27

    Model melanoidins from monomeric, oligomeric, and polymeric carbohydrates, and amino acids formed under aqueous as well as water-free reaction conditions, were submitted to acidic catalyzed hydrolysis. Their degradation products were detected qualitatively and quantitatively by HPTLC and HPLC-DAD. A considerable amount of monomer carbohydrates from hydrolysis of model melanoidins formed under water-free reaction conditions was detected. It can be seen clearly that the amount of carbohydrates released increased with increasing degree of polymerization of the carbohydrates used as starting material. In comparison, the hydrolysis of melanoidins formed in aqueous condition resulted in only a small glucose release. It seems that in the Maillard reaction under water-free conditions, a significant amount of di- and oligomer carbohydrates were incorporated into the melanoidin skeleton as complete oligomer with intact glycosidic bond, forming side chains at the melanoidin skeleton. Additional side chains could be formed by transglycosylation reactions. With increasing water content, hydrothermolytic as well as retro-aldol reactions of the starting carbonyl components became significant, and therefore the possibility of forming side chains decreased. The results are consistent with the postulated melanoidin structure being built up mainly from sugar degradation products, probably branched via amino compounds.

  2. Dietary bread crust advanced glycation end products bind to the receptor for AGEs in HEK-293 kidney cells but are rapidly excreted after oral administration to healthy and subtotally nephrectomized rats.

    PubMed

    Somoza, Veronika; Lindenmeier, Michael; Hofmann, Thomas; Frank, Oliver; Erbersdobler, Helmut F; Baynes, John W; Thorpe, Suzanne R; Heidland, August; Zill, Holger; Bek, Stephan; Huber, Jochen; Weigle, Thomas; Scheidler, Sabine; Busch, Andreas E; Sebeková, Katarína

    2005-06-01

    In renal HEK-293 cells, the dietary Maillard reaction compounds casein-linked Nepsilon-carboxymethyllysine (CML), CML, bread crust (BC), and pronyl-glycine (a key compound formed in association with the process-induced heat impact applied to bread dough) all showed activation of p38-MAP kinase. Expression of the C-terminus truncated receptor for advanced glycation end products (RAGE) resulted in a reduction of HEK-293-MAP kinase activation. As these findings suggested a RAGE-mediated activating effect of CML, BC, and pronyl-glycine on kidney cellular signal transduction pathways, an in vivo study was performed. Male Wistar rats were subjected to a sham operation (CTRL, n = 20) or to 5/6 nephrectomy (NX, n = 20). Both groups were randomized into two subgroups and fed 20 g of a diet containing either 25% by weight BC or wheat starch (WS). GC-MS analyses of CML, carboxyethyllysine (CEL), and pentosidine revealed increased levels of CML and CEL in the liver but decreased levels of CML in the kidneys of CTRL and NX rats fed the BC diet compared to those on the WS diet. However, urinary levels of CML were also elevated in the CTRL and NX rats on the BC diet, pointing to enhanced excretion of AGEs after BC administration. Although renal insufficiency in the NX rats was reflected by proteinuria, the renal handling of CML and, presumably, other AGEs was not impaired.

  3. Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound.

    PubMed

    Biemel, Klaus M; Friedl, D Alexander; Lederer, Markus O

    2002-07-12

    Glycation reactions leading to protein modifications (advanced glycation end products) contribute to various pathologies associated with the general aging process and long term complications of diabetes. However, only few relevant compounds have so far been detected in vivo. We now report on the first unequivocal identification of the lysine-arginine cross-links glucosepane 5, DOGDIC 6, MODIC 7, and GODIC 8 in human material. For their accurate quantification by coupled liquid chromatography-electrospray ionization mass spectrometry, (13)C-labeled reference compounds were synthesized independently. Compounds 5-8 are formed via the alpha-dicarbonyl compounds N(6)-(2,3-dihydroxy-5,6-dioxohexyl)-l-lysinate (1a,b), 3-deoxyglucosone (), methylglyoxal (), and glyoxal (), respectively. The protein-bound dideoxyosone 1a,b seems to be of prime significance for cross-linking because it presumably is not detoxified by mammalian enzymes as readily as 2-4. Hence, the follow-up product glucosepane 5 was found to be the dominant compound. Up to 42.3 pmol of 5/mg of protein was identified in human serum albumin of diabetics; the level of 5 correlates markedly with the glycated hemoglobin HbA(1c). In the water-insoluble fraction of lens proteins from normoglycemics, concentration of 5 ranges between 132.3 and 241.7 pmol/mg. The advanced glycoxidation end product GODIC 8 is elevated significantly in brunescent lenses, indicating enhanced oxidative stress in this material. Compounds 5-8 thus appear predestined as markers for pathophysiological processes.

  4. Evaluation of Catalytic Effects of Chymotrypsin and Cu2+ for Development of UV-Spectroscopic Method for Gelatin-Source Differentiation

    PubMed Central

    Hamizah, Anis; Asiyanbi-H, Tawakalit Tope; Mirghani, Mohamed Elwathig Saeed; Jaswir, Irwandi; Ahamad Fadzillah, Nurrulhidayah binti

    2017-01-01

    The consumers interest in gelatin authentication is high due to allergic reactions and adoption of Halal and Kosher eating cultures. This research investigated browning development due to enzymatic hydrolysis and presence of Cu2+ during Maillard reaction of fish, porcine, and bovine gelatin. The rate of browning index samples showed two phases—rapid and slow—for all the gelatin samples and changes in browning index (ΔBindex) were increased (>100%) in presence of Cu2+. ΔBindex of enzymatic hydrolysates were different among the gelatin species. Fish gelatin hydrolyzate displayed > 400% increase in browning in the first six hours compared to gelatin hydrolyzates from porcine (200%) and bovine (140%). The variation in ΔBindex of chymotrypsin digested gelatin in presence of Cu2+ could be valuable for the development of an efficient UV-spectroscopic method for gelatin differentiation. PMID:29119103

  5. Evaluation of Catalytic Effects of Chymotrypsin and Cu2+ for Development of UV-Spectroscopic Method for Gelatin-Source Differentiation.

    PubMed

    Hamizah, Anis; Hammed, Ademola Monsur; Asiyanbi-H, Tawakalit Tope; Mirghani, Mohamed Elwathig Saeed; Jaswir, Irwandi; Ahamad Fadzillah, Nurrulhidayah Binti

    2017-01-01

    The consumers interest in gelatin authentication is high due to allergic reactions and adoption of Halal and Kosher eating cultures. This research investigated browning development due to enzymatic hydrolysis and presence of Cu 2+ during Maillard reaction of fish, porcine, and bovine gelatin. The rate of browning index samples showed two phases-rapid and slow-for all the gelatin samples and changes in browning index (Δ B index ) were increased (>100%) in presence of Cu 2+ . Δ B index of enzymatic hydrolysates were different among the gelatin species. Fish gelatin hydrolyzate displayed > 400% increase in browning in the first six hours compared to gelatin hydrolyzates from porcine (200%) and bovine (140%). The variation in Δ B index of chymotrypsin digested gelatin in presence of Cu 2+ could be valuable for the development of an efficient UV-spectroscopic method for gelatin differentiation.

  6. Short communication: possible mechanism for inhibiting the formation of polymers originated from 5-hydroxymethyl-2-furaldehyde by sulfite groups in the dairy thermal process.

    PubMed

    Guan, Yong-Guang; Zhu, Si-Ming; Yu, Shu-Juan; Xu, Xian-Bing; Zhu, Li-Cai

    2013-05-01

    5-Hydroxymethyl-2-furaldehyde can undergo polymerization to form high-molecular weight molecules via the Maillard reaction during dairy thermal treatment. In this study, the effect of sulfite group on polymer formation, especially in inhibiting the formation of high-molecular weight polymers has been described. Results showed that the sulfite group significantly inhibited the increase of polymer molecular weight via prevention of the polymerization of 5-hydroxymethyl-2-furaldehyde. The formation of an intermolecular dimer based on the glucose molecule through Schiff base cyclization can lead to a competitive reaction with 1,2-enolization to reduce 5-hydroxymethyl-2-furaldehyde formation, which might be another factor in reducing the formation of high-molecular weight polymers. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.

    PubMed

    Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru

    2015-01-21

    Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.

  8. Effect of kilning on the antioxidant and pro-oxidant activities of pale malts.

    PubMed

    Woffenden, Helen M; Ames, Jennifer M; Chandra, Sachin; Anese, Monica; Nicoli, M Cristina

    2002-08-14

    Pale malts were prepared using standard and rapid kilning regimes that differed in the temperature and moisture profiles in the kiln. Samples were taken over the last 9 h of kilning, that is, at 18, 20, 22, 25, and 27 h. Antioxidant activity, assessed by redox potential, scavenging of the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS*+), and ferric reducing/antioxidant power (FRAP), increased at moisture levels below 6.7% for both regimes. The 27 h malt exposed to the rapid regime (moisture content of 4.8%) had a higher activity than the 27 h standard regime sample (moisture content of 4.8%). None of the malts scavenged oxygen. Pro-oxidant activity profiles were different for the malts obtained using each regime and, at 27 h, the rapid procedure gave malt with higher activity. Levels of (+)-catechin and ferulic acid (the most abundant phenolic compounds identified) generally increased as the moisture content of malt fell below 6.7%. Differences in antioxidant and pro-oxidant activities of the 27 h malts are partly attributed to the Maillard reaction, as evidenced by lower L* and higher b* values and higher levels of Maillard-derived flavor compounds, in the sample obtained by the rapid procedure. Levels of lipid-derived flavor compounds were significantly higher after 27 h of kilning using the rapid procedure.

  9. Protocotyle euzetmaillardi n. sp. (Monogenea: Hexabothriidae) from the bigeye sixgill shark Hexanchus nakamurai Teng (Elasmobranchii: Hexanchidae) off New Caledonia.

    PubMed

    Justine, Jean-Lou

    2011-01-01

    Protocotyle euzetmaillardi n. sp. is described from the gills of the sixgill shark Hexanchus nakamurai Teng caught in deep-sea off New Caledonia, South Pacific. The new species is compared with the two other species of the genus (both from the only other species in this shark genus, H. griseus (Bonn.)), namely P. grisea (Cerfontaine, 1899) Euzet & Maillard, 1974, redescribed from vouchers, and P. taschenbergi (Maillard & Oliver, 1966) Euzet & Maillard, 1974, redescribed from its type-specimens. The anatomy of the reproductive system is detailed; all three species have a characteristic oötype with longitudinal cells ('ootype côtelé' of Euzet & Maillard). The following unique combination of characters differentiates the new species from its two congeners: posterior lobe of seminal vesicle absent, diverticulum of oviduct present and small body size. Furthermore, its tubular ovary does not include a region with sperm, which is present in both of the other species, and its eggs have only one filament, whereas eggs in the uterus have one or two filaments in P. grisea and one filament in P. taschenbergi. The latter features differ from existing diagnoses of Protocotyle, in which eggs with two filaments and the presence of a tubular ovary dilated with sperm are key characteristics.

  10. A facile route to synthesize nanogels doped with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, 160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, 5 nm) are synthesized "in situ" in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  11. Role of Advanced Glycation Endproducts and Potential Therapeutic Interventions in Dialysis Patients

    PubMed Central

    Mallipattu, Sandeep K.; He, John C.; Uribarri, Jaime

    2017-01-01

    It has been nearly 100 years since the first published report of advanced glycation end products (AGEs) by the French chemist Maillard. Since then, our understanding of AGEs in diseased states has dramatically changed. Especially in the last 25 years, AGEs have been implicated in complications related to aging, neurodegenerative diseases, diabetes, and chronic kidney disease. Although AGE formation has been well characterized by both in vitro and in vivo studies, few prospective human studies exist demonstrating the role of AGEs in patients on chronic renal replacement therapy. As the prevalence of end-stage renal disease (ESRD) in the United States rises, it is essential to identify therapeutic strategies that either delay progression to ESRD or improve morbidity and mortality in this population. This article reviews the role of AGEs, especially those of dietary origin, in ESRD patients as well as potential therapeutic anti-AGE strategies in this population. PMID:22548330

  12. Colloids in food: ingredients, structure, and stability.

    PubMed

    Dickinson, Eric

    2015-01-01

    This article reviews progress in the field of food colloids with particular emphasis on advances in novel functional ingredients and nanoscale structuring. Specific aspects of ingredient development described here are the stabilization of bubbles and foams by the protein hydrophobin, the emulsifying characteristics of Maillard-type protein-polysaccharide conjugates, the structural and functional properties of protein fibrils, and the Pickering stabilization of dispersed droplets by food-grade nanoparticles and microparticles. Building on advances in the nanoscience of biological materials, the application of structural design principles to the fabrication of edible colloids is leading to progress in the fabrication of functional dispersed systems-multilayer interfaces, multiple emulsions, and gel-like emulsions. The associated physicochemical insight is contributing to our mechanistic understanding of oral processing and textural perception of food systems and to the development of colloid-based strategies to control delivery of nutrients during food digestion within the human gastrointestinal tract.

  13. Role of advanced glycation endproducts and potential therapeutic interventions in dialysis patients.

    PubMed

    Mallipattu, Sandeep K; He, John C; Uribarri, Jaime

    2012-01-01

    It has been nearly 100 years since the first published report of advanced glycation end products (AGEs) by the French chemist Maillard. Since then, our understanding of AGEs in diseased states has dramatically changed. Especially in the last 25 years, AGEs have been implicated in complications related to aging, neurodegenerative diseases, diabetes, and chronic kidney disease. Although AGE formation has been well characterized by both in vitro and in vivo studies, few prospective human studies exist demonstrating the role of AGEs in patients on chronic renal replacement therapy. As the prevalence of end-stage renal disease (ESRD) in the United States rises, it is essential to identify therapeutic strategies that either delay progression to ESRD or improve morbidity and mortality in this population. This article reviews the role of AGEs, especially those of dietary origin, in ESRD patients as well as potential therapeutic anti-AGE strategies in this population. © 2012 Wiley Periodicals, Inc.

  14. Accelerated shelf-life testing of quality loss for a commercial hydrolysed hen egg white powder.

    PubMed

    Rao, Qinchun; Rocca-Smith, Jeancarlo R; Schoenfuss, Tonya C; Labuza, Theodore P

    2012-11-15

    In recent years, due to the specific health benefits associated with bioactive peptides and the reduction of protein allergenicity by enzymatic hydrolysis, the utilisation of protein hydrolysates in functional foods and beverages for both protein supplementation and clinical use has significantly increased. However, few studies have explored the moisture-induced effects on food protein hydrolysates, and the resulting changes in the structure and texture of the food matrix as well as the loss in functional properties of bioactive peptides during storage. The main purpose of this study is to determine the influence of water activity (a(w)) on the storage quality of a commercial spray-dried hydrolysed hen egg white powder (HEW). During storage at 45 °C for two months at different a(w)s (0.05-0.79), the selected physicochemical properties of the HEW samples were analysed. Overall, the effect of a(w) on the colour change of HEW at 45 °C for one month was similar to that of HEW after four months at 23 °C due to the presence of a small amount of glucose in HEW. Several structural changes occurred at a(w)s from 0.43 to 0.79 including agglomeration, stickiness and collapse. Kinetic analysis showed a first-order hyperbolic model fit for the change in the L(∗) value, the total colour difference (ΔE(∗)) and the fluorescence intensity (FI). There was a high correlation between colour change and fluorescence, as expected for the Maillard reaction. The reduction in the remaining free amino groups was about 5% at a(w) 0.50 and 6% at a(w) 0.79 after one month storage. In summary, during storage, the Maillard reaction and/or its resulting products could decrease the nutritional value and the quality of HEW. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Studies on the inhibition of tumor cell growth and microtubule assembly by 3-hydroxy-4-[(E)-(2-furyl)methylidene]methyl-3-cyclopentene-1,2-dione, an intensively coloured Maillard reaction product.

    PubMed

    Marko, D; Kemény, M; Bernady, E; Habermeyer, M; Weyand, U; Meiers, S; Frank, O; Hofmann, T

    2002-01-01

    Very recently, 3-hydroxy-4-[(E)-(2-furyl)methylidene]methyl-3-cyclopentene-1,2-dione (1) has been successfully identified as an intensively coloured Maillard product formed from glucose and L-proline upon thermal food processing. Using a biomimetic synthetic strategy, reference material of compound 1 was prepared and purified, and then used to study its effect on the growth of human tumor cells. Compound 1 was found to potently inhibit the growth of human tumor cells in vitro. Using a reporter gene assay we could show that in growth inhibitory concentrations compound 1 effectively inhibits the phosphorylation of the transcription factor Elk-1. In addition, 1 was found to affect the microtubule skeleton. The human mammary carcinoma cell line MCF-7 exhibits a decrease of the microtubule organisation when treated for 24 h with 1 (> or =20 microM). At concentrations of 30 microM and above a loss of microtubule integrity is observed after 1 h incubation. In vitro studies demonstrated that the polymerisation and, to a minor extent, also the depolymerisation of tubulin, isolated and purified from bovine brain, is inhibited in a dose-dependent manner at concentrations of 30 microM and above. This is the first time that a non-enzymatically formed browning compound of known structure was reported to effectively inhibit tumor cell growth and microtubule assembly.

  16. Advanced glycation end products (AGEs) in oral pathology.

    PubMed

    Ilea, Aranka; Băbţan, Anida M; Boşca, Bianca A; Crişan, Maria; Petrescu, Nausica B; Collino, Massimo; Sainz, Rosa M; Gerlach, Jared Q; Câmpian, Radu Septimiu

    2018-05-18

    Maillard advanced glycation end products (AGEs) are connected with high dry temperature food processing, color and flavor modification of food products. Oral cavity pathology is strongly influenced by dietary intake. The aim of the present paper is to update current data regarding the sources and metabolism of AGEs, their impact on oral cavity tissues, to discuss and suggest new approaches for the early diagnosis and efficient treatment of AGEs-related oral pathology. This paper is a narrative review of the studies discussing AGEs and mainly the dietary AGEs (dAGEs) sources, metabolism, linkage to general diseases, and specifically the oral cavity pathology. The authors used "PUBMED" and MeSH for the finding of English written and published articles concerning AGEs. There were used the next keywords association: "advanced glycation end products- AGEs" AND "Maillard products", "AGEs" AND "diet-related disease, "AGEs" AND "salivary biosensor", "AGEs" AND "metabolic syndrome AGEs", "AGEs" AND "oral pathology", "AGEs" AND "dentin AGEs" OR "periodontal AGEs", "AGEs" AND "diagnosis and monitoring". The authors used free full-text articles to determine the etiology and physiopathology of AGEs, their association with general diseases and oral cavity disease, assessment methods used in biofluids and tissues, AGEs prevention and treatment approaches. Articles concerning AGEs etiology, metabolism and effect in the human body and specific implication in oral pathology were selected. There were no exclusion criteria in what concerns the study design. Studies in other language than English and articles abstracts were excluded. Criteria of inclusion were free full-text articles written in English. Equally human and animal model studies were included. Regarding the date of publication, all subjects concerning glycation products after 1953 (first published article) were included. Evidence show that AGEs are responsible for inducing low intensity chronic inflammation and thereby, for initiating and/or aggravating chronic diseases. Nowadays, research has demonstrated a significant association between AGEs and dental or periodontal pathology. Moreover, salivary AGEs are consistent with the levels of AGEs in other biological fluids and are correlated with the general and oral pathology. Assessment of salivary AGEs could be a reliable tool for early diagnosis and monitoring diet-related disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Growth medium sterilization using decomposition of peracetic acid for more cost-efficient production of omega-3 fatty acids by Aurantiochytrium.

    PubMed

    Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee

    2018-06-01

    Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.

  18. Influence of enzymatic extrusion liquefaction pretreatment for Chinese rice wine on the volatiles generated from extruded rice.

    PubMed

    Xu, Enbo; Li, Hongyan; Wu, Zhengzong; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-01-01

    Volatile compounds in enzymatic extruded rice, produced under different conditions of varying barrel temperature (BT), α-amylase concentration (AC) and moisture content (MC), were extracted and identified by headspace solid phase microextraction (HS-SPME) and gas chromatography-linked mass spectrometry (GC-MS). Statistical analyses reflected that the Maillard reaction could be inhibited both by the mild extrusion conditions and the enhanced hydrolysis caused by thermostable α-amylase. Relative amounts of total volatiles in enzymatic extruded rice were far less than those in severe processed extruded rice. Reverse-phase high-performance liquid chromatography (RP-HPLC) showed that the amino acids (AAs) involved in Maillrad reaction were utmostly preserved in extruded rice with highest amylase concentration by comparison of total AA content of different extrudates. These results suggest that enzymatic extrusion liquefaction is an effective way to control the generation of volatiles from extruded rice for Chinese rice wine production. © 2014 Institute of Food Technologists®

  19. One-Pot Conversion of Carbohydrates into Pyrrole-2-carbaldehydes as Sustainable Platform Chemicals.

    PubMed

    Adhikary, Nirmal Das; Kwon, Sunjeong; Chung, Wook-Jin; Koo, Sangho

    2015-08-07

    A practical conversion method of carbohydrates into N-substituted 5-(hydroxymethyl)pyrrole-2-carbaldehydes (pyrralines) was developed by the reaction with primary amines and oxalic acid in DMSO at 90 °C. Further cyclization of the highly functionalized pyrralines afforded the pyrrole-fused poly-heterocyclic compounds as potential intermediates for drugs, food flavors, and functional materials. The mild Maillard variant of carbohydrates and amino esters in heated DMSO with oxalic acid expeditiously produced the pyrrole-2-carbaldehyde skeleton, which can be concisely transformed into the pyrrole alkaloid natural products, 2-benzyl- and 2-methylpyrrolo[1,4]oxazin-3-ones 8 and 9, lobechine 10, and (-)-hanishin 11 in 23-32% overall yields from each carbohydrate.

  20. Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry.

    PubMed

    Li, Kai; Zhang, Liqiang; Zhu, Liang; Zhu, Xifeng

    2017-06-01

    The cornstalk and chlorella were selected as the representative of lignocelulosic and algal biomass, and the pyrolysis experiments of them were carried out using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The physicochemical properties of samples and the pyrolytic product distribution were presented. And then the compositional differences between the two kinds of pyrolytic products were studied, the relevant pyrolysis mechanisms were analyzed systematically. Pyrolytic vapor from lignocellulosic biomass contained more phenolic and carbonyl compounds while that from algal biomass contained more long-chain fatty acids, nitrogen-containing compounds and fewer carbonyl compounds. Maillard reaction is conducive to the conversion of carbonyl compounds to nitrogenous heterocyclic compounds with better thermal stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. EPR study of free radicals in bread

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Mladenova, Ralitsa

    2004-05-01

    The features of the recorded EPR spectra of paramagnetic species formed in bread and rusk are reported. The appearance of free radicals in them is only connected with their thermal treatment since the starting materials (flour and grains) exhibit very weak EPR signal. The obtained EPR spectra are complex and indicate that: (i) the relative number of paramagnetic species depends on the temperature and treating time of the raw product; (ii) the g-values are strongly temperature dependent with a tendency to coincide at t≥220 °C. Because of the relatively low (150-220 °C) temperature of thermal treatment, the studied free radicals can be assumed to appear in the course of the browning (Maillard) reaction and not to the carbonization of the material.

  2. Characterization of the polymerization of furfuryl alcohol during roasting of coffee.

    PubMed

    Swasti, Yuliana Reni; Murkovic, Michael

    2012-09-01

    The polymerization of furfuryl alcohol contributes to the formation of the brown colour in heated foods, in addition to the Maillard and caramelization reactions. During the heating of food, furfuryl alcohol is formed via the degradation of quinic acid or 1,2-enediols. Furfuryl alcohol is a mutagenic compound. In acidic conditions it is able to polymerize and form aliphatic polymers that show a brown colour. Herein we show that furfuryl alcohol polymerizes in a model system by incubating it in 1 M HCl at room temperature. Some of the reaction products are dimers, trimers, tetramers, and pentamers with methylene linkages. The degree of polymerization and the amount of those furfuryl alcohol oligomers increased with increasing reaction time. The results of this model system were used to characterize the polymerization of furfuryl alcohol which is produced during roasting of coffee. The coffee was roasted at 210 °C for 2, 3, 4, 5, and 6 min with a home coffee roaster. Furfuryl alcohol and its dimer were found in roasted coffee after 2 and 3 min of roasting respectively, reaching a maximum amount after 4 min. Perhaps due to further reactions, the dimeric furfuryl alcohol concentration starts to decrease after 4 min. We propose that the polymers of furfuryl alcohol contribute to the brown colour of roasted foods.

  3. Properties of acid gels made from sodium caseinate-maltodextrin conjugates prepared by a wet heating method.

    PubMed

    Zhang, Shuwen; Gong, Yuansheng; Khanal, Som; Lu, Yanjie; Lucey, John A

    2017-11-01

    Covalent attachment of polysaccharides to proteins (conjugation) via the Maillard reaction has been extensively studied. Conjugation can lead to a significant improvement in protein functionality (e.g., solubility, emulsification, and heat stability). Caseins have previously been successfully conjugated with maltodextrin (Md), but the effect on the detailed acid gelation properties has not been examined. We studied the effect of conjugating sodium caseinate (NaCN) with 3 different sized Md samples via the Maillard reaction in aqueous solutions. The Md samples had dextrose equivalents of 4 to 7, 9 to 12, and 20 to 23 for Md40, Md100, and Md200, respectively. The conjugation reaction was performed in mixtures with 5% NaCN and 5% Md, which were heated at 90°C for 10 h. The degree of conjugation was estimated from the reduction in free amino groups as well as color changes. Sodium dodecyl sulfate-PAGE analysis was performed to confirm conjugation by employing staining of both protein and carbohydrate bands. The molar mass of samples was determined by size-exclusion chromatography coupled with multi-angle laser light scattering. After the conjugation reaction, samples were then gelled by the addition of 0.63% (wt/vol) glucono-δ-lactone at 30°C, such that samples reached pH 4.6 after about 13 h. The rheological properties of samples during acidification was monitored by small-strain dynamic oscillatory rheology. The microstructure of acid gels at pH 4.6 was examined by fluorescence microscopy. Conjugation resulted in a loss of 10.8, 8.8, and 11.9% of the available amino groups in the protein for the NaCN-Md40 conjugates (C40), NaCN-Md100 conjugates (C100), and NaCN-Md100 conjugates (C200), respectively. With a decrease in the size of the type of Md, an increase occurred in the molar mass of the resultant conjugate. The weight average molar masses of NaCN-Md samples were 340, 368, and 425 kDa for the conjugates C40, C100, and C200, respectively. Addition of Md to NaCN dispersion resulted in slightly shorter acid gelation times even without the conjugation reaction. The storage modulus (G') of acid gels was significantly lower in conjugated samples compared with the corresponding (unreacted) mixtures of Md and NaCN. The sample with the lowest G' value at pH 4.6 was the C40 conjugate. Fluorescence microscopy showed that gels made by conjugates had slightly larger pores. These results indicate that conjugation of casein modified its acid gelation properties, presumably by the Md polysaccharide moiety hindering aggregation and rearrangements of the casein network. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. The impact of the molecular weight of dextran on formation of whey protein isolate (WPI)-dextran conjugates in fibers produced by needleless electrospinning after annealing.

    PubMed

    Turan, Deniz; Gibis, Monika; Gunes, Gurbuz; Baier, Stefan K; Weiss, Jochen

    2018-04-25

    The conjugation reaction of electrospun fibers of a mixture of whey protein isolate (WPI) and dextran using different molecular weights (40, 70, and 100 kDa) and mixing ratios was studied. This study includes the electrospinnability of a mixture of WPI and dextran, and the conjugation reaction between them via the initial stage of the Maillard reaction. The WPI-dextran fibers were characterized using optical and transmission electron microscopy. The covalent attachment of dextran to WPI was confirmed using sodium-dodecyl-sulfate-polyacrylamide gel-electrophoresis with protein and glycoprotein staining. Both 70 and 100 kDa of dextran and WPI at mixing ratios of 2 : 1 and 3 : 1 in phosphate buffer (30 mM, pH 6.5) were electrospun using needleless electrospinning. The solution concentration of the mixture was 50 wt% (33.3/37.5 wt% for dextran/16.5/12.5 wt% for WPI). The optimal conjugation conditions chosen from the experiments were a mixture of dextran (70 kDa)-WPI at 3 : 1 (75% relative humidity, 60 °C, 48 h).

  5. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting

    PubMed

    Dybkowska, Ewa; Sadowska, Anna; Rakowska, Rita; Dębowska, Maria; Świderski, Franciszek; Świąder, Katarzyna

    The roasting stage constitutes a key component in the manufacturing process of natural coffee because temperature elicits changes in bioactive compounds such as polyphenols and that Maillard-reaction compounds appear, thus affecting the product’s sensory and antioxidant properties. Actual contents of these compounds may depend on which region the coffee is cultivated as well as the extent to which the beans are roasted To determine polyphenols content and antioxidant activity in the ‘Arabica’ coffee type coming from various world regions of its cultivation and which have undergone industrial roasting. Also to establish which coffee, taking into account the degree of roasting (ie. light, medium and strong), is nutritionally the most beneficial The study material was natural coffee beans (100% Arabica) roasted to various degrees, as aforementioned, that had been cultivated in Brazil, Ethiopia, Columbia and India. Polyphenols were measured in the coffee beans by spectrophotometric means based on the Folin-Ciocalteu reaction, whereas antioxidant activity was measured colourimetrically using ABTS+ cat-ionic radicals Polyphenol content and antioxidant activity were found to depend both on the coffee’s origin and degree of roasting. Longer roasting times resulted in greater polyphenol degradation. The highest polyphenol concentrations were found in lightly roasted coffee, ranging 39.27 to 43.0 mg/g, whereas levels in medium and strongly roasted coffee respectively ranged 34.06 to 38.43 mg/g and 29.21 to 36.89 mg/g. Antioxidant activity however significantly rose with the degree of roasting, where strongly roasted coffee had higher such activity than lightly roasted coffee. This can be explained by the formation of Maillard-reaction compounds during roasting, leading then to the formation of antioxidant melanoidin compounds which, to a large extent, compensate for the decrease in polyphenols during roasting Polyphenols levels and antioxidant activities in the studied Arabica coffee beans that had undergone roasting depended on the cultivation region of the world. Longer roasting caused a significant decline in polyphenols compound levels (from 7.3% to 32.1%) in the coffee beans. Antioxidant activities of coffee increased with roasting, despite reduced levels of natural antioxidants. From a nutritional standpoint, the most favoured coffees are those lightly or medium roasted

  6. A new flavone xyloside and two new flavan-3-ol glucosides from Juniperus communis var. depressa.

    PubMed

    Iida, Naoki; Inatomi, Yuka; Murata, Hiroko; Inada, Akira; Murata, Jin; Lang, Frank A; Matsuura, Nobuyasu; Nakanishi, Tsutomu

    2007-01-01

    A new flavone xyloside, 1, and two new flavan-3-ol glucosides, 3 and 4, were isolated together with three known flavones, 2, 11, and 12, five known flavans, 5-9, and a known dihydrochalcone, 10, from the stems and leaves of Juniperus communis var. depressa (Cupressaceae) collected in Oregon, U.S.A., and their structures were determined on the basis of spectral evidence. A novel flavone nucleus such as that in 1 is seldom found in nature today, and new methylcatechin glucosides 3 and 4 are also rare in nature. In addition, we investigated the inhibitory activity of individual components, i.e., 8-11, and others, that were abundantly isolated from the same plant material for the Maillard reaction.

  7. [The composition of volatile components of cepe (Boletus edulis) and oyster mushrooms (Pleurotus ostreatus)].

    PubMed

    Misharina, T A; Mukhutdinova, S M; Zharikova, G G; Terenina, M B; Krikunova, N I

    2009-01-01

    The composition of aroma compounds in cooked and canned cepe (Boletus edulis) and in cooked oyster mushrooms (Pleurotus ostreatus) is studied using capillary gas chromatography and chromatography-mass spectrometry. It is found that unsaturated alcohols and ketones containing eight atoms of carbon determine the aroma of raw mushrooms and take part in the formation of the aroma of cooked mushrooms as well. The content of these compounds was the highest in canned cepes. In oyster mushrooms, the concentration of these alcohols and ketones was lower in comparison with cepes. The content of aliphatic and aromatic aldehydes was much higher in oyster mushrooms. Volatile aliphatic and heterocyclic Maillard reaction products and isomeric octenols and octenones formed the aroma of cooked and canned mushrooms.

  8. Roles of water molecules in bacteria and viruses

    NASA Astrophysics Data System (ADS)

    Cox, C. S.

    1993-02-01

    In addition to water, microbes mainly comprise lipids, carbohydrates, proteins and nucleic acids. Their structure and function singularly and conjointly is affected by water activity. Desiccation leads to dramatic lipid phase changes whereas carbohydrates, proteins and nucleic acids initially suffer spontaneous, reversible low activation energy Maillard reactions forming products that more slowly re-arrange, cross-link etc. to give non-native states. While initial products spontaneously may reverse to native states by raising water activity, later products only do so through energy consumption and enzymatic activity eg. repair. Yet, native states of lipid membranes and associated enzymes are required to generate energy. Consequently, good reserves of high energy compounds (e.g. ATP) and of membrane stabilisers (e.g. trehalose) may be expected to enhance survival following drying and rehydration (e.g. anhydrobiotic organisms).

  9. A significant abiotic pathway for the formation of unknown nitrogen in nature

    NASA Astrophysics Data System (ADS)

    Jokic, A.; Schulten, H.-R.; Cutler, J. N.; Schnitzer, M.; Huang, P. M.

    2004-03-01

    The global nitrogen cycle is of prime importance in natural ecosystems. However, the origin and nature of up to one-half of total soil N remains obscure despite all attempts at elucidation. Our data provide, for the first time, unequivocal evidence that the promoting action of Mn (IV) oxide on the Maillard reaction (sugar-amino acid condensation) under ambient conditions results in the abiotic formation of heterocyclic N compounds, which are often referred to as unknown nitrogen, and of amides which are apparently the dominant N moieties in nature. The information presented is of fundamental significance in understanding the role of mineral colloids in abiotic transformations of organic N moieties, the incorporation of N in the organic matrix of fossil fuels, and the global N cycle.

  10. Development of a direct in-matrix extraction (DIME) protocol for MALDI-TOF-MS detection of glycated phospholipids in heat-treated food samples.

    PubMed

    Calvano, Cosima D; De Ceglie, Cristina; Zambonin, Carlo G

    2014-09-01

    In foodstuffs, one of the main factors inducing modifications in phospholipids (PLs) structure is the heat treatment. Among PLs, only phosphatidylethanolamines and phosphatidylserines, due to their free amino group, can be involved in Maillard reaction and can form adducts with reducing sugars, besides other by-products called advanced glycation end-products. To date, glycated lipid products are less characterized in comparison to proteins. The aim of this work was to develop a novel, rapid and sensitive extraction protocol for the detection and characterization of modified PLs (glycated and oxidized) by means of matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). At first, to investigate the formation of glycated and/or short chain by-products in different classes of PLs, representative standards were heated with or without sugar (lactose or glucose) and subjected to traditional lipid extraction methods as Bligh and Dyer and to the novel direct in matrix extraction (DIME) using 1,8-bis(dimethylamino)naphthalene as preconcentrating matrix. MALDI-MS analysis in negative ion mode allowed detecting glycation and oxidation products both on fatty acid and glucose moieties. Then, the procedure was successfully applied to different heat-treated and powdered samples (milk powders, pasteurized milk, ultra-high-temperature milk and soy flour) for the detection of modified PLs in complex foods. The currently developed DIME protocol could be a powerful tool for understanding lipid glycation also in biological samples. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Analysis of the reaction products from micro-vial pyrolysis of the mixture glucose/proline and of a tobacco leaf extract:Search for Amadori intermediates.

    PubMed

    Mitsui, Kazuhisa; David, Frank; Tienpont, Bart; Sandra, Koen; Ochiai, Nobuo; Tamura, Hirotoshi; Sandra, Pat

    2015-11-27

    Micro-vial pyrolysis (PyroVial) was used to study the production of compounds important for the aroma of heat-treated natural products such as tobacco. Firstly, a mixture of glucose and proline was pyrolyzed as model, as this sugar and amino acid are also abundant in tobacco leaf (Nicotiana tobacum L.). The pyrolysate was analyzed using headspace-GC–MS, liquid injection GC–MS and LC–MS. Next, micro-vial pyrolysis in combination with LC–MS was applied to tobacco leaf extract. Using MS deconvolution, molecular feature extraction and differential analysis it was possible to identify Amadori intermediates of the Maillard reaction in the tobacco leaf extract. The intermediate disappeared as was the case for 1-deoxy-1-prolino-β-d-fructose or the concentration decreased in the pyrolysate compared to the original extract such as for the 1-deoxy-1-[2-(3-pyridyl)-1-pyrrolidinyl]-β-d-fructose isomers indicating that Amadori intermediates are important precursors for aroma compound formation.

  12. Behaviour of non-oxidized and oxidized flaxseed oils, as models of omega-3 rich lipids, during in vitro digestion. Occurrence of epoxidation reactions.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Guillén, María D

    2017-07-01

    Fresh and partially oxidized flaxseed oil, as models of omega-3 rich lipids, were submitted to in vitro gastrointestinal digestion. Hydrolysis level, lipid composition and oxidative status of the samples before and after digestion were studied by Proton Nuclear Magnetic Resonance ( 1 H NMR) and Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS). Although a great degree of lipolysis was reached in both kinds of samples after digestion, it was somewhat lower in the digests of oxidized flaxseed oil. The occurrence of lipid oxidation during digestion was evidenced by decreased unsaturated lipids and increased primary and secondary oxidation products, especially in oxidized samples. In these latter, linolenic-derived monoepoxy-octadecadienoates were the main oxidation products generated. SPME-GC/MS study showed the highest abundances of highly reactive alkadienals (C5-C10), alkatrienals (C9-C10) and linolenic-derived 4,5-epoxy-2-heptenals in the headspace of oxidized flaxseed oil digests. Volatile markers of Maillard-type reactions were also detected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal.

    PubMed

    Bui, Thi Phuong Nam; Ritari, Jarmo; Boeren, Sjef; de Waard, Pieter; Plugge, Caroline M; de Vos, Willem M

    2015-12-01

    Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products.

  14. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal

    PubMed Central

    Bui, Thi Phuong Nam; Ritari, Jarmo; Boeren, Sjef; de Waard, Pieter; Plugge, Caroline M.; de Vos, Willem M.

    2015-01-01

    Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products. PMID:26620920

  15. Acrylamide formation in different foods and potential strategies for reduction.

    PubMed

    Stadler, Richard H

    2005-01-01

    This paper summarizes the progress made to date on acrylamide research pertaining to analytical methods, mechanisms of formation, and mitigation research in the major food categories. Initial difficulties with the establishment of reliable analytical methods have today in most cases been overcome, but challenges still remain in terms of the needs to develop simple and rapid test methods. Several researchers have identified that the main pathway of formation of acrylamide in foods is linked to the Maillard reaction and in particular the amino acid asparagine. Decarboxylation of the resulting Schiff base is a key step, and the reaction product may either furnish acrylamide directly or via 3-aminopropionamide. An alternative proposal is that the corresponding decarboxylated Amadori compound may release acrylamide by a beta-elimination reaction. Many experimental trials have been conducted in different foods, and a number of possible measures identified to relatively lower the amounts of acrylamide in food. The validity of laboratory trials must, however, be assessed under actual food processing conditions. Some progress in relatively lowering acrylamide in certain food categories has been achieved, but can at this stage be considered marginal. However, any options that are chosen to reduce acrylamide must be technologically feasible and also not negatively impact the quality and safety of the final product.

  16. Dose-dependent utilisation of casein-linked lysinoalanine, N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine in rats.

    PubMed

    Somoza, Veronika; Wenzel, Elisabeth; Weiss, Carola; Clawin-Rädecker, Ingrid; Grübel, Nadine; Erbersdobler, Helmut F

    2006-09-01

    During the heat treatment of protein-containing foods, the amino acid lysine is most prone to undergo chemical reactions in the course of amino acid cross-linking or Maillard reactions. Among the reaction products formed, lysinoalanine (LAL), N(epsilon)-fructoselysine (FL) and N(epsilon)-carboxymethyllysine (CML) are those which serve as sensitive markers for the heat treatment applied. From a nutritional perspective, these compounds are ingested with the diet in considerable amounts but information about their metabolic transit and putative in vivo effects is scarce. In the present study, casein-linked LAL, FL and CML were administered to rats in two different doses for 10 days. Quantitation of LAL, FL and CML in plasma, tissue and faeces samples revealed that the kidneys are the predominant sites of accumulation and excretion. The maximum percent of dietary LAL, FL and CML excreted in the urine was 5.6, 5.2 and 29%, whereas the respective recoveries in the kidneys were 0.02, 26 and 1.4%. The plasma and tissue analyses revealed that the endogenous load of either compound is increased by its dietary intake. But the dose-dependent utilisation of dietary protein-linked LAL, FL and CML in rats has been demonstrated for the first time to vary substantially from each other.

  17. Role of Reactive Carbonyl Species in non-enzymatic browning of apple juice during storage.

    PubMed

    Paravisini, Laurianne; Peterson, Devin G

    2018-04-15

    Non-enzymatic browning during storage of fruit juice causes the development of brown color and off-flavors that ultimately lead to a decrease in consumer acceptability. This study investigates the role of Reactive Carbonyl Species (RCS) from the Maillard reaction on browning formation in apple juice during storage. Over a 10-week period under accelerated conditions (35 °C), a significant increase in brown color development was observed and positively correlated to the RCS concentrations. Supplementation experiments established causality between specific RCS and browning and allowed for the identification of glyoxal and methylglyoxal as key browning intermediates in apple juice. Finally, phloretin, a ubiquitous apple dihydrochalcone, was reported as an efficient browning suppressor by significantly reducing the RCS levels and inhibiting the color formation during storage. Copyright © 2017. Published by Elsevier Ltd.

  18. Advances in R&D in near-infrared spectroscopy in Japan

    NASA Astrophysics Data System (ADS)

    Kawano, Sumio; Iwamoto, Mutsuo

    1991-02-01

    More than 20 years ago when Mr. K. H. Norris firstly introduced the near infrared spectroscopy (NIRS) as a powerful technology in the field of composition analysis of cereals those who were interested in the area of classical spectroscopy would not like to recognize its potential. This tendency still remains at present however it leaves no room for doubt that from viewpoints of applied spectroscopy the NIRS has consolidated its position. From a viewpoint of NIRS application in the field of nondestructive or non invasive measuring techniques history of this technology is only the last decade in Japan. However since the technology was firstly introduced to composition analysis of agricultural commodities in the same manner as in other countries R and D have been growing more actively in diversified fields such as agriculture and industry as well as medical science. In addition the NIRS technology are becoming of general interest by combining other techniques to create various hyphenated instrumentations such as FTNIR MCFTNIR NIRCT and NIR-NMR. In this paper new trends of R D on NIR spectroscopy which are being conducted in Japan will be reviewed. 2. S1JMMARY OF PRESENT R D ON NIRS IN JAPAN NIRS applications reported in the last 3 years are summarized in Table 1. Table 1 Applications of NIRS in Japan Application for Agriculture Taste evaluation of rice and coffee Determination of chemical compositions rice for breeding Determination of chemical compositions in tea Determination of sugar contents in intact peaches Japanese pears Satsuma oranges and apples Determination of sugars and acids in intact tomatoes Determination of forage composition Application for Industry Analysis of state of water in foods Application of analyzing Maillard Reaction''s Process Pattern recognition of NIR spectra as related to process control of roasting coffee beans Quality control of tea processing Determination of moisture content of Surimi products 2 / SPIE Vol. 1379 Optics in Agriculture (1990)

  19. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers.

    PubMed

    Yi, Jiang; Lam, Tina I; Yokoyama, Wallace; Cheng, Luisa W; Zhong, Fang

    2014-09-03

    Undesirable aggregation of nanoparticles stabilized by proteins may occur at the protein's isoelectric point when the particle has zero net charge. Stability against aggregation of nanoparticles may be improved by reacting free amino groups with reducing sugars by the Maillard reaction. β-Lactoglobulin (BLG)-dextran conjugates were characterized by SDS-PAGE and CD. Nanoparticles (60-70 nm diameter) of β-carotene (BC) encapsulated by BLG or BLG-dextran were prepared by the homogenization-evaporation method. Both BLG and BLG-dextran nanoparticles appeared to be spherically shaped and uniformly dispersed by TEM. The stability and release of BC from the nanoparticles under simulated gastrointestinal conditions were evaluated. Dextran conjugation prevented the flocculation or aggregation of BLG-dextran particles at pH ∼4-5 compared to very large sized aggregates of BLG nanoparticles. The released contents of BC from BLG and BLG-dextran nanoparticles under acidic gastric conditions were 6.2 ± 0.9 and 5.4 ± 0.3%, respectively. The release of BC from BLG-dextran nanoparticles by trypsin digestion was 51.8 ± 4.3% of total encapsulated BC, and that from BLG nanoparticles was 60.9 ± 2.9%. Neither BLG-BC nanoparticles nor the Maillard-reacted BLG-dextran conjugates were cytotoxic to Caco-2 cells, even at 10 mg/mL. The apparent permeability coefficient (Papp) of Caco-2 cells to BC was improved by nanoencapsulation, compared to free BC suspension. The results indicate that BC-encapsulated β-lactoglobulin-dextran-conjugated nanoparticles are more stable to aggregation under gastric pH conditions with good release and permeability properties.

  20. Development of Bio-Oil Commodity Fuel as a Refinery Feedstock from High Impact Algae Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastner, James; Mani, Sudhagar; Das, K. C.

    A two-stage hydrothermal liquefaction (HTL) process was developed to 1) reduce nitrogen levels in algal oil, 2) generate a nitrogen rich stream with limited inhibitors for recycle and algae cultivation, and 3) improve downstream catalytic hydrodenitrogenation and hydrodeoxygenation of the algal oil to refinery intermediates. In the first stage, low temperature HTL was conducted at 125, 175, and 225°C at holding times ranging from 1 to 30 min (time at reaction temperature). A consortium of three algal strains, namely Chlorella sorokiniana, Chlorella minutissima, and Scenedesmus bijuga were used to grow and harvest biomass in a raceway system – this consortiummore » is called the UGA Raceway strain throughout the report. Subsequent analysis of the final harvested product indicated that only two strains predominated in the final harvest - Chlorella sorokiniana and Scenedesmus bijuga. Two additional strains representing a high protein (Spirulina platensis) and high lipid algae (Nannochloropsis) strains were also used in this study. These strains were purchased from suppliers. S. platensis biomass was provided by Earthrise Nutritionals LLC (Calipatria, CA) in dry powder form with defined properties, and was stored in airtight packages at 4°C prior to use. A Nannochloropsis paste from Reed Mariculture was purchased and used in the two-stage HTL/HDO experiments. The solids and liquids from this low temperature HTL pretreatment step were separated and analyzed, leading to the following conclusions. Overall, these results indicate that low temperature HTL (200-250°C) at short residence times (5-15 min) can be used to lyse algae cells and remove/separate protein and nitrogen before subsequent higher temperature HTL (for lipid and other polymer hydrolysis) and HDO. The significant reduction in nitrogen when coupled with low protein/high lipid algae cultivation methods at scale could significantly improve downstream catalytic HDO results. However, significant barriers and knowledge gaps exist that must be overcome and understood. The ability of the separated protein/nitrogen rich aqueous stream to support algae cultivation needs to be verified (and the kinetics of growth measured). The kinetics of algae hydrothermal liquefaction on a mechanistic basis needs to be measured and understood. A better understanding of Maillard reactions during algae HTL is needed. And the impact of Maillard reaction products and incompletely hydrolyzed cell wall components on catalyst deactivation during HDO needs to be understood. Finally, an inexpensive HDO process and associated catalyst capable of converting the algal oil to hydrocarbons needs to be developed.« less

  1. Protein glycation, diabetes, and aging.

    PubMed

    Ulrich, P; Cerami, A

    2001-01-01

    Biological amines react with reducing sugars to form a complex family of rearranged and dehydrated covalent adducts that are often yellow-brown and/or fluorescent and include many cross-linked structures. Food chemists have long studied this process as a source of flavor, color, and texture changes in cooked, processed, and stored foods. During the 1970s and 1980s, it was realized that this process, called the Maillard reaction or advanced glycation, also occurs slowly in vivo. Advanced glycation endproducts (AGEs) that form are implicated, causing the complications of diabetes and aging, primarily via adventitious and crosslinking of proteins. Long-lived proteins such as structural collagen and lens crystallins particularly are implicated as pathogenic targets of AGE processes. AGE formation in vascular wall collagen appears to be an especially deleterious event, causing crosslinking of collagen molecules to each other and to circulating proteins. This leads to plaque formation, basement membrane thickening, and loss of vascular elasticity. The chemistry of these later-stage, glycation-derived crosslinks is still incompletely understood but, based on the hypothesis that AGE formation involves reactive carbonyl groups, the authors introduced the carbonyl reagent aminoguanidine hydrochloride as an inhibitor of AGE formation in vivo in the mid 1980s. Subsequent studies by many researchers have shown the effectiveness of aminoguanidine in slowing or preventing a wide range of complications of diabetes and aging in animals and, recently, in humans. Since, the authors have developed a new class of agents, exemplified by 4,5-dimethyl-3-phenacylthiazolium chloride (DPTC), which can chemically break already-formed AGE protein-protein crosslinks. These agents are based on a new theory of AGE crosslinking that postulates that alpha-dicarbonyl structures are present in AGE protein-protein crosslinks. In studies in aged animals, DPTC has been shown to be capable of reverting indices of vascular compliance to levels seen in younger animals. Human clinical trials are underway.

  2. Glycation is regulated by isoflavones.

    PubMed

    Silvan, Jose Manuel; Srey, Chou; Ames, Jennifer M; del Castillo, Maria Dolores

    2014-09-01

    The effect of soy isoflavones on the Maillard reaction (MR) was investigated. Model systems composed of the soy protein glycinin (10 mg mL(-1)) and fructose (40 mg mL(-1)) under basic pH (∼12) conditions were employed for testing the anti-glycative effect of the major antioxidant soy isoflavones (genistin and genistein at 10 μg mL(-1)) and a soy isoflavone-rich extract. The contents of total phenols (TPCs) and total flavonoids (TFCs) of the isoflavone-rich extract were determined. Glycinin was pre-incubated with isoflavones for 1 h and 16 h at 60 °C prior to MR. The progress of MR was estimated by analysis of free amino groups by OPA assay; carbohydrate covalently bound to the protein backbone using phenol-sulfuric acid assay, protein-bound N(ε)-(carboxymethyl)lysine (CML) by UPLC-MS and spectral analysis of fluorescent protein-bound AGEs. Genistin (10 μg mL(-1), 23 μM) and its aglycone genistein (10 μg mL(-1), 37 μM) did not prevent protein glycation (p > 0.05). The soy isoflavone-rich extract containing 2.5 mg mL(-1) of TFC efficiently decreased the amount of carbohydrate bound to the protein skeleton (20%) (p < 0.05) and formation of advanced glycation end products (AGEs) (>80%) (p < 0.05). The anti-glycative mechanism of isoflavones may be related to its conjugation to glycation sites of the protein structure (free amino groups), their antioxidant character and trapping of dicarbonyl intermediates. Extracts based on mixtures of isoflavones may be useful for producing glycated conjugates avoiding the substantial formation of AGEs bound to protein.

  3. Analysis of protein glycation products by MALDI-TOF/MS.

    PubMed

    Kislinger, Thomas; Humeny, Andreas; Peich, Carlo C; Becker, Cord-Michael; Pischetsrieder, Monika

    2005-06-01

    Matrix-assisted laser desorption ionization-mass spectrometry with time-of-flight detection (MALDI-TOF/MS) is a promising tool to analyze advanced glycation end product (AGE)-modified proteins. The combination of soft ionization (MALDI) with time-of-flight mass detection allows analysis of peptides and proteins of a molecular mass up to 300 kDa with minimal sample workup. Because the direct structural analysis of intact AGE proteins is not possible due to the formation of broad and poorly resolved peaks, peptide mapping was introduced into the analysis of AGE proteins by MALDI-TOF/MS, allowing site-specific analysis of defined AGEs. When methylglyoxal-modified lysozyme was subjected to MALDI-TOF/MS peptide mapping, methylimidazolone and argpyrimidine attached to the arginine residue and carboxyethyl (CEL) bound to the lysine were detected on peptide(aa1-7) (KVFGRCE). In contrast, only one methylimidazolone was found on peptide(aa8-35) (LAAAMKRHGLDNYRGYSLGNWVCAAKFE) and peptide(aa120-129) (VQAWIRGCRL), respectively. The analysis of AGE protein, which had been incubated with glucose, revealed the presence of an Amadori product and a carboxymethyl residue (CML) on peptide(aa1-7) and peptide(aa8-35), as well as an imidazolone A on peptide(aa120-129). Furthermore, the early Maillard reaction of lysozyme, which had been glycated by seven different sugars, was monitored by MALDI-TOF/MS peptide mapping. Finally, this approach was successfully applied for site- and product-specific relative quantification of AGEs. For example, kinetics of CML and Amadori product formation on peptide(aa1-7), as well as imidazolone A formation on peptide(aa120-129), were determined.

  4. Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864.

    PubMed

    Dong, Jin-Jun; Han, Rui-Zhi; Xu, Guo-Chao; Gong, Lei; Xing, Wan-Ru; Ni, Ye

    2018-07-01

    The toxicity of furfural residues (FRs) hydrolysate is a major obstacle in its application. This work focused on the detoxification of FRs hydrolysate and its application in butanol fermentation. Combination of activated carbon and resin 717 was appropriate for the detoxification of hydrolysate. Mixed sterilization of FRs hydrolysate and corn steep liquor (CSL) was better than the separate ones, since proteins in CSL could adsorb and remove toxic components during sterilization. The results further confirmed that simultaneous sterilization of activated carbon + resin and fermentation medium was more efficient for detoxification and butanol production, in which 76.4% of phenolic compounds and 99.3% of Maillard reaction products were removed, 8.48 g/L butanol and 12.61 g/L total solvent were obtained. This study provides feasible and economic approaches for the detoxification of FRs hydrolysate and its application in butanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A novel method for beef potentiator preparation and identification of its characteristic aroma compounds.

    PubMed

    Gao, Xianli; Yan, Shuang; Yang, Bao; Lu, Jian; Jin, Zhao

    2014-06-01

    Beef potentiator (BP) is the most popular savoury flavour and regarded as the soul of the modern food industry. In this work, BP was prepared by a novel method with Aspergillus oryzae and Aspergillus niger (BPSF). Three other BPs prepared using commercial enzymes (Protamex, Flavourzyme and papain; BPCEs) were used as controls to investigate its aroma characteristics and related compounds. Sensory evaluation showed that BPSF possessed more favourable and distinctive sauce-like, meat-like, roast and alcoholic attributes when compared with BPCEs. Significantly higher contents (peak areas) and proportions of pyrazines, pyrroles, sulfurous compounds and alcohols in BPSF were responsible for its sensory characteristics, and most of these aroma compounds were derived from microbial metabolism during beef koji preparation and the Maillard reaction. BP prepared by synergistic fermentation with A. oryzae and A. niger is a potential alternative for BP preparation. © 2013 Society of Chemical Industry.

  6. Survey of quality indicators in commercial dehydrated fruits.

    PubMed

    Megías-Pérez, Roberto; Gamboa-Santos, Juliana; Soria, Ana Cristina; Villamiel, Mar; Montilla, Antonia

    2014-05-01

    Physical and chemical quality parameters (dry matter, aw, protein, carbohydrates, vitamin C, 2-furoylmethyl amino acids, rehydration ratio and leaching loss) have been determined in 30 commercial dehydrated fruits (strawberry, blueberry, raspberry, cranberry, cherry, apple, grapefruit, mango, kiwifruit, pineapple, melon, coconut, banana and papaya). For comparison purposes, strawberry samples processed in the laboratory by freeze-drying and by convective drying were used as control samples. Overall quality of dehydrated fruits seemed to be greatly dependent on processing conditions and, in a cluster analysis, samples which were presumably subjected to osmotic dehydration were separated from the rest of fruits. These samples presented the lowest concentration of vitamin C and the highest evolution of Maillard reaction, as evidenced by its high concentration of 2-furoylmethyl amino acids. This is the first study on the usefulness of this combination of chemical and physical indicators to assess the overall quality of commercial dehydrated fruits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Low level chemiluminescence from liquid culture media.

    PubMed

    Vogel, R; Süssmuth, R

    1999-06-01

    Low level chemiluminescence (CL) can be observed from autoclaved liquid culture media, as used in microbiology. The light emission is oxygen-dependent and arises from reactions following auto-oxidation of reducing Maillard products which are formed during autoclaving. The inhibition of this CL by radical scavengers and antioxidants has been studied. As superoxide radicals and hydrogen peroxide are predominantly involved in the initiation of the CL, the investigation of CL from culture media offers a convenient tool for the detection of exogenous (medium-mediated) oxidative stress being imposed onto micro-organisms in culture. Transition metal ions showed, dependent on concentration, both inhibitory and stimulating effects on the CL, which was also affected by the presence of complexing agents. Iron porphyrins and related complexes displayed a very efficient quenching of the CL, which may be of particular importance, as aerobic micro-organisms have been previously shown to be very efficient in quenching the CL from culture media.

  8. The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media

    NASA Astrophysics Data System (ADS)

    Nevin, A.; Anglos, D.; Cather, S.; Burnstock, A.

    2008-07-01

    Spectrofluorimetric analysis of proteinaceous binding media is particularly promising because proteins employed in paintings are often fluorescent and media from different sources have significantly different fluorescence spectral profiles. Protein-based binding media derived from eggs, milk and animal tissue have been used for painting and for conservation, but their analysis using non-destructive techniques is complicated by interferences with pigments, their degradation and their low concentration. Changes in the fluorescence excitation emission spectra of films of binding media following artificial ageing to an equivalent of 50 and 100 years of museum lighting include the reduction of bands ascribed to tyrosine, tryptophan and Maillard reaction products and an increase in fluorescent photodegradation. Fluorescence of naturally aged paint is dependent on the nature of the pigment present and, with egg-based media, in comparison with un-pigmented films, emissions ascribed to amino acids are more pronounced.

  9. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W; Kersten, Gideon F A; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn's disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab.

  10. Extra-weak chemiluminescence produced by autoxidation of kampo extract preparations stored in heat-stressed conditions.

    PubMed

    Sato, H; Hirayama, H; Yamamoto, T; Ishizawa, F; Mizugaki, M

    1998-06-01

    The purpose of this study was to evaluate the usefulness of extra-weak chemiluminescence (CL) measurement as a rapid method to estimate the stability of Kampo extract preparations. It was found that the Kampo drugs that emit little CL were stable, while those with higher CL were comparatively unstable with regard to the various stability markers, including change of coloration (browning), contents of specific ingredients, high molecular compounds, amino acids and sugars under various conditions of heat storage. Excellent correlation existed between the CL of Kampo drugs and the coloration (delta E* (ab)) and the other above-mentioned evaluation markers. From this investigation, it was deduced that the CL of Kampo drugs originates in the early stage of the Maillard reaction and reflects the stability of the preparations, and that CL is useful for estimating the stability of Kampo drugs.

  11. Green Tea Polyphenols Decrease Strecker Aldehydes and Bind to Proteins in Lactose-Hydrolyzed UHT Milk.

    PubMed

    Jansson, Therese; Rauh, Valentin; Danielsen, Bente P; Poojary, Mahesha M; Waehrens, Sandra S; Bredie, Wender L P; Sørensen, John; Petersen, Mikael A; Ray, Colin A; Lund, Marianne N

    2017-12-06

    The effect of epigallocatechin gallate enriched green tea extract (GTE) on flavor, Maillard reactions and protein modifications in lactose-hydrolyzed (LH) ultrahigh temperature (UHT) processed milk was examined during storage at 40 °C for up to 42 days. Addition of GTE inhibited the formation of Strecker aldehydes by up to 95% compared to control milk, and the effect was similar when GTE was added either before or after UHT treatment. Release of free amino acids, caused by proteolysis, during storage was also decreased in GTE-added milk either before or after UHT treatment compared to control milk. Binding of polyphenols to milk proteins was observed in both fresh and stored milk samples. The inhibition of Strecker aldehyde formation by GTE may be explained by two different mechanisms; inhibition of proteolysis during storage by GTE or binding of amino acids and proteins to the GTE polyphenols.

  12. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    PubMed

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Impact of storage time and temperature on volatomic signature of Tinta Negra wines by LLME/GC-ITMS.

    PubMed

    Perestrelo, R; Silva, Catarina L; Silva, Pedro; Câmara, J S

    2018-07-01

    The current study reports the effect of storage temperature, storage time and glucose content on the volatomic signature of Tinta Negra wines using liquid-liquid microextraction (LLME) combined with gas chromatography-ion trap mass spectrometry (GC- IT MS). A total of 65 volatile organic compounds (VOCs) were identified in Tinta Negra, of which only 14 appear during storage. Based on the results, the freshness and fruitiness odours that are related to the presence of some varietal and fermentative components (e.g. terpenic compounds, esters) are lost during wine storage, while other descriptors such as caramel, dried fruit, spice, toast and wood arise due to Maillard reactions (e.g. furanic compounds), among other chemical reactions (e.g. lactones). The results obtained in this study may be applied as a useful tool in the winemaking field in order to introduce changes in the baking (estufagem) process and/or predict the effects of storage time when applying high temperatures. In addition, the VOCs identified in this study may help winemakers and wine chemists better understand the aroma composition and profile of Tinta Negra wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Self-degradation of tissue adhesive based on oxidized dextran and poly-L-lysine.

    PubMed

    Matsumura, Kazuaki; Nakajima, Naoki; Sugai, Hajime; Hyon, Suong-Hyu

    2014-11-26

    We have developed a low-toxicity bioadhesive based on oxidized dextran and poly-L-lysine. Here, we report that the mechanical properties and degradation of this novel hydrogel bioadhesive can be controlled by changing the extent of oxidation of the dextran and the type or concentration of the anhydride species in the acylated poly-L-lysine. The dynamic moduli of the hydrogels can be controlled from 120 Pa to 20 kPa, suggesting that they would have mechanical compatibility with various tissues, and could have applications as tissue adhesives. Development of the hydrogel color from clear to brown indicates that the reaction between the dextran aldehyde groups and the poly-L-lysine amino groups may be induced by a Maillard reaction via Schiff base formation. Degradation of the aldehyde dextran may begin by reaction of the amino groups in the poly-L-lysine. The gel degradation can be ascribed to degradation of the aldehyde dextran in the hydrogel, although the aldehyde dextran itself is relatively stable in water. The oxidized dextran and poly-L-lysine, and the degraded hydrogel showed low cytotoxicities. These findings indicate that a hydrogel consisting of oxidized dextran and poly-L-lysine has low toxicity and a well-controlled degradation rate, and has potential clinical applications as a bioadhesive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Role of amino acids and their Maillard mixtures with ribose in the biosilicification process

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Liesch, Patrick J.

    2006-08-01

    Mode of preservation of organic materials on early Earth, Mars or other extraterrestrial objects, and during the space transport on objects such as meteors, is one of the NASA's interests. This is especially true for the bio-organic materials, which could indicate life, past or present. Finding of such materials preserved in some ancient rocks, for example, could be interpreted as a biosignature. We have developed an experimental model for silicification, in which we have synthesized silica gels by reacting sodium silicate solution with various amino acids and with their mixtures with sugars, so-called Maillard mixtures. Our results indicate that these organic materials cause rapid and massive polymerization of silica. Such process may encrust organics or small organisms and thus preserve them. We have studied the gels we synthesized by the infrared (IR) spectroscopic method, and have detected small amount of the organic material in the silica gel. The gels were distinct in each case and have aged differently. In some cases, gel-sol-gel transformations were observed, which may be important for transport of both gels and the organics under prebiotic conditions. The gels obtained from the Maillard mixtures differ from those from the amino acids. Deuteration of the gels was performed in an attempt to resolve the bands in the Si-O-Si and Si-O-C region.

  16. Conceptual study on maillardized dietary fiber in coffee.

    PubMed

    Silván, José Manuel; Morales, Francisco J; Saura-Calixto, Fulgencio

    2010-12-08

    There is a methodological and conceptual overlap between coffee melanoidins and dietary fiber. Green Uganda coffee beans were roasted in a range from 8.1 to 21.6% of weight loss to evaluate melanoidins and dietary fiber. Samples were characterized by color, moisture, solubility, water activity, carbohydrates, polyphenols, protein, soluble dietary fiber (SDF), and melanoidins content. Hydroxymethylfurfural and chlorogenic acids were also measured as chemical markers of the extent of roasting. Melanoidins rapidly increased from 5.6 (light roasting) to 29.1 mg/100 mg soluble dry matter (dark roasting). A melanoidins-like structure was already present in green coffee that might overestimate up to 21.0% of the melanoidins content as determined by colorimetric methods. However, its contribution is variable and very likely depends on the method of drying applied to green coffee. SDF content (mg/100 mg soluble dry matter) gradually increased from 39.4 in green coffee to 64.9 at severe roasting conditions due to incorporation of neoformed colored structures and polyphenols. Then, SDF progressively turns to a maillardized structure, which increased from 11.0 to 45.0% according to the roasting conditions. It is concluded that the content of coffee melanoidins includes a substantial part of dietary fiber and also that coffee dietary fiber includes melanoidins. A conceptual discussion on a new definition of coffee melanoidins as a type of maillardized dietary fiber is conducted.

  17. Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder.

    PubMed

    Cremer, D R; Eichner, K

    2000-06-01

    Spice paprika (red pepper; Capsicum annuum) is the most cultivated spice worldwide and is used mainly for its color and pungency. However, current research is also focusing on the flavor as an important parameter. This paper deals with the kinetics of the formation of those volatiles that indicate a decrease in spice paprika quality due to Maillard reaction, hydrolytic reactions, and oxidative degradation reactions of lipids such as fatty acids and carotenoids. Spice paprika volatiles were quantitatively analyzed by means of headspace gas chromatography (HS-GC) and solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The kinetics of their formation were investigated, and the respective activation energies determined. Strecker aldehyde, acetone, and methanol formation followed a pseudo-zero-order reaction kinetic, and formation of dimethyl sulfide (DMS) was characterized by a first-order kinetic. The activation energies determined were between 86.3 and 101.8 for the Strecker aldehydes acetaldehyde (AA), 2-methylpropanal (2-MP), 3-methylbutanal (3-MB), and 2-methylbutanal (2-MB), 130.7 for acetone, 114.2 for methanol, and 109.7 kJ/mol for DMS. The amounts of Strecker aldehydes formed were correlated to the concentrations of the corresponding free amino acids present in the samples. The formation of hexanal and 6-methyl-5-hepten-2-one in Capsicum annuum during processing was confirmed, and the formation of beta-ionone was probably described for the first time. During heating, the concentration of hexanal increased rapidly. The formation of 6-methyl-5-hepten-2-one confirms that Capsicum annuum fruits contain lycopene.

  18. UV-generated free radicals (FR) in skin: Their prevention by sunscreens and their induction by self-tanning agents

    NASA Astrophysics Data System (ADS)

    Jung, K.; Seifert, M.; Herrling, Th.; Fuchs, J.

    2008-05-01

    In the past few years, the cellular effects of ultraviolet (UV) irradiation induced in skin have become increasingly recognized. Indeed, it is now well known that UV irradiation induces structural and cellular changes in all the compartments of skin tissue. The generation of reactive oxygen species (ROS) is the first and immediate consequence of UV exposure and therefore the quantitative determination of free radical reactions in the skin during UV radiation is of primary importance for the understanding of dermatological photodamage. The RSF method (radical sun protection factor) herein presented, based on electron spin resonance spectroscopy (ESR), enables the measurement of free radical reactions in skin biopsies directly during UV radiation. The amount of free radicals varies with UV doses and can be standardized by varying UV irradiance or exposure time. The RSF method allows the determination of the protective effect of UV filters and sunscreens as well as the radical induction capacity of self-tanning agents as dihydroxyacetone (DHA). The reaction of the reducing sugars used in self-tanning products and amino acids in the skin layer (Maillard reaction) leads to the formation of Amadori products that generate free radicals during UV irradiation. Using the RSF method three different self-tanning agents were analyzed and it was found, that in DHA-treated skin more than 180% additional radicals were generated during sun exposure with respect to untreated skin. For this reason the exposure duration in the sun must be shortened when self-tanners are used and photoaging processes are accelerated.

  19. Natural Inhibitors of Maillard Browning

    DTIC Science & Technology

    2013-12-01

    1.2 FLAVONOIDS .....................................................................................................................2 1.3 GOAL AND... flavonoid backbone .................................................................. 2  Figure 2: Cuvettes containing the glucose:glycine model system... flavonoids added to the model system and stored for 10 weeks at 50 °C

  20. Green Pea and Garlic Puree Model Food Development for Thermal Pasteurization Process Quality Evaluation.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S; Barbosa-Cánovas, Gustavo V; Liu, Fang

    2017-07-01

    Development and selection of model foods is a critical part of microwave thermal process development, simulation validation, and optimization. Previously developed model foods for pasteurization process evaluation utilized Maillard reaction products as the time-temperature integrators, which resulted in similar temperature sensitivity among the models. The aim of this research was to develop additional model foods based on different time-temperature integrators, determine their dielectric properties and color change kinetics, and validate the optimal model food in hot water and microwave-assisted pasteurization processes. Color, quantified using a * value, was selected as the time-temperature indicator for green pea and garlic puree model foods. Results showed 915 MHz microwaves had a greater penetration depth into the green pea model food than the garlic. a * value reaction rates for the green pea model were approximately 4 times slower than in the garlic model food; slower reaction rates were preferred for the application of model food in this study, that is quality evaluation for a target process of 90 °C for 10 min at the cold spot. Pasteurization validation used the green pea model food and results showed that there were quantifiable differences between the color of the unheated control, hot water pasteurization, and microwave-assisted thermal pasteurization system. Both model foods developed in this research could be utilized for quality assessment and optimization of various thermal pasteurization processes. © 2017 Institute of Food Technologists®.

  1. Effect of the type of oil on the evolution of volatile compounds of taralli during storage.

    PubMed

    Giarnetti, Mariagrazia; Caponio, Francesco; Paradiso, Vito M; Summo, Carmine; Gomes, Tommaso

    2012-03-01

    Baking process leads to a huge quantity of newly formed volatile compounds, which play a major role in developing the flavor of the final product. The aim of this work was to investigate on the evolution of the volatile profile of taralli as a function of both the kind of oil used in the dough and the storage time. The volatile compounds from the taralli were extracted by headspace solid-phase microextraction and analyzed by gas-chromatography/mass spectrometry (GC/MS). Forty-four volatile compounds were identified in taralli, most of which produced by thermically induced reactions occurring during baking process, such as volatiles deriving from Maillard reaction and/or sugar degradation and lipid oxidation. The results obtained demonstrated the essential role played by the type of oil on the formation and on the release of volatile compounds. The volatile compounds significantly increased during storage and their individual levels were in most cases significantly lower in taralli made with extra virgin olive oil than in those made with refined oils. Finally, the taralli made with extra virgin olive oil, compared with those prepared with other vegetable oils, showed to be more resistant to oxidation, probably due to the presence of natural antioxidants. © 2012 Institute of Food Technologists®

  2. Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets.

    PubMed

    Monajjemzadeh, Farnaz; Hassanzadeh, Davoud; Valizadeh, Hadi; Siahi-Shadbad, Mohammad R; Mojarrad, Javid Shahbazi; Robertson, Thomas A; Roberts, Michael S

    2009-11-01

    This study documents drug-excipient incompatibility studies of acyclovir in physical mixtures with lactose and in different tablet brands. Differential scanning calorimetry (DSC) was initially used to assess compatibility of mixtures. The Fourier-transform infrared (FTIR) spectrum was also compared with the spectra of pure drug and excipient. Although DSC results indicated incompatibility with lactose, FTIR spectra were mostly unmodified due to overlapping peaks. Samples of isothermally stressed physical mixture were stored at 95 degrees C for 24 h. The residual drug was monitored using a validated high-performance liquid chromatography (HPLC) assay and data fitting to solid-state kinetic models was performed. The drug loss kinetics followed a diffusion model. The aqueous mixture of drug and excipient was heated in order to prepare an adduct mixture. HPLC analysis revealed one extra peak that was fractionated and subsequently injected into the liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) system. The MRM (Multiple Reaction Monitoring) chromatograms characterized the peak with molecular mass corresponding to an acyclovir-lactose Maillard reaction product. The presence of lactose in commercial tablets was checked using a new TLC method. Overall, the incompatibility of acyclovir with lactose was successfully evaluated using a combination of thermal methods and LC-MS/MS.

  3. Evidence for the complex relationship between free amino acid and sugar concentrations and acrylamide-forming potential in potato

    PubMed Central

    Muttucumaru, N; Powers, SJ; Elmore, JS; Briddon, A; Mottram, DS; Halford, NG

    2014-01-01

    Free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide-forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide-forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety-dependent impact on sugar and amino acid concentrations and acrylamide-forming potential. PMID:25540460

  4. Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems.

    PubMed

    Oliviero, Teresa; Capuano, Edoardo; Cämmerer, Bettina; Fogliano, Vincenzo

    2009-01-14

    During the roasting of cocoa beans chemical reactions lead to the formation of Maillard reaction (MR) products and to the degradation of catechin-containing compounds, which are very abundant in these seeds. To study the modifications occurring during thermal treatment of fat and antioxidant rich foods, such as cocoa, a dry model system was set up and roasted at 180 degrees C for different times. The role played in the formation of MR products and in the antioxidant activity of the system by proteins, catechin, and cocoa butter was investigated by varying the model system formulation. Results showed that the antioxidant activity decreased during roasting, paralleling catechin concentration, thus suggesting that this compound is mainly responsible for the antioxidant activity of roasted cocoa beans. Model system browning was significantly higher in the presence of catechin, which contributed to the formation of water-insoluble melanoidins, which are mainly responsible for browning. HMF concentration was higher in casein-containing systems, and its formation was strongly inhibited in the presence of catechin. No effects related to the degree of lipid oxidation could be observed. Data from model systems obtained by replacing fat with water showed a much lower rate of MR development and catechin degradation but the same inhibitory effect of catechin on HMF formation.

  5. Characterization of laser-tissue interaction processes by low-boiling emitted substances

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Juergen; Lademann, Juergen; Serfling, Ulrike; Lehnert, W.; Sterry, Wolfram; Meffert, H.

    1996-01-01

    Main point in this study was the investigation of the gaseous and low-boiling substances produced in the laser plume during cw CO2 laser and XeCl laser irradiation of tissue by gas chromatography (GC)/mass spectrometry. The characteristic emitted amounts of chemicals were determined quantitatively using porcine muscular tissue. The produced components were used to determine the character of the chemical reaction conditions inside the interaction zone. It was found that the temperature, and the water content of the tissue are the main parameter determining kind and amount of the emitted substances. The relative intensity of the GC peak of benzene corresponds to a high temperature inside the interaction area while a relative strong methylbutanal peak is connected with a lower temperature which favors Maillard type reaction products. The water content of the tissue determines the extent of oxidation processes during laser tissue interaction. For that reason the moisture in the tissue is the most important parameter to reduce the emission of harmful chemicals in the laser plume. The same methods of investigation are applicable to characterize the interaction of a controlled and an uncontrolled rf electrosurgery device with tissue. The results obtained with model tissue are in agreement with the situation characteristic in laser surgery.

  6. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products.

    PubMed

    Milkovska-Stamenova, Sanja; Hoffmann, Ralf

    2017-04-15

    Thermal treatment preserves the microbiological safety of milk, but also induces Maillard reactions modifying for example proteins. The purpose of this study was evaluating the influence of consumer behaviors (storage and heating) on protein glycation degrees in bovine milk products. Lactosylation and hexosylation sites were identified in ultra-high temperature (UHT), lactose-free pasteurized, and lactose-free UHT milk (ULF) and infant formula (IF) using tandem mass spectrometry (electron transfer dissociation). Overall, 303 lactosylated and 199 hexosylated peptides were identified corresponding to 170 lactosylation (31 proteins) and 117 hexosylation sites (25 proteins). In quantitative terms, storage increased lactosylation up to fourfold in UHT and IF and hexosylation up to elevenfold in ULF and threefold in IF. These levels increased additionally twofold when the stored samples were heated (40°C). In conclusion, storage and heating appear to influence protein glycation levels in milk at similar or even higher degrees than industrial processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr, E-mail: Piotr.stefanowicz@chem.uni.wroc.pl

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [{sup 13}C{sub 6}] glucose combined with LC-MS were applied as tool for identificationmore » possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein.« less

  8. Dietary acrylamide: What happens during digestion.

    PubMed

    Sansano, M; Heredia, A; Peinado, I; Andrés, A

    2017-12-15

    Acrylamide is a well-known potentially carcinogen compound formed during thermal processing as an intermediate of Maillard reactions. Three objectives were addressed: the impact of gastric digestion on acrylamide content of French Fries, chips, chicken nuggets, onions rings, breakfast cereals, biscuits, crackers, instant coffee and coffee substitute; the acrylamide content evolution during gastrointestinal digestion of French fries and chips; and the effectiveness of blanching and air-frying on acrylamide mitigation after gastrointestinal digestion. A significant increase (p-value <0.05) in acrylamide content was observed for most of the products after gastric digestion (maximum registered for sweet biscuits, from 30±8 to 150±48µg/kg). However, at the end of the intestinal stage, acrylamide values were statistically similar (p-value=0.132) for French fries and lower than the initial values (before digestion) in potato chips (p-value=0.027). Finally, the low acrylamide content found in blanched and air-fried samples, remained still lower than for deep fried samples even after gastrointestinal digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of liquid hot water pre-treatment on sugarcane press mud methane yield.

    PubMed

    López González, Lisbet Mailin; Pereda Reyes, Ileana; Dewulf, Jo; Budde, Jörn; Heiermann, Monika; Vervaeren, Han

    2014-10-01

    Sugarcane press mud was pretreated by liquid hot water (LHW) at different temperatures (140-210 °C) and pre-treatment times (5-20 min) in order to assess the effects on the chemical oxygen demand (COD) solubilisation, inhibitors formation and methane yield. The experimental results showed that a high degree of biomass solubilisation was possible using LHW. Higher methane yields were obtained at lower severities (log(Ro) = 2.17-2.77) with (i) mild temperatures (140-150 °C) and long contact times (12.5 min, 20 min) or (ii) mild temperatures (175 °C) with short contact time (2 min). The highest increase in methane yield (up to 63%) compared to the untreated press mud was found at 150 °C for 20 min. At temperatures of 200 °C and 210 °C, low methane efficiency was attributed to the possible formation of refractory compounds through the Maillard reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Stability of oligosaccharides derived from lactulose during the processing of milk and apple juice.

    PubMed

    López-Sanz, Sara; Montilla, Antonia; Moreno, F Javier; Villamiel, Mar

    2015-09-15

    The scientific evidence on the bioactivity of oligosaccharides from lactulose has encouraged us to study their physicochemical modifications during the processing of milk and apple juice. The carbohydrate fraction with a degree of polymerization ⩾3 was stable in milk heated at temperatures up to 100°C for 30min and in apple juice heated up to 90°C for 15min. An assessment of the Maillard reaction in heated milk pointed out a higher formation of furosine in milk with oligosaccharides from lactulose as compared to its counterpart without this ingredient, due to a higher presence of galactose. The organoleptic properties of juice with oligosaccharides from lactulose were acceptable and similar to those of apple juice with commercial galactooligosaccharides. The results presented herein demonstrate that oligosaccharides from lactulose can be used as prebiotic ingredients in a wide range of functional foods, including those intended for diabetics and lactose intolerant individuals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of guar gum conjugation on functional, antioxidant and antimicrobial activity of egg white lysozyme.

    PubMed

    Hamdani, Afshan Mumtaz; Wani, Idrees Ahmed; Bhat, Naseer Ahmad; Siddiqi, Raushid Ahmad

    2018-02-01

    This study was undertaken to analyze the effect of conjugation of egg-white lysozyme with guar gum. Lysozyme is an antimicrobial polypeptide that can be used for food preservation. Its antibacterial activity is limited to gram positive bacteria. Conjugation with polysaccharides like guar gum may broaden its activity against gram negatives. Conjugate was developed through Maillard reaction. Assays carried out included sugar estimation, SDS-PAGE, GPC, color, FT-IR, DSC, thermal stability, solubility, emulsifying, foaming and antioxidant activity. In addition, antimicrobial activity of the conjugate was determined against two gram positive (Staphyllococcus aureus and Enterococcus) and two gram negative pathogens (E. coli and Salmonella). Results showed higher functional properties of lysozyme-guar gum conjugate. The antioxidant properties increased from 2.02-35.80% (Inhibition of DPPH) and 1.65-4.93AAE/g (reducing power) upon guar gum conjugation. Conjugate significantly inhibited gram negative bacteria and the antibacterial activity also increased significantly against gram positive pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W.; Kersten, Gideon F. A.; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn’s disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab. PMID:27706175

  14. Cheese powder as an ingredient in emulsion sausages: Effect on sensory properties and volatile compounds.

    PubMed

    Xiang, Chen; Ruiz-Carrascal, Jorge; Petersen, Mikael A; Karlsson, Anders H

    2017-08-01

    Different types of cheese powder were added to meat emulsion sausages in order to address its influence on chemical composition, volatile compounds profile and sensory properties, and its potential to reduce salt content through boosting saltiness. Addition of cheese powder to emulsion sausages modified their profile of volatile compounds. Blue cheese increased some ketones, alcohols, and esters, while brown cheese brought typical Maillard reaction compounds. Overall, addition of cheese powders to sausages enhanced the intensity of flavour traits. A mixture of hard and blue cheese powder showed the highest effect on boosting saltiness, while brown cheese powder showed the strongest umami and meat flavour boosting effect, and sausages with added blue cheese powder showed a more intense aftertaste. Hardness significantly increased due to the addition of blue cheese powder. Addition of cheese powder to emulsion sausages might be an interesting tool to boost flavour and reduce salt content in cooked sausages with no negative effect on saltiness or overall flavour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mesophilic-hydrothermal-thermophilic (M-H-T) digestion of green corn straw.

    PubMed

    Li, Dong; Wang, Qingjing; Li, Jiang; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Mei, Zili; Liu, Xiaofeng

    2016-02-01

    Mesophilic-hydrothermal (80-160 °C, 30 min)-thermophilic (M-H-T) digestion and control tests of mesophilic (M), thermophilic (T), hydrothermal-mesophilic (H-M), and mesophilic-thermophilic digestion (M-T) of green corn straw were conducted for a 20-day fermentation period. The results indicate that M-H-T is an efficient method to improve methane production. A maximum methane yield of 371.74 mL/g volatile solid was obtained by the M (3 days)-H (140 °C)-T (17 days) process, which was 20.44%, 16.55%, 31.44%, and 14.31% higher than the yields of the M, T, 140-M, and M-T processes. The enhanced methane production was attributed to (1) the improved hemicellulose degradation and lignin disorganization; (2) prevention of the degradation of soluble sugar, easily hydrolyzed hemicellulose and cellulose into furfural and methylfurfural; and (3) lack of formation of Maillard reaction products during initial hydrothermal treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. From Cocoa to Chocolate: The Impact of Processing on In Vitro Antioxidant Activity and the Effects of Chocolate on Antioxidant Markers In Vivo

    PubMed Central

    Di Mattia, Carla D.; Sacchetti, Giampiero; Mastrocola, Dino; Serafini, Mauro

    2017-01-01

    Chocolate is a product processed from cocoa rich in flavonoids, antioxidant compounds, and bioactive ingredients that have been associated with both its healthy and sensory properties. Chocolate production consists of a multistep process which, starting from cocoa beans, involves fermentation, drying, roasting, nib grinding and refining, conching, and tempering. During cocoa processing, the naturally occurring antioxidants (flavonoids) are lost, while others, such as Maillard reaction products, are formed. The final content of antioxidant compounds and the antioxidant activity of chocolate is a function of several variables, some related to the raw material and others related to processing and formulation. The aim of this mini-review is to revise the literature on the impact of full processing on the in vitro antioxidant activity of chocolate, providing a critical analysis of the implications of processing on the evaluation of the antioxidant effect of chocolate in in vivo studies in humans. PMID:29033932

  17. From Cocoa to Chocolate: The Impact of Processing on In Vitro Antioxidant Activity and the Effects of Chocolate on Antioxidant Markers In Vivo.

    PubMed

    Di Mattia, Carla D; Sacchetti, Giampiero; Mastrocola, Dino; Serafini, Mauro

    2017-01-01

    Chocolate is a product processed from cocoa rich in flavonoids, antioxidant compounds, and bioactive ingredients that have been associated with both its healthy and sensory properties. Chocolate production consists of a multistep process which, starting from cocoa beans, involves fermentation, drying, roasting, nib grinding and refining, conching, and tempering. During cocoa processing, the naturally occurring antioxidants (flavonoids) are lost, while others, such as Maillard reaction products, are formed. The final content of antioxidant compounds and the antioxidant activity of chocolate is a function of several variables, some related to the raw material and others related to processing and formulation. The aim of this mini-review is to revise the literature on the impact of full processing on the in vitro antioxidant activity of chocolate, providing a critical analysis of the implications of processing on the evaluation of the antioxidant effect of chocolate in in vivo studies in humans.

  18. Characterization of the Aroma-Active, Phenolic, and Lipid Profiles of the Pistachio (Pistacia vera L.) Nut as Affected by the Single and Double Roasting Process.

    PubMed

    Rodríguez-Bencomo, Juan José; Kelebek, Hasim; Sonmezdag, Ahmet Salih; Rodríguez-Alcalá, Luis Miguel; Fontecha, Javier; Selli, Serkan

    2015-09-09

    The pistachio (Pistacia vera L.) nut is one of the most widely consumed edible nuts in the world. However, it is the roasting process that makes the pistachio commercially viable and valuable as it serves as the key step to improving the nut's hallmark sensory characteristics including flavor, color, and texture. Consequently, the present study explores the effects of the single-roasting and double-roasting process on the pistachio's chemical composition, specifically aroma-active compounds, polyphenols, and lipids. Results showed the total polyphenol content of increased with the roasting treatment; however, not all phenolic compounds demonstrated this behavior. With regard to the aroma and aroma-active compounds, the results indicated that roasting process results in the development of characteristics and pleasant aroma of pistachio samples due to the Maillard reaction. With regard to lipids, the pistachio roasting treatment reduced the concentration of CN38 diacylglycerides while increasing the amount of elaidic acid.

  19. Effect of different cooking methods on nutritional value and antioxidant activity of cultivated mushrooms.

    PubMed

    Roncero-Ramos, Irene; Mendiola-Lanao, Mónica; Pérez-Clavijo, Margarita; Delgado-Andrade, Cristina

    2017-05-01

    Influence of culinary treatments (boiling, microwaving, grilling, and deep frying) on proximate composition and antioxidant capacity of cultivated mushrooms (Agaricus bisporus, Lentinula edodes, Pleurotus ostreatus, and Pleurotus eryngii) was studied. Proximate composition was affected by the cooking method and the mushrooms species. Frying induced more severe losses in protein, ash, and carbohydrates content but increased the fat and energy. Boiling improved the total glucans content by enhancing the β-glucans fraction. A significant decrease was detected in the antioxidant activity especially after boiling and frying, while grilled and microwaved mushrooms reached higher values of antioxidant activity. Maillard reaction products could be partially responsible, as supported by the absorbance values measured at 420 nm. Since cooking techniques clearly influence the nutritional attributes of mushrooms, the proper selection of treatments is a key factor to prevent/reduce nutritional losses. Microwaving and grilling were established as the best processes to maintain the nutritional profile of mushrooms.

  20. Quantitative analysis of 2-furfural and 5-methylfurfural in different Italian vinegars by headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry using isotope dilution.

    PubMed

    Giordano, Lucia; Calabrese, Roberto; Davoli, Enrico; Rotilio, Domenico

    2003-10-31

    A new method was developed for the determination of 2-furfural (2-F) and 5-methylfurfural (5-MF), two products of Maillard reaction in vinegar, with head-space solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). A divinylbenzene (DVB)/carboxen (CAR)/polydimethylsiloxane (PDMS) fibre was used and SPME conditions were optimised, studying ionic strength effect, temperature effect and adsorption time. Both analytes were determined by calibration established on 2-furfural-d4 (2-F-d4). The method showed good linearity in the range studied (from 16 to 0.12 mg/l), with a regression coefficient r2 of 0.9999. Inter-batch precision and accuracy were found between 14.9 and 6.0% and between -11.7 and 0.2%, respectively. Detection limit was 15 microg/l. The method is simple and accurate and it has been applied to a series of balsamic and non-balsamic vinegars.

  1. Flavor and Acceptance of Roasted California Almonds During Accelerated Storage.

    PubMed

    Franklin, Lillian M; King, Ellena S; Chapman, Dawn; Byrnes, Nadia; Huang, Guangwei; Mitchell, Alyson E

    2018-02-07

    Monitoring oxidative flavor changes in almonds is possible only if the chemical and sensory profile during roasting and storage is first established. Herein, almonds roasted at two different temperatures (115 and 152 °C) were stored at 39 °C for 0 to 12 months and were analyzed by headspace solid-phase microextraction gas chromatography-mass spectrometry, descriptive analysis, and consumer hedonic analysis. Volatile profiles, descriptive sensory profiles, and consumer hedonic scores were analyzed for predictive relationships. Descriptive attributes involving Roasted and Nutty as well as consumer liking were highest in fresh almonds, while flavors typically associated with oxidative rancidity such as Cardboard, Painty/Solvent, Soapy, and Total Oxidized increased during storage. Compounds most important for predicting rancidity-related attributes were lipid oxidation products, including pentanal, hexanal, heptanal, and octanal. Consumer liking was best predicted by similar compounds to those predicting Clean Nutty flavor, including Maillard reaction products such as 2- and 3-methylbutanal, 2-methylpyrazine, and 2,5-dimethylpyrazine.

  2. Evaluation of Beer Fermentation with a Novel Yeast
Williopsis saturnus.

    PubMed

    Liu, Shao-Quan; Quek, Althea Ying Hui

    2016-12-01

    The aim of this study is to evaluate the potential of a novel yeast Williopsis saturnus var. mrakii NCYC 500 to produce fruity beer. Fermentation performance of W. mrakii and beer volatile composition were compared against that fermented with Saccharomyces cerevisiae Safale US-05. o Brix, sugar and pH differed significantly between the two types of beer. A total of 8 alcohols, 11 acids, 41 esters, 9 aldehydes, 8 ketones, 21 terpenes and terpenoids, 5 Maillard reaction products and 2 volatile phenolic compounds were detected. Yeast strain Safale US-05 was more capable of producing a wider range of ethyl and other esters, while yeast strain NCYC 500 produced significantly higher amounts of acetate esters. Strain NCYC 500 retained more terpenes and terpenoids, suggesting that the resultant beer could possess more of the aromatic hint of hops. This study showed that W. saturnus var. mrakii NCYC 500 could ferment wort to produce low-alcohol beer with higher levels of acetate esters, terpenes and terpenoids than yeast S. cerevisiae Safale US-05.

  3. Physicochemical properties of whole fruit plum powders obtained using different drying technologies.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Lech, Krzysztof; Łysiak, Grzegorz P; Figiel, Adam

    2016-09-15

    Physicochemical quality parameters of plum powders obtained by applying conventional drying methods and their combination devised to process plums were evaluated. The effect of freeze-drying (FD), vacuum drying (VD), convective drying (CD), microwave-vacuum drying (MVD) and combination of convective pre-drying and microwave finish-drying (CPD-MVFD) affected physical (bulk density, porosity, colour, solubility) and chemical (polyphenolic compounds determined by UPLC and antioxidant capacity by TEAC ABTS and FRAP methods) properties of plum powders. The MVD at 1.2 W g(-1) and a novel combination for plum powders production - CPD-MVFD at 70 °C/1.2 W g(-1) allowed the best preservation of phenolic compounds and increased the efficiency of production. Results obtained support the use of MVD and its combination for better quality of dried plum products. The study proved that the determination of the browning index and HMF level (formed via Maillard reaction) might be good tool for monitoring the thermal processing of plum powders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ultrafiltration and thermal processing effects on Maillard reaction products and biological properties of date palm sap syrups (Phoenix dactylifera L.).

    PubMed

    Makhlouf-Gafsi, Ines; Krichen, Fatma; Mansour, Riadh Ben; Mokni, Abir; Sila, Assad; Bougatef, Ali; Blecker, Christophe; Attia, Hamadi; Besbes, Souhail

    2018-08-01

    The effect of ultrafiltration process and temperature concentration on MRPs content and antioxidant, antimicrobial and cytotoxic properties of date palm sap syrups were investigated. MRPs were analyzed by HPLC. Antioxidant activity was evaluated by reducing power and DPPH free radical and H 2 O 2 scavenging activities. Antimicrobial activity was evaluated by the agar disk diffusion method. In vitro cytotoxic activity was examined by cell proliferation assay. Date sap syrups displayed strong antioxidant activities which are correlated 5HMF and 2F contents. In addition, concentration at 100 °C, unlike ultrafiltration process, enhanced significantly the antioxidant activities sap syrups and total phenolic contents. The antimicrobial activities showed marked activity against S. enterica, P. aeruginosa, S. aureus, L. monocytogenes with an inhibition zone of 21, 34, 27 and 34 mm respectively. Cytotoxicity assays showed that sap syrups can inhibit the proliferation of HeLa cell lines at high concentration. Published by Elsevier Ltd.

  5. Improvement in the productivity of xylooligosaccharides from waste medium after mushroom cultivation by hydrothermal treatment with suitable pretreatment.

    PubMed

    Sato, Nobuaki; Shinji, Kazunori; Mizuno, Masahiro; Nozaki, Kouichi; Suzuki, Masayuki; Makishima, Satoshi; Shiroishi, Masahiro; Onoda, Takeru; Takahashi, Fumihiro; Kanda, Takahisa; Amano, Yoshihiko

    2010-08-01

    The effective xylooligosaccharides (XOs) production from the waste medium after mushroom cultivation (WM) was investigated. The WM contains rich nutrients (protein, etc.) which induce Maillard reaction with reducing sugars under hydrothermal conditions. To improve the productivity of XOs, the suitable pretreatment combined with washing and grinding was investigated, and subsequently hydrothermal treatment was demonstrated with batch type and continuous flow type reactor. The washing pretreatment with hot water of 60 degrees C was effective to remove nutrients from the WM, and it led to prevent brownish discoloration on the hydrothermal treatment. On the basis of experimental data, industrial XOs production processes consisting of the pretreatment, hydrothermal treatment and purification step was designed. During the designed process, 2.3 kg-dry of the purified XOs was produced from 30 kg-wet of the WM (15% yield as dry basis weight). Theoretical yield of XOs attained to 48% as xylan weight in the WM. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Volatiles from roasted byproducts of the poultry-processing industry.

    PubMed

    Wettasinghe, M; Vasanthan, T; Temelli, F; Swallow, K

    2000-08-01

    Volatiles of roasted chicken breast muscle and byproducts, such as backbones, breastbones, spent bones, and skin, were investigated. Total volatile concentrations ranged from 2030 ppb in the roasted backbones to 4049 ppb in the roasted skin. The major classes of volatile compounds detected in roasted samples were aldehydes (648-1532 ppb) and alcohols (336-1006 ppb). Nitrogen- and/or sulfur-containing compounds were also detected in appreciable quantities (161-706 ppb) in all samples. For all samples, hexanal and 2-methyl-2-buten-1-ol were dominant among the aldehydes and alcohols, respectively. Among the nitrogen- and sulfur-containing compounds, Maillard reaction products, such as tetrahydropyridazines, piperidines, and thiazoles, were the major contributors to the total volatile content in all samples. The composition of volatiles observed in roasted byproducts was markedly different from that of the roasted breast muscle. Therefore, the blending of the byproducts in appropriate proportions or blending of volatile flavor extracts from different byproducts may be necessary to obtain an aroma that mimics roasted chicken aroma.

  7. Sugar cane stillage: a potential source of natural antioxidants.

    PubMed

    Caderby, Emma; Baumberger, Stéphanie; Hoareau, William; Fargues, Claire; Decloux, Martine; Maillard, Marie-Noëlle

    2013-11-27

    Biorefinery of sugar cane is the first economic activity of Reunion Island. Some sugar cane manufactured products (juice, syrup, molasses) have antioxidant activities and are sources of both phenolic compounds and Maillard Reaction Products (MRP). The study aimed to highlight the global antioxidant activity of sugar cane stillage and understand its identity. Chromatographic fractionation on Sephadex LH-20 resin allowed the recovery of a MRP-rich fraction, responsible for 58 to 66% of the global antioxidant activity according to the nature of the sugar cane stillage (DPPH test), and a phenolic compounds-rich fraction for 37 to 59% of the activity. A good correlation was recorded between the antioxidant activity of the sugar cane stillage and its content in total reducing compounds amount (Folin-Ciocalteu assay), among them 2.8 to 3.9 g/L of phenolic compounds (in 5-caffeoylquinic acid equivalent). Preliminary experiments by HPLC-DAD-MS allowed to identify several free phenolic acids and gave clues to identify esters of quinic acids.

  8. Physical and chemical properties of Nam Prig Noom, a Thai green-chili paste, following ultra-high pressure and thermal processes

    NASA Astrophysics Data System (ADS)

    Apichartsrangkoon, Arunee; Srisajjalertwaja, Siriwan; Chaikham, Pittaya; Hirun, Sathira

    2013-03-01

    A study of processing green-chili pastes (Nam Prig Noom) by pressurization (100-600 MPa/30-50°C/20 min), pasteurization (90°C/3-5 min) or sterilization (121°C/4 min), subsequently, their physical, biochemical and microbiological qualities as well as the sensory acceptance were assessed. It was found that pressure at low levels (100-300 MPa) could improve activities of enzyme peroxidase (POD), polyphenoloxidase (PPO) and lypoxygenase (LOX) in the chili paste by more than 100%, while pressures above 500 or 300 MPa combined with heat would significantly inactivate these enzyme activities. Both color parameters and enzyme activities illustrated that though some enzymatic browning occurred with the pressurized products indicated by b* (yellowish) parameter, the magnitude of these browning was still milder than those thermally treated products indicated by-a* (greenness) and L (lightness) parameters, presumably as a consequence of the Maillard reaction. Moreover, the sensory scores were found in accordance with color parameters, firmness and capsaicin contents.

  9. Impact of vacuum frying on quality of potato crisps and frying oil.

    PubMed

    Belkova, Beverly; Hradecky, Jaromir; Hurkova, Kamila; Forstova, Veronika; Vaclavik, Lukas; Hajslova, Jana

    2018-02-15

    This research was focused on a critical assessment of vacuum frying as a technology enabling minimization of acrylamide formation in potato crisps and reducing undesirable chemical changes that occur in frying oil at high temperatures. The potato slices were fried in rapeseed oil under vacuum at 125°C and atmospheric pressure at 165°C. The experiments were performed on two potato varieties, Saturna and Impala. Vacuum frying reduced the formation of acrylamide by 98% and also other Maillard reaction products, specifically alkylpyrazines. Concurrently a lower extent of oxidative changes was observed in the frying oil, while 3-MCPD esters decreased fairly quickly during conventional frying. Sensory characteristics of the vacuum and conventionally fried potato crisps were evaluated by a 23-member panel. The majority of panellists preferred the flavour of 'conventional crisps', while only a few of them appreciated potato-like fresh flavour of 'vacuum crisps' and classified this product as 'tasty'. Copyright © 2017. Published by Elsevier Ltd.

  10. Impact of Power Ultrasound on the Quality of Fruits and Vegetables During Dehydration

    NASA Astrophysics Data System (ADS)

    Villamiel, Mar; Gamboa, Juliana; Soria, A. Cristina; Riera, Enrique; García-Pérez, José V.; Montilla, Antonia

    In the present work, the influence of power ultrasound (US) on the quality of fruits and vegetables during both the pre-treatment and drying has been evaluated. Chemical indicators such as pectinmethyl esterase and peroxidase enzymes, vitamin C, carbohydrates, proteins, polyphenols and 2-furoylmethylamino acids (indicators of the early stages of Maillard reaction) have been studied. In addition, rehydration capacity, leaching losses and shrinkage and organoleptic characteristics of the final product have also been assessed. During blanching, similar leaching losses and enzyme inactivation were found in low temperature and prolonged conventional treatments and in US processes, but with a significant reduction in the time for the latter. Finally, application of US in drying of carrots and strawberries originated significant reductions in processing time, while providing high quality end-products. The quality was higher as compared to marketed products and superior or equivalent to samples obtained under similar conditions in a prototype convective dryer, and, in the case of some indicators, similar to that of freeze-dried samples.

  11. Parameters for measurement of oxidative stress in diabetes mellitus: applicability of enzyme-linked immunosorbent assay for clinical evaluation.

    PubMed

    Noiri, Eisei; Tsukahara, Hirokazu

    2005-05-01

    Investigations of the mechanisms involved in the onset and progression of diabetes have recently confronted the role of reactive oxygen species (ROS) and oxidative stress. Prolonged exposure to hyperglycemic conditions induces nonenzymatic glycation of protein via the so-called Maillard reaction, resulting in Schiff-base products and Amadori products that engender ROS production. These processes initiate and exacerbate micro- and macrovascular complications in diabetes. Increased oxidative stress is induced by excessive ROS production and inadequate antioxidant defenses. Recently, oxidative stress status markers have been associated directly with the severity and prognosis of diabetes. To examine oxidative stress, reliable and high-throughput methods are needed to examine large numbers of clinical samples. The emerging availability of enzyme-linked immunosorbent assay (ELISA) for oxidative stress status markers allows its application to assessment of various pathophysiologic conditions, including diabetes. This review outlines the recent achievements of ELISA application for clinical studies elucidating oxidative stress. It introduces the potential applicability of ELISA for investigating oxidative stress in diabetes.

  12. Formation and reduction of carcinogenic furan in various model systems containing food additives.

    PubMed

    Kim, Jin-Sil; Her, Jae-Young; Lee, Kwang-Geun

    2015-12-15

    The aim of this study was to analyse and reduce furan in various model systems. Furan model systems consisting of monosaccharides (0.5M glucose and ribose), amino acids (0.5M alanine and serine) and/or 1.0M ascorbic acid were heated at 121°C for 25 min. The effects of food additives (each 0.1M) such as metal ions (iron sulphate, magnesium sulphate, zinc sulphate and calcium sulphate), antioxidants (BHT and BHA), and sodium sulphite on the formation of furan were measured. The level of furan formed in the model systems was 6.8-527.3 ng/ml. The level of furan in the model systems of glucose/serine and glucose/alanine increased 7-674% when food additives were added. In contrast, the level of furan decreased by 18-51% in the Maillard reaction model systems that included ribose and alanine/serine with food additives except zinc sulphate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity.

    PubMed

    Redondo, Diego; Venturini, María E; Oria, Rosa; Arias, Esther

    2016-04-15

    By-products from agricultural practices or from the fruit processing industry are a source of bioactive compounds that could be used in the food industry. Such by-products include thinned fruits, which are expected to contain high quantities of interesting compounds. One possible application of this fruits is the prevention of the enzymatic browning suffered by fruits and vegetables after minimal processing. The aim of this study is to determine the in vitro and in vivo activity of microwaved extracts obtained from thinned nectarines. It has been observed that in vitro the extracts obtained after the application of high microwave power levels (500, 1000 and 1500 W) are mixed type inhibitors of polyphenoloxidase enzyme, showing an irreversible inactivation. This inhibition could be attributed to the Maillard reaction products formed during the microwave treatment. In vivo, a solution of 2% of the extract obtained at 1500 W inhibited the enzymatic browning in minimally processed peaches for 8 days of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  15. Mechanistic Studies of the N-formylation of Edivoxetine, a Secondary Amine-Containing Drug, in a Solid Oral Dosage Form.

    PubMed

    Hoaglund Hyzer, Cherokee S; Williamson, Michele L; Jansen, Patrick J; Kopach, Michael E; Scherer, R Brian; Baertschi, Steven W

    2017-05-01

    Edivoxetine (LY2216684 HCl), although a chemically stable drug substance, has shown the tendency to degrade in the presence of carbohydrates that are commonly used tablet excipients, especially at high excipient:drug ratios. The major degradation product has been identified as N-formyl edivoxetine. Experimental evidence including solution and solid-state investigations, is consistent with the N-formylation degradation pathway resulting from a direct reaction of edivoxetine with (1) formic acid (generated from decomposition of microcrystalline cellulose or residual glucose) and (2) the reducing sugar ends (aldehydic carbons) of either residual glucose or the microcrystalline cellulose polymer. Results of labeling experiments indicate that the primary source of the formyl group is the C1 position from reducing sugars. Presence of water or moisture accelerates this degradation pathway. Investigations in solid and solution states support that the glucose Amadori Rearrangement Product does not appear to be a direct intermediate leading to N-formyl degradation of edivoxetine, and oxygen does not appear to play a significant role. Solution-phase studies, developed to rapidly assess propensity of amines toward Maillard reactivity and formylation, were extended to show comparative behavior with example systems. The cyclic amine systems, such as edivoxetine, showed the highest propensity toward these side reactions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    PubMed

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk.

  17. Does the pelleting process affect the nutritive value of a pre-starter diet for suckling piglets? Ex vivo studies on mineral absorption.

    PubMed

    Delgado-Andrade, Cristina; Rufián-Henares, José A; Nieto, Rosa; Aguilera, José F; Navarro, M Pilar; Seiquer, Isabel

    2010-04-15

    The effects of pelleting on the extent of the Maillard reaction (MR) and on calcium, magnesium and zinc solubility and absorption were analysed in a conventional pre-starter diet for suckling piglets. Development was tested measuring colour, absorbance (280/420 nm), fluorescence, residual free lysine, furosine, hydroxymethylfurfural (HMF) and furfural contents before and after pelleting. Fluorescence, absorbance and mineral solubility were also measured after in vitro digestion of diets. The effects on mineral absorption were tested using Caco-2 cells. MR indexes confirmed the development of the reaction during the pelleting of this particular diet compared with the meal diet. The CIE-Lab colour parameters showed a decrease in luminosity (L*) and progress of the colour to the red zone (a*) in the pelleted diet. A 36% decrease in free lysine content was observed. Significant correlations were observed between fluorescence intensity and furosine levels, HMF and furfural. The pelleting process did not modify calcium and magnesium solubility after in vitro digestion, but soluble zinc increased. The efficiency of calcium and zinc transport across Caco-2 cell monolayers was greater in the pelleted diet. Evidence of MR development is shown, resulting in various nutritional consequences. Optimisation of pelleting could result in a better formulation of diets for feedstuffs. (c) 2010 Society of Chemical Industry.

  18. Mechanisms of browning development in aggregates of marine organic matter formed under anoxic conditions: A study by mid-infrared and near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Acquistucci, Rita; Nisini, Laura; Conti, Marcelo Enrique

    2014-03-01

    In this paper we analyze some chemical aspects concerning the browning development associated to the aggregation of marine organic matter (MOM) occurring in anoxic conditions. Organic matter samples obtained by the degradation of different algal samples were daily taken to follow the evolution of the aggregation process and the associated browning process. These samples were examined by Fourier transform mid infrared (FTIR) and Fourier transform near infrared (FTNIR) spectroscopy and the colour changes occurring during the above mentioned aggregation process were measured by means of Colour Indices (CIs). Spectral Cross Correlation Analysis (SCCA) was applied to correlate changes in CI values to the structural changes of MOM observed by FTIR and FTNIR spectra which were also submitted to Two-Dimensional Hetero Correlation Analysis (2HDCORR). SCCA results showed that all biomolecules present in MOM aggregates such as carbohydrates, proteins and lipids are involved in the browning development. In particular, SCCA results of algal mixtures suggest that the observed yellow-brown colour can be linked to the development of non enzymatic (i.e. Maillard) browning reactions. SCCA results for MOM furthermore suggest that aggregates coming from brown algae also showed evidence of browning related to enzymatic reactions. In the end 2HDCORR results indicate that hydrogen bond interactions among different molecules of MOM can play a significant role in the browning development.

  19. Advanced glycated end-products (AGE) during haemodialysis treatment: discrepant results with different methodologies reflecting the heterogeneity of AGE compounds.

    PubMed

    Henle, T; Deppisch, R; Beck, W; Hergesell, O; Hänsch, G M; Ritz, E

    1999-08-01

    There has been much recent interest in accumulation of advanced glycation end-products (AGE) in uraemic patients. Analysis of AGE has been difficult, because commonly used methodologies, i.e. immunodetection assays or fluorescence measurements, reflect group reactivity and are not specific for chemically defined substances. Some investigators measured individual AGE compounds, e.g. pentosidine, carboxymethyllysine, pyrraline or imidazolone, but a systematic assessment of known compounds using specific HPLC methods in diabetic and non-diabetic end-stage renal disease (ESRD) patients during treatment has not been performed. For the present study, the concentrations of early and late products of the Maillard reaction in plasma and ultrafiltrate were monitored during high-flux dialysis sessions in diabetic and non-diabetic patients. AGE were analysed by fluorescence spectroscopy and size exclusion chromatography with fluorescence detection. Specific HPLC methods were used to quantify the Amadori product fructoselysine and the AGE compounds pentosidine and pyrraline in acid or enzymatic hydrolysates. Using size exclusion chromatography, we confirmed a similar fluorescent peak distribution for diabetic and non-diabetic ESRD patients. Main fractions were found at approximately 70, approximately 14 and <2 kDa, confirming results obtained by other authors. In diabetic patients, the fluorescence intensity of the low molecular weight fraction was higher. Uraemic patients differed from controls mainly by the fluorescence of the low molecular weight fraction. The peak spectrum in ultrafiltrates was similar to that in plasma regarding low molecular weight fractions and the 14 kDa peak, but no protein-bound fluorescence was found at 70 kDa. HPLC analysis revealed a significant reduction of plasma pentosidine during high-flux dialysis in non-diabetic (from 9.1+/-5.1 to 8.5+/-4.7 pmol/mg protein; P<0.05) and diabetic patients (from 10.0+/-9.1 to 6.8+/-4.0 pmol/mg protein; P<0.05). In contrast, plasma fructoselysine showed only a non-significant trend to decrease in diabetic (from 3.24+/-0.88 to 3.05+/-0.77 nmol/mg protein) and non-diabetic patients (from 2.69+/-0.52 to 2.56+/-0.50 nmol/mg protein). Pyrraline, a nonfluorescent late AGE product derived from reaction of 3-deoxyglucosone with lysine, could not be detected (detection limit approximately 40 pmol/mg protein). Comparing HPLC and size exclusion analysis, it was found that pentosidine accumulated in the range of low molecular weight substances and was removed by high-flux dialysis. High-flux dialysis reduces the plasma concentration of fluorescent AGE compounds, i.e. pentosidine, but the Amadori product fructoselysine is not removed, indicating that this compound is protein associated.

  20. Analysis of early lipid oxidation in smoked, comminuted pork or poultry sausages with spices.

    PubMed

    Olsen, Elisabeth; Vogt, Gjermund; Veberg, Annette; Ekeberg, Dag; Nilsson, Astrid

    2005-09-21

    Dynamic headspace/gas chromatography-mass spectrometry (GC-MS), front-face fluorescence spectroscopy, and a gas-sensor array technique (electronic nose) have previously detected lipid oxidation in pork back fat or mechanically recovered poultry meat earlier than or at the same time as a sensory panel. The present study was focused on measurement of early lipid oxidation in a more complicated product (freeze-stored, smoked sausages with spices). During the storage time, formation of components contributing to rancid odor and flavor (e.g., hexanal and 1-penten-3-ol) could be monitored with dynamic headspace/GC-MS. The GC-MS data also showed a decrease in 2-furancarboxaldehyde, which could indicate loss of Maillard type components often associated with acidic or meat odor and flavor. The fluorescence spectra were difficult to interpret, probably due to the simultaneous influence from increasing levels of lipid oxidation products and loss of fluorescent Maillard or spice components. The gas-sensor array responses were dominated by signals from, e.g., spice and smoke compounds.

  1. Detection of noncarboxymethyllysine and carboxymethyllysine advanced glycation end products (AGE) in serum of diabetic patients.

    PubMed Central

    Takeuchi, M.; Makita, Z.; Yanagisawa, K.; Kameda, Y.; Koike, T.

    1999-01-01

    BACKGROUND: The advanced stage of the Maillard reaction, which leads to the formation of advanced glycation end products (AGE), plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. N(epsilon)-(carboxymethyl)lysine (CML) is thought to be an important epitope for many of currently available AGE antibodies. However, recent findings have indicated that a major source of CML may be by pathways other than glycation. A distinction between CML and non-CML AGE may increase our understanding of AGE formation in vivo. In the present study, we prepared antibodies directed against CML and non-CML AGE. MATERIALS AND METHODS: AGE-rabbit serum albumin prepared by 4, 8, and 12 weeks of incubation with glucose was used to immunize rabbits, and a high-titer AGE-specific antiserum was obtained without affinity for the carrier protein. To separate CML and non-CML AGE antibodies, the anti-AGE antiserum was subjected to affinity chromatography on a column coupled with AGE-BSA and CML-BSA. Two different antibodies were obtained, one reacting specifically with CML and the other reacting with non-CML AGE. Circulating levels of CML and non-CML AGE were measured in 66 type 2 diabetic patients without uremia by means of the competitive ELISA. Size distribution and clearance by hemodialysis detected by non-CML AGE and CML were assessed in serum from diabetic patients on hemodialysis. RESULTS: The serum non-CML AGE level in type 2 diabetic patients was significantly correlated with the mean fasting blood glucose level over the previous 2 months (r = 0.498, p < 0.0001) or the previous 1 month (r = 0.446, p = 0. 0002) and with HbA(1c) (r = 0.375, p = 0.0019), but the CML AGE level was not correlated with these clinical parameters. The CML and non-CML AGE were detected as four peaks with apparent molecular weights of 200, 65, 1.15, and 0.85 kD. The hemodialysis treatment did not affect the high-molecular-weight protein fractions. Although the low-molecular-weight peptide fractions (absorbance at 280 nm and fluorescence) were decreased by hemodialysis, there was no difference before and after dialysis in the non-CML AGE- and CML-peptide fractions (1.15 and 0.85 kD fractions). CONCLUSIONS: We propose that both CML and non-CML AGE are present in the blood and that non-CML AGE rather than CML AGE should be more closely evaluated when investigating the pathophysiology of AGE-related diseases. PMID:10415164

  2. Oenological characteristics, amino acids and volatile profiles of Hongqu rice wines during pottery storage: Effects of high hydrostatic pressure processing.

    PubMed

    Tian, Yuting; Huang, Jiamei; Xie, Tingting; Huang, Luqiang; Zhuang, Weijin; Zheng, Yafeng; Zheng, Baodong

    2016-07-15

    Hongqu rice wines were subjected to high hydrostatic pressure (HHP) treatments of 200 MPa and 550 MPa at 25 °C for 30 min and effects on wine quality during pottery storage were examined. HHP treatment can significantly (p<0.05) decrease the content of fusel-like alcohols and maintain the concentration of lactones in these wines. After 18 months of storage, the HHP-treated wines exhibited a more rapid decrease in total sugars (9.3-15.3%), lower free amino acid content (e.g. lysine content decreased by 45.0-84.5%), and higher ketone content (e.g. 6- and 14-fold increase for 2-nonanone). These changes could be attributed to the occurrence of Maillard and oxidation reactions. The wines treated at 550 MPa for 30 min developed about twice as rapidly during pottery storage than untreated wines based on principal component analysis. After only 6 months, treated wines had a volatile composition and an organoleptic quality similar to that of untreated wines stored in pottery for 18 months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Study of thermal pre-treatment on anaerobic digestion of slaughterhouse waste by TGA-MS and FTIR spectroscopy.

    PubMed

    Rodríguez-Abalde, Ángela; Gómez, Xiomar; Blanco, Daniel; Cuetos, María José; Fernández, Belén; Flotats, Xavier

    2013-12-01

    Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.

  4. In vitro digestibility and prebiotic potential of curdlan (1 → 3)-β-d-glucan oligosaccharides in Lactobacillus species.

    PubMed

    Shi, Yuqin; Liu, Jun; Yan, Qiaojuan; You, Xin; Yang, Shaoqing; Jiang, Zhengqiang

    2018-05-15

    Prebiotic effects of curdlan (1 → 3)-β-d-glucan oligosaccharides (GOS) were examined. GOS was tolerant against simulated gastrointestinal digestion, as well as low pH, thermal, and Maillard reaction conditions likely occurred during food processing. Growth of tested Lactobacillus (L.) strains was improved by GOS except L. brevis NRRL B-4527. E. coli did not grow on GOS as the only carbon source. In vitro batch fermentation using human faecal microbiota showed that GOS significantly increased the population of Lactobacillus sp. followed by Bifidobacterium sp. and Bacteroides sp. Growth of L. strains on GOS produced lactic acid, acetic, and propionic acid with decreased culture medium pH. Utilization pattern of GOS by representative L. strains was strain dependent. GOS with degree of polymerization (DP) of 2 and 3 were readily consumed. Findings here indicated that curdlan GOS (DP = 2 and 3) are promising physiologically active prebiotics for improvement of human intestinal health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Longevity and aging. Role of free radicals and xanthine oxidase. A review.

    PubMed

    Labat-Robert, J; Robert, L

    2014-04-01

    Longevity and aging are differently regulated. Longevity has an important part of genetic determinants, aging is essentially post-genetic. Among the genes involved in longevity determination, sirtuins, activated also by calorie restriction and some others as the TOR pathway, attracted special interest after the insulin–IGF pathway first shown to regulate longevity in model organisms. For most of these genes, postponement of life-threatening diseases is the basis of their action which never exceeds about 35% of all determinants, in humans. Among the post-genetic mechanisms responsible for age-related decline of function, free radicals attracted early interest as well as the Maillard reaction, generating also free radicals. Most attempts to remediate to free radical damage failed however, although different scavenger mechanisms and protective substances are present in the organism. Synthetic protectors were also tested without success. The only example of a successful treatment of a free radical mediated pathology is the case of xanthine oxidase, involved in cardiovascular pathology, essentially during the ischemia-reperfusion process. Its inhibition by allopurinol is currently used to fight this deadly syndrome.

  6. Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past

    PubMed Central

    Jeandet, Philippe; Heinzmann, Silke S.; Roullier-Gall, Chloé; Cilindre, Clara; Aron, Alissa; Deville, Marie Alice; Moritz, Franco; Karbowiak, Thomas; Demarville, Dominique; Brun, Cyril; Moreau, Fabienne; Michalke, Bernhard; Liger-Belair, Gérard; Witting, Michael; Lucio, Marianna; Steyer, Damien; Gougeon, Régis D.; Schmitt-Kopplin, Philippe

    2015-01-01

    Archaeochemistry as the application of the most recent analytical techniques to ancient samples now provides an unprecedented understanding of human culture throughout history. In this paper, we report on a multiplatform analytical investigation of 170-y-old champagne bottles found in a shipwreck at the bottom of the Baltic Sea, which provides insight into winemaking practices used at the time. Organic spectroscopy-based nontargeted metabolomics and metallomics give access to the detailed composition of these wines, revealing, for instance, unexpected chemical characteristics in terms of small ion, sugar, and acid contents as well as markers of barrel aging and Maillard reaction products. The distinct aroma composition of these ancient champagne samples, first revealed during tasting sessions, was later confirmed using state-of-the-art aroma analysis techniques. After 170 y of deep sea aging in close-to-perfect conditions, these sleeping champagne bottles awoke to tell us a chapter of the story of winemaking and to reveal their extraordinary archaeometabolome and elemental diversity in the form of chemical signatures related to each individual step of champagne production. PMID:25897020

  7. Physicochemical properties of β-carotene emulsions stabilized by chlorogenic acid-lactoferrin-glucose/polydextrose conjugates.

    PubMed

    Liu, Fuguo; Wang, Di; Xu, Honggao; Sun, Cuixia; Gao, Yanxiang

    2016-04-01

    In this study, the influence of chlorogenic acid (CA)-lactoferrin (LF)-glucose (Glc) conjugate and CA-LF-polydextrose (PD) conjugate on the physicochemical characteristics of β-carotene emulsions was investigated. Novel emulsifiers were formed during Maillard reaction between CA-LF conjugate and Glc/PD. The physicochemical properties of β-carotene emulsions were characterized by droplet size, ζ-potential, rheological behavior, transmission changes during centrifugal sedimentation and β-carotene degradation. Results showed that the covalent attachment of Glc or PD to CA-LF conjugate effectively increased the hydrophilicity of the oil droplets surfaces and strengthened the steric repulsion between the oil droplets. Glucose was better than polydextrose for the conjugation with CA-LF conjugate to stabilize β-carotene emulsions. In comparison with LF and CA-LF-Glc/PD mixtures, CA-LF-Glc/PD ternary conjugates exhibited better emulsifying properties and improved physical stability of β-carotene emulsions during the freeze-thaw treatment. In addition, CA-LF-Glc/PD conjugates significantly enhanced chemical stability of β-carotene in the emulsions against ultraviolet light exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis.

    PubMed

    Nagaraj, R H; Sell, D R; Prabhakaram, M; Ortwerth, B J; Monnier, V M

    1991-11-15

    Pentosidine is a recently discovered protein crosslink, involving lysine and arginine residues linked together in an imidazo [4,5,6] pyridinium ring formed by a 5-carbon sugar during nonenzymatic browning (Maillard reaction). The presence of high ascorbate levels in the human lens and its ability to undergo nonenzymatic browning led us to investigate pentosidine formation in the aging human lens. Incubation of lens crystallins with ascorbate and its oxidation products dehydroascorbate and 2,3-diketogulonate leads progressively to the formation of pentosidine crosslinks in the presence of oxygen. Under nitrogen, however, pentosidine forms only from 2,3-diketogulonate or xylosone, a degradation product of 2,3-diketogulonate. A high correlation between pentosidine crosslinks and the degree of lens pigmentation is noted in cataractous lenses. Pentosidine is found to be primarily associated with alpha-crystallin fractions of 300-5000 kDa. These results suggest that redox imbalance in cellular senescent systems such as the ocular lens may lead to irreversible ascorbate oxidation and protein crosslinking by xylosone. This mechanism may play an important role in the pathogenesis of "brunescent" cataracts.

  9. Identification of predominant aroma components of raw, dry roasted and oil roasted almonds.

    PubMed

    Erten, Edibe S; Cadwallader, Keith R

    2017-02-15

    Volatile components of raw, dry roasted and oil roasted almonds were isolated by solvent extraction/solvent-assisted flavor evaporation and predominant aroma compounds identified by gas chromatography-olfactometry (GCO) and aroma extract dilutions analysis (AEDA). Selected odorants were quantitated by GC-mass spectrometry and odor-activity values (OAVs) determined. Results of AEDA indicated that 1-octen-3-one and acetic acid were important aroma compounds in raw almonds. Those predominant in dry roasted almonds were methional, 2- and 3-methylbutanal, 2-acetyl-1-pyrroline and 2,3-pentanedione; whereas, in oil roasted almonds 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 2,3-pentanedione, methional and 2-acetyl-1-pyrroline were the predominant aroma compounds. Overall, oil roasted almonds contained a greater number and higher abundance of aroma compounds than either raw or dry roasted almonds. The results of this study demonstrate the importance of lipid-derived volatile compounds in raw almond aroma. Meanwhile, in dry and oil roasted almonds, the predominant aroma compounds were derived via the Maillard reaction, lipid degradation/oxidation and sugar degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Free and glycosidically bound volatile compounds in sun-dried raisins made from different fragrance intensities grape varieties using a validated HS-SPME with GC-MS method.

    PubMed

    Wang, Dong; Duan, Chang-Qing; Shi, Ying; Zhu, Bao-Qing; Javed, Hafiz Umer; Wang, Jun

    2017-08-01

    The conditions of sample pretreatments and HS-SPME for extracting volatile compounds from raisins were optimized, and the method was validated in the study. Free and glycosidically bound volatile compounds in three different fragrance intensities raisins were analysed using this method. There were 91 compounds identified, and 72, 26 and 8 of these compounds came from fresh grapes, the auto-oxidation of unsaturated fatty acids (UFAO) and the Maillard reaction, respectively. The aroma profiles of Thompson Seedless raisins (TSRs) and Centennial Seedless raisins (CSRs) were similar, while the floral, fruity, green and roasted aromas of CSRs were higher than those of TSRs due to the contributions of benzeneacetaldehyde, 2-pentylfuran, (E)-2-nonenal and 3-ethyl-2,5-dimethyl pyrazine. Decanal, rose oxide, geraniol, linalool and β-damascenone made the floral and fruity aromas of Zixiang Seedless raisins (ZSRs) greater than those in TSRs and CSRs, but the green and roasted aroma intensities of ZSRs were lower. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hydrolysed fumonisin B1 and N-(deoxy-D-fructos-1-yl)-fumonisin B1: stability and catabolic fate under simulated human gastrointestinal conditions.

    PubMed

    Cirlini, Martina; Hahn, Irene; Varga, Elisabeth; Dall'Asta, Margherita; Falavigna, Claudia; Calani, Luca; Berthiller, Franz; Del Rio, Daniele; Dall'Asta, Chiara

    2015-02-01

    Food processing may induce thermal degradation of fumonisins in corn via Maillard-type reactions, or alkaline hydrolysis via loss of the two tricarballylic acid moieties. In the former case, N-(1-deoxy-D-fructos-1-yl)-fumonisin B(1) (NDF) can be formed, while the latter derivative is called hydrolysed fumonisin B(1) (HFB(1)). The aim of this study was to deepen the knowledge about the gastrointestinal stability of HFB(1) and NDF in humans. Due to the lack of standard, NDF was chemically synthesised and cleaned up in high purity to be used for further experiments. While NDF is already partially cleaved (about 41%) during simulated digestion, it remained rather stable towards human colon microflora. In contrast to this, HFB(1) is partially metabolised by the colon microflora to unknown compounds after 24 h of fermentation, as seen by a loss of about 22%. Concluding, the cleavage of NDF during digestion as well as the likely metabolisation of HFB(1) emphasise the need for animal trials to ascertain their toxicity in vivo.

  12. Degradation of free tryptophan in a cookie model system and its application in commercial samples.

    PubMed

    Morales, Francisco J; Açar, Ozge C; Serpen, Arda; Arribas-Lorenzo, Gema; Gökmen, Vural

    2007-08-08

    The stability of free tryptophan (Trp) was examined in five cookie-resembling models at varying baking temperatures and durations. Trp was measured by HPLC coupled with a fluorescent detector. Trp degradation was significantly greater in cookies formulated with glucose compared with sucrose, regardless of the temperatures and durations of baking. A lag period was clearly observed in cookies formulated with sucrose. The type of sugar used in the dough formulation affected not only the thermal destruction kinetics but also the degree of degradation of free Trp. However, the type of leavening agent (ammonium bicarbonate versus sodium bicarbonate) did not affect the rate of Trp destruction as happens in Maillard-driven reactions. In addition, the free Trp content was analyzed in nine different flours and sixty-two commercial cookies, and it was found that free Trp varied from 0.4 to 1287.9 mg/kg for rice and wheat bran, respectively. It was found that free Trp was significantly higher in dietetic commercial samples formulated with wheat bran compared with other flours.

  13. Seasoning ingredients in a medium-fat diet regulate lipid metabolism in peripheral tissues via the hypothalamic-pituitary axis in growing rats.

    PubMed

    Tanaka, Mitsuru; Yasuoka, Akihito; Yoshinuma, Haruka; Saito, Yoshikazu; Asakura, Tomiko; Tanabe, Soichi

    2018-03-01

    We fed rats noodle (N) -diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same amount of nutrients (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. We then analyzed transcriptome of the hypothalamic-pituitary (HP), the liver and the white adipose tissue (WAT). Thyroid stimulating hormone (Tshb), and its partner, glycoprotein hormone genes were up-regulated in the HP of N-group. Sterol regulatory element binding transcription factors were activated in the liver of N-group, while an up-regulation of the angiogenic signal occurred in the WAT of N-group. N-group showed higher urine noradrenaline (NA) level suggesting that these tissue signals are regulated by NA and Tshb. The N-diet contains 0.326 wt.% glutamate, 0.00236 wt.% 6-shogaol and Maillard reaction products. Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.

  14. Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past.

    PubMed

    Jeandet, Philippe; Heinzmann, Silke S; Roullier-Gall, Chloé; Cilindre, Clara; Aron, Alissa; Deville, Marie Alice; Moritz, Franco; Karbowiak, Thomas; Demarville, Dominique; Brun, Cyril; Moreau, Fabienne; Michalke, Bernhard; Liger-Belair, Gérard; Witting, Michael; Lucio, Marianna; Steyer, Damien; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2015-05-12

    Archaeochemistry as the application of the most recent analytical techniques to ancient samples now provides an unprecedented understanding of human culture throughout history. In this paper, we report on a multiplatform analytical investigation of 170-y-old champagne bottles found in a shipwreck at the bottom of the Baltic Sea, which provides insight into winemaking practices used at the time. Organic spectroscopy-based nontargeted metabolomics and metallomics give access to the detailed composition of these wines, revealing, for instance, unexpected chemical characteristics in terms of small ion, sugar, and acid contents as well as markers of barrel aging and Maillard reaction products. The distinct aroma composition of these ancient champagne samples, first revealed during tasting sessions, was later confirmed using state-of-the-art aroma analysis techniques. After 170 y of deep sea aging in close-to-perfect conditions, these sleeping champagne bottles awoke to tell us a chapter of the story of winemaking and to reveal their extraordinary archaeometabolome and elemental diversity in the form of chemical signatures related to each individual step of champagne production.

  15. Physicochemical, melissopalynological and antioxidant properties of artisanal honeys from Lebanon.

    PubMed

    Jaafar, Katherine; Haidar, Janay; Kuraydiyyah, Sawsan; Ghaddar, Tarek; Knio, Khouzama; Ismail, Baraem; Toufeili, Imad

    2017-07-01

    Sixteen honeydew and 15 floral honeys from Lebanon were analyzed for pollen spectra and physicochemical parameters. A total of 37 families and 67 taxa were recorded with the honeybees producing honeydew honey exhibiting a more diverse foraging behavior than those making floral honeys. The honeydew and floral honeys exhibited differences in moisture content, pH, electrical conductivity, color, protein and Maillard reaction products. The honeydew honeys contained more total phenols, had higher antioxidant contents, and displayed higher antioxidant capacities than the floral samples in the Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, inhibition of superoxide dismutase activity and protection of red blood cells against hemolysis assays. The honey samples exhibited higher antioxidant capacities, in the aforementioned assays, than their corresponding methanol-extractable phenol fractions although the differences did not reach statistical significance in the floral samples. The relative antioxidant capacity indices which integrate measures of antioxidant capacity from the different assays of the honey samples and their corresponding extracts exhibited similar patterns ( r  = 0.9774, 0.9937) thereby indicating that the antioxidative behavior of the entire honeys is mirrored by their methanol-extractable phenolic fractions.

  16. Impact of Variety and Agronomic Factors on Crude Protein and Total Lysine in Chicory; N(ε)-Carboxymethyl-lysine-Forming Potential during Drying and Roasting.

    PubMed

    Loaëc, Grégory; Niquet-Léridon, Céline; Henry, Nicolas; Jacolot, Philippe; Jouquand, Céline; Janssens, Myriam; Hance, Philippe; Cadalen, Thierry; Hilbert, Jean-Louis; Desprez, Bruno; Tessier, Frédéric J

    2015-12-02

    During the heat treatment of coffee and its substitutes some compounds potentially deleterious to health are synthesized by the Maillard reaction. Among these, N(ε)-carboxymethyl-lysine (CML) was detected at high levels in coffee substitutes. The objective of this study was to evaluate the impact of changes in agricultural practice on the lysine content present in chicory roots and try to limit CML formation during roasting. Of the 24 varieties analyzed, small variations in lysine content were observed, 213 ± 8 mg/100 g dry matter (DM). The formation of lysine tested in five commercial varieties was affected by the nitrogen treatment with mean levels of 176 ± 2 mg/100 g DM when no fertilizer was added and 217 ± 7 mg/100 g DM with a nitrogen supply of 120 kg/ha. The lysine content of fresh roots was significantly correlated to the concentration of CML formed in roasted roots (r = 0.51; p < 0.0001; n = 76).

  17. Influence of combined pretreatments on color parameters during convective drying of Mirabelle plum ( Prunus domestica subsp. syriaca)

    NASA Astrophysics Data System (ADS)

    Dehghannya, Jalal; Gorbani, Rasoul; Ghanbarzadeh, Babak

    2017-07-01

    Discoloration and browning are caused primarily by various reactions, including Maillard condensation of hexoses and amino components, phenol polymerization and pigment destruction. Convective drying can be combined with various pretreatments to help reduce undesired color changes and improve color parameters of dried products. In this study, effects of ultrasound-assisted osmotic dehydration as a pretreatment before convective drying on color parameters of Mirabelle plum were investigated. Variations of L* (lightness), a* (redness/greenness), b* (yellowness/blueness), total color change (ΔE), chroma, hue angle and browning index values were presented versus drying time during convective drying of control and pretreated Mirabelle plums as influenced by ultrasonication time, osmotic solution concentration and immersion time in osmotic solution. Samples pretreated with ultrasound for 30 min and osmotic solution concentration of 70% had a more desirable color among all other pretreated samples, with the closest L*, a* and b* values to the fresh one, showing that ultrasound and osmotic dehydration are beneficial to the color of final products after drying.

  18. Influence of the brewing process on furfuryl ethyl ether formation during beer aging.

    PubMed

    Vanderhaegen, Bart; Neven, Hedwig; Verstrepen, Kevin J; Delvaux, Freddy R; Verachtert, Hubert; Derdelinckx, Guy

    2004-11-03

    In beer, the development of a solvent-like stale flavor is associated with the formation of furfuryl ethyl ether. The synthesis rate of this important flavor compound is proportional to the concentration of furfuryl alcohol in beer. This study shows that furfuryl alcohol in beer is mainly formed by Maillard reactions initiated during wort boiling and malt production. A mechanism for its formation from alpha-(1,4)-oligoglucans and amino acids in wort and beer is proposed. During wort boiling, a quadratic relationship was found between the wort extract concentration, on the one hand, and the increase of furfuryl alcohol and furfural, on the other. The reduction of furfural by yeast during fermentation further increases the furfuryl alcohol content. In pale beers, the furfuryl alcohol concentration is essentially determined by the thermal load on wort during brewing operations. In dark beers, a considerable fraction of furfuryl alcohol may, however, come from the dark malts used. These results lead to important practical conclusions concerning the control over furfuryl ethyl ether in beer.

  19. Evaluation of Beer Fermentation with a Novel Yeast
Williopsis saturnus

    PubMed Central

    Quek, Althea Ying Hui

    2016-01-01

    Summary The aim of this study is to evaluate the potential of a novel yeast Williopsis saturnus var. mrakii NCYC 500 to produce fruity beer. Fermentation performance of W. mrakii and beer volatile composition were compared against that fermented with Saccharomyces cerevisiae Safale US-05. oBrix, sugar and pH differed significantly between the two types of beer. A total of 8 alcohols, 11 acids, 41 esters, 9 aldehydes, 8 ketones, 21 terpenes and terpenoids, 5 Maillard reaction products and 2 volatile phenolic compounds were detected. Yeast strain Safale US-05 was more capable of producing a wider range of ethyl and other esters, while yeast strain NCYC 500 produced significantly higher amounts of acetate esters. Strain NCYC 500 retained more terpenes and terpenoids, suggesting that the resultant beer could possess more of the aromatic hint of hops. This study showed that W. saturnus var. mrakii NCYC 500 could ferment wort to produce low-alcohol beer with higher levels of acetate esters, terpenes and terpenoids than yeast S. cerevisiae Safale US-05. PMID:28115897

  20. Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Wright, Colin; Lewis-Clark, Eric; Shaheen, G.; Geier, Roman; Chaiken, J.

    2010-02-01

    Human transdermal in vivo spectroscopic applications for tissue analysis involving near infrared (NIR) light often must contend with broadband NIR fluorescence that, depending on what kind of spectroscopy is being employed, can degrade signal to noise ratios and dynamic range. Such NIR fluorescence, i.e. "autofluorescence" is well known to originate in blood tissues and various other endogenous materials associated with the static tissues. Results of recent experiments on human volar side fingertips in vivo are beginning to provide a relative ordering of the contributions from various sources. Preliminary results involving the variation in the bleaching effect across different individuals suggest that for 830 nm excitation well over half of the total fluorescence comes from the static tissues and remainder originates with the blood tissues, i.e. the plasma and the hematocrit. Of the NIR fluorescence associated with the static tissue, over half originates with products of well-known post-enzymatic glycation reactions, i.e. Maillard chemistry, in the skin involving glucose and other carbohydrates and skin proteins like collagen and cytosol proteins.

  1. Estimation of risks by chemicals produced during laser pyrolysis of tissues

    NASA Astrophysics Data System (ADS)

    Weber, Lothar W.; Spleiss, Martin

    1995-01-01

    Use of laser systems in minimal invasive surgery results in formation of laser aerosol with volatile organic compounds of possible health risk. By use of currently identified chemical substances an overview on possibly associated risks to human health is given. The class of the different identified alkylnitriles seem to be a laser specific toxicological problem. Other groups of chemicals belong to the Maillard reaction type, the fatty acid pyrolysis type, or even the thermally activated chemolysis. In relation to the available different threshold limit values the possible exposure ranges of identified substances are discussed. A rough estimation results in an exposure range of less than 1/100 for almost all substances with given human threshold limit values without regard of possible interactions. For most identified alkylnitriles, alkenes, and heterocycles no threshold limit values are given for lack of, until now, practical purposes. Pyrolysis of anaesthetized organs with isoflurane gave no hints for additional pyrolysis products by fragment interactions with resulting VOCs. Measurements of pyrolysis gases resulted in detection of small amounts of NO additionally with NO2 formation at plasma status.

  2. Point-point and point-line moving-window correlation spectroscopy and its applications

    NASA Astrophysics Data System (ADS)

    Zhou, Qun; Sun, Suqin; Zhan, Daqi; Yu, Zhiwu

    2008-07-01

    In this paper, we present a new extension of generalized two-dimensional (2D) correlation spectroscopy. Two new algorithms, namely point-point (P-P) correlation and point-line (P-L) correlation, have been introduced to do the moving-window 2D correlation (MW2D) analysis. The new method has been applied to a spectral model consisting of two different processes. The results indicate that P-P correlation spectroscopy can unveil the details and re-constitute the entire process, whilst the P-L can provide general feature of the concerned processes. Phase transition behavior of dimyristoylphosphotidylethanolamine (DMPE) has been studied using MW2D correlation spectroscopy. The newly proposed method verifies that the phase transition temperature is 56 °C, same as the result got from a differential scanning calorimeter. To illustrate the new method further, a lysine and lactose mixture has been studied under thermo perturbation. Using the P-P MW2D, the Maillard reaction of the mixture was clearly monitored, which has been very difficult using conventional display of FTIR spectra.

  3. Short communication: simultaneous analysis of reducing sugars and 5-hydroxymethyl-2-furaldehyde at a low concentration by high performance anion exchange chromatography with electrochemical detector, compared with HPLC with refractive index detector.

    PubMed

    Guan, Y-G; Yu, P; Yu, S-J; Xu, X-B; Wu, X-L

    2012-11-01

    A simultaneous analysis of reducing sugars and 5-hydroxymethyl-2-furaldehyde of the Maillard reaction products was detailed. It was based on a high performance anion exchange chromatography with electrochemical detector system and an HPLC with refractive index detector. Results showed that high performance anion exchange chromatography with electrochemical detector using a CarboPac PA-1 column (Dionex Corp., Sunnyvale, CA) was more suitable for reducing sugars and 5-hydroxymethyl-2-furaldehyde determination, especially for trace analysis. The lowest detectable limit of reducing sugars and 5-hydroxymethyl-2-furaldehyde was 0.00005 mol/L in this experiment. However, HPLC with a refractive index detector always produces a tailing peak for 5-hydroxymethyl-2-furaldehyde, and mannose and fructose cannot be absolutely separated. The results of the present study could provide a more sensitive means for 5-hydroxymethyl-2-furaldehyde and reducing sugar detection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Effects of different Pediococcus halophilus level and fermentation time on chemical properties of fermented anchovy paste “terasi ikan”

    NASA Astrophysics Data System (ADS)

    Lestari, S. D.; Herpandi; Simamora, G. R. R.

    2017-04-01

    The aim of this study was to investigate the Pediococcus halophilus addition on the chemical quality of terasi ikan (fermented anchovy paste) product. Two levels of bacterial concentration (106 CFU/mL and 109 CFU/mL) were used as a single starter culture for the fermentation process. Changes in chemical characteristics were observed at day 7, 14 and 21. No differences (p > 0.05) in moisture and protein content were found in the analysis of variance within terasi ikan samples. The decrease in reducing sugar and L-lysine HCl during the fermentation was attributed to the formation of Maillard Reaction Products (MRPs) which was manifested in dark brown color of the end products. The interaction between P. halophilus and terasi ikan microbiota as well as their enzymatic activities were considered to affect vitamin B synthesis and degradation of protein into amino acids and amines. These findings facilitate further investigations on using P. halophilus as constituent of mixed culture, instead of as a single culture for terasi industry in order to produce products of well-controlled quality and safety.

  5. Methylglyoxal is associated with bacteriostatic activity of high fructose agave syrups.

    PubMed

    Corrales Escobosa, Alma Rosa; Gomez Ojeda, Armando; Wrobel, Kazimierz; Magana, Armando Alcazar; Wrobel, Katarzyna

    2014-12-15

    Three α-ketoaldehydes, potentially present in high fructose agave syrups (HFASs) as intermediates of the Maillard reaction, were determined. A previously reported HPLC-FLD procedure based on pre-column derivatisation with 4-methoxy-o-phenylenediamine was adopted, yielding the method quantification limits 0.11 mg/kg, 0.10mg/kg, 0.09 mg/kg for glyoxal, methylglyoxal (MGo) and diacetyl, respectively. The obtained results revealed high concentrations of methylglyoxal in HFASs (average 102 ± 91 mg/kg, range 15.6-315 mg/kg) as compared to commercial Mexican bee honeys or corn syrups. Hydrogen peroxide was generated in all HFASs upon dilution, yet to less extent than in bee honeys. HFASs presented bacteriostatic activity against Bacillus subtilis and Escherichia coli; catalase addition had minimum effect on the assay results in syrups with elevated MGo. Principal component analysis revealed direct association between growth inhibition and MGo. It is concluded that elevated concentration of MGo in HFASs is at least in part responsible for their non-peroxide bacteriostatic activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Antioxidant and genoprotective effects of spent coffee extracts in human cells.

    PubMed

    Bravo, Jimena; Arbillaga, Leire; de Peña, M Paz; Cid, Concepcion

    2013-10-01

    Spent coffee has been shown as a good source of hydrophilic antioxidant compounds. The ability of two spent coffee extracts rich in caffeoylquinic acids, mainly dicaffeoylquinic acids, and caffeine (Arabica filter and Robusta espresso) to protect against oxidation and DNA damage in human cells (HeLa) was evaluated at short (2 h) and long (24 h) exposure times. Cell viability (MTT) was not affected by spent coffee extracts (>80%) up to 1000 μg/mL after 2 h. Both spent coffee extracts significantly reduced the increase of ROS level and DNA strand breaks (29-73% protection by comet assay) induced by H₂O₂. Pretreatment of cells with robusta spent coffee extract also decreased Ro photosensitizer-induced oxidative DNA damage after 24 h exposure. The higher effectiveness of Robusta spent coffee extract, with less caffeoylquinic acids and melanoidins, might be due to other antioxidant compounds, such as caffeine and other Maillard reaction products. This work evidences the potential antioxidant and genoprotective properties of spent coffee in human cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries.

    PubMed

    Gamboa-Santos, Juliana; Megías-Pérez, Roberto; Soria, A Cristina; Olano, Agustín; Montilla, Antonia; Villamiel, Mar

    2014-06-15

    In this paper, a study on the usefulness of the determination of vitamin C together with indicators of the initial steps of Maillard reaction (2-furoylmethyl amino acids, 2-FM-AA) during the convective drying of strawberries has been carried out for the first time, paying special attention to the kinetics of degradation and formation, respectively, of both parameters. Formation of 2-FM-AA of Lys, Arg and GABA and vitamin C loss increased with time and temperature following, respectively, a zero and first-order kinetics. As supported by its lower activation energy, 2-FM-GABA (55.9 kJ/mol) and 2-FM-Lys+2-FM-Arg (58.2 kJ/mol) were shown to be slightly more sensitive indicators than vitamin C (82.1 kJ/mol). The obtained results, together with a complementary study on the rehydration ability and sensorial attributes of samples, pointed out the suitability of the convective drying system to obtain dried strawberries of high nutritive quality and bioactivity and good consumer acceptance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Identification of alkylbenzenes being formed in the model reaction of ribose with lysine].

    PubMed

    Biller, Elzbieta

    2012-01-01

    While studying volatile compounds in model experiments which simulated the broiling of meat (the reactions of ribose with lysine), there were alkylbenzenes identified. They belong to food contaminants and they could be originated from the detergents and petroleum as well as geochemical samples, but they were also obtained in Maillard reactions. The aim of the studies was the attempt of the alkylbenzenes identification being formed in the model reaction of ribose with lysine. Aqueous solutions of ribose and lysine (at concentration of 0.1 mol/dm3 each) were mixed in equal volumes 10 cm3 + 10 cm3. The pH of the mixtures were adjusted to 5.6 using citrate-phosphorous buffer. In that way conditions simulating pH of meat were obtained. The mixtures were heated inside the gastronomic roaster during 0, 5, 10, 15, 30, 45 and 60 minutes respectively, at the temperature 185 +/- 5 degrees C. After reactions, in the mixtures, the profiles of volatile compounds, including alkylbenzenes, were analyzed by GC-MS method. The compounds were being identified by: comparing each mass spectrum (MS) with spectra from the known libraries of MS; calculating the linear retention indexes (LRI); seeking similar LRI values of analogue compounds in literature. Amounts of volatiles were calculated in relation to amount of internal standard (IS) [-], dividing the area of the compound by area of IS. The kinds and amounts of alkylbenzenes depended on the duration of the reaction time. Maximally 16 various alkylbenzenes were developed. More of these compounds could be identified with the probability of 85-90%, using only MS, because of the lack information in literature. Moreover, the multi-dimensional GCxGC-MS or other chromatographic methods in order to make these compounds being better explored seems to be advisable. The identification of the compounds being formed during broiling of meat is very important, because of the fact that many of arising substances are considered to be unhealthy and undesirable food contaminants. Thus these compounds should be routinely investigated in food products.

  9. Potential of gas chromatography-orthogonal acceleration time-of-flight mass spectrometry (GC-oaTOFMS) in flavor research.

    PubMed

    Fay, Laurent B; Newton, Anthony; Simian, Hervé; Robert, Fabien; Douce, David; Hancock, Peter; Green, Martin; Blank, Imre

    2003-04-23

    Gas chromatography-orthogonal acceleration time-of-flight mass spectrometry (GC-oaTOFMS) is an emerging technique offering a straightforward access to a resolving power up to 7000. This paper deals with the use of GC-oaTOFMS to identify the flavor components of a complex seafood flavor extract and to quantify furanones formed in model Maillard reactions. A seafood extract was selected as a representative example for complex food flavors and was previously analyzed using GC-quadrupole MS, leaving several molecules unidentified. GC-oaTOFMS analysis was focused on these unknowns to evaluate its potential in flavor research, particularly for determining exact masses. N-Methyldithiodimethylamine, 6-methyl-5-hepten-2-one, and tetrahydro-2,4-dimethyl-4H-pyrrolo[2,1-d]-1,3,5-dithiazine were successfully identified on the basis of the precise mass determination of their molecular ions and their major fragments. A second set of experiments was performed to test the capabilities of the GC-oaTOFMS for quantification. Calibration curves were found to be linear over a dynamic range of 10(3) for the quantification of furanones. The quantitative data obtained using GC-oaTOFMS confirmed earlier results that the formation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone was favored in the xylose/glycine model reaction and 2(or 5)-ethyl-4-hydroxy-5(or 2)-methyl-3(2H)-furanone in the xylose/alanine model reaction. It was concluded that GC-oaTOFMS may become a powerful analytical tool for the flavor chemist for both identification and quantification purposes, the latter in particular when combined with stable isotope dilution assay.

  10. Effects of yeast stress and pH on 3-monochloropropanediol (3-MCPD)-producing reactions in model dough systems.

    PubMed

    Hamlet, C G; Sadd, P A

    2005-07-01

    A major precursor of 3-monochloropropanediol (3-MCPD) in leavened cereal products is glycerol, which is formed as a natural by-product of yeast fermentation. However, yeast metabolism is affected by stresses such as low osmotic pressure from, for example, the incorporation of sugar or salt in the dough recipe. Tests with model doughs have shown that glycerol production was proportional to yeast mass and limited by available sugars, but that high levels of yeast inhibited 3-MCPD formation. The yeast fraction responsible for the inhibition of 3-MCPD in model dough was shown to be the soluble cytosol proteins, and the inhibition mechanism could be explained by the known reactions of 3-MCPD and/or its precursors with ammonia/amino acids (from yeast proteins). Added glucose did not increase the production of glycerol by yeast but it did promote the generation of 3-MCPD in cooked doughs. The latter effect was attributed to the removal of 3-MCPD inhibitors such as ammonia and amino acids by their reactions with added glucose (e.g. Maillard). The thermal generation of organic acids from added glucose also reduced the pH of cooked doughs, so the effect of pH and short-chain organic acids on 3-MCPD generation in dough was measured. There was a good correlation between initial dough pH and the level of 3-MCPD generated. The effect was weaker than that predicted by simple kinetic modelling, suggesting that the involvement of H+ and/or the organic acid was catalytic. The results showed that modifications to dough recipes involving the addition of reducing sugars and/or organic acids can have a significant impact on 3-MPCD generation in bakery products.

  11. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    PubMed

    Sroga, Grażyna E; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and drinks.

  12. Glycation of Human Cortical and Cancellous Bone Captures Differences in the Formation of Maillard Reaction Products between Glucose and Ribose

    PubMed Central

    Sroga, Grażyna E.; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25–30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and drinks. PMID:25679213

  13. RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts.

    PubMed

    Leuner, Beatrice; Ruhs, Stefanie; Brömme, Hans-Jürgen; Bierhaus, Angelika; Sel, Saadettin; Silber, Rolf-Edgar; Somoza, Veronika; Simm, Andreas; Nass, Norbert

    2012-10-01

    Advanced glycation end products (AGEs) are stable compounds formed from initial Maillard reaction products. They are considered as markers for ageing and often associated with age-related, degenerative diseases. Bread crust represents an established model for nutritional compounds rich in AGEs and is able to induce antioxidative defense genes such as superoxide dismutases and vanins in cardiac cells. The aim of this study was to investigate to what extend the receptor for AGEs (RAGE) contributes to this response. Signal transduction in response to bread crust extract was analysed in cardiac fibroblasts derived from C57/B6-NCrl (RAGE +/+) and the corresponding RAGE-knock out C57/B6-NCrl mouse strain (RAGE -/-). Activation of superoxide dismutases in animals was then analysed upon bread crust feeding in these two mice strains. Cardiac fibroblasts from RAGE -/- mice did not express RAGE, but the expression of AGER-1 and AGER-3 was up-regulated, whereas the expression of SR-B1 was down-regulated. RAGE -/- cells were less sensitive to BCE in terms of MAP-kinase phosphorylation and NF-κB reporter gene activation. Bread crust extract induced mRNA levels of MnSOD and Vnn-1 were also reduced in RAGE -/- cells, whereas Vnn-3 mRNA accumulation seemed to be RAGE receptor independent. In bread crust feeding experiments, RAGE -/- mice did not exhibit an activation of MnSOD-mRNA and -protein accumulation as observed for the RAGE +/+ animals. In conclusion, RAGE was clearly a major factor for the induction of antioxidant defense signals derived from bread crust in cardiac fibroblast and mice. Nevertheless higher doses of bread crust extract could overcome the RAGE dependency in cell cultures, indicating that additional mechanisms are involved in BCE-mediated activation of SOD and vanin expression.

  14. Analysis of Advanced Glycation Endproducts in Rat Tail Collagen and Correlation to Tendon Stiffening.

    PubMed

    Jost, Tobias; Zipprich, Alexander; Glomb, Marcus A

    2018-04-18

    Methylglyoxal is a major 1,2-dicarbonyl compound in vivo and leads to nonenzymatic protein modifications, known as advanced glycation endproducts. Especially long-lived proteins like collagen are prone to changes of the mechanical or biological function, respectively, by accumulation of Maillard-derived modifications. Specifically, the resulting nonenzymatic cross-link structures in parallel to the natural maturation process of collagen fibrils lead to complications with age or during disease. A novel lysine-lysine amide cross-link derived from methylglyoxal, 2,15-diamino-8-methyl-9-oxo-7,10-diaza-1,16-hexadecanedioic acid, named MOLA, was synthesized and identified in vitro and in vivo. Tail tendons of young, adult, and old rats (3, 12, and 22 months) were enzymatically digested prior to analysis of acid-labile glycation products via liquid chromatography-tandem mass spectrometry (LC-MS/MS). As a result, nine monovalent amino acid modifications, mostly originating from methylglyoxal (36 μmol/mol leucine-equivalents in total), and four glycation cross-links (0.72 μmol/mol glucosepane, 0.24 μmol/mol DODIC (3-deoxyglucosone-derived imidazoline cross-link), 0.04 μmol/mol MODIC (methylglyoxal-derived imidazoline cross-link), 0.34 μmol/mol MOLA) were quantitated in senescent tendon collagen. The results correlated with increased tail tendon breaking time from 10 to 190 min and indicate that methylglyoxal is a major player in the aging process of connective tissue.

  15. Effects of thermal treatment on the properties of defatted soya bean flour and its adhesion to plywood

    NASA Astrophysics Data System (ADS)

    Zhang, Bing-Han; Fan, Bo; Li, Ming; Zhang, Yue-Hong; Gao, Zhen-Hua

    2018-05-01

    With an attempt to economically and efficiently improve the water resistance of defatted soya bean flour (DSF)-based wood adhesives, DSF was subjected to thermal treatment at various temperatures (65°C, 80°C, 95°C, 110°C and 125°C) for 30 min. The effects of thermal treatment temperature onto the chemical structure, crystalline degree, water-insoluble content and acetaldehyde value of the thermally treated DSF (T-DSF) were investigated. The thermal stabilities and bonding properties of soya bean adhesives prepared from T-DSF and cross-linker epichlorohydrin-modified polyamide (EMPA) were also investigated. Test results indicated that both the water-insoluble content and the acetaldehyde value of T-DSF increased after thermal treatment, reaching the highest values of 27.28% and 26.81 mg g-1, respectively. All plywood bonded with the T-DSF-based adhesive withstood a 28 h boiling-dry-boiling accelerated ageing treatment, while plywood bonded with the DSF-based adhesive delaminated after 4 h of water boiling, demonstrating the significantly improved water resistance of the T-DSF-based adhesives. Related analyses also confirmed that this improvement was due to: (i) the formation of insoluble cross-linked structures of T-DSF resulting from protein-protein self-cross-linking reactions and the protein-carbohydrate Maillard reaction and (ii) increased cross-linking efficiency between T-DSF and cross-linker EMPA owing to more T-DSF-reactive groups being released after thermal treatment.

  16. Inhibition and deactivation effects in catalytic wet oxidation of high-strength alcohol-distillery liquors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkacemi, K.; Larachi, F.; Hamoudi, S.

    1999-06-01

    The removal efficiency of total organic carbon (TOC) from raw high-strength alcohol-distillery waste liquors was evaluated using three different treatments: thermolysis (T), noncatalytic wet oxidation (WO), and solid-catalyzed wet oxidation (CWO). The distillery liquors (TOC = 22,500 mg/l, sugars = 18,000 mg/l, and proteins = 13,500 mg/l) were produced by alcoholic fermentation of enzymatic hydrolyzates from steam-exploded timothy grass. TOC-abatement studies were conducted batchwise in a stirred autoclave to evaluate the influence of the catalyst (7:3, MnO{sub 2}/CeO{sub 2} mixed oxide), oxygen partial pressure (0.5--2.5 MPa), and temperature (453--523 K) on T, WO, and CWO processes. Although CWO outperformed Tmore » and WO, TOC conversions did not exceed {approximately}60% at the highest temperature used. Experiments provided prima facie evidence for a gradual fouling of the catalyst and a developing inhibition in the liquors which impaired deep TOC removals. Occurrence of catalyst deactivation by carbonaceous deposits was proven experimentally through quantitative and qualitative experiments such as elemental analysis and X-ray photoelectron spectroscopy. Inhibition toward further degradation of the liquors was ascribed to the occurrence of highly stable antioxidant intermediates via the Maillard reactions between dissolved sugars and proteins. A lumping kinetic model involving both reaction inhibition by dissolved intermediates and catalyst deactivation by carbonaceous deposits was proposed to account for the distribution of carbon in the liquid, solid, and the vapor phases.« less

  17. Tagatose stability in milk and diet lemonade.

    PubMed

    Bell, Leonard N; Luecke, Katherine J

    2012-01-01

    The monosaccharide tagatose has been shown to behave physiologically as a prebiotic. To provide its healthful prebiotic effect to consumers, tagatose must not break down during food processing and storage. The objective of this study was to evaluate the storage and thermal stabilities of tagatose in milk and lemonade. Tagatose (0.9% to 1.5%) was added to commercially available shelf stable milk and diet lemonade. Samples were stored at 20, 40, 61, and 81 °C. Tagatose loss was monitored chromatographically. Pseudo-first-order rate constants for tagatose degradation were determined along with the reaction's activation energy. No tagatose degradation was observed in lemonade at temperatures equal to or less than 61 °C. Degradation occurred faster in milk because of its higher pH in comparison to lemonade and its dairy proteins enabling the Maillard reaction. The activation energy for tagatose degradation in milk was 24.6 kcal/mol. Using this activation energy, it was estimated that less than 0.1% tagatose would be lost during pasteurization and less than 4% would be lost during storage at 25 °C for 6 mo. Although tagatose degradation occurs in beverages, the extent of its loss during pasteurization and storage would be very low. Tagatose can be formulated into beverages with minimal concern about its degradation and the subsequent loss of prebiotic activity. Tagatose can be incorporated into beverages as a prebiotic to improve the healthful characteristics of the product without significant degradation. © 2011 Institute of Food Technologists®

  18. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    NASA Astrophysics Data System (ADS)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  19. Assessment of infant formula quality and composition using Vis-NIR, MIR and Raman process analytical technologies.

    PubMed

    Wang, Xiao; Esquerre, Carlos; Downey, Gerard; Henihan, Lisa; O'Callaghan, Donal; O'Donnell, Colm

    2018-06-01

    In this study, visible and near-infrared (Vis-NIR), mid-infrared (MIR) and Raman process analytical technologies were investigated for assessment of infant formula quality and compositional parameters namely preheat temperature, storage temperature, storage time, fluorescence of advanced Maillard products and soluble tryptophan (FAST) index, soluble protein, fat and surface free fat (SFF) content. PLS-DA models developed using spectral data with appropriate data pre-treatment and significant variables selected using Martens' uncertainty test had good accuracy for the discrimination of preheat temperature (92.3-100%) and storage temperature (91.7-100%). The best PLS regression models developed yielded values for the ratio of prediction error to deviation (RPD) of 3.6-6.1, 2.1-2.7, 1.7-2.9, 1.6-2.6 and 2.5-3.0 for storage time, FAST index, soluble protein, fat and SFF content prediction respectively. Vis-NIR, MIR and Raman were demonstrated to be potential PAT tools for process control and quality assurance applications in infant formula and dairy ingredient manufacture. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Application of a dye-binding method for the determination of available lysine in skim milk powders.

    PubMed

    Aalaei, Kataneh; Rayner, Marilyn; Tareke, Eden; Sjöholm, Ingegerd

    2016-04-01

    A dye-binding method using Acid Orange 12 was investigated regarding its suitability for the quantification of available lysine, as a means of monitoring the Maillard reaction in skim milk powders. The method was evaluated by analyzing a wide range of milk powders produced by three different drying methods and stored under various conditions. A pilot-scale freeze-dryer, spray-dryer and drum-dryer were used to produce skim milk powders and the samples were stored at two temperatures (20 °C and 30 °C) and two relative humidities (33% and 52%) under strictly controlled conditions. Moreover to validate the method, two protein isolates; bovine serum albumin and casein were investigated for their available lysine content. The results demonstrate the suitability of this method for measuring the available lysine in skim milk powders with good precision and high reproducibility. The relative standard deviations obtained from the 125 freeze-dried powders were 1.8%, and those from the 100 drum-dried samples were all 1.9%. The highest variation was found for the spray-dried powders, which showed relative standard deviations between 0.9% and 6.7%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Dietary Acrylamide and Human Cancer: A Systematic Review of Literature

    PubMed Central

    Nagy, Tim R.; Barnes, Stephen; Groopman, John

    2014-01-01

    Cancer remains the second leading cause of death in the United States, and the numbers of cases are expected to continue to rise worldwide. Cancer prevention strategies are crucial for reducing the cancer burden. The carcinogenic potential of dietary acrylamide exposure from cooked foods is unknown. Acrylamide is a by-product of the common Maillard reaction where reducing sugars (i.e., fructose and glucose) react with the amino acid, asparagine. Based on the evidence of acrylamide carcinogenicity in animals, the International Agency for Research on Cancer has classified acrylamide as a group 2A carcinogen for humans. Since the discovery of acrylamide in foods in 2002, a number of studies have explored its potential as a human carcinogen. This paper outlines a systematic review of dietary acrylamide and human cancer, acrylamide exposure and internal dose, exposure assessment methods in the epidemiologic studies, existing data gaps, and future directions. A majority of the studies reported no statistically significant association between dietary acrylamide intake and various cancers, and few studies reported increased risk for renal, endometrial, and ovarian cancers; however, the exposure assessment has been inadequate leading to potential misclassification or underestimation of exposure. Future studies with improved dietary acrylamide exposure assessment are encouraged. PMID:24875401

  2. Acrylamide analysis in food by liquid chromatographic and gas chromatographic methods.

    PubMed

    Elbashir, Abdalla A; Omar, Mei M Ali; Ibrahim, Wan Aini Wan; Schmitz, Oliver J; Aboul-Enein, Hassan Y

    2014-01-01

    Acrylamide (AA) is a compound classified as carcinogenic to humans by the International Agency for Research on Cancer. It was first discovered to be present in certain heated processed food by the Swedish National Food Administration (SNFA) and University of Stockholm in early 2002. The major pathway for AA formation in food is the Maillard reaction between reducing sugar and the amino acid asparagine at high temperature. Since the discovery of AA's presence in food, many analytical methods have been developed for determination of AA contents in different food matrices. Also, several studies have been conducted to develop extraction procedures for AA from difficult food matrices. AA is a small, highly polar molecule, which makes its extraction and analysis challenging. Many articles and reviews have been published dealing with AA in food. The aim of the review is to discuss AA formation in food, the factors affecting AA formation and removal, AA exposure assessment, AA extraction and cleanup from food samples, and analytical methods used in AA determination, such as high-performance liquid chromatography (HPLC) and gas chromatography (GC). Special attention is given to sample extraction and cleanup procedures and analytical techniques used for AA determination.

  3. Effect of Different Flours on the Formation of Hydroxymethylfurfural, Furfural, and Dicarbonyl Compounds in Heated Glucose/Flour Systems

    PubMed Central

    Mesías, Marta; Morales, Francisco J.

    2017-01-01

    Traditional cereal-based foods usually include wheat flour in their formulations; however, the search for new products with new ingredients providing different properties to foods is widely pursued by food companies. Replacement of wheat by other flours can modify both nutritional properties and organoleptic characteristics of the final baked food, but can also impact the formation of potentially harmful compounds. The effect of the type of flour on the formation of furfurals and dicarbonyl compounds was studied in a dough model system during baking that contains water or glucose in order to promote the Maillard reaction and caramelization. The formation of methylglyoxal and glyoxal was significantly reduced in spelt and teff formulations compared to wheat flour formulations, respectively. In contrast, samples formulated with oat, teff, and rye showed a significant increase in the levels of 3-deoxyglucosone. Similarly, spelt and teff formulations presented significantly higher concentrations of hydroxymethylfurfural, and spelt, teff, and rye presented higher concentrations of furfural. Therefore, the formation of process contaminants and undesirable compounds in new food products formulated with different flours replacing the traditional wheat flour should be considered carefully in terms of food safety. PMID:28231092

  4. Effect of Different Flours on the Formation of Hydroxymethylfurfural, Furfural, and Dicarbonyl Compounds in Heated Glucose/Flour Systems.

    PubMed

    Mesías, Marta; Morales, Francisco J

    2017-02-16

    Traditional cereal-based foods usually include wheat flour in their formulations; however, the search for new products with new ingredients providing different properties to foods is widely pursued by food companies. Replacement of wheat by other flours can modify both nutritional properties and organoleptic characteristics of the final baked food, but can also impact the formation of potentially harmful compounds. The effect of the type of flour on the formation of furfurals and dicarbonyl compounds was studied in a dough model system during baking that contains water or glucose in order to promote the Maillard reaction and caramelization. The formation of methylglyoxal and glyoxal was significantly reduced in spelt and teff formulations compared to wheat flour formulations, respectively. In contrast, samples formulated with oat, teff, and rye showed a significant increase in the levels of 3-deoxyglucosone. Similarly, spelt and teff formulations presented significantly higher concentrations of hydroxymethylfurfural, and spelt, teff, and rye presented higher concentrations of furfural. Therefore, the formation of process contaminants and undesirable compounds in new food products formulated with different flours replacing the traditional wheat flour should be considered carefully in terms of food safety.

  5. New Trends for the Evaluation of Heat Treatments of Milk

    PubMed Central

    Di Costanzo, Maria Gabriella; Mattera, Maria

    2017-01-01

    Milk is generally very rich in nutrients and this may lead it to be an ideal growth environment for many microorganisms, including pathogens, so effective measurements aiming to ensure total microbiological safety of milk and minimize the risk to human health are needed. Milk heat treatments are the most common practices carried out to inhibit the microbial growth; therefore it is necessary to have analytical procedures that are more and more up-to-date and capable of detecting the effectiveness of the heat treatments. Most of the reference and official methods to assess heat treatment in milk are based on the evaluation of the modifications of some milk components following the thermal process, such as the determination of enzyme activities (alkaline phosphatase and lactoperoxidase), whey proteins, Maillard reaction compounds (generally furosine), and lactulose. Besides the most common techniques (liquid and gas chromatography, capillary electrophoresis, or spectroscopy) used for the detection of single thermal indicators, new approaches, such as chemometric studies or more recent techniques, including size-exclusion chromatography with online electrospray mass spectrometry or stable isotope ratio mass spectrometry, are discussed in this review in order to evaluate heat treatment in milk. PMID:29230345

  6. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis.

    PubMed Central

    Nagaraj, R H; Sell, D R; Prabhakaram, M; Ortwerth, B J; Monnier, V M

    1991-01-01

    Pentosidine is a recently discovered protein crosslink, involving lysine and arginine residues linked together in an imidazo [4,5,6] pyridinium ring formed by a 5-carbon sugar during nonenzymatic browning (Maillard reaction). The presence of high ascorbate levels in the human lens and its ability to undergo nonenzymatic browning led us to investigate pentosidine formation in the aging human lens. Incubation of lens crystallins with ascorbate and its oxidation products dehydroascorbate and 2,3-diketogulonate leads progressively to the formation of pentosidine crosslinks in the presence of oxygen. Under nitrogen, however, pentosidine forms only from 2,3-diketogulonate or xylosone, a degradation product of 2,3-diketogulonate. A high correlation between pentosidine crosslinks and the degree of lens pigmentation is noted in cataractous lenses. Pentosidine is found to be primarily associated with alpha-crystallin fractions of 300-5000 kDa. These results suggest that redox imbalance in cellular senescent systems such as the ocular lens may lead to irreversible ascorbate oxidation and protein crosslinking by xylosone. This mechanism may play an important role in the pathogenesis of "brunescent" cataracts. Images PMID:1946446

  7. The influences of thermal processing on phytochemicals and possible routes to the discovery of new phytochemical conjugates.

    PubMed

    Wong, Fai-Chu; Chai, Tsun-Thai; Xiao, Jianbo

    2018-05-22

    In our diets, many of the consumed foods are subjected to various forms of heating and thermal processing. Besides enhancing the taste, texture, and aroma of the foods, heating helps to sterilize and facilitate food storage. On the other hand, heating and thermal processing are frequently reported during the preparation of various traditional herbal medicines. In this review, we intend to highlight works by various research groups which reported on changes in phytochemicals and bioactivities, following thermal processing of selected plant-derived foods and herbal medicines. Relevant cases from plant-derived foods (garlic, coffee, cocoa, barley) and traditional herbal medicines (Panax ginseng, Polygonum multiforum, Aconitum carmichaelii Debeaux, Angelica sinensis Radix) will be presented in this review. Additionally, related works using pure phytochemical compounds will also be highlighted. In some of these cases, the amazing formation of new compounds were being reported. Maillard reaction could be concluded as the predominant pathway leading to the formation of new conjugates, along with other possibilities being suggested (degradation, transglycosylation, deglycosylation and dehydration). With collective efforts from all researchers, it is hoped that more details will be revealed and lead to the possible discovery of new, heat-mediated phytochemical conjugates.

  8. [Effect of increased protein content on nutritional and sensory quality of cookies].

    PubMed

    Pérez, Santiago Rafael; Osella, Carlos Alberto; Torre, Maria Adela de la; Sánchez, Hugo Diego

    2008-12-01

    The objective of this work was to study the effect of soy flour and whey protein concentrate (WPC) on cookies quality. An optimal recipe showing improved protein quality and content as well as acceptable sensory quality was defined taking into account the results obtained. Rotary moulded cookie formulation adaptable to lamination and cutting in pilot plant was used. Wheat flour from this formulation was partially replaced by whey protein concentrate and full fat soy flour. Second order models were employed to generate response surfaces for: total protein, lysine by 16 grams of total nitrogen, lysine by 100 grams of sample, loss of lysine during processing and sensory evaluation of cookies. We could obtain an effect on available lysine value when water content was increased in the formulation because a delay in the Maillard reaction. The optimal formulation contains 13% of full fat soy flour, 3% of whey protein concentrate and 23% of water. The results demonstrated that the protein content and the protein quality of the supplemented flours were increased when soy flour was added in the formulation of cookies. On other hand, protein content was increased but protein quality was decreased when WPC was used, because of available lysine loss.

  9. Traditional and Modern Uses of Natural Honey in Human Diseases: A Review

    PubMed Central

    Eteraf-Oskouei, Tahereh; Najafi, Moslem

    2013-01-01

    Honey is a by-product of flower nectar and the upper aero-digestive tract of the honey bee, which is concentrated through a dehydration process inside the bee hive. Honey has a very complex chemical composition that varies depending on the botanical source. It has been used both as food and medicine since ancient times. Human use of honey is traced to some 8000 years ago as depicted by Stone Age paintings. In addition to important role of natural honey in the traditional medicine, during the past few decades, it was subjected to laboratory and clinical investigations by several research groups and it has found a place in modern medicine. Honey has been reported to have an inhibitory effect on around 60 species of bacteria, some species of fungi and viruses. Antioxidant capacity of honey is important in many disease conditions and is due to a wide range of compounds including phenolics, peptides, organic acids, enzymes, and Maillard reaction products. Honey has also been used in some gastrointestinal, cardiovascular, inflammatory and neoplastic states. This review covers the composition, physico-chemical properties and the most important uses of natural honey in human diseases. PMID:23997898

  10. Chemical composition and functional characterisation of commercial pumpkin seed oil.

    PubMed

    Procida, Giuseppe; Stancher, Bruno; Cateni, Francesca; Zacchigna, Marina

    2013-03-30

    Pumpkin (Cucurbita pepo L.) seed oil is a common product in Slovenia, Hungary and Austria and is considered a preventive agent for various pathologies, particularly prostate diseases. These properties are related to its high content of carotenoids and liposoluble vitamins. In this study the carotenoid (lutein and zeaxanthin), vitamin E (α- and γ-tocopherol) and fatty acid contents of 12 samples of commercial pumpkin seed oil were investigated together with the composition of the volatile fraction resulting from the roasting process. The aromatic profile obtained from the commercial samples was directly related to the intensity of the roasting process of the crushed pumpkin seeds. The roasting temperature played a crucial role in the concentrations of volatile substances originating from Strecker degradation, lipid peroxidation and Maillard reaction. The findings suggest that high-temperature roasting leads to the production of an oil with intense aromatic characteristics, while mild conditions, generally employed to obtain an oil with professed therapeutic characteristics, lead to a product with minor characteristic pumpkin seed oil aroma. The nutraceutical properties of the product are confirmed by the high content of α- and γ-tocopherol and carotenoids. © 2012 Society of Chemical Industry.

  11. Volatile compounds in whole meal bread crust: The effects of yeast level and fermentation temperature.

    PubMed

    Nor Qhairul Izzreen, M N; Hansen, Se S; Petersen, Mikael A

    2016-11-01

    The influence of fermentation temperatures (8°C, 16°C, and 32°C) and yeast levels (2%, 4%, and 6% of the flour) on the formation of volatile compounds in the crust of whole meal wheat bread was investigated. The fermentation times were regulated to optimum bread height for each treatment. The volatile compounds were extracted by dynamic headspace extraction and analyzed by gas chromatography-mass spectrometry. The results were evaluated using multivariate data analysis and ANOVA. In all crust samples 28 volatile compounds out of 58 compounds were identified and the other 30 compounds were tentatively identified. Higher fermentation temperatures promoted the formation of Maillard reaction products 3-methyl-1-butanol, pyrazine, 2-ethylpyrazine, 2-ethyl-3-methylpyrazine, 2-vinylpyrazine, 3-hydroxy-2-butanone, 3-(methylsulfanyl)-propanal, and 5-methyl-2-furancarboxaldehyde whereas at lower temperature (8°C) the formation of 2- and 3-methylbutanal was favored. Higher levels of yeast promoted the formation of 3-methyl-1-butanol, 2-methyl-1-propanol and 3-(methylsulfanyl)-propanal, whereas hexanal was promoted in the crust fermented with lower yeast level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Composition and functionality of bone affected by dietary glycated compounds.

    PubMed

    Delgado-Andrade, Cristina; Roncero-Ramos, Irene; Carballo, José; Rufián-Henares, Joséángel; Seiquer, Isabel; Navarro, María Pilar

    2013-04-25

    Our aim was to investigate the effects of Maillard reaction products (MRPs) from bread crust (BC) on bone composition and its mechanical properties, determining whether any such effects are related to the molecular weight of different MRPs. For 88 days after weaning rats were fed a control diet or diets containing BC, or its soluble low molecular weight (LMW), soluble high molecular weight (HMW) or insoluble fractions. Animals' food consumption and body weights were monitored. After sacrifice, the femur, pelvic bone and tibia were removed for composition, physical and biomechanical properties analysis. It was found that body and femur weights, density, volume and organic matrix decreased, whereas pentosidine increased after consumption of experimental diets, especially in the HMW and insoluble groups (104.7 and 102.9 mmol mol(-1) collagen) vs. the control group (41.7 mmol mol(-1) collagen). Bone stiffness fell by 50% in the LMW, HMW and insoluble groups and failure load and energy to failure tended to decrease in the same animals after MRPs intake. Consumption of diets containing assayed MRPs during growth leads to lower bone size and introduces some changes in its mechanical behavior which appear to be related to an increase in the pentosidine level of bone.

  13. Reducing the potential for processing contaminant formation in cereal products.

    PubMed

    Curtis, Tanya Y; Postles, Jennifer; Halford, Nigel G

    2014-05-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue.

  14. The effects of diet and breed on the volatile compounds of cooked lamb.

    PubMed

    Elmore, J S; Mottram, D S; Enser, M; Wood, J D

    2000-06-01

    The effect of varying the n-3 polyunsaturated fatty acid (PUFA) composition of lamb muscle on the formation of aroma volatiles during cooking has been examined. The meat was obtained from four groups of Suffolk and Soay lambs fed different supplementary fats: a palm-oil based control; bruised whole linseed, which increased muscle levels of α-linolenic acid (C18:3 n-3); fish oil, which increased eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3); and equal quantities of linseed and fish oil (fat basis). Higher quantities of lipid oxidation products were found in the aroma volatiles of lamb muscle from animals fed fish oil, compared to the control. In particular, unsaturated aldehydes, unsaturated hydrocarbons and alkylfurans increased up to fourfold. These compounds derived from the autoxidation of PUFAs during cooking. Although some of these volatiles were increased in meat from animals fed the linseed supplement, the effect was not as great as with the fish oil fed lambs. Levels of volatiles derived from the Maillard reaction, such as pyrazines and sulfur compounds, were up to four times higher in Soays than Suffolks.

  15. Composition of sulla (Hedysarum coronarium L.) honey solvent extractives determined by GC/MS: norisoprenoids and other volatile organic compounds.

    PubMed

    Jerković, Igor; Tuberoso, Carlo I G; Tuberso, Carlo I G; Gugić, Mirko; Bubalo, Dragan

    2010-09-09

    Samples of unifloral sulla (Hedysarum coronarum L.) honey from Sardinia (Italy) were analysed. To investigate the chemical composition of the honey volatiles two solvent systems were used for ultrasonic solvent extraction (USE): 1) a 1:2 (v/v) pentane and diethyl ether mixture and 2) dichloromethane. All the extracts were analysed by GC and GC/MS. These procedures have permitted the identification of 56 compounds that include norisoprenoids, benzene derivatives, aliphatic compounds and Maillard reaction products. Norisoprenoids were the major compounds in both extracts, dominated by vomifoliol (5.3-11.2%; 9.6-14.0%) followed by minor percentages of other norisoprenoids such as α-isophorone, 4-ketoisophorone, 3-oxo-α-ionol or 3-oxo-α-ionone. Other abundant single compounds in the extracts were 3-hydroxy-4-phenylbutan-2-one (0.8-5.4%; 0.6-5.7%) and methyl syringate (3.0-5.7%; 2.2-4.1%). The composition of the volatiles and semi-volatiles in the obtained extracts suggests that sulla honey is quite distinctive relative to the other honeys that have been chemically studied by GC/MS, but no specific markers of the honey botanical origin were found.

  16. Application of Nucleic Acid-Based Tools for Monitoring Monitored Natural Attenuation (MNA), Biostimulation and Bioaugmentation at Chlorinated Solvent Sites

    DTIC Science & Technology

    2010-12-01

    K. M. Ritalahti, and J. M. Tiedje. 2003. Diversity of Dechlorinating Bacteria, p. 53-87. In M. M. Häggblom and I. D. Bossert (eds.), Dehalogenation ...Anaerobic Microbial Dehalogenation . Annu. Rev. Microbiol. 58:43-73. Smits, T. H.M., C. Devenoges, K. Szynalski, J. Maillard, and C. Holliger. 2004

  17. Untargeted LC-MS/MS Profiling of Cell Culture Media Formulations for Evaluation of High Temperature Short Time Treatment Effects.

    PubMed

    Floris, Patrick; McGillicuddy, Nicola; Albrecht, Simone; Morrissey, Brian; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan

    2017-09-19

    An untargeted LC-MS/MS platform was implemented for monitoring variations in CHO cell culture media upon exposure to high temperature short time (HTST) treatment, a commonly used viral clearance upstream strategy. Chemically defined (CD) and hydrolysate-supplemented media formulations were not visibly altered by the treatment. The absence of solute precipitation effects during media treatment and very modest shifts in pH values observed indicated sufficient compatibility of the formulations evaluated with the HTST-processing conditions. Unsupervised chemometric analysis of LC-MS/MS data, however, revealed clear separation of HTST-treated samples from untreated counterparts as observed from analysis of principal components and hierarchical clustering sample grouping. An increased presence of Maillard products in HTST-treated formulations contributed to the observed differences which included organic acids, observed particularly in chemically defined formulations, and furans, pyridines, pyrazines, and pyrrolidines which were determined in hydrolysate-supplemented formulations. The presence of Maillard products in media did not affect cell culture performance with similar growth and viability profiles observed for CHO-K1 and CHO-DP12 cells when cultured using both HTST-treated and untreated media formulations.

  18. MALDI based identification of soybean protein markers--possible analytical targets for allergen detection in processed foods.

    PubMed

    Cucu, Tatiana; De Meulenaer, Bruno; Devreese, Bart

    2012-02-01

    Soybean (Glycine max) is extensively used all over the world due to its nutritional qualities. However, soybean is included in the "big eight" list of food allergens. According to the EU directive 2007/68/EC, food products containing soybeans have to be labeled in order to protect the allergic consumers. Nevertheless, soybeans can still inadvertently be present in food products. The development of analytical methods for the detection of traces of allergens is important for the protection of allergic consumers. Mass spectrometry of marker proteolytical fragments of protein allergens is growingly recognized as a detection method in food control. However, quantification of soybean at the peptide level is hindered due to limited information regarding specific stable markers derived after proteolytic digestion. The aim of this study was to use MALDI-TOF/MS and MS/MS as a fast screening tool for the identification of stable soybean derived tryptic markers which were still identifiable even if the proteins were subjected to various changes at the molecular level through a number of reactions typically occurring during food processing (denaturation, the Maillard reaction and oxidation). The peptides (401)Val-Arg(410) from the G1 glycinin (Gly m 6) and the (518)Gln-Arg(528) from the α' chain of the β-conglycinin (Gly m 5) proved to be the most stable. These peptides hold potential to be used as targets for the development of new analytical methods for the detection of soybean protein traces in processed foods. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Reproductive endocrine patterns and volatile urinary compounds of Arctictis binturong: discovering why bearcats smell like popcorn.

    PubMed

    Greene, Lydia K; Wallen, Timothy W; Moresco, Anneke; Goodwin, Thomas E; Drea, Christine M

    2016-06-01

    Members of the order Carnivora rely on urinary scent signaling, particularly for communicating about reproductive parameters. Here, we describe reproductive endocrine patterns in relation to urinary olfactory cues in a vulnerable and relatively unknown viverrid--the binturong (Arctictis binturong). Female binturongs are larger than and dominate males, and both sexes engage in glandular and urinary scent marking. Using a large (n = 33), captive population, we collected serum samples to measure circulating sex steroids via enzyme immunoassay and urine samples to assay volatile chemicals via gas chromatography-mass spectrometry. Male binturongs had expectedly greater androgen concentrations than did females but, more unusually, had equal estrogen concentrations, which may be linked to male deference. Males also expressed a significantly richer array of volatile chemical compounds than did females. A subset of these volatile chemicals resisted decay at ambient temperatures, potentially indicating their importance as long-lasting semiochemicals. Among these compounds was 2-acetyl-1-pyrroline (2-AP), which is typically produced at high temperatures by the Maillard reaction and is likely to be responsible for the binturong's characteristic popcorn aroma. 2-AP, the only compound expressed by all of the subjects, was found in greater abundance in males than females and was significantly and positively related to circulating androstenedione concentrations in both sexes. This unusual compound may have a more significant role in mammalian semiochemistry than previously appreciated. Based on these novel data, we suggest that hormonal action and potentially complex chemical reactions mediate communication of the binturong's signature scent and convey information about sex and reproductive state.

  20. Formation of furan and methylfuran by maillard-type reactions in model systems and food.

    PubMed

    Limacher, Anita; Kerler, Josef; Davidek, Tomas; Schmalzried, Frank; Blank, Imre

    2008-05-28

    The formation of furan and 2-methylfuran was studied in model systems based on sugars and selected amino acids. Both compounds were preferably formed under roasting conditions in closed systems yielding up to 330 micromol of furan and 260 micromol of 2-methylfuran per mol of precursor. The amounts obtained under pressure cooking conditions were much lower, usually below 20 micromol/mol, except for 2-furaldehyde, which yielded 70-100 micromol/mol of furan. Labeling studies indicated two major formation pathways for both furans: (i) from the intact sugar skeleton and (ii) by recombination of reactive C(2) and/or C(3) fragments. Under roasting conditions in the absence of amino acids, furan was mainly formed from the intact sugar skeleton. Formic and acetic acid were identified as byproducts of sugar degradation, indicating the split off of C(1) and/or C(2) units from hexoses. The presence of alanine, threonine, or serine promoted furan formation by the recombination of C(2) fragments, such as acetaldehyde and glycolaldehyde, which may originate from both sugars and amino acids. In aqueous solution, about half of furan was generated by the recombination of sugar fragments. 2-Methylfuran was preferably formed in the presence of amino acids by aldol-type reactions of C(2) and C(3) fragments with lactaldehyde as a key intermediate, the Strecker aldehyde of threonine. The total furan levels in cooked vegetables were increased by spiking with hexoses. However, in pumpkin puree, only about 20% of furan was formed from sugars, preferably from the intact carbon skeleton.

  1. Biodistribution and catabolism of 18F-labeled N-epsilon-fructoselysine as a model of Amadori products.

    PubMed

    Hultsch, Christina; Hellwig, Michael; Pawelke, Beate; Bergmann, Ralf; Rode, Katrin; Pietzsch, Jens; Krause, René; Henle, Thomas

    2006-10-01

    Amadori products are formed in the early stage of the so-called Maillard reaction between reducing sugars and amino acids or proteins. Such nonenzymatic glycosylation may occur during the heating or storage of foods, but also under physiological conditions. N-epsilon-fructoselysine is formed via this reaction between the epsilon-amino group of peptide-bound lysine and glucose. Despite the fact that, in certain heated foods, up to 50% of lysyl moieties may be modified to such lysine derivatives, up to now, very little is known about the metabolic fate of alimentary administered Amadori compounds. In the present study, N-succinimidyl-4-[18F]fluorobenzoate was used to modify N-epsilon-fructoselysine at the alpha-amino group of the lysyl moiety. The in vitro stability of the resulting 4-[18F]fluorobenzoylated derivative was tested in different tissue homogenates. Furthermore, the 4-[18F]fluorobenzoylated N-epsilon-fructoselysine was used in positron emission tomography studies, as well as in studies concerning biodistribution and catabolism. The results show that the 4-[18F]fluorobenzoylated N-epsilon-fructoselysine is phosphorylated in vitro, as well as in vivo. This phosphorylation is caused by fructosamine 3-kinases and occurs in vivo, particularly in the kidneys. Despite the action of these enzymes, it was shown that a large part of the intravenously applied radiolabeled N-epsilon-fructoselysine was excreted nearly unchanged in the urine. Therefore, it was concluded that the predominant part of peptide-bound lysine that was fructosylated during food processing is not available for nutrition.

  2. Storage stability of a commercial hen egg yolk powder in dry and intermediate-moisture food matrices.

    PubMed

    Rao, Qinchun; Fisher, Mary Catherine; Guo, Mufan; Labuza, Theodore P

    2013-09-11

    Quality loss in intermediate-moisture foods (IMF) such as high-protein nutrition bars (HPNB) in the form of hardening, nonenzymatic browning, and free amino group loss is a general concern for the manufacturers. To measure the extent of quality loss over time in terms of these negative attributes, through changing the ratio by weight between two commercial spray-dried hen egg powders, egg white (DEW) and egg yolk (DEY), the storage stability of 10 IMF systems (water activity (aw) ∼ 0.6) containing 5% glycerol, 10% shortening, 35% protein, and 50% sweetener (either maltitol or 50% high-fructose corn syrup/50% corn syrup (HFCS/CS)) were studied. Additionally, the storage stability of the DEY powder itself was investigated. Overall, during storage at different temperatures (23, 35, and 45 °C), the storage stability of DEY in dry and IMF matrices was mainly controlled by the coaction of three chemical reactions (disulfide bond interaction, Maillard reaction, and lipid oxidation). The results showed that by replacing 25% of DEW in an IMF model system with DEY, the rate of bar hardening was significantly lower than that of the models with only DEW at all temperatures due to the softening effect of the fat in DEY. Furthermore, the use of maltitol instead of HFCS/CS in all bar systems not only resulted in decreased hardness but also drastically decreased the change in the total color difference (ΔE*). Interestingly, there was no significant loss of free amino groups in the maltitol systems at any DEW/DEY ratio.

  3. Reproductive endocrine patterns and volatile urinary compounds of Arctictis binturong: discovering why bearcats smell like popcorn

    NASA Astrophysics Data System (ADS)

    Greene, Lydia K.; Wallen, Timothy W.; Moresco, Anneke; Goodwin, Thomas E.; Drea, Christine M.

    2016-06-01

    Members of the order Carnivora rely on urinary scent signaling, particularly for communicating about reproductive parameters. Here, we describe reproductive endocrine patterns in relation to urinary olfactory cues in a vulnerable and relatively unknown viverrid—the binturong ( Arctictis binturong). Female binturongs are larger than and dominate males, and both sexes engage in glandular and urinary scent marking. Using a large ( n = 33), captive population, we collected serum samples to measure circulating sex steroids via enzyme immunoassay and urine samples to assay volatile chemicals via gas chromatography-mass spectrometry. Male binturongs had expectedly greater androgen concentrations than did females but, more unusually, had equal estrogen concentrations, which may be linked to male deference. Males also expressed a significantly richer array of volatile chemical compounds than did females. A subset of these volatile chemicals resisted decay at ambient temperatures, potentially indicating their importance as long-lasting semiochemicals. Among these compounds was 2-acetyl-1-pyrroline (2-AP), which is typically produced at high temperatures by the Maillard reaction and is likely to be responsible for the binturong's characteristic popcorn aroma. 2-AP, the only compound expressed by all of the subjects, was found in greater abundance in males than females and was significantly and positively related to circulating androstenedione concentrations in both sexes. This unusual compound may have a more significant role in mammalian semiochemistry than previously appreciated. Based on these novel data, we suggest that hormonal action and potentially complex chemical reactions mediate communication of the binturong's signature scent and convey information about sex and reproductive state.

  4. A Model Study to Unravel the Complexity of Bio-Oil from Organic Wastes.

    PubMed

    Croce, Annamaria; Battistel, Ezio; Chiaberge, Stefano; Spera, Silvia; De Angelis, Francesco; Reale, Samantha

    2017-01-10

    Binary and ternary mixtures of cellulose, bovine serum albumin (BSA) and tripalmitin, as biomass reference compounds for carbohydrates, proteins and triglycerides, respectively, were treated under hydrothermal liquefaction (HTL) conditions to describe the main reaction pathways involved in the process of bio-oil production from municipal organic wastes. Several analytical techniques (elemental analysis, GC-MS, atmospheric-pressure photo-ionisation high-resolution Fourier transform ion cyclotron resonance mass spectrometry, and 13 C cross-polarisation magic-angle spinning NMR spectroscopy) were used for the molecular-level characterisation of the resulting aqueous phase, solid residue and bio-oil, in particular. The main reaction pathways led to free fatty acids, fatty acid amides, 2,5-diketopiperazines and Maillard-type compounds as the main components of the bio-oil. The relationship of such compounds to the original components of the biomass was thus determined, which highlights the fate of the heteroatom-containing molecules in particular. Finally, the molecular composition of the bio-oils from our reference compounds was matched with that of the bio-oil from municipal organic waste biomass by comparing their high-resolution Fourier transform ion cyclotron resonance mass spectra, and we obtained a surprisingly high similarity. Hence, the ternary mixture acts as a reliable biomass model and is a powerful tool to clarify the degradation mechanisms that occur in the biomass under HTL treatment, with the ultimate goal to improve the HTL process itself by modulating the input of the organic starting matter and then the upgrading steps to bio-fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation.

    PubMed

    Halford, Nigel G; Muttucumaru, Nira; Powers, Stephen J; Gillatt, Peter N; Hartley, Lee; Elmore, J Stephen; Mottram, Donald S

    2012-12-05

    Acrylamide forms during cooking and processing predominately from the reaction of free asparagine and reducing sugars in the Maillard reaction. The identification of low free asparagine and reducing sugar varieties of crops is therefore an important target. In this study, nine varieties of potato (French fry varieties Maris Piper (from two suppliers), Pentland Dell, King Edward, Daisy, and Markies; and chipping varieties Lady Claire, Lady Rosetta, Saturna, and Hermes) grown in the United Kingdom in 2009 were analyzed at monthly intervals through storage from November 2009 to July 2010. Acrylamide formation was measured in heated flour and chips fried in oil. Analysis of variance revealed significant interactions between varieties nested within type (French fry and chipping) and storage time for most free amino acids, glucose, fructose, and acrylamide formation. Acrylamide formed in chips correlated significantly with acrylamide formed in flour and with chip color. There were significant correlations between glucose or total reducing sugar concentration and acrylamide formation in both variety types, but with fructose the correlation was much stronger for chipping than for French fry varieties. Conversely, there were significant correlations with acrylamide formation for both total free amino acid and free asparagine concentration in the French fry but not chipping varieties. The study showed the potential of variety selection for preventing unacceptable levels of acrylamide formation in potato products and the variety-dependent effect of long-term storage on acrylamide risk. It also highlighted the complex relationship between precursor concentration and acrylamide risk in potatoes.

  6. Applying flow chemistry: methods, materials, and multistep synthesis.

    PubMed

    McQuade, D Tyler; Seeberger, Peter H

    2013-07-05

    The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.

  7. Flavour chemistry of chicken meat: a review.

    PubMed

    Jayasena, Dinesh D; Ahn, Dong Uk; Nam, Ki Chang; Jo, Cheorun

    2013-05-01

    Flavour comprises mainly of taste and aroma and is involved in consumers' meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration and formation of undesirable "warmed over flavour" in chicken meat products are supposed to be the lack of α-tocopherol in chicken meat.

  8. Maillard reaction and enzymatic browning affect the allergenicity of Pru av 1, the major allergen from cherry (Prunus avium).

    PubMed

    Gruber, Patrick; Vieths, Stefan; Wangorsch, Andrea; Nerkamp, Jörg; Hofmann, Thomas

    2004-06-16

    The influence of thermal processing and nonenymatic as well as polyphenoloxidase-catalyzed browning reaction on the allergenicity of the major cherry allergen Pru av 1 was investigated. After thermal treatment of the recombinant protein rPru av 1 in the absence or presence of carbohydrates, SDS-PAGE, enzyme allergosorbent tests, and inhibition assays revealed that thermal treatment of rPru av 1 alone did not show any influence on the IgE-binding activity of the protein at least for 30 min, thus correlating well with the refolding of the allergen in buffer solution as demonstrated by CD spectroscopic experiments. Incubation of the protein with starch and maltose also showed no effect on IgE-binding activity, whereas reaction with glucose and ribose and, even more pronounced, with the carbohydrate breakdown products glyceraldehyde and glyoxal induced a strong decrease of the IgE-binding capacity of rPru av 1. In the second part of the study, the effect of polyphenoloxidase-catalyzed oxidation of polyphenols on food allergen activity was investigated. Incubation of rPru av 1 with epicatechin in the presence of tyrosinase led to a drastic decrease in IgE-binding activity of the protein. Variations of the phenolic compound revealed caffeic acid and epicatechin as the most active inhibitors of the IgE-binding activity of rPru av 1, followed by catechin and gallic acid, and, finally, by quercetin and rutin, showing significantly lower activity. On the basis of these data, reactive intermediates formed during thermal carbohydrate degradation as well as during enzymatic polyphenol oxidation are suggested as the active chemical species responsible for modifying nucleophilic amino acid side chains of proteins, thus inducing an irreversible change in the tertiary structure of the protein and resulting in a loss of conformational epitopes of the allergen.

  9. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments Database

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  10. How to Study Basement Membrane Stiffness as a Biophysical Trigger in Prostate Cancer and Other Age-related Pathologies or Metabolic Diseases

    PubMed Central

    Rodriguez-Teja, Mercedes; Breit, Claudia; Clarke, Mitchell; Talar, Kamil; Wang, Kai; Mohammad, Mohammad A.; Pickwell, Sage; Etchandy, Guillermina; Stasiuk, Graeme J.; Sturge, Justin

    2016-01-01

    Here we describe a protocol that can be used to study the biophysical microenvironment related to increased thickness and stiffness of the basement membrane (BM) during age-related pathologies and metabolic disorders (e.g. cancer, diabetes, microvascular disease, retinopathy, nephropathy and neuropathy). The premise of the model is non-enzymatic crosslinking of reconstituted BM (rBM) matrix by treatment with glycolaldehyde (GLA) to promote advanced glycation endproduct (AGE) generation via the Maillard reaction. Examples of laboratory techniques that can be used to confirm AGE generation, non-enzymatic crosslinking and increased stiffness in GLA treated rBM are outlined. These include preparation of native rBM (treated with phosphate-buffered saline, PBS) and stiff rBM (treated with GLA) for determination of: its AGE content by photometric analysis and immunofluorescent microscopy, its non-enzymatic crosslinking by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) as well as confocal microscopy, and its increased stiffness using rheometry. The procedure described here can be used to increase the rigidity (elastic moduli, E) of rBM up to 3.2-fold, consistent with measurements made in healthy versus diseased human prostate tissue. To recreate the biophysical microenvironment associated with the aging and diseased prostate gland three prostate cell types were introduced on to native rBM and stiff rBM: RWPE-1, prostate epithelial cells (PECs) derived from a normal prostate gland; BPH-1, PECs derived from a prostate gland affected by benign prostatic hyperplasia (BPH); and PC3, metastatic cells derived from a secondary bone tumor originating from prostate cancer. Multiple parameters can be measured, including the size, shape and invasive characteristics of the 3D glandular acini formed by RWPE-1 and BPH-1 on native versus stiff rBM, and average cell length, migratory velocity and persistence of cell movement of 3D spheroids formed by PC3 cells under the same conditions. Cell signaling pathways and the subcellular localization of proteins can also be assessed. PMID:27684203

  11. Short communication: Suitability of fluorescence spectroscopy for characterization of commercial milk of different composition and origin.

    PubMed

    Ntakatsane, M P; Yang, X Q; Lin, M; Liu, X M; Zhou, P

    2011-11-01

    Thirteen milk brands comprising 76 pasteurized and UHT milk samples of various compositions (whole, reduced fat, skimmed, low lactose, and high protein) were obtained from local supermarkets, and milk samples manufactured in various countries were discriminated using front-face fluorescence spectroscopy (FFFS) coupled with chemometric tools. The emission spectra of Maillard reaction products and riboflavin (MRP/RF; 400 to 600 nm) and tryptophan (300 to 400 nm) were recorded using FFFS, and the excitation wavelengths were set at 360 nm for MRP/RF and 290 nm for tryptophan. Principal component analysis (PCA) was applied to analyze the normalized spectra. The PCA of spectral information from MRP/RF discriminated the milk samples originating in different countries, and PCA of spectral information from tryptophan discriminated the samples according to composition. The fluorescence spectral data were compared with liquid chromatography-mass spectrometry results for the glycation extent of the milk samples, and a positive association (R(2)=0.84) was found between the degree of glycation of α-lactalbumin and the MRP/RF spectral data. This study demonstrates the ability and sensitivity of FFFS to rapidly discriminate and classify commercial milk with various compositions and processing conditions. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Inhibition of Growth of Candida albicans by a Lysozyme-chitosan Conjugate, LYZOX and its Combination with Decanoic Acid.

    PubMed

    Kageshima, Hiroki; Hayama, Kazumi; Takahashi, Miki; Abe, Miho; Yamada, Tsuyoshi; Saito, Akira; Hirano, Shoichiro; Murakami, Yoichi; Abe, Shigeru

    2017-01-01

    A lysozyme-chitosan conjugate preparation (LYZOX), produced from egg white lysozyme and chitosan by Maillard reaction, is a commercial product developed as a cosmetic ingredient or food additive. Effects of LYZOX on in vitro growth of Candida albicans were examined. C. albicans cells were treated with LYZOX for 3 hrs, and then washed and cultured for an additional 16 hrs in modified RPMI1640 medium. Mycelial growth of C. albicans was clearly inhibited by more than 100 μg/ml of LYZOX in a concentration-dependent manner. On the other hand, corresponding concentration of chitosan or lysozyme or their mixture only scarcely showed clear inhibitory effect. Similarly, anti-Candida activity of the combination of LYZOX and decanoic acid, a middle-chain fatty acid, was also examined. Inhibitory activity of this combination against mycelial growth of C. albicans was very potent and appeared synergistic, since fractionated inhibitory concentration (FIC) index for 70% growth inhibition was calculated to be 0.20. Oral application of this combination improved the symptoms of Candida-infected-tongue in an experimental murine candidiasis model. On the basis of these results, the possible application of LYZOX as a new functional product with anti-candida activity was discussed.

  13. Fate of 14C-acrylamide in roasted and ground coffee during storage.

    PubMed

    Baum, Matthias; Böhm, Nadine; Görlitz, Jessica; Lantz, Ingo; Merz, Karl Heinz; Ternité, Rüdiger; Eisenbrand, Gerhard

    2008-05-01

    Acrylamide (AA) is formed during heating of carbohydrate rich foods in the course of the Maillard reaction. AA has been classified as probably carcinogenic to humans. Storage experiments with roasted coffee have shown that AA levels decrease depending on storage time and temperature. In the present study the fate of AA lost during storage of roasted and ground (R&G) coffee was studied, using 14C-labeled AA as radiotracer. Radiolabel was measured in coffee brew, filter residue, and volatiles. In the brew, total (14)C-label decreased during storage of R&G coffee, while activity in the filter residue built up concomitantly. [2,3-14C]-AA (14C-AA) was the only 14C-related water extractable low molecular compound in the brew detected by radio-HPLC. No formation of volatile 14C-AA-related compounds was detected during storage and coffee brewing. Close to 90% of the radiolabel in the filter residue (spent R&G coffee, spent grounds) remained firmly bound to the matrix, largely resisting extraction by aqueous ammonia, ethyl acetate, chloroform, hexane, and sequential polyenzymatic digest. Furanthiols, which are abundant as aroma components in roasted coffee, have not been found to be involved in the formation of covalent AA adducts and thus do not contribute substantially to the decrease of AA during storage.

  14. Cold sweetening diversity in Andean potato germplasm from Argentina.

    PubMed

    Colman, Silvana L; Massa, Gabriela A; Carboni, Martín F; Feingold, Sergio E

    2017-11-01

    Cold-induced sweetening (CIS) is the accumulation of sucrose and reducing sugars in potato tubers at low temperatures. This process is central for the potato processing industry. During potato chip and French fry production, reducing sugars participate in the Maillard reaction to produce dark pigmented products not acceptable to consumers. Andean potatoes (Solanum tuberosum Group Andigena) constitute an enormous wealth of potato germplasm that can contribute to increase genetic diversity in breeding programs of many traits, including CIS. We analyzed reducing sugar content and chip quality in freshly harvested and cold-stored tubers from 48 native accessions. Andean accessions showed high variation in reducing sugar content and were classified in three types of CIS responses: type I, reducing sugar content before and after 4°C storage was lower than the value required by industry; type II, reducing sugar content before storage was acceptable, but after 4°C storage incremented up to non-acceptable levels; and type III, reducing sugar content was unacceptable before and after storage. Five Andean accessions presented acceptable reducing sugar content and good chip quality before and after 4°C storage in a consistent manner throughout several experiments. These features make them a useful source for improving the potato industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Physicochemical and functional properties of ultrasonic-treated tragacanth hydrogels cross-linked to lysozyme.

    PubMed

    Koshani, Roya; Aminlari, Mahmoud

    2017-10-01

    The purpose of this study was to prepare, characterize and investigate physiochemical and functional attributes of hen egg white lysozyme (LZM) cross-linked with ultrasonic-treated tragacanth (US-treated TGC) under mild Maillard reactions conditions. FT-IR spectroscopy together with OPA assay revealed that covalent attachment of LZM with TCG's. Under optimum condition (pH=8.5, 60°C, RH=79%, 8 days), only one of the free amino group of LZM was blocked by TGC whereas under the same condition, US treated-TGC's blocked about three amino groups. The thermal stability of the LZM-TGC conjugates differed depending on the lengths of the main and branch chains. The microstructure of LZM-TGC conjugates was characterized by scanning electron microscopy. US-treated TGC-LZM exhibited improved solubility, emulsion properties, foam capacity and stability as compared with the native LZM. Since this gum is extensively used in food industry and application of LZM as a natural antimicrobial agents in different food systems is recommended and practiced in some countries, the results of this study indicates that a conjugated product of these two polymers combines different properties into one macromolecule and improves the property of each. These properties may make the conjugate an attractive food ingredient. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Genotoxic activities of the food contaminant 5-hydroxymethylfurfural using different in vitro bioassays.

    PubMed

    Severin, Isabelle; Dumont, Coralie; Jondeau-Cabaton, Adeline; Graillot, Vanessa; Chagnon, Marie-Christine

    2010-02-01

    5-Hydroxymethylfurfural (5-HMF) is known as an indicator of quality deterioration in a wide range of foods. 5-HMF is formed as an intermediate in the Maillard reaction and has been identified in a wide variety of heat-processed foods. In recent years, the presence of 5-HMF in foods has raised toxicological concerns: data have shown cytotoxic, genotoxic and tumoral effects but further studies suggest that 5-HMF does not pose a serious health risk. However the subject is still a matter of debate. We investigated the genotoxicity of the food-borne contaminant 5-HMF using the Ames test, the micronucleus (MN) and the single-cell gel electrophoresis (SCGE) assays in the human metabolically active HepG2 cell line. Cytotoxic effect of 5-HMF was first assessed using Alamar Blue as a sensitive sub-lethal assay. 5-HMF did not induce any genic mutation in bacteria whatever the concentration in the Ames test. Furthermore, it does not induce clastogenic or aneugenic effects in the HepG2 cells. In contrast, 5-HMF induced HepG2 DNA damage at concentrations from 7.87 to 25 mM in the comet assay suggesting a weak genotoxic effect of 5-HMF in the HepG2 cells probably repaired. 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Content and evolution of potential furfural compounds in commercial milk-based infant formula powder after opening the packet.

    PubMed

    Chávez-Servín, Jorge L; de la Torre Carbot, Karina; García-Gasca, Teresa; Castellote, Ana I; López-Sabater, M Carmen

    2015-01-01

    Potential furfural compounds were examined by RP-HPLC-DAD in 20 commercial milk-based powdered infant formula (IF) brands from local markets from Paris, France; DF, Mexico; Copenhagen, Denmark; England, UK; and Barcelona, Spain. We traced the evolution of these compounds after the packets had been opened at 0, 30 and 70 days of storage at room temperature (≈25 °C; minimum 23 °C and maximum 25.5 °C). All formula brands were analysed during the first 3-5 months of their shelf life. The mean values of all IFs for potential 5-hydroxymethyl-2-furaldehyde (HMF)+2-furaldehyde (F) were 1115.2 μg/100 g (just opened), 1157.6 μg/100 g (30 days) and 1344.5 μg/100 g of product (70 days). In general, slight increases of potential furfural contents were observed in most of the studied IFs, which suggests that the Maillard reaction increases after opening the packets. The main furfural compound found was HMF, as expected. The range of potential HMF consumed for an infant about 6 months old feeding only on formula was estimated between 0.63 mg and 3.25 mg per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Why Were Polysaccharides Necessary?

    NASA Astrophysics Data System (ADS)

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, `compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  19. Ferritin glycosylated by chitosan as a novel EGCG nano-carrier: Structure, stability, and absorption analysis.

    PubMed

    Yang, Rui; Liu, Yuqian; Gao, Yunjing; Wang, Yongjin; Blanchard, Chris; Zhou, Zhongkai

    2017-12-01

    Ferritin is a shell-like carrier protein with an 8nm diameter cavity which endows a natural space to encapsulate food and drug components. In this work, phytoferritin was unprecedentedly glycosylated by chitosan to fabricate ferritin-chitosan Maillard reaction products (FCMPs) (grafting degree of 26.17%, 24h, 55°C). Results indicated that the amide I and II bands of ferritin were altered due to the chitosan grafting, whereas the ferritin spherical structure were retained. Simulated digestion analysis showed that the FCMPs were more resistant to pepsin and trypsin digestion as compared with ferritin alone. Furthermore, FCMPs were employed as carrier to encapsulate epigallocatechin gallate (EGCG) molecules with an encapsulation ratio of 12.87% (w/w), and the resulting FCMPs-EGCG complexes showed a slow release of EGCG in simulated gastrointestinal tract. Interestingly, different types of food components displayed different effects in EGCG release behavior from the FCMPs, wherein proanthocyanidin, milk and soy protein inhibited the EGCG release. In addition, the absorption of EGCG encapsulated in FCMPs in Caco-2 monolayer model was significantly improved as compared with free EGCG. This work provides a novel nano-vehicle for fabricating core-shell systems in food and drug delivery domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng.

    PubMed

    In, Gyo; Ahn, Nam-Geun; Bae, Bong-Seok; Lee, Myoung-Woo; Park, Hee-Won; Jang, Kyoung Hwa; Cho, Byung-Goo; Han, Chang Kyun; Park, Chae Kyu; Kwak, Yi-Seong

    2017-07-01

    The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ . Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) → SG (steamed ginseng) → RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng . The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20( S )-Rg2, 20( S, R )-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).

Top