Science.gov

Sample records for advanced maillard reaction

  1. Formation of early and advanced Maillard reaction products correlates to the ripening of cheese.

    PubMed

    Spanneberg, Robert; Salzwedel, Grit; Glomb, Marcus A

    2012-01-18

    The present study deals with the characterization of the ripening of cheese. A traditional German acid curd cheese was ripened under defined conditions at elevated temperature, and protein and amino acid modifications were investigated. Degree of proteolysis and analysis of early [Amadori compound furosine (6)] and advanced [N(ε)-carboxymethyllysine (4), N(ε)-carboxyethyllysine (5)] Maillard reaction products confirmed the maturation to proceed from the rind to the core of the cheese. Whereas 6 was decreased, 4 and 5 increased over time. Deeper insight into the Maillard reaction during the ripening of cheese was achieved by the determination of selected α-dicarbonyl compounds. Especially methylglyoxal (2) showed a characteristic behavior during storage of the acid curd cheese. Decrease of this reactive structure was directly correlated to the formation of 5. To extend the results of experimental ripening to commercial cheeses, different aged Gouda types were investigated. Maturation times of the samples ranged from 6 to 8 weeks (young) to more than 1 year (aged). Again, increase of 5 and decrease of 2 were able to describe the ripening of this rennet coagulated cheese. Therefore, both chemical parameters are potent markers to characterize the degree of maturation, independent of coagulation.

  2. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms.

    PubMed

    Lund, Marianne N; Ray, Colin A

    2017-06-14

    Maillard reactions lead to changes in food color, organoleptic properties, protein functionality, and protein digestibility. Numerous different strategies for controlling Maillard reactions in foods have been attempted during the past decades. In this paper, recent advances in strategies for controlling the Maillard reaction and subsequent downstream reaction products in food systems are critically reviewed. The underlying mechanisms at play are presented, strengths and weaknesses of each strategy are discussed, and reasonable reaction mechanisms are proposed to reinforce the evaluations. The review includes strategies involving addition of functional ingredients, such as plant polyphenols and vitamins, as well as enzymes. The resulting trapping or modification of Maillard targets, reactive intermediates, and advanced glycation endproducts (AGEs) are presented with their potential unwanted side effects. Finally, recent advances in processing for control of Maillard reactions are discussed.

  3. Prebiotic significance of the Maillard reaction

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Bajagic, Milica; Zhu, William; Cody, George D.

    2005-09-01

    The Maillard reaction was studied from a prebiotic point of view. We have shown that the Maillard reaction between ribose and common amino acids occurs readily in the solid state at 65°C. The C-13 NMR spectra of the solid insoluble Maillard products of ribose and serine, or alanine or isoleucine were compared to the spectrum of the insoluble organic carbon on Murchison.

  4. Maillard reaction and food processing. Application aspects.

    PubMed

    Chuyen, N V

    1998-01-01

    The Maillard reaction occurs widely in food and biological systems. This contribution reviews the relation between the Maillard reaction and food processing, particularly its contribution to flavor formation, antioxidative effects, desmutagenic activity and the improvement of protein functional properties. Proteins modified by glucose, and melanoidins are important components of foodstuffs while the reactions of amino acids or peptides with glucose or dicarbonyl compounds produce various kinds of flavor components. Melanoidins and Amadori rearrangement products play an important role in providing antioxidative effects, both in vitro and in vivo. Melanoidins also exhibit desmutagenic activity against carcinogenic compounds. Protein-polysaccharide conjugates, prepared by Maillard reaction at mild conditions, increase the emulsifying activity, as well as antioxidative and antimicrobial effects of the original proteins.

  5. Pathways of the Maillard reaction under physiological conditions.

    PubMed

    Henning, Christian; Glomb, Marcus A

    2016-08-01

    Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.

  6. The Maillard reaction in the human body. The main discoveries and factors that affect glycation.

    PubMed

    Tessier, F J

    2010-06-01

    Ever since the discovery of the Maillard reaction in 1912 and the discovery of the interaction between advanced glycation end-products and cellular receptors, impressive progress has been made in the knowledge of nonenzymatic browning of proteins in vivo. This reaction which leads to the accumulation of random damage in extracellular proteins is known to have deleterious effects on biological function, and is associated with aging and complication in chronic diseases. Despite a controlled membrane permeability and a protective regulation of the cells, intracellular proteins are also altered by the Maillard reaction. Two main factors, protein turnover and the concentration of carbonyls, are involved in the rate of formation of the Maillard products. This paper reviews the key milestones of the discovery of the Maillard reaction in vivo, better known as glycation, and the factors which are likely to affect it. (c) 2009 Elsevier Masson SAS. All rights reserved.

  7. Evolution of Complex Maillard Chemical Reactions, Resolved in Time.

    PubMed

    Hemmler, Daniel; Roullier-Gall, Chloé; Marshall, James W; Rychlik, Michael; Taylor, Andrew J; Schmitt-Kopplin, Philippe

    2017-06-12

    In this study, we monitored the thermal formation of early ribose-glycine Maillard reaction products over time by ion cyclotron resonance mass spectrometry. Here, we considered sugar decomposition (caramelization) apart from compounds that could only be produced in the presence of the amino acid. More than 300 intermediates as a result of the two initial reactants were found after ten hours (100 °C) to participate in the interplay of the Maillard reaction cascade. Despite the large numerical variety the majority of intermediates follow simple and repetitive reaction patterns. Dehydration, carbonyl cleavage, and redox reactions turned out to have a large impact on the diversity the Maillard reaction causes. Although the Amadori breakdown is considered as the main Maillard reaction pathway, other reactive intermediates, often of higher molecular weight than the Amadori rearrangement product, contribute to a large extent to the multitude of intermediates we observed.

  8. Baking, ageing, diabetes: a short history of the Maillard reaction.

    PubMed

    Hellwig, Michael; Henle, Thomas

    2014-09-22

    The reaction of reducing carbohydrates with amino compounds described in 1912 by Louis-Camille Maillard is responsible for the aroma, taste, and appearance of thermally processed food. The discovery that non-enzymatic conversions also occur in organisms led to intensive investigation of the pathophysiological significance of the Maillard reaction in diabetes and ageing processes. Dietary Maillard products are discussed as "glycotoxins" and thus as a nutritional risk, but also increasingly with regard to positive effects in the human body. In this Review we give an overview of the most important discoveries in Maillard research since it was first described and show that the complex reaction, even after over one hundred years, has lost none of its interdisciplinary actuality.

  9. The Maillard reaction and food allergies: is there a link?

    PubMed

    Toda, Masako; Heilmann, Monika; Ilchmann, Anne; Vieths, Stefan

    2014-01-01

    Food allergies are abnormal responses to a food triggered by the immune system. The majority of allergenic foods are often subjected to thermal processing before consumption. The Maillard reaction is a non-enzymatic reaction between reducing sugars and compounds with free amino groups such as amino acids and proteins, and takes place during thermal processing and storage of foods. Among many other effects the reaction leads to modification of proteins with various types of glycation structures such as Nε-(carboxymethyl-)lysine (CML), pentosidine, pyrraline and methylglyoxal-H1, which are collectively called advanced glycation end-products (AGEs). Notably, evidence has accumulated that some glycation structures of AGEs function as immune epitopes. Here we discuss the possible involvement of food allergen AGEs in the pathogenesis of food allergies.

  10. The maillard reaction for sunlight protection.

    PubMed

    Fusaro, Ramon M; Rice, Edwin G

    2005-06-01

    During seven months of a clinical trial in spring, summer, and fall, 30 UVA/B/Soret band-photosensitive patients used sequential topical applications of dihydroxyacetone (DHA) followed by naphthoquinone only at bedtime and received excellent photoprotection without a single therapeutic failure or loss of any patient to follow-up. Eighteen of the 30 patients extended the limits of their photoprotection repeatedly over a seven-month period to tolerate without sunburns six to eight hours of midday sunlight under all kinds of occupational and recreational environmental conditions. Previously, the use of 3% DHA topically in earlier studies gave only a sun protection factor (SPF) of 3. In this reanalysis of the original notes of a previous clinical study of the melanoidins produced by DHA followed by naphthoquinone in the keratin layers of the epidermis of minimally pigmented Caucasian photosensitive patients, it is determined that these patients received a minimal UVB photoprotection of SPF 18 or more. This represents at least a sixfold amplification of the UVB photoprotective effect over the use of only dihydroxyacetone in the Maillard reaction.

  11. Maillard reaction products from chitosan-xylan ionic liquid solution.

    PubMed

    Luo, Yuqiong; Ling, Yunzhi; Wang, Xiaoying; Han, Yang; Zeng, Xianjie; Sun, Runcang

    2013-10-15

    A facile method is reported to prepare Maillard reaction products (MRPs) from chitosan and xylan in co-solvent ionic liquid. UV absorbance and fluorescence changes were regarded as indicators of the occurrence of Maillard reaction. FT-IR, NMR, XRD and TG were used to investigate the structure of chitosan-xylan conjugate. The results revealed that when chitosan reacted with xylan in ionic liquid, the hydrogen bonds in chitosan were destroyed, the facts resulted in the formation of chitosan-xylan MRPs. Moreover, when the mass ratio of chitosan to xylan was 1:1, the Maillard reaction proceeded easily. In addition, relatively high antioxidant property was also noted for the chitosan-xylan conjugate with mass ratio 1:1. So the obtained chitosan-xylan MRP is a promising antioxidant agent for food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Taste-active maillard reaction products: the "tasty" world of nonvolatile maillard reaction products.

    PubMed

    Hofmann, Thomas

    2005-06-01

    This study was done to obtain greater insight into the structures and sensory activities of those tastants that are not present in foods per se, but are generated during food processing by Maillard-type reactions from carbohydrates and amino acids and thus remain unknown. In order to rank the tastants according to their relative taste impact and to identify the key tastants generated during thermal food processing, the so-called taste dilution analysis (TDA), which uses the human tongue as a biosensor for tastants, was applied to heated, intensely bitter tasting binary mixtures of glucose or xylose and proline or alanine, respectively. This screening technique led to the identification of previously unknown taste compounds, among which intensely bitter tastants such as quinizolate and homoquinizolate, a pungent-tasting pyranopyranone, cyclopentenone derivatives exhibiting a physiological cooling effect, as well as a taste-enhancing pyridinium betaine named alapyridaine will be presented.

  13. Carbonylation of myofibrillar proteins through the maillard pathway: effect of reducing sugars and reaction temperature.

    PubMed

    Villaverde, Adriana; Estévez, Mario

    2013-03-27

    Carbonylation is recognized as one of the most remarkable chemical modifications in oxidized proteins and is generally ascribed to the direct attack of free radicals to basic amino acid residues. The purpose of this work was to investigate the formation of specific carbonyls, α-aminoadipic and γ-glutamic semialdehydes (AAS and GGS, respectively), in myofibrillar proteins (MP) through a Maillard-type pathway in the presence of reducing sugars. The present study confirmed the concurrent formation of protein carbonyls and advanced glycation end-products (AGEs) during incubation (80 °C/48 h) of MP (4 mg/mL) in the presence of reducing sugars (0.5 M). Copper irons (10 μM) were found to promote the formation of protein carbonyls, and a specific inhibitor of the Maillard reaction (0.02 M pyridoxamine) blocked the carbonylation process which emphasize the occurrence of a Maillard-type pathway. The Maillard-mediated carbonylation occurred in a range of reducing sugars (0.02-0.5 M) and reaction temperatures (4-110 °C) compatible with food systems. Upcoming studies on this topic may contribute further to shed light on the complex interactions between protein oxidation and the Maillard reaction and the impact of the protein damage on food quality and human health.

  14. Identification of Maillard reaction products on peanut allergens that influence binding to the receptor for advanced glycation end products.

    PubMed

    Mueller, G A; Maleki, S J; Johnson, K; Hurlburt, B K; Cheng, H; Ruan, S; Nesbit, J B; Pomés, A; Edwards, L L; Schorzman, A; Deterding, L J; Park, H; Tomer, K B; London, R E; Williams, J G

    2013-12-01

    Recent immunological data demonstrated that dendritic cells preferentially recognize advanced glycation end product (AGE)-modified proteins, upregulate expression of the receptor for AGE (RAGE), and consequently bias the immune response toward allergy. Peanut extract was characterized by mass spectrometry (MS) to elucidate the specific residues and specific AGE modifications found in raw and roasted peanuts and on rAra h 1 that was artificially glycated by incubation with glucose or xylose. The binding of the RAGE-V1C1 domain to peanut allergens was assessed by PAGE and Western analysis with anti-Ara h 1, 2, and 3 antibodies. IgE binding to rAra h 1 was also assessed using the same methods. AGE modifications were found on Ara h 1 and Ara h 3 in both raw and roasted peanut extract. No AGE modifications were found on Ara h 2. Mass spectrometry and Western blot analysis demonstrated that RAGE binds selectively to Ara h 1 and Ara h 3 derived from peanut extract, whereas the analysis failed to demonstrate Ara h 2 binding to RAGE. rAra h 1 with no AGE modifications did not bind RAGE; however, after AGE modification with xylose, rAra h 1 bound to RAGE. AGE modifications to Ara h 1 and Ara h 3 can be found in both raw and roasted peanuts. Receptor for AGE was demonstrated to selectively interact with AGE-modified rAra h 1. If sensitization to peanut allergens occurs in dendritic cells via RAGE interactions, these cells are likely interacting with modified Ara h 1 and Ara h 3, but not Ara h 2. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  15. Investigations on the Maillard reaction of dextrins during aging of Pilsner type beer.

    PubMed

    Rakete, Stefan; Klaus, Alexander; Glomb, Marcus A

    2014-10-08

    Although Maillard reaction plays a pivotal role during preparation of food, only few investigations concerning the role of carbohydrate degradation in beer aging have been carried out. The formation of Maillard specific precursor structures and their follow-up products during degradation of low molecular carbohydrate dextrins in the presence of proline and lysine was studied in model incubations and in beer. Twenty-one α-dicarbonyl compounds were identified and quantitated as reactive intermediates. The oxidative formation of 3-deoxypentosone as the precursor of furfural from oligosaccharides was verified. N-Carboxymethylproline and N-formylproline were established as novel proline derived Maillard advanced glycation end products. Formation of N-carboxymethylproline and furfural responded considerably to the presence of oxygen and was positively correlated to aging of Pilsner type beer. The present study delivers an in-depth view on the mechanisms behind the formation of beer relevant aging parameters.

  16. On the Maillard reaction of meteoritic amino acids

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Bajagic, Milica; Liesch, Patrick J.; Philip, Ajish; Cody, George D.

    2006-08-01

    We have performed the Maillard reaction of a series of meteoritic amino acids with sugar ribose under simulated prebiotic conditions, in the solid state at 65°C and at the room temperature. Many meteoritic amino acids are highly reactive with ribose, even at the room temperature. We have isolated high molecular weight products that are insoluble in water, and have studied their structure by the IR (infrared) and solid-state C-13 NMR (nuclear magnetic resonance) spectroscopic methods. The functional groups and their distribution were similar among these products, and were comparable to the previously isolated insoluble organic materials from the Maillard reaction of the common amino acids with ribose. In addition, there were some similarities with the insoluble organic material that is found on Murchison. Our results suggest that the Maillard products may contribute to the composition of the part of the insoluble organic material that is found on Murchison. We have also studied the reaction of sodium silicate solution with the Maillard mixtures, to elucidate the process by which the organic compounds are preserved under prebiotic conditions.

  17. The Maillard reaction and its control during food processing. The potential of emerging technologies.

    PubMed

    Jaeger, H; Janositz, A; Knorr, D

    2010-06-01

    The Maillard reaction between reducing sugars and amino acids is a common reaction in foods which undergo thermal processing. Desired consequences like the formation of flavor and brown color of some cooked foods but also the destruction of essential amino acids and the production of anti-nutritive compounds require the consideration of the Maillard reaction and relevant mechanisms for its control. This paper aims to exemplify the recent advances in food processing with regard to the controllability of heat-induced changes in the food quality. Firstly, improved thermal technologies, such as ohmic heating, which allows direct heating of the product and overcoming the heat transfer limitations of conventional thermal processing are presented in terms of their applicability to reduce the thermal exposure during food preservation. Secondly, non-thermal technologies such as high hydrostatic pressure and pulsed electric fields and their ability to extend the shelf life of food products without the application of heat, thus also preserving the quality attributes of the food, will be discussed. Finally, an innovative method for the removal of Maillard reaction substrates in food raw materials by the application of pulsed electric field cell disintegration and extraction as well as enzymatic conversion is presented in order to demonstrate the potential of the combination of processes to control the occurrence of the Maillard reaction in food processing.

  18. [The Maillard reaction: physiopathological role and pharmacological approach].

    PubMed

    Robert, L; Robert, A M

    2007-01-01

    In this review, we shall first present a short summary of Maillard's carrier, his pioneering work for the introduction of chemistry in medicine and a short description of the reaction he described in 1912 between reducing sugars and amino groups on proteins, part of his PhD thesis. This reaction was rediscovered several decades later by biochemists. Nowadays an increasing number of teams specialise in the study of the Maillard reaction, because of its importance in aging and age-related pathologies. After a short description of this reaction, we report the importance of receptors recognising a variety of AGE-s and mediating their effect on cells and tissues. The importance of glycoxidation is mentioned, mediating the release of free radicals (ROS-s) directly involved in a number of noxious effects of AGE-s, such as crosslinking and even mutagenesis. All these - in his time - unforeseen consequences of this reaction have made Maillard the best known French scientist in international scientific circles.

  19. The Maillard reaction and pet food processing: effects on nutritive value and pet health.

    PubMed

    van Rooijen, Charlotte; Bosch, Guido; van der Poel, Antonius F B; Wierenga, Peter A; Alexander, Lucille; Hendriks, Wouter H

    2013-12-01

    The Maillard reaction, which can occur during heat processing of pet foods or ingredients, is known to reduce the bioavailability of essential amino acids such as lysine due to the formation of early and advanced Maillard reaction products (MRP) that are unavailable for utilisation by the body. Determination of the difference between total and reactive lysine by chemical methods provides an indication of the amount of early MRP present in foods, feeds and ingredients. Previous research reported that the difference between total and reactive lysine in pet foods can be up to 61.8%, and foods for growing dogs may be at risk of supplying less lysine than the animal may require. The endogenous analogues of advanced MRP, advanced glycation endproducts, have been associated with age-related diseases in humans, such as diabetes and impaired renal function. It is unknown to what extent advanced MRP are present in pet foods, and if dietary MRP can be associated with the development of diseases such as diabetes and impaired renal function in pet animals. Avoidance of ingredients with high levels of MRP and processing conditions known to favour the Maillard reaction may be useful strategies to prevent the formation of MRP in manufactured pet food. Future work should further focus on understanding the effects of ingredient choice and processing conditions on the formation of early and advanced MRP, and possible effects on animal health.

  20. Glycerol, an underestimated flavor precursor in the Maillard reaction.

    PubMed

    Smarrito-Menozzi, Candice; Matthey-Doret, Walter; Devaud-Goumoens, Stéphanie; Viton, Florian

    2013-10-30

    The objective of the present work was to investigate in depth the role of glycerol in Maillard reactions and its potential to act as an active flavor precursor. Reactions using isotopically labeled compounds (various reducing sugars, proline, and glycerol) unambiguously demonstrated that, in addition to its role of solvent, glycerol actively contributes to the formation of proline-specific compounds in Maillard model systems. Additionally, rhamnose and fucose/proline/glycerol systems generated the 2-propionyl-1(3),4,5,6-tetrahydropyridines, known for their roasty, popcorn aroma. Their formation from such systems is unprecedented. The results presented here have direct implications for flavor generation during thermal processing of foods containing glycerol, which is a ubiquitous food ingredient and an underestimated flavor precursor.

  1. Explore the reaction mechanism of the Maillard reaction: a density functional theory study.

    PubMed

    Ren, Ge-Rui; Zhao, Li-Jiang; Sun, Qiang; Xie, Hu-Jun; Lei, Qun-Fang; Fang, Wen-Jun

    2015-05-01

    The mechanism of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. The Maillard reaction is a cascade of consecutive and parallel reaction. In the present model system study, glucose and glycine were taken as the initial reactants. On the basis of previous experimental results, the mechanisms of Maillard reaction have been proposed, and the possibility for the formation of different compounds have been evaluated through calculating the relative energy changes for different steps of reaction under different pH conditions. Our calculations reveal that the TS3 in Amadori rearrangement reaction is the rate-determining step of Maillard reaction with the activation barriers of about 66.7 and 68.8 kcal mol(-1) in the gaseous phase and aqueous solution, respectively. The calculation results are in good agreement with previous studies and could provide insights into the reaction mechanism of Maillard reaction, since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.

  2. Maillard reaction products modulate gut microbiota composition in adolescents.

    PubMed

    Seiquer, Isabel; Rubio, Luis A; Peinado, M Jesús; Delgado-Andrade, Cristina; Navarro, María Pilar

    2014-07-01

    Scarce data are available concerning effects of certain bioactive substances such as Maillard reaction products (MRP) on the gut microbiota composition, and the question of how a diet rich in MRP affects gut microbiota in humans is still open. Two experiments were conducted. In expt. 1, adolescents consumed diets either high or low in MRP in a two-period crossover trial; in expt. 2, rats were fed diets supplemented or not with MRP model-systems. Intestinal microbiota composition in fecal (adolescents) or cecal (rat) samples was assessed by qPCR analysis. Negative correlations were found in the human assay between lactobacilli numbers and dietary advanced MRP (r = -0.418 and -0.387, for hydroxymethylfurfural and carboxymethyl-lysine respectively, p < 0.05), whereas bifidobacteria counts were negatively correlated with Amadori compounds intake. In the rat assay, total bacteria and lactobacilli were negatively correlated with MRP intake (r = -0.674,-0.675 and -0.676, for Amadori compounds, hydroxymethylfurfural and carboxymethyl-lysine respectively, p < 0.05), but no correlations were found with bifidobacteria. Dietary MRP are able to modulate in vivo the intestinal microbiota composition both in humans and in rats, and the specific effects are likely to be linked to the chemical structure and dietary amounts of the different browning compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [The importance of the Maillard reaction in ophtalmology].

    PubMed

    Péterszegi, G; Robert, A M; Robert, L; Renard, G

    2007-01-01

    Non enzymatic glycosylation( glycation) of proteins, described by L. C. Maillard in 1912, results in the formation of advanced glycation end products (AGE-s). These exhibit a number of harmful reactions, increasing with age and involved in several age-associated pathologies. In ocular pathology, their role was demonstrated at several levels of age-associated eye-diseases, such as the rigidification of cornea, in the separation of vitreous fibers from the hyaluronan jelly, which might result in retinal detachment. AGE-s are involved also in retinal microvascular alterations in diabetics as well as in age-related macular degeneration. We compared the cytotoxic effect of several AGE-s on human skin fibroblasts and corneal keratocytes. Keratocytes were shown to be much more resistant to the cytotoxic effect of several AGE-products than fibroblasts. This higher resistance of keratocytes to the free radical mediated cytotoxic effect of AGE-s might be the result of the constant exposure of cornea to UV-light possibly mediating the appearance of more efficient protective mechanisms during evolution.

  4. Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?

    PubMed

    Del Turco, Serena; Basta, Giuseppina

    2016-01-01

    Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.

  5. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    PubMed

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  6. The Maillard reaction of bisoprolol fumarate with various reducing carbohydrates.

    PubMed

    Szalka, Mateusz; Lubczak, Jacek; Naróg, Dorota; Laskowski, Marek; Kaczmarski, Krzysztof

    2014-08-01

    HPLC analysis of drug products containing bisoprolol fumarate and lactose revealed the presence of N-formylbisoprolol, which is a final product of the Maillard reaction. Formulations containing secondary amines and reducing carbohydrates are prone to the condensation of amine and carbonyl functional groups and formation of glycosylamines in pharmaceutically relevant conditions. Further rearrangement occurs in the presence of a nucleophile and leads to the formation of 1-deoxy-1-amino-2-ketose also known as the Amadori Rearrangement Product (ARP). The influence of water content, carbohydrate, and lubricant types on the reaction rate was tested. The reaction progress was monitored by HPLC and UV-Vis spectrophotometry. The structures of intermediates were confirmed by the LC/MS(2) analysis. N-formylbisoprolol - the final reaction product - was synthesised and characterised by LC/MS(2), H(1) and C(13) NMR.

  7. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    PubMed

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  8. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    PubMed

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries.

  9. Maillard reaction products as antimicrobial components for packaging films.

    PubMed

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials.

  10. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review.

    PubMed

    de Oliveira, Fabíola Cristina; Coimbra, Jane Sélia Dos Reis; de Oliveira, Eduardo Basílio; Zuñiga, Abraham Damian Giraldo; Rojas, Edwin E Garcia

    2016-05-18

    The products formed by glycosylation of food proteins with carbohydrates via the Maillard reaction, also known as conjugates, are agents capable of changing and improving techno-functional characteristics of proteins. The Maillard reaction uses the covalent bond between a group of a reducing carbohydrates and an amino group of a protein. This reaction does not require additional chemicals as it occurs naturally under controlled conditions of temperature, time, pH, and moisture. Moreover, there is growing interest in modifying proteins for industrial food applications. This review analyses the current state of art of the Maillard reaction on food protein functionalities. It also discusses the influence of the Maillard reaction on the conditions and formulation of reagents that improve desirable techno-functional characteristics of food protein.

  11. Birnessite catalysis of the Maillard Reaction: Its significance in natural humification

    NASA Astrophysics Data System (ADS)

    Jokic, A.; Frenkel, A. I.; Vairavamurthy, M. A.; Huang, P. M.

    Although mineral colloids are known to play a significant role in transforming organic matter in soils and sediments, there still are many gaps in our understanding of the mechanisms of organic-mineral interactions. In this study, we investigated the role of a major oxide-mineral birnessite (a form of Mn(IV) oxide) in catalyzing the condensation reaction between sugars and amino acids, the Maillard reaction, for forming humic substances. The Maillard reaction is perceived to be a major pathway in natural humification. Using a suite of spectroscopic methods (including ESR, XANES, EXAFS and 13C NMR), our results show that Mn(IV) oxide markedly accelerates the Maillard reaction between glucose and glycine at ranges of temperatures and pH typical of natural environments. These results demonstrate the importance of manganese oxide catalysis in the Maillard reaction, and its significance in the natural abiotic formation of humic substances.

  12. The Maillard reaction--illicite (bio)chemistry in tissues and food.

    PubMed

    Robert, L; Robert, A-M; Labat-Robert, J

    2011-12-01

    We present a review of our early work on the Maillard reaction, at the interface of food chemistry and tissue biochemistry, as well as the reinterpretation of our early findings in the light of recent advances in the chemistry of the involved reactions. These concern specifically the role of lower aldehydes, produced during the glycolytic pathways and especially acetaldehyde. We also review some of our recent findings on the cytotoxic and genotoxic aspect of these "illicit" organic reactions, taking place in tissues (and also in food products) besides the genetically "programmed" metabolic pathways. Some recent results in organic-pharmaceutical chemistry confirm the potential importance of the reviewed reactions both in food chemistry and in tissues as well as the pathological importance of reactions taking place in tissues.

  13. Evolution of the Maillard Reaction in Glutamine or Arginine-Dextrinomaltose Model Systems

    PubMed Central

    Pastoriza, Silvia; Rufián-Henares, José Ángel; García-Villanova, Belén; Guerra-Hernández, Eduardo

    2016-01-01

    Enteral formulas are foods designed for medical uses to feed patients who are unable to eat normally. They are prepared by mixing proteins, amino acids, carbohydrates and fats and submitted to sterilization. During thermal treatment, the Maillard reaction takes place through the reaction of animo acids with reducing sugars. Thus, although glutamine and arginine are usually added to improve the nutritional value of enteral formulas, their final concentration may vary. Thus, in the present paper the early, intermediate, and advanced states of the Maillard reaction were studied in model systems by measuring loss of free amino acids through the decrease of fluorescence intensity with o-phtaldialdehyde (OPA), 5-Hydroximethylfurfural (HMF), furfural, glucosylisomaltol, fluorescence, and absorbance at 420 nm. The systems were prepared by mixing glutamine or arginine with dextrinomaltose (similar ingredients to those used in special enteral formula), and heated at 100 °C, 120 °C and 140 °C for 0 to 30 min. The recorded changes in the concentration of furanic compounds was only useful for longer heating times of high temperatures, while absorbance and fluorescence measurements were useful in all the assayed conditions. In addition, easiness and sensitivity of absorbance and fluorescence make them useful techniques that could be implemented as indicators for monitoring the manufacture of special enteral formulas. Glucosylisomaltol is a useful indicator to monitor the manufacture of glutamine-enriched enteral formulas. PMID:28231180

  14. Evolution of the Maillard Reaction in Glutamine or Arginine-Dextrinomaltose Model Systems.

    PubMed

    Pastoriza, Silvia; Rufián-Henares, José Ángel; García-Villanova, Belén; Guerra-Hernández, Eduardo

    2016-12-07

    Enteral formulas are foods designed for medical uses to feed patients who are unable to eat normally. They are prepared by mixing proteins, amino acids, carbohydrates and fats and submitted to sterilization. During thermal treatment, the Maillard reaction takes place through the reaction of animo acids with reducing sugars. Thus, although glutamine and arginine are usually added to improve the nutritional value of enteral formulas, their final concentration may vary. Thus, in the present paper the early, intermediate, and advanced states of the Maillard reaction were studied in model systems by measuring loss of free amino acids through the decrease of fluorescence intensity with o-phtaldialdehyde (OPA), 5-Hydroximethylfurfural (HMF), furfural, glucosylisomaltol, fluorescence, and absorbance at 420 nm. The systems were prepared by mixing glutamine or arginine with dextrinomaltose (similar ingredients to those used in special enteral formula), and heated at 100 °C, 120 °C and 140 °C for 0 to 30 min. The recorded changes in the concentration of furanic compounds was only useful for longer heating times of high temperatures, while absorbance and fluorescence measurements were useful in all the assayed conditions. In addition, easiness and sensitivity of absorbance and fluorescence make them useful techniques that could be implemented as indicators for monitoring the manufacture of special enteral formulas. Glucosylisomaltol is a useful indicator to monitor the manufacture of glutamine-enriched enteral formulas.

  15. Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: Inhibition by Maillard reaction.

    PubMed

    Moreira, Ana S P; Nunes, Fernando M; Simões, Cristiana; Maciel, Elisabete; Domingues, Pedro; Domingues, M Rosário M; Coimbra, Manuel A

    2017-07-15

    Under roasting conditions, polysaccharides depolymerize and also are able to polymerize, forming new polymers through non-enzymatic transglycosylation reactions (TGRs). TGRs can also occur between carbohydrates and aglycones, such as the phenolic compounds present in daily consumed foods like coffee. In this study, glycosidically-linked phenolic compounds were quantified in coffee melanoidins, the polymeric nitrogenous brown-colored compounds formed during roasting, defined as end-products of Maillard reaction. One third of the phenolics present were in glycosidically-linked form. In addition, the roasting of solid-state mixtures mimicking coffee beans composition allowed the conclusion that proteins play a regulatory role in TGRs extension and, consequently, modulate melanoidins composition. Overall, the results obtained showed that TGRs are a main mechanism of phenolics incorporation in melanoidins and are inhibited by amino groups through Maillard reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Contribution of crosslinking products in the flavour enhancer processing: the new concept of Maillard peptide in sensory characteristics of Maillard reaction systems.

    PubMed

    Karangwa, Eric; Murekatete, Nicole; Habimana, Jean de Dieu; Masamba, Kingsley; Duhoranimana, Emmanuel; Muhoza, Bertrand; Zhang, Xiaoming

    2016-06-01

    In this study, the flavour-enhancing properties of the Maillard reaction products (MRPs) for different systems consisted of different peptides (sunflower, SFP; corn, CP and soyabean SP) with, xylose and cysteine were investigated. Maillard systems from peptides of sunflower, corn and soyabean with xylose and cysteine were designated as PXC, MCP and MSP, respectively. The Maillard systems were prepared at pH of 7.4 using temperature of 120C for 2 h. Results showed that all systems were significantly different in all sensory attributes. The highest scores for mouthfulness and continuity were observed for MCP with the lowest peptides distribution between 1000 and 5000 Da, known as Maillard peptide. This revealed that the MCP with the lowest Maillard peptide content had the strongest "Kokumi" effect compared to the other MRPsand demonstrated that "kokumi effect" of MRPs was contributed by not only the "Maillard peptide" defined by the molecular weight (1000-5000 Da). Results on sensory evaluation after fractionation of PXC followed by enzymatic hydrolysis showed no significant differences between PXC, P-PXC and their hydrolysates. This observation therefore confirmed that the presence of other contributors attributed to the "Kokumi" effect rather than the Maillard peptide. It can be deduced that the unhydrolyzed crosslinking products might have contributed to the "Kokumi" effect of MRPs. The structures of four probable crosslinking compounds were proposed and the findings have provided new insights in the sensory characteristics of xylose, cysteine and sunflower peptide MRPs.

  17. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    PubMed

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P < 0.05); however, browning intensity and absorbance at 294 nm increased because of the Maillard reaction (P < 0.05). The ACE inhibitory activity improved greatly within 2 h (from 63.48% to 90.23%), which was mainly due to carbonyl ammonia condensation reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  18. A quantitative model of the generation of N(epsilon)-(carboxymethyl)lysine in the Maillard reaction between collagen and glucose.

    PubMed Central

    Ferreira, António E N; Ponces Freire, Ana M J; Voit, Eberhard O

    2003-01-01

    The Maillard reaction between reducing sugars and amino groups of biomolecules generates complex structures known as AGEs (advanced glycation endproducts). These have been linked to protein modifications found during aging, diabetes and various amyloidoses. To investigate the contribution of alternative routes to the formation of AGEs, we developed a mathematical model that describes the generation of CML [ N(epsilon)-(carboxymethyl)lysine] in the Maillard reaction between glucose and collagen. Parameter values were obtained by fitting published data from kinetic experiments of Amadori compound decomposition and glycoxidation of collagen by glucose. These raw parameter values were subsequently fine-tuned with adjustment factors that were deduced from dynamic experiments taking into account the glucose and phosphate buffer concentrations. The fine-tuned model was used to assess the relative contributions of the reaction between glyoxal and lysine, the Namiki pathway, and Amadori compound degradation to the generation of CML. The model suggests that the glyoxal route dominates, except at low phosphate and high glucose concentrations. The contribution of Amadori oxidation is generally the least significant at low glucose concentrations. Simulations of the inhibition of CML generation by aminoguanidine show that this compound effectively blocks the glyoxal route at low glucose concentrations (5 mM). Model results are compared with literature estimates of the contributions to CML generation by the three pathways. The significance of the dominance of the glyoxal route is discussed in the context of possible natural defensive mechanisms and pharmacological interventions with the goal of inhibiting the Maillard reaction in vivo. PMID:12911334

  19. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins

    PubMed Central

    Teodorowicz, Malgorzata; van Neerven, Joost

    2017-01-01

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers’ choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins. PMID:28777346

  20. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins.

    PubMed

    Teodorowicz, Malgorzata; van Neerven, Joost; Savelkoul, Huub

    2017-08-04

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus influence consumers' choices. However, in recent years, MRPs have been linked to the increasing prevalence of diet- and inflammation-related non-communicable diseases including food allergy. Although during the last years a better understanding of immunogenicity of MRPs has been achieved, still only little is known about the structural/chemical characteristics predisposing MRPs to interact with antigen presenting cells (APCs). This report provides a comprehensive review of recent studies on the influence of the Maillard reaction on the immunogenicity and allergenicity of food proteins.

  1. Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation end products.

    PubMed

    Spiteller, Gerhard

    2008-04-01

    Polyunsaturated fatty acids (PUFAs) are incorporated in all membranes of mammalian and plant cells and are extremely sensitive to oxygen. This property is used in nature to respond to any changes in cell membrane structure. In the first step of a response, lipid hydroperoxide molecules are generated. An increasing impact switches the enzymatic reaction to a nonenzymatic one by generation of lipid peroxyl radicals, which attack sugars by oxidation. In the course of these reactions, hydrogen peroxyl radicals are generated, resembling lipid peroxyl radicals in their reactivity. The reactions induced by these radicals are not under genetic control, they attack nearly all types of biological molecules (such as proteins, lipids, and sugars), and are responsible for the deleterious cell alterations in aging and age-related diseases (such as diabetes, Alzheimer's disease, or atherosclerosis) and probably also in autoimmune diseases, which involve sugars at the cell membranes. Lipid peroxidation processes are induced by heating fats, meat, and other nutritional products. The oxidation products generated by consumption of heated food cause damage of mammalian cells. The deleterious reactions can be partly reduced by consumption of plants and/or algae. These contain, among other well-known antioxidants, furan fatty acids, which are important scavengers of peroxyl radicals.

  2. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    SciTech Connect

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.; Baynes, John; Metz, Thomas O.

    2008-12-18

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide on overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.

  3. Structure and antimicrobial mechanism of ɛ-polylysine-chitosan conjugates through Maillard reaction.

    PubMed

    Liang, Chunxuan; Yuan, Fang; Liu, Fuguo; Wang, Yingying; Gao, Yanxiang

    2014-09-01

    The aim of the study was to testify the formation and antimicrobial activity of ɛ-polylysine-chitosan conjugate through Maillard reaction. The results of UV absorbance, browning index and fluorescence changes of Maillard reaction products (MRPs) between ɛ-polylysine and chitosan indicated there existed Maillard reaction between ɛ-polylysine and chitosan and the formation of their conjugate. The conjugate showed strong antibacterial activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and beer yeast. Morphologies of E. coli and S. aureus treated with the conjugate were observed by transmission electron microscopy (TEM). The results revealed that the conjugate of ɛ-polylysine and chitosan increased the permeability of the outer membrane (OM) and inner membrane (IM) and ultimately disrupted bacterial cell membranes, with the release of cellular cytoplasm. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. The influence of emulsion structure on the Maillard reaction of ghee.

    PubMed

    Newton, Angela E; Fairbanks, Antony J; Golding, Matt; Andrewes, Paul; Gerrard, Juliet A

    2015-04-15

    Food systems, such as cream and butter, have an emulsion or emulsion-like structure. When these food emulsions are heated to high temperatures to make products such as ghee, the Maillard reaction forms a range of volatile flavour compounds. The objective of this paper was to unravel the specific influence of emulsion structure on the Maillard reaction pathways that occur during the cooking of ghee using model systems. Switching the dispersed phase from oil to water provided a means of altering the ratios of volatile compounds produced in the cooked samples. The oil-in-water emulsion generated a volatile compound profile similar to that of the fat containing two phase model matrix, whereas the water-in-oil emulsion produced a different ratio of these compounds. The ability to generate different volatile compound profiles through the use of inverted emulsion structures could point to a new avenue for control of the Maillard reaction in high temperature food systems.

  5. Identification of Maillard reaction induced chemical modifications on Ara h 1

    USDA-ARS?s Scientific Manuscript database

    The Maillard reaction is a non-enzymatic glycation reaction between proteins and reducing sugars that can modify nut allergens during thermal processing. These modifications can alter the structural and immunological properties of these allergens, and may result in increased IgE binding. Here, we ...

  6. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    USDA-ARS?s Scientific Manuscript database

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  7. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    PubMed

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R(2)) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  8. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology

    PubMed Central

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-01-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter’s L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R2) for their absorbance, Hunter’s L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter’s b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter’s b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine. PMID:28401086

  9. Investigation of Possible Maillard Reaction Between Acyclovir and Dextrose upon Dilution Prior to Parenteral Administration.

    PubMed

    Siahi Shadbad, Mohammad Reza; Ghaderi, Faranak; Hatami, Leila; Monajjemzadeh, Farnaz

    2016-12-01

    In this study the stability of parenteral acyclovir (ACV) when diluted in dextrose (DEX) as large volume intravenous fluid preparation (LVIF) was evaluated and the possible Maillard reaction adducts were monitored in the recommended infusion time. Different physicochemical methods were used to evaluate the Maillard reaction of dextrose with ACV to track the reaction in real infusion condition. Other large volume intravenous fluids were checked regarding the diluted drug stability profile. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and mass data proved the reaction of glucose with dextrose. A Maillard-specific high performance liquid chromatography (HPLC) method was used to track the reaction in real infusion condition in vitro. The nucleophilic reaction occurred in diluted parenteral preparations of acyclovir in 5% dextrose solutions. The best diluent solution was also selected as sodium chloride and introduced based on drug stability and also its adsorption onto different infusion sets (PVC or non PVC) to provide an acceptable administration protocol in clinical practices. Although, the Maillard reaction was proved and successfully tracked in diluted solutions, and the level of drug loss when diluted in dextrose was reported to be between 0.27 up to 1.03% of the initial content. There was no drug adsorption to common infusion sets. The best diluent for parenteral acyclovir is sodium chloride large volume intravenous fluid.

  10. The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction

    NASA Astrophysics Data System (ADS)

    Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro

    2007-11-01

    The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.

  11. Free radical depolymerization of hyaluronan by Maillard reaction products: role in liquefaction of aging vitreous.

    PubMed

    Deguine, V; Menasche, M; Ferrari, P; Fraisse, L; Pouliquen, Y; Robert, L

    1998-02-01

    The degradation of hyaluronan was followed by viscosimetry and by HPLC in order to study the possible role of Maillard products (lysine-glucose) on the alteration of the vitreous gel in aging and diabetes. Lysine-glucose generated Maillard products produced a decrease of viscosity and of the number average molecular weight (Mn) of hyaluronan during a 1 h incubation at 37 degrees C. This effect was comparable to that produced by 1 U/ml of testicular hyaluronidase but was weaker than the effect of a Fenton-type reagent (Udenfriend's reagent). The polydispersity of hyaluronan incubated with Maillard products appeared higher than with hyaluronidase suggesting a more random reaction. Antioxydant enzymes (SOD, catalase), the iron chelators (desferrioxamine, transferrin) and the free radical scavengers (uric acid, carnosine) inhibited the degradation by Maillard products confirming its free radical nature and the intervention of trace metals. Maillard products have been detected in diabetic vitreous and may play a role in its accelerated modifications (liquefaction) in diabetes as compared to normal aging.

  12. Effects of odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves.

    PubMed

    Zhou, Lanxi; Ohata, Motoko; Arihara, Keizo

    2016-06-15

    Effects of the odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves were investigated in the present study. Equimolar solutions of glucose and glycine were adjusted to pH 7 and pH 9 and heated at 90 °C for 30 min. The odor generated from the glycine/glucose Maillard reaction significantly decreased negative moods. Its effects on brainwaves differed according to pH; alpha brainwave distribution was increased after inhalation of the odor generated at pH 7, whereas it was decreased by the odor generated at pH 9. The effects on mood and brainwaves were also measured after inhalation of model solutions, which comprised of potent odorants determined by aroma extract dilution analysis (AEDA), and the results were similar to those obtained with the Maillard reaction samples. Therefore, odors constructed by potent odorants could influence human mood and brainwaves. Among all potent odorants, 2,3-dimethylpyrazine and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) were identified as the strongest, and high pH values resulted in higher yields of these odorants. Furthermore, DMHF was identified as the putative agent responsible for the decrease in alpha brainwave distribution after smelling the pH-9 Maillard reaction sample since higher concentrations of DMHF resulted in a similar effect.

  13. Regulatory Notes on Impact of Excipients on Drug Products and the Maillard Reaction.

    PubMed

    Chowdhury, Dipak K; Sarker, Haripada; Schwartz, Paul

    2017-09-25

    In general, it is an important criterion that excipients remain inert throughout the shelf life of the formulated pharmaceutical product. However, depending on the functionality in chemical structure of active drug and excipients, they may undergo interaction. The well-known Maillard reaction occurs between a primary amine with lactose at high temperature to produce brown pigments. The reactivity of Maillard reaction may vary depending on the concentration as well as other conditions. Commercially, there are products where the active pharmaceutical ingredient is a primary amine and contains less than 75% lactose along with inactive excipients. This product does not show Maillard reaction during its shelf life of around 2 years at ambient conditions. However, when the same type of product contains more than 95 % lactose as an excipient, then there is a possibility of interactions though it is not visible in the initial year. Therefore, this regulatory note discusses involvement of different factors of a known drug-excipient interactions with case studies and provides an overview on how the concentration of lactose in the pharmaceutical product is important in addition to temperature and moisture in Maillard reaction.

  14. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  15. A study of the tyramine/glucose Maillard reaction: Variables, characterization, cytotoxicity and preliminary application.

    PubMed

    Jiang, Wei; Chen, Yaxin; He, Xiaoxia; Hu, Shiwei; Li, Shijie; Liu, Yu

    2018-01-15

    The tyramine/glucose Maillard reaction was proposed as an emerging tool for tyramine reduction in a model system and two commercial soy sauce samples. The model system was composed of tyramine and glucose in buffer solutions with or without NaCl. The results showed that tyramine was reduced in the model system, and the reduction rate was affected by temperature, heating time, initial pH value, NaCl concentration, initial glucose concentration and initial tyramine concentration. Changes in fluorescence intensity and ultraviolet-visible (UV-vis) absorption spectra showed three stages of the Maillard reaction between tyramine and glucose. Cytotoxicity assay demonstrated that tyramine/glucose Maillard reaction products (MRPs) were significantly less toxic than that of tyramine (p<0.05). Moreover, tyramine concentration in soy sauce samples was significantly reduced when heated with the addition of glucose (p<0.05). Experimental results showed that the tyramine/glucose Maillard reaction is a promising method for tyramine reduction in foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of Maillard reaction on allergenicity of buckwheat allergen Fag t 3 during thermal processing.

    PubMed

    Yang, Zhen-Huang; Li, Chen; Li, Yu-Ying; Wang, Zhuan-Hua

    2013-04-01

    Fag t 3 is a major allergenic protein in tartary buckwheat. The Maillard reaction commonly occurs in food processing, but few studies have been conducted on the influence of thermal processing on the allergenic potential of buckwheat allergen. The aim of the present study was to investigate the effects of autologous plant polysaccharides on the immunoreactivity of buckwheat Fag t 3 (11S globulin) following the Maillard reaction. Fag t 3 and crude polysaccharides were prepared from tartary buckwheat (Fagopyrum tataricum) flour. After heating, the polysaccharides were covalently linked to Fag t 3 via a Maillard reaction, and the IgE/IgG-binding properties of Fag t 3 decreased dramatically, with significant changes also being observed in the electrophoretic mobility, secondary structure and solubility of the glycated Fag t 3. The great influence of glycation on IgE/IgG binding to Fag t 3 was correlated with a significant change in the structure and epitopes of the allergenic protein. These data indicated that conjugation of polysaccharides to Fag t 3 markedly reduced the allergen's immunoreactivity. Glycation that occurs via the Maillard reaction during the processing of buckwheat food may be an efficient method to reduce Fag t 3 allergenicity. © 2012 Society of Chemical Industry.

  17. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    ERIC Educational Resources Information Center

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  18. Preventive effect of fermented Maillard reaction products from milk proteins in cardiovascular health.

    PubMed

    Oh, N S; Kwon, H S; Lee, H A; Joung, J Y; Lee, J Y; Lee, K B; Shin, Y K; Baick, S C; Park, M R; Kim, Y; Lee, K W; Kim, S H

    2014-01-01

    The aim of this study was to determine the dual effect of Maillard reaction and fermentation on the preventive cardiovascular effects of milk proteins. Maillard reaction products (MRP) were prepared from the reaction between milk proteins, such as whey protein concentrates (WPC) and sodium caseinate (SC), and lactose. The hydrolysates of MRP were obtained from fermentation by lactic acid bacteria (LAB; i.e., Lactobacillus gasseri H10, L. gasseri H11, Lactobacillus fermentum H4, and L. fermentum H9, where human-isolated strains were designated H1 to H15), which had excellent proteolytic and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities (>20%). The antioxidant activity of MRP was greater than that of intact proteins in assays of the reaction with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and trivalent ferric ions; moreover, the effect of MRP was synergistically improved by fermentation. The Maillard reaction dramatically increased the level of antithrombotic activity and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitory effect of milk proteins, but did not change the level of activity for micellar cholesterol solubility. Furthermore, specific biological properties were enhanced by fermentation. Lactobacillus gasseri H11 demonstrated the greatest activity for thrombin and HMGR inhibition in Maillard-reacted WPC, by 42 and 33%, respectively, whereas hydrolysates of Maillard-reacted SC fermented by L. fermentum H9 demonstrated the highest reduction rate for micellar cholesterol solubility, at 52%. In addition, the small compounds that were likely released by fermentation of MRP were identified by size-exclusion chromatography. Therefore, MRP and hydrolysates of fermented MRP could be used to reduce cardiovascular risks.

  19. Maillard reactions in hyperthermophilic archaea: implications for better understanding of non-enzymatic glycation in biology.

    PubMed

    Szwergold, Benjamin S

    2013-08-01

    Maillard reactions are an unavoidable feature of life that appear to be damaging to cell and organisms. Consequently, all living systems must have ways to protect themselves against this process. As of 2012, several such defense mechanisms have been identified. They are all enzymatic and were found in mesophilic organisms. To date, no systematic study of Maillard reactions and the relevant defense mechanisms has been conducted in thermophiles (50°C-80°C) or hyperthermophiles (80°C-120°C). This is surprisingly because Maillard reactions become significantly faster and potent with increasing temperatures. This review examines this neglected issue in two well-defined sets of hyperthermophiles. My analysis suggests that hyperthermophiles cope with glycation stress by several mechanisms: • Absence of glycation-prone head groups (such as ethanoalamine) from hyperthermophilic phospholipids • Protection of reactive carbohydrates and labile metabolic intermediates by substrate channeling. • Conversion of excess reactive sugars such as glucose to non-reactive compounds including trehalose, di-myo-inositol-phosphate and mannosylglycerate. • Detoxification of methylglyoxal and other ketoaldehydes by conversion to inert products through a variety of reductases and dehydrogenases. • Scavenging of the remaining carbonyls by nucleophilic amines, including a variety of novel polyamines. Disruption of the Maillard process at its early stages, rather than repair of damage caused by it at later stages, appears to be the preferred strategy in the organisms examined. The most unique among these mechanisms appears to be a polyamine-based scavenging system. Undertaking research of the Maillard process in hyperthermophiles is important in its own right and is also likely to provide new insights for the control of these reactions in humans, especially in diseases such as diabetes mellitus.

  20. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.

    PubMed

    Jiang, Deshou; Chiaro, Christopher; Maddali, Pranav; Prabhu, K Sandeep; Peterson, Devin G

    2009-11-11

    The chemistry and fate of hydroxycinnamic acids (ferulic, p-coumeric, caffeic, sinapic, and cinnamic acid) in a glucose/glycine simulated baking model (10% moisture at 200 degrees C for 15 min) were investigated. Liquid chromatography-mass spectrometry analysis of glucose/glycine and glucose/glycine/hydroxycinnamic acid model systems confirmed the phenolics reacted with Maillard intermediates; two main reaction product adducts were reported. On the basis of isotopomeric analysis, LC-MS, and NMR spectroscopy, structures of two ferulic acid-Maillard reaction products were identified as 6-(4-hydroxy-3-methoxyphenyl)-5-(hydroxymethyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (adduct I) and 2-(6-(furan-2-yl)-7-(4-hydroxy-3-methoxyphenyl)-1-methyl-3-oxo-2,5-diazabicyclo[2.2.2]oct-5-en-2-yl)acetic acid (adduct II). In addition, a pyrazinone-type Maillard product, 2-(5-(furan-2-yl)-6-methyl-2-oxopyrazin-1(2H)-yl) acetic acid (IIa), was identified as an intermediate for reaction product adduct II, whereas 3-deoxy-2-hexosulose was identified as an intermediate of adduct I. Both adducts I and II were suggested to be generated by pericyclic reaction mechanisms. Quantitative gas chromatography (GC) analysis and liquid chromatography (LC) also indicated that the addition of ferulic acid to a glucose/glycine model significantly reduced the generation of select Maillard-type aroma compounds, such as furfurals, methylpyrazines, 2-acetylfuran, 2-acetylpyridine, 2-acetylpyrrole, and cyclotene as well as inhibited color development in these Maillard models. In addition, adducts I and II suppressed the bacterial lipopolysaccharide (LPS)-mediated expression of two prototypical pro-inflammatory genes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, in an in vitro murine macrophage model; ferulic acid reported negligible activity.

  1. Impact of high-intensity ultrasound on the formation of lactulose and Maillard reaction glycoconjugates.

    PubMed

    Corzo-Martínez, Marta; Montilla, Antonia; Megías-Pérez, Roberto; Olano, Agustín; Moreno, F Javier; Villamiel, Mar

    2014-08-15

    The impact of high-intensity ultrasound (US) on the formation of lactulose during lactose isomerization and on the obtention of lysine-glucose glycoconjugates during Maillard reaction (MR) has been studied, respectively, in basic and neutral media. As compared to equivalent conventional heat treatments, a higher formation of furosine, as indicator of initial steps of MR, was observed together with more advance of the reaction in US treated samples, this effect being more pronounced with the increase of US amplitude (50-70%) and temperature (25-40 °C). Regarding the influence of US on lactulose formation, in general, in a buffered system (pH 10.0), US at 70% of amplitude and 60 °C increased the rate of lactose isomerization, higher values of lactulose, epilactose and galactose being observed in comparison to conventional heating. The results of this work showed an acceleration of both reactions by US, indicating its usefulness to promote the formation of functional ingredients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. New functionalities of Maillard reaction products as emulsifiers and encapsulating agents, and the processing parameters: a brief review.

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Alitheen, Noorjahan Banu Mohamed; Tan, Chin-Ping; Lai, Oi-Ming

    2017-03-01

    Non-enzymatic browning has been a wide and interesting research area in the food industry, ranging from the complexity of the reaction to its applications in the food industry as well as its ever-debatable health effects. This review provides a new perspective to the Maillard reaction apart from its ubiquitous function in enhancing food flavour, taste and appearance. It focuses on the recent application of Maillard reaction products as an inexpensive and excellent source of emulsifiers as well as superior encapsulating matrices for the entrapment of bioactive compounds. Additionally, it will also discuss the latest approaches employed to perform the Maillard reaction as well as several important reaction parameters that need to be taken into consideration when conducting the Maillard reaction. © 2016 Society of Chemical Industry.

  3. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition.

    PubMed

    Tamanna, Nahid; Mahmood, Niaz

    2015-01-01

    Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs). Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods.

  4. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    PubMed Central

    Tamanna, Nahid; Mahmood, Niaz

    2015-01-01

    Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs). Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods. PMID:26904661

  5. Thermal luminescence spectra of polyamides and their Maillard reaction with reducing sugars.

    PubMed

    Karakisawa, Taketo; Yamada, Taishi; Sekine, Masahiko; Ishii, Hiroshi; Satoh, Chikahiro; Millington, Keith R; Nakata, Munetaka

    2012-01-01

    Thermal luminescence (TL) spectra of polyamides were measured with a Fourier-transform chemiluminescence spectrometer to elucidate the emission mechanism. A TL band of ε-polylysine with a peak at 542 nm observed at 403 K was assigned to the emission due to the interaction of the -CO-NH- group with oxygen molecules by comparison with nylon-6, polyglycine, and polyalanine. When the sample was kept at 453 K, the intensity of the TL band decreased and the wavelength of the peak shifted to 602 nm, which was assigned to the emission due to the interaction of the NH2 group on the side chain with oxygen molecules by comparison with monomeric lysine. A weak emission with a peak at 668 nm was assigned to the advanced glycosylation end products (AGEs) yielded by the Maillard reaction with a catalytic amount of water. To understand this reaction and to examine the TL emission of AGEs, we measured TL spectra of mixtures of polylysine and reducing sugars such as glucose, maltose, lactose, and dextrin. The minimum temperature for TL emission, wavelength of the peak and the relative intensities of the TL emission were found to depend on the size of the sugars. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Characteristics and antioxidant activity of Maillard reaction products from psicose-lysine and fructose-lysine model systems.

    PubMed

    Zeng, Yan; Zhang, Xiaoxi; Guan, Yuping; Sun, Yuanxia

    2011-04-01

    D-Psicose, an epimer of D-fructose isomerized at C-3 position, is a rare ketohexose that is thought to be beneficial for obese people and diabetic patients as a noncaloric sweetener. In the present study, model Maillard reaction products were obtained from D-psicose (or D-fructose) and L-lysine heating at 120 °C up to 8 h with the initial pH 9.0. The changes in pH, UV-vis absorbance, and free amino groups during the reaction were detected. Moreover, the antioxidant potential of the Maillard reaction products at different intervals was investigated. Although there was almost no difference in the oxygen radical absorbance capacity, the Maillard reaction products from psicose performed better than that from fructose in the radical-scavenging activity of 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and 1, 1,-diphenyl-2-picryl-hydrazyl. The reducing power of the Maillard reaction products from psicose was also stronger than that from fructose. These results indicated that psicose played an effective role in the Maillard reaction and its Maillard reaction products could act as potential antioxidants in food industry.

  7. Urinary excretion of dietary Maillard reaction products in healthy adult female cats.

    PubMed

    van Rooijen, C; Bosch, G; Butré, C I; van der Poel, A F B; Wierenga, P A; Alexander, L; Hendriks, W H

    2016-01-01

    During processing of foods, the Maillard reaction occurs, resulting in the formation of advanced Maillard reaction products (MRP). Varying amounts of MRP have been found in commercially processed pet foods. Dietary MRP can be absorbed and contribute to the endogenous pool of MRP and possibly the etiology of age-related diseases. The aim of the present study was to determine urinary excretion of dietary MRP in cats fed commercial moist and dry foods. A pilot study with 10 cats, conducted to determine the adaptation time required for stable urinary excretion of MRP when changing to a diet with contrasting MRP content, showed an adaptation time of 1 d for all components. In the main study, 6 commercially processed dry and 6 moist diets were fed to 12 adult female cats in 2 parallel randomized, 36-d Latin square designs. The 24-h urine was collected quantitatively using modified litter boxes, and fructoselysine (FL), carboxymethyllysine (CML), and lysinoalanine (LAL) were analyzed using ultra high performance liquid chromatography (UHPLC) - mass spectrometer. Daily urinary excretion of FL and CML showed a positive relationship with daily intake in the dry ( = 0.03 and < 0.01, respectively) and moist ( < 0.01) foods. For LAL, no significant relationship was observed. Urinary recovery (% ingested) showed a negative relationship with daily intake for FL, CML, and LAL in the dry foods ( < 0.01, < 0.01, and = 0.08, respectively) and for CML and LAL in the moist foods ( < 0.01). The observed increase in urinary excretion with increasing dietary intake indicates that dietary MRP were absorbed from the gastrointestinal tract of cats and excreted in the urine. The adaptation time with change in diet indicates a likely effective excretion of MRP. Minimum apparent absorption of FL, CML, and LAL was found to range between 8% and 23%, 25% and 73%, and 6% and 19%, respectively. The observed decrease in urinary recovery suggests a limiting factor in digestion, absorption, metabolism

  8. Maillard reaction products in bread: A novel semi-quantitative method for evaluating melanoidins in bread.

    PubMed

    Helou, Cynthia; Jacolot, Philippe; Niquet-Léridon, Céline; Gadonna-Widehem, Pascale; Tessier, Frédéric J

    2016-01-01

    The aim of this study was to test the methods currently in use and to develop a new protocol for the evaluation of melanoidins in bread. Markers of the early and advanced stages of the Maillard reaction were also followed in the crumb and the crust of bread throughout baking, and in a crust model system. The crumb of the bread contained N(ε)-fructoselysine and N(ε)-carboxymethyllysine but at levels 7 and 5 times lower than the crust, respectively. 5-Hydroxymethylfurfural was detected only in the crust and its model system. The available methods for the semi-quantification of melanoidins were found to be unsuitable for their analysis in bread. Our new method based on size exclusion chromatography and fluorescence measures soluble fluorescent melanoidins in bread. These melanoidin macromolecules (1.7-5.6 kDa) were detected intact in both crust and model system. They appear to contribute to the dietary fibre in bread. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effects of Maillard reaction on flavor and safety of Chinese traditional food: roast duck.

    PubMed

    Zhou, Yiming; Xie, Fan; Zhou, Xiaoli; Wang, Yuqiang; Tang, Wen; Xiao, Ying

    2016-04-01

    Roast duck is one kind of representative roast food whose flavor is mainly produced by the Maillard reaction. However, some potentially toxic compounds are generated in the thermal process and are a potential health risk. The aim of this work was to analyze the effects of the Maillard reaction on flavor and safety of a Chinese traditional food: roast duck. Ducks with different roasting times (0, 10, 20, 30, 40, 50 and 60 min) were analyzed. The 40 and 50 min roast ducks exhibited an acceptable degree of sensory attributes, but the 60 min roast duck showed the most abundant aroma compounds. Antioxidant activities were observed to increase with roasting, and the 60 min roast duck showed the highest antioxidant activities (1,1-diphenylpicryhydrazyl, 39.3 µmol Trolox g(-1) sample). The highest content of acrylamide (0.21 µg g(-1)) and 5-hydroxymethylfurfural (0.089 µg g(-1)) were detected in the 50 and 60 min roast duck extract, respectively. Furthermore, water extract from 60 min roast ducks manifested a higher lactose dehydrogenase release ratio (51.9%) and greatly increased cell apoptosis. The drastic Maillard reaction in duck induced by long roasting time could be advantageous for color, aroma and antioxidant activities in roast ducks, but might be not beneficial to health. © 2015 Society of Chemical Industry.

  10. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean.

    PubMed

    Zilić, Slađana; Mogol, Burçe Ataç; Akıllıoğlu, Gül; Serpen, Arda; Delić, Nenad; Gökmen, Vural

    2014-01-15

    The Maillard reaction indicators furosine, hydroxymethylfurfural (HMF), acrylamide and color were determined to evaluate heat effects induced during extrusion, infrared and microwave heating of soybean. In addition, the present paper aimed to study changes in the phenolic compounds, as well as in the overall antioxidant properties of different soybean products in relation to heating at 45-140 °C during the processes. Soybean proteins were highly sensible to Maillard reaction and furosine was rapidly formed under slight heating conditions during extrusion and infrared heating. Microwave heating at lower temperatures for a longer time yielded lower acrylamide levels in the final soybean products, as a result of its partial degradation. However, during infrared heating, acrylamide formation greatly increased with decreasing moisture content. After a short time of extrusion and infrared heating at 140 °C and microwave heating at 135 °C for 5 min, concentrations of HMF increased to 11.34, 26.21 and 34.97 µg g(-1), respectively. The heating conditions caused formation of acrylamide, HMF and furosine in high concentration. The results indicate that the complex structure of soybeans provides protection of phenolic compounds from thermal degradation, and that Maillard reaction products improved the antioxidant properties of heat-treated soybean. © 2013 Society of Chemical Industry.

  11. Free glutamine as a major precursor of brown products and fluorophores in Maillard reaction systems.

    PubMed

    Niquet, C; Tessier, F J

    2007-07-01

    Glutamine is one of the most abundant free amino acid found in raw food. In this study, the contribution of free glutamine to nonenzymatic browning and fluorescence was investigated using an aqueous model system with methylglyoxal. The results indicated that glutamine contributed to the Maillard reaction via two pathways. First, the hydrolysis of the amide bond of glutamine led to the release of ammonia which was implicated in the formation of brown color and fluorescence. Among other nitrogen donors tested (asparagine, glutamic acid and urea) our results demonstrated that free glutamine was a major source of ammonia during heating. When heated at 120 and 180 degrees C, 100% of ammonia was released from glutamine after 60 and 10 min, respectively. The second pathway involved a direct Maillard reaction with the alpha-amino group of glutamine. Both pathways led to a rapid and complete destruction of glutamine when heated in the model systems. With reference to the Maillard browning (absorbance at 420 nm) glutamine turned out to be the most reactive amine, followed by asparagine, glutamate, ammonia and urea. Maximum fluorescence (excitation and emission wavelengths at 330 and 450 nm, respectively) was also observed with glutamine followed by urea and ammonia. Overall this study suggested that free glutamine predominantly contributes to the color and fluorescence formations of foodstuffs.

  12. Two novel pyrrolooxazole pigments formed by the Maillard reaction between glucose and threonine or serine.

    PubMed

    Noda, Kyoko; Murata, Masatsune

    2017-02-01

    Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300-360 nm under acidic and neutral conditions and at 320-390 nm under alkaline conditions.

  13. Interface-related attributes of the Maillard reaction-born glycoproteins.

    PubMed

    Karbasi, Mehri; Madadlou, Ashkan

    2017-01-19

    Interfacial behavior of proteins which is a chief parameter to their emulsifying and foaming properties can be tailored through the Maillard reaction. The reaction can increase protein solubility at isoelectric point and ought to be controlled for example by high pressure processing to suppress melanoidins formation. Branched and long saccharides bring considerable steric hindrance which is associated with their site of conjugation to proteins. Conjugation with high molecular weight polysaccharides (such as 440 kDa dextran) may indeed increase the thickness of globular proteins interfacial film up to approximately 25 nm. However, an overly long saccharide can shield protein charge and slow down the electrophoretic mobility of conjugate. Maillard conjugation may decrease the diffusion rate of proteins to interface, allowing further unfolding at interface. As well, it can increase desorption iteration of proteins from interface. In addition to tempering proteins adsorption to interface, Maillard conjugation influences the rheology of protein membranes. Oligosaccharides (especially at higher glycation degrees) decrease the elastic modulus and Huggins constant of protein film; whereas, monosaccharides yield a more elastic interface. Accordingly, glycation of random coil proteins has been exploited to stiffen the corresponding interfacial membrane. Partial hydrolysis of proteins accompanied with anti-solvent-triggered nanoparticulation either before or after conjugation is a feasible way to enhance their emulsifying activity.

  14. Effects of the Maillard Reaction on the Immunoreactivity of Amandin in Food Matrices.

    PubMed

    Chhabra, Guneet S; Liu, Changqi; Su, Mengna; Venkatachalam, Mahesh; Roux, Kenneth H; Sathe, Shridhar K

    2017-08-23

    Amandin is the major storage protein and allergen in almond seeds. Foods, containing almonds, subjected to thermal processing typically experience Maillard browning reaction. The resulting destruction of amino groups, protein glycation, and/or denaturation may alter amandin immunoreactivity. Amandin immunoreactivity of variously processed almond containing foods was therefore the focus of the current investigation. Commercial and laboratory prepared foods, including those likely to have been subjected to Maillard browning, were objectively assessed by determining Hunter L(*) , a(*) , b(*) values. The L(*) values for the tested samples were in the range of 31.75 to 85.28 consistent with Maillard browning. Three murine monoclonal antibodies, 4C10, 4F10, and 2A3, were used to determine the immunoreactivity of the targeted samples using immunoassays (ELISA, Western blot, dot blot). The tested foods did not exhibit cross-reactivity indicating that the immunoassays were amandin specific. For sandwich ELISAs, ratio (R) of sample immunoreactivity to reference immunoreactivity was calculated. The ranges of R values were 0.67 to 15.19 (4C10), 1.00 to 11.83 (4F10), and 0.77 to 23.30 (2A3). The results of dot blot and Western blot were consistent with those of ELISAs. Results of these investigations demonstrate that amandin is a stable marker protein for almond detection regardless of the degree of amandin denaturation and/or destruction as a consequence of Maillard reaction encountered under the tested processing conditions. © 2017 Institute of Food Technologists®.

  15. Effect of xylose on the molecular and particle size distribution of peanut hydrolysate in Maillard reaction system.

    PubMed

    Su, Guowan; Cui, Chun; Ren, Jiaoyan; Yang, Bao; Zhao, Mouming

    2011-10-01

    The Maillard reaction is a complex series of reactions between reducing sugars and amino groups. Changing any of reaction parameters would alter the reaction pathway. This study investigated the effect of xylose concentration on the molecular and particle size distribution of Maillard reaction products (MRPs) derived from peanut hydrolysate and xylose to discuss their formation mechanism. Molecular weight and particle size distribution analyses indicated that both peptide degradation and peptide cross-linking occurred during the Maillard reaction. Heat treatment would make the high-molecular-weight peptides degrade into low-molecular-weight peptides and free amino acids. Maillard reaction increased the molecular weight and particle sizes of products as the xylose concentration increased from 1% to 4%. The study shows that both peptide degradation and peptide cross-linking occurred during the Maillard reaction. The thermal degradation product (TDP) and MRPs had significantly different molecular size distribution, and the particle size distribution of TDPs and MRPs had similar change tendency to that of the molecular size distribution. These would provide an insight into the formation mechanism of MRPs. Copyright © 2011 Society of Chemical Industry.

  16. Possibility of the Nonenzymatic Browning (Maillard) Reaction in the ISM

    NASA Astrophysics Data System (ADS)

    Jalbout, Abraham F.; Shipar, M. Abul Haider

    2008-04-01

    The possibility of the occurrence of the nonenzymatic browning reaction in the gaseous phase in the interstellar medium has been investigated by using Density Functional Theory computations. Mechanisms for the reactions between formaldehyde ( Fald) + glycine ( Gly), Fald + NH 3 and Fald + methylamine ( MeAm) have been proposed, and the possibility of the formation of different compounds in the proposed mechanisms has been evaluated through calculating the Gibb's free energy changes for different steps of the reaction, by following the total mass balance. The Fald + Gly reaction under basic conditions is found as the most favorable for producing 1-methyl-amino methene or 1-methyl-amino methelene ( MAM). The reaction under acidic conditions is found to be the least favorable for producing MAM. The Fald + NH 3 reaction is found to be plausible for the production of MeAm, which can participate by reaction with Fald, resulting in the formation of MAM.

  17. Identification of hydrogen peroxide as a major cytotoxic component in Maillard reaction mixtures and coffee.

    PubMed

    Hegele, Jörg; Münch, Gerald; Pischetsrieder, Monika

    2009-06-01

    The cytotoxic activity of Maillard reaction products and coffee was studied using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and the neutral red uptake (NRU) assay. Equimolar mixtures of sugars and lysine were heated at 120 degrees C and used to stimulate bovine aorta endothelial cells for 24 h. The cytotoxic activity increased with increase in educt concentration and heating time. Mixtures containing ribose were most active, followed by lactose and glucose. Hydrogen peroxide, which was present in the Maillard mixtures in concentrations between 7 and 87 microM, was identified as one of their major cytotoxic components. H2O2-concentrations increased further up to 130 microM under cell culture conditions. Filter coffee, espresso, and green coffee extract reduced cell viability significantly to 10, 19, and 83% of PBS-treated control. The effect was largely attenuated by the addition of catalase. Nil, 33, and 41 microM H2O2 was measured in green coffee extract, filter coffee, and espresso, respectively, increasing to 13, 369, and 333 microM during cell culture conditions. No additional H2O2 formation was detected when coffee was incubated for up to 5 h without further treatment. In conclusion, hydrogen peroxide is a major product in Maillard mixtures and coffee inducing cell death in vitro.

  18. A study of different indicators of Maillard reaction with whey proteins and different carbohydrates under adverse storage conditions.

    PubMed

    Leiva, Graciela E; Naranjo, Gabriela B; Malec, Laura S

    2017-01-15

    This study examined different indicators of each stage of Maillard reaction under adverse storage conditions in a system with whey proteins and lactose or glucose. The analysis of lysine loss by the o-phthaldialdehyde method can be considered a good indicator of the early stage, showing considerable differences in reactivity when systems with mono and disaccharides were analyzed. Capillary electrophoresis proved to be a sensitive method for evaluating the extent of glycosylation of the native proteins, providing valuable information when the loss of lysine was not significant. The estimation of the Amadori compound from the determination of total 5-hydroxymethyl-2-furfuraldehyde would have correlate well with reactive lysine content if the advanced stages of the reaction had not been reached. For assessing the occurrence of the intermediate and final stages, the measurement of free 5-hydroxymethyl-2-furfuraldehyde and color, proved not to be suitable for storage conditions.

  19. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    PubMed Central

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.; Baynes, John W.; Metz, Thomas O.

    2009-01-01

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression. PMID:19093874

  20. Investigation of the Maillard Reaction between Polysaccharides and Proteins from Longan Pulp and the Improvement in Activities.

    PubMed

    Han, Miao-Miao; Yi, Yang; Wang, Hong-Xun; Huang, Fei

    2017-06-05

    The purpose of this study was to investigate the Maillard reaction between polysaccharides and proteins from longan pulp and the effects of reaction on their in vitro activities. The polysaccharide-protein mixtures of fresh longan pulp (LPPMs) were co-prepared by an alkali extraction-acid precipitation method. They were then dry-heated under controlled conditions for monitoring the characterization of the Maillard reaction by the measurement of the free amino group content, ultraviolet-visible spectrum, Fourier transform infrared spectrum and molecular weight distribution. All the physicochemical analyses indicated the development of the Maillard reaction between polysaccharides and proteins. The in vitro activity evaluation indicated that the Maillard reaction could effectively enhance the antioxidant, antitumor and immunostimulating activities of LPPMs. The enhancement of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power displayed both a positive correlation with the reaction time (p < 0.05). LPPMs dry-heated for three days obtained relatively strong inhibitory activity against HepG2 cells and SGC7901 cells, as well as strong immunostimulating effects on the nitric oxide production and tumor necrosis factor α secretion of macrophages. Maillard-type intermacromolecular interaction is suggested to be an effective and controllable method for improving the functional activities of polysaccharides and proteins from longan pulp.

  1. Maillard-reaction-induced modification and aggregation of proteins and hardening of texture in protein bar model systems.

    PubMed

    Zhou, Peng; Guo, Mufan; Liu, Dasong; Liu, Xiaoming; Labuza, Teodore P

    2013-03-01

    The hardening of high-protein bars causes problems in their acceptability to consumers. The objective of this study was to determine the progress of the Maillard reaction in model systems of high-protein nutritional bars containing reducing sugars, and to illustrate the influences of the Maillard reaction on the modification and aggregation of proteins and the hardening of bar matrices during storage. The progress of the Maillard reaction, glycation, and aggregation of proteins, and textural changes in bar matrices were investigated during storage at 25, 35, and 45 °C. The initial development of the Maillard reaction caused little changes in hardness; however, further storage resulted in dramatic modification of protein with formation of high-molecular-weight polymers, resulting in the hardening in texture. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula minimized the changes in texture. The hardening of high-protein bars causes problems in their acceptability to consumers. Maillard reaction is one of the mechanisms contributing to the hardening of bar matrix, particularly for the late stage of storage. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula will minimize the changes in texture. © 2013 Institute of Food Technologists®

  2. The effects of phytic acid on the Maillard reaction and the formation of acrylamide.

    PubMed

    Wang, Huan; Zhou, Yamin; Ma, Jimei; Zhou, Yuanyuan; Jiang, Hong

    2013-11-01

    Phytic acid, myo-inositol hexaphosphoric acid, exists in substantial (1-5%) amounts in edible plant seeds. In this study the effects of phytic acid on the Maillard reaction and the formation of acrylamide were investigated. Both phytic acid and phosphate enhanced browning in glucose/β-alanine system, but phytic acid was less effective than phosphate. Higher pH favoured the catalytic activities for both of them. The influence of the types of sugar and amino acid on the reaction was also examined. Browning was suppressed by the addition of calcium and magnesium ions, but an additive effect was observed for ferrous ions and phytic acid in glucose/β-alanine solution at pH 8.0. Both phytic acid and phosphate promoted the polymerisation of the reaction intermediates. The kinetics of Maillard reaction was first-ordered reaction in the presence of phytic acid. Phytic acid was less effective than phosphate in the formation of acrylamide. When potato slices were treated with sodium phytate and calcium chloride successively, the formation of acrylamide was greatly suppressed.

  3. Testing biological activity of model Maillard reaction products: studies on gastric smooth muscle tissues.

    PubMed

    Argirova, Mariana D; Stefanova, Iliyana D; Krustev, Athanas D; Turiiski, Valentin I

    2010-03-01

    Water-soluble Maillard reaction products obtained from five different model systems were investigated for their effects upon the mechanical activity of rat gastric smooth muscle. Most of the total Maillard reaction products applied at concentration of 1.5 mg/ml evoked contractions; among them the product obtained from arginine and glucose (Arg-Glc) produced the most powerful contractions. The product obtained from glycine and ascorbic acid (Gly-AsA) was the only one that brought about relaxation response. The high molecular weight fractions (>3,500 Da) isolated from the reaction systems Arg-Glc and Gly-AsA demonstrated effects similar in type and amplitude to those evoked by non-fractioned reaction products. The results obtained suggest that moieties of molecules acting upon the muscle tonus originate mainly from lysine and arginine residues; that these structures are available in both low and high molecular pools in similar concentrations, and most likely these fragments act upon membrane-located cellular structures involved in calcium transport.

  4. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.

    PubMed

    Hellwig, Michael; Rückriemen, Jana; Sandner, Daniel; Henle, Thomas

    2017-05-03

    As a unique feature, honey from the New Zealand manuka tree (Leptospermum scoparium) contains substantial amounts of dihydroxyacetone (DHA) and methylglyoxal (MGO). Although MGO is a reactive intermediate in the Maillard reaction, very little is known about reactions of MGO with honey proteins. We hypothesized that the abundance of MGO should result in a particular pattern of protein-bound Maillard reaction products (MRPs) in manuka honey. A protein-rich high-molecular-weight fraction was isolated from 12 manuka and 8 non-manuka honeys and hydrolyzed enzymatically. By HPLC-MS/MS, 8 MRPs, namely, N-ε-fructosyllysine, N-ε-maltulosyllysine, carboxymethyllysine, carboxyethyllysine (CEL), pyrraline, formyline, maltosine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1), were quantitated. Compared to non-manuka honeys, the manuka honeys were characterized by high concentrations of CEL and MG-H1, whereas the formation of N-ε-fructosyllysine was suppressed, indicating concurrence reactions of glucose and MGO at the ε-amino group of protein-bound lysine. Up to 31% of the lysine and 8% of the arginine residues, respectively, in the manuka honey protein can be modified to CEL and MG-H1, respectively. CEL and MG-H1 concentrations correlated strongly with the MGO concentration of the honeys. Manuka honey possesses a special pattern of protein-bound MRPs, which might be used to prove the reliability of labeled MGO levels in honeys and possibly enable the detection of fraudulent MGO or DHA addition to honey.

  5. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study.

    PubMed

    Göncüoğlu Taş, Neslihan; Gökmen, Vural

    2017-04-15

    A comprehensive kinetic model indicating the elementary steps of Maillard reaction and caramelization during hazelnut roasting was proposed based on a multi-response kinetic modeling approach. Changes in the concentrations of sucrose, fructose, glucose, amino acids, 3-deoxyglucosone, 1-deoxyglucosone, 3,4-dideoxyglucosone, glyoxal, methylglyoxal, dimethylglyoxal, and 5-hydroxymethylfurfural were examined in hazelnuts during roasting at 150, 160 and 170°C for 15, 30, 60, 90, and 120min. The results suggested that 1,2-enolization was important in the interconversion of glucose and fructose, 5-hydroxymethylfurfural formation mainly proceeded via fructofuranosyl cation dehydration rather than 3-deoxglucosone, glucose contributed more than fructose and fructofuranosyl cation to the early stage of the Maillard reaction. Methylglyoxal and dimethylglyoxal were mainly formed from 1-deoxyglucosone with high reaction rate constants while glyoxal formed through glucose degradation. α-Dicarbonyl compounds could have a role in the formation of melanoidins. The temperature dependence of the reactions was complicated and could not be explained by the Arrhenius equation.

  6. Maillard reaction products as "natural antibrowning" agents in fruit and vegetable technology.

    PubMed

    Billaud, Catherine; Maraschin, Christelle; Chow, Yin-Naï; Chériot, Sophie; Peyrat-Maillard, Marie-Nöelle; Nicolas, Jacques

    2005-07-01

    The effects of Maillard reaction products (MRPs), synthesized from a sugar (pentose, hexose, or disaccharide) and either a cysteine-related compound, an amino acid, or a sulfur compound, were investigated on polyphenoloxidase (PPO) activity from apple, mushroom, and eggplant. The optimal conditions for the production of inhibitory MRPs were performed using two-factor and five-level central experimental designs. It resulted that thiol-derived MRPs were highly prone to give rise to inhibitory compounds of PPO activity. Technological assays were also performed to test the efficiency of selected MRPs in the prevention of enzymatic browning in raw and minimally processed fruits and vegetables.

  7. Evaluation of maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems.

    PubMed

    Dennis, Cara; Karim, Faris; Smith, J Scott

    2015-02-01

    Heterocyclic amines (HCAs), highly mutagenic and potentially carcinogenic by-products, form during Maillard browning reactions, specifically in muscle-rich foods. Chemical model systems allow examination of in vitro formation of HCAs while eliminating complex matrices of meat. Limited research has evaluated the effects of Maillard reaction parameters on HCA formation. Therefore, 4 essential Maillard variables (precursors molar concentrations, water amount, sugar type, and sugar amounts) were evaluated to optimize a model system for the study of 4 HCAs: 2-amino-3-methylimidazo-[4,5-f]quinoline, 2-amino-3-methylimidazo[4,5-f]quinoxaline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline. Model systems were dissolved in diethylene glycol, heated at 175 °C for 40 min, and separated using reversed-phase liquid chromatography. To define the model system, precursor amounts (threonine and creatinine) were adjusted in molar increments (0.2/0.2, 0.4/0.4, 0.6/0.6, and 0.8/0.8 mmol) and water amounts by percentage (0%, 5%, 10%, and 15%). Sugars (lactose, glucose, galactose, and fructose) were evaluated in several molar amounts proportional to threonine and creatinine (quarter, half, equi, and double). The precursor levels and amounts of sugar were significantly different (P < 0.05) in regards to total HCA formation, with 0.6/0.6/1.2 mmol producing higher levels. Water concentration and sugar type also had a significant effect (P < 0.05), with 5% water and lactose producing higher total HCA amounts. A model system containing threonine (0.6 mmol), creatinine (0.6 mmol), and glucose (1.2 mmol), with 15% water was determined to be the optimal model system with glucose and 15% water being a better representation of meat systems. © 2015 Institute of Food Technologists®

  8. Analytical study proving alprazolam degradation to its main impurity triazolaminoquinoleine through Maillard reaction.

    PubMed

    Huidobro, A L; Barbas, C

    2009-07-01

    Triazolaminoquinoleine is rapidly formed in formulations of alprazolam tablets in presence of excipients, and its generation is speeded up with increasing temperature and humidity. The present paper deals with detailed quantitative and qualitative studies into the nonactive constituents of the formulation in order to determine the excipient (or the mixture) responsible for the degradation. Our studies have demonstrated that reducing carbohydrate excipients play a fundamental role in the generation of triazolaminoquinoleine, with lactose as the main one responsible, through a Maillard reaction. In order to demonstrate the validity of the proposed degradation mechanism, p-nitrobenzaldehyde has been employed as a model of reaction of the nucleophylic attack of amino-opened structure of alprazolam to an aldehyde to generate the first intermediate involved in Maillard reaction, a Schiff base. This model enables the identification of all the intermediates by mass spectrometry and/or nuclear magnetic resonance techniques, with the outcome of this experiment leading to a full understanding of the generation pathway. Calcium carbonate has been proposed as a possible tablet diluent replacing lactose in the pharmaceutical formulation.

  9. Renoprotective effects of Maillard reaction products generated during heat treatment of ginsenoside Re with leucine.

    PubMed

    Kim, Ji Hoon; Han, Im-Ho; Yamabe, Noriko; Kim, Young-Joo; Lee, Woojung; Eom, Dae-Woon; Choi, Pilju; Cheon, Gab Jin; Jang, Hyuk-Jai; Kim, Su-Nam; Ham, Jungyeob; Kang, Ki Sung

    2014-01-15

    The structural change of ginsenoside and the generation of Maillard reaction products (MRPs) are important to the increase in the biological activities of Panax ginseng. This study was carried out to identify the renoprotective active component of P. ginseng using the Maillard reaction model experiment with ginsenoside Re and leucine. Ginsenoside Re was gradually converted into less-polar ginsenosides Rg2, Rg6 and F4 by heat-processing, followed by separation of the glucosyl moiety at carbon-20. The free radical-scavenging activity of the ginsenoside Re-leucine mixture was increased by heat-processing. The improved free radical-scavenging activity by heat-processing was mediated by the generation of MRPs from the reaction of glucose and leucine. The cisplatin-induced LLC-PK1 renal cell damage was also significantly reduced by treatment with MRPs. Moreover, the heat-processed glucose-leucine mixture (major MRPs from the ginsenoside Re-leucine mixture) showed protective effects against cisplatin-induced oxidative renal damage in rats through the inhibition of caspase-3 activation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Safety assessment of Maillard reaction products of chicken bone hydrolysate using Sprague-Dawley rats

    PubMed Central

    Wang, Jin-Zhi; Sun, Hong-Mei; Zhang, Chun-Hui; Hu, Li; Li, Xia; Wu, Xiao-Wei

    2016-01-01

    Background The Maillard reaction products of chicken bone hydrolysate (MRPB) containing 38% protein, which is a derived product from chicken bone, is usually used as a flavor enhancer or food ingredient. In the face of a paucity of reported data regarding the safety profile of controversial Maillard reaction products, the potential health effects of MRPB were evaluated in a subchronic rodent feeding study. Methods Sprague–Dawley rats (SD, 5/sex/group) were administered diets containing 9, 3, 1, or 0% of MRPB derived from chicken bone for 13 weeks. Results During the 13-week treatment period, no mortality occurred, and no remarkable changes in general condition and behavior were observed. The consumption of MRPB did not have any effect on body weight or feed and water consumption. At the same time, there was no significant increase in the weights of the heart, liver, lung, kidney, spleen, small intestine, and thymus in groups for both sexes. Serological examination showed serum alanine aminotransferase in both sexes was decreased significantly, indicating liver cell protection. No treatment-related histopathological differences were observed between the control and test groups. Conclusion Based on the results of this study, the addition of 9% MRPB in the diet had no adverse effect on both male and female SD rats during the 90-day observation. Those results would provide useful information on the safety of a meaty flavor enhancer from bone residue as a byproduct of meat industry. PMID:27016175

  11. A combination of quantitative marinating and Maillard reaction to enhance volatile flavor in Chinese marinated chicken.

    PubMed

    Wei, Xiuli; Wang, Chunqing; Zhang, Chunhui; Li, Xia; Wang, Jinzhi; Li, Hai; Tang, Chunhong

    2017-02-01

    A combination of quantitative marinating and Maillard reaction was investigated by adding d-xylose, l-cysteine and thiamine to the marinated brine of quantitative marinating, which was expected to enhance the volatile flavor of Chinese marinated chicken. Response surface methodology was used to optimize parameters, in which response was sensory evaluation scores of marinated chicken. A Box-Behnken center design was applied to the optimized added contents. The optimized contents were d-xylose (1-5‰), l-cysteine (1-5‰) and thiamine (1-3‰). Analysis of variance indicated that a second-order polynomial equation could predict the experimental data well (R(2)  = 0.94), and sensory evaluation scores were significantly affected by the added amount of d-xylose, l-cysteine and thiamine. The optimal conditions that maximized the sensory evaluation score of Chinese marinated chicken were found to be 4.96‰ d-xylose, 2.28‰ l-cysteine and 2.66‰ thiamine (w/w). Given these optimal conditions, a number of meat-like flavor compounds such as 2-pentyl-furan, benzothiazole and 4-methyl-5-thiazoleethanol were identified by gas chromatographic-mass spectrometric analysis. Our results suggested that a combination of quantitative marinating and Maillard reaction might be a promising method to enhance the volatile flavor, especially meat-like flavor, of Chinese marinated chicken. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    PubMed

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates.

    PubMed

    Ifeduba, Ebenezer A; Akoh, Casimir C

    2016-05-15

    The antioxidant capacity of Maillard reaction (MR)-modified gelatin (GE)-gum arabic (GA) coacervates was optimized to produce microcapsules with superior oxidative stability compared to the unmodified control. MR was used to crosslink GE and GA, with or without maltodextrin (MD), to produce anti-oxidative Maillard reaction products (MRP) which was used to encapsulate stearidonic acid soybean oil (SDASO) by complex coacervation. Biopolymer blends (GE-GA [1:1, w/w] or GE-GA-MD [2:2:1, w/w/w]) were crosslinked by dry-heating at 80°C for 4, 8, or 16h. Relationships between the extent of browning, Trolox equivalent antioxidant capacity (TEAC), and the total oxidation (TOTOX) of encapsulated SDASO were fitted to quadratic models. The [GE-GA-MD] blends exhibited higher browning rates and TEAC values than corresponding [GE-GA] blends. Depending on the type of biopolymer blend and dry-heating time, TOTOX values of SDASO in MRP-derived microcapsules were 29-87% lower than that of the non-crosslinked control after 30 days of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.

    PubMed

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-11-15

    The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants.

  15. Evaluation of the extent of initial Maillard reaction during cooking some vegetables by direct measurement of the Amadori compounds.

    PubMed

    Yu, Jiahao; Zhang, Shuqin; Zhang, Lianfu

    2017-06-02

    During vegetable cooking, one of the most notable and common chemical reactions is the Maillard reaction, which occurs as a result of thermal treatment and dehydration. Amadori compound determination provides a very sensitive indicator for early detection of quality changes caused by the Maillard reaction, as well as to retrospectively assess the heat treatment or storage conditions to which the product has been subjected. In this paper, a hydrophilic interaction liquid chromatographic-electrospray ionization-tandem mass spectrometric method was developed for the analysis of eight Amadori compounds, and the initial steps of the Maillard reaction during cooking (steaming, frying and baking) bell pepper, red pepper, yellow onion, purple onion, tomato and carrot were also assessed by quantitative determination of these Amadori compounds. These culinary treatments reduced moisture and increased the total content of Amadori compounds, which was not dependent on the type of vegetable or cooking method. Moreover, the effect of steaming on Amadori compound content and water loss was less than that by baking and frying vegetables. Further studies showed that the combination of high temperature and short time may lead to lower formation of Amadori compounds when baking vegetables. Culinary methods differently affected the extent of initial Maillard reaction when vegetables were made into home-cooked products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.

    PubMed

    Xu, Haining; Zhang, Xiaoming; Karangwa, Eric; Xia, Shuqin

    2017-09-01

    Up to now, only limited research on enzymatic browning inhibition capacity (BIC) of Maillard reaction products (MRPs) has been reported and there are still no overall and systematic researches on MRPs derived from different amino acids. In the present study, BIC and antioxidant capacity, including 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and Fe(2+) reducing power activity, of the MRPs derived from 12 different amino acids and three reducing sugars were investigated. The MRPs of cysteine (Cys), cystine, arginine (Arg) and histidine (His) showed higher BIC compared to other amino acids. Lysine (Lys)-MRPs showed the highest absorbance value at 420 nm (A420 ) but very limited BIC, whereas Cys-MRPs, showed the highest BIC and the lowest A420 . The A420 can roughly reflect the trend of BIC of MRPs from different amino acids, except Cys and Lys. MRPs from tyrosine (Tyr) showed the most potent antioxidant capacity but very limited BIC, whereas Cys-MRPs showed both higher antioxidant capacity and BIC compared to other amino acids. Partial least squares regression analysis showed positive and significant correlation between BIC and Fe(2+) reducing power of MRPs from 12 amino acids with glucose or fructose, except Lys, Cys and Tyr. The suitable pH for generating efficient browning inhibition compounds varies depending on different amino acids: acidic pH was favorable for Cys, whereas neutral and alkaline pH were suitable for His and Arg, respectively. Increasing both heating temperature and time over a certain range could improve the BIC of MRPs of Cys, His and Arg, whereas any further increase deteriorates their browning inhibition efficiencies. The types of amino acid, initial pH, temperature and time of the Maillard reaction were found to greatly influence the BIC and antioxidant capacity of the resulting MRPs. There is no clear relationship between BIC and the antioxidant capacity of MRPs when reactant type and processing parameters of the Maillard

  17. Porphyran as a functional modifier of a soybean protein isolate through conjugation by the Maillard reaction.

    PubMed

    Takano, Katsuya; Hattori, Makoto; Yoshida, Tadashi; Kanuma, Shin; Takahashi, Koji

    2007-07-11

    Porphyran (Por) prepared from dried nori was applied as a functional modifier of a soybean protein isolate (SPI) to conjugate with SPI from defatted soybean by the Maillard reaction (79% relative humidity and 60 degrees C for 7 days). Two kinds of partially denatured conjugate (Conj 45 and Conj 63) were obtained from the reaction product by sequential extraction at pH 4.5 and pH 6.3, and the respective yield and weight ratios of the SPI and Por moieties were 8.4% and 1:1 for Conj 45 and 11.7% and 1:0.16 for Conj 63. Conj 63 demonstrated improved solubility between pH 5.0 and pH 8.0, while Conj 45 exhibited substantially complete solubility over the pH range of 2.0-8.0. Conj 63 showed more tolerance against digestion with pancreatin than SPI, whereas this was lost after denaturation. Conj 63 and Conj 45 both showed a markedly higher emulsion activity index and emulsion stability than SPI, even at pH 3.0; in particular, Conj 45 exhibited outstanding emulsifying ability. Conj 63 had about a two-fold higher calcium-binding ability than SPI, and Conj 63 and Conj 45 did not aggregate with added Ca2+ and Mg2+. It is believed that Por could be a valuable functional modifier of SPI for providing soybean protein-based liquid foods such as beverages by conjugation through the Maillard reaction.

  18. Influence of home cooking conditions on Maillard reaction products in beef.

    PubMed

    Trevisan, Aurea Juliana Bombo; de Almeida Lima, Daniele; Sampaio, Geni Rodrigues; Soares, Rosana Aparecida Manólio; Markowicz Bastos, Deborah Helena

    2016-04-01

    The influence of home cooking methods on the generation of Maillard reaction products (MRP) in beef was investigated. Grilling and frying hamburgers to an internal temperature below 90 °C mainly generated furosine. When the temperature reached 90 °C and 100 °C, furosine content decreased by 36% and fluorescent compounds increased by up to 98%. Baking meat at 300 °C, the most severe heat treatment studied, resulted in the formation of carboxymethyllysine. Boiling in water caused very low MRP formation. Acrylamide concentrations in grilled, fried or baked meat were extremely low. Home cooking conditions leading to low MRP generation and pleasant colours were obtained and could be used to guide diabetic and chronic renal patients on how to reduce their carboxymethyllysine intake.

  19. Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction

    NASA Astrophysics Data System (ADS)

    Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun

    2012-12-01

    Nisin-carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin-carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin-dextran conjugates possessed better antioxidant potential than nisin-glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry.

  20. Isolation and Identification of an Antiproliferative Compound from Fructose-Tryptophan Maillard Reaction Products.

    PubMed

    Lee, Sang Hoon; Jeong, Su Jeong; Jang, Gwi Yeong; Kim, Min Young; Hwang, In Guk; Kim, Hyun Young; Woo, Koan Sik; Hwang, Bang Yeon; Song, Jin; Lee, Junsoo; Jeong, Heon Sang

    2016-04-20

    This study was performed to isolate and identify a compound with antiproliferative activity against human stomach cancer cell lines, from fructose-tryptophan Maillard reaction products (MRPs). The MRPs, prepared from a fructose-tryptophan solution heated at 130 °C for 2 h, were fractionated into five solvent fractions: n-hexane, chloroform, ethyl acetate, butanol, and water. The highest antiproliferative activity was found in the chloroform fraction (85.93% at 200 μg/mL), and the active compound from this chloroform fraction was purified by silica gel column chromatography, TLC, and preparative HPLC. The antiproliferative activity (IC50) of the active compound was 42.24 μg/mL, and the active compound was identified as perlolyrine (C16H10N2O2) by (1)H/(13)C NMR, DEPT, HMBC, and LC-ESI-MS. Therefore, this research may be useful in developing perlolyrine as a functional therapeutic agent.

  1. Preparation, characterization and toxicology properties of α- and β-chitosan Maillard reaction products nanoparticles.

    PubMed

    Zhang, Hongcai; Zhang, Yiwen; Bao, Erjaing; Zhao, Yanyun

    2016-08-01

    In this study, β-chitosan (CS) Maillard reaction (MR) NPs was prepared to improve the water solubility of CS NPs. The α- and β-CS MR was firstly induced by high intensity ultrasound-assisted (UA) water-bath heating at 80°C for 8h. The α- and β-CS Maillard reaction products (MRPs NPs were then prepared by ionic gelation method between the positively charged primary amino groups of CS and the negatively charged groups of sodium tripolyphosphate (TPP). The α- and β-CS MRPs NPs had particle size of 42.49 and 61.74nm, and Zeta-potential of 27.43 and 35.13mV, respectively. The prepared α- and β-CS MRPs NPs was characterized by transmission electron microscope (TEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA)-differential scanning calorimetry (DSC) to verify whether α- and β-CS MRPs has been incorporated into the CS NPs. The α- and β-CS MRPs NPs exhibited no significant difference (p>0.05) in antioxidant activity compared with α- and β-CS MRPs at the same concentration based on reducing power, DPPH radical scavenging activity, and ORAC values. The cytotoxicity test of α- and β-CS MRPs NPs showed good cell viability (70.86-99.16%) of human pulmonary microvascular endothelial cells (HLMVEC) at the concentration range from 0.12 to 1mg/mL, and fluorescein-5-isothiocyanate (FITC)-α- and β-CS MRPs NPs maintained the morphological characteristics of living cells. These results showed that α- and β-CS MRPs NPs can be used as water-soluble antioxidant substances for applications in food and other fields.

  2. Investigation of the use of Maillard reaction inhibitors for the production of patatin-carbohydrate conjugates.

    PubMed

    Seo, Sooyoun; Karboune, Salwa

    2014-12-17

    Selected Maillard reaction inhibitors, including aminoguanidine, cysteine, pyridoxamine, and sodium bisulfite, were evaluated for their effect on the production of carbohydrate conjugated proteins with less cross-linking/browning. Patatin (PTT), a major potato protein, was glycated with galactose, xylose, galactooligosaccharides, xylooligosaccharides, galactan, and xylan under controlled conditions. The effectiveness of the inhibitors to control the glycation reaction was assessed by monitoring the glycation extent, the protein cross-linking, and the formation of dicarbonyl compounds. Sodium bisulfite was the most effective inhibitor for PTT-galactose and PTT-xylan reaction systems (reaction control ratios of 210.0 and 12.8). On the other hand, aminoguanidine and cysteine led to the highest reaction control ratios for the PTT-xylose/xylooligosaccharide (160.0 and 143.0) and PTT-galactooligosaccharides/galactan (663.0 and 71.0) reaction systems, respectively. The use of cysteine and aminoguanidine as inhibitors led to 1.7-99.4% decreases in the particle size distribution of the PTT conjugates and to 0.4-9.3% increases in their relative digestibility, per 5% blocked lysine.

  3. Physicochemical properties and emulsion stabilization of rice dreg glutelin conjugated with κ-carrageenan through Maillard reaction.

    PubMed

    Du, Yanxue; Shi, Suhua; Jiang, Yan; Xiong, Hua; Woo, Meng Wai; Zhao, Qiang; Bai, Chunqing; Zhou, Qiang; Sun, Wenjing

    2013-01-15

    Rice dreg is an underutilized source of cereal protein with good potential for application in the food industry. Glutelin represents about 850 g kg(-1) of total storage protein in rice dreg. The objective of this study was to characterize the physicochemical properties and emulsion stabilization of the Maillard type conjugate formed with rice dreg glutelin (RDG) and κ-carrageenan (1:2 weight ratio) dry-heated at 60 °C and 79% relative humidity for 24 h. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Fourier transform-infrared analysis provided evidence on the formation of the Maillard type conjugation. Amino acid analysis suggested that the major locus during the Maillard reaction were lysine and arginine. Circular dichroism spectra showed decreasing amounts of α-helix and β-strand in the products with increment in the amount of turns and random coil. Conjugation with κ-carrageenan could significantly improve solubility of RDG (P < 0.05). Measurements of mean droplet size and creaming stability in oil-in-water emulsions showed that the conjugate was more effective at stabilizing emulsions at low pH or in the presence of high ionic strength. The Maillard reaction can be successfully used as a coupling method for RDG and κ-carrageenan to form the conjugate with improved solubility and emulsion stabilization. Copyright © 2012 Society of Chemical Industry.

  4. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction.

    PubMed

    Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang

    2013-01-01

    The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.

  5. Dietary Maillard reaction products and their fermented products reduce cardiovascular risk in an animal model.

    PubMed

    Oh, N S; Park, M R; Lee, K W; Kim, S H; Kim, Y

    2015-08-01

    This study examined the effects of Maillard reaction products (MRP) and MRP fermented by lactic acid bacteria on antioxidants and their enhancement of cardiovascular health in ICR mouse and rat models. In previous in vitro studies, the selected lactic acid bacteria were shown to significantly affect the activity of MRP. The expression of genes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) related to antioxidant activity was upregulated by Maillard-reacted sodium caseinate (cMRP), and cMRP fermented by Lactobacillus fermentum H9 (F-cMRP) synergistically increased the expression of catalase and superoxide dismutase when compared with the high-cholesterol-diet group. Bleeding time, the assay for determination of antithrombotic activity, was significantly prolonged by Maillard-reacted whey protein concentration (wMRP) and wMRP fermented by Lactobacillus gasseri H10 (F-wMRP), similar to the bleeding time of the aspirin group (positive control). In addition, the acute pulmonary thromboembolism-induced mice overcame severe body paralysis or death in both the wMRP and the F-wMRP groups. In the serum-level experiment, cMRP and F-cMRP significantly reduced the serum total and low-density lipoprotein cholesterol levels and triglycerides but had only a slight effect on high-density lipoprotein cholesterol. The levels of aspartate transaminase and alanine transaminase also declined in the cMRP and F-cMRP intake groups compared with the high-cholesterol-diet group. In particular, F-cMRP showed the highest reducing effects on triglycerides, aspartate transaminase, and alanine transaminase. Moreover, the expression of cholesterol-related genes in the F-cMRP group demonstrated greater effects than for the cMRP group in the level of cholesterol 7 α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and low-density lipoprotein receptors compared with the high-cholesterol-diet group. The protective role of cMRP and F-cMRP in the high

  6. Implications of the Maillard reaction on bovine alpha-lactalbumin and its proteolysis during in vitro infant digestion.

    PubMed

    Joubran, Yousef; Moscovici, Alice; Portmann, Reto; Lesmes, Uri

    2017-06-21

    This study investigated the functionality and digestibility of Maillard reaction products (MRPs) of alpha-lactalbumin (α-la), a major whey protein and component of infant formulas. The impact of different carbohydrates (glucose, galactose or galacto-oligosaccharides (GOS)) and heating duration was studied. SDS-PAGE, UV and color measurements monitored reaction extent, which varied between carbohydrates whereby galactose reacted more readily than glucose. Surface hydrophobicity and antioxidant capacity were found to be significantly (p < 0.05) higher following Maillard conjugation, with GOS-based MRPs elevating antioxidant capacity ∼50-fold compared to α-la. In addition, the digestive proteolysis of MRPs was evaluated using an infant in vitro gastro-duodenal model. SDS-PAGE analyses of digesta revealed Maillard conjugation generally increased α-la's susceptibility to proteolysis. Interestingly, GOS-based MRPs presented an optimization challenge, since heating for 12 h delayed proteolysis, while extended heating resulted in the highest susceptibility to proteolysis. Proteomic analyses further demonstrated the differences in enzymatic cleavage patterns and helped identify bioactive peptides rendered bioaccessible during the digestion of α-la or its MRPs. Bioinformatic mining of the proteomic data using PeptideRanker also gave rise to two potentially novel bioactive peptides, FQINNKIW and GINYWLAHKALCS. Finally, antioxidant capacity of luminal contents, measured by DPPH, revealed Maillard conjugation increased the antioxidant capacity of both gastric and duodenal digesta. Overall, this work draws a link between the Maillard reaction, digestive proteolysis and the bioaccessibility of bioactive peptides and antioxidant species in the infant alimentary canal. This could help rationally process infant formulas towards improved nutritional and extra-nutritional benefits.

  7. Synthesis, optimization and structural characterization of a chitosan-glucose derivative obtained by the Maillard reaction.

    PubMed

    Gullón, Beatriz; Montenegro, María I; Ruiz-Matute, Ana I; Cardelle-Cobas, Alejandra; Corzo, Nieves; Pintado, Manuela E

    2016-02-10

    Chitosan (Chit) was submitted to the Maillard reaction (MR) by co-heating a solution with glucose (Glc). Different reaction conditions as temperature (40, 60 and 80 °C), Glc concentration (0.5%, 1%, and 2%, w/v), and reaction time (72, 52 and 24h) were evaluated. Assessment of the reaction extent was monitored by measuring changes in UV absorbance, browning and fluorescence. Under the best conditions, 2% (w/v) of Chit, 2% (w/v) of Glc at 60°C and 32 h of reaction time, a chitosan-glucose (Chit-Glc) derivative was purified and submitted to structural characterization to confirm its formation. Analysis of its molecular weight (MW) and the degree of substitution (DS) was carried out by HPLC-Size Exclusion Chromatography (SEC) and a colloid titration method, respectively. FT-IR and (1)H NMR were also used to analyze the functional groups and evaluate the introduction of Glc into the Chit molecule. According to our objectives, the results obtained in this work allowed to better understand the key parameters influencing the MR with Chit as well as to confirm the successful introduction of Glc into the Chit molecule obtaining a Chit-Glc derivative with a DS of 64.76 ± 4.40% and a MW of 210.37 kDa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Protein modification by a Maillard reaction intermediate methylglyoxal. Immunochemical detection of fluorescent 5-methylimidazolone derivatives in vivo.

    PubMed

    Uchida, K; Khor, O T; Oya, T; Osawa, T; Yasuda, Y; Miyata, T

    1997-06-30

    Methylglyoxal (MG), an endogenous metabolite that increases in diabetes, is a common intermediate in nonenzymatic glycation (Maillard reaction) in vivo. Here we describe the immunochemical approach to the detection of MG adducts in proteins in vitro and in atherosclerotic lesions of human aorta in vivo. The reaction of protein (bovine serum albumin) with MG led to selective loss of arginine and lysine residues, accompanied by the formation of 5-methylimidazolone (N delta-(5-methylimidazolon-2-yl)ornithine) and imidazolysine (1,3-di-lysino-4-methylimidazole) derivatives, respectively. The anti-5-methylimidazolone antibody was prepared by immunizing rabbits with a MG-keyhole limpet hemocyanin conjugate and purifying the serum on an affinity gel prepared by covalent attachment of the 5-methylimidazolone derivative. The antibody cross-reacted with the proteins treated with not only MG but trioses, such as hydroxyacetone, dihydroxyacetone, and glyceraldehyde. The immunohistochemical analysis revealed that atherosclerotic lesions of human aorta contained 5-methylimidazolone derivatives whose distributions were identical to those of advanced glycation end products (AGEs) detected by the anti-AGE antibody.

  9. Faox enzymes inhibited Maillard reaction development during storage both in protein glucose model system and low lactose UHT milk.

    PubMed

    Troise, Antonio Dario; Dathan, Nina A; Fiore, Alberto; Roviello, Giovanni; Di Fiore, Anna; Caira, Simonetta; Cuollo, Marina; De Simone, Giuseppina; Fogliano, Vincenzo; Monti, Simona M

    2014-02-01

    Fructosamines, also known as Amadori products, are formed by the condensation of glucose with the amino group of amino acids or proteins. These compounds are precursors of advanced glycation end products (AGEs) that can be formed either endogenously during aging and diabetes, and exogenously in heat-processed food. The negative effects of dietary AGEs on human health as well as their negative impact on the quality of dairy products have been widely described, therefore specific tools able to prevent the formation of glycation products are needed. Two fructosamine oxidase enzymes isolated from Aspergillus sp. namely, Faox I and Faox II catalyze the oxidative deglycation of Amadori products representing a potential tool for inhibiting the Maillard reaction in dairy products. In this paper, the ability of recombinant Faox I and II in limiting the formation of carboxy-methyl lysine (CML) and protein-bound hydroxymethyl furfurol (b-HMF) in a commercial UHT low lactose milk and a beta-lactoglobulin (β-LG) glucose model system was investigated. Results show a consistent reduction of CML and b-HMF under all conditions. Faox effects were particularly evident on b-HMF formation in low lactose commercial milk. Peptide analysis of the β-LG glucose system identified some peptides, derived from cyanogen bromide hydrolysis, as suitable candidates to monitor Faox action in milk-based products. All in all data suggested that non-enzymatic reactions in dairy products might be strongly reduced by implementing Faox enzymes.

  10. Functional properties of chitosan-xylose Maillard reaction products and their application to semi-dried noodle.

    PubMed

    Zhu, Ke-Xue; Li, Jie; Li, Man; Guo, Xiao-Na; Peng, Wei; Zhou, Hui-Ming

    2013-02-15

    The objective of this research was to evaluate the antimicrobial, antioxidant and darkening inhibitory activities of Maillard reaction products (MRPs) prepared from chitosan and xylose, and their effects on the preservation and quality of semi-dried noodles. The development of brown color and UV absorbance changes indicated the proceeding of Maillard reaction. The antimicrobial activity, reducing power, DPPH radical scavenging activity, copper-chelating activity and PPO inhibitory effects of chitosan-xylose conjugates increased with the reaction. Addition of MRPs could improve the textural and cooking quality of semi-dried noodles. Incorporation of 0.35% MRPs (6 h) into semi-dried noodle resulted in an extension of shelf life for more than 7 days than the control noodles (at room temperature). The discoloration caused by the addition of MRPs was limited, and MRPs could inhibit darkening of the noodle effectively. Results suggested that the MRPs could be used as a novel promising preservative for semi-dried noodles.

  11. Acrylamide formation from asparagine under low moisture Maillard reaction conditions. 2. Crystalline vs amorphous model systems.

    PubMed

    Robert, Fabien; Vuataz, Gilles; Pollien, Philippe; Saucy, Françoise; Alonso, Maria-Isabelle; Bauwens, Isabelle; Blank, Imre

    2005-06-01

    The formation of acrylamide was investigated in model systems based on asparagine and glucose under low moisture Maillard reaction conditions as a function of reaction temperature, time, physical state, water activity, and glass transition temperature. Equimolar amorphous glucose/asparagine systems with different water activities were prepared by freeze drying and were shown to quickly move to the rubbery state already at room temperature and a water activity of above 0.15. The acrylamide amounts were correlated with physical changes occurring during the reaction. Pyrolysis and kinetics of acrylamide release in amorphous and crystalline glucose/asparagine models indicated the importance of the physical state in acrylamide formation. In amorphous systems, acrylamide was generated in higher concentrations and at lower temperatures as compared to the crystalline samples. Time and temperature are covariant parameters in both systems affecting the acrylamide formation by thermal processes. On the other side, the water activity and glass transition temperature do not seem to be critical parameters for acrylamide formation in the systems studied.

  12. Taste-Active Maillard Reaction Products in Roasted Garlic (Allium sativum).

    PubMed

    Wakamatsu, Junichiro; Stark, Timo D; Hofmann, Thomas

    2016-07-27

    In order to gain first insight into candidate Maillard reaction products formed upon thermal processing of garlic, mixtures of glucose and S-allyl-l-cysteine, the major sulfur-containing amino acid in garlic, were low-moisture heated, and nine major reaction products were isolated. LC-TOF-MS, 1D/2D NMR, and CD spectroscopy led to their identification as acortatarin A (1), pollenopyrroside A (2), epi-acortatarin A (3), xylapyrroside A (4), 5-hydroxymethyl-1-[(5-hydroxymethyl-2-furanyl)methyl]-1H-pyrrole-2-carbalde-hyde (5), 3-(allylthio)-2-(2-formyl-5-hydroxymethyl-1H-pyrrol-1-yl)propanoic acid (6), (4S)-4-(allylthiomethyl)-3,4-dihydro-3-oxo-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (7), (2R)-3-(allylthio)-2-[(4R)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl]propanoic acid (8), and (2R)-3-(allylthio)-2-((4S)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl)propanoic acid (9). Among the Maillard reaction products identified, compounds 5-9 have not previously been published. The thermal generation of the literature known spiroalkaloids 1-4 is reported for the first time. Sensory analysis revealed a bitter taste with thresholds between 0.5 and 785 μmol/kg for 1-5 and 7-9. Compound 6 did not show any intrinsic taste (water) but exhibited a strong mouthfullness (kokumi) enhancing activity above 186 μmol/kg. LC-MS/MS analysis showed 1-9 to be generated upon pan-frying of garlic with the highest concentration of 793.7 μmol/kg found for 6, thus exceeding its kokumi threshold by a factor of 4 and giving evidence for its potential taste modulation activity in processed garlic preparations.

  13. The impact of the Maillard reaction on the in vitro proteolytic breakdown of bovine lactoferrin in adults and infants.

    PubMed

    Moscovici, Alice M; Joubran, Yousef; Briard-Bion, Valerie; Mackie, Alan; Dupont, Didier; Lesmes, Uri

    2014-08-01

    The Maillard reaction has been proposed as a natural pathway to functionalize proteins and modulate their proteolysis. Nevertheless, gaps in understanding the digestive fate of Maillard reaction products (MRPs) still exist, especially regarding bioactive proteins such as lactoferrin (LF). UV absorbance and SDS-PAGE were used to monitor reaction progression under mild thermal processing (60 °C, 79% RH). Dynamic light scattering showed that MRPs had increased colloidal size and turbidity at 3 < pH < 10. FRAP analysis and in vitro digestion experiments demonstrated that MRPs possessed improved antioxidant capacity and higher susceptibility to proteolysis to varying extents under adult conditions compared to infant conditions. Proteomic analyses of MRP digesta revealed altered enzymatic cleavage patterns with no pronounced changes in the formation of known bioactive peptides. These also indicated that MRPs may breakdown in the gastro-intestinal tract to potentially form novel bioactive peptides. Overall, this work highlights that the Maillard reaction could be harnessed to modify the extent of proteolysis and bioactivity of proteins.

  14. Colour and surface fluorescence development and their relationship with Maillard reaction markers as influenced by structural changes during cornflakes production.

    PubMed

    Farroni, Abel; Buera, María Del Pilar

    2012-12-01

    The aim of this work was to study colour and surface fluorescence development in relation to the chemical markers for the Maillard reaction at the cooking, flaking and toasting stages of cornflake production process. Colour was measured by a calibrated computer vision system. Surface fluorescence was measured on compressed samples. Aqueous extracted Maillard reaction markers (hydroxymethylfurfural, carboxymethyl-lysine, absorbance at 420nm and total fluorescence) were measured on protease hydrolyzed samples. Sample microstructure was observed by scanning electron microscopy. During cooking the colour coordinates L(∗) and b(∗) decreased and a(∗) increased. After flaking, the samples appeared lighter, while the pigment concentration, fluorescence and hydroxymethylfurfural did not change. Toasting generated bubbles in the matrix and L(∗) apparently increased, although brown pigment concentration increased. Pigment concentration did not correlate with surface colour due to the destruction or generation of interfaces. Surface and microstructure effects can be avoided by milling and compressing the samples.

  15. Odors generated from the Maillard reaction affect autonomic nervous activity and decrease blood pressure through the olfactory system.

    PubMed

    Zhou, Lanxi; Ohata, Motoko; Owashi, Chisato; Nagai, Katsuya; Yokoyama, Issei; Arihara, Keizo

    2017-07-12

    Systolic blood pressure (SBP) of rats decreases significantly following exposure to the odor generated from the Maillard reaction of protein digests with xylose. This study identified active odorants that affect blood pressure and demonstrated the mechanism of action. Among the four potent odorants that contribute most to the odor of the Maillard reaction sample, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 5-methyl-2-pyrazinemethanol (MPM) decreased SBP significantly. The earliest decrease in blood pressure was observed 5 min after exposure to DMHF. Application of zinc sulfate to the nasal cavity eliminated the effect. Furthermore, gastric vagal (parasympathetic) nerve activity was elevated and renal sympathetic nerve activity was lowered after exposure to DMHF. It is indicated that DMHF affects blood pressure through the olfactory system, and the mechanism for the effect of DMHF on blood pressure involves the autonomic nervous system. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Bimolecular interaction of argpyrimidine (a Maillard reaction product) in in vitro non-enzymatic protein glycation model and its potential role as an antiglycating agent.

    PubMed

    Bhattacherjee, Abhishek; Dhara, Kaliprasanna; Chakraborti, Abhay Sankar

    2017-09-01

    Non- enzymatic glycation, also known as Maillard reaction, is one of the most important and investigated reactions in biochemistry. Maillard reaction products (MRPs) like protein-derived advanced glycation end products (AGEs) are often referred to cause pathophysiological complications in human systems. On contrary, several MRPs are exogenously used as antioxidant, antimicrobial and flavouring agents. In the preset study, we have shown that argpyrimidine, a well-established AGE, interacts with bovine serum albumin (BSA) and glucose individually in standard BSA-glucose model system and successfully inhibits glycation of the protein. Bimolecular interaction of argpyrimidine with glucose or BSA has been studied independently. Chromatographic purification, different spectroscopic studies and molecular modeling have been used to evaluate the nature and pattern of interactions. Binding of argpyrimidine with BSA prevents incorporation of glucose inside the native protein. Argpyrimidine can also directly entrap glucose. Both these interactions may be associated with the antiglycation potential of argpyrimidine, indicating a beneficial function of an AGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of soluble maillard reaction products on cadA expression in Salmonella typhimurium.

    PubMed

    Díaz, Irene B Zabala; Chalova, Vesela I; O'Bryan, Corliss A; Crandall, Philip G; Ricke, Steven C

    2010-02-01

    The presence of Maillard reaction products (MRP) in foods and food components is due to the non-enzymatic reaction between protein and carbohydrate residues triggered by thermal steps during food processing. The objective of this study was to assess the effect of MRPs and increasing lysine concentrations on S. Typhimurium growth and the expression of cadA which may be an indirect determinant of Salmonella virulence response. Variations in lysine concentrations (from 0 to 0.5 mM) did not exert any effect either on the final optical density after 6-hour incubation or the growth rates of S. Typhimurium in media containing MRPs. In contrast to the reduced final absorbancy of the bacterial cultures grown with histidine and arginine MRPs supplementations (0.1%), growth rates, in general, remained unaltered by all MRPs at each lysine concentration when compared to the control (M9 pH 5.8, no MRPs added). The induction levels of cadA in media containing 0.1% MRPs were close to cadA induction in the reference media (M9, pH 5.8 and no MRPs) and did not exceed the corresponding values by more than approximately 30%. Although the observed negligible induction of cadA under these conditions complies with the concept of its potential "anti-virulence" function, additional studies involving various concentrations and more refined MRPs are needed.

  18. Effect of physical state of gelatin-plasticizer based films on to the occurrence of Maillard reactions.

    PubMed

    Riquelme, N; Díaz-Calderón, P; Enrione, J; Matiacevich, S

    2015-05-15

    The aim of this study was to evaluate the occurrence of the Maillard reaction on gelatin-based films (bovine and salmon) in the glassy state, in mixtures with low molecular weight plasticizers (e.g. glycerol, glucose and trehalose) at different storage times. For testing, the gelatin-plasticizer films were stored under glassy conditions (Tg-10°C), previously determined by calorimetric tests. Studies under accelerated conditions (T ≫ Tg) were also developed. Color, opacity and browning index (Br) were evaluated by computer vision at all storage times. Results showed in samples stored under glassy conditions that the Maillard reaction did not occur, independent of gelatin origin and type of plasticizer. Changes in color stated by opacity and Br were only significant (p < 0.05) in gelatin-glucose systems under accelerated storage conditions. The inhibition of reaction in gelatin films in the glassy state was related to the well-known conditions of low molecular mobility of glassy matrices, but also with the non-Maillard reactive characteristics of glycerol and trehalose.

  19. Hydroxyl radical induced by lipid in Maillard reaction model system promotes diet-derived N(ε)-carboxymethyllysine formation.

    PubMed

    Han, Lipeng; Li, Lin; Li, Bing; Zhao, Di; Li, Yuting; Xu, Zhenbo; Liu, Guoqin

    2013-10-01

    N(ε)-carboxymethyllysine (CML) is commonly found in food, and is considered as a potential hazard to human health. However, the effect of lipids on CML formation in Maillard reaction is still not clarified. In this study, the content of diet-derived CML and its key intermediates, epsilon-fructoselysine (FL) and glyoxal (GO), is determined with high performance liquid chromatography mass spectrum (HPLC-MS) in model system containing lipid compounds. According to the results, hydroxyl radical (OH) induced by Fenton reagent can promote the three pathways of CML formation. Moreover, in the Maillard reaction system, linoleic acid (Lin), oleic acid (Ole) and glycerol trioleate (Tri) can induce more OH·, which promotes CML formation. Their level of promoting CML formation is in the order of Ole>Lin>Tri. On the contrary, glycerol (Gly) can scavenge OH·, which inhibit the CML formation. Finally, it is proved that FL content and GO content decreases with heating time in model system, while CML content increases with heating time. Thus, it is concluded that in the Maillard reaction system lipids can induce more OH·, which promotes the conversion from FL and GO to CML. Our research may contribute to the development of inhibitory methods for diet-derived CML by scavenging OH·.

  20. High-intensity ultrasound production of Maillard reaction flavor compounds in a cysteine-xylose model system.

    PubMed

    Ong, Olivia X H; Seow, Yi-Xin; Ong, Peter K C; Zhou, Weibiao

    2015-09-01

    Application of high intensity ultrasound has shown potential in the production of Maillard reaction odor-active flavor compounds in model systems. The impact of initial pH, sonication duration, and ultrasound intensity on the production of Maillard reaction products (MRPs) by ultrasound processing in a cysteine-xylose model system were evaluated using Response Surface Methodology (RSM) with a modified mathematical model. Generation of selected MRPs, 2-methylthiophene and tetramethyl pyrazine, was optimal at an initial pH of 6.00, accompanied with 78.1 min of processing at an ultrasound intensity of 19.8 W cm(-2). However, identification of volatiles using gas chromatography-mass spectrometry (GC/MS) revealed that ultrasound-assisted Maillard reactions generated fewer sulfur-containing volatile flavor compounds as compared to conventional heat treatment of the model system. Likely reasons for this difference in flavor profile include the expulsion of H2S due to ultrasonic degassing and inefficient transmission of ultrasonic energy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues.

    PubMed Central

    Tessier, Frederic J; Monnier, Vincent M; Sayre, Lawrence M; Kornfield, Julia A

    2003-01-01

    The role of the highly reactive triose sugars glyceraldehyde and glyceraldehyde-3-phosphate in protein cross-linking and other amino acid modifications during the Maillard reaction was investigated. From the incubation of glyceraldehyde with N (alpha)-acetyl-L-lysine and N (alpha)-acetyl-L-arginine, we isolated four new Maillard reaction pyridinium compounds named 'triosidines'. Two of them, 'lys-hydroxy-triosidine' [1-(5-amino-5-carboxypentyl)-3-[(5-amino-5-carboxypentylamino)methyl]-5-hydroxypyridinium] and 'arg-hydroxy-triosidine' [2-(4-amino-4-carboxybutylamino)-8-(5-amino-5-carboxypentyl)-6-hydroxy-3,4-dihydro-pyrido[2,3-d]pyrimidin-8-ium] are fluorescent, UV-active Lys-Lys and Lys-Arg cross-links respectively. Their structures were identified by NMR and MS. In addition, two UV-active lysine adducts, 'trihydroxy-triosidine' [1-(5-amino-5-carboxypentyl)-3,4-dihydroxy-5-(hydroxymethyl)pyridinium] and 'triosidine carbaldehyde' [1-(5-amino-5-carboxypentyl)-3-formylpyridinium] were tentatively identified by MS. All structures involve six sugar-derived carbons as part of the heterocyclic ring. Of the two novel cross-links, only arg-hydroxy-triosidine was formed by glyceraldehyde-3-phosphate, an intermediate metabolite of the glycolytic pathway. Lys-hydroxy-triosidine and arg-hydroxy-triosidine were detected in human and porcine corneas treated with glyceraldehyde. The HPLC-fluorescence identification was confirmed by MS. Triosidines were also formed from dihydroxyacetone, a widely used artificial sun-tanning agent. Triosidines are expected to be useful tools in tissue engineering, where the utilization of highly reactive sugars is needed to stabilize the loose matrix. In addition, they are expected to be present in selected biological conditions, such as on consumption of a high fructose diet, and syndromes associated with high glyceraldehyde excretion, such as Fanconi Syndrome, fructose-1,6-diphosphatase deficiency and tyrosinaemia. PMID:12379150

  2. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues.

    PubMed

    Tessier, Frederic J; Monnier, Vincent M; Sayre, Lawrence M; Kornfield, Julia A

    2003-02-01

    The role of the highly reactive triose sugars glyceraldehyde and glyceraldehyde-3-phosphate in protein cross-linking and other amino acid modifications during the Maillard reaction was investigated. From the incubation of glyceraldehyde with N (alpha)-acetyl-L-lysine and N (alpha)-acetyl-L-arginine, we isolated four new Maillard reaction pyridinium compounds named 'triosidines'. Two of them, 'lys-hydroxy-triosidine' [1-(5-amino-5-carboxypentyl)-3-[(5-amino-5-carboxypentylamino)methyl]-5-hydroxypyridinium] and 'arg-hydroxy-triosidine' [2-(4-amino-4-carboxybutylamino)-8-(5-amino-5-carboxypentyl)-6-hydroxy-3,4-dihydro-pyrido[2,3-d]pyrimidin-8-ium] are fluorescent, UV-active Lys-Lys and Lys-Arg cross-links respectively. Their structures were identified by NMR and MS. In addition, two UV-active lysine adducts, 'trihydroxy-triosidine' [1-(5-amino-5-carboxypentyl)-3,4-dihydroxy-5-(hydroxymethyl)pyridinium] and 'triosidine carbaldehyde' [1-(5-amino-5-carboxypentyl)-3-formylpyridinium] were tentatively identified by MS. All structures involve six sugar-derived carbons as part of the heterocyclic ring. Of the two novel cross-links, only arg-hydroxy-triosidine was formed by glyceraldehyde-3-phosphate, an intermediate metabolite of the glycolytic pathway. Lys-hydroxy-triosidine and arg-hydroxy-triosidine were detected in human and porcine corneas treated with glyceraldehyde. The HPLC-fluorescence identification was confirmed by MS. Triosidines were also formed from dihydroxyacetone, a widely used artificial sun-tanning agent. Triosidines are expected to be useful tools in tissue engineering, where the utilization of highly reactive sugars is needed to stabilize the loose matrix. In addition, they are expected to be present in selected biological conditions, such as on consumption of a high fructose diet, and syndromes associated with high glyceraldehyde excretion, such as Fanconi Syndrome, fructose-1,6-diphosphatase deficiency and tyrosinaemia.

  3. Maillard reaction and protein cross-linking in relation to the solubility of milk powders.

    PubMed

    Le, Thao T; Bhandari, Bhesh; Holland, John W; Deeth, Hilton C

    2011-12-14

    Protein changes in relation to solubility, Maillard reaction (MR), and protein cross-linking in whole milk powder (WMP), skim milk powder (SMP), and whey protein concentrate (WPC) stored at different relative humidities (RHs) were investigated by chemical and electrophoretic methods. WMP and SMP reached minimum solubility rapidly, while WPC showed no change in solubility. The loss of solubility corresponded with development of high-molecular-weight protein complexes observed by two-dimensional electrophoresis. The maximal MR rate occurred at 66% RH for WMP and SMP (high lactose/protein ratios) and 84% RH for WPC (low lactose/protein ratios) based on the furosine and hydroxymethylfurfural contents. However, browning was greatest at 84% RH in all powders. The minimum solubility corresponded with the casein and fat contents. The retention of solubility and minimal protein cross-linking of WPC compared to casein-containing powders suggest that the casein content and cross-linking strongly influence the decrease in the solubility of milk powder.

  4. 2-Furoylmethyl amino acids as indicators of Maillard reaction during the elaboration of black garlic.

    PubMed

    Ríos-Ríos, Karina L; Vázquez-Barrios, M Estela; Gaytán-Martínez, Marcela; Olano, Agustín; Montilla, Antonia; Villamiel, Mar

    2018-02-01

    This study reports the formation of 2-furomethyl-amino acids (2-FM-AA) as indicators of Maillard reaction (MR) in black garlic elaboration, followed by the determination of furosine by ion-pair RP-HPLC-UV. The method was assessed for accuracy, repeatability and detection and quantitation limits indicating its adequacy. Traditional procedure of black garlic obtainment and the inclusion of convective drying (CDP) and ohmic heating (OHP) were assayed. For comparison purposes, three commercial black garlic samples were used. Together with furosine (2-FM-lysine), 2-furoylmethyl-γ-aminobutyric acid and 2-FM-arginine were detected. Levels of furosine were higher in CDP (46.6-110.1mg/100g protein) than in OHP (13.7-42.0mg/100g protein) samples, probably due to the most severe processing conditions used in the former. These results highlight the suitability of 2-FM-AA as chemical indicators to monitor the process of black garlic elaboration in order to obtain high quality products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Changes of flavor compounds of hydrolyzed chicken bone extracts during Maillard reaction.

    PubMed

    Sun, Hong-Mei; Wang, Jin-Zhi; Zhang, Chun-Hui; Li, Xia; Xu, Xiong; Dong, Xian-Bing; Hu, Li; Li, Chun-Hong

    2014-12-01

    Flavor quality, including non-volatile and volatile compounds, of hydrolyzed chicken bone extracts (HCBE) during Maillard reaction (MR) was evaluated with HPLC, tasting sensory system, Electronic-Nose (E-nose), and GC-MS. Results showed that flavor amino acids (AA) accounted for 72% to 74% of total free AA in HCBE. Taste of umami increased first and then decreased during MR, while equivalent umami concentration remained at a stable level. Results of taste sensing system and bitter AA showed that MR could reduce the bitter taste of HCBE significantly. E-Nose test showed there are great changes of volatile flavor during MR. And total of 59 volatile compounds were identified in HCBE during MR, which should responsible for the increase of flavor in HCBE. Our results indicated that MR could be used as an effective way to change the flavor compounds in HCBE, and therefore provide a strategy for preparation of meaty flavor enhancer from bone residue as a byproduct of meat industry.

  6. Controllable antioxidative xylan-chitosan Maillard reaction products used for lipid food storage.

    PubMed

    Li, Xiaoxia; Shi, Xiaowen; Jin, Yong; Ding, Fuyuan; Du, Yumin

    2013-01-02

    Controllable antioxidative xylan-chitosan Maillard reaction products (MRPs) were prepared by co-heating xylan and chitosan at different time periods and used for lipid food storage in lecithin model system and refrigerated pork meat. The results of antioxidant protective effect on lecithin liposome peroxidation induced by 2,2'-azobis(2-methylpropionamidine) dihydrochloride revealed that the MRPs heated for 120 min and 180 min showed much higher inhibitory activity than chitosan or MRP heated for 60 min. In the experiment of fresh pork protection, the MRPs heated for 60 and 120 min retarded the growth of spoilage organisms more effectively. Lipid oxidation potential of the meat, determined by thiobarbituric acid reactive substances, also showed that the samples treated by the MRPs heated for 60 and 120 min had higher acceptance than others. These results demonstrate that the MRPs of xylan and chitosan are promising controllable antioxidative preservatives for lipid food formulations, and the antioxidant behavior depends not only on the antioxidant substances, but also on the interaction of the food systems. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Characterisation of bovine serum albumin-fucoidan conjugates prepared via the Maillard reaction.

    PubMed

    Kim, Do-Yeong; Shin, Weon-Sun

    2015-04-15

    Bovine serum albumin (BSA)-fucoidan conjugates were prepared by the Maillard reaction (60 °C and 79% relative humidity for 96 h), and were then identified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion chromatography (SEC). Molecular characteristics of the BSA-fucoidan conjugates were investigated, using atomic force microscopy (AFM), dynamic light scattering (DLS), fluorescence spectroscopy, and circular dichroism spectroscopy. SDS-PAGE patterns provided evidence for the covalent bonding between BSA and fucoidan. SEC profiles showed that about 1.5-2.0 mol of fucoidan were covalently linked to 1 mol of BSA, resulting in high-molecular-weight compositions (conjugates). AFM images and DLS results indicated that most particles in the conjugates were nano-structured and more spherical than those of a regular BSA-fucoidan mixture. The fluorescence intensity and maximum emission wavelength of the conjugates together revealed that the BSA molecules had converted from an ordered conformation into a partially folded molten globule state.

  8. Temperature effect on lactose crystallization, maillard reactions, and lipid oxidation in whole milk powder.

    PubMed

    Thomsen, Marianne K; Lauridsen, Lene; Skibsted, Leif H; Risbo, Jens

    2005-09-07

    Whole milk powder with an initial water content of 4.4% (w/w) and a water activity of 0.23 stored in hermetically sealed vials for up to 147 days below (37 and 45 degrees C) and above (55 degrees C) the glass transition temperature (T(g) determined to have the value 48 degrees C) showed a strong temperature dependence for quality deterioration corresponding to energies of activation close to 200 kJ/mol for most deteriorative processes. The glass transition was found not to cause any deviation from Arrhenius temperature dependence. Lactose crystallization, which occurred as a gradual process as monitored by isothermal calorimetry, is concluded to liberate bound water (a(w) increase to 0.46) with a modest time delay (approximately 2 days at 55 degrees C) and with concomitant surface browning as evidenced by an increasing Hunter b-value. Browning and formation of bound hydroxymethyl-furfural determined by HPLC seem to be coupled, while formation of another Maillard reaction product, furosine, occurred gradually and was initiated prior to crystallization. Initiation of lipid oxidation, as detected by lipid-derived radicals (high g-value ESR spectra), and progression of lipid oxidation, as detected by headspace GC, seem not to be affected by lactose crystallization and browning, and no indication of browning products acting as antioxidants could be determined.

  9. Effects of dietary bread crust Maillard reaction products on calcium and bone metabolism in rats.

    PubMed

    Roncero-Ramos, Irene; Delgado-Andrade, Cristina; Haro, Ana; Ruiz-Roca, Beatriz; Morales, Francisco J; Navarro, María Pilar

    2013-06-01

    Maillard reaction products (MRP) consumption has been related with the development of bone degenerative disorders, probably linked to changes in calcium metabolism. We aimed to investigate the effects of MRP intake from bread crust on calcium balance and its distribution, and bone metabolism. During 88 days, rats were fed control diet or diets containing bread crust as source of MRP, or its soluble high molecular weight, soluble low molecular weight or insoluble fractions (bread crust, HMW, LMW and insoluble diets, respectively). In the final week, a calcium balance was performed, then animals were sacrified and some organs removed to analyse calcium levels. A second balance was carried out throughout the experimental period to calculate global calcium retention. Biochemical parameters and bone metabolism markers were measured in serum or urine. Global calcium bioavailability was unmodified by consumption of bread crust or its isolate fractions, corroborating the previously described low affinity of MRP to bind calcium. Despite this, a higher calcium concentration was found in femur due to smaller bones having a lower relative density. The isolate consumption of the fractions altered some bone markers, reflecting a situation of increased bone resorption or higher turnover; this did not take place in the animals fed the bread crust diet. Thus, the bread crust intake does not affect negatively calcium bioavailability and bone metabolism.

  10. Increased Maillard reaction products intake reduces phosphorus digestibility in male adolescents.

    PubMed

    Delgado-Andrade, Cristina; Seiquer, Isabel; García, Marta Mesías; Galdó, Gabriel; Navarro, M Pilar

    2011-01-01

    To examine the effects of consuming diets rich in Maillard reaction products (MRPs) on phosphorus bioavailability in male adolescents. A 2-wk randomized two-period crossover trial was performed among healthy male adolescents aged 11-14 y (n = 20), with a 40-d washout period. The diets consumed were rich (brown diet) or poor (white diet) in MRPs. Three-day balances were performed on the last of each dietary period, and fasting blood samples were obtained. Dietary phosphorus utilization was examined by phosphorus intake in diet and phosphorus output in feces and urine, as measured colorimetrically by the vanadomolibdate procedure. Serum phosphorus, parathyroid hormone, and total alkaline phosphatase were determined. A tendency to increase daily phosphorus fecal excretion was observed subsequent to the brown diet consumption compared with the white diet (P = 0.10), which led to significant reductions in phosphorus apparent absorption (P = 0.03) and fractional absorption (P = 0.04). Values of apparent phosphorus retention and bioavailability tended to decrease after the high-MRP diet. Serum parameters analyzed remained unchanged between diets and were within normal values. The consumption of a rich-MRP diet in male adolescents had a negative influence on dietary phosphorus absorption, tending to decrease the phosphorus balance. Given the actual dietary habits of adolescents, possible long-term repercussions of this kind of diet should be studied. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Relating gas chromatographic profiles to sensory measurements describing the end products of the Maillard reaction.

    PubMed

    Stanimirova, I; Boucon, C; Walczak, B

    2011-01-30

    Often in analytical practice, a set of samples is described by different types of measurements in the hope that a comprehensive characterisation of samples will provide a more complete picture and will help in determining the similarities among samples. The main focus is then on how to combine the information described by different measurement variables and how to analyse it simultaneously. In other words, the main goal is to find a common representation of samples that emphasises the individual and common properties of the different blocks of variables. Several methods can be adopted for the simultaneous analysis of multiblock data with a common object mode. These are: consensus principal component analysis (CPCA), SUM-PCA, multiple factor analysis (MFA) and structuration des tableaux à trois indices de la statistique (STATIS).In this article we present a comparison of the performances of these methods for data describing the chemistry and sensory profiles of the Maillard reaction products. The aroma compounds formed during the reaction of thermal heating between one or two selected amino acids and one or two reducing sugars have been analysed by head space gas chromatography and the intensity and nature of the odour of the resulting products has been evaluated according to selected descriptors by a panel of sensory experts.The results showed that using the information of the chromatographic and sensory data in conjunction enhanced the interpretability of the data. SUM-PCA and more specifically multiple factor analysis, MFA, allowed for a detailed study of the similarities of mixtures in terms of reaction products and sensory profiles. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Demonstration of antioxidant and anti-inflammatory bioactivities from sugar-amino acid maillard reaction products.

    PubMed

    Kitts, David D; Chen, Xiu-Min; Jing, Hao

    2012-07-11

    Maillard reaction products (MRPs), both crude and fractionated, were assessed for antioxidant potential using cell-free, in vitro 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, Fenton reaction induced deoxyribose degradation and oxygen radical absorbance capacity-fluorescein (ORACFL) chemical assays. All MRPs displayed various affinities to scavenge free radicals generated in different reaction media and using different reactive oxygen species (ROS) substrates. High molecular weight MRPs consistently showed the greatest (P < 0.05) antioxidant potential in chemical assays. Repeating these tests in Caco-2 cells with both reactive oxygen and nitrogen (RNS) intracellular assays revealed that the low molecular weight components (LMW) were most effective at inhibiting oxidation and inflammation. In particular, a glucose-lysine (Glu-Lys) mixture heated for 60 min had marked intracellular antioxidant activity and nitric oxide (NO) and interleukin-8 (IL-8) inhibitory activities compared to other MRPs (P < 0.05). Further studies employing ultrafiltration, ethyl acetate extraction, and semipreparative high-performance liquid chromatography (HPLC) produced a bioactive fraction, termed F3, from heated Glu-Lys MRP. F3 inhibited NO, inducible nitric oxide synthetase (iNOS), and IL-8 in interferon γ (IFN-γ)- and phorbol ester (PMA)-induced Caco-2 cells. F3 modified several gene expressions involved in the NF-κB signaling pathway. Two components, namely, 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid (HMFA), were identified in the F3 fraction, with an unidentified third component comprising a major portion of the bioactivity. The results show that MRP components have bioactive potential, especially in regard to suppressing oxidative stress and inflammation in IFN-γ- and PMA-induced Caco-2 cells.

  13. Detection of Maillard reaction products by a coupled HPLC-Fraction collector technique and FTIR characterization of Cu(II)-complexation with the isolated species

    NASA Astrophysics Data System (ADS)

    Ioannou, Aristos; Daskalakis, Vangelis; Varotsis, Constantinos

    2017-08-01

    The isolation of reaction products of asparagine with reducing sugars at alkaline pH and high temperature has been probed by a combination of high performance liquid chromatography (HPLC) coupled with a Fraction Collector. The UV-vis and FTIR spectra of the isolated Maillard reaction products showed structure-sensitive changes as depicted by deamination events and formation of asparagine-saccharide conjugates. The initial reaction species of the Asn-Gluc reaction were also characterized by Density Functional Theory (DFT) methods. Evidence for Cu (II) metal ion complexation with the Maillard reaction products is supported by UV-vis and FTIR spectroscopy.

  14. 18F-Fluorodeoxyglycosylamines: Maillard reaction of 18F-fluorodeoxyglucose with biological amines.

    PubMed

    Baranwal, Aparna; Patel, Himika H; Mukherjee, Jogeshwar

    2014-02-01

    The Maillard reaction of sugars and amines resulting in the formation of glycosylamines and Amadori products is of biological significance, for drug delivery, role in central nervous system, and other potential applications. We have examined the interaction of (18) F-fluorodeoxyglucose ((18) F-FDG) with biological amines to study the formation of (18) F-fluorodeoxyglycosylamines ((18) F-FDGly). Respective amines N-allyl-2-aminomethylpyrrolidine (NAP) and 2-(4'-aminophenyl)-6-hydroxybenzothiazole (PIB precursor) were mixed with FDG to provide glycosylamines, FDGNAP and FDGBTA. Radiosynthesis using (18) F-FDG (2-5 mCi) was carried out to provide (18) F-FDGNAP and (18) F-FDGBTA. Binding of FDGBTA and (18) F-FDGBTA was evaluated in human brain sections of Alzheimer's disease (AD) patients and control subjects using autoradiography. Both FDGNAP and FDGBTA were isolated as stable products. Kinetics of (18) F-FDGNAP reaction indicated a significant product at 4 h (63% radiochemical yield). (18) F-FDGBTA was prepared in 57% yield. Preliminary studies of FDGBTA showed displacement of (3) H-PIB (reduced by 80%), and (18) F-FDGBTA indicated selective binding to Aβ-amyloid plaques present in postmortem AD human brain, with a gray matter ratio of 3 between the AD patients and control subjects. We have demonstrated that (18) F-FDG couples with amines under mild conditions to form (18) F-FDGly in a manner similar to click chemistry. Although these amine derivatives are stable in vitro, stability in vivo and selective binding is under investigation.

  15. Five years of research on health risks and benefits of Maillard reaction products: an update.

    PubMed

    Somoza, Veronika

    2005-07-01

    When the COST Action 919 started to investigate the role of melanoidins in food and health in 1999, the chemical structures of dietary melanoidins were poorly defined and hardly anything was known about structure-specific health effects of this chemical class. In addition, the degradation of melanoidins in the gut and their absorption and function or that of any of their degradation products had not yet been reported. In the past five years, results from in vitro studies demonstrated that at least some of the dietary melanoidins are degraded by intestinal microorganisms, possibly influencing their growth rate. The absorption and excretion rates of individual Maillard reaction compounds and melanoidin structures have been investigated in animal studies. These studies show that at least 30% of the ingested dose of low-molecular-weight compounds are absorbed. Structure-specific health-promoting effects of newly identified compounds have been described by means of their antioxidant and chemopreventive activity in cell culture investigations as well as in animal feeding studies and human trials. Harmful effects of dietary melanoidins have been investigated in the context of their ability to promote glycation reactions in vivo, which are involved in the progression of several diseases, such as diabetes mellitus, cardiovascular complications, and Alzheimer's disease. Toxicological studies were performed showing that melanoidin structures can not be classified as potent dietary mutagens or genotoxins. Thus, substantial knowledge on the health effects of melanoidins has been gained within COST Action 919. But still, further studies are needed to distinguish between chemically identified harmful and health-beneficial melanoidins.

  16. Repeated Oral Exposure to N (ε)-Carboxymethyllysine, a Maillard Reaction Product, Alleviates Gut Microbiota Dysbiosis in Colitic Mice.

    PubMed

    ALJahdali, Nesreen; Gadonna-Widehem, Pascale; Delayre-Orthez, Carine; Marier, David; Garnier, Benjamin; Carbonero, Franck; Anton, Pauline M

    2017-09-30

    Diet is suggested to participate in the etiology of inflammatory bowel diseases (IBD). Repeated exposure to Maillard reaction products (MRPs), molecules resulting from reduction reactions between amino acids and sugars during food heating, has been reported to be either potentially detrimental or beneficial to health. The aim of this study is to determine the effect of repeated oral ingestion of N (ε)-carboxymethyllysine (CML), an advanced MRP, on the onset of two models of experimental IBD and on the gut microbiota composition of mice. Mice received either saline (control) or N (ε)-carboxymethyllysine daily for 21 days. For the last week of treatment, each group was split into subgroups, receiving dextran sulfate sodium salt (DSS) or trinitrobenzenesulfonic acid (TNBS) to induce colitis. Intensity of inflammation was quantified, and cecal microbiota characterized by bacterial 16S ribosomal RNA (rRNA) amplicon sequencing. Daily oral administration of N (ε)-carboxymethyllysine did not induce intestinal inflammation and had limited impact on gut microbiota composition (Bacteroidaceae increase, Lachnospiraceae decrease). DSS and TNBS administration resulted in expected moderate experimental colitis with a shift of Bacteroidetes/Firmicutes ratio and a significant Proteobacteria increase but with distinct profiles: different Proteobacteria taxa for DSS, but mainly Enterobacteriaceae for TNBS. While N (ε)-carboxymethyllysine exposure failed to prevent the inflammatory response, it allowed maintenance of healthy gut microbiota profiles in mice treated with DSS (but not TNBS). Repeated oral exposure to CML limits dysbiosis in experimental colitis. IBD patients may modulate their microbiota profile by regulating the level and type of dietary MRP consumption.

  17. Anti-inflammatory effect of sugar-amino acid Maillard reaction products on intestinal inflammation model in vitro and in vivo.

    PubMed

    Oh, Jun-Gu; Chun, Su-Hyun; Kim, Da Hyun; Kim, Jin Hye; Shin, Hye Soo; Cho, Yong Soo; Kim, Yong Ki; Choi, Hee-Don; Lee, Kwang-Won

    2017-09-08

    The Maillard reaction is a nonenzymatic reaction between an amino acid and a reducing sugar that usually occurs upon heating. This reaction occurs routinely in cooking, generates numerous products, which are collectively referred to as Maillard reaction products (MRPs) contributing to aroma and color features. Advanced glycation end-products (AGEs) transformed from MRPs are participated in many types of inflammation reaction. In this study, various sugar-amino acid MRPs were prepared from three different amino acids (lysine, arginine, and glycine) and sugars (glucose, fructose, and galactose) for 1 h with heating at 121 °C. Treatment of lipopolysaccharide-stimulated RAW264.7 macrophages with the MRPs decreased nitric oxide (NO) expression compared to control without MRPs treatment. MRPs derived from lysine and galactose (Lys-Gal MRPs) significantly inhibited NO expression. The retentate fraction of Lys-Gal MRPs with cut-off of molecular weight of 3-10 kDa (LGCM) suppressed NO expression more effectively than did Lys-Gal MRPs. The anti-inflammatory effect of LGCM was evaluated using a co-culture system consisting of Caco-2 (apical side) and RAW264.7 or THP-1 (basolateral side) cells to investigate the gut inflammation reaction by stimulated macrophage cells. In this system, LGCM prevented a decreased transepithelial electrical resistance, and decreased both tumor necrosis factor-α production in macrophages and interleukin (IL)-8 and IL-1β mRNA expression in Caco-2 cells. In co-culture and in vivo dextran sulfate sodium (DSS)-induced colitis model study, we also observed the anti-inflammatory activity of LGCM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of Maillard reaction products on the physical and antimicrobial properties of edible films based on ε-polylysine and chitosan.

    PubMed

    Wang, Yingying; Liu, Fuguo; Liang, Chunxuan; Yuan, Fang; Gao, Yanxiang

    2014-11-01

    Edible films based on Maillard reaction products (MRPs) of ε-polylysine and chitosan, without the use of any plasticiser, were prepared by solution casting. The effect of Maillard reaction parameters (reaction time and the ratio of polylysine/chitosan) of ε-polylysine and chitosan on the structure, moisture content, water solubility, total colour difference and mechanical properties of edible films formed by MRPs were systematically evaluated. Scanning electron microscopy confirmed that edible films prepared by the MRPs of ε-polylysine and chitosan through the Maillard reaction exhibited a more compact and dense structure than those from the mixture of biopolymers without the presence of MRPs. The tensile strength and % elongation values of films from the mixture were decreased significantly with the rise of ε-polylysine (P < 0.05). The moisture content of the films was not significantly affected by Maillard reaction, whereas water solubility was decreased and total colour difference was increased significantly (P < 0.05) with the extension of Maillard reaction time. In addition, antimicrobial activity of chitosan films against E. coli and S. aureus. could be achieved by incorporating ε-polylysine into chitosan. These films can ensure food quality and safety, especially for coating highly perishable foods, such as meat products. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  19. On the time behaviour of the concentration of pyrazinium radical cations in the early stage of the Maillard reaction

    NASA Astrophysics Data System (ADS)

    Stoesser, Reinhard; Klein, Jeannette; Peschke, Simone; Zehl, Andrea; Cämmerer, Bettina; Kroh, Lothar W.

    2007-08-01

    During the early stage of the Maillard reaction pyrazinium radical cations were detected by ESR within the reaction system D-glucose/glycine. The spectra were characterized by completely resolved hyperfine structure. The partial pressure of oxygen and the radical concentrations were measured directly in the reaction mixture by ESR using solutions of the spin probe TEMPOL and of DPPH, respectively. There are quantitative and qualitative relations of the actual concentration of the radical ions to the partial pressure of oxygen, the temperature-time regime and the mechanical mixing of the reaction system. These macroscopic parameters significantly affect both the induction period and the velocity of the time-dependent formation of free radicals. From in situ variations of p(O 2) and p(Ar) including the connected mixing effects caused by the passing the gases through the reaction mixture, steric and chemical effects of the stabilization of the radical ions were established. The determination of suitable and relevant conditions for stabilization and subsequent radical reactions contributes to the elucidation of the macroscopically known antioxidant activity of Maillard products.

  20. Biological and chemical assessment of antioxidant activity of sugar-lysine model maillard reaction products.

    PubMed

    Kitts, David D; Hu, Chun

    2005-06-01

    The antioxidant activity of Maillard reaction products (MRPs) is often associated with increased stability and shelf life of food systems vulnerable to oxidation reactions. In this study, nondialyzed, high-molecular weight (HMW = >3500 Da) MRPs were recovered from three model sugar-lysine (glucose-lysine, Glc-Lys; fructose-lysine, Fru-Lys; and ribose-lysine, Rib-Lys) reactions, heated at 121 degrees C for one hour. Samples were characterized by UV and fluorescence spectra and assessed for antioxidant activity using both standard chemical methods (1,1-diphenyl-2-picryl-hydrazyl [DPPH] and oxygen radical absorbing capacity [ORAC]). In addition, biochemical (e.g., cell culture for intracellular oxidation in RAW264.7 cells and protection against metal ion-induced cytotoxicity in C3H/10T1/2 mouse embryo fibroblast cells) assays were used. Patterns of change for fluorescence and multiple colorimetric parameters corresponded to the recovery yield of HMW MRPs and indicated that Rib was more (P < 0.05) reactive than Glc, which in turn was greater (P < 0.05) than Fru. These characteristics of rate of browning did not parallel the significant (P < 0.05) antioxidant activity noted for different sugar-derived HMW MRPs to scavenge DPPH radical, or exhibit total antioxidant activity using the ORAC (e.g., 800-1000 micromol Trolox/gm MRP) method. Antioxidant activity of Glc-, Fru-, and Rib-Lys HMW-MRPs (50 microg/mL) produced protection (P < 0.05) against both H2O2- and AAPH-induced intracellular oxidation reactions in cultured RAW 264.7 cells. Metal chelating activity of all three sugar-derived HMW MRPs (0.01% w/v) was attributed to similar protection (P < 0.05) against Fe2+ and Cu2+-induced cytotoxicity in cultured mouse embryonic fibroblasts. The reducing activity of all three HMW-MRPs indicated the potential for prooxidant activity that could explain enhanced cytotoxicity of Fe3+ in cultured cells.

  1. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    PubMed

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. De novo synthesis of amino acids during the maillard reaction: qTOF/ESI mass spectrometric evidence for the mechanism of Akabori transformation.

    PubMed

    Nashalian, Ossanna; Yaylayan, Varoujan A

    2015-01-14

    The transformation of α-amino acids into their hydroxymethyl derivatives during the Maillard reaction is an intriguing possibility for catalysis by metal salts in the presence of Strecker aldehydes; the process is commonly known as the Akabori reaction. The mechanism of this reaction was studied in the presence of glucose, using glycine copper complex and paraformaldehyde as Akabori model system in aqueous mixtures heated at 110 °C for 2 h and subsequently analyzed by qTOF/ESI/MS. Isotope-labeling studies of the various products identified have provided for the first time mass spectrometric evidence for the detailed mechanism of Akabori transformation, particularly the formation of Schiff base adducts prior to the final conversion into serine and hydroxymethyl-serine. Furthermore, the results have indicated that sugars do not interfere with such transformations and, on the contrary, the presence of glycine–copper complexes in the Maillard model systems can enhance the production of Maillard reaction intermediates.

  3. Fecal excretion of Maillard reaction products and the gut microbiota composition of rats fed with bread crust or bread crumb.

    PubMed

    Helou, C; Anton, P M; Niquet-Léridon, C; Spatz, M; Tessier, F J; Gadonna-Widehem, P

    2017-08-01

    A comparison between the impacts of advanced (N(ε)-carboxymethyllysine - CML) and terminal (melanoidins) Maillard reaction products from bread on gut microbiota was carried out in this study. Gut microbiota composition as well as fecal excretion of CML from both bread crust and bread crumb, and of melanoidins from bread crust were assessed on a rodent model. Rats were fed with pellets supplemented or not with 13% of bread crust, bread crumb, a fiber-free bread crust model (glucose, starch and gluten heated together) or a fiber-free-melanoidin-free bread model (glucose-starch and gluten heated separately) for four weeks. These model systems were developed to limit the presence of wheat-native dietary fibers such as cellulose, hemicelluloses and lignin. CML and melanoidins in pellets and feces were evaluated by LC/MS-MS and HPLC/fluorescence respectively, and gut microbiota composition was determined by cultivation and molecular approaches. Diets supplemented with crumb or the fiber-free-melanoidin-free model contained respectively 17% and 64% less melanoidins than their respective controls. A higher excretion of melanoidins was observed for rats fed with crust or bread crust model compared to their controls, confirming that melanoidins are in contact with gut microbiota. No impact of diets was observed on Firmicutes, Bacteroidetes and lactic flora. A decrease of enterobacteria was only observed for rats fed with the diet supplemented with the fiber-free bread crust model. Moreover, a significant increase of bifidobacteria numbers in the presence of crust, crumb and both bread models was observed, showing that this bifidogenic effect of bread is not due to the presence of melanoidins or wheat-native dietary fibers.

  4. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity.

    PubMed

    Yin, Zi; Sun, Qian; Zhang, Xi; Jing, Hao

    2014-05-01

    A blue colour can be formed in the xylose (Xyl) and glycine (Gly) Maillard reaction (MR) model system. However, there are fewer studies on the reaction conditions for the blue Maillard reaction products (MRPs). The objective of this study is to investigate characteristic colour formation and antioxidant activities in four different MR model systems and to determine the optimum reaction conditions for the blue colour formation in a Xyl-Gly MR model system, using the random centroid optimisation program. The blue colour with an absorbance peak at 630 nm appeared before browning in the Xyl-Gly MR model system, while no blue colour formation but only browning was observed in the xylose-alanine, xylose-aspartic acid and glucose-glycine MR model systems. The Xyl-Gly MR model system also showed higher antioxidant activity than the other three model systems. The optimum conditions for blue colour formation were as follows: xylose and glycine ratio 1:0.16 (M:M), 0.20 mol L⁻¹ NaHCO₃, 406.1 mL L⁻¹ ethanol, initial pH 8.63, 33.7°C for 22.06 h, which gave a much brighter blue colour and a higher peak at 630 nm. A characteristic blue colour could be formed in the Xyl-Gly MR model system and the optimum conditions for the blue colour formation were proposed and confirmed. © 2013 Society of Chemical Industry.

  5. Analysis of the Maillard reaction in human hair using Fourier transform infrared spectroscopic imaging and a focal-plane array detector.

    PubMed

    Jung, In-Keun; Park, Sang-Chul; Bin, Sung-Ah; Roh, Young Sup; Lee, John Hwan; Kim, Boo-Min

    2016-03-01

    The Maillard reaction has been well researched and used in the food industry and the fields of environmental science and organic chemistry. Here, we induced the Maillard reaction inside human hair and analyzed its effects by using Fourier transform infrared spectroscopy with a focal-plane array (FTIR-FPA) detector. We used arginine (A), glycine (G), and D-xylose (X) to generate the Maillard reaction by dissolving them in purified water and heating it to 150 °C. This label-free process generated a complex compound (named AGX after its ingredients) with a monomer structure, which was determined by using nuclear magnetic resonance (NMR) and FTIR-FPA. This compound was stable in hair and substantially increased its tensile strength. To our knowledge, we are the first to report the formation of this monomer in human hair, and our study provides insights into a new method that could be used to improve the condition of damaged or aging hair.

  6. Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology.

    PubMed

    Yang, Sung-Yong; Kim, Se-Wook; Kim, Yoonsook; Lee, Sang-Hoon; Jeon, Hyeonjin; Lee, Kwang-Won

    2015-06-01

    Halibut is served on sushi and as sliced raw fish fillets. We investigated the optimal conditions of the Maillard reaction (MR) with ribose using response surface methodology to reduce the allergenicity of its protein. A 3-factored and 5-leveled central composite design was used, where the independent variables were substrate (ribose) concentration (X1, %), reaction time (X2, min), and pH (X3), while the dependent variables were browning index (Y1, absorbance at 420nm), DPPH scavenging (Y2, EC50 mg/mL), FRAP (Y3, mM FeSO4/mg extract) and β-hexosaminidase release (Y4, %). The optimal conditions were obtained as follows: X1, 28.36%; X2, 38.09min; X3, 8.26. Maillard reaction products of fish protein hydrolysate (MFPH) reduced the amount of nitric oxide synthesis compared to the untreated FPH, and had a significant anti-allergy effect on β-hexosaminidase and histamine release, compared with that of the FPH control. We concluded that MFPH, which had better antioxidant and anti-allergy activities than untreated FPH, can be used as an improved dietary source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Density functional computational studies on the glucose and glycine Maillard reaction: Formation of the Amadori rearrangement products

    NASA Astrophysics Data System (ADS)

    Jalbout, Abraham F.; Roy, Amlan K.; Shipar, Abul Haider; Ahmed, M. Samsuddin

    Theoretical energy changes of various intermediates leading to the formation of the Amadori rearrangement products (ARPs) under different mechanistic assumptions have been calculated, by using open chain glucose (O-Glu)/closed chain glucose (A-Glu and B-Glu) and glycine (Gly) as a model for the Maillard reaction. Density functional theory (DFT) computations have been applied on the proposed mechanisms under different pH conditions. Thus, the possibility of the formation of different compounds and electronic energy changes for different steps in the proposed mechanisms has been evaluated. B-Glu has been found to be more efficient than A-Glu, and A-Glu has been found more efficient than O-Glu in the reaction. The reaction under basic condition is the most favorable for the formation of ARPs. Other reaction pathways have been computed and discussed in this work.0

  8. Maillard Reaction of Pidan White as Inhibited by Chinese Black Tea Extract (Camellia sinensis) in the Pickling Solution

    PubMed Central

    Ganesan, Palanivel; Benjakul, Soottawat; Baharin, Badlishah Sham

    2014-01-01

    Changes in Maillard reaction of pidan white were monitored with A294, fluorescence intensity, and browning intensity during pickling in the absence and presence of Chinese black tea extract (Camellia sinensis) at levels of 2% and 5% together with 0.2% ZnCl2 or 0.2% CaCl2 up to 3 wk, followed by ageing for another 3 wk. Browning intensity and A294 of pidan white increased with increasing pickling/ageing, while fluorescence intensity decreased during ageing (p<0.05), irrespective of treatments. At wk 6, pidan white treated with 0.2% ZnCl2 and 0.2% CaCl2 showed slightly higher browning intensity, fluorescence intensity and A294 than those treated with divalents together with Chinese black tea (p<0.05). Free amino group and sugar contents showed continuous decrease during pickling and ageing irrespective of tea and cations used. However, pidan treated without Chinese black tea extract showed significantly lower free amino group and sugar during the ageing of 6 wk (p<0.05). Thus, Chinese black tea extract had an inhibitory effect on the Maillard reaction during ageing of pidan white. PMID:26761277

  9. Free and Protein-Bound Maillard Reaction Products in Beer: Method Development and a Survey of Different Beer Types.

    PubMed

    Hellwig, Michael; Witte, Sophia; Henle, Thomas

    2016-09-28

    The Maillard reaction is important for beer color and flavor, but little is known about the occurrence of individual glycated amino acids in beer. Therefore, seven Maillard reaction products (MRPs), namely, fructosyllysine, maltulosyllysine, pyrraline, formyline, maltosine, MG-H1, and argpyrimidine, were synthesized and quantitated in different types of beer (Pilsner, dark, bock, wheat, and nonalcoholic beers) by HPLC-ESI-MS/MS in the multiple reaction monitoring mode through application of the standard addition method. Free MRPs were analyzed directly. A high molecular weight fraction was isolated by dialysis and hydrolyzed enzymatically prior to analysis. Maltulosyllysine was quantitated for the first time in food. The most important free MRPs in beer are fructosyllysine (6.8-27.0 mg/L) and maltulosyllysine (3.7-21.8 mg/L). Beer contains comparatively high amounts of late-stage free MRPs such as pyrraline (0.2-1.6 mg/L) and MG-H1 (0.3-2.5 mg/L). Minor amounts of formyline (4-230 μg/L), maltosine (6-56 μg/L), and argpyrimidine (0.1-4.1 μg/L) were quantitated. Maltulosyllysine was the most significant protein-bound MRP, but both maltulosyllysine and fructosyllysine represent only 15-60% of the total protein-bound lysine-derived Amadori products. Differences in the patterns of protein-bound and free individual MRPs and the ratios between them were identified, which indicate differences in their chemical, biochemical, and microbiological stabilities during the brewing process.

  10. Effect of malting conditions on phenolic content, Maillard reaction products formation, and antioxidant activity of quinoa seeds.

    PubMed

    Carciochi, Ramiro Ariel; Dimitrov, Krasimir; Galván D Alessandro, Leandro

    2016-11-01

    In this study, the effect of malting process on the antioxidant compounds and antioxidant capacity of quinoa seeds was studied. The optimal germination conditions were germination temperature of 23 °C, degree of steeping of 36% and germination time of 3 days. Under these conditions, green quinoa malt was obtained and subsequently roasted at different temperatures (100-190 °C). Results showed maximum increases in phenolic compounds, Maillard reaction products and antioxidant activity (DPPH radical scavenging and reducing power) in samples roasted at 145 °C for 30 min, whereas a more intensive thermal treatment (190 °C) diminished the levels of all evaluated variables. Thus, malting with a moderate thermal treatment could be considered as an effective process to enrich antioxidants in quinoa grains for their further use as functional ingredient in the production of gluten-free foods and beverages.

  11. Assessment of Maillard reaction evolution, prebiotic carbohydrates, antioxidant activity and α-amylase inhibition in pulse flours.

    PubMed

    Moussou, Nadia; Corzo-Martínez, Marta; Sanz, María Luz; Zaidi, Farid; Montilla, Antonia; Villamiel, Mar

    2017-03-01

    In this paper, the quality of bean, chickpea, fava beans, lentil and pea flours from Algeria has been evaluated. Maillard reaction (MR) indicators, modifications in the carbohydrate and protein fractions, antioxidant activity and α-amylase inhibitor of raw, toasted and stored samples were evaluated. Fava beans, beans and peas showed higher content of raffinose family oligosaccharides while chickpeas and lentils showed higher polyol content. Toasting and storage caused slightly change in pulse quality; MR showed slight losses of lysine but increased antioxidant activity. Moreover, inhibition of α-amylase was slightly augmented during processing; this could increase the undigested carbohydrates that reach the colon, modulating the glycemic response. These results point out the suitability of these flours for preparing high-quality foodstuffs intended for a wide spectrum of the population, including hyperglycemic and gluten intolerant individuals.

  12. Effect of roasting time of buckwheat groats on the formation of Maillard reaction products and antioxidant capacity.

    PubMed

    Małgorzata, Wronkowska; Konrad, Piskuła Mariusz; Zieliński, Henryk

    2016-04-01

    Changes in the formation of Maillard reaction products and antioxidant capacity of buckwheat, induced by roasting at 160 °C for 30, 40 and 50 min, were evaluated in the study. Furozine, was detected after roasting, in all buckwheat samples. Increase of FIC, the presence of significant amounts of CML and enhanced browning were observed, along with increasing times of roasting. The formation of acrylamide in the obtained buckwheat products was also significantly connected with the time of roasting. A significant degradation was observed in natural antioxidants, as affected by heat treatment time. The colour parameter changed significantly with the increasing of roasting time. Overall, 30min of roasting was beneficial from a nutritional point of view for the obtained buckwheat product.

  13. Antioxidative, Antibacterial, and Food Functional Properties of the Half-Fin Anchovy Hydrolysates-Glucose Conjugates Formed via Maillard Reaction.

    PubMed

    Song, Ru; Yang, Peiyu; Wei, Rongbian; Ruan, Guanqiang

    2016-06-20

    The antioxidative, antibacterial, and food functional properties of the half-fin anchovy hydrolysates (HAHp)-glucose conjugates formed by Maillard reaction (MR) were investigated, respectively. Results of sugar and amino acid contents loss rates, browning index, and molecular weight distribution indicated that the initial pH of HAHp played an important role in the process of MR between HAHp and glucose. HAHp-glucose Maillard reaction products (HAHp-G MRPs) demonstrated enhanced antioxidative activities of reducing power and scavenging DPPH radicals compared to control groups. HAHp-G MRPs produced from the condition of pH 9.6 displayed the strongest reducing power. The excellent scavenging activity on DPPH radicals was found for HAHp(5.6)-G MRPs which was produced at pH 5.6. Additionally, HAHp(5.6)-G MRPs showed variable antibacterial activities against Escherichia coli, Pseudomonas fluorescens, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Bacillus megaterium, and Sarcina lutea, with the MIC values ranging from 8.3 to 16.7 μg/mL. Result of scanning electron microscopy (SEM) on E. coli suggested that HAHp(5.6)-G MRPs exhibited antibacterial activity by destroying the cell integrity through membrane permeabilization. Moreover, HAHp(5.6)-G MRPs had excellent foaming ability and stability at alkaline conditions of pH 8.0, and showed emulsion properties at acidic pH 4.0. These results suggested that specific HAHp-G MRPs should be promising functional ingredients used in foods.

  14. In vitro antioxidant and cytoprotective properties of Maillard reaction products from phloridzin-amino acid model systems.

    PubMed

    Han, Linna; Li, Feng; Yu, Qijian; Li, Dapeng

    2017-06-30

    The aim of this study was to investigate in vitro antioxidant activities and cytoprotective effect of Maillard reaction products (MRPs) from phloridzin (Pz)-amino acid model systems. Their structures were also characterized by Fourier transform-infrared spectroscopy (FT-IR). MRPs were prepared from the Pz-methionine (Met), Pz-lysine (Lys), Pz-isoleucine (Ile), Pz-histidine (His) or Pz-glutamic acid (Glu) model system. The Pz-Lys MRPs, rich in antioxidant potency, were subjected to ultrafiltration to yield four MRPs fractions with different molecular weights (Mw). The fraction with Mw 30-50 kDa had significantly (P < 0.05) higher antioxidant activity than other fractions. Moreover, it significantly (P < 0.05) attenuated the 2,2'-azobis (2-methylpropionamidine) dihydrochlorid (AAPH)-elicited decrease in cell viability in HepG2 cells in a concentration-dependent manner. FT-IR analysis indicated that the fraction with Mw 30-50 kDa had the strong stretching vibration for the O-H, N-H, C-H, C = O and C = C groups, suggesting the formation of intermediate MRPs during Maillard reaction. The results obtained in this study may provide some basis for the purported health-promoting effects of MRPs and their potential application as antioxidant agents in food industry. Also, it is important for our understanding of the variation of bioactive substances in food during thermal processing. This article is protected by copyright. All rights reserved.

  15. Chemical characteristics and enhanced hepatoprotective activities of Maillard reaction products derived from milk protein-sugar system.

    PubMed

    Oh, Nam Su; Young Lee, Ji; Lee, Hyun Ah; Joung, Jae Yeon; Shin, Yong Kook; Kim, Sae Hun; Kim, Younghoon; Lee, Kwang Won

    2016-02-01

    The objective of this study was to investigate the characteristics, antioxidative properties, and hepatoprotective effects of Maillard reaction products (MRP) from milk protein reacted with sugars. The MRP were obtained from milk protein, whey protein concentrates and sodium caseinate, using 2 types of sugars, lactose and glucose, by heating the mixture at 55°C for 7d in a sodium phosphate buffer (pH 7.4). Changes in the chemical modification of the milk protein were monitored by measuring the protein-bound carbonyls and PAGE protein profiles. The results showed that the amount of protein-bound carbonyls increased after Maillard reaction (MR). In addition, sodium dodecyl sulfate-PAGE analysis indicated a formation of high-molecular weight complexes through MR. The modification sites induced by MR of milk protein were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of tryptic-digested gel spots of MRP. As a result, modification and their localization in AA sequence of MRP was identified. Also, the MRP showed higher antioxidant activities than the intact milk protein, and they reduced intracellular reactive oxygen species production and inhibited the depletion of the reduced glutathione concentrations in the HepG2 cells. In particular, glucose-sodium caseinate MRP showed the highest biological activities among all MRP. Therefore, these results suggest that the MRP from milk protein reacting with sugars possess effective antioxidant activity and have a protective ability against oxidative damage. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Kinetics of formation of three indicators of the maillard reaction in model cookies: influence of baking temperature and type of sugar.

    PubMed

    Charissou, Amèlie; Ait-Ameur, Lamia; Birlouez-Aragon, Inès

    2007-05-30

    The Maillard reaction (MR), despite its impact on flavor, color, and texture of cereal products, must be controlled for possible deleterious effects on protein nutritional quality. The present study aims to simultaneously monitor three indicators of the MR reaction (acid-released lysine, furosine, and carboxymethyllysine (CML)) by GC/MS in model cookies and evaluate the effect of formulation and baking temperature. Whereas furosine followed a bell-shape kinetic, indicative of an intermediary compound, CML linearly accumulated, proving to be a good indicator of the advanced MR. Acid-released lysine continuously decreased during baking. A reference baking level was defined to compare differently processed cookies using fluorescence synchronous spectra, highly sensitive to the dough physicochemical properties. Furosine was maximal in glucose-containing cookies, but only accounted for 5-50% lysine blockage, depending on the sugar and baking temperature. High oven temperatures and the use of fructose as the sugar source were associated with lowest the lysine damage and CML formation.

  17. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A

    2016-01-01

    Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.

  18. An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry

    PubMed Central

    Golon, Agnieszka; Kropf, Christian; Vockenroth, Inga; Kuhnert, Nikolai

    2014-01-01

    Thermal treatment of food changes its chemical composition drastically with the formation of “so-called” Maillard reaction products, being responsible for the sensory properties of food, along with detrimental and beneficial health effects. In this contribution, we will describe the reactivity of several amino acids, including arginine, lysine, aspartic acid, tyrosine, serine and cysteine, with carbohydrates. The analytical strategy employed involves high and ultra-high resolution mass spectrometry followed by chemometric-type data analysis. The different reactivity of amino acids towards carbohydrates has been observed with cysteine and serine, resulting in complex MS spectra with thousands of detectable reaction products. Several compounds have been tentatively identified, including caramelization reaction products, adducts of amino acids with carbohydrates, their dehydration and hydration products, disproportionation products and aromatic compounds based on molecular formula considerations. PMID:28234331

  19. Role of choline and glycine betaine in the formation of N,N-dimethylpiperidinium (mepiquat) under Maillard reaction conditions.

    PubMed

    Bessaire, Thomas; Tarres, Adrienne; Stadler, Richard H; Delatour, Thierry

    2014-01-01

    This study is the first to examine the role of choline and glycine betaine, naturally present in some foods, in particular in cereal grains, to generate N,N-dimethylpiperidinium (mepiquat) under Maillard conditions via transmethylation reactions involving the nucleophile piperidine. The formation of mepiquat and its intermediates piperidine - formed by cyclisation of free lysine in the presence of reducing sugars - and N-methylpiperidine were monitored over time (240°C, up to 180 min) using high-resolution mass spectrometry in a model system comprised of a ternary mixture of lysine/fructose/alkylating agent (choline or betaine). The reaction yield was compared with data recently determined for trigonelline, a known methylation agent present naturally in coffee beans. The role of choline and glycine betaine in nucleophilic displacement reactions was further supported by experiments carried out with stable isotope-labelled precursors (¹³C- and deuterium-labelled). The results unequivocally demonstrated that the piperidine ring of mepiquat originates from the carbon chain of lysine, and that either choline or glycine betaine furnishes the N-methyl groups. The kinetics of formation of the corresponding demethylated products of both choline and glycine betaine, N,N-demethyl-2-aminoethanol and N,N-dimethylglycine, respectively, were also determined using high-resolution mass spectrometry.

  20. The Maillard reaction of a shrimp by-product protein hydrolysate: chemical changes and inhibiting effects of reactive oxygen species in human HepG2 cells.

    PubMed

    Zha, Fengchao; Wei, Binbin; Chen, Shengjun; Dong, Shiyuan; Zeng, Mingyong; Liu, Zunying

    2015-06-01

    Recently, much attention has been given to improving the antioxidant activity of protein hydrolysates via the Maillard reaction, but little is known about the cellular antioxidant activity of Maillard reaction products (MRPs) from protein hydrolysates. We first investigated chemical characterization and the cellular antioxidant activity of MRPs in a shrimp (Litopenaeus vannamei) by-product protein hydrolysate (SBH)-glucose system at 110 °C for up to 10 h of heating. Solutions of SBH and glucose were also heated alone as controls. The Maillard reaction greatly resulted in the increase of hydroxymethylfurfural (HMF) and browning intensity, high molecular weight fraction, and reduction of the total amino acid in SBH with the heating time, which correlated well with the free radical scavenging activity of MRPs. MRPs had stronger inhibiting effects on oxidative stress of human HepG2 cells than the original SBH, and its cellular antioxidant activity strongly correlated with free radical scavenging activity, but less affected by the browning intensity and HMF level. The caramelization of glucose partially affected the HMF level and free radical scavenging activity of MRPs, but it was not related to the cellular antioxidant activity. The cellular antioxidant activity of MRPs for 5 h of heating time appeared to reach a maximum level, which was mainly due to carbonyl ammonia condensation reaction. In conclusion, the Maillard reaction is a potential method to increase the cellular antioxidant activity of a shrimp by-product protein hydrolysate, but the higher HMF levels and the lower amino acid content in MRPs should also be considered.

  1. A potential fluorescent probe: Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detection of Hg(2+) and biothiols.

    PubMed

    Dong, Jiang Xue; Song, Xiao Fang; Shi, Yan; Gao, Zhong Feng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2016-07-15

    Maillard reactions and their fluorescent products have drawn much attention in the fields of food and life science, however, the application of fluorescent products separated from the reaction as an indicator for detection of certain substances in sensor field has not been mentioned. In this article, we report on an easy-to-synthesize and water-soluble fluorescent probe separated from the typical Maillard reaction products of glutathione and ascorbic acid, with excellent stability and high quantum yield (18.2%). The further application of the probe has been explored for dual detection of Hg(2+) and biothiols including cysteine, homocysteine, and glutathione, which is based on Hg(2+)-induced fluorescence quenching of the Maillard reaction fluorescent products (MRFPs) and the fluorescence recovery as the introduction of biothiols. This sensing system exhibits a good selectivity and sensitivity, and the linear ranges for Hg(2+), cysteine, homocysteine, and glutathione are 0.05-12, 0.5-10, 0.3-20, and 0.3-20μM, respectively. The detection limits for Hg(2+), cysteine, homocysteine, and glutathione are 22, 47, 96, and 30nM at a signal-to-noise ratio of 3, respectively. Furthermore, the practical applications of this sensor for Hg(2+) and biothiols determination in water samples and human plasma sample have been demonstrated with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I.

    PubMed

    Troise, Antonio Dario; Buonanno, Martina; Fiore, Alberto; Monti, Simona Maria; Fogliano, Vincenzo

    2016-12-01

    Thermal treatments and storage influence milk quality, particularly in low lactose milk as the higher concentration of reducing sugars can lead to the increased formation of the Maillard reaction products (MRPs). The control of the Amadori products (APs) formation is the key step to mitigate the Maillard reaction (MR) in milk. The use of fructosamine oxidases, (Faox) provided promising results. In this paper, the effects of Faox I were evaluated by monitoring the concentration of free and bound MRPs in low lactose milk during shelf life. Results showed that the enzyme reduced the formation of protein-bound MRPs down to 79% after six days at 37°C. Faox I lowered the glycation of almost all the free amino acids resulting effective on basic and polar amino acids. Data here reported corroborate previous findings on the potentiality of Faox enzymes in controlling the early stage of the MR in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Preparation of chemically modified canola protein isolate with gum Arabic by means of Maillard reaction under wet-heating conditions.

    PubMed

    Pirestani, Safoura; Nasirpour, Ali; Keramat, Javad; Desobry, Stéphane

    2017-01-02

    The aim of this study was to produce covalently attached conjugate between canola protein isolate (CPI) and gum Arabic (GA) in aqueous solutions via the Maillard reaction at 90°C in a model system consisting of 2% CPI and 1, 2 or 4% GA. Upon decreasing of free amino group content in the glycosylated CPI to 72%, a new band near the loading end of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a shift of CPI peak in high performance size exclusion chromatography confirmed that the covalent attachment of CPI to GA was successful. The results of secondary structure analysis suggested that grafted CPI had decreased α-helix and β-sheet levels and increased random coils level. The solubility of CPI at isoelectric point was improved remarkably after grafting with GA. The optimal conjugation conditions chosen from the further experiments were 1% of GA, 90°C and reaction time 15min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterization and emulsifying properties of β-lactoglobulin-gum Acacia Seyal conjugates prepared via the Maillard reaction.

    PubMed

    Bi, Binwei; Yang, Hao; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2017-01-01

    Gum Acacia Seyal (ASY) is less valued than is gum Acacia Senegal, due to its poor emulsifying ability. The present study investigated the Maillard reaction between ASY and β-lactoglobulin (BLG) and its impact on the emulsifying properties of ASY. The reaction products of BLG/ASY mixture (r=1/4), prepared by dry-heating at 60°C and a relative humidity of 79%, as a function of incubation time, were characterized by SDS-PAGE, GPC-MALLS and DSC. The results showed that 12-24h of dry-heating under the given conditions was sufficient for conjugation, meanwhile avoiding the formation of deeply coloured and insoluble melanoidins. More than 64% of the protein was incorporated into ASY, resulting in a two-fold increase in arabinogalactan-protein (AGP) content and 3.5 times increase in weight-average molecular mass of ASY. The conjugation with BLG markedly improved the stability of ASY-stabilized emulsions and their resistance against severe conditions, such as low pH and high saline conditions.

  5. Changes in the physicochemical characteristics, including flavour components and Maillard reaction products, of non-centrifugal cane brown sugar during storage.

    PubMed

    Asikin, Yonathan; Kamiya, Asahiro; Mizu, Masami; Takara, Kensaku; Tamaki, Hajime; Wada, Koji

    2014-04-15

    Changes in the quality attributes of non-centrifugal cane brown sugar represented by physicochemical characteristics as well as flavour components and Maillard reaction products (MRPs) were monitored every 3 months over 1 year of storage. Stored cane brown sugar became darker, and its moisture content and water activity (a(w)) increased during storage. Fructose and glucose levels decreased as non-enzymatic browning via the Maillard reaction occurred in the stored sample, and a similar trend was also discovered in aconitic and acetic acids. Stored cane brown sugar lost its acidic and sulfuric odours (58.70-39.35% and 1.85-0.08%, respectively); subsequently, the nutty and roasted aroma increased from 26.52% to 38.59% due to the volatile MRPs. The browning rate of stored cane brown sugar was positively associated with the development of volatile MRPs (Pearson's coefficient = 0.860), whereas the amount of 3-deoxyglucosone, an intermediate product of the Maillard reaction, had a lower association with the brown colour due to its relatively slow degradation rate.

  6. Short communication: Hypolipidemic and antiinflammatory effects of fermented Maillard reaction products by Lactobacillus fermentum H9 in an animal model.

    PubMed

    Oh, Nam Su; Koh, Ji Hoon; Park, Mi Ri; Kim, Younghoon; Kim, Sae Hun

    2016-12-01

    This study examined the effects of Maillard reaction products reacted by casein and lactose (cMRP) and of cMRP fermented by Lactobacillus fermentum H9 (F-cMRP) on hypolipidemic and antiinflammatory effects in rats fed a high-fat and high-cholesterol diet (HD). The HD-fed rats had significantly increased hepatic triglyceride concentrations compared with the rats fed a normal diet. It was shown that treatment with simvastatin, L. fermentum H9 (H9), cMRP, and F-cMRP decreased total triglycerides in the liver compared with the HD group. On histological analysis, a reduction of lipid accumulation in the liver and aortic tissues was observed in the cMRP, F-cMRP, and H9-fed rats. Also, F-cMRP and cMRP reduced intima-media thickness in the HD group. In addition, the H9, cMRP, and F-cMRP treatments significantly reduced the expression levels of ICAM-1 and VCAM-1, but not of MCP-1. In particular, the expressions of ICAM-1 and VCAM-1 were significantly decreased in the F-cMRP group compared with the HD group. These results of the present study suggest that cMRP and F-cMRP in dairy foods could potentially be used to prevent or treat cardiovascular diseases, especially atherosclerosis.

  7. Influence of diets rich in Maillard reaction products on calcium bioavailability. Assays in male adolescents and in Caco-2 cells.

    PubMed

    Mesías, Marta; Seiquer, Isabel; Navarro, María Pilar

    2009-10-28

    The effects of the high intake of Maillard reaction products (MRP) on calcium availability in adolescents and across Caco-2 cell monolayers were examined. In a 2 week randomized two-period crossover trial, 18 male adolescents consumed two diets, named white diet (WD) and brown diet (BD), which were poor and rich in MRP, respectively. A 3 day balance was performed at the end of each period, and fasting blood samples were collected. Calcium solubility and absorption across Caco-2 cells were studied after the in vitro digestion of the diets. The in vitro assay showed similar solubility after the in vitro digestion and similar transport across Caco-2 cells. In accordance, calcium bioavailability in adolescents did not vary between the diets (%WD = 40.4 +/- 5.1, %BD = 38.2 +/- 3.6). Serum and urine biochemical parameters related to calcium status and bone metabolism remained unaltered. Only deoxypyridinoline values were significantly lower after consumption of the BD (13.0 +/- 1.1 compared to 18.3 +/- 2.1 nM/Mm Cr in the WD), possibly indicative of less efficient bone turnover during this period. As calcium acquired during adolescence is essential to maximize peak bone mass and to prevent osteoporosis, possible long-term effects of excessive MRP intake during this period warrant attention.

  8. Isolation, purification and characterization of histidino-threosidine, a novel Maillard reaction protein crosslink from threose, lysine and histidine.

    PubMed

    Dai, Zhenyu; Nemet, Ina; Shen, Wei; Monnier, Vincent M

    2007-07-01

    We isolated a novel acid-labile yellow chromophore from the incubation of lysine, histidine and d-threose and identified its chemical structure by one and two-dimensional NMR spectroscopy combined with LC-tandem mass spectrometry. This new cross-link exhibits a UV absorbance maximum at 305 nm and a molecular mass of 451 Da. The proposed structure is 2-amino-5-(3-((4-(2-amino-2-carboxyethyl)-1H-imidazol-1-yl)methyl)-4-(1,2-dihydroxyethyl)-2-formyl-1H-pyrrol-1-yl)pentatonic acid, a cross-link between lysine and histidine with addition of two threose molecules. It was in part deduced and confirmed through synthesis of the analogous compound from n-butylamine, imidazole and d-threose. We assigned the compound the trivial name histidino-threosidine. Systemic incubation revealed that histidino-threosidine can be formed in low amounts from fructose, glyceraldehyde, methylglyoxal, glycolaldehyde, ascorbic acid, and dehydroascorbic acid, but at a much higher yield with degradation products of ascorbic acid, i.e. threose, erythrose, and erythrulose. Bovine lens protein incubated with 10 and 50 mM threose for two weeks yielded 560 and 2840 pmol/mg histidino-threosidine. Histidino-threosidine is to our knowledge the first Maillard reaction product known to involve histidine in a crosslink.

  9. Dairy products and the Maillard reaction: A promising future for extensive food characterization by integrated proteomics studies.

    PubMed

    Arena, Simona; Renzone, Giovanni; D'Ambrosio, Chiara; Salzano, Anna Maria; Scaloni, Andrea

    2017-03-15

    Heating of milk and dairy products is done using various technological processes with the aim of preserving microbiological safety and extending shelf-life. These treatments result in chemical modifications in milk proteins, mainly generated as a result of the Maillard reaction. Recently, different bottom-up proteomic methods have been applied to characterize the nature of these structural changes and the modified amino acids in model protein systems and/or isolated components from thermally-treated milk samples. On the other hand, different gel-based and shotgun proteomic methods have been utilized to assign glycation, oxidation and glycoxidation protein targets in diverse heated milks. These data are essential to rationalize eventual, different nutritional, antimicrobial, cell stimulative and antigenic properties of milk products, because humans ingest large quantities of corresponding thermally modified proteins on a daily basis and these molecules also occur in pharmaceuticals and cosmetics. This review provides an updated picture of the procedures developed for the proteomic characterization of variably-heated milk products, highlighting their limits as result of concomitant factors, such as the multiplicity and the different concentration of the compounds to be detected.

  10. Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides.

    PubMed

    Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed

    2017-04-15

    Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins.

  11. Antioxidant and chelating capacity of Maillard reaction products in amino acid-sugar model systems: applications for food processing.

    PubMed

    Mondaca-Navarro, Blanca A; Ávila-Villa, Luz A; González-Córdova, Aarón F; López-Cervantes, Jaime; Sánchez-Machado, Dalia I; Campas-Baypoli, Olga N; Rodríguez-Ramírez, Roberto

    2017-08-01

    Maillard reaction products (MRP) have gained increasing interest owing to their both positive and negative effects on human health. Aqueous amino acid-sugar model systems were studied in order to evaluate the antioxidant and chelating activity of MRP under conditions similar to those of food processing. Amino acids (cysteine, glycine, isoleucine and lysine) combined with different sugars (fructose or glucose) were heated to 100 and 130 °C for 30, 60 and 90 min. Antioxidant capacity was evaluated via ABTS and DPPH free radical scavenging assays, in addition to Fe(2+) and Cu(2+) ion chelating capacity. In the ABTS assay, the cysteine-fructose model system presented the highest antioxidant activity at 7.05 µmol mL(-1) (130 °C, 60 min), expressed in Trolox equivalents. In the DPPH assay, the cysteine-glucose system presented the highest antioxidant activity at 3.79 µmol mL(-1) (100 °C, 90 min). The maximum rate of chelation of Fe(2+) and Cu(2+) was 96.31 and 59.44% respectively in the lysine-fructose and cysteine-glucose systems (100 °C, 30 min). The model systems presented antioxidant and chelating activity under the analyzed temperatures and heating times, which are similar to the processing conditions of some foods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Modification of soy protein hydrolysates by Maillard reaction: Effects of carbohydrate chain length on structural and interfacial properties.

    PubMed

    Li, Weiwei; Zhao, Haibo; He, Zhiyong; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-02-01

    This study investigated the effects of carbohydrate chain length on the structural and interfacial properties of the Maillard reaction conjugates of soy protein hydrolysates (Mw>30 kDa). The covalent attachment of sugars to soy peptides was confirmed by amino acid analysis and examination of the Fourier-transform infrared spectra. The results suggested that the emulsion stability of the conjugates increased as the length of the carbohydrate chains increased. The surface activity measurement revealed that the soy peptide-dextran conjugates were closely packed and that each molecule occupied a small area of the interface. It was further confirmed that the soy peptide-dextran conjugates formed a thick adsorbed layer at the oil-water interface, as observed in the confocal laser scanning micrographs. The interfacial layer of soy peptides was rheologically complex with broad linear viscoelastic region and strong elastic modulus, and the soy peptide-dextran conjugates might form multilayer adsorption at the interface. This study suggested that the improved surface properties of the soy peptide-dextran conjugates were a result of the strong membrane formed by the closely packed molecular and multilayer adsorption at the interface, which provided steric hindrance to flocculation.

  13. Improved physicochemical properties and hepatic protection of Maillard reaction products derived from fish protein hydrolysates and ribose.

    PubMed

    Yang, Sung-Yong; Lee, Sanghoon; Pyo, Min Cheol; Jeon, Hyeonjin; Kim, Yoonsook; Lee, Kwang-Won

    2017-04-15

    High amounts of waste products generated from fish-processing need to be disposed of despite their potential nutritional value. A variety of methods, such as enzymatic hydrolysis, have been developed for these byproducts. In the current study, we investigated the physicochemical, biological and antioxidative properties of fish protein hydrolysates (FPH) conjugated with ribose through the Maillard reaction. These glycated conjugates of FPH (GFPH) had more viscous rheological properties than FPH and exhibited higher heat, emulsification and foaming stability. They also protected liver HepG2 cells against t-BHP-induced oxidative stress with enhanced glutathione synthesis in vitro. Furthermore, it was shown that GFPH induced upregulation of phase II enzyme expression, such as that of HO-1 and γ-GCL, via nuclear translocation of Nrf2 and phosphorylation of ERK. Taken together, these results demonstrate the potential of GFPH for use as a functional food ingredient with improved rheological and antioxidative properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A novel method for beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction.

    PubMed

    Song, Shiqing; Li, Sisi; Fan, Li; Hayat, Khizar; Xiao, Zuobing; Chen, Lihua; Tang, Qi

    2016-10-01

    Five beef bone hydrolysates were obtained by different enzyme treatment schemes, including papain (M), combination of porcine pancreatic lipase and papain (Z+M, combination of lipase and papain (Y+M), Protamex (F), combination of porcine pancreatic lipase and Protamex (Z+F). The degree of hydrolysis (DH), free amino acids and molecular weight distribution of these hydrolysates were evaluated. To further explore the differences between these five hydrolysates, Maillard reaction products (MRPs) were prepared using a xylose/cysteine/hydrolysate model. It was found that the DH, content of low molecular weight peptides and amino acids of hydrolysates increased significantly after lipase pre-treatment. GC-MS showed that the total content of furans, pyrroles and thioethers in MRPs Y+M increased by 78.0% compared with MRPs M, while in MRPs Z+F, pyrazines increased by 44.1% compared with MRPs F. Examining the sensory characteristics of the MRPs, the MRP from the hydrolysate of Y+M had the best mouthful, umami and meaty characteristics. The correlation analysis further confirmed that an appropriate lipase pre-treatment could improve the flavour of MRPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Isolation, Purification and Characterization of Histidino-Threosidine, a Novel Maillard Reaction Protein Crosslink from Threose, Lysine and Histidine

    PubMed Central

    Dai, Zhenyu; Nemet, Ina; Shen, Wei; Monnier., Vincent M.

    2007-01-01

    We isolated a novel acid-labile yellow chromophore from the incubation of lysine, histidine and D-threose and identified its chemical structure by one and two-dimensional 1H and DEPT NMR spectroscopy combined with LC-tandem mass spectrometry. This new cross-link exhibits a UV absorbance maximum at 305 nm and a molecular mass of 451 Da. The proposed structure is 2-amino-5-(3-((4-(2-amino-2-carboxyethyl)-1H-imidazol-1-yl)methyl)-4-(1,2-dihydroxyethyl)-2-formyl-1H-pyrrol-1-yl)pentatonic acid, a cross-link between lysine and histidine with addition of two threose molecules. It was in part deduced and confirmed through synthesis of the analogous compound from n-butylamine, imidazole and D-threose. We assigned the compound the trivial name histidino-threosidine. Systemic incubation revealed that histidino-threosidine can be formed in low amounts from fructose, glyceraldehyde, methylglyoxal, glycolaldehyde, ascorbic acid, and dehydroascorbic acid, but at a much higher yield with degradation products of ascorbic acid, i.e. threose, erythrose, and erythrulose. Bovine lens protein incubated with 10 and 50 mM threose for two weeks yielded 560 and 2840 pmol/mg histidino-threosidine. Histidino-threosidine is to our knowledge the first Maillard reaction product known to involve histidine in a crosslink. PMID:17466255

  16. Using an enzymatic galactose assay to detect lactose glycation extents of two proteins caseinate and soybean protein isolate via the Maillard reaction.

    PubMed

    Wang, Xiao-Peng; Zhao, Xin-Huai

    2017-06-01

    Glycation of food proteins via the Maillard reaction has been widely studied in the recent years; however, the amount of saccharide connected to proteins is usually not determined. An enzymatic galactose assay was proposed firstly in this study to detect lactose glycation extents of caseinate and soybean protein isolate (SPI) during the Maillard reaction at two temperatures and different times. The separated glycated proteins were hydrolysed to release galactose necessary for the enzymatic assay and glycation calculation. Caseinate and SPI both obtained the highest lactose glycation extents at 100 °C or 121 °C by a reaction time of 180 or 20 min. Short- and long-time reaction resulted in lower glycation extents. During the reaction, three chemical indices (absorbences at 294/490 nm and fluorescence intensities) of reaction mixtures increased continually, but another index reactable NH2 of glycated proteins showed the opposite trend. In general, changing profiles of the four indices were inconsistent with those profiles of lactose glycation extents of glycated proteins, implying practical limitation of the four indices in studies. This proposed enzymatic assay could directly detect lactose glycation of the two proteins, and thus was more useful than the four chemical indices to monitor glycation of the two proteins. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Modelling the Maillard reaction during the cooking of a model cheese.

    PubMed

    Bertrand, Emmanuel; Meyer, Xuân-Mi; Machado-Maturana, Elizabeth; Berdagué, Jean-Louis; Kondjoyan, Alain

    2015-10-01

    During processing and storage of industrial processed cheese, odorous compounds are formed. Some of them are potentially unwanted for the flavour of the product. To reduce the appearance of these compounds, a methodological approach was employed. It consists of: (i) the identification of the key compounds or precursors responsible for the off-flavour observed, (ii) the monitoring of these markers during the heat treatments applied to the cheese medium, (iii) the establishment of an observable reaction scheme adapted from a literature survey to the compounds identified in the heated cheese medium (iv) the multi-responses stoichiokinetic modelling of these reaction markers. Systematic two-dimensional gas chromatography time-of-flight mass spectrometry was used for the semi-quantitation of trace compounds. Precursors were quantitated by high-performance liquid chromatography. The experimental data obtained were fitted to the model with 14 elementary linked reactions forming a multi-response observable reaction scheme.

  18. Do bread-crust-derived Maillard reaction products affect the retention and tissue distribution of trace elements?

    PubMed

    Delgado-Andrade, Cristina; Roncero-Ramos, Irene; Haro, Ana; Pastoriza, Silvia; Navarro, María Pilar

    2016-04-01

    To investigate the effects of the consumption of Maillard reaction products (MRPs) from bread crust (BC) on iron, copper and zinc body retention and tissue distribution, determining whether these effects are related to the molecular weight of browning products. During an 88-day study period, rats were fed a Control diet or diets containing BC as source of MRPs, its soluble high or low molecular weight fractions (BC, LMW or HMW diets). A mineral balance was conducted throughout the experiment to determine iron, copper and zinc retention. At day 88, animals were killed, blood was drawn for haemoglobin determination and some organs removed to analyse minerals. Copper and zinc balances were unchanged, and scant modification detected in their body delivery. However, the Fe retention rate from the diet increased (13, 22 and 32 % for BC, LMW and HMW diets), and a parallel higher Fe body concentration was observed (13-18 % higher than the Control group). Incoming iron accumulated particularly in the liver, femur and small intestine, but functional iron tended to decrease, as reflected by haemoglobin levels. The long-term intake of BC or derivatives did not produce a notable effect on copper or zinc balances, although slightly increased iron retention rate and the body concentration of this mineral were observed. Iron accumulated in some organs, but the production of haemoglobin was not improved. In view of the differences observed between the effects of BC and its derivatives, our results underline the importance of working with real food matrices, where the joint presence of different components modulates the in vivo final effects.

  19. Protective Effects of Maillard Reaction Products of Whey Protein Concentrate against Oxidative Stress through an Nrf2-Dependent Pathway in HepG2 Cells.

    PubMed

    Pyo, Min Cheol; Yang, Sung-Yong; Chun, Su-Hyun; Oh, Nam Su; Lee, Kwang-Won

    2016-09-01

    Whey protein concentrate (WPC), which contains α-lactalbumin and β-lactoglobulin, is utilized widely in the food industry. The Maillard reaction is a complex reaction that produces Maillard reaction products (MRPs), which are associated with the formation of antioxidant compounds. In this study, the hepatoprotection activity of MRPs of WPC against oxidative stress through the nuclear factor-E2-related factor 2 (Nrf2)-dependent antioxidant pathway in HepG2 cells was examined. Glucose-whey protein concentrate conjugate (Glc-WPC) was obtained from Maillard reaction between WPC and glucose. The fluorescence intensity of Glc-WPC increased after 7 d compared to native WPC, and resulted in loss of 48% of the free amino groups of WPC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of Glc-WPC showed the presence of a high-molecular-weight portion. Treatment of HepG2 cells with Glc-WPC increased cell viability in the presence of oxidative stress, inhibited the generation of intracellular reactive oxygen species by tert-butyl hydroperoxide (t-BHP), and increased the glutathione level. Nrf2 translocation and Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H)-quinone oxidoreductase 1 (NOQ1), heme oxygenase-1 (HO-1), glutamate-L-cysteine ligase (GCL)M and GCLC mRNA levels were increased by Glc-WPC. Also, Glc-WPC increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK). The results of this study demonstrate that Glc-WPC activates the Nrf2-dependent pathway through the phosphorylation of ERK1/2 and JNK in HepG2 cells, and induces production of antioxidant enzymes and phase II enzymes.

  20. Prior lactose glycation of caseinate via the Maillard reaction affects in vitro activities of the pepsin-trypsin digest toward intestinal epithelial cells.

    PubMed

    Wang, X P; Zhao, X H

    2017-07-01

    The well-known Maillard reaction in milk occurs between lactose and milk proteins during thermal treatment, and its effects on milk nutrition and safety have been well studied. A lactose-glycated caseinate was prepared via this reaction and digested using 2 digestive proteases, pepsin and trypsin. The glycated caseinate digest was assessed for its in vitro activities on rat intestinal epithelial cells in terms of growth proliferation, anti-apoptotic effect, and differentiation induction using caseinate digest as reference, to verify potential effects of the Maillard reaction on these activities of caseinate digest to the cells. Two digests had proliferative and anti-apoptotic effects, and reached the highest effects at 0.02 g/L of digest concentration with treatment time of 24 h. In comparison with caseinate digest, glycated caseinate digest always showed weaker proliferative (5.3-14.2%) and anti-apoptotic (5.9-39.0%) effects, and was more toxic to the cells at 0.5 g/L of digest concentration with treatment time of 48 h. However, glycated caseinate digest at 2 incubation times of 4 to 7 d showed differentiation induction higher than caseinate digest, as it could confer the cells with increased activities in lactase (16.3-26.6%), sucrase (22.4-31.2%), and alkaline phosphatase (17.4-24.8%). Transmission electron microscopy observation results also confirmed higher differentiation induction of glycated caseinate digest. Amino acid loss and lactose glycation partially contributed to these decreased and enhanced activities of glycated caseinate digest, respectively. The Maillard reaction of caseinate and lactose is thus shown in this study to have effects on the activities of caseinate digest to intestinal epithelial cells. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Fragmentation pathways during Maillard-induced carbohydrate degradation.

    PubMed

    Smuda, Mareen; Glomb, Marcus A

    2013-10-30

    The Maillard reaction network with focus on the chemistry of dicarbonyl structures causes considerable interest of research groups in food chemistry and medical science, respectively. Dicarbonyl compounds are well established as the central intermediates in the nonenzymatic browning reaction and have been verified to be responsible for advanced glycation endproduct (AGE) formation. A multitude of Maillard dicarbonyls covering the range of the intact carbon backbone down to C3 and C2 fragments were detected in several carbohydrate systems, for example, in glucose, maltose, or ascorbic acid reactions. By definition, dicarbonyls with a C2-C5 carbon backbone must originate by fission of the original carbon skeleton. The present review deals with the five major mechanisms reported in the literature for dicarbonyl decomposition: (i) retro-aldol fragmentation, (ii) hydrolytic α-dicarbonyl cleavage, (iii) oxidative α-dicarbonyl cleavage, (iv) hydrolytic β-dicarbonyl cleavage, and (v) amine-induced β-dicarbonyl cleavage.

  2. Nonenzymic browning. XII. Maillard reactions in green coffee beans on storage.

    PubMed

    Pokorný, J; Côń, N H; Smidrkalová, E; Janícek, G

    1975-06-30

    During storage of green coffee beans at increased temperature and at constant humidity reducing sugars present in original beans react with free amino acids with formation of colourless unstable products. Additional reducing sugars and free amino acids are produced by hydrolysis of polysaccharides and proteins, respectively. The second stage of storage is characterized by only slight changes in the content of free amino acids and sugars but by intensive browning reactions. This latter stage was characterized by deterioration of sensory quality of coffee beverage, especially of its odour. Lysine combined in protein was involved in browning reactions via colourless intermediary products.

  3. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats.

    PubMed

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-04-01

    To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life.

  4. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats

    PubMed Central

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-01-01

    Aim To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. Methods At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. Results MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Conclusion Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life. PMID:25891868

  5. Effect of Maillard reaction on biochemical properties of peanut 7S globulin (Ara h 1) and its interaction with a human colon cancer cell line (Caco-2).

    PubMed

    Teodorowicz, Małgorzata; Fiedorowicz, Ewa; Kostyra, Henryk; Wichers, Harry; Kostyra, Elżbieta

    2013-12-01

    The purpose of this study was to determine the influence of Maillard reaction (MR, glycation) on biochemical and biological properties of the major peanut allergen Ara h 1. Three different time/temperature conditions of treatment were applied (37, 60, and 145 °C). The extent of MR was assessed by SDS-PAGE, loss of free amino groups, fluorescence intensity, content of bound sugar and fructosamine. The Caco-2 model system was applied to study effects of hydrolysed and non-hydrolysed Ara h 1 on proliferation and interleukin-8 (IL-8) secretion from Caco-2 cells. We demonstrated significant differences in the biochemical properties of Ara h 1 glycated at different time/temperature conditions. Glycation of Ara h 1 at 37 °C was shown to cause least biochemical changes, not limiting pepsin hydrolysis. Loss of free amino groups, increase of fluorescence and brown colour of Ara h 1 glycated at 60 and 145 °C indicated advanced and final stages of MR. Non-treated Ara h 1 inhibited Caco-2 cell proliferation and stimulated IL-8 secretion. This effect was less pronounced for glycated Ara h 1. Incubation of Caco-2 cells with non-hydrolysed Ara h 1, glycated at the temperature of 37 and 60 °C, did not stimulate IL-8 secretion. Each applied time/temperature-treatment combination caused different biochemical changes of Ara h 1, underlining diversity of formed MRPs. MR, independently of temperature/time conditions, reduced the pro-inflammatory properties of native Ara h 1, reflected in stimulation of IL-8 secretion from intestinal epithelial cells.

  6. Temperature Influence on Acetyllysine Interaction with Glucose in Model Systems due to Maillard Reaction

    DTIC Science & Technology

    1992-01-01

    Loncin noodles of 15.2 ± 9.1 and in pasta of 12.8 ± 5.2 kcal/mol Kaet at., 1986 anLove, 1988;Labuz and Satmarch , 19 ; nhave been reported at a, 0.44...glucose model were cons~derably lower dental (Glasstone, 1961). Further, a bimolecular reaction is than those observed for the lysine-glucose model (5.0 x...the a,,. pasta , fish flour, egg noodles, and fortified rice meal respec- tively). The low E, values in the range 5-13 kcal/mol for fish flour stored in

  7. Effects of hydrophobic and ionic interactions on glycation of casein during Maillard reaction.

    PubMed

    Akıllıoğlu, H Gül; Gökmen, Vural

    2014-11-19

    This study aimed to investigate the effects of hydrophobic and ionic interactions on glycation of native and high-shear treated casein during heating. Casein-epicatechin and casein-calcium complexes were formed and glycated with glucose at different temperatures ranging from 70 to 150 °C in solution and dry states. Furosine, acid derivative of N-ε-fructoselysine (FL), and N-ε-carboxymethyl lysine (CML) were measured as indicators of early and advanced glycation, respectively. CML concentrations of casein-epicatechin and casein-calcium complexes heated in solution were significantly lower as compared to the control (p < 0.05). For instance, 182 ± 9.78 μg/g of CML formed in the control, while CML concentrations were 136 ± 10.7 and 101 ± 7.37 μg/g in casein-epicatechin and casein-calcium complexes, respectively, heated at 150 °C in the solution state. Treatment by high shear microfluidization further decreased the CML formed during heating at 70 °C in dry state. The results suggest that interactions with epicatechin molecule and calcium ion could be a useful strategy to limit advanced glycation of casein under certain conditions.

  8. Effect of ultrasound pretreatment and Maillard reaction on structure and antioxidant properties of ultrafiltrated smooth-hound viscera proteins-sucrose conjugates.

    PubMed

    Abdelhedi, Ola; Mora, Leticia; Jemil, Ines; Jridi, Mourad; Toldrá, Fidel; Nasri, Moncef; Nasri, Rim

    2017-09-01

    The effect of ultrasound (US) pre-treatment on the evolution of Maillard reaction (MR), induced between low molecular weight (LMW) peptides and sucrose, was studied. LMW peptides (<1kDa) were obtained by the ultrafiltration of smooth hound viscera protein hydrolysates, produced by Neutrase, Esperase and Purafect. MR was induced by heating the LMW peptides in the presence of sucrose for 2h at 90°C, without or with US pre-treatment. During the reaction, a marked decrease in pH values, coupled to the increase in colour of the Maillard reaction products (MRPs), were recorded. In addition, after sonication, the glycation degree was significantly enhanced in Esperase-derived peptides/sucrose conjugates (p<0.05). Moreover, results showed that thermal heating, particularly after US treatment, reduced the bitter taste and enhanced the antioxidant capacities of the resulting conjugates. Hence, it could be concluded that US leads to efficient mixing of sugar-protein solution and efficient heat/mass transfer, contributing to increase the MR rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Aldimine Formation Reaction, the First Step of the Maillard Early-phase Reaction, Might be Enhanced in Variant Hemoglobin, Hb Himeji.

    PubMed

    Koga, Masafumi; Inada, Shinya; Shimizu, Sayoko; Hatazaki, Masahiro; Umayahara, Yutaka; Nishihara, Eijun

    2015-01-01

    Hb Himeji (β140Ala→Asp) is known as a variant hemoglobin in which glycation is enhanced and HbA1c measured by immunoassay shows a high value. The phenomenon of enhanced glycation in Hb Himeji is based on the fact that the glycation product of variant hemoglobin (HbX1c) shows a higher value than HbA1c. In this study, we investigated whether aldimine formation reaction, the first step of the Maillard early-phase reaction, is enhanced in Hb Himeji in vitro. Three non-diabetic subjects with Hb Himeji and four non-diabetic subjects without variant hemoglobin were enrolled. In order to examine aldimine formation reaction, whole blood cells were incubated with 500 mg/dl of glucose at 37°C for 1 hour and were analyzed by high-performance liquid chromatography. Both HbA1c and HbX1c were not increased in this condition. After incubation with glucose, labile HbA1c (LA1c) fraction increased in the controls (1.1±0.3%). In subjects with Hb Himeji increases in the labile HbX1c (LX1c) fraction as well as the LA1c fraction were observed, and the degree of increase in the LX1c fraction was significantly higher than that of the LA1c fraction (1.8±0.1% vs. 0.5±0.2%, P<0.01). We have shown for the first time that aldimine (LX1c) formation reaction might be enhanced in Hb Himeji in vitro. The 140th amino acid in β chain of hemoglobin is suggested to be involved in aldimine formation reaction.

  10. Impact of thermal processing and the Maillard reaction on the basophil activation of hazelnut allergic patients.

    PubMed

    Cucu, Tatiana; De Meulenaer, Bruno; Bridts, Chris; Devreese, Bart; Ebo, Didier

    2012-05-01

    Food allergy, an abnormal immunological response due to sensitization to a food component, has become an important health problem, especially in industrialized countries. The aim of this study was to investigate the impact of thermal processing and glycation on the basophil activation by hazelnut proteins using a basophil activation test. Patients with systemic allergic reactions (SR; n=6) to hazelnut as well as patients with an isolated oral allergy syndrome (OAS; n=4) were investigated. Thermal processing of hazelnut proteins either in the presence or absence of wheat proteins did not result in major changes in the stimulatory activity of the basophils for patients with SR or OAS. For the patients with OAS, incubation of hazelnut proteins with glucose led to complete depletion of the stimulatory activity of the basophils. An increase in stimulatory activity of the basophils for two out of six patients with SR was observed. For the other four patients slight or complete abolition of the stimulatory activity was observed. These results indicate that some patients with SR to hazelnut are at risk when exposed to hazelnut proteins, even in processed foods.

  11. Chemiluminescence development after initiation of Maillard reaction in aqueous solutions of glycine and glucose: nonlinearity of the process and cooperative properties of the reaction system

    NASA Astrophysics Data System (ADS)

    Voeikov, Vladimir L.; Naletov, Vladimir I.

    1998-06-01

    Nonenzymatic glycation of free or peptide bound amino acids (Maillard reaction, MR) plays an important role in aging, diabetic complications and atherosclerosis. MR taking place at high temperatures is accompanied by chemiluminescence (CL). Here kinetics of CL development in MR proceeding in model systems at room temperature has been analyzed for the first time. Brief heating of glycine and D-glucose solutions to t greater than 93 degrees Celsius results in their browning and appearance of fluorescencent properties. Developed In solutions rapidly cooled down to 20 degrees Celsius a wave of CL. It reached maximum intensity around 40 min after the reaction mixture heating and cooling it down. CL intensity elevation was accompanied by certain decoloration of the solution. Appearance of light absorbing substances and development of CL depended critically upon the temperature of preincubation (greater than or equal to 93 degrees Celsius), initial pH (greater than or equal to 11,2), sample volume (greater than or equal to 0.5 ml) and reagents concentrations. Dependence of total counts accumulation on a system volume over the critical volume was non-monotonous. After reaching maximum values CL began to decline, though only small part of glucose and glycin had been consumed. Brief heating of such solutions to the critical temperature resulted in emergence of a new CL wave. This procedure could be repeated in one and the same reaction system for several times. Whole CL kinetic curve best fitted to lognormal distribution. Macrokinetic properties of the process are characteristic of chain reactions with delayed branching. Results imply also, that self-organization occurs in this system, and that the course of the process strongly depends upon boundary conditions and periodic interference in its course.

  12. Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: color, transparency and heat-sealing ability.

    PubMed

    Su, Jun-Feng; Yuan, Xiao-Yan; Huang, Zhen; Wang, Xin-Yu; Lu, Xu-Zhen; Zhang, Li-Dan; Wang, Sheng-Bao

    2012-01-01

    Soy protein isolate (SPI) films have many potential applications in the biomaterial field as surgical dressings for burns, films for reduction of wound inflammation, and facial masks. The appearance and the sealing ability are important physicochemical properties that greatly influence consumer acceptance of such protein-based films. The aim of the present work was to investigate the chemical structure and the physical properties associated with color, transparency and heat-sealing ability for SPI/carboxymethyl cellulose (CMC) blend films prepared by solution casting, with weight proportions 90/10, 80/20, 70/30 and 60/40. Fourier transform infra-red (FTIR) and solid-state (13)C nuclear magnetic resonance (NMR) spectra confirmed that Maillard reactions occurred between SPI and CMC. The Hunter color value (L, a, b) and transparency of films were affected by varying the proportions of SPI and CMC. With increasing degree of crosslinking of SPI and CMC, the yellow color of the films was diluted and transparency was improved. Peel strength and tensile strength measurements showed that the Maillard reactions had the main effect of enhancing the heat-sealing ability above the melting temperature. These results indicated that the structure and properties of SPI-based films could be modified and improved by blending with CMC.

  13. Effect of glycosylation with gum Arabic by Maillard reaction in a liquid system on the emulsifying properties of canola protein isolate.

    PubMed

    Pirestani, Safoura; Nasirpour, Ali; Keramat, Javad; Desobry, Stéphane; Jasniewski, Jordane

    2017-02-10

    In this research, the improvement of emulsifying properties of chemically modified canola protein isolate (CPI) with gum Arabic (GA) through Maillard reaction under natural pH at 90°C was investigated. The stability, rheology and morphology of oil-in-water emulsions stabilized by conjugate of two biopolymers were evaluated by determination of droplet size, emulsifying activity (EAI), emulsifying stability (ESI) and creaming indices. The conjugate-stabilized emulsion showed smaller mean droplet size and lower creaming index values which were more effective to stabilize the emulsion compared to CPI and mixture of two biopolymers especially if pH was near the isoelectric point of CPI or when emulsions heated from 30 to 90°C. Moreover, our results demonstrated that EAI, ESI and viscosity of emulsion for CPI-GA conjugate were significantly more than those of CPI-GA mixture and CPI. These results suggested that Maillard reaction could be one of the most promising approaches to improve emulsifying properties of CPI for food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Maillard hypothesis on aging: time to focus on DNA.

    PubMed

    Baynes, John W

    2002-04-01

    Aging is the outcome of the contest between chemistry and biology in living systems. Chronic, cumulative chemical modifications compromise the structure and function of biomolecules throughout the body. Proteins with long life spans serve as cumulators of exposure to chemical damage, which is detectable in the form of advanced glycation and lipoxidation end products (AGEs, ALEs); amino acids modified by reactive oxygen, chlorine, and nitrogen species; and deamidated and racemized amino acids. Not all of these modifications are oxidative in nature, although oxidative reactions are an important source of age-related damage. Measurements of AGEs and ALEs in proteins are useful for assessing the rate and extent of Maillard reaction damage, but it is the damage to the genome that undoubtedly has the greatest effect on the viability of the organism. The extent of genomic damage represents a balance between the rate of modification and the rate and fidelity of repair. Damage to DNA accumulates not in the form of modified nucleic acids, but as chemically "silent" errors in repair-insertions, deletions, substitutions, transpositions, and inversions in DNA sequences-that affect the expression and structure of proteins. These mutations are random, vary from cell to cell, and are passed forward from one cell generation to another. Although they are not detectable in DNA by conventional analytical techniques, purines and pyrimidines modified by Maillard reaction intermediates may be detectable in urine, and studies on these compounds should provide insight into the role of Maillard reactions of DNA in aging and disease.

  15. Low intramuscular fat (but high in PUFA) content in cooked cured pork ham decreased Maillard reaction volatiles and pleasing aroma attributes.

    PubMed

    Benet, Iu; Guàrdia, Maria Dolors; Ibañez, Carles; Solà, Josep; Arnau, Jacint; Roura, Eugeni

    2016-04-01

    The influence of intramuscular fat content (high - HI versus low - LI) and fatty acid composition on pork cooked cured ham flavour was analysed by gas chromatography-olfactometry using nasal impact frequency (GC-O/NIF) and quantitative descriptive analysis (QDA). Potential relationships were studied by principal component analysis (PCA). Sixteen and fourteen odourants were identified by GC-O/NIF in LI and HI cooked hams, respectively. The two ham types differed in lipid oxidation odourants: polyunsaturated fatty acid (PUFA) derivatives hexanal, 1-octen-3-one and (E,E)-2,4-decadienal were higher in LI ham; while monounsaturated fatty acid (MUFA) derivative decanal was higher in HI. HI samples resulted in higher values for odour-active aroma compounds from Maillard reaction, which are related to roast flavour and a higher overall flavour liking. In summary, our results suggest that Maillard derived odour-active aroma compounds were partially inhibited in LI samples (high in PUFA), resulting in lower positive sensory ratings.

  16. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Colantuono, Antonio; Kokkinidou, Smaro; Peterson, Devin G; Fogliano, Vincenzo

    2014-10-15

    Thermal processing and Maillard reaction (MR) affect the nutritional and sensorial qualities of milk. In this paper an olive mill wastewater phenolic powder (OMW) was tested as a functional ingredient for inhibiting MR development in ultrahigh-temperature (UHT)-treated milk. OMW was added to milk at 0.1 and 0.05% w/v before UHT treatment, and the concentration of MR products was monitored to verify the effect of OMW phenols in controlling the MR. Results revealed that OMW is able to trap the reactive carbonyl species such as hydroxycarbonyls and dicarbonyls, which in turn led to the increase of Maillard-derived off-flavor development. The effect of OMW on the formation of Amadori products and N-ε-(carboxymethyl)-lysine (CML) showed that oxidative cleavage, C2-C6 cyclization, and the consequent reactive carbonyl species formation were also inhibited by OMW. Data indicated that OMW is a functional ingredient able to control the MR and to improve the nutritional and sensorial attributes of milk.

  17. Maillard conjugation of lactulose with potentially bioactive peptides.

    PubMed

    Nooshkam, Majid; Madadlou, Ashkan

    2016-02-01

    Milk ultrafiltration permeate was heated at 97 °C in the presence of eggshell for 60 min. This decreased the ash content of permeate and converted ≈ 17% of lactose to lactulose. The isomerized permeate was subsequently purified to a lactulose-rich product (LRP; ≈ 70% lactulose content to total sugar) through crystallizing lactose out by methanol. The LRP and lactose were then conjugated with either whey protein isolate (WPI) or its antioxidant hydrolysate (WPH) through Maillard reaction at 90 °C. The amount of the Maillard reaction advanced products was higher for WPI-lactose system than WPH-lactose counterpart; whilst, the DPPH scavenging activities of WPH-sugar conjugates were significantly higher than those of WPI-sugar counterparts. Based on free amino groups content measurement, it was found that lactose is more reactive than LRP for Maillard conjugation with both WPI and WPH. Fourier transform infrared spectroscopy confirmed the bonding of the anomeric region of saccharide configuration of lactulose with WPH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Investigations on the effect of antioxidant type and concentration and model system matrix on acrylamide formation in model Maillard reaction systems.

    PubMed

    Constantinou, Costas; Koutsidis, Georgios

    2016-04-15

    The formation of acrylamide in model Maillard reaction systems containing phenolic compounds was examined, with regards to phenolic type, concentration, and model system matrix. In dry glyoxal/asparagine waxy maize starch (WMS) systems, 9 out of 10 examined phenolics demonstrated an inhibiting effect, with the most significant reductions (55-60%) observed for caffeoylquinic acids. In WMS glucose/asparagine systems, examination of three different concentrations (0.1, 0.5 and 1 μmol/g WMS) suggested a 'minimum effective concentration' for epicatechin and caffeic acid, whilst addition of caffeoylquinic acids resulted in dose-dependent acrylamide reduction (25-75%). The discordant results of further studies utilising different matrices (dry and wet-to-dry) indicated that, apart from the nature and chemical reactivity, the matrix and the physical state of the reactants might be important for acrylamide formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Antioxidative capacity and binding affinity of the complex of green tea catechin and beta-lactoglobulin glycated by the Maillard reaction.

    PubMed

    Perusko, Marija; Al-Hanish, Ayah; Mihailovic, Jelena; Minic, Simeon; Trifunovic, Sara; Prodic, Ivana; Cirkovic Velickovic, Tanja

    2017-10-01

    Major green tea catechin, epigallocatechin-3-gallate (EGCG), binds non-covalently to numerous dietary proteins, including beta-lactoglobulin of cow's milk. The effects of glycation of proteins via Maillard reaction on the binding capacity for polyphenols and the antiradical properties of the formed complexes have not been studied previously. Binding constant of BLG glycated by milk sugar lactose to EGCG was measured by the method of fluorophore quenching. Binding of EGCG was confirmed by CD and FTIR. The antioxidative properties of the complexes were examined by measuring ABTS radical scavenging capacity, superoxide anion scavenging capacity and total reducing power assay. Glycation of BLG does not significantly influence the binding constant of EGCG for the protein. Conformational changes were observed for both native and glycated BLG upon complexation with EGCG. Masking effect of polyphenol complexation on the antioxidative potential of the protein was of the similar degree for both glycated BLG and native BLG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Behaviour and hormonal status in healthy rats on a diet rich in Maillard reaction products with or without solvent extractable aroma compounds.

    PubMed

    Sebeková, Katarína; Klenovics, Kristína Simon; Boor, Peter; Celec, Peter; Behuliak, Michal; Schieberle, Peter; Heidland, August; Palkovits, Miklós; Somoza, Veronika

    2012-02-01

    Maillard reaction products (MRPs) are generated upon thermal processing of foods, modifying their colour and flavour. We asked whether aroma compounds generated via Maillard-type reactions modulate the in vivo effects of MRP-rich diets (MRPD). Male Wistar rats were fed for 3weeks either with a standard rat chow, an aroma compounds containing MRPD comprising 25% bread crust, or an aroma-extracted MRPD. In contrast to standard rat chow, consumption of MRPDs affected glucose control, induced hyper-leptinemia and hyper-adiponectinemia. Plasma adipokines were significantly higher in rats on aroma containing MRPD in comparison with those consuming aroma-extracted MRPD. Consumption of both MRPDs significantly increased the expression of the insulin receptor in the olfactory bulb, and mildly in the hypothalamus. Administration of the aroma containing MRPD significantly increased the leptin receptor expression in the olfactory bulb, and in the hypothalamus. Under both MRPDs, strong expression of c-fos indicated an increased neuronal activity in the olfactory bulb. Neuronal activity in brain areas involved in the central regulation of food intake and energy homeostasis was more pronounced in rats fed by the aroma containing MRPD. In conclusion, short-term consumption of a MRPD fortified with bread crust, particularly if containing solvent extractable volatile aroma compounds, affected the leptin-induced central signalling of anorexigenic/orexigenic hormones, and the neuronal activity in the central nervous system. Behavioural changes and altered glucose control were more evident in rats on the aroma containing MRPD. Our data suggest that volatile aroma compounds in foods might affect endocrine signalling and neuronal regulation of metabolism. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products.

    PubMed

    Delgado-Andrade, Cristina; Pastoriza de la Cueva, Silvia; Peinado, M Jesús; Rufián-Henares, José Ángel; Navarro, M Pilar; Rubio, Luis A

    2017-10-01

    Bread crust (BC) is one of the major sources of Maillard reaction products (MRPs) in the Western diet. This work was designed to analyze the impact of diets containing important levels of MRPs from BC on intestinal bacterial growth and short chain fatty acids (SCFAs) production in adult rats. Additionally, the pools of compounds excreted in feces attending to their molecular weights were analyzed. Rats were fed for 88days a control diet or diets containing BC or its soluble high molecular weight (HMW), soluble low molecular weight (LMW) or insoluble fractions, respectively. Intestinal (cecum) microbiota composition was determined by qPCR analysis. Consumption of the BC diet lowered (P<0.05) Lactobacillus spp. and Bifidobacterium spp. log10 counts (8 and 14%, respectively), an effect for which soluble LMW and HMW fractions of BC seemed to be responsible. In these same animals, Escherichia/Shigella counts increased by around 45% (P<0.05), a fact which correlated with a higher production of formic acid in feces (r=0.8197, P=0.0458), and likely caused by the combined consumption of all MRPs contained in the BC. A significant 5-fold increment (P<0.05) was detected in the fecal proportion of propionic acid in the BC group, one of the products that have largely been associated with anti-inflammatory actions. Regarding the distribution of MRPs in feces, only the LMW fed group exhibited a predominance of those ranging between 90,000-1000Da, whereas the rest of the groups presented higher amounts of products above 90,000Da. It is concluded that dietary Maillard reaction products are in vivo fermented by the gut microbiota, thereby changing both the pattern of SCFAs production and the microbiota composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterisation of Maillard reaction products derived from LEKFD--a pentapeptide found in β-lactoglobulin sequence, glycated with glucose--by tandem mass spectrometry, molecular orbital calculations and gel filtration chromatography coupled with continuous photodiode array.

    PubMed

    Yamaguchi, Keiko; Homma, Takeshi; Nomi, Yuri; Otsuka, Yuzuru

    2014-02-15

    Maillard reaction peptides (MRPs) contribute to taste, aroma, colour, texture and biological activity. However, peptide degradation or the cross-linking of MRPs in the Maillard reaction has not been investigated clearly. A peptide of LEKFD, a part of β-lactoglobulin, was heated at 110 °C for 24h with glucose and the reaction products were analysed by HPLC with ODS, ESI-MS, ESI-MS/MS and HPLC with gel-filtration column and DAD detector. In the HPLC fractions, an imminium ion of LEK*FD, a pyrylium ion or a hydroxymethyl furylium ion of LEK*FD, and KFD and EK were detected by ESI-MS. Therefore, those products may be produced by the Maillard reaction. The molecular orbital of glycated LEKFD at the lysine epsilon-amino residue with Schiff base form was calculated by MOPAC. HPLC with gel-filtration column showed cross-linking and degradation of peptides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Maillard reaction products derived from thiol compounds as inhibitors of enzymatic browning of fruits and vegetables: the structure-activity relationship.

    PubMed

    Billaud, C; Maraschin, C; Peyrat-Maillard, M-N; Nicolas, J

    2005-06-01

    Some thiol-derived Maillard reaction products (MRPs) may exert antioxidant activity, depending on the reaction conditions as well as on the sugar and the sulphydryl compound. Recently, we reported that MRPs derived from glucose or fructose with cysteine (CSH) or glutathione (GSH) mixtures greatly inhibited polyphenoloxidases (PPOs), oxidoreductases responsible for discoloration of fresh or minimally processed fruits and vegetables. Glucose and GSH were shown to be the most active in producing inhibitory MRPs. Therefore, we examined the way in which the nature of the reactants affected their synthesis, in order to establish a structure-activity relationship for the inhibitory products. Various aqueous (0.083 M, 0.125 M, or 0.25 M) mixtures of a sugar (hexose, pentose, or diholoside) with either a CSH-related compound (CSH, GSH, N-acetyl-cysteine, cysteamine, cysteic acid, methyl-cysteine, cysteine methyl ester), an amino acid (gamma-glutamic acid, glycine, methionine), or other sulfur compound (thiourea, 1,4-dithiothreitol, 2-mercaptoethanol) were heated at 103 degrees C for 14 h. Soluble MRPs were compared for their ability to inhibit apple PPO activity. In the presence of CSH, the rated sugars (same molar concentration) ranked as to inhibitory effect were pentoses > sucrose > hexoses > or = maltose. In the presence of glucose, the simultaneous presence of an amino group, a carboxyl group, and a free thiol group on the same molecule seemed essential for the production of highly inhibitory compounds.

  4. Mineral composition of seawater bittern nigari products and their effects on changing of browning and antioxidant activity in the glucose/lysine maillard reaction.

    PubMed

    Kuda, Takashi; Yano, Toshihiro

    2014-03-01

    Seawater bittern (nigari) is a concentrated solution remaining after the crystallization process of salt that has been used as a coagulant for tofu. Recently, various nigari products are distributed in the East Asia. To clarify the properties of nigari products, major mineral composition of six nigari products was determined. Then, effects of the nigari on the browning and antioxidant activity during the glucose/lysine Maillard reaction were investigated. Though the predominant cation was Mg(2+), the content was varied by each product (0.88-6.49 mol/L). The other major ion contents were also varied. Each 0.5 mol/L of D-glucose and L-lysine were incubated with the nigari (5-50% (v/v)) or nigari-related salts (1 or 2 mol/L). The browning (OD at 465 nm) and antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity and ferrous-reducing power) were increased remarkably by the nigari containing high Mg(2+) content. The browning tended to be high with sulfates (Na2SO4, (NH4)2SO4). On the other hand, high content of MgCl2 decreased slightly the browning and antioxidant activity. These results suggest that the reaction and antioxidant activities were affected not only by salinity and cations but also by anions and other elements in the nigari.

  5. Sugar fragmentation in the maillard reaction cascade: formation of short-chain carboxylic acids by a new oxidative alpha-dicarbonyl cleavage pathway.

    PubMed

    Davídek, Tomas; Robert, Fabien; Devaud, Stéphanie; Vera, Francia Arce; Blank, Imre

    2006-09-06

    The formation of short-chain carboxylic acids was studied in Maillard model systems (90 degrees C, pH 6-10) with emphasis on the role of oxygen and water. The total amount of acetic acid formed did not depend on the reaction atmosphere. In the presence of labeled dioxygen or water (18O2, H2 17O), labeled oxygen was partially incorporated into acetic acid. Thermal treatment of 1-deoxy-d-erythro-2,3-hexodiulose (1) and 3-deoxy-d-erythro-hexos-2-ulose in the presence of 17O-enriched water under alkaline conditions led to acetic and formic acid, respectively, as indicated by 17O NMR spectroscopy. The suggested mechanism involves an oxidative alpha-dicarbonyl cleavage leading to an intermediary mixed acid anhydride that releases the acids, e.g., acetic and erythronic acid, from 1. Similarly, glyceric and lactic acids were formed from 1-deoxy-3,4-hexodiuloses, corroborated by complementary analytical techniques. This paper provides for the first time evidence for the direct formation of acids from C6-alpha-dicarbonyls by an oxidative mechanism and incorporation of a 17OH group into the carboxylic moiety. The experimental data obtained support the coexistence of at least two newly described reaction mechanisms leading to carboxylic acids, i.e., (i) a hydrolytic beta-dicarbonyl cleavage as a major pathway and (ii) an alternative minor pathway via oxidative alpha-dicarbonyl cleavage induced by oxidizing species.

  6. DJ-1 family Maillard deglycases prevent acrylamide formation.

    PubMed

    Richarme, Gilbert; Marguet, Evelyne; Forterre, Patrick; Ishino, Sonoko; Ishino, Yoshizumi

    2016-09-23

    The presence of acrylamide in food is a worldwide concern because it is carcinogenic, reprotoxic and neurotoxic. Acrylamide is generated in the Maillard reaction via condensation of reducing sugars and glyoxals arising from their decomposition, with asparagine, the amino acid forming the backbone of the acrylamide molecule. We reported recently the discovery of the Maillard deglycases (DJ-1/Park7 and its prokaryotic homologs) which degrade Maillard adducts formed between glyoxals and lysine or arginine amino groups, and prevent glycation damage in proteins. Here, we show that these deglycases prevent acrylamide formation, likely by degrading asparagine/glyoxal Maillard adducts. We also report the discovery of a deglycase from the hyperthermophilic archaea Pyrococcus furiosus, which prevents acrylamide formation at 100 °C. Thus, Maillard deglycases constitute a unique enzymatic method to prevent acrylamide formation in food without depleting the components (asparagine and sugars) responsible for its formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations.

    PubMed

    Dack, Rachael E; Black, Gary W; Koutsidis, Georgios; Usher, St John

    2017-10-01

    The effect of Maillard reaction products (MRPs), formed during the production of dark malts, on the synthesis of higher alcohols and esters in beer fermentations was investigated by headspace solid-phase microextraction GC-MS. Higher alcohol levels were significantly (p<0.05) higher in dark malt fermentations, while the synthesis of esters was inhibited, due to possible suppression of enzyme activity and/or gene expression linked to ester synthesis. Yeast strain also affected flavour synthesis with Saccharomyces cerevisiae strain A01 producing considerably lower levels of higher alcohols and esters than S288c and L04. S288c produced approximately double the higher alcohol levels and around twenty times more esters compared to L04. Further investigations into malt type-yeast strain interactions in relation to flavour development are required to gain better understanding of flavour synthesis that could assist in the development of new products and reduce R&D costs for the industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Use of experimental design methodology to prepare Maillard reaction products from glucose and cysteine inhibitors of polyphenol oxidase from eggplant (Solanum melongena).

    PubMed

    Cheriot, Sophie C; Billaud, Catherine; Nicolas, Jacques

    2006-07-12

    Polyphenol oxidase (PPO) from eggplant was extracted and partially purified by a two-step fractionation-precipitation using ammonium sulfate and phenylsepharose hydrophobic interaction chromatography. The eggplant PPO extract was characterized concerning its kinetic properties. Optimal conditions to obtain Maillard reaction products (MRPs) with a maximal inhibitory potency (IP) toward PPO activity were determined using the surface response methodology and a four-factor and five-level experimental design. The MRPs were prepared from cysteine (0.25 M) and glucose (0-1 M), at several initial pH values (2-6) and at differing heating times (3-19 h) and temperatures (95-115 degrees C). The maximal IP was obtained after heating a model system of glucose/cysteine (1/0.25 M) at pH 2 for 3 h 20 min at 115 degrees C. The soluble part of this MRP, called MRP(IPmax), was a noncompetitive inhibitor toward eggplant PPO. The IP of MRP(IPmax) on PPO activity was very potent as compared to that displayed by benzoic, p-coumaric, and t-cinnamic acids, as well as sorbic acid and 4-hexylresorcinol. The activity of preincubated PPO at 0 degrees C with MRP(IPmax) was only slightly restored after dialysis or gel filtration.

  9. Effects of high-intensity ultrasound on Maillard reaction in a model system of d-xylose and l-lysine.

    PubMed

    Yu, Hang; Seow, Yi-Xin; Ong, Peter K C; Zhou, Weibiao

    2017-01-01

    This study compared the effects of high-intensity ultrasound on Maillard reaction (MR) with those of thermally produced MR using a model system of d-xylose and l-lysine. The ultrasonic MR process had higher depletion rates of reactants and higher generation rates of intermediate MR products (MRPs) and melanoidins under relatively low processing temperatures (55 and 60°C). However, the rates were lower for ultrasonic MR than thermal MR when the processing temperature increased to 65, 70 and 75°C. Overall, ultrasonic MR had relatively low activation energy (Ea) compared to thermal MR (e.g. 55.59 vs. 80.42kJmol(-1) for d-xylose depletion). Moreover, ultrasonic MR could produce at least one N-containing pyrazine (3-ethyl-2,5-dimethylpyrazine), one N-containing amine (butyl amine) and one O-containing volatile compound (maltol) that were absent from thermal MR. The difference in flavour generation might be a result of the extremely high, albeit momentary, temperature and pressure condition produced by high-intensity ultrasound.

  10. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel.

    PubMed

    Lin, Jau-Tien; Liu, Shih-Chun; Hu, Chao-Chin; Shyu, Yung-Shin; Hsu, Chia-Ying; Yang, Deng-Jye

    2016-01-01

    Roasting treatment increased levels of unsaturated fatty acids (linoleic, oleic and elaidic acids) as well as saturated fatty acids (palmitic and stearic acids) in almond (Prunus dulcis) kernel oils with temperature (150 or 180 °C) and duration (5, 10 or 20 min). Nonetheless, higher temperature (200 °C) and longer duration (10 or 20 min) roasting might result in breakdown of fatty acids especially for unsaturated fatty acids. Phenolic components (total phenols, flavonoids, condensed tannins and phenolic acids) of almond kernels substantially lost in the initial phase; afterward these components gradually increased with roasting temperature and duration. Similar results also observed for their antioxidant activities (scavenging DPPH and ABTS(+) radicals and ferric reducing power). The changes of phenolic acid and flavonoid compositions were also determined by HPLC. Maillard reaction products (estimated with non-enzymatic browning index) also increased with roasting temperature and duration; they might also contribute to enhancing the antioxidant attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of different molecular weight chitosans on the mitigation of acrylamide formation and the functional properties of the resultant Maillard reaction products.

    PubMed

    Chang, Yu-Wei; Sung, Wen-Chieh; Chen, Jing-Yi

    2016-05-15

    Mitigation of acrylamide formation and the functional properties of Maillard reaction products (MRPs) were investigated in a food model system. The system was composed of elements of mixtures and their combination including fructose, asparagine and different molecular weight chitosans. All solutions were heated, and then analyzed for acrylamide content, MRPs absorbance, pH, color, antioxidant capacity, antibacterial activity and kinematic viscosity. The fructose, asparagine and chitosan mixture had more MRPs compared to other mixtures. 1,1-Diphenyl-2-pricrylhydrazy (DPPH) radical scavenging activities, ferrous ion chelating abilities and reducing power results showed that all solutions containing a combination of two or three reactants had antioxidant capacities. Acrylamide content has a positive correlation with absorbance values at OD294 and OD420 but a negative correlation with the CIB L(∗) value of a solution (p<0.01). Experimental results evidenced that low molecular weight (50-190 kDa) chitosan can be used to mitigate the formation of acrylamide.

  12. Free Maillard Reaction Products in Milk Reflect Nutritional Intake of Glycated Proteins and Can Be Used to Distinguish "Organic" and "Conventionally" Produced Milk.

    PubMed

    Schwarzenbolz, Uwe; Hofmann, Thomas; Sparmann, Nina; Henle, Thomas

    2016-06-22

    Using LC-MS/MS and isotopically labeled standard substances, quantitation of free Maillard reaction products (MRPs), namely, N(ε)-(carboxymethyl)lysine (CML), 5-(hydroxymethyl)-1H-pyrrole-2-carbaldehyde (pyrraline, PYR), N(δ)-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H), and N(ε)-fructosyllysine (FL), in bovine milk was achieved. Considerable variations in the amounts of the individual MRPs were found, most likely as a consequence of the nutritional uptake of glycated proteins. When comparing commercial milk samples labeled as originating from "organic" or "conventional" farming, respectively, significant differences in the content of free PYR (organic milk, 20-300 pmol/mL; conventional milk, 400-1000 pmol/mL) were observed. An analysis of feed samples indicated that rapeseed and sugar beet are the main sources for MRPs in conventional farming. Furthermore, milk of different dairy animals (cow, buffalo, donkey, goat, ewe, mare, camel) as well as for the first time human milk was analyzed for free MRPs. The distribution of their concentrations, with FL and PYR as the most abundant in human milk and with a high individual variability, also points to a nutritional influence. As the components of concentrated feed do not belong to the natural food sources of ruminants and equidae, free MRPs in milk might serve as indicators for an adequate animal feeding in near-natural farming and can be suitable parameters to distinguish between an "organic" and "conventional" production method of milk.

  13. Antioxidative Effects of a Glucose-Cysteine Maillard Reaction Product on the Oxidative Stability of a Structured Lipid in a Complex Food Emulsion.

    PubMed

    Sproston, Molly J; Akoh, Casimir C

    2016-12-01

    A glucose-cysteine Maillard reaction product (MRP) was produced and its antioxidant effects on lipid oxidation were determined for a structured-lipid enriched with polyunsaturated fatty acids in a complex emulsion. Trolox equivalent antioxidant capacities (TEAC) were determined for MRP heating intervals of 2, 4, and 6 h and were compared to α-tocopherol (TOC), MRP with TOC (TOC-MRP), and TOC with ascorbyl palmitate (TOC-AP). Emulsions were produced with total antioxidant additions of 0.02% of the oil, and lipid oxidation was monitored by peroxide and p-anisidine values over 56 d. Positive correlations between browning and heating time as well as TEAC were observed. Total TEAC values for the MRP at 6 h, TOC, TOC with the MRP at 6 h, and TOC-AP were 2.51, 3.87, 2.68, and 2.76 mg trolox eq/g, respectively. Oxidation results indicated a possible antioxidant effect for the MRP at 6 h on secondary oxidation for days 14 to 28. These results suggest that the MRP at 6 h could be useful in inhibiting secondary oxidation in complex emulsions. © 2016 Institute of Food Technologists®.

  14. Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress

    PubMed Central

    Colville, Louise

    2012-01-01

    The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography–mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss. PMID:23175670

  15. The impact of raw materials and baking conditions on Maillard reaction products, thiamine, folate, phytic acid and minerals in white bread.

    PubMed

    Helou, Cynthia; Gadonna-Widehem, Pascale; Robert, Nathalie; Branlard, Gérard; Thebault, Jacques; Librere, Sarah; Jacquot, Sylvain; Mardon, Julie; Piquet-Pissaloux, Agnès; Chapron, Sophie; Chatillon, Antoine; Niquet-Léridon, Céline; Tessier, Frédéric J

    2016-06-15

    The aim of this study was to develop a white bread with improved nutrient contents and reduced levels of potentially harmful Maillard reaction products such as N(ε)-carboxymethyllysine (CML) and 5-hydroxymethylfurfural (HMF). Assays were carried out through a full factorial experimental design allowing the simultaneous analysis of four factors at two levels: (1) wheat flour extraction rates (ash content: 0.60%-0.72%), (2) leavening agents (bakers' yeast - bakers' yeast and sourdough), (3) prebaking and (4) baking conditions (different sets of time and temperature). The baking conditions affected HMF and CML as well as certain mineral contents. A reduced baking temperature along with a prolonged heat treatment was found to be favourable for reducing both the CML (up to 20%) and HMF concentrations (up to 96%). The presence of sourdough decreased the formation of CML (up to 28%), and increased the apparent amounts of calcium (up to 8%) and manganese (up to 17.5%) probably through acidification of the dough. The extraction rate of flours as well as interactions between multiple factors also affected certain mineral content. However, compounds like folate, thiamine, copper, zinc, iron and phytic acid were not affected by any of the factors studied.

  16. Effect of chitosan molecular weight on the functional properties of chitosan-maltose Maillard reaction products and their application to fresh-cut Typha latifolia L.

    PubMed

    Li, Song-Lin; Lin, Jing; Chen, Xiao-Ming

    2014-02-15

    The objective was to evaluate antimicrobial, antioxidant and copper-chelating activities of Maillard reaction products (MRP) prepared from maltose and different molecular weight chitosan, and their effects on preservation of fresh-cut Typha latifolia L. (TLL). LMRP (maltose and low molecular weight chitosan MRP) showed the highest browning and UV absorbance as well as fluorescence intensity. The DPPH radical scavenging activity, reducing power and copper-chelating activity of chitosan-maltose MRP varied depending on the chitosan molecular weight. HMRP (maltose-high molecular weight chitosan MRP) exhibited better effects on inhibiting PPO activity and discoloration, alleviating declines of total soluble solids and ascorbic acid content of fresh-cut TLL. LMRP and MMRP (maltose-medium molecular weight chitosan MRP) effectively decreased weight loss and maintained firmness of TLL, respectively. These results indicated that molecular weight of chitosan had a great impact on the functional properties of chitosan-maltose MRP and their application to be used as a preservative.

  17. Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress.

    PubMed

    Colville, Louise; Bradley, Emma L; Lloyd, Antony S; Pritchard, Hugh W; Castle, Laurence; Kranner, Ilse

    2012-11-01

    The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography-mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss.

  18. Natural Inhibitors of Maillard Browning

    DTIC Science & Technology

    2013-12-01

    development for ration and commercial items that deteriorate from Maillard browning effects while in storage. Figure 15: Avocado 96 h after being...MAILLARD BROWNING by Nicole Favreau Farhadi Lauren Pecukonis and Jacqueline LeBlanc December 2013 Final Report...2009- September 2011 4. TITLE AND SUBTITLE NATURAL INHIBITORS OF MAILLARD BROWNING 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  19. Activation of the transcription factor Nrf2 in macrophages, Caco-2 cells and intact human gut tissue by Maillard reaction products and coffee.

    PubMed

    Sauer, Tanja; Raithel, Martin; Kressel, Jürgen; Münch, Gerald; Pischetsrieder, Monika

    2013-06-01

    In addition to direct antioxidative effects, Maillard reaction products (MRPs) could increase the antioxidative capacity of cells through the induction of cytoprotective enzymes. Since many of those enzymes are regulated by the transcription factor Nrf2, the effect of MRPs on nuclear translocation of Nrf2 in macrophages and Caco-2 cells was investigated. Stimulation of both cell types by MRPs showed a concentration-dependent significant increase in nuclear translocation of Nrf2 up to fivefold after short-term (2 h) and up to 50-fold after long-term treatment (24 h). In intact human gut tissue, nuclear translocation of Nrf2 was significantly twofold increased after short-term incubation. To study the activation mechanisms, macrophages and Caco-2 cells were stimulated with MRPs in the presence of catalase, which significantly suppressed Nrf2 activation. Thus, activation was related to extracellular H2O2 continuously formed from MRPs. Short-term incubation with coffee, a MRP-rich beverage, led to a trend towards Nrf2 activation in macrophages, but not in Caco-2 cells or intact human gut tissue. Long-term incubation with coffee (1-4 mg/mL) significantly increased nuclear Nrf2 up to 17-fold. Since raw coffee was inactive under the tested conditions, the effect was related to roasting products. Coffee-induced Nrf2 translocation was, however, only slightly reversed by catalase. Therefore, the Nrf2 activity of coffee can only partially be explained by MRP-induced, H2O2-dependent mechanisms. Thus, it can be concluded that MRPs may increase the antioxidative capacity inside the cell by inducing Nrf2-regulated signalling pathways not only in different cell types, but also in intact gut tissue.

  20. Acrylamide formation from asparagine under low-moisture Maillard reaction conditions. 1. Physical and chemical aspects in crystalline model systems.

    PubMed

    Robert, Fabien; Vuataz, Gilles; Pollien, Philippe; Saucy, Françoise; Alonso, Maria-Isabelle; Bauwens, Isabelle; Blank, Imre

    2004-11-03

    The formation of acrylamide in crystalline model systems based on asparagine and reducing sugars was investigated under low-moisture reaction conditions. The acrylamide amounts were correlated with physical changes occurring during the reaction. Molecular mobility of the precursors turned out to be a critical parameter in solid systems, which is linked to the melting behavior and the release of crystallization water of the reaction sample. Heating binary mixtures of asparagine monohydrate and anhydrous reducing sugars led to higher acrylamide amounts in the presence of fructose compared to glucose. Differential scanning calorimetry measurements performed in open systems indicated melting of fructose at 126 degrees C, whereas glucose and galactose fused at 157 and 172 degrees C, respectively. However, glucose was the most reactive and fructose the least efficient sugar in anhydrous liquid systems, indicating that at given molecular mobility the chemical reactivity of the sugar was the major driver in acrylamide formation. Furthermore, reaction time and temperature were found to be covariant parameters: acrylamide was preferably formed by reacting glucose and asparagine at 120 degrees C for 60 min, whereas 160 degrees C was required at shorter reaction time (5 min). These results suggest that, in addition to the chemical reactivity of ingredients, their physical state as well as reaction temperature and time would influence the formation of acrylamide during food processing.

  1. In situ formation of the amino sugars 1-amino-1-deoxy-fructose and 2-amino-2-deoxy-glucose under Maillard reaction conditions in the absence of ammonia.

    PubMed

    Nashalian, Ossanna; Yaylayan, Varoujan A

    2016-04-15

    Replacing amino acids with their binary metal complexes during the Maillard reaction can initiate various processes, including the oxidative degradation of their glucose conjugates, generating 1-amino-1-deoxy-fructose and its derivatives. These reactive amino sugars are not easily accessible under Maillard reaction conditions and are only formed in the presence of ammonia. To explore the generality of this observation and to study in particular the ability of fructose to generate glucosamine, the amino acid-metal complexes were heated in aqueous solutions with three aldohexoses and two ketohexoses at 110°C for 2 h and the dry residues were analysed by ESI/qTOF/MS/MS. All the sugars generated relatively intense ions at [M+H](+) 180 (C6H14NO5); those ions originating from ketohexoses exhibited MS/MS fragmentations identical to glucosamine and those originating form aldohexoses showed ions identical to fructosamine. Furthermore, the amino sugars were found to form fructosazine, react with other sugars and undergo dehydration reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Maillard reaction and enzymatic browning affect the allergenicity of Pru av 1, the major allergen from cherry (Prunus avium).

    PubMed

    Gruber, Patrick; Vieths, Stefan; Wangorsch, Andrea; Nerkamp, Jörg; Hofmann, Thomas

    2004-06-16

    The influence of thermal processing and nonenymatic as well as polyphenoloxidase-catalyzed browning reaction on the allergenicity of the major cherry allergen Pru av 1 was investigated. After thermal treatment of the recombinant protein rPru av 1 in the absence or presence of carbohydrates, SDS-PAGE, enzyme allergosorbent tests, and inhibition assays revealed that thermal treatment of rPru av 1 alone did not show any influence on the IgE-binding activity of the protein at least for 30 min, thus correlating well with the refolding of the allergen in buffer solution as demonstrated by CD spectroscopic experiments. Incubation of the protein with starch and maltose also showed no effect on IgE-binding activity, whereas reaction with glucose and ribose and, even more pronounced, with the carbohydrate breakdown products glyceraldehyde and glyoxal induced a strong decrease of the IgE-binding capacity of rPru av 1. In the second part of the study, the effect of polyphenoloxidase-catalyzed oxidation of polyphenols on food allergen activity was investigated. Incubation of rPru av 1 with epicatechin in the presence of tyrosinase led to a drastic decrease in IgE-binding activity of the protein. Variations of the phenolic compound revealed caffeic acid and epicatechin as the most active inhibitors of the IgE-binding activity of rPru av 1, followed by catechin and gallic acid, and, finally, by quercetin and rutin, showing significantly lower activity. On the basis of these data, reactive intermediates formed during thermal carbohydrate degradation as well as during enzymatic polyphenol oxidation are suggested as the active chemical species responsible for modifying nucleophilic amino acid side chains of proteins, thus inducing an irreversible change in the tertiary structure of the protein and resulting in a loss of conformational epitopes of the allergen.

  3. Natural compounds containing a catechol group enhance the formation of Nε-(carboxymethyl)lysine of the Maillard reaction.

    PubMed

    Fujiwara, Yukio; Kiyota, Naoko; Tsurushima, Keiichiro; Yoshitomi, Makiko; Mera, Katsumi; Sakashita, Naomi; Takeya, Motohiro; Ikeda, Tsuyoshi; Araki, Tomohiro; Nohara, Toshihiro; Nagai, Ryoji

    2011-04-01

    Inhibition of advanced glycation end-product (AGE) formation is a potential strategy for the prevention of clinical diabetes complications. Screening for new AGE inhibitors revealed several natural compounds that inhibited the formation of N(ε)-(carboxymethyl)lysine (CML), a major antigenic AGE structure, whereas natural compounds containing a catechol group, such as gallic acid and epicatechin, significantly enhanced CML formation. A similar enhancing effect was also observed by culturing THP-1 macrophages in the presence of catechol compounds. Although 4-methylcatechol significantly enhanced CML formation from glycated HSA (gHSA), a model for Amadori proteins, analogues of catechol such as 5-methylresorcinol and methylhydroquinone showed no enhancing effect. Even though 1mM 4-methylcatechol, epicatechin, and gallic acid significantly enhanced CML formation from gHSA, it was significantly inhibited by decreasing their concentration. The enhancing effect of 1mM catechol compounds was inhibited in the presence of the glutathione peroxidase system, thus demonstrating that hydrogen peroxide generated from catechol compounds plays an important role in the enhancement of CML formation. Furthermore, administration of 500mg/kg/day epicatechin to STZ-induced diabetic mice for 45days enhanced CML accumulation at the surface area of gastric epithelial cells in the stomach. This study provides the first evidence that high amounts of catechol-containing structures enhance oxidative stress, thus leading to enhanced CML formation, and this phenomenon may explain the paradoxical effect that some flavonoids have on redox status.

  4. Glycation of Human Cortical and Cancellous Bone Captures Differences in the Formation of Maillard Reaction Products between Glucose and Ribose

    PubMed Central

    Sroga, Grażyna E.; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25–30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food

  5. Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [Vigna radiate (L.)] protein isolates and glucose and on structural and physico-chemical properties of conjugates.

    PubMed

    Wang, Zhongjiang; Han, Feifei; Sui, Xiaonan; Qi, Baokun; Yang, Yong; Zhang, Hui; Wang, Rui; Li, Yang; Jiang, Lianzhou

    2016-03-30

    The objective of this study was to determine the effect of ultrasound treatment on the wet heating Maillard reaction between mung bean protein isolates (MBPIs) and glucose, and on structural and physico-chemical properties of the conjugates. The degree of glycosylation of MBPI-glucose conjugates treated by ultrasound treatment and wet heating (MBPI-GUH) was higher than that of MBPI-glucose conjugates only treated by wet heating (MBPI-GH). Solubility, emulsification activity, emulsification stability and surface hydrophobicity of MBPI-GUH were higher than that of MBPI-GH. Grafted MBPIs had a lower content of α-helix and unordered coil, but a higher content of β-sheet and β-turn structure than MBPIs. No significant structural changes were observed in β-turn and random coil structure of MBPI-GUH, while α-helix content increased with ultrasonic time, and decreased at 300 W ultrasonic power with the increase of β-sheet. MBPI-GUH had a less compact tertiary structure compared to MBPI-GH and MBPI. Grafting MBPIs with glucose formed conjugates of higher molecular weight, while no significant changes were observed in electrophoresis profiles of MBPI-GUH. Ultrasound-assisted wet heating Maillard reaction between MBPIs and glucose could be a promising way to improve functional properties of MBPIs. © 2015 Society of Chemical Industry.

  6. The importance of the Maillard-metal complexes and their silicates in astrobiology

    NASA Astrophysics Data System (ADS)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  7. Formation and distribution of 2,4-dihydroxy-2,5-dimethyl-3(2H)-thiophenone, a pigment, an aroma and a biologically active compound formed by the Maillard reaction, in foods and beverages.

    PubMed

    Furusawa, Rina; Goto, Chiaki; Satoh, Miki; Nomi, Yuri; Murata, Masatsune

    2013-07-01

    We recently identified 2,4-dihydroxy-2,5-dimethyl-3(2H)-thiophenone (DHDMT) from soy sauce as a low-molecular-weight pigment formed by the Maillard reaction. DHDMT has also been reported as an aroma compound in a model system and a biologically active compound of heated garlic. To utilize these functions efficiently, we here examined how DHDMT was formed during fermentation of soy sauce and in model systems. Although DHDMT was formed from cysteine and glucose, it was formed more from cystine and fructose in the model system. We also showed that this compound exists in various kinds of soy sauce and miso as well as in some brown foods and beverages such as roasted bread and beer.

  8. Structural characterization of bovine beta-lactoglobulin-galactose/tagatose Maillard complexes by electrophoretic, chromatographic, and spectroscopic methods.

    PubMed

    Corzo-Martínez, Marta; Moreno, F Javier; Olano, Agustín; Villamiel, Mar

    2008-06-11

    To investigate the influence of the type of carbonyl group of the sugar on the structural changes of proteins during glycation, an exhaustive structural characterization of glycated beta-lactoglobulin with galactose (aldose) and tagatose (ketose) has been carried out. Conjugates were prepared via Maillard reaction at 40 and 50 degrees C, pH 7, and a w = 0.44. The progress of the Maillard reaction was followed by indirect formation of Amadori and Heyns compounds, advanced glycation end products, and brown polymers. The structural characterization of glycoconjugates was conducted by using a number of analytical techniques such as RP-HPLC, isoelectric focusing, MALDI-ToF, SDS-PAGE, size exclusion chromatography, and spectrofluorimetry (tryptophan fluorescence). In addition, the surface hydrophobicity of the beta-lactoglobulin glycoconjugates was also assessed. The results showed a higher reactivity of galactose than tagatose to form the glycoconjugates, probably due to the higher electrophilicity of the aldehyde group. At 40 degrees C, more aggregation was produced when beta-lactoglobulin was conjugated with tagatose as compared to galactose. However, at 50 degrees C hardly any difference was observed in the aggregation produced by galactose and tagatose. These results afford more insight into the importance of the functional group of the carbohydrate moiety during the formation of protein-carbohydrate conjugates via Maillard reaction.

  9. Role of phosphate and carboxylate ions in maillard browning.

    PubMed

    Rizzi, George P

    2004-02-25

    The Maillard reaction of carbohydrates and amino acids is the underlying chemical basis for flavor and color formation in many processed foods. Phosphate and other polyatomic anions will accelerate the rate of Maillard browning, and this effect has been explained by invoking enhanced proton abstraction from intermediate Amadori compounds. In this work, the effect of phosphate and carboxylate ions on browning was measured for a series of reducing sugars with and without the presence of beta-alanine. Significant browning was observed for sugars alone suggesting that polyatomic anions contribute to Maillard browning by providing reactive intermediates directly from sugars. A mechanism is proposed for decomposition of sugars by polyatomic anions and efforts to trap reactive species using o-phenylenediamine (OPD) are described. The results of this study suggest how complications may arise from the popular usage of phosphate buffers in the study of Maillard reaction kinetics. In addition, the results imply how phosphates may be useful for enhancing browning during food processing.

  10. Effect of theanine and polyphenols enriched fractions from decaffeinated tea dust on the formation of Maillard reaction products and sensory attributes of breads.

    PubMed

    Culetu, Alina; Fernandez-Gomez, Beatriz; Ullate, Monica; del Castillo, Maria Dolores; Andlauer, Wilfried

    2016-04-15

    The antiglycoxidative properties of theanine (TEF) and polyphenols enriched fractions (PEF) prepared from tea dust were tested in a model system composed of bovine serum albumin (BSA) and methylglyoxal (MGO). PEF caused a decrease in available free amino groups of BSA in presence and absence of MGO, suggesting the simultaneous occurrence of glycoxidation reaction and phenols-protein interaction. The presence of PEF and TEF inhibited formation of fluorescent advanced glycation end-products (AGEs). Moreover, theanine (TB) and polyphenol-enriched bread (PB) were formulated. A significant increase in free amino groups was observed in TBs with a dose-response effect, while addition of PEF in bread produced a significant decrease (p<0.05). PEF efficiently reduced fluorescent AGE formation in breads compared with TEF. The results are in line with the simplified model systems. PEF used as food ingredient allows obtaining a tasty food possessing health promoting properties and lower content of potential harmful compounds (AGEs).

  11. Formation of the reduced form of furaneol® (2,5-dimethyl-4-hydroxy-tetrahydrofuran-3-one) during the Maillard reaction through catalysis of amino acid metal salts.

    PubMed

    Nashalian, Ossanna; Wang, Xi; Yaylayan, Varoujan A

    2016-11-01

    Under pyrolytic conditions the acidity/basicity of Maillard reaction mixtures can be controlled through the use of hydrochloride or sodium salts of amino acids to generate a diversity of products. When the degradation of glucose was studied under pyrolytic conditions using excess sodium glycinate the reaction was found to generate a major unknown peak having a molecular ion at m/z 130. Subsequent in-depth isotope labelling studies indicated that acetol was an important precursor of this compound under pyrolytic and aqueous heating conditions. The dimerisation and cyclisation of acetol into 2,5-dimethyl-4-hydroxy-tetrahydrofuran-3-one was found to be catalysed by amino acid metal salts. Also, ESI/qTOF/MS studies indicated that the unknown peak has expected molecular formula of C6H10O3. Finally, a peak having the same retention time and mass spectrum was also generated pyrolytically when furaneol® was reduced with NaBH4 confirming the initial hypothesis regarding the unknown peak to be the reduced form of furaneol®. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Detection of Maillard Reaction Product [5-(5,6-Dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]methanol (F3-A) in Breads and Demonstration of Bioavailability in Caco-2 Intestinal Cells.

    PubMed

    Chen, Xiu-Min; Dai, Yue; Kitts, David D

    2016-11-30

    [5-(5,6-Dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]methanol, also called F3-A, has been isolated from hexose-lysine Maillard reaction (MR) models. Here we report on optimized conditions for the recovery of F3-A and concentrations found in bread. Recovery of F3-A was best achieved when samples were extracted with dichloromethane (DCM) at a solvent to sample ratio of 2:1 (v/v) after adjustment of the pH to 12. The amount of F3-A in whole wheat bread was significantly (P < 0.05) higher than that in white bread; bread crust contained a significantly (P < 0.05) higher amount of F3-A (0.9-7.8 μg/100 g) than the bread crumb (not detectable-3.5 μg/100 g); and toasting increased F3-A concentration with a range of not detectable to 6.0 μg/100 g in the control bread and 4.0 and 17.7 μg/100 g in the dark-toasted white sandwich bread and 100% whole wheat sandwich bread, respectively. The in vitro permeability of F3-A was measured using Caco-2 cell monolayer. The apparent permeability coefficient (Papp) of F3-A is (6.01 ± 0.35) × 10(-5) cm/s, which is similar to that of propranolol, a highly passive transcellular absorbed drug. In conclusion, the concentration of F3-A recovered in bread varies with the type of bread and degree of toasting, and F3-A is bioavailable.

  13. Use of sacrificial anode technology to mitigate non-enzymic Maillard browning.

    PubMed

    Rizzi, George P

    2017-02-15

    Experiments were performed to examine the effects of Maillard browning induced in the presence of metallic elements. The rate of brown pigment formation was shown to be reduced in model Maillard reactions performed in the presence of electropositive metals. Experiments involved reactions of d-xylose, d-arabinose and d-ribose with glycine, α-l- or β-alanine and l-valine in pH 7.0 phosphate buffer at ca. 100°C. "Browning" measured spectrophotometrically at 420nm was significantly lower (compared with controls) in selected reactions containing elemental Mg, Al, Mn and Sn particles. It was hypothesized that the metals acted in sacrificial anode redox fashion to reduce or eliminate dehydroreductones believed to be key Maillard intermediates ultimately leading to less browning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sugar fragmentation in the maillard reaction cascade: isotope labeling studies on the formation of acetic acid by a hydrolytic beta-dicarbonyl cleavage mechanism.

    PubMed

    Davídek, Tomas; Devaud, Stéphanie; Robert, Fabien; Blank, Imre

    2006-09-06

    The formation of acetic acid was elucidated based on volatile reaction products and related nonvolatile key intermediates. The origin and yield of acetic acid were determined under well-controlled conditions (90-120 degrees C, pH 6-8). Experiments with various 13C-labeled glucose isotopomers in the presence of glycine revealed all six carbon atoms being incorporated into acetic acid: C-1/C-2 ( approximately 70%), C-3/C-4 ( approximately 10%), and C-5/C-6 (approximately 20%). Acetic acid is a good marker of the 2,3-enolization pathway since it is almost exclusively formed from 1-deoxy-2,3-diulose intermediates. Depending on the pH, the acetic acid conversion yield reached 85 mol % when using 1-deoxy-2,3-hexodiulose (1) as a precursor. Hydrolytic beta-dicarbonyl cleavage of 1-deoxy-2,4-hexodiuloses was shown to be the major pathway leading to acetic acid from glucose without the intermediacy of any oxidizing agents. The presence of key intermediates was corroborated for the first time, i.e., tetroses and 2-hydroxy-3-oxobutanal, a tautomer of 1-hydroxy-2,3-butanedione, also referred to as 1-deoxy-2,3-tetrodiulose. The hydrolytic beta-dicarbonyl cleavage represents a general pathway to organic acids, which corresponds to an acyloin cleavage or a retro-Claisen type reaction. Although alternative mechanisms must exist, the frequently reported hydrolytic alpha-dicarbonyl cleavage of 1 can be ruled out as a pathway forming carboxylic acids.

  15. Recent Advances in Quantum Dynamics of Bimolecular Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Dong H.; Guo, Hua

    2016-05-01

    In this review, we survey the latest advances in theoretical understanding of bimolecular reaction dynamics in the past decade. The remarkable recent progress in this field has been driven by more accurate and efficient ab initio electronic structure theory, effective potential-energy surface fitting techniques, and novel quantum scattering algorithms. Quantum mechanical characterization of bimolecular reactions continues to uncover interesting dynamical phenomena in atom-diatom reactions and beyond, reaching an unprecedented level of sophistication. In tandem with experimental explorations, these theoretical developments have greatly advanced our understanding of key issues in reaction dynamics, such as microscopic reaction mechanisms, mode specificity, product energy disposal, influence of reactive resonances, and nonadiabatic effects.

  16. Advances in lipase-catalyzed esterification reactions.

    PubMed

    Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Filippou, Michalis; Koukouritaki, Maria; Parapouli, Maria; Theodorou, Leonidas G; Hatziloukas, Efstathios; Afendra, Amalia; Pandey, Ashok; Papamichael, Emmanuel M

    2013-12-01

    Lipase-catalyzed esterification reactions are among the most significant chemical and biochemical processes of industrial relevance. Lipases catalyze hydrolysis as well as esterification reactions. Enzyme-catalyzed esterification has acquired increasing attention in many applications, due to the significance of the derived products. More specifically, the lipase-catalyzed esterification reactions attracted research interest during the past decade, due to an increased use of organic esters in biotechnology and the chemical industry. Lipases, as hydrolyzing agents are active in environments, which contain a minimum of two distinct phases, where all reactants are partitioned between these phases, although their distribution is not fixed and changes as the reaction proceeds. The kinetics of the lipase-catalyzed reactions is governed by a number of factors. This article presents a thorough and descriptive evaluation of the applied trends and perspectives concerning the enzymatic esterification, mainly for biofuel production; an emphasis is given on essential factors, which affect the lipase-catalyzed esterification reaction. Moreover, the art of using bacterial and/or fungal strains for whole cell biocatalysis purposes, as well as carrying out catalysis by various forms of purified lipases from bacterial and fungal sources is also reviewed.

  17. Recent Advances in Preventing Adverse Reactions to Transfusion

    PubMed Central

    Rogers, Thomas S; Fung, Mark K; Harm, Sarah K

    2015-01-01

    The spectrum of adverse reactions to blood product transfusion ranges from a benign clinical course to serious morbidity and mortality.  There have been many advances in technologies and transfusion strategies to decrease the risk of adverse reactions. Our aim is to address a few of the advancements in increasing the safety of the blood supply, specifically pathogen reduction technologies, bacterial contamination risk reduction, and transfusion associated acute lung injury risk mitigation strategies. PMID:27081471

  18. Maillard glycation of beta-lactoglobulin induces conformation changes.

    PubMed

    Chevalier, F; Chobert, J M; Dalgalarrondo, M; Choiset, Y; Haertlé, T

    2002-04-01

    Glycation by the Maillard reaction is an ubiquitous reaction of condensation of a reducing sugar with amino groups of proteins, which products could improve the functional and/or biological properties for food and non-food uses. It can induce structural modifications in proteins, modifying their properties. The aim of this work was to investigate the association behavior and the conformational changes of beta-lactoglobulin (BLG) after its glycation by the Maillard reaction with several alimentary sugars (arabinose, galactose, glucose, lactose, rhamnose and ribose). Protein samples were heated in the presence or in the absence (heated control) of different sugars during 3 days at 60 degrees C. Glycation induced oligomerization of BLG monomers. Depending on the reactivity of the sugar, the population of produced oligomers showed smaller or greater heterogeneity in molecular masses. Analysis of modified BLG by circular dichroism and by its susceptibility to pepsinolysis showed that the conditions of heating used did not significantly alter the conformation of BLG. Heating of BLG in presence of sugars induced only minor structural modification, when using the less reactive sugars such as lactose and rhamnose. It was, however, at the origin of major three-dimensional destructuring in the case of the more reactive sugars such as arabinose and ribose. Pepsinolysis of glycated BLG did not affect about 62 and 35% of the protein molecules modified with lactose or rhamnose, and arabinose or ribose, respectively. The increase of susceptibility of glycated BLG to pepsinolysis could be related to the alteration of the conformation of the protein when glycation was performed with highly reactive sugars, as observed by circular dichroism and calorimetry analysis.

  19. Maillard Chemistry in Clouds and Aqueous Aerosol As a Source of Atmospheric Humic-Like Substances.

    PubMed

    Hawkins, Lelia N; Lemire, Amanda N; Galloway, Melissa M; Corrigan, Ashley L; Turley, Jacob J; Espelien, Brenna M; De Haan, David O

    2016-07-19

    The reported optical, physical, and chemical properties of aqueous Maillard reaction mixtures of small aldehydes (glyoxal, methylglyoxal, and glycolaldehyde) with ammonium sulfate and amines are compared with those of aqueous extracts of ambient aerosol (water-soluble organic carbon, WSOC) and the humic-like substances (HULIS) fraction of WSOC. Using a combination of new and previously published measurements, we examine fluorescence, X-ray absorbance, UV/vis, and IR spectra, complex refractive indices, (1)H and (13)C NMR spectra, thermograms, aerosol and electrospray ionization mass spectra, surface activity, and hygroscopicity. Atmospheric WSOC and HULIS encompass a range of properties, but in almost every case aqueous aldehyde-amine reaction mixtures are squarely within this range. Notable exceptions are the higher UV/visible absorbance wavelength dependence (Angström coefficients) observed for methylglyoxal reaction mixtures, the lack of surface activity of glyoxal reaction mixtures, and the higher N/C ratios of aldehyde-amine reaction products relative to atmospheric WSOC and HULIS extracts. The overall optical, physical, and chemical similarities are consistent with, but not demonstrative of, Maillard chemistry being a significant secondary source of atmospheric HULIS. However, the higher N/C ratios of aldehyde-amine reaction products limits the source strength to ≤50% of atmospheric HULIS, assuming that other sources of HULIS incorporate only negligible quantities of nitrogen.

  20. Advanced scheme for high-yield laser driven nuclear reactions

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-01-01

    The use of a low contrast nanosecond laser pulse with a relatively low intensity (3  ×  1016 W cm-2) allowed the enhancing of the yield of induced nuclear reactions in advanced solid targets. In particular the ‘ultraclean’ proton-boron fusion reaction, producing energetic alpha particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as a target. A combination of the specific target composition and the laser pulse temporal shape allowed the enhancing of the yield of alpha particles up to 109 per steradian. This result can be ascribed to the interaction of the long-laser pre-pulse with the target and to the optimal target geometry and composition.

  1. Recent advances in the understanding of severe cutaneous adverse reactions.

    PubMed

    Adler, N R; Aung, A K; Ergen, E N; Trubiano, J; Goh, M S Y; Phillips, E J

    2017-03-03

    Severe cutaneous adverse reactions (SCARs) encompass a heterogeneous group of delayed hypersensitivity reactions, which are most frequently caused by drugs. Our understanding of several aspects of SCAR syndromes has evolved considerably over the last decade. This review explores evolving knowledge of the immunopathogenic mechanisms, pharmacogenomic associations, in vivo and ex vivo diagnostics for causality assessment, and medication cross-reactivity data related to SCAR syndromes. Given the rarity and severity of these diseases, multidisciplinary collaboration through large international, national and/or multicentre networks to collect prospective data on patients with SCAR syndromes should be prioritized. This will further enhance a systematized framework for translating epidemiological, clinical and immunopathogenetic advances into preventive efforts and improved outcomes for patients. © 2017 British Association of Dermatologists.

  2. Immunochemical detection of N2-[1-(1-carboxy)ethyl]guanosine, an advanced glycation end product formed by the reaction of DNA and reducing sugars or L-ascorbic acid in vitro.

    PubMed

    Seidel, W; Pischetsrieder, M

    1998-11-27

    In the Maillard reaction, free amino groups of proteins and nucleic acids react with reducing sugars to form advanced glycation end products (AGE). A major product found in reaction mixtures of guanosine and glucose is N2-[1-(1-carboxy)ethyl]guanosine (CEG), which, therefore, can be used as a marker of advanced glycation of DNA. An enzyme-linked immunosorbent assay (ELISA) was developed to detect and to semi-quantitate nonenzymatic glycosylation of DNA. A polyclonal antiserum was raised against CEG linked to keyhole limpet hemocyanin. A protocol for a competitive ELISA was developed, and the antiserum was tested for crossreactivity. Several unmodified nucleotides and N2-modified guanosine derivatives showed no or negligible crossreactivity. Only very similar structures like N2-(carboxymethyl)guanosine and N2-(1-carboxy-3-hydroxypropyl)guanosine, which have been identified as reaction products of glucose or l-ascorbic acid and guanosine, display significant binding activity. The signal can be totally repressed by free CEG, yet protein-bound CEG is a stronger inhibitor. DNA incubated with d-glucose, dihydroxyacetone, l-ascorbic or l-dehydroascorbic acid shows a signal inhibition indicating the formation of CEG in vitro. The competitive ELISA procedure proved to be a sensitive method which can be used to detect glycation of DNA in vivo.

  3. Influence of Free Amino Acids, Oligopeptides, and Polypeptides on the Formation of Pyrazines in Maillard Model Systems.

    PubMed

    Scalone, Gustavo Luis Leonardo; Cucu, Tatiana; De Kimpe, Norbert; De Meulenaer, Bruno

    2015-06-10

    Pyrazines are specific Maillard reaction compounds known to contribute to the unique aroma of many products. Most studies concerning the generation of pyrazines in the Maillard reaction have focused on amino acids, while little information is available on the impact of peptides and proteins. The present study investigated the generation of pyrazines in model systems containing whey protein, hydrolyzed whey protein, amino acids, and glucose. The impact of thermal conditions, ratio of reagents, and water activity (a(w)) on pyrazine formation was measured by headspace solid-phase microextraction with gas chromatography/mass spectrometry (HS-SPME-GC/MS. The presence of oligopeptides from hydrolyzed whey protein contributed significantly to an increased amount of pyrazines, while in contrast free amino acids generated during protein hydrolysis contributed to a lesser extent. The generation of pyrazines was enhanced at low a(w) (0.33) and high temperatures (>120 °C). This study showed that the role of peptides in the generation of pyrazines in Maillard reaction systems has been dramatically underestimated.

  4. Immunological detection of fructose-derived advanced glycation end-products.

    PubMed

    Takeuchi, Masayoshi; Iwaki, Mina; Takino, Jun-ichi; Shirai, Hikari; Kawakami, Mihoko; Bucala, Richard; Yamagishi, Sho-ichi

    2010-07-01

    The advanced stage of non-enzymatic glycation (also called the Maillard reaction) that leads to the formation of advanced glycation end-products (AGEs) has an important function in the pathogenesis of angiopathy in diabetic patients. So far, most studies have been focused on the Maillard reaction by glucose. Although an elevated level of glucose had been thought to have a primary function in the Maillard reaction, on a molecular basis, glucose is among the least reactive sugars within biological systems. In addition to the extracellular formation of AGEs, rapid intracellular AGEs formation by various intracellular precursors (fructose, trioses, and dicarbonyl compounds) has recently attached attention. In this study, we considered the Maillard reaction with particular attention to the potential function of fructose. Fructose AGE-modified serum albumins were prepared by incubation of rabbit or bovine serum albumin (RSA or BSA) with D-fructose. After immunization of rabbits, fructose-derived AGEs (Fru-AGE) antiserum was subjected to affinity chromatography on a Sepharose 4B column coupled with Fru-AGE-BSA. Characterization of the novel anti-Fru-AGE antibody was performed with a competitive enzyme-linked immunosorbent assay and immunoblot analysis. The assay of Fru-AGE was established using the immunoaffinity-purified-specific antibody, and the presence of Fru-AGE in healthy and diabetic serum was shown (7.04+/-4.47 vs 29.13+/-18.08 U/ml). We also investigated whether high glucose treatment could stimulate intracellular Fru-AGE production in cultured pericytes, and we analyzed the amount of Fru-AGE contained in some common commercial beverages and condiments. It is possible that Fru-AGE formation by these endogenous and exogenous routes contributes importantly to the tissue pathology of diabetes and aging. This paper provides novel and clinically relevant information on the detection of Fru-AGE between fructose and proteins.

  5. Degradations and Rearrangement Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  6. Covalently Immobilized Laccase for Decolourization of Glucose-Glycine Maillard Products as Colourant of Distillery Wastewater.

    PubMed

    Singh, Nimisha; Basu, Subhankar; Vankelecom, Ivo F J; Balakrishnan, Malini

    2015-09-01

    Maillard reaction products like melanoidins are recalcitrant, high-molecular-weight compounds responsible for colour in sugarcane molasses distillery wastewater. Conventional biological treatment is unable to break down melanoidins, but extracellular laccase and manganese peroxidase of microbial origin can degrade these complex molecules. In this work, laccase was covalently immobilized on alumina pellets activated with aminopropyltriethoxysilane (APTES). The immobilization yield was 50-60 %, and the enzyme activity (886 U/L) was 5-fold higher compared to the soluble enzyme (176 U/L). The immobilized enzyme also showed higher tolerance to pH (4-6) and temperature (35-60 °C), as well as improved storage stability (49 days) and operational stability (10 cycles). Degradation of glucose-glycine Maillard products using immobilized laccase led to 47 % decolourization in 6 h at pH 4.5 and 28 °C. A comprehensive treatment scheme integrating enzymatic, microbial and membrane filtration steps resulted in 90 % decolourization.

  7. Formation of pyrazines in Maillard model systems of lysine-containing dipeptides.

    PubMed

    Van Lancker, Fien; Adams, An; De Kimpe, Norbert

    2010-02-24

    Whereas most studies concerning the Maillard reaction have focused on free amino acids, little information is available on the impact of peptides and proteins on this important reaction in food chemistry. Therefore, the formation of flavor compounds from the model reactions of glucose, methylglyoxal, or glyoxal with eight dipeptides with lysine at the N-terminus was studied in comparison with the corresponding free amino acids by means of stir bar sorptive extraction (SBSE) followed by GC-MS analysis. The reaction mixtures of the dipeptides containing glucose, methylglyoxal, and glyoxal produced 27, 18, and 2 different pyrazines, respectively. Generally, the pyrazines were produced more in the case of dipeptides as compared to free amino acids. For reactions with glucose and methylglyoxal, this difference was mainly caused by the large amounts of 2,5(6)-dimethylpyrazine and trimethylpyrazine produced from the reactions with dipeptides. For reactions with glyoxal, the difference in pyrazine production was rather small and mostly unsubstituted pyrazine was formed. A reaction mechanism for pyrazine formation from dipeptides was proposed and evaluated. This study clearly illustrates the capability of peptides to produce flavor compounds that can differ from those obtained from the corresponding reactions with free amino acids.

  8. Recent advances in trifluoromethylation reactions with electrophilic trifluoromethylating reagents.

    PubMed

    Barata-Vallejo, Sebastián; Lantaño, Beatriz; Postigo, Al

    2014-12-15

    Electrophilic trifluoromethylation reactions have been the latest approach to achieve the fluoroalkylation of compounds with newly-discovered reagents, such as the Togni's (1-trifluoromethyl-1,2-benziodoxol-3-(1 H)-one), Umemoto's (S-(trifluoromethyl)dibenzothiophenium tetrafluoroborate), Yagupolskii's (S-(trifluoromethyldiarylsulfonium salts), Shreeve's (S-(trifluoromethyl)dibenzothiophenium triflate), and Shibata's (trifluoromethylsulfoximine salts) reagents. All these reagents produce an electrophilic trifluoromethylating (CF3 (+) ) species that undergoes reaction with nucleophiles. In addition, these latter reactive species (i.e. CF3 (+) ) can undergo electron-transfer (ET) processes affording CF3 (⋅) radicals that expand the scope to substrates other than conventional nucleophiles that can undergo reaction. In this Review, we shall discuss the trifluoromethylation reactions of diverse families of organic substrates of biological interest as a means to comparing the reagents scope and best reaction conditions. Some, though not all, of these reactions require the assistance of metal or organometallic catalysts. Some require additives and catalysts to promote the fluoroalkylation reaction, but invariably all are initiated and carried out by electrophilic trifluoromethylating species.

  9. AGE-breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats.

    PubMed

    Yang, Shengzu; Litchfield, John E; Baynes, John W

    2003-04-01

    Advanced glycation end products (AGE), formed by nonenzymatic Maillard reactions between carbohydrate and protein, contribute to the increase in chemical modification and crosslinking of tissue proteins with age. Acceleration of AGE formation in collagen during hyperglycemia, with resultant effects on vascular elasticity and basement membrane permeability, is implicated in the pathogenesis of diabetic complications. AGE-breakers, such as N-phenacylthiazolium (PTB) and N-phenacyl-4,5-dimethylthiazolium (PMT) halides, have been proposed as therapeutic agents for reversing the increase in protein crosslinking in aging and diabetes. We have confirmed that these compounds, as well as the AGE-inhibitor pyridoxamine (PM), cleave the model AGE crosslink, phenylpropanedione, and have studied the effects of these compounds in reversing the increased crosslinking of skin and tail collagen isolated from diabetic rats. Crosslinking of skin collagen, measured as the half-time for solubilization of collagen by pepsin in 0.5M acetic acid, was increased approximately 5-fold in diabetic, compared to nondiabetic rats. Crosslinking of tail tendon collagen, measured as insolubility in 0.05 N acetic acid, was increased approximately 10-fold. Collagen preparations were incubated in the presence or absence of AGE-breakers or PM in phosphate buffer, pH 7.4, for 24h at 37 degrees C. These treatments did not decrease the half-time for solubilization of diabetic skin collagen by pepsin or increase the acid solubility of diabetic tail tendon collagen. We conclude that, although AGE-breakers and PM cleave model crosslinks, they do not significantly cleave AGE crosslinks formed in vivo in skin collagen of diabetic rats.

  10. Advanced Organic Chemistry: Reactions and Mechanisms (by Bernard Miller)

    NASA Astrophysics Data System (ADS)

    Berger, Daniel

    1998-12-01

    Prentice Hall: Upper Saddle River, NJ, 1998. 338 pp, index. ISBN 0-13-373275-4. $59.00. Recently several short texts on intermediate organic chemistry have been published, intended for use in one-term courses for advanced undergraduates and for graduate students who need more background before taking a graduate-level course. These books fill a need not fully met by graduate-level texts such as Lowry and Richardson's Mechanism and Theory in Organic Chemistry or Carey and Sundberg's Advanced Organic Chemistry.

  11. Improving resveratrol bioaccessibility using biopolymer nanoparticles and complexes: impact of protein-carbohydrate maillard conjugation.

    PubMed

    Davidov-Pardo, Gabriel; Pérez-Ciordia, Sonia; Marín-Arroyo, María R; McClements, David Julian

    2015-04-22

    The impact of encapsulating resveratrol in biopolymer nanoparticles or biopolymer complexes on its physicochemical stability and bioaccessibility was determined. The biopolymer nanoparticles consisted of a zein core surrounded by a caseinate or caseinate-dextran shell. The biopolymer complexes consisted of resveratrol bound to caseinate or caseinate-dextran. The caseinate-dextran conjugates were formed using the Maillard reaction. Both the biopolymer nanoparticles and complexes protected trans-resveratrol from isomerization when exposed to UV light, with the nanoparticles being more effective. Nanoparticles coated by caseinate-dextran were more stable to aggregation under simulated gastrointestinal conditions than those coated by caseinate, presumably due to greater steric repulsion. The bioaccessibility of resveratrol was enhanced when it was encapsulated in both biopolymer nanoparticles and biopolymer complexes. These results have important implications for the development of effective delivery systems for incorporating lipophilic nutraceuticals into functional foods and beverages.

  12. Reactions of acetylenes in superbasic media. Recent advances

    NASA Astrophysics Data System (ADS)

    Trofimov, B. A.; Schmidt, E. Yu

    2014-07-01

    The main advances in the chemistry of acetylene in superbasic media achieved over the last five years are analyzed. Particular emphasis is placed on the ethynylation of aldehydes and ketones and C-, N- and O-vinylation. The cascade assembly of complex molecules in which ethynylation and vinylation are consecutive steps is considered. The bibliography includes 369 references.

  13. Entering the Conversation: Reaction Papers in Advanced Academic Literacy

    ERIC Educational Resources Information Center

    Stacey, Jennifer Davida; Granville, S.

    2009-01-01

    Amongst academics working with postgraduate students, there has recently been increasing interest in ways of supporting advanced academic literacy (AAL). This is a concern for us at the University of Witwatersrand in Johannesburg, South Africa, where we teach a diverse group of postgraduate students, most of whom are subject practitioners in…

  14. Entering the Conversation: Reaction Papers in Advanced Academic Literacy

    ERIC Educational Resources Information Center

    Stacey, Jennifer Davida; Granville, S.

    2009-01-01

    Amongst academics working with postgraduate students, there has recently been increasing interest in ways of supporting advanced academic literacy (AAL). This is a concern for us at the University of Witwatersrand in Johannesburg, South Africa, where we teach a diverse group of postgraduate students, most of whom are subject practitioners in…

  15. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    PubMed

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  16. Advanced chemical heat pumps using liquid-vapor reactions

    NASA Astrophysics Data System (ADS)

    Kirol, L.

    Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynamically feasible systems have significant potential advantage over conventional technology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating characteristics. A waste heat driven heat pump (temperature amplifier) using liquid-vapor chemical reactions can operate with higher coefficient of performance and smaller heat exchangers than an absorption temperature amplifying heat pump. Higher temperatures and larger temperature lifts should also be possible.

  17. [Reactions to health stress in middle and advanced adulthood].

    PubMed

    Thomae, H

    1984-01-01

    Psychological reactions and their 'hierarchies' regarding the own health status were analysed in a sample of 81 survivors of the Bonn Longitudinal Study on Aging and in different clinical samples (patients suffering from hemophilia, renal failure, heart infarction, stroke, and schizophrenia). The longitudinal analysis of the health-related response hierarchy points to a high degree of consistency of these reactions over time. Comparing the response hierarchies of the aged sample as related to different areas of life stress (such as housing, income, family, health problems), the author finds a high degree of discriminative competence in coping with stress. The same is true for the response hierarchies of the patient groups. This high degree of situation-specific selectivity in patterns of responses to chronical disease should be studied more intensively from theoretical as well as clinical-practical points of view.

  18. Advances in ab initio theories for nuclear reactions

    NASA Astrophysics Data System (ADS)

    Quaglioni, Sofia

    2016-09-01

    Driven by high-performance computing and new ideas, in recent years ab initio theory has made great strides in achieving a unified description of nuclear structure, clustering and reactions from the constituent nucleons and their strong and electroweak interactions. This is giving access to forefront tools and new fertile grounds to further our understanding of the nuclear force and electroweak currents in nuclei in terms of effective degrees of freedom. A fundamental understanding of nuclear reaction mechanisms and a new capability to accurately compute their properties is also relevant for nuclear astrophysics, terrestrial applications of nuclear fusion, and for using nuclei as probes of fundamental physics through, for example, neutrino-nucleus scattering. In this talk, I will present recent highlights and reflect on future perspectives for this area of nuclear theory. Prepared by LLNL under Contract No. DE-AC52-07NA27344.

  19. Antioxidant activity of bovine alpha lactalbumin Maillard products and evaluation of their in vitro gastro-duodenal digestive proteolysis.

    PubMed

    Joubran, Yousef; Moscovici, Alice; Lesmes, Uri

    2015-04-01

    Food processing offers various pathways to tailor food functionality and digestibility. This work sought to study the impact of thermally-induced Maillard reaction between bovine alpha-lactalbumin (α-la) and fructose or fructo-oligosacchrides on physicochemical properties, antioxidant capacity and in vitro digestive fate under simulated adult and infant conditions. Colloidal stability (measured by DLS) was decreased as a result of the Maillard glycation, while antioxidant capacity (determined by FRAP) and surface hydrophobicity (H0 measurements) were elevated. Semi-dynamic in vitro digestion of Maillard conjugates revealed a mixed trend as a result of postulated competing effects of glycation on α-la's susceptibility to proteolysis; steric hindrance accompanied by protein unfolding could hinder or promote the availability of enzymatic cleavage sites. Results also showed thermal processing altered the digestive breakdown profile of α-la under infant conditions contrary to negligible effects observed under adult conditions. Evaluation of the antioxidant capacity during digestion (via DPPH assay) revealed that adult digesta possessed increased antioxidant activity throughout the gastric phase compared to infant digesta, whereas infant digesta of conjugates exhibited an increase in antioxidant capacity in the duodenum compared to adult. Moreover, during infant digestion of conjugates, an increase in antioxidant capacity was observed in the later stages of the digestion. Overall, this work demonstrates that controlled thermal processing of bovine α-la could potentially modulate its functionality and digestibility, particularly as it pertains to its ability to interfere with oxidative reactions in the lumen, possibly through the generation of bioactive peptides.

  20. Advances in Thin-Film Proton-Reaction Cell Experiments

    SciTech Connect

    George H. Miley; Giovanna Selvaggi; Andy Tate; Carlos Castano

    2000-11-12

    Thin-film electrodes (layers of the order of thousands of angstroms) offer several very important advantages for cold fusion research: Good reproducibility has been demonstrated, an extremely high power density is obtained in the thin film, and reaction rates can be optimized by appropriate selection of materials and interfaces. The motivation for thin films stems from the Swimming Electron Theory, which predicts that enhanced reaction rates can occur with the careful selection of interface materials. Recent experiments have concentrated on the measurement of the H or D loading (atoms H/atom metal), using thin (1-m-long, 50-{mu}m-diam) wires to simulate thin films. Wires facilitate measurement of the loading as a function of time during a run by use of a simple resistivity measurement. These experiments show that excess heat production is associated with a dynamic resistivity oscillation, both being suddenly initiated (coincidence within 2 to 3 s) when a D/Pd loading ratio >0.9 9 is achieved. The counterpart of these experiments involves use of a unique compact electrode design where thin films are coated onto a small glass slide to provide both the anode and cathode. Experiments with these compact electrodes have consistently produced >100 W/cm{sup 3} metal.

  1. Targeting advanced glycation with pharmaceutical agents: where are we now?

    PubMed

    Borg, Danielle J; Forbes, Josephine M

    2016-08-01

    Advanced glycation end products (AGEs) are the final products of the Maillard reaction, a complex process that has been studied by food chemists for a century. Over the past 30 years, the biological significance of advanced glycation has also been discovered. There is mounting evidence that advanced glycation plays a homeostatic role within the body and that food-related Maillard products, intermediates such as reactive α-dicarbonyl compounds and AGEs, may influence this process. It remains to be understood, at what point AGEs and their intermediates become pathogenic and contribute to the pathogenesis of chronic diseases that inflict current society. Diabetes and its complications have been a major focus of AGE biology due to the abundance of excess sugar and α-dicarbonyls in this family of diseases. While further temporal information is required, a number of pharmacological agents that inhibit components of the advanced glycation pathway have already showed promising results in preclinical models. These therapies appear to have a wide range of mechanistic actions to reduce AGE load. Some of these agents including Alagebrium, have translated successfully to clinical trials, while others such as aminoguanidine, have had undesirable side-effect profiles. This review will discuss different pharmacological agents that have been used to reduce AGE burden in preclinical models of disease with a focus on diabetes and its complications, compare outcomes of those therapies that have reached clinical trials, and provide further rationale for the use of inhibitors of the glycation pathway in chronic diseases.

  2. Formation of pyrazines and a novel pyrrole in Maillard model systems of 1,3-dihydroxyacetone and 2-oxopropanal.

    PubMed

    Adams, An; Polizzi, Viviana; van Boekel, Martinus; De Kimpe, Norbert

    2008-03-26

    Alkylpyrazines are a very important class of Maillard flavor compounds, but their mechanism of formation is complex and consists of different pathways. The model reaction of 20 different amino acids with 1,3-dihydroxyacetone, as a precursor of 2-oxopropanal, was studied by means of SPME-GC-MS to investigate the involvement of the amino acid side chain in the substitution pattern of the resulting pyrazines. 2,5-Dimethylpyrazine was quantitatively the most important pyrazine formed from all of the amino acids. The amino acid side chain is not involved in its formation. The substituents of other less abundant pyrazines resulted mainly from the incorporation of the Strecker aldehyde or aldol condensation products in the intermediate dihydropyrazine. The importance of different reaction mechanisms was evaluated, taking into account the pattern of pyrazines identified. In the solvent extracts of aqueous model reactions of 2-oxopropanal with amino acids, the main reaction product was not a pyrazine but a novel pyrrole. This pyrrole was identified as 2,5-diacetyl-3-methyl-1 H-pyrrole by means of spectral analysis, secured by chemical synthesis. A reaction mechanism for its formation was proposed and evaluated. The influence of various reaction conditions on the formation of 2,5-diacetyl-3-methyl-1 H-pyrrole and 2,5-dimethylpyrazine in the model reaction of alanine with 2-oxopropanal was studied. These results underscore the importance of the ratio of the different reagents and the presence of water in the resulting flavor formation in the Maillard reaction.

  3. NATO (North Atlantic Treaty Organization) Advanced Study Institute Fast Reactions in Energetic Systems

    DTIC Science & Technology

    1980-07-01

    Chief. ,i #’ - r: [" k I TABLE OF CONTEhTS Page No. ORGANIZING COHITTEE 1 A. -FAST REACTIONS AND ENERGY TRANSFER PROCESSESI ADVANCED DIAGNOSTICS. , 3...Subpicosecond Spearroscopies. Lecture II. Phocophysics of Electr - nically 9 Excited States Lecture 111. Chemical Reactivity of Electronically 9 Excited...Excitation by High 12 Energy Electrons Lecture 11. Pulse Radiolysis; Formation of 13 Organic Anions and Cations Lecture III. Fast Reactions of Organic

  4. Determination of the Maillard product oxalic acidmonolysinylamide (OMA) in heated milk products by ELISA.

    PubMed

    Hasenkopf, K; Ubel, B; Bordiehn, T; Pischetsrieder, M

    2001-06-01

    Oxalic acid monolysinylamide (OMA), a Maillard product which had initially been identified as a reaction product of L-ascorbic acid, was formed, dependent on the reaction conditions, also from other carbohydrate sources. At elevated temperatures and in the presence of oxygen, the reaction of lactose with proteins resulted in the formation of relatively high amounts of OMA. Using a polyclonal antibody, which bound with high specificity and affinity to OMA-modified proteins, a competitive enzyme linked immunosorbent assay (ELISA) was developed to measure OMA formation in heat-treated milk products. The assay performance was characterized for OMA-modified beta-lactoglobulin diluted in buffer or pasteurized milk. For the latter, the least detectable dose was determined as 1.4 ng/ml with a linear range for quantification between 2 ng/ml and 200 ng/ml. For some samples intra- and interassay variation were determined. The ELISA was used to measure OMA-formation in heated milk and commercially available infant formula.

  5. Recent advances in CE mediated microanalysis for enzymatic and derivatization reactions.

    PubMed

    Ramana, Pranov; Adams, Erwin; Augustijns, Patrick; Van Schepdael, Ann

    2016-01-01

    This review gives an overview of the applications and recent advances in CE mediated microanalysis. As a continuation of earlier reviews, it covers articles published from a period of mid 2013-early 2015. The article contains three main parts. In the first part of the article, different kinds of in-line CE mediated microanalysis are briefly discussed along with relevant papers regarding in-line CE for enzyme analysis. Recent advances in on-capillary derivatization reactions and immobilized enzyme reactors (IMERs) have been summarized along with their purpose and relevance in the second and third part of the paper, respectively.

  6. Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells

    SciTech Connect

    Shafarman, William N.

    2015-10-12

    This project “Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells”, completed by the Institute of Energy Conversion (IEC) at the University of Delaware in collaboration with the Department of Chemical Engineering at the University of Florida, developed the fundamental understanding and technology to increase module efficiency and improve the manufacturability of Cu(InGa)(SeS)2 films using the precursor reaction approach currently being developed by a number of companies. Key results included: (1) development of a three-step H2Se/Ar/H2S reaction process to control Ga distribution through the film and minimizes back contact MoSe2 formation; (2) Ag-alloying to improve precursor homogeneity by avoiding In phase agglomeration, faster reaction and improved adhesion to allow wider reaction process window; (3) addition of Sb, Bi, and Te interlayers at the Mo/precursor junction to produce more uniform precursor morphology and improve adhesion with reduced void formation in reacted films; (4) a precursor structure containing Se and a reaction process to reduce processing time to 5 minutes and eliminate H2Se usage, thereby increasing throughput and reducing costs. All these results were supported by detailed characterization of the film growth, reaction pathways, thermodynamic assessment and device behavior.

  7. Recent advances of pharmacogenomics in severe cutaneous adverse reactions: immune and nonimmune mechanisms

    PubMed Central

    Dao, Ro-Lan; Su, Shih-Chi

    2015-01-01

    Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) are severe cutaneous adverse reactions (SCAR) which are majorly caused by drugs. Though the incidence rate is low, SCAR sometimes can be life-threatening and leads to lifelong sequelae. Many pharmacogenomic associations in immune and nonimmune related genes with the development of SCAR have been discovered recently and the pharmacogenetic tests have been applied to prevent specific drug-induced SCAR. In this review, we discuss the recent advances of pharmacogenomics in SCAR. PMID:25938070

  8. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  9. Influence of Maillard products from bread crust on magnesium bioavailability in rats.

    PubMed

    Roncero-Ramos, Irene; Delgado-Andrade, Cristina; Morales, Francisco J; Navarro, María Pilar

    2013-06-01

    Consumption of Maillard reaction products (MRPs) present in food has been related to deterioration of protein digestibility and changes in mineral bioavailability. We aimed to investigate the effects of MRP intake from bread crust on magnesium balance and tissue distribution, seeking causative factors among its different components. During the final stage of the trial, magnesium digestibility improved by around 15% in rats fed diets containing bread crust or its derivatives compared with the control diet. Despite certain enhancements in magnesium bioavailability in this stage, for the experimental period as a whole, this parameter remained unchanged. However, specific changes in the content and/or concentration in some organs were observed, particularly in the femur, where magnesium levels were higher due to the smaller size of the bones. Consumption of MRPs from bread crust or its different components did not modify the magnesium balance. Nevertheless, the bread crust fractions led to some changes in magnesium tissue distribution which did not match the effects induced by complete bread crust intake, suggesting the importance of designing studies with real-food systems, in order to reinforce the validity of the findings obtained. © 2012 Society of Chemical Industry.

  10. Advancing the Theory of Nuclear Reactions with Rare Isotopes: From the Laboratory to the Cosmos

    SciTech Connect

    Elster, Charlotte

    2015-06-01

    The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. Ohio University concentrates its efforts on the first part of the mission. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. For this reason we first embarked in introducing a separable representation for complex phenomenological optical potentials of Woods-Saxon type.

  11. Decrease in fluorescence lifetime by glycation of collagen and its application in determining advanced glycation end-products in human dentin

    PubMed Central

    Fukushima, Shuichiro; Shimizu, Masato; Miura, Jiro; Matsuda, Yusuke; Kubo, Mizuho; Hashimoto, Mamoru; Aoki, Takuya; Takeshige, Fumio; Araki, Tsutomu

    2015-01-01

    Advanced Glycation End-products (AGEs) are produced by the Maillard reaction, which causes cross-linking of collagen and results in changes in the mechanical properties of collagen tissues. Several types of AGE fluoresce, and measurement of this fluorescence is effective for determining the presence of AGEs. Because fluorescence intensity by steady-state fluorometry is affected by sample surface condition and light source, we focused on fluorescence lifetime measurement (FLM). We found that fluorescence lifetime of collagen gel decreased with glycation progress. In vivo application of FLM for determination of AGEs was confirmed in human dentin. PMID:26137384

  12. Advancing the Theory of Nuclear Reactions with Rare Isotopes. From the Laboratory to the Cosmos

    SciTech Connect

    Nunes, Filomena

    2015-06-01

    The mission of the Topical Collaboration on the Theory of Reactions for Unstable iSotopes (TORUS) was to develop new methods to advance nuclear reaction theory for unstable isotopes—particularly the (d,p) reaction in which a deuteron, composed of a proton and a neutron, transfers its neutron to an unstable nucleus. After benchmarking the state-of-the-art theories, the TORUS collaboration found that there were no exact methods to study (d,p) reactions involving heavy targets; the difficulty arising from the long-range nature of the well known, yet subtle, Coulomb force. To overcome this challenge, the TORUS collaboration developed a new theory where the complexity of treating the long-range Coulomb interaction is shifted to the calculation of so-called form-factors. An efficient implementation for the computation of these form factors was a major achievement of the TORUS collaboration. All the new machinery developed are essential ingredients to analyse (d,p) reactions involving heavy nuclei relevant for astrophysics, energy production, and stockpile stewardship.

  13. Jitter Suppression Via Reaction Wheel Passive Isolation for the NASA Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Pendergast, Karl J.; Schauwecker, Chris J.

    1998-01-01

    Text: Third in the series of NASA great observatories, the Advanced X-ray Astrophysics Facility (AXAF) is scheduled for launch from the Space Shuttle in September 1998. Following in the path of the Hubble Space Telescope and the Compton Gamma Ray Observatory, this telescope will image light at x-ray wavelengths, facilitating the detailed study of such phenomena as supernovae and quasars. The AXAF program is sponsored by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Due to exacting requirements on the performance of the AXAF optical system, it is necessary to reduce the transmission of reaction wheel jitter disturbances to the observatory. This reduction is accomplished via use of a passive mechanical isolation system which acts as an interface between the reaction wheels and the spacecraft central structure.

  14. Advanced scheme for high-yield laser driven proton-boron fusion reaction

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Morrissey, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-02-01

    A low contrast nanosecond laser pulse with relatively low intensity (3 × 1016 W cm-2) was used to enhance the yield of induced nuclear reactions in advanced solid targets. In particular the "ultraclean" proton-boron fusion reaction, producing energetic alpha-particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as target. The combination of the specific target geometry and the laser pulse temporal shape allowed enhancing the yield of alpha-particles up to 109 per steradian, i.e 100 times higher than previous experimental achievements. Moreover the alpha particle stream presented a clearly peaked angular and energy distribution, which make this secondary source attractive for potential applications. This result can be ascribed to the interaction of the long laser pre-pulse with the target and to the optimal target geometry and composition.

  15. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction

    DOE PAGES

    Lv, Haifeng; Li, Dongguo; Strmcnik, Dusan; ...

    2016-04-11

    In the past decade, polymer electrolyte membrane fuels (PEMFCs) have been evaluated for both automotive and stationary applications. One of the main obstacles for large scale commercialization of this technology is related to the sluggish oxygen reduction reaction that takes place on the cathode side of fuel cell. Consequently, ongoing research efforts are focused on the design of cathode materials that could improve the kinetics and durability. Majority of these efforts rely on novel synthetic approaches that provide control over the structure, size, shape and composition of catalytically active materials. This article highlights the most recent advances that have beenmore » made to tailor critical parameters of the nanoscale materials in order to achieve more efficient performance of the oxygen reduction reaction (ORR).« less

  16. Jitter Suppression Via Reaction Wheel Passive Isolation for the NASA Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Pendergast, Karl J.; Schauwecker, Chris J.

    1998-01-01

    Text: Third in the series of NASA great observatories, the Advanced X-ray Astrophysics Facility (AXAF) is scheduled for launch from the Space Shuttle in September 1998. Following in the path of the Hubble Space Telescope and the Compton Gamma Ray Observatory, this telescope will image light at x-ray wavelengths, facilitating the detailed study of such phenomena as supernovae and quasars. The AXAF program is sponsored by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Due to exacting requirements on the performance of the AXAF optical system, it is necessary to reduce the transmission of reaction wheel jitter disturbances to the observatory. This reduction is accomplished via use of a passive mechanical isolation system which acts as an interface between the reaction wheels and the spacecraft central structure.

  17. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    DOE PAGES

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; ...

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed tomore » improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.« less

  18. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    SciTech Connect

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, Kideok D.; Kerisit, Sebastien N.

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.

  19. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  20. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    SciTech Connect

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, K. D.; Kerisit, Sebastien N.

    2014-07-12

    The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products)represents a complex region, both physically and chemically, sandwiched between two distinct boundaries - pristine glass surface at the inner most interface and aqueous solution at the outer most. The physico-chemical processes that control the development of this region have a significant impact on the long-term glass-water reaction. Computational models, spanning different length and time-scales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include Geochemical Reaction Path simulations, Glass Reactivity in Allowance for Alteration Layer simulations, Monte Carlo simulations, and Molecular Dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers; thus providing the fundamental data needed to develop pore-scale equations that enable more accurate predictions of nuclear waste glass corrosion in a geologic repository.

  1. Glucosamine prevents in vitro collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and protein oxidation

    PubMed Central

    Tiku, Moti L; Narla, Haritha; Jain, Mohit; Yalamanchili, Praveen

    2007-01-01

    Osteoarthritis (OA) affects a large segment of the aging population and is a major cause of pain and disability. At present, there is no specific treatment available to prevent or retard the cartilage destruction that occurs in OA. Recently, glucosamine sulfate has received attention as a putative agent that may retard cartilage degradation in OA. The precise mechanism of action of glucosamine is not known. We investigated the effect of glucosamine in an in vitro model of cartilage collagen degradation in which collagen degradation induced by activated chondrocytes is mediated by lipid peroxidation reaction. Lipid peroxidation in chondrocytes was measured by conjugated diene formation. Protein oxidation and aldehydic adduct formation were studied by immunoblot assays. Antioxidant effect of glucosamine was also tested on malondialdehyde (thiobarbituric acid-reactive substances [TBARS]) formation on purified lipoprotein oxidation for comparison. Glucosamine sulfate and glucosamine hydrochloride in millimolar (0.1 to 50) concentrations specifically and significantly inhibited collagen degradation induced by calcium ionophore-activated chondrocytes. Glucosamine hydrochloride did not inhibit lipid peroxidation reaction in either activated chondrocytes or in copper-induced oxidation of purified lipoproteins as measured by conjugated diene formation. Glucosamine hydrochloride, in a dose-dependent manner, inhibited malondialdehyde (TBARS) formation by oxidized lipoproteins. Moreover, we show that glucosamine hydrochloride prevents lipoprotein protein oxidation and inhibits malondialdehyde adduct formation in chondrocyte cell matrix, suggesting that it inhibits advanced lipoxidation reactions. Together, the data suggest that the mechanism of decreasing collagen degradation in this in vitro model system by glucosamine may be mediated by the inhibition of advanced lipoxidation reaction, preventing the oxidation and loss of collagen matrix from labeled chondrocyte matrix

  2. Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction.

    PubMed

    Hsieh, Cheng-Chih; Jiang, Chang-Ming; Chou, Pi-Tai

    2010-10-19

    Proton-coupled electron transfer reactions form the basis of many important chemical processes including much of the energy conversion that occurs within living cells. However, much of the physical chemistry that underlies these reaction mechanisms remains poorly understood. In this Account, we report on recent progress in the understanding of excited-state intramolecular proton-coupled electron transfer (PCET) reactions. The strategic design and synthesis of various types of PCET molecules, along with steady-state and femtosecond time-resolved spectroscopy, have uncovered the mechanisms of several excited-state PCET reactions in solution. These experimental advancements correlate well with current theoretical models, in which the proton has quantum motion with a high probability of tunneling. In addition, the rate of proton transfer is commonly incorporated within the rate of rearrangement of solvent molecules. As a result, the reaction activation free energy is essentially governed by the solvent reorganization because the charge redistribution is considered based on a solvent polarity-induced barrier instead of the height of the proton migration barrier. In accord with this theoretical basis, we can rationalize the observation that the proton transfer for many excited-state PCET systems occurs during the solvent relaxation time scale of 1-10 ps: the highly exergonic reaction takes place before the system reaches its equilibrium polarization. Also, we have used various derivatives of proton transfer molecules, especially those of 3-hydroxyflavone to clearly demonstrate how researchers can tune the dynamics of excited-state PCET through changes in the magnitude or direction of the dipole vector within the reaction. Subsequently, using 2-(2'-hydroxyphenyl)benzoxazole as the parent model, we then report on methods for the development of an ideal system for probing PCET reaction. Because future biomedical applications of such systems will likely occur in aqueous

  3. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2014.

    PubMed

    Sicherer, Scott H; Leung, Donald Y M

    2015-02-01

    This review highlights some of the research advances in anaphylaxis; hypersensitivity reactions to foods, drugs, and insects; and allergic skin diseases that were reported in the Journal in 2014. Studies on food allergy suggest worrisomely high rates of peanut allergy and food-induced anaphylaxis-related hospitalizations. Evidence is mounting to support the theory that environmental exposure to peanut, such as in house dust, especially with an impaired skin barrier attributed to atopic dermatitis (AD) and loss of function mutations in the filaggrin gene, is a risk factor for sensitization and allergy. Diagnostic tests are improving, with early studies suggesting the possibility of developing novel cellular tests with increased diagnostic utility. Treatment trials continue to show the promise and limitations of oral immunotherapy, and mechanistic studies are elucidating pathways that might define the degree of efficacy of this treatment. Studies have also provided insights into the prevalence and characteristics of anaphylaxis and insect venom allergy, such as suggesting that baseline platelet-activating factor acetylhydrolase activity levels are related to the severity of reactions. Advances in drug allergy include identification of HLA associations for penicillin allergy and a microRNA biomarker/mechanism for toxic epidermal necrolysis. Research identifying critical events leading to skin barrier dysfunction and the polarized immune pathways that drive AD have led to new therapeutic approaches in the prevention and management of AD. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    SciTech Connect

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Weijun; Smith, Richard D.

    2012-04-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.

  5. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    PubMed Central

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Wei-Jun; Smith, Richard D.

    2012-01-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications (PTMs), as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed. PMID:22577010

  6. Fenton Reaction-Generated Advanced Oxidation Protein Products Induces Inflammation in Human Embryonic Kidney Cells.

    PubMed

    Bochi, Guilherme Vargas; Torbitz, Vanessa Dorneles; Santos, Roberto Christ Vianna; Cubillos-Rojas, Monica; López, José Luis Rosa; Siebel, Anna Maria; Gomes, Patrícia; de Oliveira, Jarbas Rodrigues; Moresco, Rafael Noal

    2016-08-01

    Fenton reaction is a new mechanism able to generate advanced oxidation protein products (AOPPs) by exposing the human serum albumin to the Fenton system. Here, we characterized the effects of Fenton reaction-generated advanced oxidation protein products (AOPP-FR) on the gene transcription of the nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) in human embryonic kidney cells (HEK 293). To investigate the effects of AOPP-FR and AOPP-HOCl on transcription of inflammatory genes, the NF-κB, COX-2, and IL-6 luciferase promoter activities were analyzed. AOPP-FR and AOPP-HOCl were able to induce the activation of the gene transcription of NF-κB, COX-2, and IL-6 in HEK 293 cells. However, the effects of AOPP-FR were significantly higher than the effects of AOPP-HOCl in relation to COX-2 and IL-6. AOPP-FR induces the activation of the gene transcription of NF-κB, COX-2, and IL-6 and may represent a novel pathogenic mediator of inflammation in kidney.

  7. Engineering advanced capsosomes: maximizing the number of subcompartments, cargo retention, and temperature-triggered reaction.

    PubMed

    Chandrawati, Rona; Hosta-Rigau, Leticia; Vanderstraaten, Dirk; Lokuliyana, Shalitha A; Städler, Brigitte; Albericio, Fernando; Caruso, Frank

    2010-03-23

    Advanced mimics of cells require a large yet controllable number of subcompartments encapsulated within a scaffold, equipped with a trigger to initiate, terminate, and potentially restart an enzymatic reaction. Recently introduced capsosomes, polymer capsules containing thousands of liposomes, are a promising platform for the creation of artificial cells. Capsosomes are formed by sequentially layering liposomes and polymers onto particle templates, followed by removal of the template cores. Herein, we engineer advanced capsosomes and demonstrate the ability to control the number of subcompartments and hence the degree of cargo loading. To achieve this, we employ a range of polymer separation layers and liposomes to form functional capsosomes comprising multiple layers of enzyme-loaded liposomes. Differences in conversion rates of an enzymatic assay are used to verify that multilayers of intact enzyme-loaded liposomes are assembled within a polymer hydrogel capsule. The size-dependent retention of the cargo encapsulated within the liposomal subcompartments during capsosome assembly and its dependence on environmental pH changes are also examined. We further show that temperature can be used to trigger an enzymatic reaction at the phase transition temperature of the liposomal subcompartments, and that the encapsulated enzymes can be utilized repeatedly in several subsequent conversions. These engineered capsosomes with tailored properties present new opportunities en route to the development of functional artificial cells.

  8. Human taste and umami receptor responses to chemosensorica generated by Maillard-type N²-alkyl- and N²-arylthiomethylation of guanosine 5'-monophosphates.

    PubMed

    Suess, Barbara; Brockhoff, Anne; Degenhardt, Andreas; Billmayer, Sylvia; Meyerhof, Wolfgang; Hofmann, Thomas

    2014-11-26

    Structural modification of the exocyclic amino function of guanosine 5'-monophosphate (5'-GMP) by Maillard-type reactions with reducing carbohydrates was recently found to increase the umami-enhancing activity of the nucleotide upon S-N(2)-1-carboxyalkylation and S-N(2)-(1-alkylamino)carbonylalkylation, respectively. Since the presence of sulfur atoms in synthetic N(2)-alkylated nucleotides was reported to be beneficial for sensory activity, a versatile Maillard-type modification of 5'-GMP upon reaction with glycine's Strecker aldehyde formaldehyde and organic thiols was performed in the present study. A series of N(2)-(alkylthiomethyl)guanosine and N(2)-(arylthiomethyl)guanosine 5'-monophosphates was generated and the compounds were evaluated to what extent they enhance the umami response to monosodium L-glutamate in vivo by a paired-choice comparison test using trained human volunteers and in vitro by means of cell-based umami taste receptor assay. Associated with a high umami-enhancing activity (β-value 5.1), N(2)-(propylthiomethyl)guanosine 5'-monophosphate could be generated when 5'-GMP reacted with glucose, glycine, and the onion-derived odorant 1-propanethiol, thus opening a valuable avenue to produce high-potency umami-enhancing chemosensorica from food-derived natural products by kitchen-type chemistry.

  9. Combustion synthesis of advanced materials: Studies of the influence of gravity and reaction kinetics

    NASA Astrophysics Data System (ADS)

    Pelekh, Aleksey Yevgeuyevich

    Combustion synthesis is an attractive technique to synthesize a wide variety of advanced materials that include powders and near-net shape products of ceramics, intermetallics, composites and functionally gradient materials. It is also considered to be a valuable method for space applications, because of low energy requirements and simple equipment. However, it is necessary to understand how microgravity influences the combustion mechanism and properties of the synthesized materials. In this work, combustion synthesis experiments were conducted both in normal and in low-gravity conditions, using a unique setup designed and developed for this purpose. Microgravity experiments were done in NASA Lewis Research Center using Drop Tower which provided 2.2 s of 10-5 g level, as well as on-board DC-9 aircraft (20 s of 10-2 g). It was clearly demonstrated that gravity plays an important role during combustion synthesis. It significantly influences both the combustion and structure formation processes. It was also shown that microgravity conditions allow the synthesis of materials with improved micro- and macrostructures. The study of chemical reaction kinetics in combustion synthesis systems is of critical importance. The measurement of kinetic parameters (especially activation energy) and a comparison with known elementary processes provides an insight into the controlling step of the mechanism. In this work, a computer-assisted electrothermography method was developed to determine the intrinsic kinetics of reactions under conditions similar to those realized during combustion synthesis of materials. This technique was applied to investigate the kinetics and other features associated with the reaction of titanium with nitrogen at 1 atm pressure. It was shown that at temperatures below the melting point of titanium, the reaction follows parabolic rate law. The obtained activation energy value is in good agreement with literature data. At higher temperatures, however, the

  10. Impact of the N-terminal amino acid on the formation of pyrazines from peptides in Maillard model systems.

    PubMed

    Van Lancker, Fien; Adams, An; De Kimpe, Norbert

    2012-05-09

    Only a minor part of Maillard reaction studies in the literature focused on the reaction between carbohydrates and peptides. Therefore, in continuation of a previous study in which the influence of the peptide C-terminal amino acid was investigated, this study focused on the influence of the peptide N-terminal amino acid on the production of pyrazines in model reactions of glucose, methylglyoxal, or glyoxal. Nine different dipeptides and three tripeptides were selected. It was shown that the structure of the N-terminal amino acid is determinative for the overall pyrazine production. Especially, the production of 2,5(6)-dimethylpyrazine and trimethylpyrazine was low in the case of proline, valine, or leucine at the N-terminus, whereas it was very high for glycine, alanine, or serine. In contrast to the alkyl-substituted pyrazines, unsubstituted pyrazine was always produced more in the case of experiments with free amino acids. It is clear that different mechanisms must be responsible for this observation. This study clearly illustrates the capability of peptides to produce flavor compounds such as pyrazines.

  11. Generation of Maillard compounds from inulin during the thermal processing of Agave tequilana Weber Var. azul.

    PubMed

    Mancilla-Margalli, Norma A; López, Mercedes G

    2002-02-13

    During the cooking process of Agave tequilana Weber var. azul to produce tequila, besides the hydrolysis of inulin to generate fermentable sugars, many volatiles, mainly Maillard compounds, are produced, most of which may have a significant impact on the overall flavor of tequila. Exudates (agave juice) from a tequila company were collected periodically, and color, Brix, fructose concentration, and reducing sugars were determined as inulin breakdown took place. Maillard compounds were obtained by extraction with CH(2)Cl(2), and the extracts were analyzed by GC-MS. Increments in color, Brix, and reducing sugars were observed as a function of time, but a decrease in fructose concentration was found. Many Maillard compounds were identified in the exudates, including furans, pyrans, aldehydes, and nitrogen and sulfur compounds. The most abundant Maillard compounds were methyl-2-furoate, 2,3-dihydroxy-3,5-dihydro-6-methyl-4(H)-pyran-4-one, and 5-(hydroxymethyl)furfural. In addition, a series of short- and long-chain fatty acids was also found. A large number of the volatiles in A. tequilana Weber var. azul were also detected in tequila extracts, and most of these have been reported as a powerful odorants, responsible for the unique tequila flavor.

  12. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2010.

    PubMed

    Sicherer, Scott H; Leung, Donald Y M

    2011-02-01

    This review highlights some of the research advances in anaphylaxis; hypersensitivity reactions to foods, drugs, and insects; and allergic skin disease that were reported in the Journal in 2010. Key epidemiologic observations include an apparent increase in peanut allergy, with more than 1% of children affected, and increasing evidence that early food allergen exposure, rather than avoidance, might improve allergy outcomes. Advances in food allergy diagnosis include improved insights into prognosis and estimation of severity through component-resolved diagnostics and characterization of IgE binding to specific epitopes. Regarding treatment, oral and epicutaneous immunotherapy show promise. Studies of drug allergies show insights into pathophysiology, and studies on insect hypersensitivity reveal improved diagnostic methods. Genetic and functional studies have revealed the important role of epidermal differentiation products in the pathogenesis of atopic dermatitis. Cross-talk between the atopic immune response with the innate immune response have also been found to predispose to infection in patients with atopic dermatitis. New therapeutic approaches to control chronic urticaria have also been identified during the past year. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  13. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2007.

    PubMed

    Sicherer, Scott H; Leung, Donald Y M

    2008-06-01

    This review highlights some of the research advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects that were reported primarily in the Journal in 2007. Advances in diagnosis include possible biomarkers for anaphylaxis, improved understanding of the relevance of food-specific serum IgE tests, identification of possibly discriminatory T-cell responses for drug allergy, and an elucidation of irritant responses for vaccine allergy diagnostic skin tests. Mechanistic studies are discerning T-cell and cytokine responses central to eosinophilic gastroenteropathies and food allergy, including the identification of multiple potential therapeutic targets. Regarding treatment, clinical studies of oral immunotherapy and allergen vaccination strategies show promise, whereas several clinical studies raise questions about whether oral allergen avoidance reduces atopic risks and whether probiotics can prevent or treat atopic disease. The importance of skin barrier dysfunction has been highlighted in the pathogenesis of atopic dermatitis (AD), particularly as it relates to allergen sensitization and eczema severity. Research has also continued to identify immunologic defects that contribute to the propensity of patients with AD to have viral and bacterial infections. New therapeutic approaches to AD, urticaria, and angioedema have been reported, including use of sublingual immunotherapy, anti-IgE, and a kallikrein inhibitor.

  14. Advanced methods comparisons of reaction rates in the Purdue Fast Breeder Blanket Facility

    SciTech Connect

    Hill, R.N.; Ott, K.O.

    1988-01-01

    A review of worldwide results revealed that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue Fast Breeder Blanket Facility (FBBF) blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50 group cross sections), a consistent Calculated/Experimental (C/E) drop-off was observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the blanket is necessary for agreement with experiments. The usefulness of refined group constant generation utilizing specialized weighting spectra and transport theory methods in correcting this discrepancy was analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result was that transport methods had no effect on the blanket deviations; thus, transport theory considerations do not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by some approximations which are applied in all current methods. 27 refs., 3 figs., 1 tab.

  15. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2009.

    PubMed

    Sicherer, Scott H; Leung, Donald Y M

    2010-01-01

    This review highlights some of the research advances in anaphylaxis and hypersensitivity reactions to foods, drugs, and insects, as well as advances in allergic skin disease that were reported in the Journal in 2009. Among key epidemiologic observations, several westernized countries report that more than 1% of children have peanut allergy, and there is some evidence that environmental exposure to peanut is a risk factor. The role of regulatory T cells, complement, platelet-activating factor, and effector cells in the development and expression of food allergy were explored in several murine models and human studies. Delayed anaphylaxis to mammalian meats appears to be related to IgE binding to the carbohydrate moiety galactose-alpha-1,3-galactose, which also has implications for hypersensitivity to murine mAb therapeutics containing this oligosaccharide. Oral immunotherapy studies continue to show promise for the treatment of food allergy, but determining whether the treatment causes tolerance (cure) or temporary desensitization remains to be explored. Increased baseline serum tryptase levels might inform the risk of venom anaphylaxis and might indicate a risk for mast cell disorders in persons who have experienced such episodes. Reduced structural and immune barrier function contribute to local and systemic allergen sensitization in patients with atopic dermatitis, as well as increased propensity of skin infections in these patients. The use of increased doses of nonsedating antihistamines and potential usefulness of omalizumab for chronic urticaria was highlighted. These exciting advances reported in the Journal can improve patient care today and provide insights on how we can improve the diagnosis and treatment of these allergic diseases in the future. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  16. Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications.

    PubMed

    Hartog, Jasper W L; Voors, Adriaan A; Bakker, Stephan J L; Smit, Andries J; van Veldhuisen, Dirk J

    2007-12-01

    Advanced glycation end-products (AGEs) are molecules formed during a non-enzymatic reaction between proteins and sugar residues, called the Maillard reaction. AGEs accumulate in the human body with age, and accumulation is accelerated in the presence of diabetes mellitus. In patients with diabetes, AGE accumulation is associated with the development of cardiac dysfunction. Enhanced AGE accumulation is not restricted to patients with diabetes, but can also occur in renal failure, enhanced states of oxidative stress, and by an increased intake of AGEs. Several lines of evidence suggest that AGEs are related to the development and progression of heart failure in non-diabetic patients as well. Preliminary small intervention studies with AGE cross-link breakers in heart failure patients have shown promising results. In this review, the role of AGEs in the development of heart failure and the role of AGE intervention as a possible treatment for heart failure are discussed.

  17. Glycation Reactions of Casein Micelles.

    PubMed

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  18. Immunological evidence that non-carboxymethyllysine advanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo.

    PubMed Central

    Takeuchi, M.; Makita, Z.; Bucala, R.; Suzuki, T.; Koike, T.; Kameda, Y.

    2000-01-01

    BACKGROUND: The Maillard reaction that leads to the formation of advanced glycation end-products (AGE) plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. Recently, it was proposed that AGE were not only created by glucose, but also by dicarbonyl compounds derived from the Maillard reaction, autoxidation of sugars and other metabolic pathways of glucose. In this study, we developed four types of non-carboxymethyllysine (CML) anti-AGE antibodies that recognized proteins modified by incubation with short chain sugars and dicarbonyl compounds. MATERIALS AND METHODS: AGE-modified serum albumins were prepared by incubation of rabbit serum albumin with glyceraldehyde, glycolaldehyde, methylglyoxal or glyoxal. After immunization of rabbits, four types of AGE-specific antisera were obtained that were specific for the AGE modification. To separate non-CML AGE antibodies (Ab) (non-CML AGE-Ab-2, -3, -4, and -5), these anti-AGE antisera were subjected to affinity chromatography on a matrix coupled with four kinds of AGE bovine serum albumin (BSA) or CML-BSA. These non-CML AGE antibodies were used to investigate the AGE content of serum obtained from diabetic patients on hemodialysis. RESULTS: Characterization of the four types of non-CML AGE antibodies obtained by immunoaffinity chromatography was performed by competitive ELISA and immunoblot analysis. Non-CML AGE-Ab-2 crossreacted with the protein modified by glyceraldehyde or glycolaldehyde. Non-CML AGE-Ab-3 and -Ab-4 specifically cross-reacted with protein modified by glycolaldehyde and methylglyoxal, respectively. NonCML AGE-Ab-5 cross-reacted with protein modified with glyoxal as well as methylglyoxal and glycolaldehyde. Three kinds of non-CML AGE (AGE-2, -4, and -5) were detected in diabetic serum as three peaks with apparent molecular weights of 200, 1.15, and 0.85 kD; whereas, AGE-3 was detected as two peaks with apparent molecular weights of 200 and 0.85 k

  19. The role of advanced reactive surface area characterization in improving predictions of mineral reaction rates

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Zhang, S.; Mitnick, E.; Cole, D. R.; Yang, L.; Anovitz, L. M.; Sheets, J.; Swift, A.; Kneafsey, T. J.; Landrot, G.; Mito, S.; Xue, Z.; Steefel, C. I.; DePaolo, D. J.; Ajo Franklin, J. B.

    2014-12-01

    Geologic sequestration of CO2 in deep sedimentary formations is a promising means of mitigating carbon emissions from coal-fired power plants but the long-term fate of injected CO2 is challenging to predict. Reactive transport models are used to gain insight over long times but rely on laboratory determined mineral reaction rates that have been difficult to extrapolate to field systems. This, in part, is due to a lack of understanding of mineral reactive surface area. Many models use an arbitrary approximation of reactive surface area, applying orders of magnitude scaling factors to measured BET or geometric surface areas. Recently, a few more sophisticated approaches have used 2D and 3D image analyses to determine mineral-specific reactive surface areas that account for the accessibility of minerals. However, the ability of these advanced surface area estimates to improve predictions of mineral reaction rates has yet to be determined. In this study, we fuse X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB analysis to determine mineral-specific accessible reactive surface areas for a core sample from the Nagaoka pilot CO2 injection site (Japan). This sample is primarily quartz, plagioclase, smectite, K-feldspar, and pyroxene. SEM imaging shows abundant smectite cement and grain coatings that decrease the fluid accessibility of other minerals. However, analysis of FIB-SEM images reveals that smectite nano-pores are well connected such that access to underlying minerals is not occluded by smectite coatings. Mineral-specific accessible surfaces are determined, accounting for the connectivity of the pore space with and without connected smectite nano-pores. The large-scale impact of variations in accessibility and dissolution rates are then determined through continuum scale modeling using grid-cell specific information on accessible surface areas. This approach will be compared with a traditional continuum scale model using mineral abundances and common surface area

  20. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions.

    PubMed

    Zaera, Francisco

    2014-11-21

    Infrared absorption spectroscopy has proven to be one of the most powerful spectroscopic techniques available for the characterization of catalytic systems. Although the history of IR absorption spectroscopy in catalysis is long, the technique continues to provide key fundamental information about a variety of catalysts and catalytic reactions, and to also offer novel options for the acquisition of new information on both reaction mechanisms and the nature of the solids used as catalysts. In this review, an overview is provided of the main contributions that have been derived from IR absorption spectroscopy studies of catalytic systems, and a discussion is included on new trends and new potential directions of research involving IR in catalysis. We start by briefly describing the power of Fourier-transform IR (FTIR) instruments and the main experimental IR setups available, namely, transmission (TIR), diffuse reflectance (DRIFTS), attenuated total reflection (ATR-IR), and reflection-absorption (RAIRS), for advancing research in catalysis. We then discuss the different environments under which IR characterization of catalysts is carried out, including in situ and operando studies of typical catalytic processes in gas-phase, research with model catalysts in ultrahigh vacuum (UHV) and so-called high-pressure cell instruments, and work involving liquid/solid interfaces. A presentation of the type of information extracted from IR data follows in terms of the identification of adsorbed intermediates, the characterization of the surfaces of the catalysts themselves, the quantitation of IR intensities to extract surface coverages, and the use of probe molecules to identify and titrate specific catalytic sites. Finally, the different options for carrying out kinetic studies with temporal resolution such as rapid-scan FTIR, step-scan FTIR, and the use of tunable lasers or synchrotron sources, and to obtain spatially resolved spectra, by sample rastering or by 2D imaging, are

  1. Physicochemical Changes and Glycation Reaction in Intermediate-Moisture Protein-Sugar Foods with and without Addition of Resveratrol during Storage.

    PubMed

    Sheng, Zhanwu; Gu, Mantun; Hao, Wangjun; Shen, Yixiao; Zhang, Weimin; Zheng, Lili; Ai, Binling; Zheng, Xiaoyan; Xu, Zhimin

    2016-06-22

    An intermediate-moisture food (IMF) model consisting of whey protein isolate and glucose and an IMF model fortified with resveratrol were used to study the effect of resveratrol on physicochemical changes and glycation of protein-sugar-rich foods during storage. The water activity (aw) of the storage was controlled at 0.75 or 0.56. The browning rate or hardness of fortified IMFs was significantly lower than that of IMFs after 45-day storage. The rate of Maillard reaction in the samples stored at aw 0.56 was higher than that of samples stored at aw 0.75. The fortified IMFs had lower levels of AGEs (advanced glycation end products), CML (N(ε)-(carboxymethyl)-l-lysine), and insoluble protein during storage. The inhibition capability of resveratrol against glycation was also confirmed by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), liquid chromatography mass spectrometry (LC-MS), and Fourier transform infrared spectroscopy (FTIR) analysis to monitor glycated proteins and protein aggregation in the samples. The results of this study suggested that resveratrol could be used as an inhibitor to reduce the formation of undesirable AGEs and other Maillard reaction products in foods during storage.

  2. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2013.

    PubMed

    Sicherer, Scott H; Leung, Donald Y M

    2014-02-01

    This review highlights some of the research advances in anaphylaxis; hypersensitivity reactions to foods, drugs, and insects; and allergic skin diseases that were reported in the Journal in 2013. Studies on food allergy suggest that (1) 7.6% of the US population is affected, (2) a "healthy" early diet might prevent food allergy, (3) the skin might be an important route of sensitization, (4) allergen component testing might aid diagnosis, (5) the prognosis of milk allergy might be predictable through early testing, (6) oral or sublingual immunotherapy show promise but also have caveats, and (7) preclinical studies show promising alternative modes of immunotherapy and desensitization. Studies on eosinophilic esophagitis show a relationship to connective tissue disorders and that dietary management is an effective treatment for adults. Markers of anaphylaxis severity have been determined and might inform potential diagnostics and therapeutic targets. Insights on serum tests for drug and insect sting allergy might result in improved diagnostics. Genetic and immune-mediated defects in skin epithelial differentiation contribute to the severity of atopic dermatitis. Novel management approaches to treatment of chronic urticaria, including use of omalizumab, are being identified. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  3. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2011.

    PubMed

    Sicherer, Scott H; Leung, Donald Y M

    2012-01-01

    This review highlights some of the research advances in anaphylaxis; hypersensitivity reactions to foods, drugs, and insects; and allergic skin diseases that were reported in the Journal in 2011. Food allergy appears to be increasing in prevalence and carries a strong economic burden. Risk factors can include dietary ones, such as deficiency of vitamin D and timing of complementary foods, and genetic factors, such as filaggrin loss-of-function mutations. Novel mechanisms underlying food allergy include the role of invariant natural killer T cells and influences of dietary components, such as isoflavones. Among numerous preclinical and clinical treatment studies, promising observations include the efficacy of sublingual and oral immunotherapy, a Chinese herbal remedy showing promising in vitro results, the potential immunotherapeutic effects of having children ingest foods with baked-in milk if they tolerate it, and the use of anti-IgE with or without concomitant immunotherapy. Studies of allergic skin diseases, anaphylaxis, and hypersensitivity to drugs and insect venom are elucidating cellular mechanisms, improved diagnostics, and potential targets for future treatment. The role of skin barrier abnormalities, as well as the modulatory effects of the innate and adaptive immune responses, are major areas of investigation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Drugs of abuse that mediate advanced glycation end product formation: a chemical link to disease pathology.

    PubMed

    Treweek, Jennifer B; Dickerson, Tobin J; Janda, Kim D

    2009-05-19

    Nicotine and methamphetamine are frequently abused in modern society, despite the increasing evidence of their addictive, neuropharmacological, and toxic effects. Tobacco, the most widely abused substance, is the leading cause of preventable death in the United States, killing nearly half a million Americans annually. A methamphetamine epidemic has also spread during the past decade; severe neurotoxicity and addictiveness contribute to the drug's notoriety. Although the majority of research on these two drugs is of pharmacological and neurobiological motivation, further study of these molecules from a chemical perspective may provide novel mechanistic insight into either their addictive potential or their pathological effects. For example, nicotine and methamphetamine share a common structural feature, a secondary amine, suggesting that these molecules could possess similar (or analogous) in vivo reactivity. Discoveries concerning the synthetic requirements for aqueous aldol catalysis and the feasibility of the enamine mechanism under physiological conditions have given rise to the hypothesis that ingested molecules, such as abused drugs, could participate in reactions utilizing an enamine intermediate in vivo. The chemical reactivity of exogenous drugs with amine functionalities was initially examined in the context of the Maillard reaction, or nonenzymatic browning. The heating of reducing sugars with amino acids yields a brown solution; studies of this reaction were originally applied to food chemistry for the production of distinct flavors and aromas. Further research has since revealed numerous instances in which the in vivo production of advanced glycation end products (AGEs) through the Maillard reaction contribute to the pathology of disease states. Specifically, the modification of long-lived proteins by glycation and glycoxidation and the accumulation of these AGEs compromise the original function of such proteins and change the mechanical properties of

  5. Formation of odorants in Maillard model systems based on l-proline as affected by pH.

    PubMed

    Blank, Imre; Devaud, Stéphanie; Matthey-Doret, Walter; Robert, Fabien

    2003-06-04

    Formation of the odorants acetic acid, 4-hydroxy-2,5-dimethyl-3-(2H)-furanone (HDMF), 6-acetyl-1,2,3,4-tetrahydropyridine (ATHP), and 2-acetyl-1-pyrroline (AP) was monitored by isotope dilution assays at pH 6, 7, and 8 in Maillard model reactions containing glucose and proline (Glc/Pro) or the corresponding Amadori compound fructosyl-proline (Fru-Pro). In general, higher yields were obtained at pH 7 and 8. Acetic acid was the major odorant with up to 40 mg/mmol precursor followed by HDMF (up to 0.25 mg/mmol), the formation of which was favored in the Fru-Pro reaction systems. On the contrary, ATHP (up to 50 microg/mmol) and AP (up to 5 microg/mmol) were more abundant in Glc/Pro. However, the sensory relevance of the two N-heterocycles was more pronounced on the basis of odor activity values, confirming their contribution to the overall roasty note of the reaction samples. It was also found that formation and decomposition of Fru-Pro were faster at pH 7 as compared to pH 6, explaining in part the preferred formation of the four odorants studied under neutral and slightly alkaline conditions. After 4 h of reaction at pH 7 in the presence of proline, about one-fourth of the glucose was consumed leading to acetic acid with a transformation yield of almost 40 mol %.

  6. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2012.

    PubMed

    Sicherer, Scott H; Leung, Donald Y M

    2013-01-01

    This review highlights some of the research advances in anaphylaxis; hypersensitivity reactions to foods, drugs, and insects; and allergic skin diseases that were reported in the Journal in 2012. Studies support an increase in peanut allergy prevalence in children and exposure to the antibacterial agent triclosan and having filaggrin (FLG) loss-of-function mutations as risk factors for food sensitization. The role of specific foods in causing eosinophilic esophagitis is elucidated by several studies, and microRNA analysis is identified as a possible noninvasive disease biomarker. Studies on food allergy diagnosis emphasize the utility of component testing and the possibility of improved diagnosis through stepped approaches, epitope-binding analysis, and bioinformatics. Treatment studies of food allergy show promise for oral immunotherapy, but tolerance induction remains elusive, and additional therapies are under study. Studies on anaphylaxis suggest an important role for platelet-activating factor and its relationship to the need for prompt treatment with epinephrine. Insights on the pathophysiology and diagnosis of non-IgE-mediated drug allergy are offered, with novel data regarding the interaction of drugs with HLA molecules. Numerous studies support influenza vaccination of persons with egg allergy using modest precautions. Evidence continues to mount that there is cross-talk between skin barrier defects and immune responses in patients with atopic dermatitis. Augmentation of the skin barrier with reduction in skin inflammatory responses will likely lead to the most effective intervention in patients with this common skin disease. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  7. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts.

    PubMed

    Han, Fu-She

    2013-06-21

    In the transition-metal-catalyzed cross-coupling reactions, the use of the first row transition metals as catalysts is much more appealing than the precious metals owing to the apparent advantages such as cheapness and earth abundance. Within the last two decades, particularly the last five years, explosive interests have been focused on the nickel-catalyzed Suzuki-Miyaura reactions. This has greatly advanced the chemistry of transition-metal-catalyzed cross-coupling reactions. Most notably, a broad range of aryl electrophiles such as phenols, aryl ethers, esters, carbonates, carbamates, sulfamates, phosphates, phosphoramides, phosphonium salts, and fluorides, as well as various alkyl electrophiles, which are conventionally challenging, by applying palladium catalysts can now be coupled efficiently with boron reagents in the presence of nickel catalysts. In this review, we would like to summarize the progress in this reaction.

  8. Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions

    PubMed Central

    Menon, Rajeev S; Biju, Akkattu T

    2016-01-01

    Summary N-Heterocyclic carbenes (NHCs) have emerged as a powerful class of organocatalysts that mediate a variety of organic transformations. The Benzoin reaction constitutes one of the earliest known carbon–carbon bond-forming reactions catalysed by NHCs. The rapid growth of NHC catalysis in general has resulted in the development of a variety of benzoin and benzoin-type reactions. An overview of such NHC-catalysed benzoin reactions is presented. PMID:27340440

  9. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC).

    PubMed

    Mandoli, Alessandro

    2016-09-05

    The explosively-growing applications of the Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reaction between organic azides and alkynes (CuAAC) have stimulated an impressive number of reports, in the last years, focusing on recoverable variants of the homogeneous or quasi-homogeneous catalysts. Recent advances in the field are reviewed, with particular emphasis on systems immobilized onto polymeric organic or inorganic supports.

  10. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  11. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides

    PubMed Central

    Driver, Tom G.

    2011-01-01

    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  12. Recent advances in the chemistry of Rh carbenoids: multicomponent reactions of diazocarbonyl compounds

    NASA Astrophysics Data System (ADS)

    Medvedev, J. J.; Nikolaev, V. A.

    2015-07-01

    Multicomponent reactions of diazo compounds catalyzed by RhII complexes become a powerful tool for organic synthesis. They enable three- or four-step processes to be carried out as one-pot procedures (actually as one step) with high stereoselectivity to give complex organic molecules, including biologically active compounds. This review addresses recent results in the chemistry of Rh-catalyzed multicomponent reactions of diazocarbonyl compounds with the intermediate formation of N-, O- and C=O-ylides. The diastereo- and enantioselectivity of these reactions and the possibility of using various co-catalysts to increase the efficiency of the processes under consideration are discussed. The bibliography includes 120 references.

  13. Functional improvements in bovine serum albumin-fucoidan conjugate through the Maillard reaction.

    PubMed

    Kim, Do-Yeong; Shin, Weon-Sun

    2016-01-01

    The solubility, thermal stability, surface activity and emulsifying properties of native bovine serum albumin (BSA), heat-treated BSA, a BSA-fucoidan mixture, and a BSA-fucoidan conjugate were assessed. Covalent linkage of BSA with fucoidan resulted in significantly (p < 0.05) high solubility after heating at 90 °C for 15 min, particularly at pH 5. The BSA-fucoidan conjugate had a high melting temperature (97.09 ± 1.45 °C), as found by differential scanning calorimetry, indicating strong heat stability and high resistance to denaturation. Although the attachment of fucoidan, a non-surface-active hydrophilic polysaccharide, gave no change in the surface activity, the emulsifying activity and the emulsion stability of the conjugate at pH 5 were superior to those of native BSA, heat-treated BSA, and the BSA-fucoidan mixture. Conclusively, fucoidan attachment enhanced the solubility, thermal stability and emulsifying properties of the protein molecules with negative charge distribution and steric stabilization.

  14. Stereospecificity of NAD+/NADH Reactions: A Project Experiment for Advanced Undergraduates.

    ERIC Educational Resources Information Center

    Lowrey, Jonathan S.; And Others

    1981-01-01

    Presents background information, materials needed, and experimental procedures to study enzymes dependent on pyridine nucleotide coenzymes (NAD/NADH). The experiments, suitable for advanced organic or biochemistry courses, require approximately 10-15 hours to complete. (SK)

  15. Stereospecificity of NAD+/NADH Reactions: A Project Experiment for Advanced Undergraduates.

    ERIC Educational Resources Information Center

    Lowrey, Jonathan S.; And Others

    1981-01-01

    Presents background information, materials needed, and experimental procedures to study enzymes dependent on pyridine nucleotide coenzymes (NAD/NADH). The experiments, suitable for advanced organic or biochemistry courses, require approximately 10-15 hours to complete. (SK)

  16. Methylglyoxal modification enhances the stability of hemoglobin and lowers its iron-mediated oxidation reactions: An in vitro study.

    PubMed

    Banerjee, Sauradipta; Chakraborti, Abhay Sankar

    2017-02-01

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. In the present study, we have investigated the in vitro effect of methylglyoxal (200, 300μm) on the heme protein hemoglobin (HbA0) (100μm) after incubation for one week at 25°C. Compared to HbA0, MG-treated HbA0 exhibited decreased absorbance around 280nm, reduced intrinsic fluorescence and lower surface hydrophobicity. MG treatment was not found to significantly affect the secondary structure of HbA0. The stability of MG-treated HbA0 was found to be higher compared to HbA0. Moreover, H2O2-mediated iron release and subsequent iron-mediated oxidation (Fenton) reactions were found to be lower in presence of MG-treated HbA0 compared to HbA0. As shown by mass spectrometric studies, MG modified Arg-92α, Arg-104β, Arg-31α and Arg-40β of HbA0 to hydroimidazolone adducts. The modifications thus appear to be associated with the observed structural alterations of the heme protein. Considering the increased level of MG in diabetes mellitus as well as its high reactivity, AGEs might be associated with structural and functional modifications of the protein including physiological significance.

  17. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    PubMed

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C σ-bond activation and an 8π-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C σ-bond activation to form N- and O-containing heterocycles.

  18. Advanced Solution Methods for Microkinetic Models of Catalytic Reactions: A Methanol Synthesis Case Study

    SciTech Connect

    Rubert-Nason, Patricia; Mavrikakis, Manos; Maravelias, Christos T.; Grabow, Lars C.; Biegler, Lorenz T.

    2014-04-01

    Microkinetic models, combined with experimentally measured reaction rates and orders, play a key role in elucidating detailed reaction mechanisms in heterogeneous catalysis and have typically been solved as systems of ordinary differential equations. In this work, we demonstrate a new approach to fitting those models to experimental data. For the specific example treated here, by reformulating a typical microkinetic model for a continuous stirred tank reactor to a system of nonlinear equations, we achieved a 1000-fold increase in solution speed. The reduced computational cost allows a more systematic search of the parameter space, leading to better fits to the available experimental data. We applied this approach to the problem of methanol synthesis by CO/CO2 hydrogenation over a supported-Cu catalyst, an important catalytic reaction with a large industrial interest and potential for large-scale CO2 chemical fixation.

  19. Recent Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2] Photocycloaddition Reactions

    PubMed Central

    2016-01-01

    The [2 + 2] photocycloaddition is undisputedly the most important and most frequently used photochemical reaction. In this review, it is attempted to cover all recent aspects of [2 + 2] photocycloaddition chemistry with an emphasis on synthetically relevant, regio-, and stereoselective reactions. The review aims to comprehensively discuss relevant work, which was done in the field in the last 20 years (i.e., from 1995 to 2015). Organization of the data follows a subdivision according to mechanism and substrate classes. Cu(I) and PET (photoinduced electron transfer) catalysis are treated separately in sections 2 and 4, whereas the vast majority of photocycloaddition reactions which occur by direct excitation or sensitization are divided within section 3 into individual subsections according to the photochemically excited olefin. PMID:27018601

  20. Evaluation of the Availability and Antioxidant Capacity of Maillard Compounds Present in Bread Crust: Studies in Caco-2 Cells.

    PubMed

    de la Cueva, Silvia Pastoriza; Seiquer, Isabel; Mesías, Marta; Rufián-Henares, José Ángel; Delgado-Andrade, Cristina

    2017-01-11

    Bread crust is one of the major contributors to the intake of Maillard reaction products (MRP). MRP improve the organoleptic properties of foods and can provide biological actions such as antioxidant properties. The transport and availability of Amadori compounds (measured as furosine) and hydroxymethylfurfural (HMF)-early and intermediary MRP-from enzymatically digested bread crust (BC) and from its soluble low-molecular weight (LMW) and high-molecular weight (HMW) fractions were investigated in the Caco-2 cell line. The absorption of the early and final MRP pool was tested by measuring the absorbance recovery (280 and 420 nm). The ability of soluble BC or its fractions to lessen the production of reactive oxygen species (ROS) was examined. Amadori compounds (furosine) were transported across Caco-2 cell monolayers from the soluble BC in percentages ranging between 40% and 56%; the lower amount of the compound supplied, the higher transport rate. However, HMF transport rate (35%) was unaffected by the initial amount of the compound. Amadori compounds and HMF contained in the LMW fraction were more efficiently transported than those present in the HMW fraction, suggesting improved absorption when supplied as free forms or linked to LMW compounds. Absorbance recovery at 280 nm was higher from the LMW fraction, whereas higher recovery was detected for the HMW fraction at 420 nm. The digested BC-but not its isolated fractions-was able to significantly reduce ROS production at basal conditions and after subjecting cells to an oxidant. A clear positive action of BC on the antioxidant defence is manifested, seemingly attributable to the combined presence of soluble LMW and HMW products.

  1. Evaluation of the Availability and Antioxidant Capacity of Maillard Compounds Present in Bread Crust: Studies in Caco-2 Cells

    PubMed Central

    de la Cueva, Silvia Pastoriza; Seiquer, Isabel; Mesías, Marta; Rufián-Henares, José Ángel; Delgado-Andrade, Cristina

    2017-01-01

    Bread crust is one of the major contributors to the intake of Maillard reaction products (MRP). MRP improve the organoleptic properties of foods and can provide biological actions such as antioxidant properties. The transport and availability of Amadori compounds (measured as furosine) and hydroxymethylfurfural (HMF)—early and intermediary MRP—from enzymatically digested bread crust (BC) and from its soluble low-molecular weight (LMW) and high-molecular weight (HMW) fractions were investigated in the Caco-2 cell line. The absorption of the early and final MRP pool was tested by measuring the absorbance recovery (280 and 420 nm). The ability of soluble BC or its fractions to lessen the production of reactive oxygen species (ROS) was examined. Amadori compounds (furosine) were transported across Caco-2 cell monolayers from the soluble BC in percentages ranging between 40% and 56%; the lower amount of the compound supplied, the higher transport rate. However, HMF transport rate (35%) was unaffected by the initial amount of the compound. Amadori compounds and HMF contained in the LMW fraction were more efficiently transported than those present in the HMW fraction, suggesting improved absorption when supplied as free forms or linked to LMW compounds. Absorbance recovery at 280 nm was higher from the LMW fraction, whereas higher recovery was detected for the HMW fraction at 420 nm. The digested BC—but not its isolated fractions—was able to significantly reduce ROS production at basal conditions and after subjecting cells to an oxidant. A clear positive action of BC on the antioxidant defence is manifested, seemingly attributable to the combined presence of soluble LMW and HMW products. PMID:28231083

  2. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors.

    PubMed

    Zhang, Bo; Studer, Armido

    2015-06-07

    Nitrogen heterocycles belong to a highly important class of compounds which are found in various natural products, biologically active structures, and medicinally relevant compounds. Therefore, there is continuing interest in the development of novel synthetic methods for the construction of nitrogen containing heterocycles. Recently, radical insertion reactions into isonitriles have emerged as an efficient and powerful strategy for the construction of nitrogen heterocycles, such as phenanthridines, indoles, quinolines, quinoxalines, and isoquinolines. This review highlights recent advances in this fast growing research area and also includes important pioneering studies in this area.

  3. Advanced glycation endproducts form during ovalbumin digestion in the presence of fructose: Inhibition by chlorogenic acid.

    PubMed

    Bains, Yasmin; Gugliucci, Alejandro; Caccavello, Russell

    2017-07-01

    One mechanism by which fructose could exert deleterious effects is through intestinal formation and absorption of pro-inflammatory advanced glycation endproducts via the Maillard reaction. We employed simulated stomach and duodenum digestion of ovalbumin (OVA) to test the hypothesis that advanced glycation endproducts (AGEs) are formed by fructose during simulated digestion of a ubiquitous food protein under model physiological conditions. OVA was subjected to simulated gastric and intestinal digestion using standard models, in presence of fructose or glucose (0-100mM). Peptide fractions were analyzed by fluorescence spectroscopy and intensity at Excitation: λ370nm, Emission: λ 440nm. AGE adducts formed between fructose and OVA, evidenced by the peptide fractions (<5kDa) at times (30min) and concentration ranges (10mM) plausibly found in the intestines, whereas no reaction occurs with glucose. The reaction was inhibited by chlorogenic acid at concentrations compatible with those found in the gut. The reaction was also inhibited by aminoguanidine, a specific antiglycation agent. Our study showed fructose-AGE formation on a ubiquitous dietary protein under model physiological conditions. Our study also suggests ways to decrease the damage: enteral fructose-AGE formation may be partially inhibited by co-intake of beverages, fruits and vegetables with concentrations of phenolics high enough to serve as anti-glycation agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Role of amino acids and their Maillard mixtures with ribose in the biosilicification process

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Liesch, Patrick J.

    2006-08-01

    Mode of preservation of organic materials on early Earth, Mars or other extraterrestrial objects, and during the space transport on objects such as meteors, is one of the NASA's interests. This is especially true for the bio-organic materials, which could indicate life, past or present. Finding of such materials preserved in some ancient rocks, for example, could be interpreted as a biosignature. We have developed an experimental model for silicification, in which we have synthesized silica gels by reacting sodium silicate solution with various amino acids and with their mixtures with sugars, so-called Maillard mixtures. Our results indicate that these organic materials cause rapid and massive polymerization of silica. Such process may encrust organics or small organisms and thus preserve them. We have studied the gels we synthesized by the infrared (IR) spectroscopic method, and have detected small amount of the organic material in the silica gel. The gels were distinct in each case and have aged differently. In some cases, gel-sol-gel transformations were observed, which may be important for transport of both gels and the organics under prebiotic conditions. The gels obtained from the Maillard mixtures differ from those from the amino acids. Deuteration of the gels was performed in an attempt to resolve the bands in the Si-O-Si and Si-O-C region.

  5. Recent advances in understanding the enzymatic reactions of [4+2] cycloaddition and spiroketalization.

    PubMed

    Zheng, Qingfei; Tian, Zhenhua; Liu, Wen

    2016-04-01

    Diels-Alder-like [4+2] cycloaddition and ketalization of dihydroxy ketones are cyclization reactions with different mechanisms that produce characteristic cyclohexene and spiroketal units, respectively. Here, we review newly identified, naturally occurring '[4+2] cycloadditionases' and 'spiroketalases' and reveal several similarities between the two types of enzymes. During catalysis, these enzymes control product stereochemistry or/and enhance the transformation rate. They exhibit convergent evolution of [4+2] cycloaddition or spiroketalization activity, which is likely dependent on interactions of variable protein folds with specialized chemical structures. An understanding of these similarities is expected to allow for establishment of the underlying principles for the application and catalyst design of associated enzymatic reactions in organic chemistry and synthetic biology.

  6. Advances in nuclear reaction calculations by incorporating information from nuclear mean-field theories

    NASA Astrophysics Data System (ADS)

    Kawano, Toshihiko

    2017-09-01

    Mean-field model calculations for nuclear structure theories are combined with the statistical Hauser-Feshbach code in order to improve predictive capabilities of nuclear reaction for experimentally unknown cross sections. Utilizing the mean-field calculation results we calculate second moments of matrix elements for the residual interaction. The second moments are applied to a microscopic level density model based on the random matrix theory. An example is shown for the 208Pb level density calculation.

  7. Chemical morphogenesis: recent experimental advances in reaction-diffusion system design and control.

    PubMed

    Szalai, István; Cuiñas, Daniel; Takács, Nándor; Horváth, Judit; De Kepper, Patrick

    2012-08-06

    In his seminal 1952 paper, Alan Turing predicted that diffusion could spontaneously drive an initially uniform solution of reacting chemicals to develop stable spatially periodic concentration patterns. It took nearly 40 years before the first two unquestionable experimental demonstrations of such reaction-diffusion patterns could be made in isothermal single phase reaction systems. The number of these examples stagnated for nearly 20 years. We recently proposed a design method that made their number increase to six in less than 3 years. In this report, we formally justify our original semi-empirical method and support the approach with numerical simulations based on a simple but realistic kinetic model. To retain a number of basic properties of real spatial reactors but keep calculations to a minimal complexity, we introduce a new way to collapse the confined spatial direction of these reactors. Contrary to similar reduced descriptions, we take into account the effect of the geometric size in the confinement direction and the influence of the differences in the diffusion coefficient on exchange rates of species with their feed environment. We experimentally support the method by the observation of stationary patterns in red-ox reactions not based on oxihalogen chemistry. Emphasis is also brought on how one of these new systems can process different initial conditions and memorize them in the form of localized patterns of different geometries.

  8. Advancing the molecular movie: Femtosecond X-ray scattering of an electrocyclic chemical reaction

    NASA Astrophysics Data System (ADS)

    Minitti, Michael

    Since it began operation in 2009, SLAC's Linac Coherent Light Source (LCLS) has allowed scientists to make new types of X-ray measurements that were once thought unattainable by delivering one trillion X-ray photons in incredibly short bursts of less than a few femtoseconds. It was promised that this astonishing quantity of photons, delivered in such a small slice of time, could capture the motions of atoms in chemical reactions. Now we have used this capability to make a ``molecular movie'' of a molecule undergoing a chemical reaction from start to finish, with frames just a few femtoseconds long. We assembled the movie by taking individual X-ray snapshots of the molecules that show the positions of their atoms at each moment in time. Comparing these results to computer simulations of the reaction, we determined the routes the individual molecules followed as it's structure rearranged. This is the first step in developing robust methods for visualizing molecular motions in chemistry, biology, and materials science at the atomic scale. Please enjoy the movie! SLAC National Accelerator Laboratory U.S. DOE, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  9. A new advanced experimental setup for in-depth study of the interfacial reaction during reactive wetting

    NASA Astrophysics Data System (ADS)

    Frenznick, Sascha; Stratmann, Martin; Rohwerder, Michael

    2008-04-01

    Reactive wetting plays a crucial role in many technical processes, from soldering in microelectronics, production of metal/ceramic composites, to hot dip galvanizing in mass production of zinc coated steel sheet. In all these cases the wetting behavior of metal melts on different surfaces plays a crucial role in material joining and coating. In all these processes the formation of the interfacial reaction layer has to occur within as short a time as possible in order to ensure a fast overall production speed. As the interfacial layer determines the stability of the formed composites, detailed knowledge of its growth mechanisms is required for a directed process optimization. However, the investigation of the processes occurring at the buried interface between substrate and wetting phase is difficult, especially for the case of liquid metal wetting metallic or ceramic solid substrates at high temperatures. Here, a novel advanced technique for the investigation of high temperature wetting processes up to a temperature of 1100K is presented. It is based on the sessile drop technique but, in addition, allows spinning off the droplet at any chosen wetting time, thus providing direct access to the interfacial reaction layer. Since the experimental setup is integrated into a UHV compatible reaction chamber, not only excellent control of the composition of the atmosphere is ensured, but also direct transfer to surface analytical tools such as scanning electron microscope or electron spectroscopy for chemical analysis without intermediate exposure to air is realized. As will be shown for the case of hot dip galvanising of steel, this is an outstanding advance compared to existing methods.

  10. A new advanced experimental setup for in-depth study of the interfacial reaction during reactive wetting

    SciTech Connect

    Frenznick, Sascha; Stratmann, Martin; Rohwerder, Michael

    2008-04-15

    Reactive wetting plays a crucial role in many technical processes, from soldering in microelectronics, production of metal/ceramic composites, to hot dip galvanizing in mass production of zinc coated steel sheet. In all these cases the wetting behavior of metal melts on different surfaces plays a crucial role in material joining and coating. In all these processes the formation of the interfacial reaction layer has to occur within as short a time as possible in order to ensure a fast overall production speed. As the interfacial layer determines the stability of the formed composites, detailed knowledge of its growth mechanisms is required for a directed process optimization. However, the investigation of the processes occurring at the buried interface between substrate and wetting phase is difficult, especially for the case of liquid metal wetting metallic or ceramic solid substrates at high temperatures. Here, a novel advanced technique for the investigation of high temperature wetting processes up to a temperature of 1100 K is presented. It is based on the sessile drop technique but, in addition, allows spinning off the droplet at any chosen wetting time, thus providing direct access to the interfacial reaction layer. Since the experimental setup is integrated into a UHV compatible reaction chamber, not only excellent control of the composition of the atmosphere is ensured, but also direct transfer to surface analytical tools such as scanning electron microscope or electron spectroscopy for chemical analysis without intermediate exposure to air is realized. As will be shown for the case of hot dip galvanising of steel, this is an outstanding advance compared to existing methods.

  11. A new advanced experimental setup for in-depth study of the interfacial reaction during reactive wetting.

    PubMed

    Frenznick, Sascha; Stratmann, Martin; Rohwerder, Michael

    2008-04-01

    Reactive wetting plays a crucial role in many technical processes, from soldering in microelectronics, production of metal/ceramic composites, to hot dip galvanizing in mass production of zinc coated steel sheet. In all these cases the wetting behavior of metal melts on different surfaces plays a crucial role in material joining and coating. In all these processes the formation of the interfacial reaction layer has to occur within as short a time as possible in order to ensure a fast overall production speed. As the interfacial layer determines the stability of the formed composites, detailed knowledge of its growth mechanisms is required for a directed process optimization. However, the investigation of the processes occurring at the buried interface between substrate and wetting phase is difficult, especially for the case of liquid metal wetting metallic or ceramic solid substrates at high temperatures. Here, a novel advanced technique for the investigation of high temperature wetting processes up to a temperature of 1100 K is presented. It is based on the sessile drop technique but, in addition, allows spinning off the droplet at any chosen wetting time, thus providing direct access to the interfacial reaction layer. Since the experimental setup is integrated into a UHV compatible reaction chamber, not only excellent control of the composition of the atmosphere is ensured, but also direct transfer to surface analytical tools such as scanning electron microscope or electron spectroscopy for chemical analysis without intermediate exposure to air is realized. As will be shown for the case of hot dip galvanising of steel, this is an outstanding advance compared to existing methods.

  12. Palladium Catalyst Supported on Zeolite for Cross-coupling Reactions: An Overview of Recent Advances.

    PubMed

    Kumbhar, Arjun

    2017-02-01

    Over the last 30-40 years, Pd-catalyzed C-C bond-forming reactions have gained immense importance for their use in synthesis of biologically and pharmaceutically important organic fragments. Heterogeneous Pd catalysts supported on porous materials, especially zeolites, have many advantages as they have high surface area with tunable acidity and basicity, hydrophobic and hydrophilic character, shape and size selectivity, as well as chemical and thermal stability. They also offer very easy recovery and reusability. This review covers the literature published on the synthesis and characterization of Pd catalysts supported on zeolites and their applications in various organic transformations.

  13. Fragrance patch tests prepared in advance may give false-negative reactions.

    PubMed

    Mowitz, Martin; Svedman, Cecilia; Zimerson, Erik; Bruze, Magnus

    2014-11-01

    Several of the ingredients in fragrance mix I (FM I) have been shown to evaporate from petrolatum preparations applied in test chambers to an extent that can be suspected to affect the patch test result. To compare the reactivity towards FM I and fragrance mix II (FM II) when they are applied in test chambers in advance and immediately prior to the patch test occasion. Seven hundred and ninety-five consecutive patients were simultaneously patch tested with duplicate samples of FM I and FM II. One sample was applied in the test chamber 6 days in advance (6D sample), and the other sample was applied immediately before the patients were patch tested (fresh sample). Twenty-two (2.8%) patients reacted exclusively to the fresh sample of FM I, 6 (0.7%) reacted exclusively to the 6D sample, and 22 (2.8%) reacted to both samples. The corresponding numbers for FM II were 9 (1.1%) for the fresh sample, 6 (0.7%) for the 6D sample and 12 (1.5%) for both samples. There was a statistically significant difference between the numbers of patients reacting to the fresh and 6D samples of FM I. No corresponding difference was observed for FM II. This can probably be explained by differences in volatilities between the ingredients of FM I and FM II. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Advanced functionalization of polyhydroxyalkanoate via the UV-initiated thiol-ene click reaction.

    PubMed

    Tajima, Kenji; Iwamoto, Kosuke; Satoh, Yasuharu; Sakai, Ryosuke; Satoh, Toshifumi; Dairi, Tohru

    2016-05-01

    Polyhydroxyalkanoates (PHAs) incorporating vinyl-bearing 3-hydroxyalkanoates were prepared in 8.5-12.9 g L(-1) yield. The molar ratios (0-16 mol%) of the vinyl-bearing 3-hydroxyalkanoate derivatives were controlled by the continuous feeding of undecylenate at various concentrations. Subsequently, the PHAs were functionalized by UV-initiated thiol-ene click reaction and chemical modification. (1)H NMR spectra suggested that 3-mercaptopropionic acid and 2-aminoethanethiol were successfully introduced into the vinyl-bearing PHA. Subsequently, chemical modification using fluorescein or a fibronectin active fragment (GRGDS) was attempted. The former yielded a PHA derivative capable of emitting fluorescence under UV irradiation, which was useful for determining the miscibility of PHA in a composite film comprising poly-ʟ-lactic acid (PLLA) and PHA. In the latter case, PHA bearing GRGDS peptides exhibited cell adhesiveness, suggesting that its biocompatibility was improved upon peptide introduction. Taken together, the UV-initiated thiol-ene click reaction was demonstrated to be useful in PHA modification.

  15. Current advances in ant venom proteins causing hypersensitivity reactions in the Asia-Pacific region.

    PubMed

    Srisong, Hathairat; Daduang, Sakda; Lopata, Andreas L

    2016-01-01

    The main insects causing allergy reactions to stinging insect in humans are Apidae (bees), Vespidae (wasps, yellow jackets and hornets) and Formicidae (ants). Their venom stings are composed of various biologically active peptides and protein components, some of which can cause toxicity or anaphylaxis in humans. The protein venom demonstrate some common allergenic activity such as for fire ants and vespids, which have two common allergens that are phospholipase A1 (enzymatic activity) and antigen 5 with unknown biological activity. The common allergens seem to share some degree of immunological cross-reactivity, particularly when the sequence homology is above 70%. Therefore immunotherapeutic approaches targeting more than one specific species are of interest. Recent widespread increases of various ant species in many countries have resulted in higher number of reported about serious allergic reactions to stings. Most insect-allergy related cases have been reported for species from Solenopsis, Myrmecia and Pachycondyla genera, and their stings can often result in human fatalities. In addition, stinging ants can have serious health effects on livestock, agricultural damage adversely affecting the biodiversity of the region. This review discusses the impact of important ant species on human health in the Asia-Pacific region along with the molecular immunological aspects of the identified venoms and current status of diagnostics and therapeutics. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Oxidation stability of advanced reaction-bonded Si3N4 materials

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.; Richerson, D. W.; Carruthers, W. D.; Gersch, H. M.

    1982-01-01

    Four slip-cast, injection-molded and isostatically-pressed specimens of reaction-bonded silicon nitride (RBSN) were subjected to static oxidation tests at 900 C for 10 hours. Specimens containing 8-10% interconnected open porosity of size greater than one micron exhibited a 20-30% decrease in average room temperature four-point flexure strength, while those with 10% open porosity of magnitudes much smaller than one micron as well as those with 2-4% interconnected open porosity of about one micron did not decrease in strength after 900 C exposure. It was determined that preoxidation treatment at 1350 C prevents the 20-30% strength degradation due to internal oxidation, and evidence is presented which suggests that surface pit formation in some RBSN may result from contamination by the furnace environment rather than any intrinsic material properties.

  17. Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wu, Renbing; Xue, Yanhong; Liu, Bo; Zhou, Kun; Wei, Jun; Chan, Siew Hwa

    2016-10-01

    Highly efficient and cost-effective electrocatalyst for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications. Herein, strongly coupled hybrid composites composed of cobalt diselenide (CoSe2) nanoparticles embedded within graphitic carbon polyhedra (GCP) as high-performance ORR catalyst have been rationally designed and synthesized. The catalyst is fabricated by a convenient method, which involves the simultaneous pyrolysis and selenization of preformed Co-based zeolitic imidazolate framework (ZIF-67). Benefiting from the unique structural features, the resulting CoSe2/GCP hybrid catalyst shows high stability and excellent electrocatalytic activity towards ORR (the onset and half-wave potentials are 0.935 and 0.806 V vs. RHE, respectively), which is superior to the state-of-the-art commercial Pt/C catalyst (0.912 and 0.781 V vs. RHE, respectively).

  18. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications.

    PubMed

    Cao, Lei; Cui, Xingye; Hu, Jie; Li, Zedong; Choi, Jane Ru; Yang, Qingzhen; Lin, Min; Ying Hui, Li; Xu, Feng

    2017-04-15

    Since the invention of polymerase chain reaction (PCR) in 1985, PCR has played a significant role in molecular diagnostics for genetic diseases, pathogens, oncogenes and forensic identification. In the past three decades, PCR has evolved from end-point PCR, through real-time PCR, to its current version, which is the absolute quantitive digital PCR (dPCR). In this review, we first discuss the principles of all key steps of dPCR, i.e., sample dispersion, amplification, and quantification, covering commercialized apparatuses and other devices still under lab development. We highlight the advantages and disadvantages of different technologies based on these steps, and discuss the emerging biomedical applications of dPCR. Finally, we provide a glimpse of the existing challenges and future perspectives for dPCR.

  19. Advances in ligase chain reaction and ligation-based amplifications for genotyping assays: Detection and applications.

    PubMed

    Gibriel, Abdullah A; Adel, Ola

    2017-07-01

    Genetic variants have been reported to cause several genetic diseases. Various genotyping assays have been developed for diagnostic and screening purposes but with certain limitations in sensitivity, specificity, cost effectiveness and/or time savings. Since the discovery of ligase chain reaction (LCR) in the late nineties, it became one of the most favored platforms for detecting these variants and also for genotyping low abundant contaminants. Recent and powerful modifications with the integration of various detection strategies such as electrochemical and magnetic biosensors, nanoparticles (NPs), quantum dots, quartz crystal and leaky surface acoustic surface biosensors, DNAzyme, rolling circle amplification (RCA), strand displacement amplification (SDA), surface enhanced raman scattering (SERS), chemiluminescence and fluorescence resonance energy transfer have been introduced to both LCR and ligation based amplifications to enable high-throughput and inexpensive multiplex genotyping with improved robustness, simplicity, sensitivity and specificity. In this article, classical and up to date modifications in LCR and ligation based amplifications are critically evaluated and compared with emphasis on points of strength and weakness, sensitivity, cost, running time, equipment needed, applications and multiplexing potential. Versatile genotyping applications such as genetic diseases detection, bacterial and viral pathogens detection are also detailed. Ligation based gold NPs biosensor, ligation based RCA and ligation mediated SDA assays enhanced detection limit tremendously with a discrimination power approaching 1.5aM, 2aM and 0.1fM respectively. MLPA (multiplexed ligation dependent probe amplification) and SNPlex assays have been commercialized for multiplex detection of at least 48 SNPs at a time. MOL-PCR (multiplex oligonucleotide ligation) has high-throughput capability with multiplex detection of 50 SNPs/well in a 96 well plate. Ligase detection reaction (LDR

  20. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Seo, Bora; Joo, Sang Hoon

    2017-07-01

    Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technology, the development of highly active and durable electrocatalysts based on Earth-abundant elements is of prime importance. In this context, nanostructured molybdenum sulfides (MoS x ) have received a great deal of attention as promising alternatives to precious metal-based catalysts. In this focus review, we summarize recent efforts towards identification of the active sites in MoS x -based electrocatalysts for the hydrogen evolution reaction (HER). We also discuss recent synthetic strategies for the engineering of catalyst structures to achieve high active site densities. Finally, we suggest ongoing and future research challenges in the design of advanced MoS x -based HER electrocatalysts.

  1. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials.

    PubMed

    Chen, Renjie; Luo, Rui; Huang, Yongxin; Wu, Feng; Li, Li

    2016-10-01

    Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi-electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in-depth understanding of multi-electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi-electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi-electron reactions are classified in this review: lithium- and sodium-ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal-air batteries, and Li-S batteries. It is noted that challenges still exist in the development of multi-electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this.

  2. Trends and advances in food analysis by real-time polymerase chain reaction.

    PubMed

    Salihah, Nur Thaqifah; Hossain, Mohammad Mosharraf; Lubis, Hamadah; Ahmed, Minhaz Uddin

    2016-05-01

    Analyses to ensure food safety and quality are more relevant now because of rapid changes in the quantity, diversity and mobility of food. Food-contamination must be determined to maintain health and up-hold laws, as well as for ethical and cultural concerns. Real-time polymerase chain reaction (RT-PCR), a rapid and inexpensive quantitative method to detect the presence of targeted DNA-segments in samples, helps in determining both accidental and intentional adulterations of foods by biological contaminants. This review presents recent developments in theory, techniques, and applications of RT-PCR in food analyses, RT-PCR addresses the limitations of traditional food analyses in terms of sensitivity, range of analytes, multiplexing ability, cost, time, and point-of-care applications. A range of targets, including species of plants or animals which are used as food ingredients, food-borne bacteria or viruses, genetically modified organisms, and allergens, even in highly processed foods can be identified by RT-PCR, even at very low concentrations. Microfluidic RT-PCR eliminates the separate sample-processing step to create opportunities for point-of-care analyses. We also cover the challenges related to using RT-PCR for food analyses, such as the need to further improve sample handling.

  3. Advanced High Energy Density Secondary Batteries with Multi‐Electron Reaction Materials

    PubMed Central

    Luo, Rui; Huang, Yongxin; Li, Li

    2016-01-01

    Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi‐electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in‐depth understanding of multi‐electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi‐electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi‐electron reactions are classified in this review: lithium‐ and sodium‐ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal–air batteries, and Li–S batteries. It is noted that challenges still exist in the development of multi‐electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this. PMID:27840796

  4. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases.

    PubMed

    Gugliucci, Alejandro

    2017-01-01

    Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS.

  5. Advanced online monitoring of cell culture off-gas using proton transfer reaction mass spectrometry.

    PubMed

    Schmidberger, Timo; Gutmann, Rene; Bayer, Karl; Kronthaler, Jennifer; Huber, Robert

    2014-01-01

    Mass spectrometry has been frequently applied to monitor the O₂ and CO₂ content in the off-gas of animal cell culture fermentations. In contrast to classical mass spectrometry the proton transfer reaction mass spectrometry (PTR-MS) provides additional information of volatile organic compounds by application of a soft ionization technology. Hence, the spectra show less fragments and can more accurately assigned to particular compounds. In order to discriminate between compounds of non-metabolic and metabolic origin cell free experiments and fed-batch cultivations with a recombinant CHO cell line were conducted. As a result, in total eight volatiles showing high relevance to individual cultivation or cultivation conditions could be identified. Among the detected compounds methanethiol, with a mass-to-charge ratio of 49, qualifies as a key candidate in process monitoring due to its strong connectivity to lactate formation. Moreover, the versatile and complex data sets acquired by PTR MS provide a valuable resource for statistical modeling to predict non direct measurable parameters. Hence, partial least square regression was applied to the complete spectra of volatiles measured and important cell culture parameters such as viable cell density estimated (R²  = 0.86). As a whole, the results of this study clearly show that PTR-MS provides a powerful tool to improve bioprocess-monitoring for mammalian cell culture. Thus, specific volatiles emitted by cells and measured online by the PTR-MS and complex variables gained through statistical modeling will contribute to a deeper process understanding in the future and open promising perspectives to bioprocess control. © 2014 American Institute of Chemical Engineers.

  6. Cation coordination reactions on nanocrystals: surface/interface, doping control and advanced photocatalysis applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jiatao

    2016-10-01

    Abstract: Including the shape and size effect, the controllable doping, hetero-composite and surface/interface are the prerequisite of colloidal nanocrystals for exploring their optoelectronic properties, such as fluorescence, plasmon-exciton coupling, efficient electron/hole separation, and enhanced photocatalysis applications. By controlling soft acid-base coordination reactions between cation molecular complexes and colloidal nanocrystals, we showed that chemical thermodynamics could drive nanoscale monocrystalline growth of the semiconductor shell on metal nano-substrates and the substitutional heterovalent doping in semiconductor nanocrystals. We have demonstrated evolution of relative position of Au and II-VI semiconductor in Au-Semi from symmetric to asymmetric configuration, different phosphines initiated morphology engineering, oriented attachment of quantum dots into micrometer nanosheets with synergistic control of surface/interface and doing, which can further lead to fine tuning of plasmon-exciton coupling. Therefore, different hydrogen photocatalytic performance, Plasmon enhanced photocatalysis properties have been achieved further which lead to the fine tuning of plasmon-exciton coupling. Substitutional heterovalent doping here enables the tailoring of optical, electronic properties and photocatalysis applications of semiconductor nanocrystals because of electronic impurities (p-, n-type doping) control. References: (1) J. Gui, J. Zhang*, et al. Angew. Chem. Int. Ed. 2015, 54, 3683. (2) Q. Zhao, J. Zhang*, etc., Adv. Mater. 2014, 26, 1387. (3) J. Liu, Q. Zhao, S. G. Wang*, J. Zhang*, etc., Adv. Mater. 2015, 27-2753-2761. (4) H. Qian, J. Zhang*, etc., NPG Asia Mater. (2015) 7, e152. (5) M. Ji, M. Xu, etc., J. Zhang*, Adv. Mater. 2016, in proof. (6) S. Yu, J. T. Zhang, Y. Tang, M. Ouyang*, Nano Lett. 2015, 15, 6282-6288. (7) J. Zhang, Y. Tang, K. Lee and M. Ouyang*, Science 2010, 327, 1634. (8) J. Zhang, Y. Tang, K. Lee, M. Ouyang*, Nature 2010, 466

  7. First-Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances.

    PubMed

    Lu, Fei; Zhou, Min; Zhou, Yuxue; Zeng, Xianghua

    2017-09-28

    Owing to its abundance, high gravimetric energy density, and environmental friendliness, hydrogen is a promising renewable energy to replace fossil fuels. One of the most prominent routes toward hydrogen acquisition is water splitting, which is currently bottlenecked by the sluggish kinetics of oxygen evolution reaction (OER). Numerous of electrocatalysts have been developed in the past decades to accelerate the OER process. Up to now, the first-row transition metal based compounds are in pole position under alkaline conditions, which have become subjects of extensive studies. Recently, significant advances in providing compelling catalytic performance as well as exploring their catalytic mechanisms have been achieved in this area. In this review, we summarized the fundamentals and recent progresses in first-row transition metal based OER catalysts, with special emphasis on the pathways of promoting catalytic performance by concrete strategies. New insight into material design, particularly the role of experimental approaches in the electrocatalytic performance and reaction mechanisms of OER are expected to be provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Methylglyoxal-derived hydroimidazolone-1 evokes inflammatory reactions in endothelial cells via an interaction with receptor for advanced glycation end products.

    PubMed

    Ishibashi, Yuji; Matsui, Takanori; Nakamura, Nobutaka; Sotokawauchi, Ami; Higashimoto, Yuichiro; Yamagishi, Sho-Ichi

    2017-09-01

    Glyceraldehyde-derived advanced glycation end products contribute to vascular inflammation in diabetes. However, what advanced glycation end product structure could evoke inflammatory reactions remains unknown. We examined whether and how methylglyoxal-derived hydroimidazolone 1, one of the advanced glycation end products formed from glyceraldehyde, elicits inflammatory reactions in human umbilical vein endothelial cells. Glyceraldehyde-advanced glycation end products-aptamer was prepared using a systemic evolution of ligands by exponential enrichment. The binding affinities of methylglyoxal-derived hydroimidazolone 1 to receptor for advanced glycation end products or advanced glycation end product-aptamer were measured with a quartz crystal microbalance. Intracellular reactive oxygen species generation and THP-1 cell adhesion were evaluated using fluorescent probes. Gene expression was analysed by reverse transcription polymerase chain reaction. Methylglyoxal-derived hydroimidazolone 1 bound to receptor for advanced glycation end products and advanced glycation end product-aptamer with a dissociation constant ( Kd) of 56.7 µM and 1.51 mM, respectively. Methylglyoxal-derived hydroimidazolone 1 at 100 µg/mL significantly increased reactive oxygen species generation in human umbilical vein endothelial cells, which were attenuated by anti-receptor for advanced glycation end products antibody or advanced glycation end product-aptamer. In all, 100 µg/mL methylglyoxal-derived hydroimidazolone 1 significantly increased receptor for advanced glycation end products and intercellular adhesion molecule-1 messenger RNA levels in, and THP-1 cell adhesion to, human umbilical vein endothelial cells, all of which were blocked by anti-receptor for advanced glycation end products antibody. Our present results indicate that methylglyoxal-derived hydroimidazolone 1 evokes inflammatory reactions in human umbilical vein endothelial cells via receptor for advanced glycation

  9. Iridoids from Carbohydrates via Pauson-Khand Reaction: Synthesis of Advanced Highly Oxygenated Cyclopentane-Annulated Pyranosides from D-Glucal Derivatives.

    PubMed

    Marco-Contelles, José; Ruiz-Caro, Juliana

    1999-10-29

    The Pauson-Khand reaction on suitable 4-oxa-hept-1-en-6-ynes (1, 17) obtained from 3,4,6-tri-O-acetyl-D-glucal gives the cyclopentane-annulated pyranosides (2, 18) that can be efficiently and stereoselectivelly transformed into chiral, advanced, highly oxygenated intermediates (10, 16, 24) for the synthesis of iridoid aglycones.

  10. Presence of dopa and amino acid hydroperoxides in proteins modified with advanced glycation end products (AGEs): amino acid oxidation products as a possible source of oxidative stress induced by AGE proteins.

    PubMed Central

    Fu, S; Fu, M X; Baynes, J W; Thorpe, S R; Dean, R T

    1998-01-01

    Glycation and subsequent Maillard or browning reactions of glycated proteins, leading to the formation of advanced glycation end products (AGEs), are involved in the chemical modification of proteins during normal aging and have been implicated in the pathogenesis of diabetic complications. Oxidative conditions accelerate the browning of proteins by glucose, and AGE proteins also induce oxidative stress responses in cells bearing AGE receptors. These observations have led to the hypothesis that glycation-induced pathology results from a cycle of oxidative stress, increased chemical modification of proteins via the Maillard reaction, and further AGE-dependent oxidative stress. Here we show that the preparation of AGE-collagen by incubation with glucose under oxidative conditions in vitro leads not only to glycation and formation of the glycoxidation product Nepsilon-(carboxymethyl)lysine (CML), but also to the formation of amino acid oxidation products on protein, including m-tyrosine, dityrosine, dopa, and valine and leucine hydroperoxides. The formation of both CML and amino acid oxidation products was prevented by anaerobic, anti-oxidative conditions. Amino acid oxidation products were also formed when glycated collagen, prepared under anti-oxidative conditions, was allowed to incubate under aerobic conditions that led to the formation of CML. These experiments demonstrate that amino acid oxidation products are formed in proteins during glycoxidation reactions and suggest that reactive oxygen species formed by redox cycling of dopa or by the metal-catalysed decomposition of amino acid hydroperoxides, rather than by redox activity or reactive oxygen production by AGEs on protein, might contribute to the induction of oxidative stress by AGE proteins. PMID:9461515

  11. Impact of browning reactions and bran pigments on color of parboiled rice.

    PubMed

    Lamberts, Lieve; Brijs, Kristof; Mohamed, Rasty; Verhelst, Neelke; Delcour, Jan A

    2006-12-27

    Rice color changes from white to amber during parboiling (soaking and steaming). Color parameters indicated that, during soaking, yellow bran pigments leached out in the water. The levels of the Maillard precursors (i.e., reducing sugars (RS) and free alpha-amino nitrogen (FAN)) depended on soaking temperature and time: leaching of RS was compensated by enzymic formation for long soaking times (>60 min), while proteolytic activity was too low to compensate for FAN leaching. Rice soaking under nitrogen, oxygen, or ambient conditions and determination of polyphenol oxidase activity allowed us to conclude that the effect of enzymic color changes on the soaked rice color was rather small. Color measurements of brown and milled mildly, intermediately, and severely parboiled rice samples showed that both brown and milled rice samples were darker and more red and yellow after parboiling and that the effect depended on the severity of parboiling conditions. Furthermore, steaming affected the rice color more and in a way opposite to that observed in soaking. The changes in RS and the loss of FAN during parboiling suggested that Maillard type reactions occur during brown rice steaming. Analyses of furosine levels confirmed Maillard browning of outer bran layers and endosperm during steaming. The level of this Maillard indicator increased with the severity of parboiling conditions in both brown and milled parboiled rice. Measurements of the levels of bran pigments indicated that bran pigments diffuse into the endosperm during parboiling and contribute to the parboiled rice color.

  12. [Relationship between sorafenib-associated hand-food skin reaction and efficacy in treatment of advanced hepatocellular carcinoma].

    PubMed

    Luo, Xiao-ning; Lu, Li-gong; Shao, Pei-jian; Hu, Bao-shan; Li, Yong; Yu, Xian-yi; He, Xu

    2012-04-03

    To investigate the link between the antitumor efficacy of sorafenib and its cutaneous side effects in advanced hepatocellular carcinoma (HCC). We retrospectively analyzed the incidence of hand-foot skin reactions (HFRS) of 51 patients with advanced HCC who treated by sorafenib combined with transcatheter arterial chemoembolization (TACE), comparing tumor disease control rate (DCR), median progression free survival (mPFS) and median overall survival (mOS) in the different severity HFRS groups. The Cox proportional hazard model was applied to the multivariate survival analysis for the PFS. Fifty-one HCC patients treated with sorafenib combined with TACE were included in this study. 13/51 without HFRS (grade 0), 38/51 developed at all grade 1-3, 27 developed at grade 1-2, 11 developed at grade 3. The DCR were 38.5%, 70.4% and 90.9% in the three groups (P < 0.05). Group grade 0 vs grade 1-3, P = 0.031, the difference had statistical significance. Group grade 1-2 vs grade 3, P = 0.352, the difference had no statistical significance. The mPFS were 2.8 months (95%CI 1.6 - 4.0), 4.5 (95%CI 1.3 - 7.7) months and 12.8 (95%CI 3.7 - 21.9) months (P < 0.05), group grade 0 vs grade 1-2, P = 0.019, HR (hazard ratio): 2.8 (95%CI 1.3 - 6.3), P = 0.010, group grade 0 vs grade 3, P < 0.01, HR 6.6 (95%CI 2.3 - 19.0), P < 0.01, group grade 1-2 vs grade 3, P = 0.054; the three groups' mOS were 8.5 months (95%CI 5.9 - 11.1), 13.0 (95%CI 10.1 - 15.9) months and 25.4 months, P < 0.05, there were statistically significant differences between the any two groups. HFRS should be closely monitored in HCC patients treated with sorafenib in relation to its potential role as a surrogate marker of efficacy, but it has yet to be demonstrated whether the efficacy increasing with the severity of HFRS or not.

  13. Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis

    NASA Astrophysics Data System (ADS)

    Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.

    2016-06-01

    Catalyst synthesis with precise control over the structure of catalytic active sites at the atomic level is of essential importance for the scientific understanding of reaction mechanisms and for rational design of advanced catalysts with high performance. Such precise control is achievable using atomic layer deposition (ALD). ALD is similar to chemical vapor deposition (CVD), except that the deposition is split into a sequence of two self-limiting surface reactions between gaseous precursor molecules and a substrate. The unique self-limiting feature of ALD allows conformal deposition of catalytic materials on a high surface area catalyst support at the atomic level. The deposited catalytic materials can be precisely constructed on the support by varying the number and type of ALD cycles. As an alternative to the wet-chemistry based conventional methods, ALD provides a cycle-by-cycle "bottom-up" approach for nanostructuring supported catalysts with near atomic precision. In this review, we summarize recent attempts to synthesize supported catalysts with ALD. Nucleation and growth of metals by ALD on oxides and carbon materials for precise synthesis of supported monometallic catalyst are reviewed. The capability of achieving precise control over the particle size of monometallic nanoparticles by ALD is emphasized. The resulting metal catalysts with high dispersions and uniformity often show comparable or remarkably higher activity than those prepared by conventional methods. For supported bimetallic catalyst synthesis, we summarize the strategies for controlling the deposition of the secondary metal selectively on the primary metal nanoparticle but not on the support to exclude monometallic formation. As a review of the surface chemistry and growth behavior of metal ALD on metal surfaces, we demonstrate the ways to precisely tune size, composition and structure of bimetallic metal nanoparticles. The cycle-by-cycle "bottom up" construction of bimetallic (or multiple

  14. Advanced reactors and novel reactions for the conversion of triglyceride based oils into high quality renewable transportation fuels

    NASA Astrophysics Data System (ADS)

    Linnen, Michael James

    Sustainable energy continues to grow more important to all societies, leading to the research and development of a variety of alternative and renewable energy technologies. Of these, renewable liquid transportation fuels may be the most visible to consumers, and this visibility is further magnified by the long-term trend of increasingly expensive petroleum fuels that the public consumes. While first-generation biofuels such as biodiesel and fuel ethanol have been integrated into the existing fuel infrastructures of several countries, the chemical differences between them and their petroleum counterparts reduce their effectiveness. This gives rise to the development and commercialization of second generation biofuels, many of which are intended to have equivalent properties to those of their petroleum counterparts. In this dissertation, the primary reactions for a second-generation biofuel process, known herein as the University of North Dakota noncatalytic cracking process (NCP), have been studied at the fundamental level and improved. The NCP is capable of producing renewable fuels and chemicals that are virtually the same as their petroleum counterparts in performance and quality (i.e., petroleum-equivalent). In addition, a novel analytical method, FIMSDIST was developed which, within certain limitations, can increase the elution capabilities of GC analysis and decrease sample processing times compared to other high resolution methods. These advances are particularly useful for studies of highly heterogeneous fuel and/or organic chemical intermediates, such as those studied for the NCP. However the data from FIMSDIST must be supplemented with data from other methods such as for certain carboxylic acid, to provide accurate, comprehensive results, From a series of TAG cracking experiments that were performed, it was found that coke formation during cracking is most likely the result of excessive temperature and/or residence time in a cracking reactor. Based on this

  15. Identification of N2-(1-carboxyethyl)guanine (CEG) as a guanine advanced glycosylation end product.

    PubMed

    Papoulis, A; al-Abed, Y; Bucala, R

    1995-01-17

    Reducing sugars such as glucose react nonenzymatically with protein amino groups to initiate a posttranslational modification process known as advanced glycosylation. Nucleotide bases also participate in advanced glycosylation reactions, producing DNA-linked advanced glycosylation endproducts (AGEs) that cause mutations and DNA transposition. Although several protein-derived AGEs have been isolated and structurally characterized, AGE-modified nucleotides have not yet been reported. We systematically examined the reactivities of the model nucleotide bases 9-methylguanine (9-mG), 9-methyladenine (9-mA), and 1-methylcytosine (1-mC) toward glucose and several glucose-derived reactants. In "fast" reactions performed at refluxing temperature and physiological pH, 1 equiv of nucleotide base was reacted with 10 equiv of D-glucose, D-glucose 6-phosphate (G-6-P), D-glucose 6-phosphate/lysine (G-6-P/Lys), the Schiff base 1-n-propylamino-N-D-glucoside (SB), or the Amadori product 1-n-propylamino-N-D-fructose (AP). In every reaction involving 9-mG, N2-(1-carboxyethyl)-9-methylguanine (CEmG) was a major product which was produced. N2-(1-carboxyethyl)-9-methylguanine also formed from 9-mG and AP in long-term incubations performed at 37 degrees C. Direct treatment of 9-mG with methylglyoxal (MG), a Maillard reaction propagator that forms from the decomposition of AP, also produced CEmG in high yield. N2-(1-Carboxyethyl)-9-methylguanine appears to result from the nucleophilic addition of the primary amino group of guanine to the ketone group of MG followed by an intramolecular rearrangement. Methylglyoxal is a known prokaryotic mutagen and was shown additionally to be mutagenic in a eukaryotic shuttle vector assay system.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Enantioselective Cycloaddition Reactions Catalyzed by BINOL-Derived Phosphoric Acids and N-Triflyl Phosphoramides: Recent Advances.

    PubMed

    Held, Felix E; Grau, Dominik; Tsogoeva, Svetlana B

    2015-09-03

    Over the last several years there has been a huge increase in the development and applications of new efficient organocatalysts for enantioselective pericyclic reactions, which represent one of the most powerful types of organic transformations. Among these processes are cycloaddition reactions (e.g., [3+2]; formal [3+3]; [4+2]; vinylogous [4+2] and 1,3-dipolar cycloadditions), which belong to the most utilized reactions in organic synthesis of complex nitrogen- and oxygen-containing heterocyclic molecules. This review presents the breakthrough realized in this field using chiral BINOL-derived phosphoric acids and N-triflyl phosphoramide organocatalysts.

  17. Microwave-assisted isomerisation of lactose to lactulose and Maillard conjugation of lactulose and lactose with whey proteins and peptides.

    PubMed

    Nooshkam, Majid; Madadlou, Ashkan

    2016-06-01

    Lactose was isomerised to lactulose by microwave heating and purified by a methanolic procedure to a product with approximately 72% lactulose content. Afterwards, lactose and the lactulose-rich product (PLu) were conjugated with either whey protein isolate (WPI) or its antioxidant hydrolysate (WPH) through microwaving. Lactose had a higher Maillard reactivity than PLu, and WPH was more reactive than WPI. The browning intensity of WPI-sugar systems was however higher than that of WPH-sugar pairs. Atomic force microscopy showed larger (up to ≈103 nm) particles for WPI-PLu conjugates compared to WPH-PLu counterparts (up to ≈39 nm). The Maillard conjugation progressively increased the radical-scavenging activity of WPI/WPH-sugar pairs with increasing conjugation time and improved the foaming properties of WPI and WPH. The WPI/WPH-sugar conjugates showed higher solubility and emulsification index than unreacted counterpart pairs. For native WPI, β-lactoglobulin was not degraded by in vitro gastric digestion, whereas for WPH-PLu conjugates degraded completely.

  18. β-Blocker premedication does not increase the frequency of allergic reactions from coronary CT angiography: Results from the Advanced Cardiovascular Imaging Consortium.

    PubMed

    Aggarwal, Anshul; Smith, James L; Chinnaiyan, Kavitha M; Mehta, Neesurg; Boura, Judith; Khoury Abdulla, Rami; Lauter, Carl B; Raff, Gilbert L

    2015-01-01

    β-Blockers are often used for heart rate control during coronary CT angiography (CTA). Increased frequency and severity of allergic reactions to radiocontrast media (RCM) have been reported with concomitant use of β-blockers. The objectives of this study were to determine whether there is a higher incidence of allergic reactions to low-osmolar nonionic RCM in patients undergoing coronary CTA with concomitant β-blockers and to define the overall incidence and severity of allergic reactions in patients undergoing coronary CTA with and without a history of allergy to RCM. Patients undergoing coronary CTA at 47 institutions participating in the Advanced Cardiovascular Imaging Consortium registry were analyzed. The incidence and severity of allergic reactions were compared between those patients who did and those who did not receive β-blockers, as well as in subgroups of patients with and without a history of prior allergy to RCM. The incidence of allergic reaction in patients who received β-blockers was 45 of 23,867 (0.19%) compared with those who did not receive β-blockers, which was 9 of 5232 (0.17%; P = .84; odds ratio = 1.1). Of the patients with history of allergy to RCM, 4 of 706 patients (0.6%) on β-blockers experienced allergic reactions compared to 1 of 77 patients (1.3%) without β-blockers (P = .40; odds ratio = 0.43). β-Blocker pretreatment had no effect on the frequency or severity of allergic reaction in patients undergoing coronary CTA, even in patients with a past history of allergy to RCM. Copyright © 2015 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  19. Green tea attenuates diabetes induced Maillard-type fluorescence and collagen cross-linking in the heart of streptozotocin diabetic rats.

    PubMed

    Babu, Pon Velayutham Anandh; Sabitha, Kuruvimalai Ekambaram; Srinivasan, Periasamy; Shyamaladevi, Chennam Srinivasulu

    2007-05-01

    The enhanced myocardial collagen content, collagen glycation and the resulting advanced glycation end products (AGE) which exhibit the characteristics of increased cross-linking are proposed for the stiffness of myocardium in diabetes. To explore the cardioprotective effect of green tea in diabetes, we study the effect of green tea extract on myocardial collagen characteristics in streptozotocin diabetic rats. The effect of green tea on marker enzymes in serum and cardiac tissues were also assayed to understand the extent of protection. Six weeks after the diabetes induction, diabetic rats were treated with green tea extract [300 mg (kg body weight)(-1)day(-1)] for 4 weeks. AGE were determined by fluorescence assay and cross-linking of collagen by solubility measurement while collagen content was measured by biochemical assay. The activities of aspartate transaminase (AST), lactate dehydrogenase (LDH) and creatine kinase (CPK) were measured by biochemical assay. The increase in blood glucose, glycated hemoglobin and systolic blood pressure in diabetic rats were reduced upon green tea treatment. The activities of AST, LDH and CPK were significantly increased in serum whereas decreased in cardiac tissues in diabetic rats representing the cardiac damage. Administration of green tea to diabetic rats significantly ameliorates these enzyme activities. There was no significant difference in the myocardial collagen content among the experimental rats. A significant (P<0.05) increase in collagen linked Maillard-type fluorescence and decrease in collagen solubility in the myocardium of diabetic rats as compared to control rats (0.955+/-0.02 versus 0.683+/-0.04 and 30+/-1.41 versus 45.17+/-1.17, respectively) indicates the increase in advanced glycation end products formation and degree of collagen cross-linking. Green tea administration to diabetic rats significantly (P<0.05) decreased the fluorescence (0.73+/-0.02) whereas increased the solubility of collagen (41

  20. Recent Advances in Inverse-Electron-Demand Hetero-Diels-Alder Reactions of 1-Oxa-1,3-Butadienes.

    PubMed

    Pałasz, Aleksandra

    2016-06-01

    This review is an endeavor to highlight the progress in the inverse-electron-demand hetero-Diels-Alder reactions of 1-oxa-1,3-butadienes in recent years. The huge number of examples of 1-oxadienes cycloadditions found in the literature clearly demonstrates the incessant importance of this transformation in pyran ring synthesis. This type of reaction is today one of the most important methods for the synthesis of dihydropyrans which are the key building blocks in structuring of carbohydrate and other natural products. Two different modes, inter- and intramolecular, of inverse-electron-demand hetero-Diels-Alder reactions of 1-oxadienes are discussed. The domino Knoevenagel hetero-Diels-Alder reactions are also described. In recent years the use of chiral Lewis acids, chiral organocatalysts, new optically active heterodienes or dienophiles have provided enormous progress in asymmetric synthesis. Solvent-free and aqueous hetero-Diels-Alder reactions of 1-oxabutadienes were also investigated. The reactivity of reactants, selectivity of cycloadditions, and chemical stability in aqueous solutions and under physiological conditions were taken into account to show the potential application of the described reactions in bioorthogonal chemistry. New bioorthogonal ligation by click inverse-electron-demand hetero-Diels-Alder cycloaddition of in situ-generated 1-oxa-1,3-butadienes and vinyl ethers was developed. It seems that some of the hetero-Diels-Alder reactions described in this review can be applied in bioorthogonal chemistry because they are selective, non-toxic, and can function in biological conditions taking into account pH, an aqueous environment, and temperature.

  1. Examining of athermal effects in microwave-induced glucose/glycine reaction and degradation of polysaccharide from Porphyra yezoensis.

    PubMed

    Zhou, Cunshan; Yu, Xiaojie; Ma, Haile; Liu, Shulan; Qin, Xiaopei; Yagoub, Abu El-Gasim A; Owusu, John

    2013-08-14

    Many reports claim the existence of athermal effects in microwave-induced reactions, and this challenge the assumption that the thermal effect (heating) is the sole factor in microwave heating. Therefore, microwave-induced Maillard reaction of d-glucose/glycine and degradation of polysaccharide from Porphyra yezoensis (PSPY) were investigated. Browning reactions were monitored by measuring heating rate, UV-absorbance and brown color, UV-vis and synchronous fluorescence spectra, GC/MS analysis and intrinsic viscosity of degradation. Heating of d-glucose/glycine solution produced brown compounds which were detected at A420, and the intermediate products, 2-acetylfuran and 5-methylfurfural, whose fluorescence intensity evidenced their formation. Maximum emission of synchronous fluorescence spectra of samples were at 430-440 nm and 370-390 nm. Both microwave and water bath heating did not cause any compositional changes in the Maillard reaction products. All data failed to show any significant athermal effects of compositional changes in the Maillard reaction products. It can be inferred that some of the reports suggesting the existence of athermal effects, which could ascribe to the different set-up obtained in not well temperature controlled microwave heating systems.

  2. Generic HPLC platform for automated enzyme reaction monitoring: Advancing the assay toolbox for transaminases and other PLP-dependent enzymes.

    PubMed

    Börner, Tim; Grey, Carl; Adlercreutz, Patrick

    2016-08-01

    Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real-time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler-assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'-phosphate-dependent enzymes is presented using SEC for direct monitoring of enzyme-bound and free reaction intermediates. Time-resolved changes of the different cofactor states, e.g. pyridoxal 5'-phosphate, pyridoxamine 5'-phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate-independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP-dependent enzymes.

  3. Formation of Pentosidine Cross-Linking in Myoglobin by Glyoxal: Detection of Fluorescent Advanced Glycation End Product.

    PubMed

    Banerjee, Sauradipta

    2017-03-15

    Glyoxal, a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. Considering the significance of protein modification by glyoxal-derived AGEs, we investigated the in vitro effect of glyoxal (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) after incubation for one week at 25 °C. Glyoxal-treated Mb exhibited increased absorbance around the Soret region, decreased α-helicity and thermal stability compared to control Mb. Intrinsic fluorescence spectrum of the treated Mb showed an additional signal in the 400-500 nm region on excitation at 280 nm that was absent in control Mb. When excited at 335 nm, the glyoxal-treated sample gave a strong fluorescence indicating AGE formation. Mass spectrometric studies revealed formation of glyoxal-derived fluorescent AGE adduct pentosidine between Lys-145 and Arg-139 residues of Mb. Other than pentosidine, additional AGE adducts, namely, carboxymethyllysine at Lys-133, hydroimidazolone at Arg-31 and pyrrolidone-carboxymethyllysine at Lys-145 were also detected. Lys-145 was thus found to contain two different types of AGE adducts, indicating the heterogeneous nature of in vitro glycation reaction. AGE-induced protein modifications might be associated with complications in disease conditions.

  4. Immunological detection of a novel advanced glycation end-product.

    PubMed Central

    Takeuchi, M.; Yanase, Y.; Matsuura, N.; Yamagishi Si, S.; Kameda, Y.; Bucala, R.; Makita, Z.

    2001-01-01

    BACKGROUND: The advanced stage of the Maillard reaction that leads to the formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. Recently, it has been proposed that the intermediates contributing to AGE formation include dicarbonyl intermediates such as glyoxal, methylglyoxal, and 3-deoxyglucosone (3-DG). In the present study, we developed a novel, non-carboxymethyllysine (CML) anti-AGE antibody that recognizes serum proteins and peptides modified by 3-DG in vivo. MATERIALS AND METHODS: AGE-modified serum albumins were prepared by incubation of rabbit serum albumin with 3-DG or D-glucose. After immunization of rabbits, anti-AGE antisera were subjected to affinity chromatography on a Sepharose 4B column coupled with CML-BSA, or AGE-BSA created by incubation with 3-DG (AGE-6) or D-glucose (AGE-1). The AGE-Ab-6 and AGE-Ab-1 thus obtained was used to investigate AGEs in serum from diabetic patients on hemodialysis. RESULTS: Characterization of the novel AGE-Ab-6 obtained by immunoaffinity chromatography was performed with a competitive ELISA and immunoblot analysis. This antibody specifically cross-reacted with proteins modified by 3-DG. AGE-6 was detected in diabetic serum as three peaks with apparent molecular weights of 200, 1.15, and 0.85 kD, while AGE-1 was detected as four peaks with apparent molecular weights of 200, 65, 1.15, and 0.85 kD. CONCLUSION: This study provides new data on the pathways of AGE formation from 3-DG and methods for the immunochemical detection of AGEs. We also provide immunochemical evidence for the existence of six distinct AGEs in vivo among the AGE-modified proteins and peptides in the serum of diabetic patients on hemodialysis. PMID:11788793

  5. Suitable conditions for advanced oxidation process by the amount of ozone reaction and the amount of dioxin degradation in landfill leachate

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Katsuhiko; Kanjo, Yoshinori; Matsufuji, Yasushi; Fukunaga, Isao; Urabe, Shinro; Yagi, Yoshio

    One of the processes to degrade dioxin in landfill leachate is the AOP(advanced oxidation process) method that uses ultraviolet rays or hydrogen peroxide together with ozone. In this research, we used the experimental result of the AOP method and applied to various kinds of experimental systems to determine the relationship between the amount of ozone reaction and the amount of dioxin degradation. The main results were as follows: The TOC(Total Organic Carbon) in the raw leachate consumed the supplied ozone by approximately 3.1(mgO3/mgTOC). It could be expressed in a linear equation between the ozone reaction amount revised by the TOC and the amount of dioxin degradation, and the slope was about 11.5(pgDXN/mgO3). A function of AOP can be expressed by comparing the quantity of suitable ozone reaction to the dioxin degradation. From the degradation ratio of each homologs, the degradation is mainly caused by the hydroxyl radical. To follow the dioxin discharge standard value, it is sufficient to guarantee the revised ozone reaction amount is more than 200mg/l.

  6. Effect of diet-derived advanced glycation end products on inflammation.

    PubMed

    Kellow, Nicole J; Coughlan, Melinda T

    2015-11-01

    Advanced glycation end products (AGEs) formed via the Maillard reaction during the thermal processing of food contributes to the flavor, color, and aroma of food. A proportion of food-derived AGEs and their precursors is intestinally absorbed and accumulates within cells and tissues. AGEs have been implicated in the pathogenesis of diabetes-related complications and several chronic diseases via interaction with the receptor for AGEs, which promotes the transcription of genes that control inflammation. The dicarbonyls, highly reactive intermediates of AGE formation, are also generated during food processing and may incite inflammatory responses through 1) the suppression of protective pathways, 2) the incretin axis, 3) the modulation of immune-mediated signaling, and 4) changes in gut microbiota profile and metabolite sensors. In animal models, restriction of dietary AGEs attenuates chronic low-grade inflammation, but current evidence from human studies is less clear. Here, the emerging relationship between excess dietary AGE consumption and inflammation is explored, the utility of dietary AGE restriction as a therapeutic strategy for the attenuation of chronic diseases is discussed, and possible avenues for future investigation are suggested. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Role of Reactive Oxygen Species and Advanced Glycation End Products in the Malfunctioning of Dental Implants

    PubMed Central

    Guo, M; Liu, L; Zhang, J; Liu, M

    2015-01-01

    ABSTRACT Objective: In the last decade, dental implants have emerged as a crucial modality and serve as an individual form of therapy for dental failure. However, disparities in host responses have led to peri-implantitis and implant failure. The pathological mechanisms driving peri-implantitis remain largely unknown. In this study, we evaluated the role of oxidative stress and advanced glycation end products (AGEs) in the progression of peri-implantitis and dental implants failure, compared with chronic periodontal disease. Subjects and Methods: Three patient groups (peri-implantitis, chronic periodontal disease and control), each with 10 subjects (7M/3F) and average age ranging from 40–60 years were selected for analysis. Salivary oxidative stress and tissue AGE levels were analysed by probing for reactive oxygen species (ROS) and Maillard reaction-related fluorescence, respectively. Results: We observed significant increase (> 2-fold) in oxidative stress and AGE levels in patients with peri-implantitis and chronic periodontal disease compared to controls, with chronic periodontal disease having the highest levels. In addition, we observed a strong positive correlation (r = 0.94) between oxidative stress and AGE levels in the patients. Conclusion: We propose that increased AGE levels and oxidative stress, although not the only pathway, are significant mediators in the pathogenesis of peri-implantitis. Altering them may potentially be used in combination with other modalities to manage peri-implantitis. PMID:26624598

  8. A Mesoporous Indium Metal-Organic Framework: Remarkable Advances in Catalytic Activity for Strecker Reaction of Ketones.

    PubMed

    Reinares-Fisac, Daniel; Aguirre-Díaz, Lina María; Iglesias, Marta; Snejko, Natalia; Gutiérrez-Puebla, Enrique; Monge, M Ángeles; Gándara, Felipe

    2016-07-27

    With the aim of developing new highly porous, heterogeneous Lewis acid catalysts for multicomponent reactions, a new mesoporous metal-organic framework, InPF-110 ([In3O(btb)2(HCOO)(L)], (H3btb = 1,3,5-tris(4-carboxyphenyl)benzene acid, L = methanol, water, or ethanol), has been prepared with indium as the metal center. It exhibits a Langmuir surface area of 1470 m(2) g(-1), and its structure consists of hexagonal pores with a 2.8 nm aperture, which allows the diffusion of multiple substrates. This material presents a large density of active metal sites resulting in outstanding catalytic activity in the formation of substituted α-aminonitriles through the one-pot Strecker reaction of ketones. In this respect, InPF-110 stands out compared to other catalysts for this reaction due to the small catalyst loadings required, and without the need for heat or solvents. Furthermore, X-ray single crystal diffraction studies clearly show the framework-substrate interaction through coordination to the accessible indium sites.

  9. Advanced Study of Unsteady Heat and Chemical Reaction with Ramped Wall and Slip Effect on a Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Sohail, Ayesha; Maqbool, K.; Sher Akbar, Noreen; Younas, Muhammad

    2017-03-01

    This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number, chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a viscous fluid past through a vertical plate embedded in a porous media. Numerical results are obtained for solving the nonlinear governing momentum, energy and concentration equations with slip boundary condition, ramped wall temperature and ramped wall concentration on the surface of the vertical plate. The influence of emerging parameters on velocity, temperature and concentration fields are shown graphically.

  10. Use of a Passive Reaction Wheel Jitter Isolation System to Meet the Advanced X-Ray Astrophysics Facility Imaging Performance Requirements

    NASA Technical Reports Server (NTRS)

    Pendergast, Karl J.; Schauwecker, Christopher J.

    1998-01-01

    Third in the series of NASA great observatories, the Advanced X-Ray Astrophysics Facility (AXAF) is scheduled for launch from the Space Shuttle in November of 1998. Following in the path of the Hubble Space Telescope and the Compton Gamma Ray Observatory, this observatory will image light at X-ray wavelengths, facilitating the detailed study of such phenomena as supernovae and quasars. The AXAF project is sponsored by the Marshall Space Flight Center in Huntsville, Alabama. Because of exacting requirements on the performance of the AXAF optical system, it was necessary to reduce the transmission of reaction wheel jitter disturbances to the observatory. This reduction was accomplished via use of a passive mechanical isolation system to interface the reaction wheels with the spacecraft central structure. In addition to presenting a description of the spacecraft, the isolation system, and the key image quality requirement flowdown, this paper details the analyses performed in support of system-level imaging performance requirement verification. These analyses include the identification of system-level requirement suballocations, quantification of imaging and pointing performance, and formulation of unit-level isolation system transmissibility requirements. Given in comparison to the non-isolated system imaging performance, the results of these analyses clearly illustrate the effectiveness of an innovative reaction wheel passive isolation system.

  11. Rational Design of Na(Li1/3 Mn2/3 )O2 Operated by Anionic Redox Reactions for Advanced Sodium-Ion Batteries.

    PubMed

    Kim, Duho; Cho, Maenghyo; Cho, Kyeongjae

    2017-09-01

    In an effort to develop high-energy-density cathodes for sodium-ion batteries (SIBs), low-cost, high capacity Na(Li1/3 Mn2/3 )O2 is discovered, which utilizes the labile O 2p-electron for charge compensation during the intercalation process, inspired by Li2 MnO3 redox reactions. Na(Li1/3 Mn2/3 )O2 is systematically designed by first-principles calculations considering the Li/Na mixing enthalpy based on the site preference of Na in the Li sites of Li2 MnO3 . Using the anionic redox reaction (O(2-) /O(-) ), this Mn-oxide is predicted to show high redox potentials (≈4.2 V vs Na/Na(+) ) with high charge capacity (190 mAh g(-1) ). Predicted cathode performance is validated by experimental synthesis, characterization, and cyclic performance studies. Through a fundamental understanding of the redox reaction mechanism in Li2 MnO3 , Na(Li1/3 Mn2/3 )O2 is designed as an example of a new class of promising cathode materials, Na(Li1/3 M2/3 )O2 (M: transition metals featuring stabilized M(4+) ), for further advances in SIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    PubMed Central

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands. PMID:24389590

  13. Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display.

    PubMed

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-06

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  14. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    NASA Astrophysics Data System (ADS)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  15. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process.

    PubMed

    Yang, Yi; Jiang, Jin; Lu, Xinglin; Ma, Jun; Liu, Yongze

    2015-06-16

    In this work, simultaneous generation of hydroxyl radical (•OH) and sulfate radical (SO4•−) by the reaction of ozone (O3) with peroxymonosulfate (PMS; HSO5−) has been proposed and experimentally verified. We demonstrate that the reaction between the anion of PMS (i.e.,SO52−) and O3 is primarily responsible for driving O3 consumption with a measured second order rate constant of (2.12 ± 0.03) × 10(4) M(-1) s(-1). The formation of both •OH and SO4•− from the reaction between SO52− and O3 is confirmed by chemical probes (i.e., nitrobenzene for •OH and atrazine forb oth •OH and SO4•−). The yields of •OH and SO4•− are determined to be 0.43 ± 0.1 and 0.45 ± 0.1 per mol of O3 consumption, respectively. An adduct,−O3SOO− + O3 → −O3SO5−, is assumed as the first step, which further decomposes into SO5•− and O3•−. The subsequent reaction of SO5•− with O3is proposed to generate SO4•−, while O3•− converts to •OH. A definition of R(ct,•OH) and R(ct,SO4•−) (i.e., respective ratios of •OH and SO4•− exposures to O3 exposure) is adopted to quantify relative contributions of •OH and SO4•−. Increasing pH leads to increases in both values of R(ct,•OH) and R(ct,SO4•−) but does not significantly affect the ratio of R(ct,SO4•−) to R(ct,•OH) (i.e., R(ct,SO4•−)/R(ct,•OH)), which represents the relative formation of SO4•− to •OH. The presence of bicarbonate appreciably inhibits the degradation of probes and fairly decreases the relative contribution of •OH for their degradation, which may be attributed to the conversion of both •OH and SO4•− to the more selective carbonate radical (CO3•−).Humic acid promotes O3 consumption to generate •OH and thus leads to an increase in the R(ct,•OH) value in the O3/PMS process,w hile humic acid has negligible influence on the R(ct,SO4•−) value. This discrepancy is reasonably explained by the negligible effect of humic acid on SO

  16. Evaluation of Advanced Reactive Surface Area Estimates for Improved Prediction of Mineral Reaction Rates in Porous Media

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Mitnick, E. H.; Zhang, S.; Voltolini, M.; Yang, L.; Steefel, C. I.; Swift, A.; Cole, D. R.; Sheets, J.; Kneafsey, T. J.; Landrot, G.; Anovitz, L. M.; Mito, S.; Xue, Z.; Ajo Franklin, J. B.; DePaolo, D.

    2015-12-01

    CO2 sequestration in deep sedimentary formations is a promising means of reducing atmospheric CO2 emissions but the rate and extent of mineral trapping remains difficult to predict. Reactive transport models provide predictions of mineral trapping based on laboratory mineral reaction rates, which have been shown to have large discrepancies with field rates. This, in part, may be due to poor quantification of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area are ad hoc and typically based on grain size, adjusted several orders of magnitude to account for surface roughness and reactivity. This results in orders of magnitude discrepancies in estimated surface areas that directly translate into orders of magnitude discrepancies in model predictions. Additionally, natural systems can be highly heterogeneous and contain abundant nano- and micro-porosity, which can limit connected porosity and access to mineral surfaces. In this study, mineral-specific accessible surface areas are computed for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan). Accessible mineral surface areas are determined from a multi-scale image analysis including X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB. Powder and flow-through column laboratory experiments are performed and the evolution of solutes in the aqueous phase is tracked. Continuum-scale reactive transport models are used to evaluate the impact of reactive surface area on predictions of experimental reaction rates. Evaluated reactive surface areas include geometric and specific surface areas (eg. BET) in addition to their reactive-site weighted counterparts. The most accurate predictions of observed powder mineral dissolution rates were obtained through use of grain-size specific surface areas computed from a BET-based correlation. Effectively, this surface area reflects the grain-fluid contact area, or accessible surface area, in the powder

  17. A review of the Mark 48-F, 3.50 pitch diameter, 2-stage reaction turbine designed for the staged combustion cycle requirements of an advanced space engine

    NASA Technical Reports Server (NTRS)

    Macaluso, S. B.

    1976-01-01

    The Mark 48-F two-stage reaction turbine was designed as a component for an advanced space engine propellant feed system, high-pressure liquid hydrogen turbopump. The turbine total inlet temperature and total inlet pressure were designed to be 1860 R and 3420 psia, respectively. At a design speed of 95,000 rpm, the turbine will develop 2543 horsepower with LO2/LH2 working fluid. The aerothermodynamic performance of a prototype turbine assembly was evaluated with gaseous nitrogen working fluid. Turbine performance was evaluated at turbine velocity ratios ranging from 0.250 to 0.782, and turbine speeds up to 25,250 rpm. Turbine test efficiency at the design velocity ratio of 0.483 was found to be 79.5% total-to-total.

  18. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes.

    PubMed

    Zientek, Michael A; Youdim, Kuresh

    2015-01-01

    During the process of drug discovery, the pharmaceutical industry is faced with numerous challenges. One challenge is the successful prediction of the major routes of human clearance of new medications. For compounds cleared by metabolism, accurate predictions help provide an early risk assessment of their potential to exhibit significant interpatient differences in pharmacokinetics via routes of metabolism catalyzed by functionally polymorphic enzymes and/or clinically significant metabolic drug-drug interactions. This review details the most recent and emerging in vitro strategies used by drug metabolism and pharmacokinetic scientists to better determine rates and routes of metabolic clearance and how to translate these parameters to estimate the amount these routes contribute to overall clearance, commonly referred to as fraction metabolized. The enzymes covered in this review include cytochrome P450s together with other enzymatic pathways whose involvement in metabolic clearance has become increasingly important as efforts to mitigate cytochrome P450 clearance are successful. Advances in the prediction of the fraction metabolized include newly developed methods to differentiate CYP3A4 from the polymorphic enzyme CYP3A5, scaling tools for UDP-glucuronosyltranferase, and estimation of fraction metabolized for substrates of aldehyde oxidase.

  19. Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction.

    PubMed

    Dong, Haifeng; Liu, Conghui; Ye, Haitao; Hu, Linping; Fugetsu, Bunshi; Dai, Wenhao; Cao, Yu; Qi, Xueqiang; Lu, Huiting; Zhang, Xueji

    2015-12-07

    An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS(2)) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS(2) nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS(2) and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS(2)/N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS(2)/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency.

  20. Advanced catalytic performance of Au-Pt double-walled nanotubes and their fabrication through galvanic replacement reaction.

    PubMed

    Chen, Lu; Kuai, Long; Yu, Xue; Li, Wenzheng; Geng, Baoyou

    2013-08-26

    Bimetallic tubular nanostructures have been the focus of intensive research as they have very interesting potential applications in various fields including catalysis and electronics. In this paper, we demonstrate a facile method for the fabrication of Au-Pt double-walled nanotubes (Au-Pt DWNTs). The DWNTs are fabricated through the galvanic displacement reaction between Ag nanowires and various metal ions, and the Au-Pt DWNT catalysts exhibit high active catalytic performances toward both methanol electro-oxidation and 4-nitrophenol (4-NP) reduction. First, they have a high electrochemically active surface area of 61.66 m(2)  g(-1), which is close to the value of commercial Pt/C catalysts (64.76 m(2) g(-1)), and the peak current density of Au-Pt DWNTs in methanol oxidation is recorded as 138.25 mA mg(-1), whereas those of Pt nanotubes, Au/Pt nanotubes (simple mixture), and commercial Pt/C are 24.12, 40.95, and 120.65 mA mg(-1), respectively. The Au-Pt DWNTs show a markedly enhanced electrocatalytic activity for methanol oxidation compared with the other three catalysts. They also show an excellent catalytic performance in comparison with common Au nanotubes for 4-nitrophenol (4-NP) reduction. The attractive performance exhibited by these prepared Au-Pt DWNTs can be attributed to their unique structures, which make them promising candidates as high-performance catalysts.

  1. Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction

    PubMed Central

    Dong, Haifeng; Liu, Conghui; Ye, Haitao; Hu, Linping; Fugetsu, Bunshi; Dai, Wenhao; Cao, Yu; Qi, Xueqiang; Lu, Huiting; Zhang, Xueji

    2015-01-01

    An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS2/N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency. PMID:26639026

  2. Browning reaction systems as sources of mutagens and antimutagens.

    PubMed Central

    Powrie, W D; Wu, C H; Molund, V P

    1986-01-01

    Heated food systems contain hundreds of chemical compounds, some being mutagenic and others being antimutagenic. Studies have indicated that foods exposed to drying, frying, roasting, baking, and broiling conditions possess net mutagenic activity as assessed by the Ames/Salmonella/microsome mutagenicity test and the chromosome aberration assay with Chinese hamster ovary (CHO) cells. With the above-mentioned heat treatment of food, nonenzymic browning reactions are generally proceeding at rapid rates and are involved in the development of mutagens. Caramelization and Maillard reactions are two important pathways in the nonenzymic browning of food and are responsible for the formation of volatile aromatic compounds, intermediate nonvolatile compounds, and brown pigments called melanoidins. Heated sugar-amino acid mixtures possessed mutagenic activities which have been assessed by short-term bioassays. Purified Maillard and caramelization reaction products such as reductones, dicarbonyls, pyrazines, and furan derivatives have exhibited mutagenicity and clastogenicity. The water-insoluble fraction (WIF) of instant coffee and a model-system melanoidin (MSM) have been shown to inhibit the mutagenicity of known carcinogens--aflatoxin B1 (AFB1), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and benzo(a)pyrene (BP)--in aqueous dispersion. WIF and MSM were found to be effective binding agents for the carcinogens. PMID:3757959

  3. Browning reaction systems as sources of mutagens and antimutagens.

    PubMed

    Powrie, W D; Wu, C H; Molund, V P

    1986-08-01

    Heated food systems contain hundreds of chemical compounds, some being mutagenic and others being antimutagenic. Studies have indicated that foods exposed to drying, frying, roasting, baking, and broiling conditions possess net mutagenic activity as assessed by the Ames/Salmonella/microsome mutagenicity test and the chromosome aberration assay with Chinese hamster ovary (CHO) cells. With the above-mentioned heat treatment of food, nonenzymic browning reactions are generally proceeding at rapid rates and are involved in the development of mutagens. Caramelization and Maillard reactions are two important pathways in the nonenzymic browning of food and are responsible for the formation of volatile aromatic compounds, intermediate nonvolatile compounds, and brown pigments called melanoidins. Heated sugar-amino acid mixtures possessed mutagenic activities which have been assessed by short-term bioassays. Purified Maillard and caramelization reaction products such as reductones, dicarbonyls, pyrazines, and furan derivatives have exhibited mutagenicity and clastogenicity. The water-insoluble fraction (WIF) of instant coffee and a model-system melanoidin (MSM) have been shown to inhibit the mutagenicity of known carcinogens--aflatoxin B1 (AFB1), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and benzo(a)pyrene (BP)--in aqueous dispersion. WIF and MSM were found to be effective binding agents for the carcinogens.

  4. Proteomic characterization of intermediate and advanced glycation end-products in commercial milk samples.

    PubMed

    Renzone, Giovanni; Arena, Simona; Scaloni, Andrea

    2015-03-18

    The Maillard reaction consists of a number of chemical processes affecting the structure of the proteins present in foods. We previously accomplished the proteomic characterization of the lactosylation targets in commercial milk samples. Although characterizing the early modification derivatives, this analysis did not describe the corresponding advanced glycation end-products (AGEs), which may be formed from the further oxidation of former ones or by reaction of oxidized sugars with proteins, when high temperatures are exploited. To fill this gap, we have used combined proteomic procedures for the systematic characterization of the lactosylated and AGE-containing proteins from the soluble and milk fat globule membrane fraction of various milk products. Besides to confirm all lactulosyl-lysines described previously, 40 novel lactosylation sites were identified. More importantly, 308 additional intermediate and advanced glyco-oxidation derivatives (including cross-linking adducts) were characterized in 31 proteins, providing the widest qualitative inventory of modified species ascertained in commercial milk samples so far. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyllysine and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Depending on thermal treatment, a variable number of modification sites was identified within each protein; their number increased with harder food processing conditions. Among the modified proteins, species involved in assisting the delivery of nutrients, defense response against pathogens and cellular proliferation/differentiation were highly affected by AGE formation. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, abates the bioavailability of the essential amino acids and eventually affects food digestibility. These aspects

  5. Wotherspoon criteria combined with B cell clonality analysis by advanced polymerase chain reaction technology discriminates covert gastric marginal zone lymphoma from chronic gastritis

    PubMed Central

    Hummel, M; Oeschger, S; Barth, T F E; Loddenkemper, C; Cogliatti, S B; Marx, A; Wacker, H‐H; Feller, A C; Bernd, H‐W; Hansmann, M‐L; Stein, H; Möller, P

    2006-01-01

    Background and aims Gastric mucosa associated lymphoid tissue lymphoma is a well defined B cell lymphoma yet often impossible to distinguish from severe chronic gastritis on morphological grounds alone. Therefore, it was suggested to use the clonality of the immunoglobulin (Ig) heavy chain (H) genes, as detected by polymerase chain reaction (PCR), as a decisive criterion. However, there is controversy as to whether B cell clonality also exists in chronic gastritis, hence rendering this approach futile at present. Methods An expert panel re‐examined the histology and immunohistochemistry of a total of 97 cases of gastric biopsies, including clearcut marginal zone lymphoma, chronic gastritis, and ambiguous cases, applying the Wotherspoon criteria on the basis of haematoxylin‐eosin and CD20 immunostainings. In addition, a new and advanced PCR system for detection of clonal IgH gene rearrangements was independently applied in two institutions in each case. Results The overall IgH clonality assessments of both institutions were in total agreement. Overt lymphoma (Wotherspoon score 5) was clonal in 24/26 cases. Chronic gastritis (Wotherspoon scores 1 and 2) was not clonal in 52/53 cases; the clonal case being Wotherspoon score 2. Of 18 cases with ambiguous histology (Wotherspoon scores 3 and 4) four were clonal. Conclusions Using advanced PCR technology, clonal gastritis is extremely rare, if it exists at all. Thus B cell clonality in Wotherspoon 3 and 4 cases is regarded as suitable for definitively diagnosing gastric marginal zone lymphoma. PMID:16423889

  6. NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Huiyong; Wang, Haiyan; He, Kejian; Wang, Shuangyin; Tang, Yougen; Chen, Jiajie

    2015-04-01

    Developing low-cost catalyst for high-performance oxygen reduction reaction (ORR) is highly desirable. Herein, NiCo2O4/N-doped reduced graphene oxide (NiCo2O4/N-rGO) hybrid is proposed as a high-performance catalyst for ORR for the first time. The well-formed NiCo2O4/N-rGO hybrid is studied by cyclic voltammetry (CV) curves and linear-sweep voltammetry (LSV) performed on the rotating-ring-disk-electrode (RDE) in comparison with N-rGO-free NiCo2O4 and the bare N-rGO. Due to the synergistic effect, the NiCo2O4/N-rGO hybrid exhibits significant improvement of catalytic performance with an onset potential of -0.12 V, which mainly favors a direct four electron pathway in ORR process, close to the behavior of commercial carbon-supported Pt. Also, the benefits of N-incorporation are investigated by comparing NiCo2O4/N-rGO with NiCo2O4/rGO, where higher cathodic currents, much more positive half-wave potential and more electron transfer numbers are observed for the N-doping one, which should be ascribed to the new highly efficient active sites created by N incorporation into graphene. The NiCo2O4/N-rGO hybrid could be used as a promising catalyst for high power metal/air battery.

  7. Binary cobalt ferrite nanomesh arrays as the advanced binder-free electrode for applications in oxygen evolution reaction and supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhang, Huijuan; Mu, Yanping; Bai, Yuanjuan; Wang, Yu

    2016-09-01

    The porous CoFe2O4nanomesh arrays are successfully synthesized on nickel foam substrate through a high temperature and pressure hydrothermal method, following by the thermal post-treatment in air. The CoFe2O4 nanomesh arrays own numerous pores and large specific surface area, which is in favor of exposing more active sites. In consideration of the structural preponderances and versatility of the materials, the CoFe2O4 nanomesh arrays have been researched as the binder-free electrode materials for electrocatalysis and supercapacitors. When the CoFe2O4nanomesh arrays on nickel foam (CoFe2O4 NM-As/Ni) directly act as the free-binder catalyst toward catalyzing the oxygen evolution reaction (OER) of electrochemical water splitting, CoFe2O4 NM-As/Ni exhibits an admirable OER property with a low onset potential of 1.47 V(corresponding to the onset overpotential of 240 mV), a minimal overpotential (η10 = 253 mV), a small Tafel slope (44 mV dec-1), large anodic currents and long-term durability for 35 h in alkaline media. In addition, as an electrode of supercapacitors, CoFe2O4 NM-As/Ni obtains a desired specific capacitance (1426 F/g at the current density of 1 A/g), remarkable rate capability (1024 F/g at the current density of 20 A/g) and eminent capacitance retention (92.6% after 3000 cycles). The above results demonstrate the CoFe2O4 NM-As/Ni possesses great potential application in electrocatalysis and supercapacitors.

  8. Contribution of the toxic advanced glycation end-products-receptor axis in nonalcoholic steatohepatitis-related hepatocellular carcinoma

    PubMed Central

    Takino, Jun-ichi; Nagamine, Kentaro; Hori, Takamitsu; Sakasai-Sakai, Akiko; Takeuchi, Masayoshi

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. The main etiologies of HCC are hepatitis B virus and hepatitis C virus (HCV), and non-hepatitis B/non-hepatitis C HCC (NBNC-HCC) has also been identified as an etiological factor. Although the incidence of HCV-related HCC in Japan has decreased slightly in recent years, that of NBNC-HCC has increased. The onset mechanism of NBNC-HCC, which has various etiologies, remains unclear; however, nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease, is known to be an important risk factor for NBNC-HCC. Among the different advanced glycation end-products (AGEs) formed by the Maillard reaction, glyceraldehyde-derived AGEs, the predominant components of toxic AGEs (TAGE), have been associated with NASH and NBNC-HCC, including NASH-related HCC. Furthermore, the expression of the receptor for AGEs (RAGE) has been correlated with the malignant progression of HCC. Therefore, TAGE induce oxidative stress by binding with RAGE may, in turn, lead to adverse effects, such as fibrosis and malignant transformation, in hepatic stellate cells and tumor cells during NASH or NASH-related HCC progression. The aim of this review was to examine the contribution of the TAGE-RAGE axis in NASH-related HCC. PMID:26483867

  9. Systemic activation of NF-κB driven luciferase activity in transgenic mice fed advanced glycation end products modified albumin.

    PubMed

    Nass, Norbert; Bayreuther, Kristina; Simm, Andreas

    2017-04-01

    Advanced glycation end products (AGEs) are stable end products of the Maillard reaction and accumulate with progressing ageing and degenerative diseases. Significant amounts of AGE-modified peptides are also consumed with processed food. AGEs bind to specific receptors, especially the receptor of AGEs (RAGE). Activation of RAGE then evokes intracellular signalling, finally resulting in the activation of the NF-κB transcription factor and therefore a proinflammatory state. We here analysed, whether NF-κB is activated in short term upon feeding an AGE-modified protein in-vivo. Transgenic mice expressing firefly luciferase under the control of an NF-κB responsive promoter were intraperitoneally injected or fed with AGE-modified- or control albumin and luciferase expression was analysed by in-vivo imaging and by in-vitro by determination of luciferase enzyme activity in heart, lung, gut, spleen, liver and kidney. In all organs, an activation of the luciferase reporter gene was observed in response to AGE-BSA feeding, however with different intensity and timing. The gut exhibited highest luciferase activity and this activity peaked 6-8 h post AGE-feeding. In heart and kidney, luciferase activity increased for up to 12 h post feeding. All other organs tested, exhibited highest activity at 10 h after AGE-consumption. Altogether, these data demonstrate that feeding AGE-modified protein resulted in a transient and systemic activation of the NF-κB reporter.

  10. Randomized controlled trial of the prophylactic effect of urea-based cream on sorafenib-associated hand-foot skin reactions in patients with advanced hepatocellular carcinoma.

    PubMed

    Ren, ZhengGang; Zhu, KangShun; Kang, HaiYan; Lu, MinQiang; Qu, ZengQiang; Lu, LiGong; Song, TianQiang; Zhou, WeiPing; Wang, Hui; Yang, WeiZhu; Wang, Xuan; Yang, YongPing; Shi, LeHua; Bai, YuXian; Guo, XiaoFeng; Ye, Sheng-Long

    2015-03-10

    To assess whether urea-based cream (UBC) has prophylactic benefits on sorafenib-induced hand-foot skin reaction (HFSR) in patients with advanced hepatocellular carcinoma (HCC). In this randomized, open-label trial, 871 patients with advanced HCC throughout China were treated with 10% UBC three times per day plus best supportive care (BSC; n = 439) or BSC alone excluding all creams (n = 432), starting on day 1 of sorafenib treatment, for up to 12 weeks. HFSR was assessed every 2 weeks and at 14 weeks for patients completing the study. Once HFSR occurred, patients were allowed any cream, including a UBC. The 12-week incidence of any grade HFSR was significantly lower in the UBC group versus the BSC-alone group (56.0% v 73.6%, respectively; odds ratio [OR], 0.457; 95% CI, 0.344 to 0.608; P < .001), as was the incidence of grade ≥ 2 HFSR (20.7% v 29.2%, respectively; OR, 0.635; 95% CI, 0.466 to 0.866; P = .004). Median time to first occurrence of HFSR was significantly longer in the UBC group than the BSC-alone group (84 v 34 days, respectively; hazard ratio, 0.658; 95% CI, 0.541 to 0.799; P < .001). Elevated AST was associated with increased risk of HFSR but did not alter the treatment effect of UBC. UBC plus BSC, compared with BSC alone, did not affect the sorafenib dose reduction or interruption rate (9.1% v 11.8%, respectively; P = .1937), response rate (11.1% v 10.1%, respectively; P = .6674), or disease control rate (98.8% v 98.2%, respectively; P = .5350) at week 12. UBC prophylaxis in patients with advanced HCC starting sorafenib reduced HFSR rates, extended the time to first occurrence of HFSR, and improved patient quality of life compared with BSC. Blinded, randomized, placebo-controlled trials to determine the role of UBC on the incidence and severity of HFSR are warranted. © 2015 by American Society of Clinical Oncology.

  11. N-butanol extracts of Morinda citrifolia suppress advanced glycation end products (AGE)-induced inflammatory reactions in endothelial cells through its anti-oxidative properties.

    PubMed

    Ishibashi, Yuji; Matsui, Takanori; Isami, Fumiyuki; Abe, Yumi; Sakaguchi, Tatsuya; Higashimoto, Yuichiro; Yamagishi, Sho-Ichi

    2017-03-04

    Advanced glycation end products (AGEs), senescent macroprotein derivatives formed during a normal aging process and acceleratedly under diabetic conditions, play a role in atherosclerotic cardiovascular disease. AGEs cause endothelial cell (EC) damage, an initial trigger for atherosclerosis through the interaction with a receptor for AGEs (RAGE). We have previously shown that n-butanol extracts of Morinda citrifolia (noni), a plant belonging to the family Rubiaceae, block the binding of AGEs to RAGE in vitro. In this study, we examined the effects of n-butanol extracts of noni on reactive oxygen species (ROS) generation and inflammatory reactions on AGE-exposed human umbilical vein ECs (HUVECs). HUVECs were treated with 100 μg/ml AGE-bovine serum albumin (AGE-BSA) or non-glycated BSA in the presence or absence of 670 ng/ml n-butanol extracts of noni for 4 h. Then ROS generation and inflammatory and gene expression in HUVECs were evaluated by dihydroethidium staining and real-time reverse transcription-polymerase chain reaction analyses, respectively. THP-1 cell adhesion to HUVECs was measured after 2-day incubation of AGE-BSA or BSA in the presence or absence of 670 ng/ml n-butanol extracts of noni. N-butanol extracts of noni at 670 ng/ml significantly inhibited the AGE-induced ROS generation and RAGE, intercellular adhesion molecule-1 and plasminogen activator inhibitor-1 gene expressions in HUVECs. AGEs significantly increased monocytic THP-1 cell adhesion to HUVECs, which was also prevented by 670 ng/ml n-butanol extracts of noni. The present study demonstrated for the first time that N-butanol extracts of noni could suppress the AGE-induced inflammatory reactions in HUVECs through its anti-oxidative properties via blocking of the interaction of AGEs with RAGE. Inhibition of the AGE-RAGE axis by n-butanol extracts of noni may be a novel nutraceutical strategy for the treatment of cardiovascular disease.

  12. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.

    PubMed

    Chen, Hengye; Virk, Muhammad Safiullah; Chen, Fusheng

    2016-06-01

    The concentration of advanced glycation end products (AGEs) in foods, which are formed by Maillard reaction, has demonstrated as risk factors associated with many chronic diseases. The AGEs inhibitory activities of five common phenolic acids (protocatechuic acid, dihydroferulic acid, p-coumaric acid, p-hydroxybenzoic acid and salicylic acid) with different chemical properties had been investigated in two food simulation systems (glucose-bovine serum albumin (BSA) and oleic acid-BSA). The results substantiated that the AGEs inhibitory abilities of phenolic acids in the oleic acid BSA system were much better than the glucose-BSA system for their strong reducing powers and structures. Among them, dihydrogenferulic acid showed strong inhibition of AGEs formation in oleic acid-BSA system at 0.01 mg/mL compared to nonsignificant AGEs inhibitory effect in oleic acid-BSA system at 10-fold higher concentration (0.1 mg/mL). This study suggests that edible plants rich in phenolic acids may be used as AGEs inhibitor during high-fat cooking.

  13. Impact of hand-foot skin reaction on treatment outcome in patients receiving capecitabine plus erlotinib for advanced pancreatic cancer: a subgroup analysis from AIO-PK0104.

    PubMed

    Kruger, Stephan; Boeck, Stefan; Heinemann, Volker; Laubender, Ruediger P; Vehling-Kaiser, Ursula; Waldschmidt, Dirk; Kettner, Erika; Märten, Angela; Winkelmann, Cornelia; Klein, Stefan; Kojouharoff, Georgi; Gauler, Thomas C; Fischer von Weikersthal, Ludwig; Clemens, Michael R; Geissler, Michael; Greten, Tim F; Hegewisch-Becker, Susanna; Modest, Dominik P; Stintzing, Sebastian; Haas, Michael

    2015-07-01

    Drug-induced skin toxicity may correlate with treatment efficacy in cancer patients receiving chemotherapy or biological agents. The correlation of the capecitabine-associated hand-foot skin reaction (HFS) on outcome parameters in pancreatic cancer (PC) has not yet been investigated. Within the multicentre phase III AIO-PK0104 trial, patients with confirmed advanced PC were randomly assigned to first-line treatment with either capecitabine plus erlotinib (150 mg/day, arm A) or gemcitabine plus erlotinib (150 mg/day, arm B). A cross-over to either gemcitabine (arm A) or capecitabine (arm B) was performed after failure of the first-line regimen. Data on skin toxicity were correlated with efficacy study endpoints using uni- and multivariate analyses. To control for guarantee-time bias (GTB), we focused on subgroup analyses of patients who had completed two and three or more treatment cycles. Of 281 randomised patients, skin toxicity data were available for 255 patients. Median time to capecitabine-attributed HFS was two cycles, 36 of 47 (77%) HFS events had been observed by the end of treatment cycle three. Considering HFS during first-line treatment in 101 patients treated with capecitabine for at least two cycles within the capecitabine plus erlotinib arm, time to treatment failure after first- and second-line therapy (TTF2) and overall survival (OS) both were significantly prolonged for the 44 patients (44%) with HFS compared to 57 patients without HFS (56%) (TTF2: 7.8 vs. 3.8 months, HR 0.50, p = 0.001; OS: 10.4 vs. 5.9 months, HR 0.55, p = 0.005). A subgroup analysis of 70 patients on treatment with capecitabine for at least three cycles showed similar results (TTF2: 8.3 vs. 4.4 months, HR 0.53, p = 0.010; OS: 10.4 vs. 6.7 months, HR 0.62, p = 0.056). The present subgroup analysis from AIO-PK0104 suggests that HFS may serve as an independent clinical predictor for treatment outcome in capecitabine-treated patients with advanced PC.

  14. Effect of Maillard reacted peptides on human salt taste and the amiloride-insensitive salt taste receptor (TRPV1t).

    PubMed

    Katsumata, Tadayoshi; Nakakuki, Hiroko; Tokunaga, Chikara; Fujii, Noboru; Egi, Makoto; Phan, Tam-Hao T; Mummalaneni, Shobha; DeSimone, John A; Lyall, Vijay

    2008-09-01

    Maillard reacted peptides (MRPs) were synthesized by conjugating a peptide fraction (1000-5000 Da) purified from soy protein hydrolyzate with galacturonic acid, glucosamine, xylose, fructose, or glucose. The effect of MRPs was investigated on human salt taste and on the chorda tympani (CT) taste nerve responses to NaCl in Sprague-Dawley rats, wild-type, and transient receptor potential vanilloid 1 (TRPV1) knockout mice. MRPs produced a biphasic effect on human salt taste perception and on the CT responses in rats and wild-type mice in the presence of NaCl + benzamil (Bz, a blocker of epithelial Na+ channels), enhancing the NaCl response at low concentrations and suppressing it at high concentrations. The effectiveness of MRPs as salt taste enhancers varied with the conjugated sugar moiety: galacturonic acid = glucosamine > xylose > fructose > glucose. The concentrations at which MRPs enhanced human salt taste were significantly lower than the concentrations of MRPs that produced increase in the NaCl CT response. Elevated temperature, resiniferatoxin, capsaicin, and ethanol produced additive effects on the NaCl CT responses in the presence of MRPs. Elevated temperature and ethanol also enhanced human salt taste perception. N-(3-methoxyphenyl)-4-chlorocinnamid (a blocker of TRPV1t) inhibited the Bz-insensitive NaCl CT responses in the absence and presence of MRPs. TRPV1 knockout mice demonstrated no Bz-insensitive NaCl CT response in the absence or presence of MRPs. The results suggest that MRPs modulate human salt taste and the NaCl + Bz CT responses by interacting with TRPV1t.

  15. Fabricating Pt/Sn-In2O3 Nanoflower with Advanced Oxygen Reduction Reaction Performance for High-Sensitivity MicroRNA Electrochemical Detection.

    PubMed

    Zhang, Kai; Dong, Haifeng; Dai, Wenhao; Meng, Xiangdan; Lu, Huiting; Wu, Tingting; Zhang, Xueji

    2017-01-03

    Herein, an efficient electrochemical tracer with advanced oxygen reduction reaction (ORR) performance was designed by controllably decorating platinum (Pt) (diameter, 1 nm) on the surface of compositionally tunable tin-doped indium oxide nanoparticle (Sn-In2O3) (diameter, 25 nm), and using the Pt/Sn-In2O3 as electrochemical tracer and interfacial term hairpin capture probe, a facile and ultrasensitive microRNA (miRNA) detection strategy was developed. The morphology and composition of the generated Pt/Sn-In2O3 NPs were comprehensively characterized by spectroscopic and microscopic measurements, indicating numerous Pt uniformly anchored on the surface of Sn-In2O3. The interaction between Pt and surface Sn as well as high Pt(111) exposure resulted in the excellent electrochemical catalytic ability and stability of the Pt/Sn-In2O3 ORR. As proof-of-principle, using streptavidin (SA) functionalized Pt/Sn-In2O3 (SA/Pt/Sn-In2O3) as electrochemical tracer to amplify the detectable signal and a interfacial term hairpin probe for target capture probe, a miRNA biosensor with a linear range from 5 pM to 0.5 fM and limit of detection (LOD) down to 1.92 fM was developed. Meanwhile, the inherent selectivity of the term hairpin capture probe endowed the biosensor with good base discrimination ability. The good feasibility for real sample detection was also demonstrated. The work paves a new avenue to fabricate and design high-effective electrocatalytic tracer, which have great promise in new bioanalytical applications.

  16. Darkening mechanism and kinetics of humification process in catechol-Maillard system.

    PubMed

    Zhang, Yingchao; Yue, Dongbei; Ma, Hong

    2015-07-01

    Humic acids, products of humification process, are capable of interacting with contaminants and can be applied to environmental remediation. Browning mechanisms of humification is critical to understand and further control the process. This study aimed to investigate the mechanism of abiotic humification by tracking the fate of the precursors in systems containing glucose, glycine, and various CT concentrations, which were promoted by MnO2. Results show that the N-containing organic molecules significantly contributed in controlling the darkening effect. Increasing CT promoted the formation of Fulvic-like acids (FLAs) and Humic-like acids (HLAs). The entire reaction could be divided into two steps following pseudo-second-order kinetics equation and pseudo-zero-order kinetics equation. Moreover, increasing CT contributed to the increase of the degree of unsaturation in HLAs.

  17. Aerosol-Forming Reactions of Glyoxal, Methylglyoxal and Amino Acids in Clouds

    NASA Astrophysics Data System (ADS)

    de Haan, D. O.; Smith, K. W.; Stroik, D. R.; Corrigan, A. L.; Lee, F. E.; Phan, J. T.; Conley, A. C.

    2008-12-01

    Glyoxal and methylglyoxal are two common aldehydes present in fog and cloud water. Amino acids are present in clouds at similar concentrations. Here we present bulk and aerosol mass spectroscopic data demonstrating that irreversible reactions between glyoxal and amino acids, triggered by droplet evaporation, produce N-derivatized imidazole compounds along with deeply colored Maillard reaction products. These reactions can occur in the dark and in the absence of oxidants. Reactions between methylglyoxal and amino acids produce analogous methylated products plus oligomers with masses up to m/z = 1000. These reactions, which go to completion on the 10-min-timescale of cloud processing, could be significant sources of secondary organic aerosol and humic-like substances (HULIS or brown carbon).

  18. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism.

    PubMed

    Gomathi Devi, L; Girish Kumar, S; Mohan Reddy, K; Munikrishnappa, C

    2009-05-30

    Advanced Fenton process (AFP) using zero valent metallic iron (ZVMI) is studied as a potential technique to degrade the azo dye in the aqueous medium. The influence of various reaction parameters like effect of iron dosage, concentration of H(2)O(2)/ammonium per sulfate (APS), initial dye concentration, effect of pH and the influence of radical scavenger are studied and optimum conditions are reported. The degradation rate decreased at higher iron dosages and also at higher oxidant concentrations due to the surface precipitation which deactivates the iron surface. The rate constant for the processes Fe(0)/UV and Fe(0)/APS/UV is twice compared to their respective Fe(0)/dark and Fe(0)/APS/dark processes. The rate constant for Fe(0)/H(2)O(2)/UV process is four times higher than Fe(0)/H(2)O(2)/dark process. The increase in the efficiency of Fe(0)/UV process is attributed to the cleavage of stable iron complexes which produces Fe(2+) ions that participates in cyclic Fenton mechanism for the generation of hydroxyl radicals. The increase in the efficiency of Fe(0)/APS/UV or H(2)O(2) compared to dark process is due to continuous generation of hydroxyl radicals and also due to the frequent photo reduction of Fe(3+) ions to Fe(2+) ions. Though H(2)O(2) is a better oxidant than APS in all respects, but it is more susceptible to deactivation by hydroxyl radical scavengers. The decrease in the rate constant in the presence of hydroxyl radical scavenger is more for H(2)O(2) than APS. Iron powder retains its recycling efficiency better in the presence of H(2)O(2) than APS. The decrease in the degradation rate in the presence of APS as an oxidant is due to the fact that generation of free radicals on iron surface is slower compared to H(2)O(2). Also, the excess acidity provided by APS retards the degradation rate as excess H(+) ions acts as hydroxyl radical scavenger. The degradation of Methyl Orange (MO) using Fe(0) is an acid driven process shows higher efficiency at pH 3. The

  19. Advances in Stereoconvergent Catalysis from 2005 to 2015: Transition-Metal-Mediated Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations.

    PubMed

    Bhat, Vikram; Welin, Eric R; Guo, Xuelei; Stoltz, Brian M

    2017-03-08

    Stereoconvergent catalysis is an important subset of asymmetric synthesis that encompasses stereoablative transformations, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Initially, only enzymes were known to catalyze dynamic kinetic processes, but recently various synthetic catalysts have been developed. This Review summarizes major advances in nonenzymatic, transition-metal-promoted dynamic asymmetric transformations reported between 2005 and 2015.

  20. Advanced Energetic Materials for Agent Defeat: Impact-Driven Reactions in Biocidal Reactive Materials for Weapons of Mass Destruction (WMD) Applications

    DTIC Science & Technology

    2009-09-01

    the control oxidizer is iron oxide (Fe2O3). Each oxidizer was mixed with nano aluminum. The bacterial substitute used is Bacillus atrophaeus , which is...burn experiments. Bacillus subtilis spores in known quantities were exposed to reaction products under various conditions and for various lengths of

  1. Synthesis of a Self-Healing Polymer Based on Reversible Diels-Alder Reaction: An Advanced Undergraduate Laboratory at the Interface of Organic Chemistry and Materials Science

    ERIC Educational Resources Information Center

    Weizman, Haim; Nielsen, Christian; Weizman, Or S.; Nemat-Nasser, Sia

    2011-01-01

    This laboratory experiment exposes students to the chemistry of self-healing polymers based on a Diels-Alder reaction. Students accomplish a multistep synthesis of a monomer building block and then polymerize it to form a cross-linked polymer. The healing capability of the polymer is verified by differential scanning calorimetry (DSC) experiments.…

  2. Synthesis of a Self-Healing Polymer Based on Reversible Diels-Alder Reaction: An Advanced Undergraduate Laboratory at the Interface of Organic Chemistry and Materials Science

    ERIC Educational Resources Information Center

    Weizman, Haim; Nielsen, Christian; Weizman, Or S.; Nemat-Nasser, Sia

    2011-01-01

    This laboratory experiment exposes students to the chemistry of self-healing polymers based on a Diels-Alder reaction. Students accomplish a multistep synthesis of a monomer building block and then polymerize it to form a cross-linked polymer. The healing capability of the polymer is verified by differential scanning calorimetry (DSC) experiments.…

  3. Synthesis, analysis and mutagenic activity of N-nitroso derivatives of glycosylamines and Amadori compounds: nitrosated model substances for the early Maillard reaction products.

    PubMed

    Pignatelli, B; Malaveille, C; Friesen, M; Hautefeuille, A; Bartsch, H; Piskorska, D; Descotes, G

    1987-01-01

    A series of nine glycosylamines and an Amadori compound and their N-nitroso derivatives were synthesized. The structures were ascertained by spectroscopy and elemental analysis. The N-nitroso compounds were further characterized by denitrosation with hydrogen bromide-acetic acid, followed by detection of the liberated NO by a chemiluminescence detector. N-Nitroso derivatives of N-p-nitrophenyl/p-methylphenyl/p-carboxyphenyl pentosylamines, N-p-methylphenyl-1-deoxy-D-fructosylamine (Amadori compound) and N-3-ethylindole-D-xylosylamine were shown to be directly-acting mutagens in Salmonella typhimurium TA100. The activity of some of the compounds was similar to that of N-ethyl-N-nitrosourea. Their mutagenic activity was shown to be dependent on the structure of the amine and the sugar moieties and requires the presence of free hydroxyl groups in the sugar. The mutagenicity of N-nitrosoglycosylamines was attributed to their hydrolysis to arene diazonium cations. Their formation was detected via azo-coupling with N-ethyl-1-naphthylamine, using spectrophotometric and mass-spectrometric analyses. Our data implicate arene (alkyl) diazonium cations as the ultimate mutagens of N-nitrosoglycosylamines and N-nitroso Amadori compounds, a little explored class of N-nitroso compounds which may be formed in vivo.

  4. Alternative GC-MS approaches in the analysis of substituted pyrazines and other volatile aromatic compounds formed during Maillard reaction in potato chips.

    PubMed

    Lojzova, Lenka; Riddellova, Katerina; Hajslova, Jana; Zrostlikova, Jitka; Schurek, Jakub; Cajka, Tomas

    2009-05-08

    Several methods have been developed for the analysis of substituted pyrazines and related substances in potato chips. Following separation/detection approaches (all employing head-space solid phase microextraction, HS-SPME, for volatiles sampling), have been critically assessed in our study: (i) gas chromatography-ion trap mass spectrometry (GC-ITMS), (ii) gas chromatography-time-of-flight mass spectrometry (GC-TOFMS); (iii) comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-TOFMS). Although in none of the tested systems full chromatographic resolution of some isomeric pairs could be achieved, the use of GC x GC-TOFMS offered the best solution, mainly because of distinctly lower limits of quantification (LOQs) for all of 13 target alkylpyrazines. In addition to good performance characteristics, a non-target screening and tentative identification of altogether 46 N-containing heterocyclic compounds (pyrazines, pyrrols, pyridines, pyrrolidinones, and tetrahydropyridines) was also enabled.

  5. Phenolic compounds reduce formation of N(ε)-(carboxymethyl)lysine and pyrazines formed by Maillard reactions in a model bread system.

    PubMed

    Mildner-Szkudlarz, Sylwia; Siger, Aleksander; Szwengiel, Artur; Przygoński, Krzysztof; Wojtowicz, Elżbieta; Zawirska-Wojtasiak, Renata

    2017-09-15

    This study had the objective of determining the antiglycation activity of phenolic compounds (PCs) ((+)-catechin, quercetin, gallic, ferulic, and caffeic acids) added to a model bread with regards to the inhibition of N(ε)-(carboxymethyl)lysine (CML) formation. PCs were found to significantly reduce CML (31.77%-87.56%), even at the lowest concentration, with the exception of ferulic acid (FA). The strongest inhibitory effect of FA (∼62%) appeared when concentration was increased to 1.0g/100g of flour. The available lysine losses (0.00%-90.51%) showed a significant correlation (0.853-0.990) with effectiveness of CML inhibition, except in the case of samples with FA. (+)-Catechin reduced CML levels the most, probably due to its structure-antioxidant activity relationship, its thermal stability (∼51% loss), and its reactivity with ε-lysine side chains (∼40.77% loss). Although the bread supplemented with PCs contained low levels of CML, this process may adversely affect bread flavor, reducing the formation of pyrazines (1.10%-80.77%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Tumor promotion of N-nitroso-N-(3-keto-1, 2-butanediol)-3'-nitrotyramine derived from nitrosation of Maillard reaction product in CD-1 mice.

    PubMed

    Chang, W C; Chen, C C; Tseng, T H; Huang, H P; Hsu, J D; Wang, C J

    2000-07-01

    N-Nitroso-N-(3-keto-1,2-butanediol)-3'-nitrotyramine (NO-NTA) is a product of a model browning system generated in the presence of sodium nitrite. Our previous study showed that NO-NTA had genotoxicity and proved to be an initiator and promoter on mouse C3H10T1/2 cells. In this study, a two-stage skin carcinogenesis protocol was used to promote CD-1 mouse skin carcinogenesis using NO-NTA. Twice weekly, for 38 weeks, topical application of NO-NTA at the concentration of 250 nmol to mice previously initiated with benzo(a)pyrene (BaP) caused 90% tumor incidence. However, no tumors were observed in mice treated with BaP or treated with NO-NTA alone. The NO-NTA-promoted tumors that were observed histologically in mice showed well-differentiated squamous cell carcinoma with invasion into the subcutaneous region. Application of the same amount of NO-NTA not only caused significant induction of hyperplasia but also epidermal ornithine decarboxylase (ODC) activity. Treatment of mouse skin (1 cm(2)) with various amounts of NO-NTA (10, 50, or 250 nmol) caused production of hydrogen peroxide by 1.63-, 1.91-, and 2. 38-fold, respectively, and marked induction of myeloperoxidase (MPO) by 21-, 39-, and 61-fold. These results indicate that NO-NTA is a new tumor promoter and may induce tumor promotion by oxidant stress in CD-1 mouse skin. Copyright 2000 Academic Press.

  7. Developing a musculoskeletal model of the primate skull: predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods.

    PubMed

    Shi, Junfen; Curtis, Neil; Fitton, Laura C; O'Higgins, Paul; Fagan, Michael J

    2012-10-07

    An accurate, dynamic, functional model of the skull that can be used to predict muscle forces, bite forces, and joint reaction forces would have many uses across a broad range of disciplines. One major issue however with musculoskeletal analyses is that of muscle activation pattern indeterminacy. A very large number of possible muscle force combinations will satisfy a particular functional task. This makes predicting physiological muscle recruitment patterns difficult. Here we describe in detail the process of development of a complex multibody computer model of a primate skull (Macaca fascicularis), that aims to predict muscle recruitment patterns during biting. Using optimisation criteria based on minimisation of muscle stress we predict working to balancing side muscle force ratios, peak bite forces, and joint reaction forces during unilateral biting. Validation of such models is problematic; however we have shown comparable working to balancing muscle activity and TMJ reaction ratios during biting to those observed in vivo and that peak predicted bite forces compare well to published experimental data. To our knowledge the complexity of the musculoskeletal model is greater than any previously reported for a primate. This complexity, when compared to more simple representations provides more nuanced insights into the functioning of masticatory muscles. Thus, we have shown muscle activity to vary throughout individual muscle groups, which enables them to function optimally during specific masticatory tasks. This model will be utilised in future studies into the functioning of the masticatory apparatus.

  8. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    SciTech Connect

    Xu, Ling; Wang, Chunhua; Guan, Jingqi

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.

  9. Advances in the Nazarov cyclization.

    PubMed

    Nakanishi, Waka; West, Frederick G

    2009-11-01

    Advances in synthetic methodology using the Nazarov reaction, particularly those published since 2005, are reviewed. Three principal subtopics are considered: stereocontrol (both relative and absolute), domino or cascade reactions initiated by the Nazarov cyclization (the 'interrupted Nazarov reaction'), and alternative substrates (including versions of the 'metallo-Nazarov' reaction).

  10. Pd0-mediated rapid cross-coupling reactions, the rapid C-[11C]methylations, revolutionarily advancing the syntheses of short-lived PET molecular probes.

    PubMed

    Suzuki, Masaaki; Doi, Hisashi; Koyama, Hiroko; Zhang, Zhouen; Hosoya, Takamitsu; Onoe, Hirotaka; Watanabe, Yasuyoshi

    2014-06-01

    Positron emission tomography is a noninvasive method for monitoring drug (or diagnostic) behavior and its localization on the target molecules in the living systems, including the human body, using a short-lived positron-emitting radionuclide. New methodologies for introducing representative short-lived radionuclides, (11)C and (18)F, into the carbon frameworks of biologically active organic compounds have been established by developing rapid C-[(11)C]methylations and C-[(18)F]fluoromethylations using rapid Pd(0)-mediated cross-coupling reactions between [(11)C]methyl iodide (sp(3)-hybridized carbon) and an excess amount of organotributylstannane or organoboronic acid ester having sp(2) (phenyl, heteroaromatic, or alkenyl), sp(alkynyl), or sp(3) (benzyl and cinnamyl)-hybridized carbons; and [(18)F]fluoromethyl halide (iodide or bromide) and an organoboronic acid ester, respectively. These rapid reactions provide a firm foundation for an efficient and general synthesis of short-lived (11)C- or (18)F-labeled PET molecular probes to promote in vivo molecular imaging studies. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Glycosylation of aromatic amines I: Characterization of reaction products and kinetic scheme.

    PubMed

    Gokhale, Madhushree Y; Kearney, William R; Kirsch, Lee E

    2009-01-01

    The reactions of aliphatic and aromatic amines with reducing sugars are important in both drug stability and synthesis. The formation of glycosylamines in solution, the first step in the Maillard reaction, does not typically cause browning but results in decreased potency and is hence significant from the aspect of drug instability. The purpose of this research was to present (1) unreported ionic equilibria of model reactant (kynurenine), (2) the analytical methods used to characterize and measure reaction products, (3) the kinetic scheme used to measure reaction rates and (4) relevant properties of various reducing sugars that impact the reaction rate in solution. The methods used to identify the reversible formation of two products from the reaction of kynurenine and monosaccharides included LC mass spectrometry, UV spectroscopy, and 1-D and 2-D (1)H-(1)H COSY NMR spectroscopy. Kinetics was studied using a stability-indicating HPLC method. The results indicated the formation of alpha and beta glycosylamines by a pseudo first-order reversible reaction scheme in the pH range of 1-6. The forward reaction was a function of initial glucose concentration but not the reverse reaction. It was concluded that the reaction kinetics and equilibrium concentrations of the glycosylamines were pH-dependent and also a function of the acyclic content of the reacting glucose isomer.

  12. Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.

    2011-01-01

    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.

  13. Detection of noncarboxymethyllysine and carboxymethyllysine advanced glycation end products (AGE) in serum of diabetic patients.

    PubMed Central

    Takeuchi, M.; Makita, Z.; Yanagisawa, K.; Kameda, Y.; Koike, T.

    1999-01-01

    BACKGROUND: The advanced stage of the Maillard reaction, which leads to the formation of advanced glycation end products (AGE), plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. N(epsilon)-(carboxymethyl)lysine (CML) is thought to be an important epitope for many of currently available AGE antibodies. However, recent findings have indicated that a major source of CML may be by pathways other than glycation. A distinction between CML and non-CML AGE may increase our understanding of AGE formation in vivo. In the present study, we prepared antibodies directed against CML and non-CML AGE. MATERIALS AND METHODS: AGE-rabbit serum albumin prepared by 4, 8, and 12 weeks of incubation with glucose was used to immunize rabbits, and a high-titer AGE-specific antiserum was obtained without affinity for the carrier protein. To separate CML and non-CML AGE antibodies, the anti-AGE antiserum was subjected to affinity chromatography on a column coupled with AGE-BSA and CML-BSA. Two different antibodies were obtained, one reacting specifically with CML and the other reacting with non-CML AGE. Circulating levels of CML and non-CML AGE were measured in 66 type 2 diabetic patients without uremia by means of the competitive ELISA. Size distribution and clearance by hemodialysis detected by non-CML AGE and CML were assessed in serum from diabetic patients on hemodialysis. RESULTS: The serum non-CML AGE level in type 2 diabetic patients was significantly correlated with the mean fasting blood glucose level over the previous 2 months (r = 0.498, p < 0.0001) or the previous 1 month (r = 0.446, p = 0. 0002) and with HbA(1c) (r = 0.375, p = 0.0019), but the CML AGE level was not correlated with these clinical parameters. The CML and non-CML AGE were detected as four peaks with apparent molecular weights of 200, 65, 1.15, and 0.85 kD. The hemodialysis treatment did not affect the high-molecular-weight protein fractions. Although the low

  14. Cartoons as Advance Organizers

    ERIC Educational Resources Information Center

    Kovalik, Cindy L.; Williams, Matthew A.

    2011-01-01

    This exploratory study investigated student reaction to the use of cartoons as advance organizers for online discussions in an online course. A convenience sample of 15 students participated in the study by contributing cartoons, participating in online discussions, and completing a survey. Overall, survey results indicated student reaction to the…

  15. Role of oxygen radical reactions in the browning and cross-linking of lysozyme by glucose

    SciTech Connect

    Hull, C.J.; Thorpe, S.R.; Baynes, J.W.

    1986-05-01

    Lysozyme (LZM) was used as a model protein for studies on the effects of oxygen on the Maillard reaction. During a 4 wk incubation in 0.25 M glucose (0.2 M phosphate buffer, pH 7.4, 37/sup 0/C) the kinetics of glycation of LZM were similar under air and N/sub 2/, yielding approx.2 mol Lys modified per mol LZM. Fructoselysine (FL) was the major Lys derivative formed under air and N/sub 2/, while N/sup epsilon/-carboxymethyllysine (CML) accounted for approx.30% of FL formed at 4 wk under air. A loss of 1 mol Arg per mol LZM was also observed under both air and N/sub 2/, with greater loss from LZM dimer vs. monomer, suggesting a role for Arg in the crosslinking reaction. Dimer and monomer did not differ in content of Lys, FL or CML (under air), but dimer was 4 times as fluorescent as monomer, suggesting that crosslink structures are fluorescent. Despite significant differences in kinetics of crosslinking, browning and development of fluorescence of LZM under air vs. N/sub 2/, products formed had similar absorbance and fluorescence spectra. Based on inhibition by chelators and radical scavengers, the more rapid crosslinking and development of fluorescence under air was shown to result from oxygen radical reactions. These results indicate that both radical and non-radical processes may contribute to the Maillard reaction, but that the browning, fluorescence and crosslinking of protein may proceed in the absence of oxygen and oxygen radicals.

  16. One-Step Growth of Iron-Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction.

    PubMed

    Qazi, Umair Yaqub; Yuan, Cheng-Zong; Ullah, Naseeb; Jiang, Yi-Fan; Imran, Muhammad; Zeb, Akif; Zhao, Sheng-Jie; Javaid, Rahat; Xu, An-Wu

    2017-08-30

    Electrochemical water splitting is an important process to produce hydrogen and oxygen for energy storage and conversion devices. However, it is often restricted by the oxygen evolution reaction (OER) due to its sluggish kinetics. To overcome the problem, precious metal oxide-based electrocatalysts, such as RuO2 and IrO2, are widely used. The lack of availability and the high cost of precious metals compel researchers to find other resources for the development of cost-effective, environmentally friendly, earth-abundant, nonprecious electrocatalysts for OER. Such catalysts should have high OER performance and good stability in comparison to those of available commercial precious metal-based electrocatalysts. Herein, we report an inexpensive fabrication of bimetallic iron-nickel nanoparticles on FeNi-foil (FeNi4.34@FeNi-foil) as an integrated OER electrode using a one-step calcination process. FeNi4.34@FeNi-foil obtained at 900 °C shows superior OER activity in alkaline solution with an overpotential as low as 283 mV to achieve a current density of 10 mA cm(-2) and a small Tafel slope of 53 mV dec(-1). The high performance and durability of the as-prepared nonprecious metal electrode even exceeds those of the available commercial RuO2 and IrO2 catalysts, showing great potential in replacing the expensive noble metal-based electrocatalysts for OER.

  17. Designed synthesis of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Li, Feng; Li, Jing; Lin, Xiaoqing; Li, Xinzhe; Fang, Yiyun; Jiao, Lixin; An, Xincai; Fu, Yan; Jin, Jun; Li, Rong

    2015-12-01

    Design and synthesis of non-precious-metal catalyst for efficient electrochemical transformation of water to molecular hydrogen in acid environments is of paramount importance in reducing energy losses during the water splitting process. Here, the hybrid material of MoS2-coated Cu loaded on the multi-walled carbon nanotubes (MWCNTs@Cu@MoS2) was synthesized using chemical process and hydrothermal method. It was found that the participation of MWCNTs and Cu nanoparticles not only improved the electrical conductivity of the catalyst, but also further enhanced the catalytic activity by synergistic effect with edge-exposed MoS2-coating. Electrochemical experiments demonstrated that the catalyst exhibited excellent hydrogen evolution reaction (HER) activity with large cathode currents (small overpotential of 184 mV for 10 mA cm-2 current density) and a Tafel slope as small as 62 mV per decade. Furthermore, it was discovered that the current density of this composite catalyst had a little decrease after the continual 1000 cycling, which showed the catalyst had a high stability in the recycling process. These findings confirmed that this catalyst was a useful and earth-abundant material for water splitting.

  18. Facile synthesis of N-rich carbon quantum dots by spontaneous polymerization and incision of solvents as efficient bioimaging probes and advanced electrocatalysts for oxygen reduction reaction.

    PubMed

    Lei, Zhouyue; Xu, Shengjie; Wan, Jiaxun; Wu, Peiyi

    2016-01-28

    In this study, uniform nitrogen-doped carbon quantum dots (N-CDs) were synthesized through a one-step solvothermal process of cyclic and nitrogen-rich solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethyl-imidazolidinone (DMEU), under mild conditions. The products exhibited strong light blue fluorescence, good cell permeability and low cytotoxicity. Moreover, after a facile post-thermal treatment, it developed a lotus seedpod surface-like structure of seed-like N-CDs decorating on the surface of carbon layers with a high proportion of quaternary nitrogen moieties that exhibited excellent electrocatalytic activity and long-term durability towards the oxygen reduction reaction (ORR). The peak potential was -160 mV, which was comparable to or even lower than commercial Pt/C catalysts. Therefore, this study provides an alternative facile approach to the synthesis of versatile carbon quantum dots (CDs) with widespread commercial application prospects, not only as bioimaging probes but also as promising electrocatalysts for the metal-free ORR.

  19. Polarized advanced fuel reactors

    SciTech Connect

    Kulsrud, R.M.

    1987-07-01

    The d-/sup 3/He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs.

  20. Fish in Vitro Digestion: Influence of Fish Salting on the Extent of Lipolysis, Oxidation, and Other Reactions.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2017-02-01

    A study of the various chemical reactions which take place during fish in vitro digestion and the potential effect of fish salting on their extent is addressed for the first time. Farmed European sea bass fillets, raw, brine-salted or dry-salted, were digested using a gastrointestinal in vitro model. Fish lipid extracts before and after digestion were analyzed by (1)H NMR, and the headspace composition of the digestates was investigated by SPME-GC/MS. During digestion, not only lipolysis, but also fish lipid oxidation took place. This latter was evidenced by the generation of conjugated dienes supported on chains having also hydroperoxy- and hydroxy-groups (primary oxidation compounds), by the increase of volatile secondary oxidation products, and by the decrease of the antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT). Likewise, esterification and Maillard-type reactions also occurred. Salting, and especially dry-salting, enhanced all these reactions, except for lipolysis, during digestion.

  1. The carbon (formerly dark) reactions of photosynthesis.

    PubMed

    Buchanan, Bob B

    2016-05-01

    In this brief account, I describe the background for dividing photosynthesis into "light" and "dark" reactions and show how this concept changed to "light" and "carbon" reactions as science in the field advanced.

  2. Formation pathways and opioid activity data for 3-hydroxypyridinium compounds derived from glucuronic acid and opioid peptides by Maillard processes.

    PubMed

    Horvat, Stefica; Roscić, Maja; Lemieux, Carole; Nguyen, Thi M-D; Schiller, Peter W

    2007-07-01

    The kinetics of formation and identity of the reaction products of the glucuronic acid with three representative opioid peptides were investigated in vitro. Peptides were conjugated with glucuronic acid either in solution or under dry-heating conditions. From the incubations performed in solution N-(1-deoxy-D-fructofuranos-1-yluronic acid)-peptide derivatives (Amadori compounds) were isolated, whereas from the dry-heated reactions products containing the 3-hydroxypyridinium moiety at the N-terminal of the peptide chain were obtained. Experiments performed under mild dry-heating conditions (40 degrees C) in model systems based on Leu-enkephalin and glucuronic acid, and in environment of either 40% or 75% relative humidity, revealed that the higher level of humidity promoted a process that enhanced 3-hydroxypyridinium compound generation. The mechanism of 3-hydroxypyridinium formation is discussed. In comparison with their respective parent peptides, the N-(1-deoxy-D-fructofuranosyl-uronic acid) derivatives of the opioid peptides showed three- to 11-fold lower mu- and delta-receptor-binding affinities and agonist potencies in the functional assays, likely as a consequence of the steric bulk introduced at the N-terminal amino group. The further decrease in opioid activity observed with the 3-hydroxypyridinium-containing peptides may be due to the lower pK(a) of the 3-hydroxypyridinium moiety and to delocalization of the positive charge in the pyridinium ring system.

  3. Drug Reactions

    MedlinePlus

    ... or diabetes. But medicines can also cause unwanted reactions. One problem is interactions, which may occur between ... more serious. Drug allergies are another type of reaction. They can be mild or life-threatening. Skin ...

  4. Use of the guanidination reaction for determining reactive lysine, bioavailable lysine and gut endogenous lysine.

    PubMed

    Rutherfurd, Shane M

    2015-09-01

    Determining the bioavailability of lysine in foods and feedstuffs is important since lysine is often the first limiting indispensable amino acid in diets for intensively farmed livestock (pigs and poultry) and also in many cereal-based diets consumed by humans. When foods or feedstuffs are heat processed, lysine can undergo Maillard reactions to produce nutritionally unavailable products. The guanidination reaction, the reaction of O-methylisourea with the side chain amino group of lysine that produces homoarginine, has been used to determine the unmodified lysine (reactive lysine) in processed foods and feedstuffs and also true ileal digestible reactive lysine (bioavailable lysine). The advantages of the guanidination method in comparison with other reactive lysine methods such as the fluorodinitrobenzene, trinitrobenzenesulphonic acid and dye-binding methods are that it is very specific for reactive lysine and also that the method is relatively straightforward to conduct. The specificity of the guanidination reaction for the lysine side chain amino group is particularly important, since ileal digesta will contain N-terminal groups in the form of free amino acids and peptides. The main disadvantage is that complete conversion of lysine to homoarginine is required, yet it is not straightforward to test for complete guanidination in processed foods and feedstuffs. Another disadvantage is that the guanidination reaction conditions may vary for different food types and sometimes within the same food type. Consequently, food-specific guanidination reaction conditions may be required and more work is needed to optimise the reaction conditions across different foods and feedstuffs.

  5. Formation of Peptide Bound Pyrraline in the Maillard Model Systems with Different Lys-Containing Dipeptides and Tripeptides.

    PubMed

    Liang, Zhili; Li, Lin; Qi, Haiping; Wan, Liting; Cai, Panfu; Xu, Zhenbo; Li, Bing

    2016-04-07

    Peptide-bound advanced glycation end-products (peptide-bound AGEs) can be formed when peptides are heated with reducing saccharides. Pyrraline is the one of most commonly studied AGEs in foods, but the relative importance of the precursor peptide structure is uncertain. In the present study, model systems were prepared by heating peptides with glucose from 60 °C to 220 °C for up to 65 min, and the amounts of peptide-bound pyrraline formed were monitored to evaluate the effect of the neighboring amino acids on the peptide-bound pyrraline formation. The physico-chemical properties were introduced to explore the quantitative structure-reactivity relationships between physicochemical properties and peptide bound formation. 3-DG content in dipeptide-glucose model system was higher than that in the corresponding tripeptide-glucose model systems. Dipeptides produced higher amounts of peptide-bound pyrraline than the corresponding tripeptides. The peptide-bound pyrraline and 3-DG production were influenced by the physico-chemical properties of the side chain of amino acids adjacent to Lys in the following order: Lys-Leu/glucose > Lys-Ile/glucose > Lys-Val/ glucose > Lys-Thr/glucose > Lys-Ser/glucose > Lys-Ala/ glucose > Lys-Gly/glucose; Lys-Leu-Gly/glucose > Lys-Ile-Gly/glucose > Lys-Val-Gly/glucose > Lys-Thr-Gly/glucose > Lys-Ser-Gly/glucose > Lys-Ala-Gly/glucose > Lys-Gly-Gly/glucose. For the side chain of amino acids adjacent to Lys in dipeptides, residue volume, polarizability, molecular volume and localized electrical effect were positively related to the yield of peptide bound pyrraline, while hydrophobicity and pKb were negatively related to the yield of peptide bound pyrraline. In terms of side chain of amino acid adjacent to Lys in tripeptides, a similar result was observed, except hydrophobicity was positively related to the yield of peptide bound pyrraline.

  6. Synthesis, structure-activity relationships and a reaction mechanism for mutagenic N-nitroso derivatives of glycosylamines and Amadori compounds--model substances for N-nitrosated early Maillard reaction products.

    PubMed

    Pignatelli, B; Malaveille, C; Friesen, M; Hautefeuille, A; Bartsch, H; Piskorska, D; Descotes, G

    1987-09-01

    A series of nine glycosylamines and an Amadori compound were synthesized, together with their N-nitroso derivatives. Their structures were established by physico-chemical and spectroscopic data and elemental analyses. The N-nitroso compounds were further characterized by denitrosation with hydrogen bromide-acetic acid, followed by detection of the liberated NO by a chemiluminescence detector. N-Nitroso derivatives of N-p-nitrophenyl/p-methylphenyl/p-carboxyphenyl pentopyranosylamines, N-p-methylphenyl-1-deoxy-D-fructosylamine (the Amadori compound) and N-3-ethylindole-D-xylopyranosylamine were shown to be direct-acting mutagens in Salmonella typhimurium TA100. The activity of some of the compounds was similar to that of N-ethyl-N-nitrosourea. Their mutagenic activity was shown to depend on the structure of the amine and the sugar moieties and to require the presence of free hydroxyl groups in the sugar. The mutagenicity of N-nitrosoglycosylamines was attributed to their hydrolysis to arenediazonium cations. The formation of these compounds was detected by azo-coupling with N-ethyl-1-naphthylamine, using spectrophotometric and mass spectrometric analyses. These data implicate arene(alkyl)diazonium cations as the ultimate mutagens of N-nitrosoglycosylamines (and possibly of N-nitroso Amadori compounds), a little-explored class of N-nitroso compounds that may be formed in vivo.

  7. Advanced fuel chemistry for advanced engines.

    SciTech Connect

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  8. Two types of radicals in whole milk powder. Effect of lactose crystallization, lipid oxidation, and browning reactions.

    PubMed

    Thomsen, Marianne K; Lauridsen, Lene; Skibsted, Leif H; Risbo, Jens

    2005-03-09

    Whole milk powder was stored in closed vials at 60 degrees C to induce crystallization of lactose within a short time scale. After an induction period of 3-4 days simultaneous crystallization of lactose, increase of water activity, formation of browning products, and increase of radical content took place. Radicals detected before lactose crystallization were characterized by a narrow ESR spectrum (g = 2.006) and could be depleted by removal of oxygen and therefore were assigned to oxidation processes. Late-stage radicals present after crystallization of lactose gave much wider spectra (g = 2.0048) and were independent of oxygen availability and assigned to late-stage Maillard reaction products. The study indicates that the processes of lactose crystallization, browning, and formation of radical species (g = 2.0048) are strongly coupled, while lipid oxidation is less dependent on the other processes.

  9. Modification of amino acid residues in carious dentin matrix.

    PubMed

    Kleter, G A; Damen, J J; Buijs, M J; Ten Cate, J M

    1998-03-01

    The Maillard reaction between sugar and protein has been postulated as the cause for the browning and arrestment of caries lesions. This reaction has been implicated as the cause for decreased degradability of collagen in vivo. The aim of the present study was to verify the occurrence of the reaction in vivo. Carious and sound dentin samples were taken from extracted human teeth and analyzed for the fluorescence characteristic of the Maillard reaction and oxidation and, by HPLC, for Maillard products. In addition, physiological cross-links were analyzed by HPLC. Oxidation- and Maillard reaction-related fluorescence increased in collagenase digests from carious dentin. Advanced Maillard products (carboxymethyllysine and pentosidine) increased, whereas furosine, a marker for the initial reaction, was not observed consistently. This implies no direct addition of sugars to protein, but rather the addi-tion of smaller metabolites and glycoxidation products. In addition, the physiological cross-links hydroxylysinonorleucine and dihydroxylysinonorleucine decreased in carious dentin. Also for hydroxylysylpyridinoline, a decrease was observed, but not consistently. In conclusion, the caries process modifies amino acids in dentin collagen, which can lead to increased resistance against proteolysis and ultimately to caries arrestment.

  10. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions.

    PubMed

    Pripis-Nicolau, L; de Revel, G; Bertrand, A; Maujean, A

    2000-09-01

    This work describe products of reactions between four alpha-dicarbonyl compounds (diacetyl, pentan-2,3-dione, glyoxal, and methylglyoxal) or two alpha-hydroxy ketones, (acetoine and acetol) and amino acids present in wines. The results shows the formation of odorous products or strong-smelling additives resulting from the Maillard and Strecker reaction in a primarily aqueous medium, at low temperature and low pH ( approximately pH 3.5) of the wine. GC/FID, GC/FPD, GC/NPD and GC/MS techniques were used. The olfactive characteristics of the products are described. In the presence of sulfur amino acids and in particular cysteine, many products were formed with a heterocycle production such as pyrazines and methylpyrazines, methylthiazoles, acetylthiazoles, acetylthiazolines, acetylthiazolidines, trimethyloxazole, and dimethylethyloxazoles. These various compounds present odors of sulfur, cornlike, pungent, nut, popcorn, roasted hazelnut, toasted, roasted, and ripe fruits. The chemical conditions of the model reactions are specified. The influence of temperature and pH on the reactions in the presence of cysteine were also studied.

  11. Hypersensitivity reactions to fluoroquinolones.

    PubMed

    Scherer, Kathrin; Bircher, Andreas J

    2005-01-01

    Fluoroquinolone antibiotics cause immediate and delayed hypersensitivity reactions, and may also affect internal organs and circulating blood cells. The underlying pathomechanisms are only partly understood. The extent of cross-reactivity among different quinolones depends on the type of clinical manifestation and its underlying mechanism. Despite recent advances, reliable diagnostic tests are still lacking. Recent studies have shown quinolone-specific IgE in vitro in more than 50% of patients with immediate-type reactions and a considerable cross-reactivity with related compounds. In maculopapular drug exanthems from ciprofloxacin, specific T-cell clones were identified, and cross-reactivity to related compounds was detected in approximately 50% of the clones. From re-exposure studies in patients with exanthems, cross-reactivity appears to be lower. Cellular tests such as lymphocyte transformation tests are currently not very useful. For prick and intradermal skin tests, widely divergent nonirritant test concentrations have been recommended. Desensitization may be possible in selected patients.

  12. Enzymatic reactions in confined environments.

    PubMed

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-05

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  13. Enzymatic reactions in confined environments

    NASA Astrophysics Data System (ADS)

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  14. Enantioselective Vinylogous Organocascade Reactions.

    PubMed

    Hepburn, Hamish B; Dell'Amico, Luca; Melchiorre, Paolo

    2016-08-01

    Cascade reactions are powerful tools for rapidly assembling complex molecular architectures from readily available starting materials in a single synthetic operation. Their marriage with asymmetric organocatalysis has led to the development of novel techniques, which are now recognized as reliable strategies for the one-pot enantioselective synthesis of stereochemically dense molecules. In recent years, even more complex synthetic challenges have been addressed by applying the principle of vinylogy to the realm of organocascade catalysis. The key to the success of vinylogous organocascade reactions is the unique ability of the chiral organocatalyst to transfer reactivity to a distal position without losing control on the stereo-determining events. This approach has greatly expanded the synthetic horizons of the field by providing the possibility of forging multiple stereocenters in remote positions from the catalyst's point of action with high selectivity, while simultaneously constructing multiple new bonds. This article critically describes the developments achieved in the field of enantioselective vinylogous organocascade reactions, charting the ideas, the conceptual advances, and the milestone reactions that have been essential for reaching highly practical levels of synthetic efficiency.

  15. Induction of mitotic gene conversion by browning reaction products and its modulation by naturally occurring agents.

    PubMed

    Rosin, M P; Stich, H F; Powrie, W D; Wu, C H

    1982-05-01

    Mitotic gene conversion in the D7 strain of Saccharomyces cerevisiae was significantly enhanced by exposure to non-enzymatic browning reaction products. These products were formed during the heating of sugar (caramelization reaction) or sugar-amino acid mixtures (Maillard reaction) at temperatures normally used during the cooking of food. Several modulating factors of this convertogenic activity were identified. These factors included two main groups: (1) trace metals which are widely distributed in the environment; and (2) several cellular enzymatic systems. The convertogenic activities of a heated glucose-lysine mixture and a commercial caramel powder were completely suppresses when yeast were concurrently exposed to these products and to either FeIII or CuII. Equimolar concentrations of MnII or sodium selenite had no effect on the convertogenic activity of the products of either model system. Horse-radish peroxidase, beef liver catalase and rat liver S9 preparations each decreased the frequency of gene conversion induced by the caramel powder and the heated glucose-lysine products. This modulating activity of the enzymes was lost if they were heat-inactivated. These studies indicate the presence of a variety of protective mechanisms which can modify genotoxic components in complex food mixtures.

  16. Investigation of heat induced reactions between lipid oxidation products and amino acids in lipid rich model systems and hazelnuts.

    PubMed

    Karademir, Yeşim; Göncüoğlu, Neslihan; Gökmen, Vural

    2013-07-01

    This study aimed to investigate the contribution of lipid oxidation to non-enzymatic browning reactions in lipid rich model and actual food systems. Hazelnut oil and model reaction mixtures consisting of different amino acids were heated under certain conditions to determine possible lipid oxidation and non-enzymatic browning reaction products. In model systems, the Schiff base of 2,4-decadienal, its decarboxylated form, and reaction products formed after hydrolytic cleavage of the Schiff base or decarboxylated form were identified by high resolution mass spectrometry. No furosine was detected in hazelnuts after roasting at 160 °C while the concentration of free amino acids significantly decreased. 2,4-Decadienal reacted effectively with all amino acids studied through a Maillard type carbonyl-amine condensation pathway. (2E,4E)-Deca-2,4-dien-1-amine was identified as a typical reaction product in model systems and roasted hazelnuts. In lipid-rich foods like hazelnuts, lipid-derived carbonyls might be responsible for potential modifications of free and protein bound amino acids during heating.

  17. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  18. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  19. Advanced Science.

    ERIC Educational Resources Information Center

    Coles, Mike; Nelms, Rick

    1996-01-01

    Describes a study that explores the depth and breadth of scientific facts, principles, and procedures which are required in the Advanced General National Vocational Qualifications (GNVQ) science through comparison with GCE Advanced level. The final report takes account of the updated 1996 version of GNVQ science. (DDR)

  20. Diamine Ligands in Copper-Catalyzed Reactions

    PubMed Central

    Surry, David S.

    2012-01-01

    The utility of copper-mediated cross-coupling reactions has been significantly increased by the development of mild reaction conditions and the ability to employ catalytic amounts of copper. The use of diamine-based ligands has been important in these advances and in this review we discuss these systems, including the choice of reaction conditions and applications in the synthesis of pharmaceuticals, natural products and designed materials. PMID:22384310

  1. The quantum dynamics of chemical reactions

    NASA Astrophysics Data System (ADS)

    Kuppermann, A.

    1983-03-01

    In this project, we developed accurate and approximate methods for calculating cross sections of elementary reactions. These methods were applied to systems of importance for the fundamental aspects of chemical dynamics and for advanced technologies of interest to the United States Air Force. The application included calculations of three-atom exchange reactions, break-up and three-body recombination collisions and vibrational quenching by reaction. These calculations improved our understanding of such processes and permitted an assessment of some approximate methods.

  2. A New Look at Reaction Rates

    NASA Astrophysics Data System (ADS)

    Cvitas, Tomislav

    1999-11-01

    Both rates of radioactive decays and rates of chemical reactions can be thought of as numbers of transformations per time. The rate of reaction, as an intensive quantity characteristic of the process, is obtained by dividing the amount of chemical transformations per time by the volume of the reaction system. The practical definition of the reaction rate found in the literature can then be derived by defining the stoichiometric numbers as changes in the number of specific molecules taking part in the reaction per chemical transformation. The name concentration of chemical transformations is introduced for what was previously called reaction variable. It is suggested that the conceptual definition of the advancement of reaction and reaction rate be introduced in general chemistry courses.

  3. DEVELOPMENT OF REACTION-DRIVEN IONIC TRANSPORT MEMBRANES (ITMs) TECHNOLOGY: PHASE IV/BUDGET PERIOD 6 “Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems”

    SciTech Connect

    David, Studer

    2012-03-01

    Air Products and Chemicals, along with development participants and in association with the U.S. Department of Energy, has made substantial progress in developing a novel air separation technology. Unlike conventional cryogenic processes, this method uses high-temperature ceramic membranes to produce high-purity oxygen. The membranes selectively transport oxygen ions with high flux and infinite theoretical selectivity. Reaction-driven ceramic membranes are fabricated from non-porous, multi-component metallic oxides, operate at temperatures typically over 700°C, and have exceptionally high oxygen flux and selectivity. Oxygen from low-pressure air permeates as oxygen ions through the ceramic membrane and is consumed through chemical reactions, thus creating a chemical driving force that pulls oxygen ions across the membrane at high rates. The oxygen reacts with a hydrocarbon fuel in a partial oxidation process to produce a hydrogen and carbon monoxide mixture – synthesis gas. This project expands the partial-oxidation scope of ITM technology beyond natural gas feed and investigates the potential for ITM reaction-driven technology to be used in conjunction with gasification and pyrolysis technologies to provide more economical routes for producing hydrogen and synthesis gas. This report presents an overview of the ITM reaction-driven development effort, including ceramic materials development, fabrication and testing of small-scale ceramic modules, ceramic modeling, and the investigation of gasifier integration schemes

  4. Recent advances in cholesterol chemistry.

    PubMed

    Morzycki, Jacek W

    2014-05-01

    This review article presents advances in cholesterol chemistry since 2000. Various transformations (chemical, enzymatic, electrochemical, etc.) of cholesterol are presented. A special emphasis is given to cholesterol oxidation reactions, but also substitution of the 3β-hydroxyl group, addition to the C5-C6 double bond, C-H functionalization, and C-C bond forming reactions are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Reaction pathway for alkane dehydrocyclization

    SciTech Connect

    Shi, Buchang; Davis, B.H.

    1996-08-01

    Naphtha reforming to produce high octane gasoline is an important process. Many reaction mechanisms are involved in this process. For example, the study of the fundamentals of this process led to the concept of bi- or poly-functional catalysis. The results of this study provide additional mechanistic information about the dehydrocyclization of an n-alkane to produce aromatics. The reaction coordinate diagram advanced to account for the observation of irreversible adsorption should be modified to account for the present results. 32 refs., 1 fig.

  6. Potential of birds to serve as pathology-free models of type 2 diabetes, part 2: do high levels of carbonyl-scavenging amino acids (e.g., taurine) and low concentrations of methylglyoxal limit the production of advanced glycation end-products?

    PubMed

    Szwergold, Benjamin S; Miller, Craig B

    2014-08-01

    In our previous publication, we reported on the advantages of using birds as a pathology-free model of type 2 diabetes mellitus (T2DM). Using this new perspective, we observed that birds are missing the RAGE gene, considered an important factor in the development of diabetic complications. In this article, we identify two additional Maillard reaction-related characteristics of birds that have the potential to account, in part, for avian ability to cope successfully with chronic hyperglycemia. First, compared to mammals, blood plasma of birds has significantly higher concentrations of taurine and other free amino acids that act as scavengers of reactive carbonyls. Second, there are also indications that avian blood plasma contains lower concentrations of methylglyoxal (MG) due, in part, to its decreased production by avian erythrocytes. Our deductions are based on relatively meager experimental data and are therefore speculative. One certain outcome of our study, however, is the idea that birds can be a useful model for the study of Maillard reactions and etiology of diabetic complications. We anticipate and hope that results of future studies will support the hypothesis identifying MG as a key intermediate in the etiology of diabetic complications. If this is indeed the case, then prevention and control of diabetic complications may become transformed into a more circumscribed, defined, and tractable problem whose goals will be to minimize the production of MG and to maximize its elimination by detoxification or scavenging.

  7. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  8. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  9. Advanced Beamformers

    DTIC Science & Technology

    2008-09-01

    Advanced Beamformers Stergios Stergiopoulos Defence R&D Canada Technical Report DRDC Toronto TR 2008-101 September 2008 Defence Research and...Development Canada Recherche et développement pour la défense Canada DEFENCE DÉFENSE & Advanced beamformers Stergios Stergiopoulos... beamformers ; and provide suggestions of how modern technology can be applied to the development of current and next generation ultrasound systems and

  10. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    Various new cell culture experiments for the development of microparticles are conducted. These studies have also led to the development of an anticancer egg, in addition to the analysis of various vegetable soup chemical reactions.

  11. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    Various new cell culture experiments for the development of microparticles are conducted. These studies have also led to the development of an anticancer egg, in addition to the analysis of various vegetable soup chemical reactions.

  12. Building process knowledge using inline spectroscopy, reaction calorimetry and reaction modeling--the integrated approach.

    PubMed

    Tummala, Srinivas; Shabaker, John W; Leung, Simon S W

    2005-11-01

    For over two decades, reaction engineering tools and techniques such as reaction calorimetry, inline spectroscopy and, to a more limited extent, reaction modeling, have been employed within the pharmaceutical industry to ensure safe and robust scale-up of organic reactions. Although each of these techniques has had a significant impact on the landscape of process development, an effective integrated approach is now being realized that combines calorimetry and spectroscopy with predictive modeling tools. This paper reviews some recent advances in the use of these reaction engineering tools in process development within the pharmaceutical industry and discusses their potential impact on the effective application of the integrated approach.

  13. Advancement Flaps.

    PubMed

    Kruter, Laura; Rohrer, Thomas

    2015-10-01

    Advancement flaps are random-pattern flaps frequently used in the reconstruction of surgical defects on the face after the removal of skin cancer. Proper design and meticulous execution is crucial in achieving reproducible esthetic results. To review the design and execution of advancement flaps in facial reconstruction. A review of the literature on the use of advancement flaps in facial reconstruction was performed and curated with the authors' experience. Many factors come into play when using local flaps to reconstruct surgical defects on the face. Close attention must be given to the tissue surrounding the surgical defect and any free margin in the area. Designing the flap closure lines along cosmetic unit junctions and or relaxed skin tension lines, preserving both the form and function of the surrounding structures, and using excellent surgical techniques during the closure will all together help in providing reproducibly outstanding results.

  14. The Blue Bottle Reaction as a General Chemistry Experiment on Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Engerer, Steven C.; Cook, A. Gilbert

    1999-11-01

    A kinetics/reaction mechanism experiment using the classic blue bottle reaction is described. Using the scientific method (observe, question, hypothesize, experiment, repeat) students propose and test possible reaction mechanisms for the methylene blue-catalyzed oxidation of dextrose with its dramatic color change. Students are led to discover the three-step mechanism through a series of questions. An advanced version for honors lab courses is also suggested.

  15. Advancing Reflectrometry

    DTIC Science & Technology

    2013-05-21

    transmissions, was first demonstrated using Global Navigation Satellite System ( GNSS ) reflections. Recently, reflectometry has been extended to digital... GNSS +R workshop provided an opportunity for engineers and Earth scientists to assess the state of the art, demonstrate new applications, and discuss...18 Eos, Vol. 94, No. 21, 21 May 2013 MEETING -.~ Advancing Reflectometry Workshop on Renectometry Using GNSS and Other Signals of Opportunity

  16. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  17. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  18. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  19. Advanced Concept

    NASA Image and Video Library

    1997-01-02

    The Advanced Space Transportation Group takes the future of space travel far into the 21st Century. Pictured is an artist's concept of a third generation Reusable Launch Vehicle (RLV). Projected for the year 2025, this third generation RLV will introduce an era of space travel not unlike air travel today.

  20. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms.

    PubMed

    He, Xuexiang; de la Cruz, Armah A; Hiskia, Anastasia; Kaloudis, Triantafyllos; O'Shea, Kevin; Dionysiou, Dionysios D

    2015-05-01

    Hepatotoxic microcystins (MCs) are the most frequently detected group of cyanobacterial toxins. This study investigated the degradation of common MC variants in water, MC-LR, MC-RR, MC-YR and MC-LA, by UV-254 nm-based processes, UV only, UV/H2O2, UV/S2O8(2-) and UV/HSO5(-). Limited direct photolysis of MCs was observed, while the addition of an oxidant significantly improved the degradation efficiency with an order of UV/S2O8(2-) > UV/HSO5(-) > UV/H2O2 at the same initial molar concentration of the oxidant. The removal of MC-LR by UV/H2O2 appeared to be faster than another cyanotoxin, cylindrospermopsin, at either the same initial molar concentration or the same initial organic carbon concentration of the toxin. It suggested a faster reaction of MC-LR with hydroxyl radical, which was further supported by the determined second-order rate constant of MCs with hydroxyl radical. Both isomerization and photohydration byproducts were observed in UV only process for all four MCs; while in UV/H2O2, hydroxylation and diene-Adda double bond cleavage byproducts were detected. The presence of a tyrosine in the structure of MC-YR significantly promoted the formation of monohydroxylation byproduct m/z 1061; while the presence of a second arginine in MC-RR led to the elimination of a guanidine group and the absence of double bond cleavage byproducts. It was therefore demonstrated in this study that the variable amino acids in the structure of MCs influenced not only the degradation kinetics but also the preferable reaction mechanisms.

  1. Role of pyridoxamine in the formation of the Amadori/Heyns compounds and aggregates during the glycation of beta-lactoglobulin with galactose and tagatose.

    PubMed

    Corzo-Martínez, Marta; Moreno, F Javier; Olano, Agustín; Villamiel, Mar

    2010-01-13

    The effect of pyridoxamine on the Maillard reaction during the formation of conjugates of beta-lactoglobulin with galactose and tagatose under controlled conditions (pH 7, 0.44 aw, 40 and 50 degrees C, for 6 days) has been studied, for the first time, by means of the changes in reducing carbohydrates, formation of Amadori or Heyns compounds, and aggregates and browning development. The results showed the formation of interaction products between pyridoxamine and galactose or tagatose either in the presence or in the absence of beta-lactoglobulin, indicating that pyridoxamine competes with the free amino groups of beta-lactoglobulin for the carbonyl group of both carbohydrates. Thus, a small inhibitory effect of pyridoxamine on the initial stages of the Maillard reaction was pointed out. Furthermore, much lower aggregation and color formation rates were observed in the conjugates of beta-lactoglobulin galactose/tagatose with pyridoxamine than without this compound, supporting its potent inhibitory effect on the advanced and final stages of the Maillard reaction. These findings reveal the usefulness of food-grade inhibitors of the advanced stages of the Maillard reaction, such as pyridoxamine, that, in combination with mild storage conditions, could lead to the formation of safer neoglycoconjugates without impairing their nutritional quality.

  2. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  3. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  4. Anaphylaxis-Like Reactions

    MedlinePlus

    ... Home Conditions Anaphylaxis Anaphylaxis-Like Reactions Anaphylaxis-Like Reactions Make an Appointment Refer a Patient Ask a ... exposed to a foreign substance, some people suffer reactions identical to anaphylaxis, but no allergy (IgE antibody) ...

  5. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  6. Anaphylaxis-Like Reactions

    MedlinePlus

    ... Home Conditions Anaphylaxis Anaphylaxis-Like Reactions Anaphylaxis-Like Reactions Make an Appointment Refer a Patient Ask a ... exposed to a foreign substance, some people suffer reactions identical to anaphylaxis, but no allergy (IgE antibody) ...

  7. Visualization of complex hydrocarbon reaction systems

    SciTech Connect

    Shinn, J.H.

    1996-10-01

    Many hydrocarbon reactions of interest involve either poorly characterized reactants and products and/or large numbers of simultaneous reactions. An important step in understanding the behavior of such systems is to develop quantitative pictures of the feeds and products and the transformations which connect them. The processes for constructing these reaction visualizations is illustrated by examining the construction of a molecular model for coal liquefaction and subsequent conversion to distillate products, and the construction of a video simulation of catalytic petroleum naphtha reforming. New techniques which are permitting advances in these visualizations are discussed.

  8. Visualization of complex hydrocarbon reaction systems

    SciTech Connect

    Shinn, J.H.

    1996-12-31

    Many hydrocarbon reactions of interest involve either poorly characterized reactants and products and/or large numbers of simultaneous reactions. An important step in understanding the behavior of such systems is to develop quantitative pictures of the feeds and products and the transformations which connect them. The processes for constructing these reaction visualizations is illustrated by examining the construction of a molecular model for coal liquefaction and subsequent conversion to distillate products, and the construction of a video simulation of catalytic petroleum naphtha reforming. New technique which are permitting advances in these visualizations are discussed.

  9. Nuclear reaction inputs based on effective interactions

    NASA Astrophysics Data System (ADS)

    Hilaire, S.; Goriely, S.; Péru, S.; Dubray, N.; Dupuis, M.; Bauge, E.

    2016-11-01

    Extensive nuclear structure studies have been performed for decades using effective interactions as sole input. They have shown a remarkable ability to describe rather accurately many types of nuclear properties. In the early 2000s, a major effort has been engaged to produce nuclear reaction input data out of the Gogny interaction, in order to challenge its quality also with respect to nuclear reaction observables. The status of this project, well advanced today thanks to the use of modern computers as well as modern nuclear reaction codes, is reviewed and future developments are discussed.

  10. Transition metal-free decarboxylative alkylation reactions.

    PubMed

    Liu, Ping; Zhang, Guanghui; Sun, Peipei

    2016-11-22

    This review summarizes advances in the decarboxylative alkylation of carboxylic acids and their derivatives under transition metal-free conditions in recent years. Unlike most transition metal-catalyzed decarboxylative coupling reactions which tend to undergo catalytic cycles, the mechanisms of reactions under metal-free conditions are usually diverse and even ambiguous in some cases. This article offers an overview of reaction types and their corresponding mechanisms, highlights some of the advantages and limitations, and focuses on introducing UV and visible light-induced, organocatalyst and peroxide promoted radical processes for decarboxylative alkylation and the formation of C-C bonds.

  11. Physiological aspects of free-radical reactions.

    PubMed Central

    Yamazaki, I; Tamura, M; Nakajima, R; Nakamura, M

    1985-01-01

    Enzymes which catalyze the formation of free radicals in vitro will catalyze similar reactions in vivo. We believe that the formation of some kinds of free radicals has definite physiological meanings in metabolism. In this sense, the enzymes forming such free radicals are concluded to be in evolutionally advanced states. Elaborated structure and function of enzymes such as horseradish peroxidase and microsomal flavoproteins support the idea. Deleterious and side reactions caused by free radicals are assumed to be minimized in vivo by localizing the reactions, but this assumption should be verified by future studies. PMID:3007098

  12. Advanced LIGO

    NASA Astrophysics Data System (ADS)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  13. The Glyoxal Clock Reaction

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D.

    2007-01-01

    Research on the glyoxal clock reaction has led to adaptation of the clock reaction to a general chemistry experiment. This particular reaction is just one of many that used formaldehyde in the past. The kinetics of the glyoxal clock makes the reaction suitable as a general chemistry lab using a Calculator Based Laboratory (CBL) or a LabPro. The…

  14. The Glyoxal Clock Reaction

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D.

    2007-01-01

    Research on the glyoxal clock reaction has led to adaptation of the clock reaction to a general chemistry experiment. This particular reaction is just one of many that used formaldehyde in the past. The kinetics of the glyoxal clock makes the reaction suitable as a general chemistry lab using a Calculator Based Laboratory (CBL) or a LabPro. The…

  15. Skin reactions to sunscreens.

    PubMed

    Nixon, R L; Frowen, K E; Lewis, A E

    1997-06-01

    Sunscreen reactions are said not to be uncommon. A population referred to a patch testing clinic was evaluated for reactions to sunscreen by questionnaire initially and then, if relevant, by patch testing to sunscreen products and their components. Irritant reactions were more common than allergic contact dermatitis. Allergic reactions to sunscreens were less common than to non-sunscreen chemicals present in sunscreen products.

  16. Nazarov-like cyclization reactions.

    PubMed

    Di Grandi, Martin J

    2014-08-07

    The Nazarov cyclization, a well-known method for the formation of cyclopentenones, mechanistically involves the 4π electrocyclization of a 1,4-pentadienyl cation, generated from cross-conjugated divinyl ketones. Recently, advances related to this cyclization, such as the incorporation of heteroatoms as well as the use of cyclopropanes as double bond equivalents have extended the scope of the original reaction. The modifications discussed in this review, which covers the years 2009-2013, have allowed the realization of both heteroatom- and homo-Nazarov cyclizations.

  17. [Reactions to food].

    PubMed

    Halvorsen, R; Eggesb M; Botten, G

    1995-12-10

    Adverse reactions to food occur in about 1-2% of the population, but are reported more frequently by patients. Most reactions to food are not caused by allergy. IgE-mediated food reactions are well known and of major clinical significance owing to their potentially dangerous, even life-threatening character. Adverse reactions to food can also be caused by immunological mechanisms other than IgE-mediated reactions such as, enzyme deficiencies, active pharmacological substances in food and psychological mechanisms. Double-blind provocation is the only way to diagnose a positive reaction to a food item with some certainty. Regretably no objective measures for food reactions exist.

  18. Catalytic Radical Domino Reactions in Organic Synthesis.

    PubMed

    Sebren, Leanne J; Devery, James J; Stephenson, Corey R J

    2014-02-07

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes.

  19. Advanced Pacemaker

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.

  20. Advances in Bioconjugation

    PubMed Central

    Kalia, Jeet; Raines, Ronald T.

    2010-01-01

    Bioconjugation is a burgeoning field of research. Novel methods for the mild and site-specific derivatization of proteins, DNA, RNA, and carbohydrates have been developed for applications such as ligand discovery, disease diagnosis, and high-throughput screening. These powerful methods owe their existence to the discovery of chemoselective reactions that enable bioconjugation under physiological conditions—a tremendous achievement of modern organic chemistry. Here, we review recent advances in bioconjugation chemistry. Additionally, we discuss the stability of bioconjugation linkages—an important but often overlooked aspect of the field. We anticipate that this information will help investigators choose optimal linkages for their applications. Moreover, we hope that the noted limitations of existing bioconjugation methods will provide inspiration to modern organic chemists. PMID:20622973

  1. Advanced stellarators

    NASA Astrophysics Data System (ADS)

    Schlüter, Arnulf

    1983-03-01

    Toroidal confinement of a plasma by an external magnetic field is not compatible with axisymmetry, in contrast to confinement by the pinch effect of induced electric currents as in a tokomak or by the reversed field pinch configuration. The existence of magnetic surfaces throughout the region in which grad p ≠ 0 is therefore not guaranteed in such configurations, though it is necessary for MHD-equilibrium when the lines of force possess a finite twist (or "rotational transform"). These twisted equilibria are called stellarators. The other type of external confinement requires all lines of force to be closed upon themselves and p to be function of the well defined quantity Q = φ d l/ B only. The resulting "bumpy" tori are sometimes also referred to as being M + S like. By discussing specific examples it is shown that stellarator configurations exist which retain as much as possible the properties of M + S like configurations, combine these with the magnetic well, and with an approximation to the isodynamic requirement of D. Palumbo. These so-called Advanced Stellarators shown an improvement in predicted particle confinement and beta-limit compared to the classical stellarators. They can also be viewed as forming a system of linked stabilized mirrors of small mirror ratio. These fields can be produced by modular coils. A prototype of such a configuration is being designed by the stellarator division of IPP under the name of Wendelstein VII-AS. Expected physical data and technical details of W VII-AS are given.

  2. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  3. Allergic reactions (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  4. Allergic reactions (image)

    MedlinePlus

    Allergic reaction can be provoked by skin contact with poison plants, chemicals and animal scratches, as well as by ... dust, nuts and shellfish, may also cause allergic reaction. Medications such as penicillin and other antibiotics are ...

  5. Microfluidic chemical reaction circuits

    SciTech Connect

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C; Huang, Jiang; Heath, James R; Phelps, Michael E; Quake, Stephen R; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  6. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  7. Modeling Mechanochemical Reaction Mechanisms.

    PubMed

    Adams, Heather; Miller, Brendan P; Furlong, Octavio J; Fantauzzi, Marzia; Navarra, Gabriele; Rossi, Antonella; Xu, Yufu; Kotvis, Peter V; Tysoe, Wilfred T

    2017-08-09

    The mechanochemical reaction between copper and dimethyl disulfide is studied under well-controlled conditions in ultrahigh vacuum (UHV). Reaction is initiated by fast S-S bond scission to form adsorbed methyl thiolate species, and the reaction kinetics are reproduced by two subsequent elementary mechanochemical reaction steps, namely a mechanochemical decomposition of methyl thiolate to deposit sulfur on the surface and evolve small, gas-phase hydrocarbons, and sliding-induced oxidation of the copper by sulfur that regenerates vacant reaction sites. The steady-state reaction kinetics are monitored in situ from the variation in the friction force as the reaction proceeds and modeled using the elementary-step reaction rate constants found for monolayer adsorbates. The analysis yields excellent agreement between the experiment and the kinetic model, as well as correctly predicting the total amount of subsurface sulfur in the film measured using Auger spectroscopy and the sulfur depth distribution measured by angle-resolved X-ray photoelectron spectroscopy.

  8. Advanced Concept

    NASA Image and Video Library

    2002-01-01

    An artist's rendering of the air-breathing, hypersonic X-43B, the third and largest of NASA's Hyper-X series flight demonstrators, which could fly later this decade. Revolutionizing the way we gain access to space is NASA's primary goal for the Hypersonic Investment Area, managed for NASA by the Advanced Space Transportation Program at the Marshall Space Flight Center in Huntsville, Alabama. The Hypersonic Investment area, which includes leading-edge partners in industry and academia, will support future generation reusable vehicles and improved access to space. These technology demonstrators, intended for flight testing by decade's end, are expected to yield a new generation of vehicles that routinely fly about 100,000 feet above Earth's surface and reach sustained speeds in excess of Mach 5 (3,750 mph), the point at which "supersonic" flight becomes "hypersonic" flight. The flight demonstrators, the Hyper-X series, will be powered by air-breathing rocket or turbine-based engines, and ram/scramjets. Air-breathing engines, known as combined-cycle systems, achieve their efficiency gains over rocket systems by getting their oxygen for combustion from the atmosphere, as opposed to a rocket that must carry its oxygen. Once a hypersonic vehicle has accelerated to more than twice the speed of sound, the turbine or rockets are turned off, and the engine relies solely on oxygen in the atmosphere to burn fuel. When the vehicle has accelerated to more than 10 to 15 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's series of hypersonic flight demonstrators includes three air-breathing vehicles: the X-43A, X-43B and X-43C.

  9. Why Are Some Reactions Slower at Higher Temperatures?

    ERIC Educational Resources Information Center

    Revell, Laura E.; Williamson, Bryce E.

    2013-01-01

    It is well understood by most chemistry students at advanced undergraduate levels that chemical reactions generally follow the Arrhenius law of temperature dependence with positive activation energies, proceeding faster at elevated temperatures. It is much less widely known that the rates of some Arrhenius-compliant reactions are retarded by…

  10. Why Are Some Reactions Slower at Higher Temperatures?

    ERIC Educational Resources Information Center

    Revell, Laura E.; Williamson, Bryce E.

    2013-01-01

    It is well understood by most chemistry students at advanced undergraduate levels that chemical reactions generally follow the Arrhenius law of temperature dependence with positive activation energies, proceeding faster at elevated temperatures. It is much less widely known that the rates of some Arrhenius-compliant reactions are retarded by…

  11. Enzyme Reactions in Nanoporous, Picoliter Volume Containers

    SciTech Connect

    Siuti, Piro; Retterer, Scott T; Choi, Chang Kyoung; Doktycz, Mitchel John

    2012-01-01

    Advancements in nanoscale fabrication allow creation of small volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ~19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate Amplex Red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics and high-throughput screening.

  12. Connectionist and diffusion models of reaction time.

    PubMed

    Ratcliff, R; Van Zandt, T; McKoon, G

    1999-04-01

    Two connectionist frameworks, GRAIN (J. L. McClelland, 1993) and brain-state-in-a-box (J. A. Anderson, 1991), and R. Ratcliff's (1978) diffusion model were evaluated using data from a signal detection task. Dependent variables included response probabilities, reaction times for correct and error responses, and shapes of reaction-time distributions. The diffusion model accounted for all aspects of the data, including error reaction times that had previously been a problem for all response-time models. The connectionist models accounted for many aspects of the data adequately, but each failed to a greater or lesser degree in important ways except for one model that was similar to the diffusion model. The findings advance the development of the diffusion model and show that the long tradition of reaction-time research and theory is a fertile domain for development and testing of connectionist assumptions about how decisions are generated over time.

  13. Hypersensitivity reaction to azathioprine.

    PubMed

    Fields, C L; Robinson, J W; Roy, T M; Ossorio, M A; Byrd, R P

    1998-05-01

    Adverse drug reactions can vary from a simple rash to anaphylactic shock. While certain medications including the penicillins are well known to cause such reactions, other drugs are not as commonly recognized. Azathioprine hypersensitivity reactions tend to be benign and self-limiting with cessation of drug ingestion. We report a patient who had a hypersensitivity reaction to azathioprine, which manifested as distributive shock that mimicked sepsis. We also reviewed the English language literature for risk factors for a hypersensitivity reaction to azathioprine and its possible mechanism.

  14. (Laser enhanced chemical reaction studies)

    SciTech Connect

    Not Available

    1992-01-01

    Experimental studies of dynamic molecular processes are described with particular emphasis on the use of a powerful infrared diode laser probe technique developed in our laboratory. This technique allows us to determine the final states of CO{sub 2} (and other molecules) produced by collisions, photofragmentation, or chemical reactions with a spectral resolution of 0.0003 cm{sup {minus}1} and a time resolution of 10{sup {minus}7} sec. Such high spectral resolution provides a detailed picture of the vibrational and rotational states of molecules produced by these dynamic events. We have used this experimental method to probe collisions between hot hydrogen/deuterium atoms and CO{sub 2}, between O({sup 1}D) atoms and CO{sub 2}, to study the final states of DC1 molecules produced as a result of the reactions of hot Cl atoms, and to investigate the dynamics of the reaction between OH and CO molecules. Advances in our techniques over the past two years have allowed us to identify and study more than 200 final rotational states in ten different vibrational levels of CO{sub 2} encompassing all 3 normal modes, many overtones, and combination states of the molecule. We have extended the technique to probe a variety of new molecules such as OCS, N{sub 2}O, DCl, and CS{sub 2}. All of this work is aimed at providing experimental tests for polyatomic molecule potential energy surfaces, chemical transition states in complex systems, and theories of reaction dynamic in molecules with more than 3 atoms.

  15. [Adverse reactions to vaccines].

    PubMed

    Eseverri, J L; Ranea, S; Marin, A

    2003-01-01

    Adverse reactions to vaccines are highly varied, ranging from mild local reactions to fatal outcomes. In the last few years many adverse reactions have been attributed to vaccines, often without justification. In agreement with the World Health Organization, these reactions can be classified as follows, depending on the cause: vaccination-induced reactions (due to an effect of the vaccine itself or to an idiosyncrasy); reactions due to errors in storage, manipulation and/or administration; and coincidental reactions (no causal relationship with the vaccine). Hypersensitivity reactions fall into six categories, depending on the causative agent: reactions due to some component of the infectious agent or one of its products; reactions due to adjuvants: aluminium hydroxide; reactions due to stabilizers: gelatin; reactions due to preservatives: thiomersal; reactions due to antibiotics: neomycin; and reactions due to a biological culture medium: chicken embryo cells. Allergic children should not be excluded from the normal vaccine calendar. Immunologically, allergic individuals are more susceptible to infection and to microbial and viral diseases, which often play an aggravating role. Rubella, whooping cough, and influenza usually exacerbate respiratory allergies. Non-vaccination carries a marked risk of contracting serious diseases such as poliomyelitis, tetanus, and diphtheria, etc. In a not too distant future, the techniques of genetic recombination and monoclonal antibody production will allow the creation of vaccines from organisms that cannot be cultivated in the laboratory or that produce small quantities of antigen. These techniques will also lead to identification of the antigens with the greatest immunogenic power and, consequently, to extremely pure vaccines. The adverse reactions to vaccines referred to our service account for between 0.59 % and 1.27 % of first visits in the last three years. We recorded a total of 48 adverse reactions to vaccines. Of

  16. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  17. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  18. [Advanced Trauma Life Support can be hazardous].

    PubMed

    Braagaard, Jes Niels; Bisgaard, Thue

    2010-12-13

    A 22 year-old patient wearing a down- and feather jacket was brought to the emergency department after a car accident. Initial treatment was according to Advanced Trauma Life Support principles. The patient was awake and stable. A computed tomography showed no abnormalities. However, a severe asthmatic allergic reaction was observed after total body exposure by cutting up the patient's clothes including the down- and feather jacket. The patient's asthmatic reaction was successfully treated and the patient fully recovered. In conclusion, an allergic reaction may rarely simulate more obvious trauma-related pathophysiology.

  19. NMR reaction monitoring in flow synthesis

    PubMed Central

    Gomez, M Victoria

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed. PMID:28326137

  20. Advancing advanced practice - clarifying the conceptual confusion.

    PubMed

    Stasa, Helen; Cashin, Andrew; Buckley, Thomas; Donoghue, Judith

    2014-03-01

    In recent years, there has been a substantial increase in the number of nurses holding advanced practice nursing positions. However, the lack of clarity regarding key terms such as 'advanced practice nursing', 'advanced nursing practice', 'scope of practice' and 'extended practice', and international variability in how these terms are used has created significant confusion. This lack of clarity is problematic for nurses, other health professionals, health service consumers, educators and policy makers, particularly given the global mobility of the nursing workforce. 1) To highlight the significant international variability in how advanced practice nursing, and associated terms such as extended and expanded practice, are defined and regulated across a variety of different English speaking countries, including the US, UK, New Zealand, Canada and Australia. 2) To propose innovative formulations for how the nursing profession may attempt to ensure greater precision and agreement around advanced practice terminology. Discursive paper. It was found that there is a considerable lack of clarity regarding the precise definitions of key terms surrounding the discussion of advanced practice. Additionally, there are large disparities in how the five chosen countries regulate advanced practice nursing, and roles such as that of the nurse practitioner. It is suggested that the confusion regarding advanced practice terminology can be reduced definitionally by minimising the use of the term 'expanded practice'; defining advanced practice nursing to refer to the type of practice in defined and regulated advanced practice nursing scopes; and defining