Science.gov

Sample records for advanced main combustion

  1. Design of a prototype Advanced Main Combustion Chamber for the Space Shuttle Main Engine

    NASA Astrophysics Data System (ADS)

    Lackey, J. D.; Myers, W. N.

    1992-07-01

    Development of a prototype advanced main combustion chamber is underway at NASA Marshall Space Flight Center. The Advanced Main Combustion Chamber (AMCC) project is being approached utilizing a 'concurrent engineering' concept where groups from materials, manufacturing, stress, quality, and design are involved from the initiation of the project. The AMCC design has been tailored to be compatible with the investment casting process. Jacket, inlet/outlet manifolds, inlet/outlet neck coolant flow splitters, support ribs, actuator lugs, and engine controller mounting bracket will all be a part of the one-piece AMCC casting. Casting of the AMCC in a one-piece configuration necessitated a method of forming a liner in its structural jacket. A method of vacuum plasma spraying the liner is being developed. In 1994, the AMCC will be hot-fired on the Technology Test Bed Space Shuttle Main Engine.

  2. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  3. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  4. Advanced Subsonic Combustion Rig Developed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Advanced Subsonic Combustion Rig (ASCR), a unique, state-of-the-art facility for conducting combustion research, is located at the NASA Lewis Research Center in Cleveland, Ohio. The ASCR, which was nearing completion at the close of 1995, will be capable of simulating the very high pressure and high temperature conditions that are expected to exist in future, advanced subsonic gas turbine (jet) engines. Future environmental regulations will require much cleaner burning (more environmentally friendly) aircraft engines. The ASCR is critical to the development of these cleaner engines. It will allow NASA and U.S. aircraft engine industry researchers to identify and test promising clean-burning gas turbine engine combustion concepts under the pressure and temperature conditions that are expected for those future engines. Combustion processes will be investigated for a variety of next-generation aircraft engine sizes, including engines for large, long-range aircraft (with typical trip lengths of about 3000 mi) and for regional aircraft (with typical trip lengths of about 400 mi). The ASCR design was conceived and initiated in 1993, and fabrication and construction of the rig, including the buildup of an advanced control room, took place throughout 1994 and 1995. In early 1996, the ASCR will be operational for obtaining research data. The ASCR is an intricate part of the NASA Advanced Subsonic Technology Propulsion Program, which is aimed at developing technologies critical to the next generation of gas turbine engines. This effort is in collaboration with the U.S. aircraft gas turbine engine industry. A goal of the Advanced Subsonic Technology Propulsion Program is to develop combustion concepts and technologies that will result in gas turbine engines that produce 50 percent less nitrous oxide (NO_x) pollutants than current engines do. This facility is unique in its capability to simulate advanced subsonic engine pressure, temperature, and air flow rate conditions

  5. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  6. Annual Report: Advanced Combustion (30 September 2012)

    SciTech Connect

    Hawk, Jeffrey; Richards, George

    2012-09-30

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  7. SSME main combustion chamber and nozzle flowfield analysis

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Wang, T. S.; Smith, S. D.; Prozan, R. J.

    1986-01-01

    An investigation is presented of the computational fluid dynamics (CFD) tools which would accurately analyze main combustion chamber and nozzle flow. The importance of combustion phenomena and local variations in mixture ratio are fully appreciated; however, the computational aspects of the gas dynamics involved were the sole issues addressed. The CFD analyses made are first compared with conventional nozzle analyses to determine the accuracy for steady flows, and then transient analyses are discussed.

  8. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  9. Advanced Combustion Modeling for Complex Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Ham, Frank Stanford

    2005-01-01

    The next generation of aircraft engines will need to pass stricter efficiency and emission tests. NASA's Ultra-Efficient Engine Technology (UEET) program has set an ambitious goal of 70% reduction of NO(x) emissions and a 15% increase in fuel efficiency of aircraft engines. We will demonstrate the state-of-the-art combustion tools developed a t Stanford's Center for Turbulence Research (CTR) as part of this program. In the last decade, CTR has spear-headed a multi-physics-based combustion modeling program. Key technologies have been transferred to the aerospace industry and are currently being used for engine simulations. In this demo, we will showcase the next-generation combustion modeling tools that integrate a very high level of detailed physics into advanced flow simulation codes. Combustor flows involve multi-phase physics with liquid fuel jet breakup, evaporation, and eventual combustion. Individual components of the simulation are verified against complex test cases and show excellent agreement with experimental data.

  10. Advanced staged combustion system for power generation

    SciTech Connect

    Rehmat, A.; Goyal, A.

    1993-12-31

    To respond to the increasing market need for a new generation of plants with a substantial improvement in efficiency and a reduction in capital cost, the Institute of Gas Technology has developed an advanced staged, fluidized-bed combustion system concept. The staged fluidized-bed partial combustor produces the fuel gas at about 1500 F. The fuel gas, after particulate removal, is directed to a gas turbine followed by a steam cycle. Adequate sulfur capture and solids waste stabilization are attained by separating calcination, carbonization, and gasification/combustion steps in the staged fluidized beds. Intermediate gas cooling is avoided during the process to maximize the power production. The coal-to-electricity conversion efficiency of the system approaches 49 percent, which exceeds the efficiencies of the other emerging technologies.

  11. Ignition angle advancer for internal combustion engine

    SciTech Connect

    Yamazaki, T.

    1986-08-19

    This patent describes a throttle and spark advance control system for an internal combustion engine having a spark advance mechanism and a throttle valve comprising an operator controlled element, a throttle control lever supported for pivotal movement about an axis and directly connected to the operator controlled element for rotation under operator control. It also includes means for positively connecting the throttle control lever to the throttle valve for positioning the throttle valve in response to movement of the throttle control lever. A spark advance control lever supported for pivotal movement about an axis is included as well as motion transmitting means for operatively connecting the spark advance control lever to the throttle control lever for pivotal movement of the spark advance control lever about its axis in response to pivotal movement of the throttle control lever about its axis and the spark control lever to the spark advance mechanism for controlling the position of the spark advance mechanism in response to the position of the throttle control lever.

  12. Combustion and Heat Transfer Studies Utilizing Advanced Diagnostics: Combustion Studies

    DTIC Science & Technology

    1992-11-01

    Appendices D, E, and F). The two main modeling approaches that enabled the calculation of stability from thermochemistry considera- tions are those of...Parallel TEACH -1Te Code Using an Approximately Implicit Algorithm." Proc. Tie prime authors of this report (G. Sturgess, D. Ballal S"ym Recem Advances and

  13. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  14. FY2015 Advanced Combustion Engine Annual Progress Report

    SciTech Connect

    Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.; Breton, Leo

    2016-03-25

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  15. FY2014 Advanced Combustion Engine Annual Progress Report

    SciTech Connect

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  16. SSME Main Combustion Chamber (MCC) 'Hot Oil' Dewaxing

    NASA Technical Reports Server (NTRS)

    Akpati, Anthony U.

    1994-01-01

    In an attempt to comply with the changing environmental regulations, a process was developed for the replacement of perchloroethylene in the dewaxing of the Space Shuttle Main Engine (SSME) Main Combustion Chamber (MCC) and other associated hardware filled with the Rigidax(registered mark) casting compound. Rigidax(registered mark) is a hard blue-dyed, calcium carbonate filled thermoplastic casting compound (melting point 77 C) that is melted and poured into hardware cavities to prevent contamination during material removal processes, i.e. machining, grinding, drilling, and deburring. Additionally, it serves as a maskant for designated areas during electroforming processes. Laboratory testing was conducted to evaluate seven alternate fluids for the replacement of perchloroethylene in the dewaxing process. Based upon successful laboratory results, a mineral oil was selected for testing on actual hardware. The final process developed involves simultaneous immersion and flushing of the MCC channels using a distinct eight stage process. A nonvolatile hydrocarbon analysis of a solvent flush sample is performed to determine the hardware cleanliness for comparison to the previous perchloroethylene dewaxing process.

  17. SSME Main Combustion Chamber (MCC) hot oil dewaxing

    NASA Technical Reports Server (NTRS)

    Akpati, Anthony U.

    1995-01-01

    In an attempt to comply with the changing environmental regulations, a process was developed for the replacement of perchloroethylene in the dewaxing of the Space Shuttle Main Engine (SSME) Main Combustion Chamber (MCC) and other associated hardware filled with the Rigidax (R) casting compound. Rigidax (R) is a hard blue-dyed, calcium carbonate filled thermoplastic casting compound (melting point 77 C) that is melted and poured into hardware cavities to prevent contamination during material removal processes, i.e. machining, grinding, drilling, and deburring. Additionally, it serves as a maskant for designated areas during electroforming processes. Laboratory testing was conducted to evaluate seven alternate fluids for the replacement of perchloroethylene in the dewaxing process. Based upon successful laboratory results, a mineral oil was selected for testing on actual hardware. The final process developed involves simultaneous immersion and flushing of the MCC channels using a distinct eight stage process. A nonvolatile hydrocarbon analysis of a solvent flush sample is performed to determine the hardware cleanliness for comparison to the previous perchloroethylene dewaxing process.

  18. Advanced Integrated Fuel/Combustion Systems

    DTIC Science & Technology

    2004-01-01

    This decrease will allow for increased combustion operating efficiencies and fuel economy with reduced emissions on both current and future aircraft...capability is planned to be implemented on the CFM-56 for future combustion studies. We made facility improvements to allow fuel composition studies...an Aero Gas Turbine Combustion Chamber," ASME 97-GT-148. 8. Tolpadi, A. K., Danis, A. M., Mongia , H. C., and Lindstedt R. P., "Soot Modeling in

  19. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  20. Advanced combustion turbines and cycles: An EPRI perspective

    SciTech Connect

    Touchton, G.; Cohn, A.

    1995-10-01

    EPRI conducts a broad program of research in combustion turbine technology on behalf of its funders which is directed toward improving their competitive positions through lower cost of generation and risk mitigation. The major areas of EPRI interest are: (1) Combustion Turbine Technology Development, Assessment, and Procurement Information and Products. (2) Risk mitigation of emerging combustion turbines through durability surveillance. (3) Existing Fleet Management and Improvement Technology. In the context of the DOE ATS Review, the present paper will address new advanced turbines and cycles and durability surveillance, of emerging combustion turbines. It will touch on existing fleet management and improvement technology as appropriate.

  1. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  2. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    SciTech Connect

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  3. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  4. Advanced Fuels and Combustion Processes for Propulsion

    DTIC Science & Technology

    2010-09-01

    production from biomass steam reforming – Conduct a feasibility analysis of the proposed integrated process Energia Technologies - D. Nguyen & K. Parimi...strength foam material development by Ultramet – Combustion experiments performed U. Of Alabama – End-user input provided by Solar Turbines Major

  5. Chemical Kinetic Models for Advanced Engine Combustion

    SciTech Connect

    Pitz, William J.; Mehl, Marco; Westbrook, Charles K.

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  6. Progress in Advanced Spray Combustion Code Integration

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A multiyear project to assemble a robust, muitiphase spray combustion code is now underway and gradually building up to full speed. The overall effort involves several university and government research teams as well as Rocketdyne. The first part of this paper will give an overview of the respective roles of the different participants involved, the master strategy, the evolutionary milestones, and an assessment of the state-of-the-art of various key components. The second half of this paper will highlight the progress made to date in extending the baseline Navier-Stokes solver to handle multiphase, multispecies, chemically reactive sub- to supersonic flows. The major hurdles to overcome in order to achieve significant speed ups are delineated and the approaches to overcoming them will be discussed.

  7. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.

    1999-01-01

    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.

  8. FY2013 Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2013-12-01

    Annual progress report on the work of the the Advanced Combustion Engine Program. The Advanced Combustion Engine Program supports the Vehicle Technologies Office mission by addressing critical technical barriers to commercializing higher efficiency, very low emissions, advanced combustion engines for passenger and commercial vehicles that meet future federal emissions regulations.

  9. FY2012 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2013-02-01

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  10. Natural Gas for Advanced Dual-Fuel Combustion Strategies

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas Ryan

    Natural gas fuels represent the next evolution of low-carbon energy feedstocks powering human activity worldwide. The internal combustion engine, the energy conversion device widely used by society for more than one century, is capable of utilizing advanced combustion strategies in pursuit of ultra-high efficiency and ultra-low emissions. Yet many emerging advanced combustion strategies depend upon traditional petroleum-based fuels for their operation. In this research the use of natural gas, namely methane, is applied to both conventional and advanced dual-fuel combustion strategies. In the first part of this work both computational and experimental studies are undertaken to examine the viability of utilizing methane as the premixed low reactivity fuel in reactivity controlled compression ignition, a leading advanced dual-fuel combustion strategy. As a result, methane is shown to be capable of significantly extending the load limits for dual-fuel reactivity controlled compression ignition in both light- and heavy-duty engines. In the second part of this work heavy-duty single-cylinder engine experiments are performed to research the performance of both conventional dual-fuel (diesel pilot ignition) and advanced dual-fuel (reactivity controlled compression ignition) combustion strategies using methane as the premixed low reactivity fuel. Both strategies are strongly influenced by equivalence ratio; diesel pilot ignition offers best performance at higher equivalence ratios and higher premixed methane ratios, whereas reactivity controlled compression ignition offers superior performance at lower equivalence ratios and lower premixed methane ratios. In the third part of this work experiments are performed in order to determine the dominant mode of heat release for both dual-fuel combustion strategies. By studying the dual-fuel homogeneous charge compression ignition and single-fuel spark ignition, strategies representative of autoignition and flame propagation

  11. Advanced Fuel Development and Fuel Combustion

    DTIC Science & Technology

    1997-08-01

    operation, and quality control monitoring requirements for these new elements. 39 TASK NO. 26: Surfactant Additives for Improved Low and High...increases are required. Aspen Systems has designed and synthesized a new class of multifunctional additives known as metal deactivating surfactants (MDS... Recycling 4 TASK NO. 03: Emissions Control Through Advanced Combustor Mixing Schemes 5 TASK NO. 04: Gas Layer Protection of Hot Carbon

  12. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  13. Advanced radiant combustion system. Final report, September 1989--September 1996

    SciTech Connect

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  14. High-temperature corrosion in advanced combustion systems

    SciTech Connect

    Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

    1993-11-01

    Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high temperature furnaces and heat transfer surfaces capable of operation at much elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitate development/application of advanced ceramic materials in these designs. The present paper characterizes the chemistry of coal-fired combustion environments over a wide temperature range of interest in these systems and discusses preliminary experimental results on several materials with potential for application in these systems. An experimental program has been initiated to evaluate materials for advanced combustion systems. Several candidate materials have been identified for evaluation. The candidates included advanced metallic alloys, monolithic ceramics, ceramic particulate/ceramic matrix composites, ceramic fiber/ceramic matrix composites, and ceramic whisker/ceramic matrix composites. The materials examined so far included nickel-base superalloys, alumina, stabilized zirconia, different types of silicon carbide, and silicon nitride. Coupon specimens of several of the materials have been tested in an air environment at 1000, 1200, and 1400{degree}C for 168 h. In addition, specimens were exposed to sodium-sulfate-containing salts at temperatures of 1000 and 1200{degree}C for 168 h. Extensive microstructural analyses were conducted on the exposed specimens to evaluate the corrosion performance of the materials for service in air and fireside environments of advanced coal-fired boilers. Additional tests are underway with several of the materials to evaluate their corrosion performance as a function of salt chemistry, alkali vapor concentration, gas chemistry, exposure temperature, and exposure time.

  15. Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A. S.

    2001-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between

  16. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  17. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  18. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector

  19. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  20. Preliminary analysis of selected gas dynamic problems. [space shuttle main engine main combustion transients and IUS nozzle flow

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.; Farmer, R. C.

    1985-01-01

    The VAST computer code was used to analyze SSME main combustion chamber start-up transients and the IUS flow field for a damaged nozzle was investigated to better understand the gas dynamic considerations involved in vehicle problems, the effect of start transients on the nozzle flow field for the SSME, and the possibility that a damaged nozzle could account for the acceleration anomaly noted on IUS burn. The results obtained were compared with a method of characteristics prediction. Pressure solutions from both codes were in very good agreement and the Mach number solution on the nozzle centerline deviates substantially for the high expansions for the SSME. Since this deviation was unexpected, the phenomenon is being further examined.

  1. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; McKechnie, Timothy; Hickman, Robert; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Next-generation, regeneratively cooled rocket engines require materials that can meet high temperatures while resisting the corrosive oxidation-reduction reaction of combustion known as blanching, the main cause of engine failure. A project was initiated at NASA-Marshal Space Flight Center (MSFC) to combine three existing technologies to build and demonstrate an advanced liquid rocket engine combustion chamber that would provide a 100 mission life. Technology developed in microgravity research to build cartridges for space furnaces was utilized to vacuum plasma spray (VPS) a functional gradient coating on the hot wall of the combustion liner as one continuous operation, eliminating any bondline between the coating and the liner. The coating was NiCrAlY, developed previously as durable protective coatings on space shuttle high pressure fuel turbopump (HPFTP) turbine blades. A thermal model showed that 0.03 in. NiCrAlY applied to the hot wall of the combustion liner would reduce the hot wall temperature 200 F, a 20% reduction, for longer life. Cu-8Cr-4Nb alloy, which was developed by NASA-Glenn Research Center (GRC), and which possesses excellent high temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability, was utilized as the liner material in place of NARloy-Z. The Cu-8Cr-4Nb material exhibits better mechanical properties at 650 C (1200 F) than NARloy-Z does at 538 C (1000 F). VPS formed Cu-8Cr-4Nb combustion chamber liners with a protective NiCrAlY functional gradient coating have been hot fire tested, successfully demonstrating a durable coating for the first time. Hot fire tests along with tensile and low cycle fatigue properties of the VPS formed combustion chamber liners and witness panel specimens are discussed.

  2. Hydrodynamic model of advanced pressurized fluidized bed combustion

    SciTech Connect

    Horio, Masayuki; Lei, H.W.

    1997-12-31

    A hydrodynamic model was developed for the advanced pressurized fluidized bed combustion (A-PFBC) process. The particular system investigated here is composed of a pressurized circulating fluidized bed (PCFB) for coal gasification/desulfurization and a PCFB for combustion with the gas-solid counter-current flow through the two PCFBs. One of the most important parameters may be the material seal height (MSH) in the downcomer connecting the gasifier/desulfurizer and the combustor, which is thought to strongly influence the safe and stable operation of the process. In this mode, MSH was determined according to the pressure balance between the gasifier/desulfurizer and the combustor. The solid flux in the lower dense region of the two PCFBs was estimated by considering the clustering suspension and core-annulus flow. The mean cluster size and voidage in the cluster phase were predicted by the cluster size model of Horio-Ito (1996). Solid flux of the gasifier and combustor was calculated based on mass balances of limestone, char and ash in the system. Based on this model, the whole pressure profile loop in the system was predicted, and the effects of operating conditions on MSH between the gasifier and the combustor were investigated. The feasibility of the A-PCFB system with PCFBs both for the gasifier/desulfurizer and for the combustor was successfully confirmed.

  3. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  4. Oxy-Combustion Environment Characterization: Fire- and Steam-Side Corrosion in Advanced Combustion

    SciTech Connect

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. S. Lutz; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. E. Laughlin; S. Sridhar

    2012-09-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Additionally, the progress towards laboratory oxidation tests in advanced ultra-supercritical steam is updated.

  5. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  6. Operating manual for coaxial injection combustion model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Schuman, M. D.; Chadwick, W. D.

    1974-01-01

    An operating manual for the coaxial injection combustion model (CICM) is presented as the final report for an eleven month effort designed to provide improvement, to verify, and to document the comprehensive computer program for analyzing the performance of thrust chamber operation with gas/liquid coaxial jet injection. The effort culminated in delivery of an operation FORTRAN IV computer program and associated documentation pertaining to the combustion conditions in the space shuttle main engine. The computer program is structured for compatibility with the standardized Joint Army-Navy-NASA-Air Force (JANNAF) performance evaluation procedure. Use of the CICM in conjunction with the JANNAF procedure allows the analysis of engine systems using coaxial gas/liquid injection.

  7. Main Chamber Injectors for Advanced Hydrocarbon Booster Engines

    NASA Technical Reports Server (NTRS)

    Long, Matthew R.; Bazarov, Vladimir G.; Anderson, William E.

    2003-01-01

    Achieving the highest possible specific impulse has long been a key driver for space launch systems. Recently, more importance has been placed on the need for increased reliability and streamlined launch operations. These general factors along with more specific mission requirements have provided a new focus that is centered on the oxidizer rich staged combustion (ORSC) cycle. Despite a history of use in Russia that extends back to the 1960's, a proven design methodology for ORSC cycle engines does not exist in the West. This lack of design expertise extends to the main chamber injector, a critical subcomponent that largely determines the engine performance and main chamber life. The goals of the effort described here are to establish an empirical knowledge base to provide a fundamental understanding of main chamber injectors and for verification of an injector design methodology for the ORSC cycle. The design of a baseline injector element, derived from information on Russian engines in the open literature, is presented. The baseline injector comprises a gaseous oxidizer core flow and an annular swirling fuel flow. Sets of equations describing the steady-state and the dynamic characteristics of the injector are presented; these equations, which form the basis of the design analysis methodology, will be verified in tests later this year. On-going cold flow studies, using nitrogen and water as simulants, are described which indicate highly atomized and symmetric sprays.

  8. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  9. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  10. Circulating fluidized bed tehnology in biomass combustion-performance, advances and experiences

    SciTech Connect

    Mutanen, K.I.

    1995-11-01

    Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the US the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.

  11. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  12. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    Singh, Gurpreet

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  13. Gravitational Effects on Combustion Synthesis of Advanced Porous Materials

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Thorne, K.

    2000-01-01

    Combustion Synthesis (self-Propagating high-temperature synthesis-(SHS)) of porous Ti-TiB(x), composite materials has been studied with respect to the sensitivity to the SHS reaction parameters of stoichiometry, green density, gasifying agents, ambient pressure, diluents and gravity. The main objective of this research program is to engineer the required porosity and mechanical properties into the composite materials to meet the requirements of a consumer, such as for the application of bone replacement materials. Gravity serves to restrict the gas expansion and the liquid movement during SHS reaction. As a result, gravitational forces affect the microstructure and properties of the SHS products. Reacting these SHS systems in low gravity in the KC-135 aircraft has extended the ability to form porous products. This paper will emphasize the effects of gravity (low g, 1g and 2g) on the SHS reaction process, and the microstructure and properties of the porous composite. Some of biomedical results are also discussed.

  14. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  15. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  16. Recent Advances In Science Support For Isolated Droplet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Kazakov, A.; Urban, B. D.; Kroenlein, K.

    2003-01-01

    In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research, the combustion characteristics of isolated liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be investigated. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions support the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. UCSD contributions are described in a companion communication in this conference. The Princeton effort also addresses the analyses of Fiber Supported Droplet Combustion (FSDC) experiments conducted with the above fuels and collaborative work with others who are investigating droplet combustion in the presence of steady convection. A thorough interpretation of droplet burning behavior for n-heptane and n-decane over a relatively wide range of conditions also involves the influences of sooting on the combustion behavior, and this particular aspect on isolated burning of droplets is under consideration in a collaborative program underway with Drexel University. This collaboration is addressed in another communication at this conference. The one-dimensional, time-dependent, numerical modeling approach that we have continued to evolve for analyzing isolated, quiescent droplet combustion data has been further applied to investigate several facets of isolated droplet burning of simple alcohols, n-heptane, and n-decane. Some of the new results are described below.

  17. Aerothermal environment induced by mismatch at the SSME main combustion chamber-nozzle joint

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; O'Farrell, J. M.; Olive, T. A.; Brown, G. B.; Holt, J. B.

    1990-01-01

    The computational study reported here is motivated by a Space Shuttle main engine hardware problem detected in post-flight and post-test inspections. Of interest are the potential for hot gas ingestion into the joint (G15) at the main combustion chamber-to-nozzle interface and the effect of particular goemetric nonuniformities on that gas ingestion. The flowfield in the G15 region involves supersonic flow past a rounded forward facing step preceded by a deep narrow cavity. This paper describes the physical problem associated with joint G15 and computational investigations of the G15 aerothermal environment. The associated flowfield was simulated in two and three space dimensions using the United Solutions Algorithm (USA) computational fluid dynamics code series. A benchmark calculation of experimentally measured supersonic flow over of a square cavity was performed to demonstrate the accuracy of the USA code in analyzing flows similar to the G15 computational flowfield. The G15 results demonstrate the mechanism for hot gas ingestion into the joint and reveal the sensitivity to salient geometric nonuniformities.

  18. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen / Liquid Methane Main Engine

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.

    2014-01-01

    The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.

  19. STE thrust chamber technology: Main injector technology program and nozzle Advanced Development Program (ADP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose of the STME Main Injector Program was to enhance the technology base for the large-scale main injector-combustor system of oxygen-hydrogen booster engines in the areas of combustion efficiency, chamber heating rates, and combustion stability. The initial task of the Main Injector Program, focused on analysis and theoretical predictions using existing models, was complemented by the design, fabrication, and test at MSFC of a subscale calorimetric, 40,000-pound thrust class, axisymmetric thrust chamber operating at approximately 2,250 psi and a 7:1 expansion ratio. Test results were used to further define combustion stability bounds, combustion efficiency, and heating rates using a large injector scale similar to the Pratt & Whitney (P&W) STME main injector design configuration including the tangential entry swirl coaxial injection elements. The subscale combustion data was used to verify and refine analytical modeling simulation and extend the database range to guide the design of the large-scale system main injector. The subscale injector design incorporated fuel and oxidizer flow area control features which could be varied; this allowed testing of several design points so that the STME conditions could be bracketed. The subscale injector design also incorporated high-reliability and low-cost fabrication techniques such as a one-piece electrical discharged machined (EDMed) interpropellant plate. Both subscale and large-scale injectors incorporated outer row injector elements with scarfed tip features to allow evaluation of reduced heating rates to the combustion chamber.

  20. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  1. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect

    Confer, Keith

    2014-12-18

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  2. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  3. Instrumentation advances in emissions characterization from propellant/explosive combustion

    SciTech Connect

    Einfeld, W.; Morrison, D.J.; Mullins, S.E.

    1995-12-31

    Results from a chamber study to characterize emissions from combustion of selected pure energetic materials are presented in this paper. The study was carried out as a part of a comprehensive air pathways risk assessment for a propellant and explosive manufacturing facility that engages in open burning methods for manufacturing waste disposal. Materials selected for emissions characterization in this study included both aluminized and non-aluminized composite propellant, a double base propellant and a plastic bonded explosive. Combustion tests in a specialized chamber revealed very low emissions for gaseous products of incomplete combustion such as carbon monoxide and nitrogen oxides. Analysis of gaseous and aerosol emission products for a pre-selected target analyte list that included both volatile and semi-volatile organics revealed either low or non-detectable emissions for the four energetic types tested. Hydrogen chloride was detected as a major emission product from propellants containing ammonium perchlorate. Results from this work reveal that about one-half of the chlorine in the original material is released as hydrogen chloride. Based on earlier work, the balance of the chlorine emissions is expected to be in the form of chlorine gas.

  4. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen/Liquid Methane Main Engine

    NASA Technical Reports Server (NTRS)

    Melcher, J. C.; Morehead, Robert L.

    2014-01-01

    The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sea-level ground-based testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). High-amplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheus-specific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSC-designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chill-in, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., sub-cooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX

  5. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  6. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  7. Advanced combustion technologies for gas turbine power plants

    SciTech Connect

    Vandsburger, U.; Roe, L.A.; Desu, S.B.

    1995-12-31

    Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

  8. The Effects of Gravity on Combustion and Structure Formation During Synthesis of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Varma, A.; Pelekh, A.; Mukasyan, A.

    1999-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity experiments can lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The general goals of the current research are: 1) to improve the understanding of fundamental phenomena taking place during combustion of heterogeneous systems, 2) to use low-gravity experiments for insight into the physics and chemistry of materials synthesis processes, and 3) based on the obtained knowledge, to optimize processing conditions for synthesis of advanced materials with desired microstructures and properties. This research follows logically from the results of investigations we have conducted in the framework of our previous grant on gravity influence on combustion synthesis (CS) of gasless systems. Prior work, by others and by us, has clearly demonstrated that gravity plays an important role during combustion synthesis of materials. The immediate tasks for the future are to quantitatively identify the nature of observed effects, and to create accurate local kinetic models of the processes, which can lead to a control of the microstructure and properties of the synthesized materials. In summary, this is the value of the proposed research. Based on our prior work, we focus on the fundamental

  9. Laboratory Demonstrations for PDE and Metals Combustion at NASA MSFC's Advanced Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides status reporting on activities under order no. H-30549 for the period December 1 through December 31, 1999. Details the activities of the contract in the coordination of planned conduct of experiments at the MSFC Advanced Propulsion Laboratory in pulse detonation MHD power production and metals combustion.

  10. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  11. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  12. Advanced Laser Based Measurements in Porous Media Combustion

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.

    2009-01-01

    We present measurements using dual-pump dual-broadband coherent anti-Stokes Raman scattering spectroscopy (DP-DBB-CARS) inside a porous media burner. This work continues our previous measurements in such combustion systems. The existing setup was significantly modified with the aim of providing improved data quality and data rate, reduction of interferences and additional species information. These changes are presented and discussed in detail. The CARS technique was expanded to a dual-pump dual-broadband CARS system which in principle enables acquisition of temperatures together with relative H2/N2- and O2/N2- species concentrations. Experimental complexity was reduced by the use of a modified spectrometer enabling the detection of both signals, vibrational and rotational CARS, with only one detection system.

  13. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  14. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    NASA Astrophysics Data System (ADS)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two

  15. Advanced combustion technologies for gas turbine power plants

    SciTech Connect

    Vandsburger, U.; Desu, S.B.; Roe, L.A.

    1995-10-01

    During the second half of fiscal year 1995 progress was made in all three funded subject areas of the project as well as in a new area. Work in the area of mixing and combustion management through flow actuation was transferred into an enclosed facility. Jet mixing in a ducted co-flow was examined. The same jets were also subjected to a strong acoustic field established in the duct. Excitation of the jet with static spatial modes was shown to be effective even in the presence of co-flow and the acoustic field. Only when a wall is placed at the jet exit plane did the acoustic field dominate the jet dispersion (as expected due to reflective boundary conditions and the jet shear layer receptivity). This case is, however, not the most relevant to gas turbine combustors since it precludes co-flow. In the area of combustor testing, the design, fabrication, and assembly of a modular combustor test rig for project has been completed at the University of Arkansas. In the area of high temperature piezoceramic actuator materials development, Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} powders have been synthesized, and bulk samples and thick films sintered. These materials have a curie temperature of about 1400{degrees}C compared with 300{degrees}C for the commercially available PZT. While at room temperature the new materials show a piezoelectric constant (d{sub 33}) which is a factor of 100 lower than PZT, at high temperatures they can exhibit significant action. A new area of non-linear, neural-net based, controllers for mixing and combustion control has been added during the second contract year. This work is not funded by the contract. Significant progress was made in this area. Neural nets with up to 15 neurons in the hidden layer were trained with experimental data and also with data generated using linear stability theory. System ID was performed successfully. The network was then used to predict the behavior of jets excited at other modes not used for the training.

  16. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  17. Task 2: Materials for Advanced Boiler and Oxy-combustion Systems

    SciTech Connect

    Holcolm, Gordon R.; McGhee, Barry

    2009-05-01

    The PowerPoint presentation provides an overview of the tasks for the project: Characterize advanced boiler (oxy-fuel combustion, biomass co-fired) gas compositions and ash deposits; Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardization; Generate critical data for coating systems for use in advanced boiler systems; Generate critical data for flue gas recycle piping materials for oxy-fuel systems; and, Compile materials performance data from laboratory and pilot plant exposures of candidate alloys for use in advanced boiler systems.

  18. Test Protocols for Advanced Inverter Interoperability Functions – Main Document

    SciTech Connect

    Johnson, Jay Dean; Gonzalez, Sigifredo; Ralph, Mark E.; Ellis, Abraham; Broderick, Robert Joseph

    2013-11-01

    Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated on grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not currently required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already

  19. Application of advanced laser diagnostics to hypersonic wind tunnels and combustion systems.

    SciTech Connect

    North, Simon W.; Hsu, Andrea G.; Frank, Jonathan H.

    2009-09-01

    This LDRD was a Sandia Fellowship that supported Andrea Hsu's PhD research at Texas A&M University and her work as a visitor at Sandia's Combustion Research Facility. The research project at Texas A&M University is concerned with the experimental characterization of hypersonic (Mach>5) flowfields using experimental diagnostics. This effort is part of a Multidisciplinary University Research Initiative (MURI) and is a collaboration between the Chemistry and Aerospace Engineering departments. Hypersonic flight conditions often lead to a non-thermochemical equilibrium (NTE) state of air, where the timescale of reaching a single (equilibrium) Boltzmann temperature is much longer than the timescale of the flow. Certain molecular modes, such as vibrational modes, may be much more excited than the translational or rotational modes of the molecule, leading to thermal-nonequilibrium. A nontrivial amount of energy is therefore contained within the vibrational mode, and this energy cascades into the flow as thermal energy, affecting flow properties through vibrational-vibrational (V-V) and vibrational-translational (V-T) energy exchanges between the flow species. The research is a fundamental experimental study of these NTE systems and involves the application of advanced laser and optical diagnostics towards hypersonic flowfields. The research is broken down into two main categories: the application and adaptation of existing laser and optical techniques towards characterization of NTE, and the development of new molecular tagging velocimetry techniques which have been demonstrated in an underexpanded jet flowfield, but may be extended towards a variety of flowfields. In addition, Andrea's work at Sandia National Labs involved the application of advanced laser diagnostics to flames and turbulent non-reacting jets. These studies included quench-free planar laser-induced fluorescence measurements of nitric oxide (NO) and mixture fraction measurements via Rayleigh scattering.

  20. Markets for small-scale, advanced coal-combustion technologies

    SciTech Connect

    Placet, M.; Kenkeremath, L.D.; Streets, D.G.; Dials, G.E.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1988-12-01

    This report examines the potential of using US-developed advanced coal technologies (ACTs) for small combustors in foreign markets; in particular, the market potentials of the member countries of the Organization of Economic Co-operation and Development (OECD) were determined. First, the United States and those OECD countries with very low energy demands were eliminated. The remaining 15 countries were characterized on the basis of eight factors that would influence their decision to use US ACTs: energy plan and situation, dependence on oil and gas imports, experience with coal, residential/commercial energy demand, industrial energy demand, trade relationship with the United States, level of domestic competition with US ACT manufacturers, and environmental pressure to use advanced technology. Each country was rated high, medium-high, low-medium, or low on each factor, based on statistical and other data. The ratings were then used to group the countries in terms of their relative market potential (good, good but with impediments, or limited). The best potential markets appear to be Spain, Italy, turkey, Greece, and Canada. 25 refs., 1 fig., 37 tabs.

  1. An Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants

    NASA Technical Reports Server (NTRS)

    Beckstead, M. W.

    2000-01-01

    Ammonium perchlorate (AP) and cyclotretamethylenetetranitramine (HMX) are two solid ingredients often used in modern solid propellants. Although these two ingredients have very similar burning rates as monopropellants, they lead to significantly different characteristics when combined with binders to form propellants. Part of the purpose of this paper is to relate the observed combustion characteristics to the postulated flame structures and mechanisms for AP and HMX propellants that apparently lead to these similarities and differences. For AP composite, the primary diffusion flame is more energetic than the monopropellant flame, leading to an increase in burning rate over the monopropellant rate. In contrast the HMX primary diffusion flame is less energetic than the HMX monopropellant flame and ultimately leads to a propellant rate significantly less than the monopropellant rate in composite propellants. During the past decade the search for more energetic propellants and more environmentally acceptable propellants is leading to the development of propellants based on ingredients other than AP and HMX. The objective of this paper is to utilize the more familiar combustion characteristics of AP and HMX containing propellants to project the combustion characteristics of propellants made up of more advanced ingredients. The principal conclusion reached is that most advanced ingredients appear to burn by combustion mechanisms similar to HMX containing propellants rather than AP propellants.

  2. Advanced combustion techniques for controlling NO/x/ emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments have been and continue to be sponsored and conducted by NASA to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere. Of particular concern are the oxides of nitrogen (NO/x/) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NO/x/ emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  3. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  4. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the

  5. Advanced combustion, emission control, health impacts, and fuels merit review and peer evaluation

    SciTech Connect

    None, None

    2006-10-01

    This report is a summary and analysis of comments from the Advisory Panel at the FY 2006 DOE National Laboratory Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation, held May 15-18, 2006 at Argonne National Laboratory. The work evaluated in this document supports the FreedomCAR and Vehicle Technologies Program. The results of this merit review and peer evaluation are major inputs used by DOE in making its funding decisions for the upcoming fiscal year.

  6. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  7. Comparison of ash behavior of different fuels in fluidised bed combustion using advanced fuel analysis and global equilibrium calculations

    SciTech Connect

    Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.; Backman, R.; Hupa, M.

    1999-07-01

    The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral content can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.

  8. A flammability and combustion model for integrated accident analysis. [Advanced light water reactors

    SciTech Connect

    Plys, M.G.; Astleford, R.D.; Epstein, M. )

    1988-01-01

    A model for flammability characteristics and combustion of hydrogen and carbon monoxide mixtures is presented for application to severe accident analysis of Advanced Light Water Reactors (ALWR's). Flammability of general mixtures for thermodynamic conditions anticipated during a severe accident is quantified with a new correlation technique applied to data for several fuel and inertant mixtures and using accepted methods for combining these data. Combustion behavior is quantified by a mechanistic model consisting of a continuity and momentum balance for the burned gases, and considering an uncertainty parameter to match the idealized process to experiment. Benchmarks against experiment demonstrate the validity of this approach for a single recommended value of the flame flux multiplier parameter. The models presented here are equally applicable to analysis of current LWR's. 21 refs., 16 figs., 6 tabs.

  9. Combustion synthesis of advanced materials: Studies of the influence of gravity and reaction kinetics

    NASA Astrophysics Data System (ADS)

    Pelekh, Aleksey Yevgeuyevich

    Combustion synthesis is an attractive technique to synthesize a wide variety of advanced materials that include powders and near-net shape products of ceramics, intermetallics, composites and functionally gradient materials. It is also considered to be a valuable method for space applications, because of low energy requirements and simple equipment. However, it is necessary to understand how microgravity influences the combustion mechanism and properties of the synthesized materials. In this work, combustion synthesis experiments were conducted both in normal and in low-gravity conditions, using a unique setup designed and developed for this purpose. Microgravity experiments were done in NASA Lewis Research Center using Drop Tower which provided 2.2 s of 10-5 g level, as well as on-board DC-9 aircraft (20 s of 10-2 g). It was clearly demonstrated that gravity plays an important role during combustion synthesis. It significantly influences both the combustion and structure formation processes. It was also shown that microgravity conditions allow the synthesis of materials with improved micro- and macrostructures. The study of chemical reaction kinetics in combustion synthesis systems is of critical importance. The measurement of kinetic parameters (especially activation energy) and a comparison with known elementary processes provides an insight into the controlling step of the mechanism. In this work, a computer-assisted electrothermography method was developed to determine the intrinsic kinetics of reactions under conditions similar to those realized during combustion synthesis of materials. This technique was applied to investigate the kinetics and other features associated with the reaction of titanium with nitrogen at 1 atm pressure. It was shown that at temperatures below the melting point of titanium, the reaction follows parabolic rate law. The obtained activation energy value is in good agreement with literature data. At higher temperatures, however, the

  10. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in

  11. Adaptation of the Advanced Spray Combustion Code to Cavitating Flow Problems

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A very important consideration in turbopump design is the prediction and prevention of cavitation. Thus far conventional CFD codes have not been generally applicable to the treatment of cavitating flows. Taking advantage of its two-phase capability, the Advanced Spray Combustion Code is being modified to handle flows with transient as well as steady-state cavitation bubbles. The volume-of-fluid approach incorporated into the code is extended and augmented with a liquid phase energy equation and a simple evaporation model. The strategy adopted also successfully deals with the cavity closure issue. Simple test cases will be presented and remaining technical challenges will be discussed.

  12. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    SciTech Connect

    Taylor, J.; Li, H.; Neill, S.

    2006-08-01

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  13. Advanced Monitoring to Improve Combustion Turbine/Combined Cycle Reliability, Availability & Maintainability

    SciTech Connect

    Leonard Angello

    2005-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established Operation and Maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that, in real time, interpret data to assess the 'total health' of combustion turbines. The 'Combustion Turbine Health Management System' (CTHMS) will consist of a series of 'Dynamic Link Library' (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. CTHMS interprets sensor and instrument outputs, correlates them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, the CTHMS enables real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  14. Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie

    1999-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.

  15. Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility

    DOE PAGES

    Lawler, Benjamin; Splitter, Derek; Szybist, James; ...

    2017-03-01

    We introduce a new advanced combustion mode, called Thermally Stratified Compression Ignition (TSCI), which uses direct water injection to control both the average temperature and the temperature distribution prior to ignition, thereby providing cycle-to-cycle control over the start and rate of heat release in Low Temperature Combustion (LTC). Experiments were conducted to fundamentally understand the effects of water injection on heat release in LTC. Our results show that water injection retards the start of combustion due to the latent heat of vaporization of the injected water. Furthermore, for start of water injection timings between 20 and 70 degrees before topmore » dead center, combustion is significantly elongated compared to without water injection. The 10–90% burn duration with 6.6 and 9.0 mg of water per cycle was 77% and 146% longer than without water injection, respectively. Forced thermal stratification result from a direct water injection which reduces the heat release rate by local evaporative cooling. Finally, the load limits with and without water injection were determined experimentally. Without water injection, the load range was 2.3–3.6 bar gross IMEP. By using water injection to control heat release, the load range in TSCI was 2.3–8.4 bar gross IMEP, which is a range expansion of over 350%. These results demonstrate that direct water injection can provide significant improvements to both controllability and the range of operability of LTC, thereby resolving the major challenges associated with HCCI.« less

  16. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    SciTech Connect

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  17. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE (CT)/COMBINED CYCLE (CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2002-04-01

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. Such systems would interpret sensor and instrument outputs, correlate them to the machine's condition, provide interpretative analyses, forward projections of servicing intervals, estimate remaining component life, and identify faults. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and

  18. Advanced exergoenvironmental analysis of a near-zero emission power plant with chemical looping combustion.

    PubMed

    Petrakopoulou, Fontina; Tsatsaronis, George; Morosuk, Tatiana

    2012-03-06

    Carbon capture and storage (CCS) from power plants can be used to mitigate CO(2) emissions from the combustion of fossil fuels. However, CCS technologies are energy intensive, decreasing the operating efficiency of a plant and increasing its costs. Recently developed advanced exergy-based analyses can uncover the potential for improvement of complex energy conversion systems, as well as qualify and quantify plant component interactions. In this paper, an advanced exergoenvironmental analysis is used for the first time as means to evaluate an oxy-fuel power plant with CO(2) capture. The environmental impacts of each component are split into avoidable/unavoidable and endogenous/exogenous parts. In an effort to minimize the environmental impact of the plant operation, we focus on the avoidable part of the impact (which is also split into endogenous and exogenous parts) and we seek ways to decrease it. The results of the advanced exergoenvironmental analysis show that the majority of the environmental impact related to the exergy destruction of individual components is unavoidable and endogenous. Thus, the improvement potential is rather limited, and the interactions of the components are of lower importance. The environmental impact of construction of the components is found to be significantly lower than that associated with their operation; therefore, our suggestions for improvement focus on measures concerning the reduction of exergy destruction and pollutant formation.

  19. Ignition and combustion temperatures determined by laser heating. [for metals deriving from failures in development of Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.

    1986-01-01

    A laser heating technique and facility have been developed to study metal ignition and combustion in high-pressure oxygen. The ignition and combustion temperatures, estimates of oxidation rates, and ignition and combustion morphology can be determined. This facility and the laser heating techniques are described. Examples of the type of data obtained are presented and discussed. The ignition temperature curves for an aluminum alloy - Unified Numbering System (UNS) A96061, a stainless steel - UNS S30200, and two nickel alloys - UNS N07718 and N04400 are given.

  20. Linkages from DOE’s Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines

    SciTech Connect

    Ruegg, Rosalie; Thomas, Patrick

    2011-06-01

    This report uses bibliometric analysis, supported by interview and review of documents and databases, to trace linkages from knowledge outputs resulting from DOE's advances in vehicle engine combustion to downstream innovations in commercial diesel engines and other areas. This analysis covers the period from 1974 through 2008 (and in some cases to early 2009).

  1. SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS

    SciTech Connect

    Caughey, David

    2010-10-08

    A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

  2. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  3. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  4. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  5. Introductory lecture. Advanced laser spectroscopy in combustion chemistry: from elementary steps to practical devices.

    PubMed

    Wolfrum, J

    2001-01-01

    In recent years a large number of linear and nonlinear laser-based diagnostic techniques for nonintrusive measurements of species concentrations, temperatures, and gas velocities in a wide pressure and temperature range with high temporal and spatial resolution have been developed and have become extremely valuable tools to study many aspects of combustion. Beside the nonintrusive diagnostics of technical combustion devices the kinetics and microscopic dynamics of elementary chemical combustion reactions can be investigated in great detail by laser spectroscopy. These investigations show, that a small number of relatively simple elementary steps like H + O2-->OH + O, H2O2-->2OH, O + N2-->NO + N, NH2 + NO-->H2O + N2, OH + N2H control a large variety of combustion phenomena and pollutant formation processes. Laminar flames are ideal objects to develop the application of laser spectroscopic methods for practical combustion systems and to test and improve the gas-phase reaction mechanism in combustion models. Nonintrusive laser point and field measurements are of basic importance in the validation and further development of turbulent combustion models. Nonlinear laser spectroscopic techniques using infrared-visible sum-frequency generation can now bridge the pressure and materials gap to provide kinetic data for catalytic combustion. Finally, the potential of laser techniques for active combustion control in municipal waste incinerators is illustrated.

  6. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  7. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines

    SciTech Connect

    Bunting, Bruce G; Bunce, Michael

    2012-01-01

    Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels

  8. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  9. Development of an Advanced Flameless Combustion Heat Source Utilizing Heavy Fuels

    DTIC Science & Technology

    2010-07-01

    captive flameless heat generation. CDI’s unique success in achieving stabilization in captive combustion for light fuels such as methanol, ethanol and...7 4.3.2 Light Fuel Testing/Calibration (Methanol and Ethanol ).............................................. 10 4.3.3 Heavy Fuel Testing...9 Figure 3. Catalytic Combustion Data for Methanol & Ethanol ...................................................11 Figure 4. Catalytic

  10. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  11. Computational Combustion

    SciTech Connect

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  12. Advances in Turbulent Combustion Dynamics Simulations in Bluff-Body Stabilized Flames

    NASA Astrophysics Data System (ADS)

    Tovar, Jonathan Michael

    This work examines the three main aspects of bluff-body stabilized flames: stationary combustion, lean blow-out, and thermo-acoustic instabilities. For the cases of stationary combustion and lean blow-out, an improved version of the Linear Eddy Model approach is used, while in the case of thermo-acoustic instabilities, the effect of boundary conditions on the predictions are studied. The improved version couples the Linear Eddy Model with the full-set of resolved scale Large Eddy Simulation equations for continuity, momentum, energy, and species transport. In traditional implementations the species equations are generally solved using a Lagrangian method which has some significant limitations. The novelty in this work is that the Eulerian species concentration equations are solved at the resolved scale and the Linear Eddy Model is strictly used to close the species production term. In this work, the improved Linear Eddy Model approach is applied to predict the flame properties inside the Volvo rig and it is shown to over-predict the flame temperature and normalized velocity when compared to experimental data using a premixed single step global propane reaction with an equivalence ratio of 0.65. The model is also applied to predict lean blow-out and is shown to predict a stable flame at an equivalence ratio of 0.5 when experiments achieve flame extinction at an equivalence ratio of 0.55. The improved Linear Eddy Model is, however, shown to be closer to experimental data than a comparable reactive flow simulation that uses laminar closure of the species source terms. The thermo-acoustic analysis is performed on a combustor rig designed at the Air Force Research Laboratory. The analysis is performed using a premixed single step global methane reaction for laminar reactive flow and shows that imposing a non-physical boundary condition at the rig exhaust will result in the suppression of acoustic content inside the domain and can alter the temperature contours in non

  13. Combustion of high-sulfur coal and anthracite wastes in a rotary kiln combustor with an advanced internal air distributor

    SciTech Connect

    Cobb, J.T. Jr. ); Ahn, Y.K. ); Angelo, J.F. )

    1990-01-01

    Fluid bed combustors have received extensive testing with both high-sulfur coal and anthracite wastes. Rotary kilns are effective and popular devices for waste combustion. The Angelo Rotary Furnace{trademark} has been developed to improve the operation of rotary pyrolyzer/combustor systems through enhanced air distribution, which in this process is defined as staged, swirled combustion air injection. Fourteen of these new furnaces have been installed worldwide. Two units in Thailand, designed for rice hull feed with occasional lignite feed, have been recently started up. An older unit in Pennsylvania is being upgraded with a new, more advanced air distribution system for a series of tests this fall in which inexpensive high-sulfur coal and anthracite wastes will be fired with limestone. The purposes of these tests are to determine the burning characteristics of these two fuels in this system, to discover the Ca/S ratios necessary for operation of a rotary kiln combusting these fuels, and to observe the gas-borne emissions from the furnace. An extensive preliminary design study will be performed on a commercial installation for combustion of anthracite wastes. 14 refs., 5 figs., 1 tab.

  14. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    PubMed

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and magnesium

  15. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus

    PubMed Central

    2014-01-01

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%–95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and

  16. Advanced interface heat exchangers for the Space Station main thermal bus

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.

    1990-01-01

    Future evolution and growth of the Space Station will place increasing demands on the thermal management system by the addition of new payloads and from increased activity in the habitat modules. To meet this need, Creare is developing advanced evaporators, condensors, and single-phase heat exchangers for operation in microgravity. The objective is to achieve a several-fold increase in the heat flux capability of these components, while operating at the same temperature difference as specified for the present interface heat exchangers. Two prototype interface heat exchangers are presently being developed: one to interface the main thermal bus to a payload two-phase ammonia bus, and the other, to interface with the crew module single-phase water loop. The results achieved to date in the development of these heat exchangers are reviewed.

  17. Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants

    SciTech Connect

    I. Surez-Ruiz; J.C. Hower; G.A. Thomas

    2007-01-15

    In this work, the petrology and chemistry of fly ashes produced in a Spanish power plant from the combustion of complex pulverized feed blends made up of anthracitic/meta-anthracitic coals, petroleum, and natural coke are investigated. It was found that the behavior of fly ash carbons derived from anthracitic coals follows relatively similar patterns to those established for the carbons from the combustion of bituminous coals. Fly ashes were sampled in eight hoppers from two electrostatic precipitator (ESP) rows. The characterization of the raw ashes and their five sieved fractions (from {gt}150 to {lt}25 {mu}m) showed that glassy material, quartz, oxides, and spinels in different proportions are the main inorganic components. As for the organic fraction, the dominant fly ash carbons are anisotropic carbons, mainly unburned carbons derived from anthracitic vitrinite. The concentration of Se and Hg increased in ashes of the second ESP row, this increase being related to the higher proportion of anisotropic unburned carbons, particularly those largely derived from anthracitic vitrinite in the cooler ashes of the ESP (second row) and also related to the decrease in the flue gas temperature. This suggests that the flue gas temperature plays a major role in the concentration of mercury for similar ratios of unburned carbons. It was also found that Hg is highly concentrated in the medium-coarser fractions of the fly ashes ({gt} 45 {mu}m), there being a positive relationship between the amount of these carbons, which are apparently little modified during the combustion process, in the medium-coarse fractions of the ashes and the Hg retention. According to the results obtained, further research on this type of fly ash could be highly productive. 28 refs., 10 figs., 8 tabs.

  18. Combustion synthesis of advanced materials. [using in-situ infiltration technique

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.

    1992-01-01

    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  19. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    SciTech Connect

    Manowitz, B.

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  20. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2004-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  1. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2004-03-31

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  2. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  3. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC)

    SciTech Connect

    Dr. Seong W. Lee

    1998-10-01

    The objective of this project is to predict the heat transfer and combustion performance in newly-designed fluidized bed combustor (FBC) and to provide the design guide lines and innovative concept for small-scale boiler and furnace. The major accomplishments are summarized.

  4. Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements

    NASA Astrophysics Data System (ADS)

    Tedder, Sarah Augusta Umberger

    Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air- breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (˜10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were identified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows fueled

  5. Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah Augusta Umberger

    2010-01-01

    Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows

  6. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  7. Advances in the research and development of natural health products as main stream cancer therapeutics.

    PubMed

    Ovadje, Pamela; Roma, Alessia; Steckle, Matthew; Nicoletti, Leah; Arnason, John Thor; Pandey, Siyaram

    2015-01-01

    Natural health products (NHPs) are defined as natural extracts containing polychemical mixtures; they play a leading role in the discovery and development of drugs, for disease treatment. More than 50% of current cancer therapeutics are derived from natural sources. However, the efficacy of natural extracts in treating cancer has not been explored extensively. Scientific research into the validity and mechanism of action of these products is needed to develop NHPs as main stream cancer therapy. The preclinical and clinical validation of NHPs would be essential for this development. This review summarizes some of the recent advancements in the area of NHPs with anticancer effects. This review also focuses on various NHPs that have been studied to scientifically validate their claims as anticancer agents. Furthermore, this review emphasizes the efficacy of these NHPs in targeting the multiple vulnerabilities of cancer cells for a more selective efficacious treatment. The studies reviewed here have paved the way for the introduction of more NHPs from traditional medicine to the forefront of modern medicine, in order to provide alternative, safer, and cheaper complementary treatments for cancer therapy and possibly improve the quality of life of cancer patients.

  8. Advances in the Research and Development of Natural Health Products as Main Stream Cancer Therapeutics

    PubMed Central

    Ovadje, Pamela; Roma, Alessia; Steckle, Matthew; Nicoletti, Leah; Arnason, John Thor; Pandey, Siyaram

    2015-01-01

    Natural health products (NHPs) are defined as natural extracts containing polychemical mixtures; they play a leading role in the discovery and development of drugs, for disease treatment. More than 50% of current cancer therapeutics are derived from natural sources. However, the efficacy of natural extracts in treating cancer has not been explored extensively. Scientific research into the validity and mechanism of action of these products is needed to develop NHPs as main stream cancer therapy. The preclinical and clinical validation of NHPs would be essential for this development. This review summarizes some of the recent advancements in the area of NHPs with anticancer effects. This review also focuses on various NHPs that have been studied to scientifically validate their claims as anticancer agents. Furthermore, this review emphasizes the efficacy of these NHPs in targeting the multiple vulnerabilities of cancer cells for a more selective efficacious treatment. The studies reviewed here have paved the way for the introduction of more NHPs from traditional medicine to the forefront of modern medicine, in order to provide alternative, safer, and cheaper complementary treatments for cancer therapy and possibly improve the quality of life of cancer patients. PMID:25883673

  9. Main Technological Advancements in Bacterial Bioluminescent Biosensors Over the Last Two Decades.

    PubMed

    Jouanneau, S; Durand, M J; Lahmar, A; Thouand, G

    2015-10-17

    Environmental quality assessment is an extensive field of research due to the permanent increase of the stringency imposed by the legislative framework. To complete the wide panel of measurement methods, essentially based on physicochemical tools, some scientists focused on the development of alternative biological methods such as those based on the use of bioluminescent bacteria biosensors. The first report dedicated to the development of such biosensors dates back to 1967 and describes an analytical system designed to address the problem of air toxicity assessment. Nevertheless the available technologies in the photosensitive sensors field were not mature enough and, as a result, limited biosensor development possibilities. For about 20 years, the wide democratisation of photosensors coupled with advances in the genetic engineering field have allowed the expansion of the scope of possibilities of bioluminescent bacterial biosensors, allowing a significant emergence of these biotechnologies. This chapter retraces the history of the main technological evolutions that bacterial bioluminescent biosensors have known over the last two decades. Graphical Abstract.

  10. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)

    SciTech Connect

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

  11. Wind-tunnel evaluation of an advanced main-rotor blade design for a utility-class helicopter

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Mantay, Wayne R.; Wilbur, Matthew L.; Cramer, Robert G., Jr.; Singleton, Jeffrey D.

    1987-01-01

    An investigation was conducted in the Langley Transonic Dynamics Tunnel to evaluate differences between an existing utility-class main-rotor blade and an advanced-design main-rotor blade. The two rotor blade designs were compared with regard to rotor performance oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Tests were conducted in hover and over a range of simulated full-scale gross weights and density altitude conditions at advance ratios from 0.15 to 0.40. Results indicate that the advanced blade design offers performance improvements over the baseline blade in both hover and forward flight. Pitch-link oscillatory loads for the baseline rotor were more sensitive to the test conditions than those of the advanced rotor. The 4-per-rev vertical fixed-system load produced by the advanced blade was larger than that produced by the baseline blade at all test conditions.

  12. Advances in Turbulent Combustion Dynamics Simulations in Bluff-Body Stabilized Flames-Body Stabilized Flames

    DTIC Science & Technology

    2015-11-30

    stationary combustion and lean blow-out, an improved version of the Linear Eddy Model approach is used, while in the case of thermo-acoustic...instabilities, the effect of boundary conditions on the predictions are studied. The improved version couples the Linear Eddy Model with the full-set of... improved Linear Eddy Model approach is applied to predict the flame properties inside the Volvo rig and it is shown to over-predict the flame

  13. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  14. Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

    SciTech Connect

    Chad Smutzer

    2010-01-31

    Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a

  15. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively

  16. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2003-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. Such systems would interpret sensor and instrument outputs, correlate them to the machine's condition, provide interpretative analyses, forward projections of servicing intervals, estimate remaining component life, and identify faults. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and

  17. Advanced distribution, switching, and conversion technology for fluids/combustion facility electric power control

    NASA Astrophysics Data System (ADS)

    Poljak, Mark D.; Soltis, James V.; Fox, David A.

    1997-01-01

    The Electrical Power Control Unit (EPCU) under development for use in the Fluids/Combustion Facility (FCF) on International Space Station (ISS) is the precursor of modular power distribution and conversion concepts for future high power and small spacecraft applications. The EPCU is built from modular, current limiting Flexible Remote Power Controllers (FRPCs) and paralleled power converters packaged into a common orbital replacement unit. Multiple EPCUs are combined at the next higher level of integration to form the three-rack FCF Electrical Power System (EPS). This modular building block approach allows for the quick development of expandable power systems tailored to customer needs.

  18. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  19. INVESTIGATION OF HEAT TRANSFER AND COMBUSTION IN THE ADVANCED FLUIDIZED BED COMBUSTOR (FBC)

    SciTech Connect

    Dr. Seong W. Lee

    1998-04-01

    This technical report summarizes the research conducted and progress achieved during the period from January 1, 1998 to March 31, 1998. The systematic combustion tests were conducted to investigate the thermal performance and heat transfer effect of the exploratory hot model. The different ratios of the top to the bottom secondary air flow rate were chosen to study the effect of the secondary air flow rate. The test results indicated that the secondary air flow rate was a very sensitive factor to the combustion temperature profile. The heat transfer coefficients were changed along the combustor height. Numerical simulation was continued to determine the pressure profiles and temperature profiles in the hot combustor model. The pressure change at the bottom is greater than that of the top region because of a large amount of primary air input. The higher pressure zone is formed where the secondary air flows into the center region of the combustor. The high temperature zone of the bottom section is located at the fuel injector nozzle outlet. The lower temperature profiles were near the combustor wall because the cooling effect of the heat exchanger. The center temperature of the combustor at the upper secondary air nozzles is higher than that at the lower secondary air nozzles.

  20. Advanced radiation techniques for inspection of diesel engine combustion chamber materials components. Final report

    SciTech Connect

    1995-10-09

    Heavy duty truck engines must meet stringent life cycle cost and regulatory requirements. Meeting these requirements has resulted in convergence on 4-stroke 6-in-line, turbocharged, and after-cooled engines with direct-injection combustion systems. These engines provide much higher efficiencies (42%, fuel consumption 200 g/kW-hr) than automotive engines (31%, fuel consumption 270 g/kW-hr), but at higher initial cost. Significant near-term diesel engine improvements are necessary and are spurred by continuing competitive, Middle - East oil problems and Congressional legislation. As a result of these trends and pressures, Caterpillar has been actively pursuing a low-fuel consumption engine research program with emphasis on product quality through process control and product inspection. The goal of this project is to combine the nondestructive evaluation and computational resources and expertise available at LLNL with the diesel engine and manufacturing expertise of the Caterpillar Corporation to develop in-process monitoring and inspection techniques for diesel engine combustion chamber components and materials. Early development of these techniques will assure the optimization of the manufacturing process by design/inspection interface. The transition from the development stage to the manufacturing stage requires a both a thorough understanding of the processes and a way of verifying conformance to process standards. NDE is one of the essential tools in accomplishing both elements and in this project will be integrated with Caterpillar`s technological and manufacturing expertise to accomplish the project goals.

  1. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect

    Sorge, J.N.; Menzies, B.; Smouse, S.M.; Stallings, J.W.

    1995-09-01

    Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide NOx emissions from coal-fired boilers. The primary objective of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control/optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  2. Advanced coal-fueled industrial cogeneration gas turbine system -- combustion development

    SciTech Connect

    LeCren, R.T.

    1994-06-01

    This topical report summarizes the combustor development work accomplished under the subject contract. The objective was to develop a combustion system for the Solar 4MW Type H Centaur gas turbine generator set which was to be used to demonstrate the economic, technical and environmental feasibility of a direct coal-fueled gas turbine in a 100 hour proof-of-concept test. This program started with a design configuration derived during the CSC program. The design went through the following evolution: CSC design which had some known shortcomings, redesigned CSC now designated as the Two Stage Slagging Combustor (TSSC), improved TSSC with the PRIS evaluated in the IBSTF, and full scale design. Supporting and complimentary activities included computer modelling, flow visualization, slag removal, SO{sub x} removal, fuel injector development and fuel properties evaluation. Three combustor rigs were utilized: the TSSC, the IBSTF and the full scale rig at Peoria. The TSSC rig, which was 1/10th scale of the proposed system, consisted of a primary and secondary zone and was used to develop the primary zone performance and to evaluate SO{sub x} and slag removal and fuel properties variations. The IBSTF rig which included all the components of the proposed system was also 1/10th scale except for the particulate removal system which was about 1/30th scale. This rig was used to verify combustor performance data obtained on the TSSC and to develop the PRIS and the particulate removal system. The full scale rig initially included the primary and secondary zones and was later modified to incorporate the PRIS. The purpose of the full scale testing was to verify the scale up calculations and to provide a combustion system for the proof-of-concept engine test that was initially planned in the program.

  3. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC)

    SciTech Connect

    Lee, S.W.

    1999-09-01

    This technical report summarizes the research conducted and progress achieved during the period from April 1, 1998 to June 30, 1998. The numerical simulation was continued to determine the concentration distribution of the gas species, heat flux and heat transfer coefficients in the hot combustor model. The different gas concentration profiles showed the gas mixing characteristics along the combustor height. The center zone of the combustor has a relatively high methane mass concentration. The injection of secondary air squeezes the uprising flue gas and methane that causes the fuel-lean zone near the secondary air nozzles. The carbon dioxide concentration increased with the increasing of the combustor height. The peak concentration of oxygen remains at the combustor wall because of the secondary injection. The heat flux on the wall of the upper chamber is much higher than that of the lower chamber. It is believed that the heat flux is affected by the designed strong swirl and secondary air injection. The heat transfer coefficient changes along the combustor height were also affected by the multiple secondary air injection. The numerical simulation results could verify the predictions of the experimental results. It is a quite similar trend of the heat transfer coefficient changes based on the combustion test results.

  4. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Arrieta, Victor M.

    2013-01-01

    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  5. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  6. Spectrally Analyzed Embedded Infrared Fiber Optic Diagnostic of Advanced Composite Propellant Combustion

    DTIC Science & Technology

    2006-05-31

    observations, XM39. This nitramine composite propellant is 76 per cent RDX with most of the balance made up by the binder cellulose acetate butyrate and the...13 Figure 7 Predicted Model Spectrum for Pure Decomposition Gas at 6 atm with a 0.3 cm Absorption Path Length...program of in situ diagnostics and laboratory experiments has led to more advanced models of the gas phase processes in the dark zone and secondary flame

  7. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    SciTech Connect

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

  8. A Combustion Research Facility for Testing Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bur, Michael J.

    2003-01-01

    The test facility presented herein uses a groundbased rocket combustor to test the durability of new ceramic composite and metallic materials in a rocket engine thermal environment. A gaseous H2/02 rocket combustor (essentially a ground-based rocket engine) is used to generate a high temperature/high heat flux environment to which advanced ceramic and/or metallic materials are exposed. These materials can either be an integral part of the combustor (nozzle, thrust chamber etc) or can be mounted downstream of the combustor in the combustor exhaust plume. The test materials can be uncooled, water cooled or cooled with gaseous hydrogen.

  9. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    SciTech Connect

    Placet, M.; Gerry, P.A.; Kenski, D.M.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1989-09-01

    This report discusses the examination of potential overseas markets for using small-scale, US-developed, advanced coal-combustion technologies (ACTs). In previous work, member countries of the Organization for Economic Cooperation and Development (OECD) were rated on their potential for using ACTs through a comprehensive screening methodology. The three most promising OECD markets were found to be Spain, Italy, and Turkey. This report provides in-depth analyses of these three selected countries. First, it addresses changes in the European Community with particular reference to the 1992 restructuring and its potential effect on the energy situation in Europe, specifically in the three subject countries. It presents individual country studies that examine demographics, economics, building infrastructures, and energy-related factors. Potential niches for ACTs are explored for each country through regional analyses. Marketing channels, strategies, and the trading environments in each country are also discussed. The information gathered indicates that Turkey is a most promising market, Spain is a fairly promising market, and Italy appears to be a somewhat limited market for US ACTs. 76 refs., 16 figs., 14 tabs.

  10. Advances in Chromobacterium violaceum and properties of violacein-Its main secondary metabolite: A review.

    PubMed

    Durán, Nelson; Justo, Giselle Z; Durán, Marcela; Brocchi, Marcelo; Cordi, Livia; Tasic, Ljubica; Castro, Guillermo R; Nakazato, Gerson

    2016-01-01

    Chromobacterium violaceum is important in the production of violacein, like other bacteria, such as Alteromonas, Janthinobacterium, Pseudoalteromonas, Duganella, Collimonas and Escherichia. Violacein is a versatile pigment, where it exhibits several biological activities, and every year, it shows increasing commercially interesting uses, especially for industrial applications in cosmetics, medicines and fabrics. This review on violacein focuses mainly on the last five years of research regarding this target compound and describes production and importance of quorum sensing in C. violaceum, mechanistic aspects of its biosynthesis, monitoring processes, genetic perspectives, pathogenic effects, antiparasitic and antimicrobial activities, immunomodulatory potential and uses, antitumor potential and industrial applications.

  11. Advanced Neutron Source enrichment study -- Volume 1: Main report. Final report, Revision 12/94

    SciTech Connect

    Bari, R.A.; Ludewig, H.; Weeks, J.

    1994-12-31

    A study has been performed of the impact on performance of using low enriched uranium (20% {sup 235}U) or medium enriched uranium (35% {sup 235}U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% {sup 235}U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology. Volume 2 of this report contains 26 appendices containing results, meeting minutes, and fuel panel presentations.

  12. Biofuels Combustion

    NASA Astrophysics Data System (ADS)

    Westbrook, Charles K.

    2013-04-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  13. Biofuels combustion.

    PubMed

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  14. Biofuels combustion*

    SciTech Connect

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  15. Biofuels combustion*

    DOE PAGES

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  16. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  17. Industrial Combustion Technology Roadmap: A Technology Roadmap by and for the Industrial Combustion Community (1999)

    SciTech Connect

    none,

    1999-04-01

    Combustion system users and manufacturers joined forces in 1999 to develop the Industrial Combustion Technology Roadmap. The roadmap outlines R&D priorities for developing advanced, highly efficient combustion systems that U.S. industry will require in the future.

  18. Combustion characteristics and influential factors of isooctane active-thermal atmosphere combustion assisted by two-stage reaction of n-heptane

    SciTech Connect

    Lu, Xingcai; Ji, Libin; Ma, Junjun; Zhou, Xiaoxin; Huang, Zhen

    2011-02-15

    This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively according to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)

  19. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.; Menzies, W.R.; Smouse, S.M.; Stallings, J.W.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  20. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  1. Helicopter far-field acoustic levels as a function of reduced main-rotor advancing blade-tip Mach number

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Smith, Charles D.; Lemasurier, Philip

    1990-01-01

    During the design of a helicopter, the weight, engine, rotor speed, and rotor geometry are given significant attention when considering the specific operations for which the helicopter will be used. However, the noise radiated from the helicopter and its relationship to the design variables is currently not well modeled with only a limited set of full-scale field test data to study. In general, limited field data have shown that reduced main-rotor advancing blade-tip Mach numbers result in reduced far-field noise levels. The status of a recent helicopter noise research project is reviewed. It is designed to provide flight experimental data which may be used to further understand helicopter main-rotor advancing blade-tip Mach number effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a Sikorsky S-76A helicopter operating with both the rotor speed and the flight speed as the control variable. The rotor speed was operated within the range of 107 to 90 percent NR at nominal forward speeds of 35, 100, and 155 knots.

  2. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect

    Not Available

    1991-01-01

    ABB CE's Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

  3. APFBC repowering could help meet Kyoto Protocol CO{sub 2} reduction goals[Advanced Pressurized Fluidized Bed Combustion

    SciTech Connect

    Weinstein, R.E.; Tonnemacher, G.C.

    1999-07-01

    The Clinton Administration signed the 1997 Kyoto Protocol agreement that would limit US greenhouse gas emissions, of which carbon dioxide (CO{sub 2}) is the most significant. While the Kyoto Protocol has not yet been submitted to the Senate for ratification, in the past, there have been few proposed environmental actions that had continued and wide-spread attention of the press and environmental activists that did not eventually lead to regulation. Since the Kyoto Protocol might lead to future regulation, its implications need investigation by the power industry. Limiting CO{sub 2} emissions affects the ability of the US to generate reliable, low cost electricity, and has tremendous potential impact on electric generating companies with a significant investment in coal-fired generation, and on their customers. This paper explores the implications of reducing coal plant CO{sub 2} by various amounts. The amount of reduction for the US that is proposed in the Kyoto Protocol is huge. The Kyoto Protocol would commit the US to reduce its CO{sub 2} emissions to 7% below 1990 levels. Since 1990, there has been significant growth in US population and the US economy driving carbon emissions 34% higher by year 2010. That means CO{sub 2} would have to be reduced by 30.9%, which is extremely difficult to accomplish. The paper tells why. There are, however, coal-based technologies that should be available in time to make significant reductions in coal-plant CO{sub 2} emissions. Th paper focuses on one plant repowering method that can reduce CO{sub 2} per kWh by 25%, advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) technology, based on results from a recent APFBC repowering concept evaluation of the Carolina Power and Light Company's (CP and L) L.V. Sutton steam station. The replacement of the existing 50-year base of power generating units needed to meet proposed Kyoto Protocol CO{sub 2} reduction commitments would be a massive undertaking. It is

  4. The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output

    NASA Astrophysics Data System (ADS)

    Di Nicola, J. M.; Yang, S. T.; Boley, C. D.; Crane, J. K.; Heebner, J. E.; Spinka, T. M.; Arnold, P.; Barty, C. P. J.; Bowers, M. W.; Budge, T. S.; Christensen, K.; Dawson, J. W.; Erbert, G.; Feigenbaum, E.; Guss, G.; Haefner, C.; Hermann, M. R.; Homoelle, D.; Jarboe, J. A.; Lawson, J. K.; Lowe-Webb, R.; McCandless, K.; McHale, B.; Pelz, L. J.; Pham, P. P.; Prantil, M. A.; Rehak, M. L.; Rever, M. A.; Rushford, M. C.; Sacks, R. A.; Shaw, M.; Smauley, D.; Smith, L. K.; Speck, R.; Tietbohl, G.; Wegner, P. J.; Widmayer, C.

    2015-02-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the first of a kind megajoule-class laser with 192 beams capable of delivering over 1.8 MJ and 500TW of 351nm light [1], [2]. It has been commissioned and operated since 2009 to support a wide range of missions including the study of inertial confinement fusion, high energy density physics, material science, and laboratory astrophysics. In order to advance our understanding, and enable short-pulse multi-frame radiographic experiments of dense cores of cold material, the generation of very hard x-rays above 50 keV is necessary. X-rays with such characteristics can be efficiently generated with high intensity laser pulses above 1017 W/cm² [3]. The Advanced Radiographic Capability (ARC) [4] which is currently being commissioned on the NIF will provide eight, 1 ps to 50 ps, adjustable pulses with up to 1.7 kJ each to create x-ray point sources enabling dynamic, multi-frame x-ray backlighting. This paper will provide an overview of the ARC system and report on the laser performance tests conducted with a stretched-pulse up to the main laser output and their comparison with the results of our laser propagation codes.

  5. Light Duty Efficient, Clean Combustion

    SciTech Connect

    Stanton, Donald W.

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of our objectives were met with fuel efficiency improvement targets exceeded.

  6. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1994, April 1994--June 1994

    SciTech Connect

    1995-09-01

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NOx burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters. Results are described.

  7. Opportunities in pulse combustion

    SciTech Connect

    Brenchley, D.L.; Bomelburg, H.J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  8. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  9. Advanced Catalysis Technologies: Lanthanum Cerium Manganese Hexaaluminate Combustion Catalysts for Flat Plate Reactor for Compact Steam Reformers

    DTIC Science & Technology

    2008-12-01

    DEVELOPMENT OF THIN FILM CATALYSIS AND THE COMBUSTION CATALYST 1 Summary The steam reforming reaction is fast and endothermic; therefore, the rate...lean natural gas turbines in order to reduce NOx emissions to reforming catalyst to convert diesel and kerosene to hydrogen rich gases. Unlike... gas turbines, in order to reduce NOx emissions, to reforming catalyst to convert distillate fuels, such as diesel and kerosene, to hydrogen rich

  10. Recent advances in combustion flow-field imaging measurements in high-pressure liquid-fueled gas turbine combustor concepts

    NASA Astrophysics Data System (ADS)

    Locke, Randy J.; Hicks, Yolanda R.; Zaller, Michelle M.; Anderson, Robert C.

    1999-12-01

    Future gas turbine combustor designs for aerospace applications will be required to meet severe restrictions on environmentally harmful emissions. To meet the target emission reduction goals, these combustors will operate at temperatures and pressures greatly exceeding those of present day aero-powerplants. New diagnostic methods are required to provide insight into understanding the complex physical and chemical processes extant at these conditions because traditional diagnostic methods are either insufficient or incapable of providing this knowledge. At NASA Glenn Research Center (GRC), several optically accessible combustor rigs have been built which allow the implementation of a suite of optical diagnostic techniques that are capable of providing just this type of crucial information. The techniques employed in the GRC combustion research laboratory include planar laser-induced fluorescence and planar Mie scattering. Research efforts have been quite successful probing both non-reacting and reacting flowfields of many kerosene-fueled combustor and combustor subcomponent design at pressures approaching 2.0 MPa, and temperatures near 2100 K. Images that map out combustion intermediate species such as OH distribution, fuel spray patternation, and fuel to air ratio contour mapping have been obtained for many different fuel injector designs and configurations. A novel combination of multiple planar images and computational analysis allows a 3D capability that greatly enhances the evaluation of the combustion processes and flowfields examined in this study.

  11. Evaluation of advanced combustion concepts for dry NO sub x suppression with coal-derived, gaseous fuels

    NASA Technical Reports Server (NTRS)

    Beebe, K. W.; Symonds, R. A.; Notardonato, J. J.

    1982-01-01

    The emissions performance of a rich lean combustor (developed for liquid fuels) was determined for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf (7.0 to 10.3 MJ/NCM). The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher. NOx generation from NH3 is significant at ammonia concentrations significantly less than 0.5%. These levels may occur depending on fuel gas cleanup system design. CO emissions, combustion efficiency, smoke and other operational performance parameters were satisfactory. A test was completed with a catalytic combustor concept with petroleum distillate fuel. Reactor stage NOx emissions were low (1.4g NOx/kg fuel). CO emissions and combustion efficiency were satisfactory. Airflow split instabilities occurred which eventually led to test termination.

  12. Generalities on combustion instabilities

    NASA Astrophysics Data System (ADS)

    Kuentzmann, Paul

    The main manifestations of combustion instabilities are reviewed, and the specific characteristics of instabilities in solid-propellant rocket engines are analyzed, with the Minuteman III third-stage engine and the SRB engine of Titan 34 D considered as examples. The main approaches for predicting combustion instabilities are discussed, including the linear approach based on the acoustic balance, the nonlinear mode-coupling approach, and the nonlinear approach using numerical calculation. Projected directions for future research are also examined.

  13. Coal Combustion Science

    SciTech Connect

    Hardesty, D.R.; Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. )

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  14. Development of advanced combustion technology for medium- and high-speed natural gas engines. Final report, January 1985-February 1989

    SciTech Connect

    Snyder, W.E.

    1989-07-01

    The project investigated the several variables which influence the performance of pre-chamber equipped, lean-burn natural gas engines in general, and of the pre-chamber in particular. The effort was divided into four closely inter-related phases: Theoretical Analysis, Constant Volume Combustion (CVC) Rig Tests, Single Cylinder Engine Tests and Multi-Cylinder Engine Tests. The Theoretical Analysis was directed toward development of a computer program, called COGEN, which was then used to predict output performance trends resulting from changes to input parameters. The CVC Rig Test program was directed towards an improved understanding of the pre-chamber combustion process using high speed photography and simultaneous measurement of instantaneous pressures. Variations of pre-chamber size, throat design and air-fuel ratio were studied to guide the later engine test programs. The Single Cylinder Engine Tests were directed towards bridging the gap between the CVC Test Rig and the performance to be expected from a commercial multi-cylinder engine. Variations in pre-chamber design as well as engine compression ratio, Intake Manifold Temperature and load were investigated.

  15. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 2, Overfire air tests

    SciTech Connect

    Smith, L.L.; Hooper, M.P.

    1992-07-13

    This Phase 2 Test Report summarizes the testing activities and results for the second testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The second phase demonstrates the Advanced Overfire Air (AOFA) retrofit with existing Foster Wheeler (FWEC) burners. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data supported by short-term characterization data. Ultimately a fifty percent NO{sub x} reduction target using combinations of combustion modifications has been established for this project.

  16. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect

    Smith, L.L.; Hooper, M.P. )

    1992-07-13

    This Phase 2 Test Report summarizes the testing activities and results for the second testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers. The second phase demonstrates the Advanced Overfire Air (AOFA) retrofit with existing Foster Wheeler (FWEC) burners. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO[sub x] combustion equipment through the collection and analysis of long-term emissions data supported by short-term characterization data. Ultimately a fifty percent NO[sub x] reduction target using combinations of combustion modifications has been established for this project.

  17. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect

    Not Available

    1992-01-01

    The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO[sub x] emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO[sub x] emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO[sub x] emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO[sub x] emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO[sub x] emissions while maintaining or improving other boiler performance parameters.

  18. Low emission internal combustion engine

    DOEpatents

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  19. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  20. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 1: A One-Dimensional Analysis of Low Frequency Combustion Instability in the Fuel Preburner of the Space Shuttle Main Engine. Final Report M.S. Thesis - Aug. 1986

    NASA Technical Reports Server (NTRS)

    Lim, Kair Chuan

    1986-01-01

    Low frequency combustion instability, known as chugging, is consistently experienced during shutdown in the fuel and oxidizer preburners of the Space Shuttle Main Engines. Such problems always occur during the helium purge of the residual oxidizer from the preburner manifolds during the shutdown sequence. Possible causes and triggering mechanisms are analyzed and details in modeling the fuel preburner chug are presented. A linearized chugging model, based on the foundation of previous models, capable of predicting the chug occurrence is discussed and the predicted results are presented and compared to experimental work performed by NASA. Sensitivity parameters such as chamber pressure, fuel and oxidizer temperatures, and the effective bulk modulus of the liquid oxidizer are considered in analyzing the fuel preburner chug. The computer program CHUGTEST is utilized to generate the stability boundary for each sensitivity study and the region for stable operation is identified.

  1. Bioaccumulation and effects of metals and trace elements from aquatic disposal of coal combustion residues: recent advances and recommendations for further study.

    PubMed

    Rowe, Christopher L

    2014-07-01

    Advances have been made recently in assessing accumulation and effects of coal combustion residues (CCR). I provide a brief review of recent advancements, provide a tabulated summary of results of recent work, and put forth recommendations for future studies. One advancement is that mercury accumulation has begun to receive (limited) attention, whereas it had rarely been considered in the past. Additionally, some constituents of CCR have been shown to be accumulated by adults and transferred to offspring, sometimes compromising offspring health. Studies have demonstrated that amphibians, possessing complex life cycles, may accumulate and transfer some contaminants to terrestrial systems. Some study has been given to molecular and cellular effects of CCR exposure, although these studies have been limited to invertebrates. Population models have also been applied to CCR affected systems and have shown that CCR may affect animal populations under some conditions. In light of these advancements, there are several topics that require further assessment. First, more attention to Hg and its dynamics in CCR affected systems is warranted. Hg can be highly accumulative and toxic under some conditions and may interact with other components of CCR (notably Se), perhaps altering accumulation and effects of the contaminant mixtures. Second, further investigation of maternal transfer and effects of CCR contaminants need to be conducted. These studies could benefit from incorporation of quantitative models to project impacts on populations. Finally, more attention to the organic constituents of CCR (PAHs) is required, as a focus on inorganic compounds only may restrict our knowledge of contaminant dynamics and effects as a whole. While further studies will shed light on some chemical and biological nuances of exposure and effect, information available to date from numerous study sites implicates CCR as a bulk effluent that presents risks of bioaccumulation and effects on organisms

  2. PDF Modeling of Turbulent Combustion

    DTIC Science & Technology

    2008-11-30

    extend methodologies for the modeling and simulation of turbulent combustion. Probability density function (PDF) calculations were performed of piloted...were developed to implement the combined methodology of large-eddy simulation (LES) and filtered density function (FDF). Second-order schemes were...was to advance and extend methodologies for the modeling and simulation of turbulent combustion. Probability density function (PDF) calculations were

  3. The Advanced Placement Program Benefits Mainly Well-Prepared Students Who Pass AP Exams. Issues in College Readiness

    ERIC Educational Resources Information Center

    National Center for Educational Achievement, 2010

    2010-01-01

    Many policymakers and education leaders have embraced the Advanced Placement (AP) Program as a tool to strengthen the high school curriculum and prepare students for college. The popularity of the AP program among these policy leaders reflects their belief that the traditional high school curriculum has often failed to provide rigorous courses…

  4. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  5. Feedback control of combustion oscillations in combustion chambers

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wang, Jing; Li, Dong-hai; Zhu, Min; Xue, Ya-li

    2010-11-01

    Model-based algorithms are generally employed in active control of combustion oscillations. Since practical combustion processes consist of complex thermal and acoustic couplings, their accurate models and parameters may not be obtained in advance economically, a model free controller is necessary for the control of thermoacoustic instabilities. Active compensation based control algorithm is applied in the suppression of combustion instabilities. Tuning the controller parameters on line, the amplitudes of the acoustic waves can be modulated to desired values. Simulations performed on a control oriented, typical longitudinal oscillations combustor model illustrate the controllers' capability to attenuate combustion oscillations.

  6. Engine combustion control responsive to location and magnitude of peak combustion pressure

    SciTech Connect

    Tombley, D.E.

    1987-11-17

    A combustion control is described for an internal combustion engine of the type having combustion chambers, means for supplying a combustible charge to and igniting the combustible charge within each combustion chamber, power output apparatus including a rotating crankshaft, and means for sensing the crankshaft angle (LPP) and magnitude (MPP) of peak combustion pressure for each combustion chamber. The combustion control consists of: means for deriving the average magnitude of peak combustion pressure (AMPP); means for determining base values; memory means for storing tables of LPP ignition trim values, MPP ignition trim values and A/F trim values for each combustion chamber; means for comparing the sensed LPP value for each combustion chamber with a desired LPP value (DLPP) for that combustion chamber and adjusting the LPP ignition trim value for the predetermined engine operating parameters; means for comparing the MPP value for each combustion chamber with the average magnitude of peak combustion pressure; means to adjust the A/F trim value in the rich direction and reset the MPP ignition trim value; means to adjust the MPP ignition trim value in the advance direction; means to adjust the A/F trim value in the lean direction and reset the MPP ignition trim value; means for determining the combustible charge mixture for each combustion chamber from the base value thereof and the A/F trim value for the sensed predetermined engine operating parameters; means for determining the ignition timing for each combustion.

  7. A Low NO(x) Lean-Direct Injection, Multipoint Integrated Module Combuster Concept for Advanced Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Tacina, Robert; Wey, Changlie; Laing, Peter; Mansour, Adel

    2002-01-01

    A low NO(x) emissions combustor has been demonstrated in flame-tube tests. A multipoint, lean-direct injection concept was used. Configurations were tested that had 25- and 36- fuel injectors in the size of a conventional single fuel injector. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers and fuel manifold into a single element. Test conditions were inlet temperatures up to 810 K, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation was developed relating the NO(x) emissions with the inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 10 percent of the combustion air would be used for liner cooling and using a hypothetical engine cycle, the NO(x) emissions using the correlation from flame-tube tests were estimated to be less than 20 percent of the 1996 ICAO standard.

  8. Internal combustion engine

    DOEpatents

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  9. Combustion Science for Cleaner Fuels

    SciTech Connect

    Ahmed, Musahid

    2014-10-17

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  10. Combustion Science for Cleaner Fuels

    ScienceCinema

    Ahmed, Musahid

    2016-07-12

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  11. Some Factors Affecting Combustion in an Internal-Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  12. Experimental and Computational Characterization of Combustion Phenomena

    DTIC Science & Technology

    2006-05-01

    Fundamental Combustion Advanced Combustor Concepts Combustor Demonstration and Transition Figure 1. A design philosophy for transitioning basic...PFP UNCLASSIFIED [4] W.-W. Kim, S. Menon, and H. Mongia , “Large-Eddy Simulation of a Gas Turbine Combustor Flow,” Combust . Sci. Technol. 143, 25-62...AFRL-PR-WP-TM-2006-2131 EXPERIMENTAL AND COMPUTATIONAL CHARACTERIZATION OF COMBUSTION PHENOMENA Dr. James R. Gord Combustion Branch (AFRL

  13. Simulating Combustion

    NASA Astrophysics Data System (ADS)

    Merker, G.; Schwarz, C.; Stiesch, G.; Otto, F.

    The content spans from simple thermodynamics of the combustion engine to complex models for the description of the air/fuel mixture, ignition, combustion and pollutant formation considering the engine periphery of petrol and diesel engines. Thus the emphasis of the book is on the simulation models and how they are applicable for the development of modern combustion engines. Computers can be used as the engineers testbench following the rules and recommendations described here.

  14. Pilot-Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-Combustion Carbon Capture

    SciTech Connect

    Hornbostel, Marc

    2016-09-01

    The overall objective of this project is to achieve the DOE’s goal to develop advanced CO2 capture and separation technologies that can realize at least 90% CO2 removal from flue gas steams produced at a pulverized coal (PC) power plant at a cost of less than $40/tonne of CO2 captured. The principal objective is to test a CO2 capture process that will reduce the parasitic plant load by using a CO2 capture sorbent that will require a reduced amount of steam. The process is based on advanced carbon sorbents having a low heat of adsorption, high CO2 adsorption capacity, and excellent selectivity. While the intent of this project was to produce design and performance data by testing the sorbent using a slipstream of coal-derived flue gas at the National Carbon Capture Center (NCCC) under realistic conditions and continuous long-term operation, the project was terminated following completion of the detailing pilot plant design/engineering work on June 30, 2016.

  15. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  16. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991

    SciTech Connect

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  17. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect

    Not Available

    1992-08-24

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No[sub x]) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO[sub x] combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  18. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992

    SciTech Connect

    Not Available

    1992-08-24

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  19. SSME main combustion chamber life prediction

    NASA Technical Reports Server (NTRS)

    Cook, R. T.; Fryk, E. E.; Newell, J. F.

    1983-01-01

    Typically, low cycle fatigue life is a function of the cyclic strain range, the material properties, and the operating temperature. The reusable life is normally defined by the number of strain cycles that can be accrued before severe material degradation occurs. Reusable life is normally signified by the initiation or propagation of surface cracks. Hot-fire testing of channel wall combustors has shown significant mid-channel wall thinning or deformation during accrued cyclic testing. This phenomenon is termed cyclic-creep and appears to be significantly accelerated at elevated surface temperatures. This failure mode was analytically modelled. The cyclic life of the baseline SSME-MCC based on measured calorimeter heat transfer data, and the life sensitivity of local hot spots caused by injector effects were determined. Four life enhanced designs were assessed.

  20. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    SciTech Connect

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  1. Thermal analysis simulation for a spin-motor used in the advanced main combustion chamber vacuum plasma spray project using the SINDA computer program

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gary H.

    1990-01-01

    One of the many design challenges of this project is predicting the thermal effects due to the environment inside the vacuum chamber on the turntable and spin motor spindle assembly. The objective of the study is to model the spin motor using the computer program System Improved Numerical Differencing Analyzer (SINDA). By formulating the appropriate input information concerning the motor's geometry, coolant flow path, material composition, and bearing and motor winding characteristics, SINDA should predict temperatures at various predefined nodes. From these temperatures, hopefully, one can predict if the coolant flow rate is sufficient or if certain mechanical elements such as bearings, O ring seals, or motor windings will exceed maximum design temperatures.

  2. Supercritical droplet combustion and related transport phenomena

    NASA Technical Reports Server (NTRS)

    Yang, Vigor; Hsieh, K. C.; Shuen, J. S.

    1993-01-01

    An overview of recent advances in theoretical analyses of supercritical droplet vaporization and combustion is conducted. Both hydrocarbon and cryogenic liquid droplets over a wide range of thermodynamic states are considered. Various important high-pressure effects on droplet behavior, such as thermodynamic non-ideality, transport anomaly, and property variation, are reviewed. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the criticl pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  3. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    PubMed

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments.

  4. Recent advances in hopanoids analysis: Quantification protocols overview, main research targets and selected problems of complex data exploration.

    PubMed

    Zarzycki, Paweł K; Portka, Joanna K

    2015-09-01

    Pentacyclic triterpenoids, particularly hopanoids, are organism-specific compounds and are generally considered as useful biomarkers that allow fingerprinting and classification of biological, environmental and geological samples. Simultaneous quantification of various hopanoids together with battery of related non-polar and low-molecular mass compounds may provide principal information for geochemical and environmental research focusing on both modern and ancient investigations. Target compounds can be derived from microbial biomass, water columns, sediments, coals, crude fossils or rocks. This create number of analytical problems due to different composition of the analytical matrix and interfering compounds and therefore, proper optimization of quantification protocols for such biomarkers is still the challenge. In this work we summarizing typical analytical protocols that were recently applied for quantification of hopanoids like compounds from different samples. Main steps including components of interest extraction, pre-purification, fractionation, derivatization and quantification involving gas (1D and 2D) as well as liquid separation techniques (liquid-liquid extraction, solid-phase extraction, planar and low resolution column chromatography, high-performance liquid chromatography) are described and discussed from practical point of view, mainly based on the experimental papers that were published within last two years, where significant increase in hopanoids research was noticed. The second aim of this review is to describe the latest research trends concerning determination of hopanoids and related low-molecular mass lipids analyzed in various samples including sediments, rocks, coals, crude oils and plant fossils as well as stromatolites and microbial biomass cultivated under different conditions. It has been found that majority of the most recent papers are based on uni- or bivariate approach for complex data analysis. Data interpretation involves

  5. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  6. Droplet Combustion Experiment movie

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Droplet Combustion Experiment (DCE) was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1 mission (STS-83, April 4-8 1997; the shortened mission was reflown as MSL-1R on STS-94). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.1 MB, 12-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300164.html.

  7. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  8. Trends in the spin combustion of thermites

    SciTech Connect

    Dvoryankin, A.V.; Merzhanov, A.G.; Strunina, A.G.

    1982-09-01

    This article presents results on the main laws of spin combustion for thermite compositions. Examines the combustion in various thermite systems with various degrees of component dilution with reaction products in order to choose the objects. Discusses effects of external factors, effects of system parameters, and temperature distribution in spin combustion. Finds that oscillatory combustion (synchronous pulsation in the combustion rate at all points on the front) and spin modes (spiral displacement of a luminous focus) are separated by a combustion mode in the form of a set of luminous points moving in a random fashion over the combustion front; the low-calorie spin mode is sensitive to shift in the general heat balance in either sense during the combustion; and in the spin mode, the combustion is substantially influenced by the topology of the surface.

  9. Combustion 2000

    SciTech Connect

    2000-06-30

    This report presents work carried out under contract DE-AC22-95PC95144 ''Combustion 2000 - Phase II.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: {lg_bullet} thermal efficiency (HHV) {ge} 47% {lg_bullet} NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) {lg_bullet} coal providing {ge} 65% of heat input {lg_bullet} all solid wastes benign {lg_bullet} cost of electricity {le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: {lg_bullet} Task 2.2.4 Pilot Scale Testing {lg_bullet} Task 2.2.5.2 Laboratory and Bench Scale Activities

  10. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    SciTech Connect

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  11. Main Chamber and Preburner Injector Technology

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Merkle, Charles L.

    1999-01-01

    This document reports the experimental and analytical research carried out at the Penn State Propulsion Engineering Research Center in support of NASA's plan to develop advanced technologies for future single stage to orbit (SSTO) propulsion systems. The focus of the work is on understanding specific technical issues related to bi-propellant and tri-propellant thrusters. The experiments concentrate on both cold flow demonstrations and hot-fire uni-element tests to demonstrate concepts that can be incorporated into hardware design and development. The analysis is CFD-based and is intended to support the design and interpretation of the experiments and to extrapolate findings to full-scale designs. The research is divided into five main categories that impact various SSTO development scenarios. The first category focuses on RP-1/gaseous hydrogen (GH2)/gaseous oxygen (GO2) tri-propellant combustion with specific emphasis on understanding the benefits of hydrogen addition to RP-1/oxygen combustion and in developing innovative injector technology. The second category investigates liquid oxygen (LOX)/GH2 combustion at main chamber near stoichiometric conditions to improve understanding of existing LOX/GH2 rocket systems. The third and fourth categories investigate the technical issues related with oxidizer-rich and fuel-rich propulsive concepts, issues that are necessary for developing the full-flow engine cycle. Here, injector technology issues for both LOX/GH2 and LOX/RP-1 propellants are examined. The last category, also related to the full-flow engine cycle, examines injector technology needs for GO2/GH2 propellant combustion at near-stoichiometric conditions for main chamber application.

  12. Can currently available advanced combustion biomass cook-stoves provide health relevant exposure reductions? Results from initial assessment of select commercial models in India.

    PubMed

    Sambandam, Sankar; Balakrishnan, Kalpana; Ghosh, Santu; Sadasivam, Arulselvan; Madhav, Satish; Ramasamy, Rengaraj; Samanta, Maitreya; Mukhopadhyay, Krishnendu; Rehman, Hafeez; Ramanathan, Veerabhadran

    2015-03-01

    Household air pollution from use of solid fuels is a major contributor to the national burden of disease in India. Currently available models of advanced combustion biomass cook-stoves (ACS) report significantly higher efficiencies and lower emissions in the laboratory when compared to traditional cook-stoves, but relatively little is known about household level exposure reductions, achieved under routine conditions of use. We report results from initial field assessments of six commercial ACS models from the states of Tamil Nadu and Uttar Pradesh in India. We monitored 72 households (divided into six arms to each receive an ACS model) for 24-h kitchen area concentrations of PM2.5 and CO before and (1-6 months) after installation of the new stove together with detailed information on fixed and time-varying household characteristics. Detailed surveys collected information on user perceptions regarding acceptability for routine use. While the median percent reductions in 24-h PM2.5 and CO concentrations ranged from 2 to 71% and 10-66%, respectively, concentrations consistently exceeded WHO air quality guideline values across all models raising questions regarding the health relevance of such reductions. Most models were perceived to be sub-optimally designed for routine use often resulting in inappropriate and inadequate levels of use. Household concentration reductions also run the risk of being compromised by high ambient backgrounds from community level solid-fuel use and contributions from surrounding fossil fuel sources. Results indicate that achieving health relevant exposure reductions in solid-fuel using households will require integration of emissions reductions with ease of use and adoption at community scale, in cook-stove technologies. Imminent efforts are also needed to accelerate the progress towards cleaner fuels.

  13. Thermal ignition combustion system

    DOEpatents

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  14. Thermal ignition combustion system

    DOEpatents

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  15. National Combustion Code: Parallel Performance

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2001-01-01

    This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.

  16. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report second quarter, 1991

    SciTech Connect

    Not Available

    1991-12-31

    ABB CE`s Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

  17. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Fourth quarter 1992

    SciTech Connect

    Not Available

    1992-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x } reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB tong-term data collected show the full load NO{sub x} emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO{sub x} emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term, full load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stack particulate emissions issue is resolved.

  18. Combustion 2000

    SciTech Connect

    1999-12-31

    This report presents work carried out under contract DE-AC22-95PC95144 ''Combustion 2000 - Phase II.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: {lg_bullet} thermal efficiency (HHV) {ge} 47% {lg_bullet} NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) {lg_bullet} coal providing {ge} 65% of heat input {lg_bullet} all solid wastes benign {lg_bullet} cost of electricity {le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: {lg_bullet} Task 2.2.4 Pilot Scale Testing {lg_bullet} Task 2.2.5.2 Laboratory and Bench Scale Activities

  19. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    SciTech Connect

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

  20. Combustion 2000

    SciTech Connect

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  1. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  2. Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.

    2011-01-01

    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.

  3. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  4. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  5. Turbulent combustion

    SciTech Connect

    Talbot, L.; Cheng, R.K.

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  6. Putting combustion optimization to work

    SciTech Connect

    Spring, N.

    2009-05-15

    New plants and plants that are retrofitting can benefit from combustion optimization. Boiler tuning and optimization can complement each other. The continuous emissions monitoring system CEMS, and tunable diode laser absorption spectroscopy TDLAS can be used for optimisation. NeuCO's CombustionOpt neural network software can determine optimal fuel and air set points. Babcock and Wilcox Power Generation Group Inc's Flame Doctor can be used in conjunction with other systems to diagnose and correct coal-fired burner performance. The four units of the Colstrip power plant in Colstrips, Montana were recently fitted with combustion optimization systems based on advanced model predictive multi variable controls (MPCs), ABB's Predict & Control tool. Unit 4 of Tampa Electric's Big Bend plant in Florida is fitted with Emerson's SmartProcess fuzzy neural model based combustion optimisation system. 1 photo.

  7. Multiuser Droplet Combustion Apparatus Developed to Conduct Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Myhre, Craig A.

    2001-01-01

    A major portion of the energy produced in the world today comes from the combustion or burning of liquid hydrocarbon fuels in the form of droplets. However, despite vigorous scientific examinations for over a century, researchers still lack a full understanding of many fundamental combustion processes of liquid fuels. Understanding how these fuel droplets ignite, spread, and extinguish themselves will help us develop more efficient ways of energy production and propulsion, as well as help us deal better with the problems of combustion-generated pollution and fire hazards associated with liquid combustibles. The ability to conduct more controlled experiments in space, without the complication of gravity, provides scientists with an opportunity to examine these complicated processes closely. The Multiuser Droplet Combustion Apparatus (MDCA) supports this continued research under microgravity conditions. The objectives are to improve understanding of fundamental droplet phenomena affected by gravity, to use research results to advance droplet combustion science and technology on Earth, and to address issues of fire hazards associated with liquid combustibles on Earth and in space. MDCA is a multiuser facility designed to accommodate different combustion science experiments. The modular approach permits the on-orbit replacement of droplet combustion principal investigator experiments such as different fuels, droplet-dispensing needles, and droplet-tethering mechanisms. Large components such as the avionics, diagnostics, and base-plate remain on the International Space Station to reduce the launch mass of new experiments. MDCA is also designed to operate in concert with ground systems on Earth to minimize the involvement of the crew during orbit.

  8. Regenerative combustion device

    DOEpatents

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  9. Main complications and results of treatment with intra-arterial infusion chemotherapy through the subclavian and thoracic arteries for locally advanced breast cancer.

    PubMed

    Wang, Xiaoyi; Gan, Changing; Li, Hongyuan; Wei, Yuxian; Zhu, Donchang; Yang, Guanglun; Su, Xinliang; Rodier, Jean-François; Ren, Guosheng

    2013-07-01

    Intra-arterial infusion chemotherapy for locally advanced breast cancer (LABC) has been previously performed. However, the main complications of this type of chemotherapy remain to be clarified. In the present study, catheterization chemotherapy was carried out for 53 LABC cases (stage IIIa-IIIc) between May, 2006 and March, 2007. For IIIB and IIIC patients, the catheters were guided to the opening of the subclavian artery. For stage IIIa patients, the catheters were placed into the thoracic artery through a subcutaneous femoral artery puncture. One to four cycles of chemotherapy (mean, 1.6 cycles) were administered for the patients using taxotere, epidoxorubicin, 5-fluorouracil and/or cyclophosphamide. The interval time between the two cycles was 21 days. Seven cases were identified as complete response (CR, 13.2%), 41 cases were partial response (PR, 77.4%) with a rate of effectiveness of (CR + PR, 90.6%), 5 cases were stable disease (SD, 9.40%) and no case was progressive. Pain of the ipsilateral upper extremity was present in 7 cases. Two cases exhibited ipsilateral upper extremity atrophy following drug administration from the opening of the subclavian artery. One case experienced neck pain and headache, while in one case necrosis of local skin was evident. Hematological toxicity over grade 3 was observed in 6 cases (11.30%). Systemic toxicity was mild and did not affect the quality of life of the patients. Overall survival was identified as 18/51 (35.3%), and free-disease survival as 10/51 (19.6%). In conclusion, intra-arterial infusion chemotherapy is an effective local control treatment for LABC. The main complications are pain of the ipsilateral upper extremity and neck as well as headache. Severe complications are ipsilateral upper extremity atrophy and necrosis of local skin. During the treatment, controlling the pressure of the tourniquet and velocity of drug administration are crucial for reducing local complications.

  10. Main complications and results of treatment with intra-arterial infusion chemotherapy through the subclavian and thoracic arteries for locally advanced breast cancer

    PubMed Central

    WANG, XIAOYI; GAN, CHANGING; LI, HONGYUAN; WEI, YUXIAN; ZHU, DONCHANG; YANG, GUANGLUN; SU, XINLIANG; RODIER, JEAN-FRANÇOIS; REN, GUOSHENG

    2013-01-01

    Intra-arterial infusion chemotherapy for locally advanced breast cancer (LABC) has been previously performed. However, the main complications of this type of chemotherapy remain to be clarified. In the present study, catheterization chemotherapy was carried out for 53 LABC cases (stage IIIa–IIIc) between May, 2006 and March, 2007. For IIIB and IIIC patients, the catheters were guided to the opening of the subclavian artery. For stage IIIa patients, the catheters were placed into the thoracic artery through a subcutaneous femoral artery puncture. One to four cycles of chemotherapy (mean, 1.6 cycles) were administered for the patients using taxotere, epidoxorubicin, 5-fluorouracil and/or cyclophosphamide. The interval time between the two cycles was 21 days. Seven cases were identified as complete response (CR, 13.2%), 41 cases were partial response (PR, 77.4%) with a rate of effectiveness of (CR + PR, 90.6%), 5 cases were stable disease (SD, 9.40%) and no case was progressive. Pain of the ipsilateral upper extremity was present in 7 cases. Two cases exhibited ipsilateral upper extremity atrophy following drug administration from the opening of the subclavian artery. One case experienced neck pain and headache, while in one case necrosis of local skin was evident. Hematological toxicity over grade 3 was observed in 6 cases (11.30%). Systemic toxicity was mild and did not affect the quality of life of the patients. Overall survival was identified as 18/51 (35.3%), and free-disease survival as 10/51 (19.6%). In conclusion, intra-arterial infusion chemotherapy is an effective local control treatment for LABC. The main complications are pain of the ipsilateral upper extremity and neck as well as headache. Severe complications are ipsilateral upper extremity atrophy and necrosis of local skin. During the treatment, controlling the pressure of the tourniquet and velocity of drug administration are crucial for reducing local complications. PMID:24649239

  11. Proceedings of the NATO-Advanced Study Institute on Computer Aided Analysis of Rigid and Flexible Mechanical Systems. Volume 1: Main lectures

    NASA Astrophysics Data System (ADS)

    Pereira, Manuel S.; Ambrosio, Jorge A. C.

    1993-07-01

    During the last few years, major scientific progress has been achieved in fields related to computer aided analysis of multibody systems. In view of this progress and recent developments of computer hardware and general purpose software, there is a need to access the current state of art and results from different schools of thought, with the objective of focussing trends in future research. Going back to 1983 when an important NATO-NSF-ARO Advanced Study Institute on Computer Aided Analysis and Optimization of Mechanical Systems was held at the University of Iowa, one may notice that less then 10 years ago the state of art was mainly dwelling on rigid body dynamics. The interest in the dynamic simulation of mechanical systems has steadily increased in recent years coming mainly from the aerospace and automative industries. The development of multibody system analysis formulations have been more recently motivated with the need to include several features such as: real-time simulation capabilities, highly non-linear control devices, work space path planing, active control of machine flexibilities and reliability and accuracy in the analysis results. The need for accurate and efficient analysis tools for design of large and lightweight mechanical systems has driven many research groups in the challenging problem of flexible systems with an increasing interaction with finite element methodologies. Basic approaches to mechanical systems dynamic analysis have recently been presented in several new text books. These publications demonstrate that both recursive and absolute methods still have their proponents to resolve the redundancy encountered in most mechanical systems.

  12. Microgravity combustion of dust suspensions

    NASA Technical Reports Server (NTRS)

    Lee, John H. S.; Peraldi, Olivier; Knystautas, Rom

    1993-01-01

    Unlike the combustion of homogeneous gas mixtures, there are practically no reliable fundamental data (i.e., laminar burning velocity, flammability limits, quenching distance, minimum ignition energy) for the combustion of heterogeneous dust suspensions. Even the equilibrium thermodynamic data such as the constant pressure volume combustion pressure and the constant pressure adiabatic flame temperature are not accurately known for dust mixtures. This is mainly due to the problem of gravity sedimentation. In normal gravity, turbulence, convective flow, electric and acoustic fields are required to maintain a dust in suspension. These external influences have a dominating effect on the combustion processes. Microgravity offers a unique environment where a quiescent dust cloud can in principle be maintained for a sufficiently long duration for almost all combustion experiments (dust suspensions are inherently unstable due to Brownian motion and particle aggregation). Thus, the microgravity duration provided by drop towers, parabolic flights, and the space shuttle, can all be exploited for different kinds of dust combustion experiments. The present paper describes some recent studies on microgravity combustion of dust suspension carried out on the KC-135 and the Caravelle aircraft. The results reported are obtained from three parabolic flight campaigns.

  13. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  14. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave

  15. Light Duty Efficient, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-12-31

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx

  16. Combustion instability modeling and analysis

    SciTech Connect

    Santoro, R.J.; Yang, V.; Santavicca, D.A.; Sheppard, E.J.

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  17. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  18. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  19. Fuel gas combustion research at METC

    SciTech Connect

    Norton, T.S.

    1995-06-01

    The in-house combustion research program at METC is an integral part of many METC activities, providing support to METC product teams, project managers, and external industrial and university partners. While the majority of in-house combustion research in recent years has been focussed on the lean premixed combustion of natural gas fuel for Advanced Turbine Systems (ATS) applications, increasing emphasis is being placed on issues of syngas combustion, as the time approaches when the ATS and coal-fired power systems programs will reach convergence. When the METC syngas generator is built in 1996, METC will have the unique combination of mid-scale pressurized experimental facilities, a continuous syngas supply with variable ammonia loading, and a team of people with expertise in low-emissions combustion, chemical kinetics, combustion modeling, combustion diagnostics, and the control of combustion instabilities. These will enable us to investigate such issues as the effects of pressure, temperature, and fuel gas composition on the rate of conversion of fuel nitrogen to NOx, and on combustion instabilities in a variety of combustor designs.

  20. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Third quarterly technical progress report

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, LNB, and LNB plus AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu with fly ash LOI values of approximately 8 percent. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing in the LNB+AOFA configuration indicate that at full-load, NO{sub x} emissions and fly ash LOI are near 0.40 lb/MBtu and 8 percent, respectively. However, it is believed that a substantial portion of the incremental change in NO{sub x} emissions between the LNB and LNB+AOFA configurations is the result of additional burner tuning and other operational adjustments and is not the result of the AOFA system. During this quarter, LNB+AOFA testing was concluded. Testing performed during this quarter included long-term and verification testing in the LNB+AOFA configuration.

  1. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Third quarterly progress report, 1992: Innovative Clean Coal Technology (ICCT)

    SciTech Connect

    Not Available

    1992-12-31

    The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO{sub x} emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO{sub x} emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO{sub x} emissions while maintaining or improving other boiler performance parameters.

  2. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  3. JANNAF 37th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    2000-01-01

    This volume, the first of two volumes is a compilation of 59 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 37th Combustion Subcommittee (CS) meeting held jointly with the 25th Airbreathing Propulsion Subcommittee (APS), 19th Propulsion Systems Hazards Subcommittee (PSHS), and 1st Modeling and Simulation Subcommittee (MSS) meetings. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered at the CS meeting include: a keynote address on the Future Combat Systems, and review of a new JANNAF Modeling and Simulation Subcommittee, and technical papers on gun propellant burning rate, gun tube erosion, advanced gun propulsion concepts, ETC guns, novel gun propellants; liquid, hybrid and novel propellant combustion; solid propellant combustion kinetics, GAP, ADN and RDX combustion, sandwich combustion, metal combustion, combustion instability, and motor combustion instability.

  4. Space Shuttle Main Engine (SSME) Options for the Future Shuttle

    NASA Technical Reports Server (NTRS)

    Jue, Fred; Kuck, Fritz; McCool, Alex (Technical Monitor)

    2002-01-01

    The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements that will be considered for implementation into the Future Shuttle. Integrated engine and vehicle health management systems will achieve additional system-level reliability improvements over those currently in development. Advanced instrumentation for detecting leaks, analyzing component wear and degradation, and providing sophisticated operational data will be used for reliable engine control and scheduling maintenance operations. A new nozzle and main combustion chamber (MCC) will reduce failure probability by 50% and allow for higher thrust capability without requiring the entire engine to be redesigned. Turbopump improvements may range from minor component improvements to using 3rd-generation pumps built on the advanced concepts demonstrated by the Integrated Powerhead Development (IPD) program and the Space Launch Initiative (SLI) prototype engines.The main engines for the Future Shuttle will focus on improved safety and operability. Performance enhancements may also be required for vehicle safety purposes to achieve more desirable abort scenarios. This paper discusses the potential improvements that will be considered for implementation into the Future Shuttle. Integrated engine and vehicle health management systems will achieve additional system-level reliability improvements over those currently in development. Advanced instrumentation for detecting leaks, analyzing component wear and degradation, and providing sophisticated operational data will be used for reliable engine control and scheduling maintenance operations. A new nozzle and main combustion chamber (MCC) will reduce failure probability by 50% and allow for higher thrust capability without requiring the entire engine to be redesigned. Turbopump

  5. Main Squeeze

    ERIC Educational Resources Information Center

    Lott, Jeffrey

    2010-01-01

    A survey of more than 35,000 alumni magazine readers conducted by CASE and more than 135 member institutions in the United States provides powerful evidence that, among the communications options in the advancement toolbox, magazines are one of the most effective ways to connect with, engage, and motivate alumni and other constituents. The CASE…

  6. MECHANISMS AND OPTIMIZATION OF COAL COMBUSTION

    SciTech Connect

    Kyriacos Zygourakis

    2000-10-31

    The completed research project has made some significant contributions that will help us meet the challenges outlined in the previous section. One of the major novelties of our experimental approach involves the application of video microscopy and digital image analysis to study important transient phenomena (like particle swelling and ignitions) occurring during coal pyrolysis and combustion. Image analysis was also used to analyze the macropore structure of chars, a dominant factor in determining char reactivity and ignition behavior at high temperatures where all the commercial processes operate. By combining advanced experimental techniques with mathematical modeling, we were able to achieve the main objectives of our project. More specifically: (1) We accurately quantified the effect of several important process conditions (like pyrolysis heating rate, particle size, heat treatment temperature and soak time) on the combustion behavior of chars. These measurements shed new light into the fundamental mechanisms of important transient processes like particle swelling and ignitions. (2) We developed and tested theoretical models that can predict the ignition behavior of char particles and their burn-off times at high temperatures where intraparticle diffusional limitations are very important.

  7. Combustible particluate fuel heater

    SciTech Connect

    Collins, B.H.; Jurgens, H.J.W.

    1986-01-21

    This patent describes a combustible particulate fired heater. It consists of: a combustion chamber defined by upright side walls extending between open top and bottom ends; an enclosure surrounding the combustion chamber; a retort within the combustion chamber adjacent the bottom end and having a lower particulate receiving end and an upper open end; feed conveyor means leading through the enclosure to the retort for delivering metered quantities of combustible particulates to the lower particulate receiving end of the retort; primary combustion air supply means having a primary combustion air supply manifold extending at least partially about the upper open end of the retort; primary air control means on the primary air supply means for selectively allowing entry of combustion air from outside the enclosure in to the retort; secondary combustion air supply means including a secondary air supply manifold within the combustion chamber above the primary combustion air supply manifold; secondary air control means independent of the primary air control means for selectively allowing entry of secondary air from outside the enclosure to an area within the combustion chamber above the retort; an exhaust duct opening into the enclosure; and vacuum means connected to the exhaust duct for producing a pressure differential between the area confined by the enclosure and the ambient atmosphere such that ambient air is drawn through at least one of the combustion air supply means to induce a high level of gasification and to support combustion at the retort and for drawing combustion exhaust gases out through the exhaust duct.

  8. Assessment of the National Combustion Code

    NASA Technical Reports Server (NTRS)

    Liu, nan-Suey; Iannetti, Anthony; Shih, Tsan-Hsing

    2007-01-01

    The advancements made during the last decade in the areas of combustion modeling, numerical simulation, and computing platform have greatly facilitated the use of CFD based tools in the development of combustion technology. Further development of verification, validation and uncertainty quantification will have profound impact on the reliability and utility of these CFD based tools. The objectives of the present effort are to establish baseline for the National Combustion Code (NCC) and experimental data, as well as to document current capabilities and identify gaps for further improvements.

  9. Combustion technologies

    SciTech Connect

    Barsin, J.A.

    1994-12-31

    The presentation will cover the highlights of sludge, providing information as to where it comes from, projection of how much more is expected, what is sludge, what can be done with them, and finally focus in one combustion technology that can be utilized and applied to recycle sludge. The author is with Gotaverken Energy Systems Inc. where for the past 100 years they have been involved in the recovery of chemicals in chemical pulp mills. One week ago, our name was changed to Kvaerner Pulping Inc. to better reflect our present make-up which is a combination of Kamyr AB (suppliers of proprietary highly engineered totally chlorine free chemical pulp manufacturing systems, including digesters, O{sub 2} delignification systems, and bleach plant systems) and Goetaverken. Sludges that we are concerned with derive from several sources within chemical pulp mills such as: such as primary clarifier sludges, secondary clarifier sludges, and most recently those sludges derived from post consumer paper and board recycle efforts including de-inking and those from the thermal mechanical pulping processes. These sludges have been classified as non-hazardous therefore, residue can be landfilled, but the volumes involved are growing at an alarming rate.

  10. ABB Combustion Engineering nuclear technology

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  11. Lyapunov spectrum in turbulent combustion

    NASA Astrophysics Data System (ADS)

    Hassanaly, Malik; Raman, Venkat

    2016-11-01

    Transient flame evolution is an important flow problem for many practical applications (for example high-altitude relight, ignition in internal combustion engines, unstart in scramjets). Current approaches to combustion modeling utilize assumptions that are valid mainly for statistically stationary processes. In order to understand the transient problem, a dynamic systems approach is followed here. The propagation of a flame in a turbulent channel flow is used as a canonical turbulent combustion system and is analyzed with the Lyapunov theory. In particular, the Lyapunov spectrum for this flow is computed using multiple coordinated simulations. For a range of flow conditions, dimensionality of the state-space is determined. It is shown that the internal structure of the flame plays a critical role in determining the response of the system to perturbations in the flow.

  12. Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies

    SciTech Connect

    Booras, George; Powers, J.; Riley, C.; Hendrix, H.

    2015-09-01

    This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO2/MWh (gross) or 1100 lb-CO2/MWh (gross), but modified in August 2015 to 635 kg-CO2/MWh (gross) or 1400 lb-CO2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.

  13. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Final report

    SciTech Connect

    Tavoulareas, E.S.; Hardman, R.; Eskinazi, D.; Smith, L.

    1994-02-01

    This report provides the key findings of the Innovative Clean Coal Technology (ICCT) demonstration project at Gulf Power`s Lansing Smith Unit No. 2 and the implications for other tangentially-fired boilers. L. Smith Unit No. 2 is a 180 MW tangentially-fired boiler burning Eastern Bituminous coal, which was retrofitted with Asea Brown Boveri/Combustion Engineering Services` (ABB/CE) LNCFS I, II, and III technologies. An extensive test program was carried-out with US Department of Energy, Southern Company and Electric Power Research Institute (EPRI) funding. The LNCFS I, II, and III achieved 37 percent, 37 percent, and 45 percent average long-term NO{sub x} emission reduction at full load, respectively (see following table). Similar NO{sub x} reduction was achieved within the control range (100--200 MW). However, below the control point (100 MW), NO{sub x} emissions with the LNCFS technologies increased significantly, reaching pre-retrofit levels at 70 MW. Short-term testing proved that low load NO{sub x} emissions could be reduced further by using lower excess O{sub 2} and burner tilt, but with adversed impacts on unit performance, such as lower steam outlet temperatures and, potentially, higher CO emissions and LOI.

  14. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect

    Not Available

    1993-08-17

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  15. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal fired boilers. Second quarterly technical progress report, [April--June 1993

    SciTech Connect

    Not Available

    1993-12-31

    The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu with flyash LOI values of approximately 8 percent. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB plus AOFA configuration began in May 1993 and is scheduled to end during August 1993. As of June 30, the diagnostic, performance, chemical emissions tests segments for this configuration have been conducted and 29 days of long-term, emissions data collected. Preliminary results from the May--June 1993 tests of the LNB plus AOFA system show that the full load NO{sub x} emissions are approximately 0.42 lb/MBtu with corresponding fly ash LOI values near 8 percent. This is a substantial improvement in both NO{sub x} emissions and LOI values when compared to the results obtained during the February--March 1992 abbreviated testing of this system.

  16. Aviation combustion toxicology: an overview.

    PubMed

    Chaturvedi, Arvind K

    2010-01-01

    Aviation combustion toxicology is a subspecialty of the field of aerospace toxicology, which is composed of aerospace and toxicology. The term aerospace, that is, the environment extending above and beyond the surface of the Earth, is also used to represent the combined fields of aeronautics and astronautics. Aviation is another term interchangeably used with aerospace and aeronautics and is explained as the science and art of operating powered aircraft. Toxicology deals with the adverse effects of substances on living organisms. Although toxicology borrows knowledge from biology, chemistry, immunology, pathology, physiology, and public health, the most closely related field to toxicology is pharmacology. Economic toxicology, environmental toxicology, and forensic toxicology, including combustion toxicology, are the three main branches of toxicology. In this overview, a literature search for the period of 1960-2007 was performed and information related to aviation combustion toxicology collected. The overview included introduction; combustion, fire, and smoke; smoke gas toxicity; aircraft material testing; fire gases and their interactive effects; result interpretation; carboxyhemoglobin and blood cyanide ion levels; pyrolytic products of aircraft engine oils, fluids, and lubricants; and references. This review is anticipated to be an informative resource for aviation combustion toxicology and fire-related casualties.

  17. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  18. Electrochemical principles of the mechanism of the spontaneous combustion of solid combustible minerals

    SciTech Connect

    Aleksandrov, I.V.

    1984-01-01

    The main stages of mechanism of the oxidative-reductive transformations of the organic matter and mineral fraction of solid combustible minerals in the process of spontaneous combustion are considered. An explanation is proposed of the oxidation reactions of fuels under deaerated conditions as a redox process with hydrogen depolarization.

  19. Fundamentals of Gas Turbine combustion

    NASA Technical Reports Server (NTRS)

    Gerstein, M.

    1979-01-01

    Combustion problems and research recommendations are discussed in the areas of atomization and vaporization, combustion chemistry, combustion dynamics, and combustion modelling. The recommendations considered of highest priority in these areas are presented.

  20. Characterizing fuels for atmospheric fluidized bed combustion

    SciTech Connect

    Marban, G.; Pis, J.J.; Fuertes, A.B.

    1995-10-01

    A complete methodology for characterizing coal combustion in atmospheric fluidized bed reactors is presented. The methodology comprises studies of fragmentation and particle size variations during combustion, necessary to allow an accurate determination of kinetic parameters and attrition rates. Samples of three different carbonaceous materials (a medium-ash lignite, a medium-ash anthracite and a graphite) were pyrolyzed in N{sub 2} and partially burned in air in a bench-scale fluidized bed reactor at different operating conditions. The particle size distribution, apparent density and number of particles were evaluated by Image Analysis. Additionally, the sphericity factors were calculated. Combustion studies were carried out in batch experiments in the laboratory-scale, fluidized bed reactor at the same operating conditions. The reactor outlet concentrations of O{sub 2}, CO{sub 2}, and CO were monitored continuously. The results indicate that only anthracite particles experienced both primary (due to devolatilization) and secondary (during char combustion) fragmentation. Graphite particles underwent secondary fragmentation, whereas lignite particles did not significantly vary in number during combustion. Size and density variations during combustion suggest that graphite particles burn under regime II, interparticle diffusion being the rate controlling step. On the other hand, anthracite and lignite particles developed an ash layer, which may control combustion. The attrition constants of the medium-ash materials (lignite and anthracite) were found to be very low whereas that of graphite was much higher due mainly to peripheral percolation during combustion.

  1. Sound quality assessment of Diesel combustion noise using in-cylinder pressure components

    NASA Astrophysics Data System (ADS)

    Payri, F.; Broatch, A.; Margot, X.; Monelletta, L.

    2009-01-01

    The combustion process in direct injection (DI) Diesel engines is an important source of noise, and it is thus the main reason why end-users could be reluctant to drive vehicles powered with this type of engine. This means that the great potential of Diesel engines for environment preservation—due to their lower consumption and the subsequent reduction of CO2 emissions—may be lost. Moreover, the advanced combustion concepts—e.g. the HCCI (homogeneous charge compression ignition)—developed to comply with forthcoming emissions legislation, while maintaining the efficiency of current engines, are expected to be noisier because they are characterized by a higher amount of premixed combustion. For this reason many efforts have been dedicated by car manufacturers in recent years to reduce the overall level and improve the sound quality of engine noise. Evaluation procedures are required, both for noise levels and sound quality, that may be integrated in the global engine development process in a timely and cost-effective manner. In previous published work, the authors proposed a novel method for the assessment of engine noise level. A similar procedure is applied in this paper to demonstrate the suitability of combustion indicators for the evaluation of engine noise quality. These indicators, which are representative of the peak velocity of fuel burning and the resonance in the combustion chamber, are well correlated with the combustion noise mark obtained from jury testing. Quite good accuracy in the prediction of the engine noise quality has been obtained with the definition of a two-component regression, which also permits the identification of the combustion process features related to the resulting noise quality, so that corrective actions may be proposed.

  2. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  3. Flameless Combustion Workshop

    DTIC Science & Technology

    2005-09-20

    future roadmap. "Flameless Combustion " is characterized by high stability levels with virtually no thermoacoustic instabilities, very low lean... future roadmap. "Flameless Combustion " is characterized by high stability levels with virtually no thermoacoustic instabilities, very low lean stability...C. Bruno, Italy 1430-1500 Technology to Ramjet Combustion Application of FLameless H. Mongia , GE Transportation, 1500-1530 Combustion (FLC) for

  4. Experimental investigation on plasma-assisted combustion characteristics of premixed propane/air mixture

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; He, Liming; Yu, Jinlu; Zeng, Hao; Jin, Tao

    2015-06-01

    A detailed study on the plasma-assisted combustion (PAC) characteristics of premixed propane/air mixture is presented. The PAC is measured electrically, as well as optically with a multichannel spectrometer. The characteristics are demonstrated by stable combustion temperature and combustion stability limits, and the results are compared with conventional combustion (CC). Stable combustion temperature measurements show that the introduction of PAC into combustion system can increase the stable combustion temperature, and the increment is more notable with an increase of discharge voltage. Besides, the rich and weak limits of combustion stability are both enlarged when plasma is applied into the combustion process and the increase of discharge voltage results in the expansion of combustion stability limits as well. The measurements of temperature head and emission spectrum illustrate that the kinetic enhancement caused by reactive species in plasma is the main enhancement pathway for current combustion system.

  5. Mechanisms of droplet combustion

    NASA Technical Reports Server (NTRS)

    Law, C. K.

    1982-01-01

    The fundamental physico-chemical mechanisms governing droplet vaporization and combustion are discussed. Specific topics include governing equations and simplifications, the classical d(2)-Law solution and its subsequent modification, finite-rate kinetics and the flame structure, droplet dynamics, near- and super-critical combustion, combustion of multicomponent fuel blends/emulsions/suspensions, and droplet interaction. Potential research topics are suggested.

  6. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high

  7. Advanced bioreactor concepts for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases. CRADA final report

    SciTech Connect

    Kaufman, E.N.; Selvaraj, P.T.

    1997-10-01

    The purpose of the proposed research program was the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from coal combustion flue gas. This study addressed the further investigation of optimal bacterial strains, growth media and kinetics for the biocatalytic conversion of coal synthesis gas to liquid fuel such as ethanol and the reduction of gaseous flue gas constituents. The primary emphasis was on the development of advanced bioreactor systems coupled with innovative biocatalytic systems that will provide increased productivity under controlled conditions. It was hoped that this would result in bioprocessing options that have both technical and economic feasibility, thus, ensuring early industrial use. Predictive mathematical models were formulated to accommodate hydrodynamics, mass transport, and conversion kinetics, and provide the data base for design and scale-up. The program was separated into four tasks: (1) Optimization of Biocatalytic Kinetics; (2) Development of Well-mixed and Columnar Reactors; (3) Development of Predictive Mathematical Models; and (4) Industrial Demonstration. Research activities addressing both synthesis gas conversion and flue gas removal were conducted in parallel by BRI and ORNL respectively.

  8. A review of the Mark 48-F, 3.50 pitch diameter, 2-stage reaction turbine designed for the staged combustion cycle requirements of an advanced space engine

    NASA Technical Reports Server (NTRS)

    Macaluso, S. B.

    1976-01-01

    The Mark 48-F two-stage reaction turbine was designed as a component for an advanced space engine propellant feed system, high-pressure liquid hydrogen turbopump. The turbine total inlet temperature and total inlet pressure were designed to be 1860 R and 3420 psia, respectively. At a design speed of 95,000 rpm, the turbine will develop 2543 horsepower with LO2/LH2 working fluid. The aerothermodynamic performance of a prototype turbine assembly was evaluated with gaseous nitrogen working fluid. Turbine performance was evaluated at turbine velocity ratios ranging from 0.250 to 0.782, and turbine speeds up to 25,250 rpm. Turbine test efficiency at the design velocity ratio of 0.483 was found to be 79.5% total-to-total.

  9. 2014 Princeton-CEFRC Summer School on Combustion

    DTIC Science & Technology

    2014-11-20

    develop a validated, predictive, multi-scale, combustion modeling capability to optimize the design and operation of evolving fuels, especially biofuels ...optimize the design and operation of evolving fuels, especially biofuels , in advanced engines for transportation applications. The Summer School...validated, predictive, multi-scale, combustion modeling capability to optimize the design and operation of evolving fuels, especially biofuels , in

  10. Spray combustion model improvement study, 1

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-01-01

    This study involves the development of numerical and physical modeling in spray combustion. These modeling efforts are mainly motivated to improve the physical submodels of turbulence, combustion, atomization, dense spray effects, and group vaporization. The present mathematical formulation can be easily implemented in any time-marching multiple pressure correction methodologies such as MAST code. A sequence of validation cases includes the nonevaporating, evaporating and_burnin dense_sprays.

  11. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  12. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  13. Indirect combustion noise of auxiliary power units

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill

    2013-08-01

    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the

  14. A Study of Advanced Materials for Gas Turbine Coatings at Elevated Temperatures Using Selected Microstructures and Characteristic Environments for Syngas Combustion

    SciTech Connect

    Ravinder Diwan; Patrick Mensah; Guoqiang Li; Nalini Uppu; Strphen Akwaboa; Monica Silva; Ebubekir Beyazoglu; Ogad Agu; Naresh Polasa; Lawrence Bazille; Douglas Wolfe; Purush Sahoo

    2011-02-10

    Thermal barrier coatings (TBCs) that can be suitable for use in industrial gas turbine engines have been processed and compared with electron beam physical vapor deposition (EBPVD) microstructures for applications in advanced gas turbines that use coal-derived synthesis gas. Thermo-physical properties have been evaluated of the processed air plasma sprayed TBCs with standard APS-STD and vertically cracked APS-VC coatings samples up to 1300 C. Porosity of these selected coatings with related microstructural effects have been analyzed in this study. Wet and dry thermal cycling studies at 1125 C and spalling resistance thermal cycling studies to 1200 C have also been carried out. Type I and Type II hot corrosion tests were carried out to investigate the effects of microstructure variations and additions of alumina in YSZ top coats in multi-layered TBC structures. The thermal modeling of turbine blade has also been carried out that gives the capability to predict in-service performance temperature gradients. In addition to isothermal high temperature oxidation kinetics analysis in YSZ thermal barrier coatings of NiCoCrAlY bond coats with 0.25% Hf. This can affect the failure behavior depending on the control of the thermally grown oxide (TGO) growth at the interface. The TGO growth kinetics is seen to be parabolic and the activation energies correspond to interfacial growth kinetics that is controlled by the diffusion of O{sub 2} in Al{sub 2}O{sub 3}. The difference between oxidation behavior of the VC and STD structures are attributed to the effects of microstructure morphology and porosity on oxygen ingression into the zirconia and TGO layers. The isothermal oxidation resistance of the STD and VC microstructures is similar at temperatures up to 1200 C. However, the generally thicker TGO layer thicknesses and the slightly faster oxidation rates in the VC microstructures are attributed to the increased ingression of oxygen through the grain boundaries of the vertically

  15. Coal combustion science. Quarterly progress report, April 1993--June 1993

    SciTech Connect

    Hardesty, D.R.

    1994-05-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  16. Promoted Combustion Test Data Re-Examined

    NASA Technical Reports Server (NTRS)

    Lewis, Michelle; Jeffers, Nathan; Stoltzfus, Joel

    2010-01-01

    Promoted combustion testing of metallic materials has been performed by NASA since the mid-1980s to determine the burn resistance of materials in oxygen-enriched environments. As the technolo gy has advanced, the method of interpreting, presenting, and applying the promoted combustion data has advanced as well. Recently NASA changed the bum criterion from 15 cm (6 in.) to 3 cm (1.2 in.). This new burn criterion was adopted for ASTM G 124, Standard Test Method for Determining the Combustion Behavior- of Metallic Materials in Oxygen-Enriched Atmospheres. Its effect on the test data and the latest method to display the test data will be discussed. Two specific examples that illustrate how this new criterion affects the burn/no-bum thresholds of metal alloys will also be presented.

  17. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    SciTech Connect

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  18. Review of Combustion Stability Characteristics of Swirl Coaxial Element Injectors

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Casiano, M. J.

    2013-01-01

    Liquid propellant rocket engine injectors using coaxial elements where the center liquid is swirled have become more common in the United States over the past several decades, although primarily for technology or advanced development programs. Currently, only one flight engine operates with this element type in the United States (the RL10 engine), while the element type is very common in Russian (and ex-Soviet) liquid propellant rocket engines. In the United States, the understanding of combustion stability characteristics of swirl coaxial element injectors is still very limited, despite the influx of experimental and theoretical information from Russia. The empirical and theoretical understanding is much less advanced than for the other prevalent liquid propellant rocket injector element types, the shear coaxial and like-on-like paired doublet. This paper compiles, compares and explores the combustion stability characteristics of swirl coaxial element injectors tested in the United States, dating back to J-2 and RL-10 development, and extending to very recent programs at the NASA MSFC using liquid oxygen and liquid methane and kerosene propellants. Included in this study are several other relatively recent design and test programs, including the Space Transportation Main Engine (STME), COBRA, J-2X, and the Common Extensible Cryogenic Engine (CECE). A presentation of the basic data characteristics is included, followed by an evaluation by several analysis techniques, including those included in Rocket Combustor Interactive Design and Analysis Computer Program (ROCCID), and methodologies described by Hewitt and Bazarov.

  19. Combustion modeling in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  20. Ilex paraguariensis and its main component chlorogenic acid inhibit fructose formation of advanced glycation endproducts with amino acids at conditions compatible with those in the digestive system.

    PubMed

    Bains, Yasmin; Gugliucci, Alejandro

    2017-03-01

    We have previously shown that Ilex paraguariensis extracts have potent antiglycation actions. Associations of excess free fructose consumption with inflammatory diseases have been proposed to be mediated through in situ enteral formation of fructose AGEs, which, after being absorbed may contribute to inflammatory diseases via engagement of RAGE. In this proof of principle investigation we show fluorescent AGE formation between amino acids (Arg, Lys, Gly at 10-50mM) and fructose (10-50mM) under time, temperature, pH and concentrations compatible with the digestive system lumen and its inhibition by Ilex paraguariensis extracts. Incubation of amino acids with fructose (but not glucose) leads to a time dependent formation of AGE fluorescence, already apparent after just 1h incubation, a time frame well compatible with the digestive process. Ilex paraguariensis (mate tea) inhibited AGE formation by 83% at 50μl/ml (p<0.001). Its main phenolics, caffeic acid and cholorogenic acid were as potent as aminoguanidine-a specific antiglycation agent: IC50 of 0.9mM (p<0.001). Our results suggest that AGE adducts form between fructose and amino acids at times and concentrations plausibly found in the intestines. The reaction is inhibited by mate tea and its individual phenolics (caffeic acid and chlorogenic acids). The study provides the first evidence for the proposed mechanism to explain epidemiological correlations between excess fructose consumption and inflammatory diseases. Enteral fructose-AGE formation would be inhibited by co-intake of Ilex paraguariensis, and potentially other beverages, fruits and vegetables that contain comparable concentrations of phenolics as in IP (mate tea).

  1. Boiler using combustible fluid

    DOEpatents

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  2. Test Results of the Modified Space Shuttle Main Engine at the Marshall Space Flight Center Technology Test Bed Facility

    NASA Technical Reports Server (NTRS)

    Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.

    1990-01-01

    A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.

  3. Potential Commercial Applications from Combustion and Fire Research in Space

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Lyons, Valerie J.

    1996-01-01

    The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding - the focus to date of the NASA microgravity-combustion program - has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.

  4. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  5. Combustion of interacting droplet arrays in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.

    1995-01-01

    This research program involves the study of one and two dimensional arrays of droplets in a buoyant-free environment. The purpose of the work is to extend the database and theories that exist for single droplets into the regime where droplet interactions are important. The eventual goal being to use the results of this work as inputs to models on spray combustion where droplets seldom burn individually; instead the combustion history of a droplet is strongly influenced by the presence of the neighboring droplets. Throughout the course of the work, a number of related aspects of isolated droplet combustion have also been investigated. This paper will review our progress in microgravity droplet array combustion, advanced diagnostics (specifically L2) applied to isolated droplet combustion, and radiative extinction large droplet flames. A small-scale droplet combustion experiment being developed for the Space Shuttle will also be described.

  6. Main Report

    PubMed Central

    2006-01-01

    scientific literature. The criteria were distributed among three main categories for each condition: The availability and characteristics of the screening test;The availability and complexity of diagnostic services; andThe availability and efficacy of treatments related to the conditions. A survey process utilizing a data collection instrument was used to gather expert opinion on the conditions in the first tier of the assessment. The data collection format and survey provided the opportunity to quantify expert opinion and to obtain the views of a diverse set of interest groups (necessary due to the subjective nature of some of the criteria). Statistical analysis of data produced a score for each condition, which determined its ranking and initial placement in one of three categories (high scoring, moderately scoring, or low scoring/absence of a newborn screening test). In the second tier of these analyses, the evidence base related to each condition was assessed in depth (e.g., via systematic reviews of reference lists including MedLine, PubMed and others; books; Internet searches; professional guidelines; clinical evidence; and cost/economic evidence and modeling). The fact sheets reflecting these analyses were evaluated by at least two acknowledged experts for each condition. These experts assessed the data and the associated references related to each criterion and provided corrections where appropriate, assigned a value to the level of evidence and the quality of the studies that established the evidence base, and determined whether there were significant variances from the survey data. Survey results were subsequently realigned with the evidence obtained from the scientific literature during the second-tier analysis for all objective criteria, based on input from at least three acknowledged experts in each condition. The information from these two tiers of assessment was then considered with regard to the overriding principles and other technology or condition

  7. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo

    2017-03-01

    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which

  8. Specifics of phytomass combustion in small experimental device

    NASA Astrophysics Data System (ADS)

    Lenhard, Richard; Mičieta, Jozef; Jandačka, Jozef; Gavlas, Stanislav

    2015-05-01

    A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass), which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  9. Priorities for Microgravity Combustion Research and Goals for Workshop Discussions

    NASA Technical Reports Server (NTRS)

    Faeth, Gerard M.

    1993-01-01

    Several concerns motivate fundamental research: combustion-generated pollutants are re-emerging as a major problem, new combustion technologies are needed for effective energy utilization, municipal and hazardous waste incineration are needed to replace landfills and storage, new combustion technologies are needed for advanced aircraft and spacecraft propulsion systems, and current understanding of fires and explosion hazards is limited - particularly for space-craft environments. Thus, it is of interest to determine how experimentation using microgravity facilities can advance research relevant to these problems.

  10. Lump wood combustion process

    NASA Astrophysics Data System (ADS)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  11. Hydrocarbon Fouling of SCR during PCCI combustion

    SciTech Connect

    Prikhodko, Vitaly Y; Pihl, Josh A; Lewis Sr, Samuel Arthur; Parks, II, James E

    2012-01-01

    The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust. The Fe-zeolite NOX conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the raw engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite showed better tolerance to HC fouling at low temperatures compared to the Fe-zeolite but PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOX conversion efficiency. Furthermore, chemical analysis of the hydrocarbons trapped on the SCR cores was conducted to better determine chemistry specific effects.

  12. Combustion instability modeling and analysis

    SciTech Connect

    Santoro, R.J.; Yang, V.; Santavicca, D.A.

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  13. Fuels Combustion Research.

    DTIC Science & Technology

    1984-07-18

    uncertainties in the future sources and characteristics of fuels has emphasized the need to better understand fuel effects on combustion , e.g. energy release...experimentally to be made. Unsuccessful comparisons can lead to impro- vements in modelling concepts . Two simplified models for the combustion of slurry...AD-A149 186 FUELS COMBUSTION RESEACCH(U) PRINCETON UNIV NJ DEPT OF i/i MECHANICAL AND AEROSPACE ENGINEERING F L DRYER ET AL. 18 JUL 84 NAE-i668 AFOSR

  14. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  15. Supersonic combustion engine and method of combustion initiation and distribution

    SciTech Connect

    Stickler, D.B.; Ballantyne, A.; Kyuman Jeong.

    1993-06-29

    A supersonic combustion ramjet engine having a combustor with a combustion zone intended to channel gas flow at relatively high speed therethrough, the engine comprising: means for substantially continuously supplying fuel into the combustion zone; and means for substantially instantaneously igniting a volume of fuel in the combustion zone for providing a spatially controlled combustion distribution, the igniting means having means for providing a diffuse discharge of energy into the volume, the volume extending across a substantially complete cross-sectional area of the combustion zone, the means for discharging energy being capable of generating free radicals within the volume of reactive fuel in the combustion zone such that fuel in the volume can initiate a controlled relatively rapid combustion of fuel in the combustion zone whereby combustion distribution in relatively high speed gas flows through the combustion zone can be initiated and controlled without dependence upon a flame holder or relatively high local static temperature in the combustion zone.

  16. Tripropellant combustion process

    NASA Technical Reports Server (NTRS)

    Kmiec, T. D.; Carroll, R. G.

    1988-01-01

    The addition of small amounts of hydrogen to the combustion of LOX/hydrocarbon propellants in large rocket booster engines has the potential to enhance the system stability. Programs being conducted to evaluate the effects of hydrogen on the combustion of LOX/hydrocarbon propellants at supercritical pressures are described. Combustion instability has been a problem during the development of large hydrocarbon fueled rocket engines. At the higher combustion chamber pressures expected for the next generation of booster engines, the effect of unstable combustion could be even more destructive. The tripropellant engine cycle takes advantage of the superior cooling characteristics of hydrogen to cool the combustion chamber and a small amount of the hydrogen coolant can be used in the combustion process to enhance the system stability. Three aspects of work that will be accomplished to evaluate tripropellant combustion are described. The first is laboratory demonstration of the benefits through the evaluation of drop size, ignition delay and burning rate. The second is analytical modeling of the combustion process using the empirical relationship determined in the laboratory. The third is a subscale demonstration in which the system stability will be evaluated. The approach for each aspect is described and the analytical models that will be used are presented.

  17. Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha

    1998-01-01

    Liquid fuel combustion provides a major portion of the world's energy supply. In most practical combustion devices, liquid burns after being separated into a droplet spray. Essential to the design of efficient combustion systems is a knowledge of droplet combustion behavior. The microgravity environment aboard spacecraft provides an opportunity to investigate the complex interactions between the physical and chemical combustion processes involved in droplet combustion without the complications of natural buoyancy. Launched on STS-83 and STS-94 (April 4 and July 1, 1997), the Droplet Combustion Experiment (DCE) investigated the fundamentals of droplet combustion under a range of pressures (0.25 to 1 atm), oxygen mole fractions (<0.5), and droplet sizes (1.5 to 5 mm). Principal DCE flight hardware features were a chamber to supply selected test environments, the use of crew-inserted bottles, and a vent system to remove unwanted gaseous combustion products. The internal apparatus contained the droplet deployment and ignition mechanisms to burn single, freely deployed droplets in microgravity. Diagnostics systems included a 35-mm high-speed motion picture camera (see the following sequence of photos) with a backlight to photograph burning droplets and a camcorder to monitor experiment operations. Additional diagnostics included an ultraviolet-light-sensitive CCD (charge couple discharge) camera to obtain flame radiation from hydroxyl radicals (see the final figure) and a 35-mm SLR (single-lens-reflex) camera to obtain color still photographs of the flames.

  18. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  19. Combustion Device Failures During Space Shuttle Main Engine Development

    NASA Technical Reports Server (NTRS)

    Goetz, Otto K.; Monk, Jan C.

    2005-01-01

    Major Causes: Limited Initial Materials Properties. Limited Structural Models - especially fatigue. Limited Thermal Models. Limited Aerodynamic Models. Human Errors. Limited Component Test. High Pressure. Complicated Control.

  20. Gob spontaneous combustion in a fully mechanized long-wall top-coal caving face

    SciTech Connect

    Xu, J.; Deng, J.; Zhang, X.; Guo, X.; Wen, F.

    1999-07-01

    As geological conditions allow, underground coal mines in China tend to use comprehensively mechanized roof-coal caving technique in an effort to gain a higher degree of mechanization at coal faces as well as higher coal production rates. As a face advances, a large amount of coal will be left behind in its gob area which may experience a self-enhancing process of coal oxidation and heat accumulation, ultimately leading to open fire. Such a self-enhancing coal spontaneous combustion process is a significantly impediment to mine safety and productivity. A sound mathematical model is an important step to predict the probability of spontaneous combustion so that measures against coal-heating can be adopted in time and at comparatively low cost. This paper analyzes main factors in coal spontaneous combustion process and proposes a mathematical model to describe the dynamic process of coal self-heating in the gob. This model has been applied to a coal production face in Datong Coal Region in Shangdong Province to satisfactorily predict the spontaneous combustion probability.

  1. Combustion devices technology team - An overview and status of STME-related activities

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Croteau-Gillespie, Margie

    1992-01-01

    The Consortium for CFD applications in propulsion technology has been formed at NASA/Marshall Space Flight Center. The combustion devices technology team is one of the three teams that constitute the Consortium. While generally aiming to advance combustion devices technology for rocket propulsion, the team's efforts for the last 1 and 1/2 years have been focused on issues relating to the Space Transportation Main Engine (STME) nozzle. The nozzle design uses hydrogen-rich turbine exhaust to cool the wall in a film/dump scheme. This method of cooling presents challenges and associated risks for the nozzle designers and the engine/vehicle integrators. Within the nozzle itself, a key concern is the ability to effectively and efficiently film cool the wall. From the National Launch System vehicle base standpoint, there are concerns with dumping combustible gases at the nozzle exit and their potential adverse effects on the base thermal environment. The Combustion Team has developed and is implementing plans to use validated CFD tools to aid in risk mitigation for both areas.

  2. AST Combustion Workshop: Diagnostics Working Group Report

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Hanson, Ronald K.

    1996-01-01

    A workshop was convened under NASA's Advanced Subsonics Technologies (AST) Program. Many of the principal combustion diagnosticians from industry, academia, and government laboratories were assembled in the Diagnostics/Testing Subsection of this workshop to discuss the requirements and obstacles to the successful implementation of advanced diagnostic techniques to the test environment of the proposed AST combustor. The participants, who represented the major relevant areas of advanced diagnostic methods currently applied to combustion and related fields, first established the anticipated AST combustor flowfield conditions. Critical flow parameters were then examined and prioritized as to their importance to combustor/fuel injector design and manufacture, environmental concerns, and computational interests. Diagnostic techniques were then evaluated in terms of current status, merits and obstacles for each flow parameter. All evaluations are presented in tabular form and recommendations are made on the best-suited diagnostic method to implement for each flow parameter in order of applicability and intrinsic value.

  3. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    PubMed

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants.

  4. Fifteenth combustion research conference

    SciTech Connect

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  5. Plasma Assisted Combustion

    DTIC Science & Technology

    2007-02-28

    2005) AIAA–2005–0405. [99] E.M. Van Veldhuizen (ed) Electrical Discharges for Environmental Purposes: Fun- damentals and Applications (New York: Nova...in russian), 18, 4, 1982, 48-51. [238] Combustion Chemestry , ed. W. Gardiner-Jr, Moscow, Mir, 1988. [239] G.P.Tewari, J.R.Wilson, Combust. Flame, 24

  6. Japan's microgravity combustion science program

    NASA Technical Reports Server (NTRS)

    Sato, Junichi

    1993-01-01

    Most of energy used by us is generated by combustion of fuels. On the other hand, combustion is responsible for contamination of our living earth. Combustion, also, gives us damage to our life as fire or explosive accidents. Therefore, clean and safe combustion is now eagerly required. Knowledge of the combustion process in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding on combustion is far from complete. Especially, there is few useful information on practical liquid and solid particle cloud combustion. Studies on combustion process under microgravity condition will provide many informations for basic questions related to combustors.

  7. Advanced Chemical Modeling for Turbulent Combustion Simulations

    DTIC Science & Technology

    2012-05-03

    combustor conditions. The resolved DNS dissipation rate is reasonably well described by the resolved component of the LES model (black solid line...our computed results with the non-linearly extrapolated burning velocities for m-xylene. 66 0 100 200 300 400 0 30 60 90 120 M ol e fr ac ...tio n [p pm ] t [ms] A1(CH3)2 x0.2 A1CH3 (a) 0 2 4 6 8 0 30 60 90 120 M ol e fr ac tio n [p pm ] t [ms] A1C2H5 (b) 0 20 40 60 80 100

  8. Versatile Affordable Advanced Fuels and Combustion Technologies

    DTIC Science & Technology

    2010-11-01

    Fuels, Vol. 22, No. 4, 2008 2415 165 elastomer is highly fluorinated and relatively inert, as evident by the very low percentage of volume swell. Previous...hydrogen bonding involves hydrogen bound to nearly any electrophilic structure not just a highly electrophilic atom such as oxygen and nitrogen

  9. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly progress report, December 1, 1995--February 29, 1996

    SciTech Connect

    1997-06-01

    This report describes the overall program status of the General Electric Advanced Gas Turbine Development program, and reports progress on three main task areas. The program is focused on two specific products: (1) a 70-MW class industrial gas turbine based on the GE90 core technology, utilizing a new air cooling methodology; and (2) a 200-MW class utility gas turbine based on an advanced GE heavy-duty machine, utilizing advanced cooling and enhancement in component efficiency. The emphasis for the industrial system is placed on cycle design and low emission combustion. For the utility system, the focus is on developing a technology base for advanced turbine cooling while achieving low emission combustion. The three tasks included in this progress report are on: conversion to a coal-fueled advanced turbine system, integrated program plan, and design and test of critical components. 13 figs., 1 tab.

  10. Construction of a power plant with prototype DLN combustion turbines

    SciTech Connect

    Wilkinson, M.L.; Drummond, L.J.

    1996-12-31

    Design and construction of a power plant is always a difficult process and this is especially true when the main keystone, the combustion turbine engine, is being modified by the manufacturer resulting in numerous changes in the design interfaces. The development of the design and construction of the Orange Cogeneration Facility has been in parallel with major modification of the LM6000 to DLE technology (a Dry Low NO{sub x} combustion system). The Dry Low NO{sub x} Combustion System for a combustion turbine offered a means to reduce water usage, lower Zero Liquid Discharge System operating costs and reduce emissions to meet Florida Department of Environmental Protection requirements. This development was successfully accomplished by Owner, EPC contractor and Combustion Turbine Manufacturer by maintaining flexibility in the design and construction while the design interfaces and performance of the combustion turbines were being finalized.

  11. Coal Combustion Science. Quarterly progress report, October--December 1994

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1996-02-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: Task 1--Kinetics and mechanisms of pulverized coal char combustion; and Task 2--deposit growth and property development in coal-fired furnaces. The objective of task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: (a) kinetics of heterogeneous fuel particle populations; (b) char combustion kinetics at high carbon conversion; (c) the role of particle structure and the char formation process in combustion and; (d) unification of the Sandia char combustion data base. The objectives of Task 2 are to provide a self-consistent database of simultaneously measured, time-resolved, ash deposit properties in well-controlled and well-defined environments and to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. The task include the development and use of diagnostics to monitor, in situ and in real time, deposit properties, including information on both the structure and composition of the deposits.

  12. Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit

    NASA Astrophysics Data System (ADS)

    Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong

    When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.

  13. Combustion instability analysis

    NASA Technical Reports Server (NTRS)

    Chung, T. J.

    1990-01-01

    A theory and computer program for combustion instability analysis are presented. The basic theoretical foundation resides in the concept of entropy-controlled energy growth or decay. Third order perturbation expansion is performed on the entropy-controlled acoustic energy equation to obtain the first order integrodifferential equation for the energy growth factor in terms of the linear, second, and third order energy growth parameters. These parameters are calculated from Navier-Stokes solutions with time averages performed on as many Navier-Stokes time steps as required to cover at least one peak wave period. Applications are made for a 1-D Navier-Stokes solution for the Space Shuttle Main Engine (SSME) thrust chamber with cross section area variations taken into account. It is shown that instability occurs when the mean pressure is set at 2000 psi with 30 percent disturbances. Instability also arises when the mean pressure is set at 2935 psi with 20 percent disturbances. The system with mean pressures and disturbances more adverse that these cases were shown to be unstable.

  14. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  15. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  16. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  17. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  18. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  19. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  20. Methane Combustion: An Exergy Analysis

    NASA Astrophysics Data System (ADS)

    Silva, Valter; Rouboa, Abel

    2011-09-01

    A VBA (Visual Basic for Applications) code was developed to determine the exergy associated to the methane combustion. It was considered as the main sub-processes for each stage of reaction: the combined reactant mixing, the fuel oxidation, the internal thermal energy exchange (heat transfer), and the product mixing process. The exergetic efficiency and the temperature of the products were computed as a function of the percentage of the excess air. It was verified that the internal thermal energy exchange is the sub-process where the larger exergy destruction occurs.

  1. Combustion Instabilities Modeled

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1999-01-01

    NASA Lewis Research Center's Advanced Controls and Dynamics Technology Branch is investigating active control strategies to mitigate or eliminate the combustion instabilities prevalent in lean-burning, low-emission combustors. These instabilities result from coupling between the heat-release mechanisms of the burning process and the acoustic flow field of the combustor. Control design and implementation require a simulation capability that is both fast and accurate. It must capture the essential physics of the system, yet be as simple as possible. A quasi-one-dimensional, computational fluid dynamics (CFD) based simulation has been developed which may meet these requirements. The Euler equations of mass, momentum, and energy have been used, along with a single reactive species transport equation to simulate coupled thermoacoustic oscillations. A very simple numerical integration scheme was chosen to reduce computing time. Robust boundary condition procedures were incorporated to simulate various flow conditions (e.g., valves, open ends, and choked inflow) as well as to accommodate flow reversals that may arise during large flow-field oscillations. The accompanying figure shows a sample simulation result. A combustor with an open inlet, a choked outlet, and a large constriction approximately two thirds of the way down the length is shown. The middle plot shows normalized, time-averaged distributions of the relevant flow quantities, and the bottom plot illustrates the acoustic mode shape of the resulting thermoacoustic oscillation. For this simulation, the limit cycle peak-to-peak pressure fluctuations were 13 percent of the mean. The simulation used 100 numerical cells. The total normalized simulation time was 50 units (approximately 15 oscillations), which took 26 sec on a Sun Ultra2.

  2. The role of the society of Latin American specialists on remote sensing (SELPER) in the analysis and actions related to the main advances and needs of spatial remote sensing for Latin America

    NASA Astrophysics Data System (ADS)

    Araya, Mauricio F.

    The existence of SELPER (Sociedad de Especialistas Latinoamericanos en Percepción Remota / Society of Latinamerican Specialists on Remote Sensing) has filled a great gap among latinamerican countries. SELPER was formed in 1980 and several important activities, having international support, have been performed and are planned in the near future. SELPER consolidation will help develop several important regional cooperation programs and the next years look very promisory in this sense. Different steps are planned but the most important is related with the formation of such a Latin American Council on Remote Sensing, having official support from different countries of the region; SELPER can help this important objective. Main advances and needs are summarized in this paper and it is possible to conclude that SELPER will be important for regional and inter-regional scientific and technical cooperation on remote sensing.

  3. Design factors for stable lean premix combustion

    SciTech Connect

    Richards, G.A.; Yip, M.J.; Gemmen, R.S.

    1995-10-01

    The Advanced Turbine Systems (ATS) program includes the development of low-emission combustors. Low emissions have already been achieved by premixing fuel and air to avoid the hot gas pockets produced by nozzles without premixing. While the advantages of premixed combustion have been widely recognized, turbine developers using premixed nozzles have experienced repeated problems with combustion oscillations. Left uncontrolled, these oscillations can lead to pressure fluctuations capable of damaging engine hardware. Elimination of such oscillations is often difficult and time consuming - particularly when oscillations are discovered in the last stages of engine development. To address this issue, METC is studying oscillating combustion from lean premixing fuel nozzles. These tests are providing generic information on the mechanisms that contribute to oscillating behavior in gas turbines. METC is also investigating the use of so-called {open_quotes}active{close_quotes} control of combustion oscillations. This technique periodically injects fuel pulses into the combustor to disrupt the oscillating behavior. Recent results on active combustion control are presented in Gemmen et al. (1995) and Richards et al. (1995). This paper describes the status of METC efforts to avoid oscillations through simple design changes.

  4. Alternate Fuels Combustion Research

    DTIC Science & Technology

    1984-07-01

    AFWAL-TR-84-2042 ESL-TR-84-29 ALTERNATE FUELS COMBUSTION RESEARCH 0) PRATT & WHITNEY CANADA MISSISSAUGA, ONTARIO CANADA In JULY 1984 Final Report for...in small engincs. -291 REFERENCES 1. Gratton, M., Sampath, P., " Alternate Fuels Combustion Research Phase If", Pratt & Whitney Canada , AFWAL-TR-83-2057...for Period May 80 Sep e ALTERNATE FUELS COMBUSTION RESEARCHMa80-Sp3 4. PERFORMING ORIJ. REPORT NUMBER 7. AUTNOR(s) 4. 60ONTRA-CT-WI GANUMNER(s) *M

  5. Dry low combustion system with means for eliminating combustion noise

    DOEpatents

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  6. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae.

    PubMed

    Sanchez-Silva, L; López-González, D; Garcia-Minguillan, A M; Valverde, J L

    2013-02-01

    Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae (NG microalgae) were investigated by thermogravimetric analysis (TGA). NG microalgae pyrolysis and combustion could be divided into three main stages: dehydration, proteins and polysaccharides degradation and char decomposition. The effects of the initial sample mass, particle size and gas flow on the pyrolysis and combustion processes were studied. In addition, gasification operation conditions such as temperature, initial sample mass, particle size, sweep gas flow and steam concentration, were experimentally evaluated. The evolved gases were analyzed online using mass spectroscopy (MS). In pyrolysis and combustion processes, most of the gas products were generated at the second degradation step. N-compounds evolution was associated with the degradation of proteins. Furthermore, SO(2) release from combustion could be related to sulphated polysaccharides decomposition. The main products detected during gasification were CO(2), CO, H(2), indicating that oxidation reactions, water gas and water gas shift reactions, were predominant.

  7. An Extended Combustion Model for the Aircraft Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel

    2014-08-01

    The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.

  8. Sandia Combustion Research: Technical review

    SciTech Connect

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  9. Abstracts: 1982 AFOSR Contractors Meeting on Air Breathing Combustion Dynamics Research, held 1-4 November 1982, Clearwater Beach, Florida.

    DTIC Science & Technology

    1982-11-01

    Development of Gas Turbine Combustors H. Mongia Garrett Institute Engine Company 9:20 Fundamental Combustion Studies with Conventional and Alternate Fuel... Future investigations in this area include measurements at higher Reynolds numbers and increasing amounts of heat release. Additionally, the HF combustion ...will require the effective utilization of alternative fuels and advanced combustor concepts . Therefore, further understanding of spray combustion

  10. Measure Guideline: Combustion Safety for Natural Draft Appliances Through Appliance Zone Isolation

    SciTech Connect

    Fitzgerald, J.; Bohac, D.

    2014-04-01

    This measure guideline covers how to assess and carry out the isolation of natural draft combustion appliances from the conditioned space of low-rise residential buildings. It deals with combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage. This subset of houses does not require comprehensive combustion safety tests and simplified prescriptive procedures can be used to address safety concerns. This allows residential energy retrofit contractors inexperienced in advanced combustion safety testing to effectively address combustion safety issues and allow energy retrofits including tightening and changes to distribution and ventilation systems to proceed.

  11. Modeling aerosol emissions from the combustion of composite materials

    NASA Technical Reports Server (NTRS)

    Roop, J. A.; Caldwell, D. J.; Kuhlmann, K. J.

    1994-01-01

    The use of advanced composite materials (ACM) in the B-2 bomber, composite armored vehicle, and F-22 advanced tactical fighter has rekindled interest concerning the health risk of burned or burning ACM. The objective of this work was to determine smoke production from burning ACM and its toxicity. A commercial version of the UPITT II combustion toxicity method developed at the University of Pittsburgh, and subsequently refined through a US Army-funded basic research project, was used to established controlled combustion conditions which were selected to evaluate real-world exposure scenarios. Production and yield of toxic species varied with the combustion conditions. Previous work with this method showed that the combustion conditions directly influenced the toxicity of the decomposition products from a variety of materials.

  12. Combustion Technology Outreach

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Lewis' High Speed Research (HSR) Propulsion Project Office initiated a targeted outreach effort to market combustion-related technologies developed at Lewis for the next generation of supersonic civil transport vehicles. These combustion-related innovations range from emissions measurement and reduction technologies, to diagnostics, spray technologies, NOx and SOx reduction of burners, noise reduction, sensors, and fuel-injection technologies. The Ohio Aerospace Institute and the Great Lakes Industrial Technology Center joined forces to assist Lewis' HSR Office in this outreach activity. From a database of thousands of nonaerospace firms considered likely to be interested in Lewis' combustion and emission-related technologies, the outreach team selected 41 companies to contact. The selected companies represent oil-gas refineries, vehicle/parts suppliers, and manufacturers of residential furnaces, power turbines, nonautomobile engines, and diesel internal combustion engines.

  13. Fluidized coal combustion

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  14. Studies in premixed combustion

    SciTech Connect

    Sivashinsky, G.I.

    1992-01-01

    This report discusses the following topics on premixed combustion: theory of turbulent flame propagation; pattern formation in premixed flames and related problems; and pattern formation in extended systems. (LSP)

  15. TENORM: Coal Combustion Residuals

    EPA Pesticide Factsheets

    Burning coal in boilers to create steam for power generation and industrial applications produces a number of combustion residuals. Naturally radioactive materials that were in the coal mostly end up in fly ash, bottom ash and boiler slag.

  16. Dynamic effects of combustion

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.

    1982-01-01

    The dynamic effects of combustion are due to the evolution of exothermic energy and its deposition in the compressible medium where the process takes place. The paper examines the dynamics of combustion phenomena, including ignition, turbulent flame propagation (inflammation), explosion, and detonation, with emphasis on their exothermic characteristics. Ignition and explosion are treated as problems of nonlinear mechanics, and their dynamic behavior is described in terms of phase space models and cinematographic laser shear interferograms. The results of a numerical random vortex model of turbulent flame propagation are confirmed in a combustion tunnel experiment, where it was observed that a fresh mixture of burnt and unburnt gases can sustain combustion with a relatively small expenditure of overall mass flow, due to the increasing specific volume of burnt gases inside the flame front. An isentropic pressure wave is found to precede the accelerating flame in the process of detonation, and components of this presssure wave are shown to propagate at local sonic velocities.

  17. Scramjet Combustion Processes

    DTIC Science & Technology

    2010-09-01

    plan for these flights is as follows: Scramjet Combustion Processes RTO-EN-AVT-185 11 - 21 HyShot 5 – A Free-Flying Hypersonic Glider HyShot...5 will be a hypersonic glider designed to fly at Mach 8. It will separate from its rocket booster in space and perform controlled manoeuvres as it...RTO-EN-AVT-185 11 - 1 Scramjet Combustion Processes Michael Smart and Ray Stalker Centre for Hypersonics The University of Queensland

  18. Computational fluid dynamics combustion analysis evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Shang, H. M.; Chen, C. P.; Ziebarth, J. P.

    1992-01-01

    This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included.

  19. Sandia Combustion Research Program

    SciTech Connect

    Johnston, S.C.; Palmer, R.E.; Montana, C.A.

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  20. Coal combustion system

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  1. Broad Specification Fuels Combustion Technology Program. Phase 2

    DTIC Science & Technology

    1990-10-01

    128 7.2.7 Combustion Stability 131 7.3 Modifications to the Variable Geometry Combustor Concept 131 7.3.1 Initial Variable Geometry Combustor...implied that combustion was being restricted to areas close to the liners. Based on these observations it was evident that the fundamental concept of...these concepts represent advanced technology approaches that are more likely to find application in future engines rather than in retrofit into older

  2. Distributed ignition method and apparatus for a combustion engine

    SciTech Connect

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  3. Chemical Kinetic Modeling of Biofuel Combustion

    NASA Astrophysics Data System (ADS)

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  4. 8th International symposium on transport phenomena in combustion

    SciTech Connect

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  5. Thermodynamic analysis of the advanced zero emission power plant

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Job, Marcin

    2016-03-01

    The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  6. Factors influencing spontaneous combustion of solid waste.

    PubMed

    Moqbel, Shadi; Reinhart, Debra; Chen, Ruey-Hung

    2010-01-01

    Landfill fires create a critical problem for landfill operators and require investigation of its occurrence and the conditions that favor its initiation. Subsurface fires are considered the most significant due to the difficulty in determining their location and extent. These fires are mainly caused by spontaneous combustion, combustion due to high temperature in absence of flame. This study investigates the effect of moisture content, oxygen concentration and leachate components on spontaneous ignition, combustion initiation, and self-heating of solid waste. A new procedure for testing spontaneous ignition is described; however, variations in solid waste components and landfill conditions can create some limitations to its use. The presence of water and dissolved solids in leachate was found to accelerate chemical self-heating of the solid waste. Oxygen concentration at 10% by volume can sustain chemical oxidation but did not promote accelerated burning.

  7. Single droplet combustion of sunflower oil

    SciTech Connect

    Araya, K.; Tsunematsu, S.

    1987-01-01

    When sunflower oil (or plant oil, in general) was used as diesel engine fuel, the ignitability at low temperatures was much poorer than for No. 2 diesel oil. In addition, unburned carbon accumulated in the combustion chamber when the engine was idling. The research reported in this paper was conducted to investigate the causes of these problems. A single fuel droplet set at the tip of a combustion thread was inserted into an electric furnace and ignited. The behavior of the combustion was observed and analyzed by a high speed rotary video camera. The fuels studied were sunflower oil, No. 2 diesel oil, sunflower oil methyl ester and fish oil methyl ester. As a result, even if the droplet size of sunflower oil was the same as that of No. 2 diesel oil, its ignition delay was much longer than No. 2 diesel oil. This may be the main cause of poor ignitability of sunflower oil at low temperatures.

  8. Flow, spray and combustion analysis by laser techniques in the combustion chamber of a direct-injection diesel engine

    NASA Astrophysics Data System (ADS)

    Hentschel, W.; Schindler, K.-P.

    1996-12-01

    The purpose of this paper is to show how the analysis of in -cylinder flow, fuel injection, and combustion by means of state-of-the-art optical techniques, as laser light-sheet, laser doppler anemometry and laser shadowgraphy, can help to support the understanding of the interaction of swirl flow development, spray formation, auto-ignition and combustion in near production-line direct-injection diesel engines and thus advances the development of engines with lower fuel consumption and emissions.

  9. Modeling Combustion in Supersonic Flows

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  10. Supersonic Combustion Research at NASA

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  11. Combustion Characteristics of a Hypermixer Scramjet Engine

    NASA Astrophysics Data System (ADS)

    Sunami, Tetsuji; Itoh, Katsuhiro; Komuro, Tomoyuki; Sato, Kazuo

    A scramjet engine with a wall-mounted hypermixer injector, which generates streamwise vortices for enhancing supersonic mixing and combustion, is examined at a Mach 8 simulated flight condition in the High Enthalpy Shock Tunnel (HIEST). The engine and the fuel injector are full scale models of the HyShot-IV flight experiment planned for 2005 by JAXA and University of Queensland (UQ). Main purpose of the present study is to clarify the combustion and operation characteristics of the hypermixer scramjet owing to the ability of the streamwise vortices for mixing enhancement and boundary layer control. For comparison, two injectors with normal and parallel injection without streamwise vortex generation are also examined. The results show the superior performance of the hypermixer injector in scramjet mode obtaining higher pressure rise in a shorter distance compared to the other two injectors. In the case of the hypermixer injector, a 1D analysis of an inviscid nozzle flow shows the increment in the specific impulse due to combustion to be 2,649 and 2,224 sec for the equivalence ratio, Φ=0.3 and 0.6, respectively. At Φ=1.0 and 1.5, sudden rapid combustion of the premixed fuel at the end of the combustor generates a strong pressure wave, which propagates upstream up to the injector location and decades there. As a result, a new quasi-steady combusting flow is established throughout the combustor downstream of the injector. The pressure wave is identified as a kind of detonation wave, which is suggested to propagate upstream mainly through the streamwise vortices. As a driving force of the upstream propagation of the detonation wave, mixing and combustion enhanced through the interaction between the detonation wave and the streamwise vortices are considered.

  12. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass.

    PubMed

    López-González, D; Fernandez-Lopez, M; Valverde, J L; Sanchez-Silva, L

    2013-09-01

    Combustion characteristics of biomass main components and three lignocellulosic biomass (fir wood, eucalyptus wood and pine bark) were investigated by thermogravimetric analysis coupled with mass spectrometry. The combustion of biomass was divided into two main steps, devolatilization and char oxidation stage. Heating rate effect was also studied. Generally, the higher the heating rate, the higher the decomposition temperature. Furthermore, the weight loss rate decreased due to particle temperature gradients. Combustion kinetics were studied. Models based on reaction order (Oi), nucleation (Ni) and diffusion (Di) achieved the best fitting to the experimental data. Cellulose oxidation presented the highest activation energies. CO, CO2 and H2O were the main components evolved from combustion. Additionally, light hydrocarbons (CH4 and C2H5) were also present. Finally, nitrogen compounds were in a higher proportion than sulfur compounds being released as primary amines and NOx.

  13. CFD modeling of turbulent flows around the SSME main injector assembly using porosity formulation

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.; Chen, Y. S.; Ruf, Joseph H.

    1992-07-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and liquid oxygen (LOX) flow distributions through the LOX posts have great effect on the combustion phenomenon inside the main combustion chamber. An advanced computational fluid dynamics (CFD) analysis will help to provide more accurate and efficient characterization of this type of flow field. In order to design a CFD model to be an effective engineering analysis tool with good computational turn-around time and still maintain good accuracy in describing the flow features, the concept of porosity is employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. A validated non-isotropic porosity model is developed and incorporated into an existing Navier-Stokes flow solver (FDNS). Volume and surface porosity parameters, which are based on the configurations of local LOX post clustering, are introduced into the governing equations.

  14. CFD modeling of turbulent flows around the SSME main injector assembly using porosity formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Y. S.; Ruf, Joseph H.

    1992-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and liquid oxygen (LOX) flow distributions through the LOX posts have great effect on the combustion phenomenon inside the main combustion chamber. An advanced computational fluid dynamics (CFD) analysis will help to provide more accurate and efficient characterization of this type of flow field. In order to design a CFD model to be an effective engineering analysis tool with good computational turn-around time and still maintain good accuracy in describing the flow features, the concept of porosity is employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. A validated non-isotropic porosity model is developed and incorporated into an existing Navier-Stokes flow solver (FDNS). Volume and surface porosity parameters, which are based on the configurations of local LOX post clustering, are introduced into the governing equations.

  15. Environmentally conscious coal combustion

    SciTech Connect

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  16. Combustion chamber noise suppressor

    SciTech Connect

    Livingston, A.M.

    1986-08-19

    A combustion chamber is described for a hot fog generating machine comprising a hollow cylindrical combustion chamber shell having a closure plate at one end and outlet means at the opposite end for directing hot combustion gasses to a fogging nozzle, air inlet means disposed adjacent the outlet means, fuel inlet means and ignition means mounted in the closure plate and liner means disposed concentrically within the cylindrical combustion chamber for controlling the flow of air and combustion gasses within the shell. The liner means includes a liner base having a frustroconical configuration with the smaller diameter end thereof disposed in communication with the outlet means and with the larger diameter end thereof disposed in spaced relation to the shell, circumferentially spaced, longitudinally extending fins extending outwardly from the liner base intermediate the liner base and the shell, a cylindrical liner midsection having circumferentially spaced fins extending outwardly therefrom between the midsection and the shell with the fins supporting the midsection on the larger diameter end of the liner base.

  17. Combustion in fluidized beds

    SciTech Connect

    Dry, F.J.; La Nauze, R.D. )

    1990-07-01

    Circulating fluidized-bed (CFB) combustion systems have become popular since the late 1970s, and, given the current level of activity in the area,it is clear that this technology has a stable future in the boiler market. For standard coal combustion applications, competition is fierce with mature pulverized-fuel-based (PF) technology set to maintain a strong profile. CFB systems, however, can be more cost effective than PF systems when emission control is considered, and, as CFB technology matures, it is expected that an ever-increasing proportion of boiler installations will utilize the CFB concept. CFB systems have advantages in the combustion of low-grade fuels such as coal waste and biomass. In competition with conventional bubbling beds, the CFB boiler often demonstrates superior carbon burn-out efficiency. The key to this combustion technique is the hydrodynamic behavior of the fluidized bed. This article begins with a description of the fundamental fluid dynamic behavior of the CFB system. This is followed by an examination of the combustion process in such an environment and a discussion of the current status of the major CFB technologies.

  18. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  19. LES of Mild Combustion using Pareto-efficient Combustion Adaptation

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Evans, Michael; Ihme, Matthias

    2015-11-01

    Moderate or Intense Low-Oxygen Dilution (MILD) combustion is a combustion regime that provides opportunities for improved thermal efficiency and reduced pollutant emissions. In this study, large-eddy simulation is used to investigate the ignition, mixing, and stabilization of a jet flame in this kinetics-controlled combustion regime. The combustion process is modeled by a Pareto-efficient combustion (PEC) formulation that optimally combines reaction-transport and chemistry combustion models. In this approach, a three-stream flamelet/progress variable model is used as a computationally efficient description of equilibrated flame regions, and a finite-rate chemistry representation is employed to accurately represent the ignition behavior and flame stabilization. Through comparisons with experiments and simulations with single-regime combustion models, it will be shown that this Pareto-efficient combustion submodel assignment accurately captures important dynamics in complex turbulent flame configurations.

  20. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D; Swank, William D.

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  1. Steam generator with circulating atmospheric fluidized bed combustion

    NASA Astrophysics Data System (ADS)

    Wein, W.; Hoeffgen, H.; Maintok, K. H.; Daradimos, G.

    1982-08-01

    The combustion of coal in power plants by conventional combustion techniques is studied with emphasis on combustion in a circulating atmospheric fluidized bed (CFBC). The CFBC method stays half way between the classical fluidized bed with a well defined bed height and the pneumatic transport where particles and fluidizing gas have the same velocity. The main advantages of CFBC are: flexibility with respect to coal types; easy elimination of 80% of sulfur by mixing the coal with calcium carbonate to a molecular ratio Ca/S of about two; reduced nitrogen oxides production due to the low combustion temperature of 900 C; high steam production efficiency with the combustion degree exceeding 99%; high overall efficiency with no further desulfurizing being needed; easy regulation; high heat transmission rates (350 to 400 W/m2K) reducing exchange surfaces; small boiler building; and the possibility to build in one module a 300 MW unit.

  2. Low emission U-fired boiler combustion system

    DOEpatents

    Ake, Terence; Beittel, Roderick; Lisauskas, Robert A.; Reicker, Eric

    2000-01-01

    At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.

  3. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    NASA Astrophysics Data System (ADS)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  4. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  5. Antipollution combustion chamber

    SciTech Connect

    Caruel, J.E.; Gastebois, P.M.

    1981-01-27

    The invention concerns a combustion chamber for turbojet engines. The combustion chamber is of the annular type and consists of two coaxial flame tubes opening into a common dilution and mixing zone. The inner tube is designed for low operating ratings of the engine, the outer tube for high ratings. Air is injected as far upstream as possible into the dilution zone, to enhance the homogenization of the gaseous flow issuing from the two tubes prior to their passage into the turbine and to assure the optimum radial distribution of temperatures. The combustion chamber according to the invention finds application in a particularly advantageous manner in turbojet engines used in aircraft propulsion because of the reduced emission of pollutants it affords.

  6. Forced cocurrent smoldering combustion

    SciTech Connect

    Dosanjh, S.S.; Pagni, P.J.; Fernandez-Pello, A.C.

    1987-05-01

    An analytic model of the propagation of smoldering combustion through a very porous solid fuel is presented. Here smoldering is initiated at the top of a long, radially insulated, uniform fuel cylinder, so that the smolder wave propagates downward, opposing an upward forced flow of oxidizer. Because the solid fuel and the gaseous oxidizer enter the reaction zone from the same direction, this configuration is referred to as cocurrent (or premixed-flame-like). It is assumed that the propagation of the smolder wave is one-dimensional and steady in a frame of reference moving with the wave. Buoyancy is included and shown to be negligible in the proposed application of a smoldering combustion experiment for use on the Space Shuttle. Radiation heat transfer is incorporated using the diffusion approximation and smoldering combustion is modeled by a finite rate, one-step reaction mechanism.

  7. Fuel Droplet Burning During Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 4 1997, MET:2/05:40 (approximate). The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.4MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300168.html.

  8. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  9. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  10. Fiber-Supported Droplet Combustion Experiment-2

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1998-01-01

    A major portion of the energy produced in the world today comes from the burning of liquid hydrocarbon fuels in the form of droplets. Understanding the fundamental physical processes involved in droplet combustion is not only important in energy production but also in propulsion, in the mitigation of combustion-generated pollution, and in the control of the fire hazards associated with handling liquid combustibles. Microgravity makes spherically symmetric combustion possible, allowing investigators to easily validate their droplet models without the complicating effects of gravity. The Fiber-Supported Droplet Combustion (FSDC-2) investigation was conducted in the Microgravity Glovebox facility of the shuttles' Spacelab during the reflight of the Microgravity Science Laboratory (MSL- 1R) on STS-94 in July 1997. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and duo droplets with and without forced air convection. FSDC-2 is sponsored by the NASA Lewis Research Center, whose researchers are working in cooperation with several investigators from industry and academia. The rate at which a droplet burns is important in many commercial applications. The classical theory of droplet burning assumes that, for an isolated, spherically symmetric, single-fuel droplet, the gas-phase combustion processes are much faster than the droplet surface regression rate and that the liquid phase is at a uniform temperature equal to the boiling point. Recent, more advanced models predict that both the liquid and gas phases are unsteady during a substantial portion of the droplet's burning history, thus affecting the instantaneous and average burning rates, and that flame radiation is a dominant mechanism that can extinguish flames in a microgravity environment. FSDC-2 has provided well-defined, symmetric droplet burning data including radiative emissions to validate these theoretical

  11. Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion.

    PubMed

    Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce E; Brandenberger, Jill M; Wade, Terry L; Crecelius, Eric

    2011-04-01

    Reconstructions of 250 years historical inputs of two distinct types of black carbon (soot/graphitic black carbon (GBC) and char-BC) were conducted on sediment cores from two basins of the Puget Sound, WA. Signatures of polycyclic aromatic hydrocarbons (PAHs) were also used to support the historical reconstructions of BC to this system. Down-core maxima in GBC and combustion-derived PAHs occurred in the 1940s in the cores from the Puget Sound Main Basin, whereas in Hood Canal such peak was observed in the 1970s, showing basin-specific differences in inputs of combustion byproducts. This system showed relatively higher inputs from softwood combustion than the northeastern U.S. The historical variations in char-BC concentrations were consistent with shifts in climate indices, suggesting an influence of climate oscillations on wildfire events. Environmental loading of combustion byproducts thus appears as a complex function of urbanization, fuel usage, combustion technology, environmental policies, and climate conditions.

  12. Studies in combustion dynamics

    SciTech Connect

    Koszykowski, M.L.

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  13. Alternate Fuels Combustion Research

    DTIC Science & Technology

    1983-10-01

    AFWAL-TR-83-2057 AD A13 8 5 7 5 ALTERNATE FUELS COMBUSTION RESEARCH PHASE RI ’~*~~4 & IWITEY CMAAA * ’s~t:Uwz, ONTARIO October 1983 I•oerls Report...83-2057 P_______________ C TITLE (mod ,,--tt-) 5. TYPE OF REPORT A PERIOD COVERED Alternate Fuels ioahusticn Research Interim Report for Period Phase...I$. KEY WORDS (Continue on reverse sirte it necessear and identify by block number) FUELS ALTERNATE FUELS GAS TURBINE COMBUSTION EXHAUST EMISSIONS 0

  14. Transition nozzle combustion system

    DOEpatents

    Kim, Won-Wook; McMahan, Kevin Weston; Maldonado, Jaime Javier

    2016-11-29

    The present application provides a combustion system for use with a cooling flow. The combustion system may include a head end, an aft end, a transition nozzle extending from the head end to the aft end, and an impingement sleeve surrounding the transition nozzle. The impingement sleeve may define a first cavity in communication with the head end for a first portion of the cooling flow and a second cavity in communication with the aft end for a second portion of the cooling flow. The transition nozzle may include a number of cooling holes thereon in communication with the second portion of the cooling flow.

  15. Toxicology of Biodiesel Combustion products

    EPA Science Inventory

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  16. Combuster. [low nitrogen oxide formation

    NASA Technical Reports Server (NTRS)

    Mckay, R. A. (Inventor)

    1978-01-01

    A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.

  17. Nanoscopic fuel-rich thermobaric formulations: Chemical composition optimization and sustained secondary combustion shock wave modulation.

    PubMed

    Mohamed, Ahmed K; Mostafa, Hosam E; Elbasuney, Sherif

    2016-01-15

    Advanced thermobaric explosives have become one of the urgent requirements when targeting caves, fortified structures, and bunkers. Highly metal-based systems are designed to exploit the secondary combustion resulted from active metal particles; thus sustained overpressure and additional thermal loadings can be achieved. This study, reports on a novel approach for chemical composition optimization using thermochemical calculations in an attempt to achieve the highest explosion power. Shock wave resulted from thermobaric explosives (TBX) was simulated using ANSYS(®) AUTODYN(®) 2D hydrocode. Nanoscopic fuel-rich thermobaric charge was prepared by pressing technique; static field test was conducted. Comparative studies of modeled pressure-time histories to practical measurements were conducted. Good agreement between numerical modeling and experimental measurements was observed, particularly in terms of the prediction of wider overpressure profile which is the main characteristics of TBX. The TBX wider overpressure profile was ascribed to the secondary shock wave resulted from fuel combustion. The shock wave duration time and its decay pattern were acceptably predicted. Effective lethal fire-ball duration up to 50ms was achieved and evaluated using image analysis technique. The extended fire-ball duration was correlated to the additional thermal loading due to active metal fuel combustion. The tailored thermobaric charge exhibited an increase in the total impulse by 40-45% compared with reference charge.

  18. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    SciTech Connect

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  19. Modeling internal ballistics of gas combustion guns.

    PubMed

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  20. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  1. Advancements in low NOx tangential firing systems

    SciTech Connect

    Hein, R. von; Maney, C.; Borio, R.

    1996-12-31

    The most cost effective method of reducing nitrogen oxide emissions when burning fossil fuels, such as coal, is through in-furnace NOx reduction processes. ABB Combustion Engineering, Inc. (ABB CE), through its ABB Power Plant Laboratories has been involved in the development of such low NOx pulverized coal firing systems for many years. This development effort is most recently demonstrated through ABB CE`s involvement with the U.S. Department of Energy`s (DOE) {open_quotes}Engineering Development of Advanced Coal Fired Low-Emission Boiler Systems{close_quotes} (LEBS) project. The goal of the DOE LEBS project is to use {open_quotes}near term{close_quotes} technologies to produce a commercially viable, low emissions boiler. This paper addresses one of the key technologies within this project, the NOx control subsystem. The foundation for the work undertaken at ABB CE is the TFS 2000{trademark} firing system, which is currently offered on a commercial basis. This system encompasses sub-stoichiometric combustion in the main firing zone for reduced NOx formation. Potential enhancements to this firing system focus on optimizing the introduction of the air and fuel within the primary windbox to provide additional horizontal and vertical staging. As is the case with all in-furnace NOx control processes, it is necessary to operate the system in a manner which does not decrease NOx at the expense of reduced combustion efficiency.

  2. Combustible dust tests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  3. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.

  4. WASTE COMBUSTION SYSTEM ANALYSIS

    EPA Science Inventory

    The report gives results of a study of biomass combustion alternatives. The objective was to evaluate the thermal performance and costs of available and developing biomass systems. The characteristics of available biomass fuels were reviewed, and the performance parameters of alt...

  5. Spray combustion stability project

    NASA Technical Reports Server (NTRS)

    Jeng, San-Mou; Litchford, Ron J.

    1992-01-01

    This report summarizes research activity on the Spray Combustion Stability Project, characterizes accomplishments and current status, and discusses projected future work. The purpose is to provide a concise conceptual overview of the research effort to date so the reader can quickly assimilate the gist of the research results and place them within the context of their potential impact on liquid rocket engine design technology.

  6. Monopropellant combustion system

    NASA Technical Reports Server (NTRS)

    Berg, Gerald R. (Inventor); Mueller, Donn C. (Inventor); Parish, Mark W. (Inventor)

    2005-01-01

    An apparatus and method are provided for decomposition of a propellant. The propellant includes an ionic salt and an additional fuel. Means are provided for decomposing a major portion of the ionic salt. Means are provided for combusting the additional fuel and decomposition products of the ionic salt.

  7. Coal combustion research

    SciTech Connect

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  8. Isolated body combustion: new French cases, old worldwide issues.

    PubMed

    Quatrehomme, Gérald; Guinier, David; Suply, Benoit; Alunni, Véronique; Pedech, Alain

    2013-06-01

    The authors present 2 new cases of so-called spontaneous human combustion. The first observations of isolated body combustion, to use a more appropriate term, date back to the 17th century. Its main features are that some parts of the body (usually the middle third) are badly burnt to the point of being reduced to ashes, contrasting with other well-preserved body parts and the intact or nearly intact immediate vicinity of the body. Usually, combustion occurs postmortem, and a source of heat is found near the body. High concentrations of blood alcohol are frequently found but not mandatory. In all cases, ruling out homicide is a major concern.

  9. Fuel properties to enable lifted-flame combustion

    SciTech Connect

    Kurtz, Eric

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  10. A clean coal combustion technology-slagging combustors

    SciTech Connect

    Chang, S. L.; Berry, G. F.

    1989-03-01

    Slagging combustion is an advanced clean coal technology technique characterized by low NOx and SOx emission, high combustion efficiency, high ash removal, simple design and compact size. The design of slagging combustors has operational flexibility for a wide range of applications, including retrofitting boilers, magnetohydrodynamic combustors, coal-fired gas turbines, gasifiers and hazardous waste incinerators. In recent years, developers of slagging combustors have achieved encouraging progress toward the commercialization of this technology. Although there is a diversity of technical approaches among the developers, they all aim for a compact design of pulverized coal combustion with high heat release and sub-stoichiometric combustion regimes of operation to suppress NOx formation, and most aim to capture sulfur by using sorbent injection in the combustor. If the present pace toward commercialization continues, retrofitting boilers of sizes ranging from 20 to 250 MMBtu/hr (5.9 to 73 MWt) may be available for commercial use in the 1990's. 18 refs., 2 figs.

  11. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect

    Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

    2010-11-15

    Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  12. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  13. Droplet combustion at reduced gravity

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Williams, F. A.

    1988-01-01

    The current work involves theoretical analyses of the effects identified, experiments in the NASA Lewis drop towers performed in the middeck areas of the Space Shuttle. In addition, there is laboratory work associated with the design of the flight apparatus. Calculations have shown that some of the test-matrix data can be obtained in drop towers, and some are achievable only in the space experiments. The apparatus consists of a droplet dispensing device (syringes), a droplet positioning device (opposing, retractable, hollow needles), a droplet ignition device (two matched pairs of retractable spark electrodes), gas and liquid handling systems, a data acquisition system (mainly giving motion-picture records of the combustion in two orthogonal views, one with backlighting for droplet resolution), and associated electronics.

  14. Combustion Devices CFD Team Analyses Review

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin

    2008-01-01

    A variety of CFD simulations performed by the Combustion Devices CFD Team at Marshall Space Flight Center will be presented. These analyses were performed to support Space Shuttle operations and Ares-1 Crew Launch Vehicle design. Results from the analyses will be shown along with pertinent information on the CFD codes and computational resources used to obtain the results. Six analyses will be presented - two related to the Space Shuttle and four related to the Ares I-1 launch vehicle now under development at NASA. First, a CFD analysis of the flow fields around the Space Shuttle during the first six seconds of flight and potential debris trajectories within those flow fields will be discussed. Second, the combusting flows within the Space Shuttle Main Engine's main combustion chamber will be shown. For the Ares I-1, an analysis of the performance of the roll control thrusters during flight will be described. Several studies are discussed related to the J2-X engine to be used on the upper stage of the Ares I-1 vehicle. A parametric study of the propellant flow sequences and mixture ratios within the GOX/GH2 spark igniters on the J2-X is discussed. Transient simulations will be described that predict the asymmetric pressure loads that occur on the rocket nozzle during the engine start as the nozzle fills with combusting gases. Simulations of issues that affect temperature uniformity within the gas generator used to drive the J-2X turbines will described as well, both upstream of the chamber in the injector manifolds and within the combustion chamber itself.

  15. Advanced turbine systems program--conceptual design and product development. Quarterly report, November 1994--January 1995

    SciTech Connect

    1995-02-01

    Research continued in the design and development of advanced gas turbine systems. This report presents progress towards turbine blade development, diffuser development, combustion noise investigations,catalytic combustion development, and diagnostic probe development.

  16. Modelling of CWS combustion process

    NASA Astrophysics Data System (ADS)

    Rybenko, I. A.; Ermakova, L. A.

    2016-10-01

    The paper considers the combustion process of coal water slurry (CWS) drops. The physico-chemical process scheme consisting of several independent parallel-sequential stages is offered. This scheme of drops combustion process is proved by the particle size distribution test and research stereomicroscopic analysis of combustion products. The results of mathematical modelling and optimization of stationary regimes of CWS combustion are provided. During modeling the problem of defining possible equilibrium composition of products, which can be obtained as a result of CWS combustion processes at different temperatures, is solved.

  17. Plasma-aided solid fuel combustion

    SciTech Connect

    E.I. Karpenko; V.E. Messerle; A.B. Ustimenko

    2007-07-01

    Plasma supported solid fuel combustion is promising technology for use in thermal power plants (TPP). The realisation of this technology comprises two main steps. The first is the execution of a numerical simulation and the second involves full-scale trials of plasma supported coal combustion through plasma-fuel systems (PFS) mounted on a TPP boiler. For both the numerical simulation and the full-scale trials, the boiler of 200 MW power of Gusinoozersk TPP (Russia) was selected. The optimization of the combustion of low-rank coals using plasma technology is described, together with the potential of this technology for the general optimization of the coal burning process. Numerical simulation and full-scale trials have enabled technological recommendations for improvement of existing conventional TPP to be made. PFS have been tested for boilers plasma start-up and flame stabilization in different countries at 27 power boilers steam productivity of 75-670 tons per hour (TPH) equipped with different type of pulverised coal burners. At PFS testing power coals of all ranks (brown, bituminous, anthracite and their mixtures) were used. Volatile content of them varied from 4 to 50%, ash from 15 to 48% and calorific values from 6700 to 25,100 KJ/kg. In summary, it is concluded that the developed and industrially tested PFS improve coal combustion efficiency and decrease harmful emission from pulverised coal-fired TPP. 9 refs., 14 figs., 2 tabs.

  18. Combustion-wave ignition for rocket engines

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1992-01-01

    The combustion wave ignition concept was experimentally studied in order to verify its suitability for application in baffled sections of a large booster engine combustion chamber. Gaseous oxygen/gaseous methane (GOX/GH4) and gaseous oxygen/gaseous hydrogen (GOX/GH2) propellant combinations were evaluated in a subscale combustion wave ignition system. The system included four element tubes capable of carrying ignition energy simultaneously to four locations, simulating four baffled sections. Also, direct ignition of a simulated Main Combustion Chamber (MCC) was performed. Tests were conducted over a range of mixture ratios and tube geometries. Ignition was consistently attained over a wide range of mixture ratios. And at every ignition, the flame propagated through all four element tubes. For GOX/GH4, the ignition system ignited the MCC flow at mixture ratios from 2 to 10 and for GOX/GH2 the ratios is from 2 to 13. The ignition timing was found to be rapid and uniform. The total ignition delay when using the MCC was under 11 ms, with the tube-to-tube, as well as the run-to-run, variation under 1 ms. Tube geometries were found to have negligible effect on the ignition outcome and timing.

  19. Development and application of noninvasive technology for study of combustion in a combustion chamber of gas turbine engine

    NASA Astrophysics Data System (ADS)

    Inozemtsev, A. A.; Sazhenkov, A. N.; Tsatiashvili, V. V.; Abramchuk, T. V.; Shipigusev, V. A.; Andreeva, T. P.; Gumerov, A. R.; Ilyin, A. N.; Gubaidullin, I. T.

    2015-05-01

    The paper formulates the issue of development of experimental base with noninvasive optical-electronic tools for control of combustion in a combustion chamber of gas turbine engine. The design and specifications of a pilot sample of optronic system are explained; this noninvasive system was created in the framework of project of development of main critical technologies for designing of aviation gas turbine engine PD-14. The testbench run data are presented.

  20. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  1. Time Resolved FTIR Analysis of Combustion of Ethanol and Gasoline Combustion in AN Internal Combustion Engine

    NASA Astrophysics Data System (ADS)

    White, Allen R.; Sakai, Stephen; Devasher, Rebecca B.

    2011-06-01

    In order to pursue In Situ measurements in an internal combustion engine, a MegaTech Mark III transparent spark ignition engine was modified with a sapphire combustion chamber. This modification will allow the transmission of infrared radiation for time-resolved spectroscopic measurements by an infrared spectrometer. By using a Step-scan equipped Fourier transform spectrometer, temporally resolved infrared spectral data were acquired and compared for combustion in the modified Mark III engine. Measurements performed with the FTIR system provide insight into the energy transfer vectors that precede combustion and also provides an in situ measurement of the progress of combustion. Measurements were performed using ethanol and gasoline.

  2. Combustion engine system

    NASA Technical Reports Server (NTRS)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)

    1986-01-01

    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  3. Stratified combustion engine

    SciTech Connect

    Solheim, R.G.

    1987-03-17

    The method is described of operating an internal combustion engine having a cylinder with an inner wall. The method comprises admitting, adjacent to the inner wall of the cylinder, a quantity of substantially pure air in a spirally rapidly rotating layer and directing all of the quantity uniformly coaxially relative to the cylinder and toward and against only the adjacent inner wall of the cylinder, and held thereat by Coanda effect and centrifugal force. This is done while also admitting a quantity of fuel mixture in a non-rotating and non-turbulent manner between the layer of rotating pure air and the longitudinal axis of the cylinder, compressing the rotating pure air and the non-rotating fuel mixture simultaneously and firing the non-rotating fuel mixture and exhausting the products of combustion and pure air uniformly coaxially relative to the cylinder and only from a region adjacent to the inner wall and uniformly and completely from the inner wall.

  4. Dynamic features of combustion

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.

    1985-01-01

    The dynamic features of combustion are discussed for four important cases: ignition, inflammation, explosion, and detonation. Ignition, the initiation of a self-sustained exothermic process, is considered in the simplest case of a closed thermodynamic system and its stochastic distribution. Inflammation, the initiation and propagation of self-sustained flames, is presented for turbulent flow. Explosion, the dynamic effects caused by the deposition of exothermic energy in a compressible medium, is illustrated by self-similar blast waves with energy deposition at the front and the adiabatic non-self-similar wave. Detonation, the most comprehensive illustration of all the dynamic effects of combustion, is discussed with a phenomenological account of the development and structure of the wave.

  5. Supersonic Combustion Ramjet Research

    DTIC Science & Technology

    2012-08-01

    4.2 Ignition, Flameholding, and Flame Propagation in Supersonic Flows ......................... 18 4.2.1 Plasma -Assisted Ignition and Flameholding...high- speed flows), plasma -assisted combustion, flameholding (particularly in a high-speed flow), and development and application of diagnostic...Flameholding, and Flame Propagation in Supersonic Flows 4.2.1 Plasma -Assisted Ignition and Flameholding Key questions that have guided this

  6. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  7. Spray combustion stability project

    NASA Technical Reports Server (NTRS)

    Jeng, San-Mou; Litchford, Ron J.

    1990-01-01

    This report summarizes research activity on the Spray Combustion Stability Project, characterizes accomplishments and current status, and discusses projected future work. The purpose is to provide a concise conceptual overview of the research effort so the reader can quickly assimilate the gist of the research results and place them within the context of their potential impact on liquid rocket engine design technology. Therefore, this report does not elaborate on many of the detailed technical aspects of the research program.

  8. Industrial Combustion Coordinated Rulemaking.

    PubMed

    Melton, Lula H

    1996-08-01

    The following article is excerpted from the document Industrial Combustion Coordinated Rulemaking - Proposed Organizational Structure and Process, which is available from the Technology Transfer Network (TTN), a computer bulletin board. To access the TTN, call (919) 541-5742; to obtain help with the TTN, call (919) 541-5384. The Industrial Combustion Coordinated Rulemaking (ICCR) document is evolving, reflecting an ongoing dialogue with various stakeholders; therefore, there may be changes between this article and the ICCR as it is implemented. EPA would like to thank all stakeholders (e.g., representatives from various companies and trade associations, state and local air pollution control agencies, and environmental organizations) who have offered suggestions and comments on development of the ICCR. As mentioned in the implications statement, the overall goal of the ICCR is to develop a unified set of federal air emissions regulations. The proposed ICCR will achieve this goal by: • Obtaining active participation from stakeholders, including environmental groups, regulated industries, and state and local regulatory agencies in all phases of regulatory development. • Coordinating the schedule and approach for development of regulations under Sections 111, 112, and 129 of the Clean Air Act that affect ICI combustion. • Determining the most effective ways to address the environmental issues associated with toxic and criteria pollutants from the range of combustion sources. • More effectively considering interactions among the regulations by analyzing the combined benefits and economic impacts of the group of Section 111, 112, and 129 regulations. • Considering strategies to simplify the regulations and allow flexibility in the methods of compliance while maintaining full environmental benefits.

  9. Combustion Characteristics of Sprays

    DTIC Science & Technology

    1989-08-01

    regarded by implication or otherwise, or in any way licensing the holder or any other person or corporation, or conveying any rights or permission to...00 _’N 1. TI TLE inctuat Security CZaaafication5 Combustion Characteristics of Sprays 12. PERSONAL AUTHOR(S) Sohrab, Siavash H. 13& TYPE OF REPORT...to ?!HF of rich butane/air 3unsen flames. .lso, the rotacion speed and :he oerodic temDeracure fluc:uations of rotacfng ?HF are examined. :’!naily

  10. Combustible Cartridge Case Characterization

    DTIC Science & Technology

    1984-02-01

    University (NYU) has resulted in the selection of two cross-linked melamine / formaldehyde acrylic styrene resin systems that can be used in the beater additive... melamine resin Akaradit II stabilizer 20. ABSTRACT (con) Test coupons of combustible cartridge case material were fabricated using these recommended...and agitated for 30 min before the pH was slowly lowered to 3 with p-toluene sulfonic acid. In order to maintain this pH in the felting tank, it was

  11. Spontaneous combustion of hydrogen

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm; Pothmann, PH

    1923-01-01

    It is shown by the author's experiments that hydrogen which escapes to the atmosphere through openings in the system may burn spontaneously if it contains dust. Purely thermal reasoning can not account for the combustion. It seems to be rather an electrical ignition. In order to determine whether the cause of the spontaneous ignition was thermo-chemical, thermo-mechanical, or thermo-electrical, the experiments in this paper were performed.

  12. Combustion Product Evaluation of Various Charge Sizes and Propellant Formulations

    DTIC Science & Technology

    1989-04-01

    Activity , Advanced Systems Division of Aberdeen Proving Ground, without whose help and cooperation this study could not have been performed...WC844 propellant were subjected to u rather detailed chemical analyses. A large number of trace chemical species, volatile organics and PAHs were...Sampling for PAH Analyses ....................... 18 3.3.8 Combustion Product Sampling From A Bore Evacuator, 155 mm Gun

  13. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    SciTech Connect

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  14. Internal combustion engine using premixed combustion of stratified charges

    DOEpatents

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  15. Problems of providing completeness of the methane-containing block-jet combustion in a rocket-ramjet engine's combustion chamber

    NASA Astrophysics Data System (ADS)

    Timoshenko, Valeriy I.; Belotserkovets, Igor S.; Gusinin, Vjacheslav P.

    2009-11-01

    Some problems of methane-containing hydrocarbon fuel combustion are discussed. It seems that reduction of methane burnout zone length is one from main problems of designing new type engine. It is very important at the creation of combustion chambers of a rocket-ramjet engine for prospective space shuttle launch vehicles.

  16. Consequences of sludge composition on combustion performance derived from thermogravimetry analysis

    SciTech Connect

    Li, Meiyan; Xiao, Benyi; Wang, Xu; Liu, Junxin

    2015-01-15

    Highlights: • Volatiles, particularly proteins, play a key role in sludge combustion. • Sludge combustion performance varies with different sludge organic concentrations. • Carbohydrates significantly affect the combustion rate in the second stage. • Combustion performance of digested sludge is more negative compared with others. - Abstract: Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewage sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric–differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175–300 °C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others.

  17. Minimization of combustion by-products: Characteristics of hazardous waste

    SciTech Connect

    Lee, C.C.; Huffman, G.L.

    1990-11-01

    It has been well recognized that, although there are many potential solid waste treatment technologies, none are as universally applicable as incineration for the treatment of the many types of waste which are governed by the many different Federal laws and State regulations. However, incinerators may release trace amounts of unwanted combustion by-products, particularly if the incinerators are not well designed or properly operated. Control of emissions of combustion by-products (CBPs) is one of the major technical and sociological issues surrounding the implementation of incineration as a waste treatment alternative. Much of this is due to the lack of detailed knowledge about CBPs. The Clean Air Act Amendment is emphasizing the control of toxic air pollutants from all combustion sources; some of these pollutants are CBPs. CBPs include: (1) unburned principal organic hazardous constituents (POHCs); (2) products of incomplete combustion (PICs); (3) metals emissions; and (4) residuals/ashes. The Paper is a part of a series of writings on the subject of the CBP issue from EPA's Risk Reduction Engineering Laboratory in Cincinnati, Ohio. It specifically addresses the aspect of hazardous waste characteristics. The main objective of the series is to compare combustion by-products from all combustion sources including fossil fuel combustion and waste incineration, which hopefully will serve as an initial step in the eventual minimization of the release of CBPs to the environment.

  18. Device for improved combustion

    SciTech Connect

    Polomchak, R.W.; Yacko, M.

    1988-03-08

    A device for improved combustion is described comprising: a tubular housing member having a first end and a second end, the first and second ends each having a circular opening therethrough; a combustion chamber disposed about the second end of the-tubular-housing member; a first conduit member extending from the first end of the tubular housing member and in fluid communication with the circular opening in the first end of the tubular housing member so as to allow the passage of air therethrough; a second conduit member axially disposed within the first conduit member and extending through the first conduit member and through the tubular housing member to the circular opening the second end of the tubular housing member so as to allow the passage of fuel therethrough; means for effecting turbulence in the air passing through the tubular housing member; means for effecting turbulence in the fuel passing through the second conduit member; means for intermixing and emitting the turbulent air and the fuel in a mushroom shaped configuration with the turbulent air surrounding the mushroom shaped configuration so as to substantially eliminate noxious waste gases as by-product of combustion of the air and fuel mixture.

  19. Strobes: an oscillatory combustion.

    PubMed

    Corbel, Justine M L; Lingen, Joost N J; Zevenbergen, John F; Gijzeman, Onno L J; Meijerink, Andries

    2012-04-26

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the beginning of the 20th century. However, the chemical and physical processes involved in this curious oscillatory combustion remain unknown. Several theories have been proposed: One claims that two different reactions occur: one during the slow dark phase and another during the fast flash phase. The alternation between the phases is ascribed to heat variations. Other theories suggest that the formation of intermediate species during the dark phase and the change of phase are caused by variations in their concentration. A ternary strobe composition with ammonium perchlorate, magnalium, and barium sulfate is analyzed. The role of barium sulfate is studied by replacing it by other metal sulfates that have different physical properties (melting points), and the burning of the compositions is recorded with a high-speed camera and a spectrometer coupled with a charge-coupled device (CCD) camera. Experimental results show noticeable differences in the physical and chemical processes involved in the strobe reactions.

  20. Droplet Combustion Experiment (DCE)

    NASA Technical Reports Server (NTRS)

    Haggard, John B., Jr.; Nayagan, Vedha; Dryer, Frederick L.; Williams, Forman A.

    1998-01-01

    The first space-based experiments were performed on the combustion of free, individual liquid fuel droplets in oxidizing atmospheres. The fuel was heptane, with initial droplet diameters ranging about from 1 mm to 4 mm. The atmospheres were mixtures of helium and oxygen, at pressures of 1.00, 0.50 and 0.25 bar, with oxygen mole fractions between 20% and 40%, as well as normal Spacelab cabin air. The temperatures of the atmospheres and of the initial liquid fuel were nominally 300 K. A total of 44 droplets were burned successfully on the two flights, 8 on the shortened STS-83 mission and 36 on STS-94. The results spanned the full range of heptane droplet combustion behavior, from radiative flame extinction at larger droplet diameters in the more dilute atmospheres to diffusive extinction in the less dilute atmospheres, with the droplet disappearing prior to flame extinction at the highest oxygen concentrations. Quasisteady histories of droplet diameters were observed along with unsteady histories of flame diameters. New and detailed information was obtained on burning rates, flame characteristics and soot behavior. The results have motivated new computational and theoretical investigations of droplet combustion, improving knowledge of the chemical kinetics, fluid mechanics and heat and mass transfer processes involved in burning liquid fuels.

  1. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  2. Combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Claus, R. W.

    1985-01-01

    Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.

  3. A statistical combustion phase control approach of SI engines

    NASA Astrophysics Data System (ADS)

    Gao, Jinwu; Wu, Yuhu; Shen, Tielong

    2017-02-01

    In order to maximize the performance of internal combustion engine, combustion phase is usually controlled to track its desired reference. However, suffering from the cyclic variability of combustion, it is difficulty but meaningful to control mean of combustion phase and constrain its variance. As a combustion phase indicator, the location of peak pressure (LPP) is utilized for real-time combustion phase control in this research. The purpose of the proposed method is to ensure the mean of LPP statistically tracks its reference and constrains the standard deviation of LPP distribution. To achieve this, LPP is first calculated based on the cylinder pressure sensor, and its characteristics are analyzed at the steady-state operating condition, then the distribution of LPP is examined online using hypothesis test criterion. On the basis of the presented statistical algorithm, current mean of LPP is applied in the feedback channel for designing spark advance adjustment law, and the stability of closed-loop system is theoretically ensured according to a steady statistical model. Finally, the proposed strategy is verified on a spark ignition gasoline engine.

  4. Practical approaches to field problems of stationary combustion systems

    SciTech Connect

    Lee, S.W.

    1997-09-01

    The CANMET Energy Technology Centre (CETC) business plan dictates collaboration with industrial clients and other government agencies to promote energy efficiency, health and safety, pollution reduction and productivity enhancement. The Advanced Combustion Technologies group of CETC provides consultation to numerous organizations in combustion related areas by conducting laboratory and field investigations of fossil fuel-fired combustion equipment. CETC, with its modern research facilities and technical expertise, has taken this practical approach since the seventies and has assisted many organizations in overcoming field problems and in providing cost saving measures and improved profit margins. This paper presents a few selected research projects conducted for industrial clients in north and central America. The combustion systems investigated are mostly liquid fuel fired, with the exception of the utility boiler which was coal-fired. The key areas involved include fuel quality, fuel storage/delivery system contamination, waste derived oils, crude oil combustion, unacceptable pollutant emissions, ambient soot deposition, slagging, fouling, boiler component degradation, and particulate characterization. Some of the practical approaches taken to remedy these field problems on several combustion systems including residential, commercial and industrial scale units are discussed.

  5. Combustion irreversibilities: Numerical simulation and analysis

    NASA Astrophysics Data System (ADS)

    Silva, Valter; Rouboa, Abel

    2012-08-01

    An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.

  6. Combustion and Engine-Core Noise

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias

    2017-01-01

    The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.

  7. Energy Conversion and Combustion Sciences

    DTIC Science & Technology

    2012-03-08

    Rotational /Continuous Detonation • Only Single Initiation needed (Circumvent Initiation/DDT difficulty/loss in PDE ) • 10-100x cycle rate increase • Near...new fuels: 1. Rotational or Continuous Detonation (intense/concentrated combustion); 2. Flameless combustion (distributed combustion process...Steady Exit Flow *CFD Courtesy of NRL Rotational Detonation : (PI: Schauer, AFRL/RZ, working with NRL) Rotational Approach Allows Continuous

  8. Combustion characteristics of husk charcoal

    SciTech Connect

    Shimizu, H.; Kimura, T.; Nishiyama, Y.; Terui, T.

    1984-07-01

    This paper analyzes the factors involved in the extraordinary temperature generation in husk combustion furnaces, and investigates methods of protecting furnaces from heat damage. The combustion characteristics of fixed carbon in rice husks are examined in relation to the air flow rate using different husk charcoals. The theoretical flame temperature in a practical bed was determined from the combustion propagation velocity. It is determined that deviation from the regression line relating the combustion propagation velocity with the specific air flow rate showed a slight correlation with the bulk density of the charcoal samples used.

  9. Microgravity Smoldering Combustion Takes Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour in September 1995 on the STS-69 mission. This experiment is part of series of studies focused on the smolder characteristics of porous, combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of the study is to provide a better understanding of the controlling mechanisms of smoldering, both in microgravity and Earth gravity. As with other forms of combustion, gravity affects the availability of air and the transport of heat, and therefore, the rate of combustion. Results of the microgravity experiments will be compared with identical experiments carried out in Earth's gravity. They also will be used to verify present theories of smoldering combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvement in fire safety practices.

  10. Flammability of Heterogeneously Combusting Metals

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1998-01-01

    Most engineering materials, including some metals, most notably aluminum, burn in homogeneous combustion. 'Homogeneous' refers to both the fuel and the oxidizer being in the same phase, which is usually gaseous. The fuel and oxidizer are well mixed in the combustion reaction zone, and heat is released according to some relation like q(sub c) = delta H(sub c)c[((rho/rho(sub 0))]exp a)(exp -E(sub c)/RT), Eq. (1) where the pressure exponent a is usually close to unity. As long as there is enough heat released, combustion is sustained. It is useful to conceive of a threshold pressure beyond which there is sufficient heat to keep the temperature high enough to sustain combustion, and beneath which the heat is so low that temperature drains away and the combustion is extinguished. Some materials burn in heterogeneous combustion, in which the fuel and oxidizer are in different phases. These include iron and nickel based alloys, which burn in the liquid phase with gaseous oxygen. Heterogeneous combustion takes place on the surface of the material (fuel). Products of combustion may appear as a solid slag (oxide) which progressively covers the fuel. Propagation of the combustion melts and exposes fresh fuel. Heterogeneous combustion heat release also follows the general form of Eq.(1), except that the pressure exponent a tends to be much less than 1. Therefore, the increase in heat release with increasing pressure is not as dramatic as it is in homogeneous combustion. Although the concept of a threshold pressure still holds in heterogeneous combustion, the threshold is more difficult to identify experimentally, and pressure itself becomes less important relative to the heat transfer paths extant in any specific application. However, the constants C, a, and E(sub c) may still be identified by suitable data reduction from heterogeneous combustion experiments, and may be applied in a heat transfer model to judge the flammability of a material in any particular actual

  11. Propellant injection strategy for suppressing acoustic combustion instability

    NASA Astrophysics Data System (ADS)

    Diao, Qina

    Shear-coaxial injector elements are often used in liquid-propellant-rocket thrust chambers, where combustion instabilities remain a significant problem. A conventional solution to the combustion instability problem relies on passive control techniques that use empirically-developed hardware such as acoustic baffles and tuned cavities. In addition to adding weight and decreasing engine performance, these devices are designed using trial-and-error methods, which do not provide the capability to predict the overall system stability characteristics in advance. In this thesis, two novel control strategies that are based on propellant fluid dynamics were investigated for mitigating acoustic instability involving shear-coaxial injector elements. The new control strategies would use a set of controlled injectors allowing local adjustment of propellant flow patterns for each operating condition, particularly when instability could become a problem. One strategy relies on reducing the oxidizer-fuel density gradient by blending heavier methane with the main fuel, hydrogen. Another strategy utilizes modifying the equivalence ratio to affect the acoustic impedance through mixing and reaction rate changes. The potential effectiveness of these strategies was assessed by conducting unit-physics experiments. Two different model combustors, one simulating a single-element injector test and the other a double-element injector test, were designed and tested for flame-acoustic interaction. For these experiments, the Reynolds number of the central oxygen jet was kept between 4700 and 5500 making the injector flames sufficiently turbulent. A compression driver, mounted on one side of the combustor wall, provided controlled acoustic excitation to the injector flames, simulating the initial phase of flame-acoustic interaction. Acoustic excitation was applied either as band-limited white noise forcing between 100 Hz and 5000 Hz or as single-frequency, fixed-amplitude forcing at 1150 Hz

  12. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  13. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  14. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  15. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  16. Combustion Branch Website Development

    NASA Technical Reports Server (NTRS)

    Bishop, Eric

    2004-01-01

    The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.

  17. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  18. Combustion of White Phosphorus

    NASA Astrophysics Data System (ADS)

    Keiter, Richard L.; Gamage, Chaminda P.

    2001-07-01

    The reaction of white phosphorus with pure oxygen is conveniently and safely demonstrated by carrying out the reaction in a retort that has its open end submerged in water. After filling the retort with oxygen gas, a small amount of white phosphorus is introduced and heated with a hot-plate until it ignites. The spectacular reaction leads to consumption and expulsion of oxygen gas, creation of a partial vacuum in the retort, and back suction of water that extinguishes the combustion. Featured on the Cover

  19. Lithium Combustion: A Review

    DTIC Science & Technology

    1990-12-01

    lithium vapors generated with air formed an intense white flame that produced branched- chain condensation aerosol particles, of concentrations 򓆄 mg/im3...generated chain -aggregate lithium combustion aerosols in dry, COg-free air prior to reaction with 0, 0.10, 0.50, 1.0, 1.75, or 5.0% CO in air at a...In order to burn in gaseous chlorine or in bromine or iodine vapor, lithium needs to be heated. With iodine vapor, the reaction is accompanied by

  20. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  1. NOx formation in combustion of gaseous fuel in ejection burner

    NASA Astrophysics Data System (ADS)

    Rimár, Miroslav; Kulikov, Andrii

    2016-06-01

    The aim of this work is to prepare model for researching of the formation in combustion of gaseous fuels. NOx formation is one of the main ecological problems nowadays as nitrogen oxides is one of main reasons of acid rains. The ANSYS model was designed according to the calculation to provide full combustion and good mixing of the fuel and air. The current model is appropriate to research NOx formation and the influence of the different principles of NOx reduction method. Applying of designed model should spare both time of calculations and research and also money as you do not need to measure the burner characteristics.

  2. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    EPA Science Inventory

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  3. Path planning during combustion mode switch

    SciTech Connect

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  4. Plasma igniter for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  5. Preliminary assessment of combustion modes for internal combustion wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  6. Coal Combustion Products Extension Program

    SciTech Connect

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be

  7. Fuel Effects on Gas Turbine Combustion

    DTIC Science & Technology

    1983-01-01

    W. S., Combustion Considerations for Future Jet Fuels, Sixteenth Symposium (International) on Combustion , The Combustion Institute, pp. 1631-1638...AFWAL-TR-83-2004 -. i FUEL EFFECTS ON SGAS TURBINE COMBUSTION A. H. Lefebvre <.A t • Combustion Laboratory Thermal Science and Propulsion Center...PERIOD COVEREDFinal Report for Period FUEL EFFECTS ON GAS TURBINE COMBUSTION 21 Sep 81 - 23 Dec 82 6. PERFORMING OIG. REPORT NUMBER ś. AUT"HOR(.) S

  8. Combustion of Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Roshandell, Melika

    A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding

  9. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases

    SciTech Connect

    Selvaraj, P.T.; Kaufman, E.N.

    1995-06-01

    The purpose of the proposed research program is the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. Coal is thermochemically converted to synthesis gas consisting of carbon monoxide, hydrogen, and carbon dioxide. Conventional catalytic upgrading of coal synthesis gas into alcohols or other oxychemicals is subject to several processing problems such as interference of the other constituents in the synthesis gases, strict CO/H{sub 2} ratios required to maintain a particular product distribution and yield, and high processing cost due to the operation at high temperatures and pressures. Recently isolated and identified bacterial strains capable of utilizing CO as a carbon source and coverting CO and H{sub 2} into mixed alcohols offer the potential of performing synthesis gas conversion using biocatalysts. Biocatalytic conversion, though slower than the conventional process, has several advantages such as decreased interference of the other constituents in the synthesis gases, no requirement for strict CO/H{sub 2} ratios, and decreased capital and oeprating costs as the biocatalytic reactions occur at ambient temperatures and pressures.

  10. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub X} and NO{sub X} from coal combustion gases

    SciTech Connect

    Selvaraj, P.T.; Kaufman, E.N.

    1996-06-01

    The purpose of this research program is the development and demonstration of a new generation of gaseous substrate based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. This R&D program is a joint effort between the staff of the Bioprocessing Research and Development Center (BRDC) of ORNL and the staff of Bioengineering Resources, Inc. (BRI) under a Cooperative Research and Development Agreement (CRADA). The Federal Coordinating Council for Science, Engineering, and Technology report entitled {open_quotes}Biotechnology for the 21st Century{close_quotes} and the recent Energy Policy Act of 1992 emphasizes research, development, and demonstration of the conversion of coal to gaseous and liquid fuels and the control of sulfur and nitrogen oxides in effluent streams. This R&D program presents an innovative approach to the use of bioprocessing concepts that will have utility in both of these identified areas.

  11. Spray combustion experiments and numerical predictions

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey

    1993-01-01

    The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.

  12. Space shuttle main engine: Interactive design challenges

    NASA Technical Reports Server (NTRS)

    Mccarty, J. P.; Wood, B. K.

    1985-01-01

    The operating requirements established by NASA for the SSME were considerably more demanding than those for earlier rocket engines used in the military launch vehicles or Apollo program. The SSME, in order to achieve the high performance, low weight, long life, reusable objectives, embodied technical demands far in excess of its predecessor rocket engines. The requirements dictated the use of high combustion pressure and the staged combustion cycle which maximizes performance through total use of all propellants in the main combustion process. This approach presented a myriad of technical challenges for maximization of performance within attainable state of the art capabilities for operating pressures, operating temperatures and rotating machinery efficiencies. Controlling uniformity of the high pressure turbomachinery turbine temperature environment was a key challenge for thrust level and life capability demanding innovative engineering. New approaches in the design of the components were necessary to accommodate the multiple use, minimum maintenance objectives. Included were the use of line replaceable units to facilitate field maintenance automatic checkout and internal inspection capabilities.

  13. Liquid propellant rocket combustion instability

    NASA Technical Reports Server (NTRS)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  14. Manifold methods for methane combustion

    SciTech Connect

    Yang, B.; Pope, S.B.

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  15. Method for in situ combustion

    DOEpatents

    Pasini, III, Joseph; Shuck, Lowell Z.; Overbey, Jr., William K.

    1977-01-01

    This invention relates to an improved in situ combustion method for the recovery of hydrocarbons from subterranean earth formations containing carbonaceous material. The method is practiced by penetrating the subterranean earth formation with a borehole projecting into the coal bed along a horizontal plane and extending along a plane disposed perpendicular to the plane of maximum permeability. The subterranean earth formation is also penetrated with a plurality of spaced-apart vertical boreholes disposed along a plane spaced from and generally parallel to that of the horizontal borehole. Fractures are then induced at each of the vertical boreholes which project from the vertical boreholes along the plane of maximum permeability and intersect the horizontal borehole. The combustion is initiated at the horizontal borehole and the products of combustion and fluids displaced from the earth formation by the combustion are removed from the subterranean earth formation via the vertical boreholes. Each of the vertical boreholes are, in turn, provided with suitable flow controls for regulating the flow of fluid from the combustion zone and the earth formation so as to control the configuration and rate of propagation of the combustion zone. The fractures provide a positive communication with the combustion zone so as to facilitate the removal of the products resulting from the combustion of the carbonaceous material.

  16. 46 CFR 58.01-55 - Tanks for flammable and combustible oil.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Tanks for flammable and combustible oil. 58.01-55 Section 58.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN... combustible oil. (a) For the purposes of this section, a machinery space of category A is a space...

  17. Investigation of the behavior of mercury compounds in coal combustion products

    SciTech Connect

    G.Ya. Gerasimov

    2005-07-15

    The main mechanisms of transformation of mercury compounds in coal combustion products in the region of high temperatures have been analyzed. A kinetic model of the process of gas-phase oxidation of metal mercury vapors is proposed. The features of the behavior of the investigated compounds in systems of cleaning combustion products from harmful impurities have been considered.

  18. Combustion Gases And Heat Release Analysis During Flame And Flameless Combustion Of Wood Pellets

    NASA Astrophysics Data System (ADS)

    Horváth, Jozef; Wachter, Igor; Balog, Karol

    2015-06-01

    With the growing prices of fossil fuels, alternative fuels produced of biomass come to the fore. They are made of waste materials derived from the processing of wood and wood materials. The main objective of this study was to analyse the fire-technical characteristics of wood pellets. The study analysed three dust samples acquired from wood pellets made of various types of wood biomass. Wood pellet dust is produced when manipulating with pellets. During this process a potentially hazardous situations may occur. Biomass is chemically composed mostly of hemicellulose, cellulose and lignin. During straining of the biomass by heat flux, combustion initiation occurs. Also, there was a change in the composition of material throughout combustion gases production, and the amount of heat generated by a flame or flameless combustion. Measurement of fire characteristics was conducted according to ISO 5660-1 standard using a cone calorimeter. Two samples of wood pellet dust were tested under the heat flux of 35 kW.m-2 and 50 kW.m-2. The process of combustion, the time to ignition, the carbon monoxide concentration and the amount of released heat were observed.

  19. Combustion behaviors of GO2/GH2 swirl-coaxial injector using non-intrusive optical diagnostics

    NASA Astrophysics Data System (ADS)

    GuoBiao, Cai; Jian, Dai; Yang, Zhang; NanJia, Yu

    2016-06-01

    This research evaluates the combustion behaviors of a single-element, swirl-coaxial injector in an atmospheric combustion chamber with gaseous oxygen and gaseous hydrogen (GO2/GH2) as the propellants. A brief simulated flow field schematic comparison between a shear-coaxial injector and the swirl-coaxial injector reveals the distribution characteristics of the temperature field and streamline patterns. Advanced optical diagnostics, i.e., OH planar laser-induced fluorescence and high-speed imaging, are simultaneously employed to determine the OH radical spatial distribution and flame fluctuations, respectively. The present study focuses on the flame structures under varying O/F mixing ratios and center oxygen swirl intensities. The combined use of several image-processing methods aimed at OH instantaneous images, including time-averaged, root-mean-square, and gradient transformation, provides detailed information regarding the distribution of the flow field. The results indicate that the shear layers anchored on the oxygen injector lip are the main zones of chemical heat release and that the O/F mixing ratio significantly affects the flame shape. Furthermore, with high-speed imaging, an intuitionistic ignition process and several consecutive steady-state images reveal that lean conditions make it easy to drive the combustion instabilities and that the center swirl intensity has a moderate influence on the flame oscillation strength. The results of this study provide a visualized analysis for future optimal swirl-coaxial injector designs.

  20. The Fermilab Main Injector

    SciTech Connect

    Mishra, C.S.

    1992-11-01

    The Fermilab Main Injector is a new 150 GeV proton synchrotron, designed to replace the Main Ring and improve the high energy physics potential of Fermilab. The status of the Fermilab accelerator complex upgrade will be discussed.

  1. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1997-01-01

    Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.

  2. Development and test of combustion chamber for Stirling engine heated by natural gas

    NASA Astrophysics Data System (ADS)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  3. The combustion behavior of large scale lithium titanate battery

    PubMed Central

    Huang, Peifeng; Wang, Qingsong; Li, Ke; Ping, Ping; Sun, Jinhua

    2015-01-01

    Safety problem is always a big obstacle for lithium battery marching to large scale application. However, the knowledge on the battery combustion behavior is limited. To investigate the combustion behavior of large scale lithium battery, three 50 Ah Li(NixCoyMnz)O2/Li4Ti5O12 batteries under different state of charge (SOC) were heated to fire. The flame size variation is depicted to analyze the combustion behavior directly. The mass loss rate, temperature and heat release rate are used to analyze the combustion behavior in reaction way deeply. Based on the phenomenon, the combustion process is divided into three basic stages, even more complicated at higher SOC with sudden smoke flow ejected. The reason is that a phase change occurs in Li(NixCoyMnz)O2 material from layer structure to spinel structure. The critical temperatures of ignition are at 112–121°C on anode tab and 139 to 147°C on upper surface for all cells. But the heating time and combustion time become shorter with the ascending of SOC. The results indicate that the battery fire hazard increases with the SOC. It is analyzed that the internal short and the Li+ distribution are the main causes that lead to the difference. PMID:25586064

  4. The combustion behavior of large scale lithium titanate battery.

    PubMed

    Huang, Peifeng; Wang, Qingsong; Li, Ke; Ping, Ping; Sun, Jinhua

    2015-01-14

    Safety problem is always a big obstacle for lithium battery marching to large scale application. However, the knowledge on the battery combustion behavior is limited. To investigate the combustion behavior of large scale lithium battery, three 50 Ah Li(Ni(x)Co(y)Mn(z))O2/Li(4)Ti(5)O(12) batteries under different state of charge (SOC) were heated to fire. The flame size variation is depicted to analyze the combustion behavior directly. The mass loss rate, temperature and heat release rate are used to analyze the combustion behavior in reaction way deeply. Based on the phenomenon, the combustion process is divided into three basic stages, even more complicated at higher SOC with sudden smoke flow ejected. The reason is that a phase change occurs in Li(Ni(x)Co(y)Mn(z))O2 material from layer structure to spinel structure. The critical temperatures of ignition are at 112-121 °C on anode tab and 139 to 147 °C on upper surface for all cells. But the heating time and combustion time become shorter with the ascending of SOC. The results indicate that the battery fire hazard increases with the SOC. It is analyzed that the internal short and the Li(+) distribution are the main causes that lead to the difference.

  5. Bioenergy from permanent grassland--a review: 2. Combustion.

    PubMed

    Prochnow, A; Heiermann, M; Plöchl, M; Amon, T; Hobbs, P J

    2009-11-01

    The aim of this review is to summarize current knowledge on suitability and sustainability of grassland biomass for combustion. In the first section grassland management for solid biofuel as well as information on harvest, postharvest and firing technology are described. An extensive grassland management system with one late cut and low level of fertilization is favored for grass as a solid biofuel. The grass harvest usually involves drying in the field and clearing with conventional farm machinery. Pelleting or briquetting improves the biofuel quality. Grass combustion is possible as stand-alone biomass-firing or co-firing with other fuels. Firing herbaceous biomass requires various specific adaptations of the different combustion technologies. In the second section economic and environmental aspects are discussed. Costs for biomass supply mainly depend on yields and harvesting technologies, while combustion costs are influenced by the size and technical design of the plant. Market prices for grass and possible subsidies for land use are crucial for profitability. Regarding biogeochemical cycles a specific feature of combustion is the fact that none of the biomass carbon and nitrogen removed at harvest is available for return to the grassland. These exports can be compensated for by fixation from the air given legumes in the vegetation and sufficient biomass production. Greenhouse gas emissions can be considerably reduced by grass combustion. Solid biofuel production has a potential for predominantly positive impacts on biodiversity due to the extensive grassland management.

  6. Wood combustion systems: status of environmental concerns

    SciTech Connect

    Dunwoody, J.E.; Takach, H.; Kelley, C.S.; Opalanko, R.; High, C.; Fege, A.

    1980-01-01

    This document addresses the uncertainties about environmental aspects of Wood Combustion Systems that remain to be resolved through research and development. The resolution of these uncertainties may require adjustments in the technology program before it can be commercialized. The impacts and concerns presented in the document are treated generically without reference to specific predetermined sites unless these are known. Hence, site-specific implications are not generally included in the assessment. The report consists of two main sections which describe the energy resource base involved, characteristics of the technology, and introduce the environmental concerns of implementing the technology; and which review the concerns related to wood combustion systems which are of significance for the environment. It also examines the likelihood and consequence of findings which might impede wood commercialization such as problems and uncertainties stemming from current or anticipated environmental regulation, or costs of potential environmental controls. This document is not a formal NEPA document. Appropriate NEPA documentation will be prepared after a formal wood combustion commercialization program is approved by DOE.

  7. Preburner of Staged Combustion Rocket Engine

    NASA Technical Reports Server (NTRS)

    Yost, M. C.

    1978-01-01

    A regeneratively cooled LOX/hydrogen staged combustion assembly system with a 400:1 expansion area ratio nozzle utilizing an 89,000 Newton (20,000 pound) thrust regeneratively cooled thrust chamber and 175:1 tubular nozzle was analyzed, assembled, and tested. The components for this assembly include two spark/torch oxygen-hydrogen igniters, two servo-controlled LOX valves, a preburner injector, a preburner combustor, a main propellant injector, a regeneratively cooled combustion chamber, a regeneratively cooled tubular nozzle with an expansion area ratio of 175:1, an uncooled heavy-wall steel nozzle with an expansion area ratio of 400:1, and interconnecting ducting. The analytical effort was performed to optimize the thermal and structural characteristics of each of the new components and the ducting, and to reverify the capabilities of the previously fabricated components. The testing effort provided a demonstration of the preburner/combustor chamber operation, chamber combustion efficiency and stability, and chamber and nozzle heat transfer.

  8. Combustion instability control in the model of combustion chamber

    NASA Astrophysics Data System (ADS)

    Akhmadullin, A. N.; Ahmethanov, E. N.; Iovleva, O. V.; Mitrofanov, G. A.

    2013-12-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW).

  9. Combustion synthesis of ceramic-metal composite materials in microgravity

    NASA Technical Reports Server (NTRS)

    Moore, John

    1995-01-01

    Combustion synthesis, self-propagating high temperature synthesis (SHS) or reactive synthesis provides an attractive alternative to conventional methods of producing advanced materials since this technology is based on the ability of highly exothermic reactions to be self sustaining and, therefore, energetically efficient. The exothermic SHS reaction is initiated at the ignition temperature, T(sub ig), and generates heat which is manifested in a maximum or combustion temperature, T(sub c), which can exceed 3000 K . Such high combustion temperatures are capable of melting and/or volatilizing reactant and product species and, therefore, present an opportunity for producing structure and property modification and control through liquid-solid, vapor-liquid-solid, and vapor-solid transformations.

  10. Generation of indirect combustion noise by compositional inhomogeneities

    NASA Astrophysics Data System (ADS)

    Magri, Luca; O'Brien, Jeff; Ihme, Matthias

    2016-11-01

    The generation of indirect combustion noise in nozzles and turbine stages is commonly attributed to temperature inhomogeneities and vorticity fluctuations. Here, compositional inhomogeneities in a multi-component gas mixture are shown to produce indirect noise both theoretically and numerically. The chemical potential function is introduced as an additional acoustic source mechanism. The contribution of the compositional noise is compared to the entropy noise and direct noise by considering subsonic, supersonic and shocked nozzles downstream of the combustor exit. It is shown that the compositional noise is dependent on the local mixture composition and can exceed entropy noise for fuel-lean conditions and supersonic/shocked nozzle flows. This suggests that compositional indirect combustion noise may require consideration with the implementation of advanced combustion concepts in gas turbines, including low-emissions combustors, high-power-density engine cores, or compact burners.

  11. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  12. The combustion properties analysis of various liquid fuels based on crude oil and renewables

    NASA Astrophysics Data System (ADS)

    Grab-Rogalinski, K.; Szwaja, S.

    2016-09-01

    The paper presents results of investigation on combustion properties analysis of hydrocarbon based liquid fuels commonly used in the CI engine. The analysis was performed with aid of the CRU (Combustion Research Unit). CRU is the machine consisted of a constant volume combustion chamber equipped with one or two fuel injectors and a pressure sensor. Fuel can be injected under various both injection pressure and injection duration, also with two injector versions two stage combustion with pilot injection can be simulated, that makes it possible to introduce and modify additional parameter which is injection delay (defined as the time between pilot and main injection). On a basis of this investigation such combustion parameters as pressure increase, rate of heat release, ignition delay and combustion duration can be determined. The research was performed for the four fuels as follows: LFO, HFO, Biofuel from rape seeds and Glycerol under various injection parameters as well as combustion chamber thermodynamic conditions. Under these tests the change in such injection parameters as injection pressure, use of pilot injection, injection delay and injection duration, for main injection, were made. Moreover, fuels were tested under different conditions of load, what was determined by initial conditions (pressure and temperature) in the combustion chamber. Stored data from research allows to compare combustion parameters for fuels applied to tests and show this comparison in diagrams.

  13. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  14. Combustion in microgravity: The French contribution

    NASA Astrophysics Data System (ADS)

    Prud'homme, Roger; Legros, Guillaume; Torero, José L.

    2017-01-01

    Microgravity (drop towers, parabolic flights, sounding rockets and space stations) are particularly relevant to combustion problems given that they show high-density gradients and in many cases weak forced convection. For some configurations where buoyancy forces result in complex flow fields, microgravity leads to ideal conditions that correspond closely to canonical problems, e.g., combustion of a spherical droplet in a far-field still atmosphere, Emmons' problem for flame spreading over a solid flat plate, deflagration waves, etc. A comprehensive chronological review on the many combustion studies in microgravity was written first by Law and Faeth (1994) and then by F.A. Williams (1995). Later on, new recommendations for research directions have been delivered. In France, research has been managed and supported by CNES and CNRS since the creation of the microgravity research group in 1992. At this time, microgravity research and future activities contemplated the following: Droplets: the "D2 law" has been well verified and high-pressure behavior of droplet combustion has been assessed. The studies must be extended in two main directions: vaporization in mixtures near the critical line and collective effects in dense sprays. Flame spread: experiments observed blue flames governed by diffusion that are in accordance with Emmons' theory. Convection-dominated flames showed significant departures from the theory. Some theoretical assumptions appeared controversial and it was noted that radiation effects must be considered, especially when regarding the role of soot production in quenching. Heterogeneous flames: two studies are in progress, one in Poitiers and the other in Marseilles, about flame/suspension interactions. Premixed and triple flames: the knowledge still needs to be complemented. Triple flames must continue to be studied and understanding of "flame balls" still needs to be addressed.

  15. Fluids and Combustion Facility-Combustion Integrated Rack

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1998-01-01

    This paper describes in detail the concept of performing Combustion microgravity experiments in the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility (FCF) on the International Space Station (ISS). The extended duration microgravity environment of the ISS will enable microgravity research to enter into a new era of increased scientific and technological data return. The FCF is designed to increase the amount and quality of scientific and technological data and decrease the development cost of an individual experiment relative to the era of Space Shuttle experiments. This paper also describes how the FCF will cost effectively accommodate these experiments.

  16. Development of a Method for Operational Vibration Diagnostics of a Combustion Chamber GPA-C-16C

    NASA Astrophysics Data System (ADS)

    Razboinikov, A. A.; Vashchilin, V. V.

    2016-10-01

    The paper identifies the main causes of the GCU combustion chamber vibration, as well as emerging for this reason failures and defects. It describes the main elements of the developed method for operative diagnosing the GCU combustion chamber on vibration signals in real time. The expected efficiency of the implementation of this method is described.

  17. Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes.

    PubMed

    Barbosa, Rui; Lapa, Nuno; Boavida, Dulce; Lopes, Helena; Gulyurtlu, Ibrahim; Mendes, Benilde

    2009-10-30

    The co-combustion of sewage sludge (SS) and coal is widely used for the treatment and thermal valorization of SS produced in wastewater treatment plants. The chemical and ecotoxicological properties of the ashes produced in this thermal treatment have not been fully studied. Two combustion tests were performed in a fluidized bed combustor. Colombian coal was used as fuel in test A. A blend (1+1) of this coal and a stabilized SS (Biogran) was used in a second test B. Samples of the bottom and fly ashes trapped in two sequential cyclones were collected. The characterization of the ashes was focused on two main aspects: (1) the bulk content of a set of metals and (2) the characterization of eluates produced according to the European Standard leaching test EN 12457-2. The eluates were submitted to an ecotoxicological characterization for two bio-indicators. In what concerns the bulk content of ashes, both combustion tests have produced ashes with different compositions. The ashes formed during the co-combustion test have shown higher concentrations of metals, namely Cr, Cu, Ni, Pb, Zn and Fe for all ashes. The leaching test has shown low mobility of these elements from the by-products produced during the combustion and co-combustion tests. Cr and Cr(VI) were mainly detected in the eluates of the 1st cyclone ashes produced in both combustion tests and in the 2nd cyclone ashes produced in the co-combustion test. Considering the ecotoxicity assays, the eluates of bottom and fly ashes for both combustion and co-combustion tests have shown low ecotoxic levels. The micro-crustacean Daphnia magna was generally more sensitive than the bacterium Vibrio fischeri. CEMWE criterion has allowed to classify the bottom ashes for both combustion and co-combustion tests as non-toxic residues and the fly ashes collected in both cyclones as toxic.

  18. Dual-Mode Combustion

    NASA Technical Reports Server (NTRS)

    Goyne, Christopher P.; McDaniel, James C.

    2002-01-01

    The Department of Mechanical and Aerospace Engineering at the University of Virginia has conducted an investigation of the mixing and combustion processes in a hydrogen fueled dual-mode scramjet combustor. The experiment essentially consisted of the "direct connect" continuous operation of a Mach 2 rectangular combustor with a single unswept ramp fuel injector. The stagnation enthalpy of the test flow simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and laser based diagnostics. These diagnostics included, pressure and wall temperature measurements, Fuel Plume Imaging (FPI) and Particle Image Velocimetry (PIV). A schematic of the combustor configuration and a summary of the measurements obtained are presented. The experimental work at UVa was parallel by Computational Fluid Dynamics (CFD) work at NASA Langley. The numerical and experiment results are compared in this document.

  19. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  20. [Fire by spontaneous combustion of oxygen cylinders].

    PubMed

    Coumans, Tanja; Maissan, Iscander M; Wolff, André P; Stolker, Robert Jan; Damen, Johan; Scheffer, Gert Jan

    2010-01-01

    The use of medicinal oxygen can be dangerous. The spontaneous combustion of an oxygen cylinder was the cause of a fire in an operating theatre and an emergency medical service. The fire developed after turning on the gas main while the flow supply valve was already open. Not opening the pressure reduction valve while the oxygen flow supply valve is open can prevent this type of fire. Information from the contractor shows that the probability of such an incident is 1 in a million.

  1. 30 CFR 75.311 - Main mine fan operation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... back-up fan system— (1) Only persons necessary to evaluate the effect of the fan stoppage or restart... back-up fan system is used that does not provide the ventilating quantity provided by the main mine fan... fire or other products of combustion are approved in the ventilation plan. (g) If multiple mine...

  2. Filtration combustion: Smoldering and SHS

    NASA Technical Reports Server (NTRS)

    Matkowsky, Bernard J.

    1995-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  3. Effect of oxy-combustion flue gas on mercury oxidation.

    PubMed

    Fernández-Miranda, Nuria; Lopez-Anton, M Antonia; Díaz-Somoano, Mercedes; Martínez-Tarazona, M Rosa

    2014-06-17

    This study evaluates the effect of the gases present in a typical oxy-coal combustion atmosphere on mercury speciation and compares it with the mercury speciation produced in conventional air combustion atmospheres. The work was performed at laboratory scale at 150 °C. It was found that the minor constituents (SO2, NOx, and HCl) significantly modify the percentages of Hg(2+) in the gas. The influence of these species on mercury oxidation was demostrated when they were tested individually and also when they were blended in different gas compositions, although the effect was different to the sum of their individual effects. Of the minor constituents, NOx were the main species involved in oxidation of mercury. Moreover, it was found that a large concentration of H2O vapor also plays an important role in mercury oxidation. Around 50% of the total mercury was oxidized in atmospheres with H2O vapor concentrations typical of oxy-combustion conditions. When the atmospheres have similar concentrations of SO2, NO, NO2, HCl, and H2O, the proportion of Hg(0)/Hg(2+) is similar regardless of whether CO2 (oxy-fuel combustion) or N2 (air combustion) are the main components of the gas.

  4. Large eddy simulation modelling of combustion for propulsion applications.

    PubMed

    Fureby, C

    2009-07-28

    Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.

  5. Numerical simulations of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  6. SOHC type internal combustion engine

    SciTech Connect

    Fujii, N.; Iwata, T.; Oikawa, T.

    1989-01-10

    An SOHC type internal combustion engine is described comprising a cylinder head which has a combustion chamber defined therein, a camshaft carried thereon, an ignition plug mounting hole opening to a center portion of a top surface of the combustion chamber and a protecting cylinder formed therein with an ignition plug insertion hole. The journal for the camshaft has a diameter larger than a path of rotation of a lobe of a cam on the camshaft and is supported by a bearing hole formed in a camshaft receiving wall which is provided on the cylinder head. The protecting cylinder and the camshaft receiving wall are formed in a single piece.

  7. Overview of Microgravity Combustion Research at NASA Lewis Research Center and its Potential Commercial Impact

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie; Friedman, Robert

    1996-01-01

    The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.

  8. A high-order immersed boundary method for high-fidelity turbulent combustion simulations

    NASA Astrophysics Data System (ADS)

    Minamoto, Yuki; Aoki, Kozo; Osawa, Kosuke; Shi, Tuo; Prodan, Alexandru; Tanahashi, Mamoru

    2016-11-01

    Direct numerical simulations (DNS) have played important roles in the research of turbulent combustion. With the recent advancement in high-performance computing, DNS of slightly complicated configurations such as V-, various jet and swirl flames have been performed, and such DNS will further our understanding on the physics of turbulent combustion. Since these configurations include walls that do not necessarily conform with the preferred mesh coordinates for combustion DNS, most of these simulations use presumed profiles for inflow/near-wall flows as boundary conditions. A high-order immersed boundary method suited for parallel computation is one way to improve these simulations. The present research implements such a boundary technique in a combustion DNS code, and simulations are performed to confirm its accuracy and performance. This work was partly supported by Council for Science, Technology and Innovation, Cross-ministerial Strategic Innovation Promotion Program (SIP), "Innovative Combustion Technology" (Funding agency: JST).

  9. 49 CFR 172.544 - COMBUSTIBLE placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false COMBUSTIBLE placard. 172.544 Section 172.544... SECURITY PLANS Placarding § 172.544 COMBUSTIBLE placard. (a) Except for size and color, the COMBUSTIBLE... on the COMBUSTIBLE placard must be red. The symbol, text, class number and inner border must be...

  10. The Maine Event

    ERIC Educational Resources Information Center

    McHale, Tom

    2007-01-01

    In this article, the author describes the successful laptop program employed at Mt. Abram High School in Strong, Maine. Through the Maine Learning Technology Initiative, the school has issued laptops to all 36,000 teachers and students in grades 7-8. This program has helped level the playing field for a student population that is 50 percent to 55…

  11. Teaching Main Idea Comprehension.

    ERIC Educational Resources Information Center

    Baumann, James F., Ed.

    Intended to help classroom teachers, curriculum developers, and researchers, this book provides current information on theoretical and instructional aspects of main idea comprehension. Titles and authors are as follows: "The Confused World of Main Idea" (James W. Cunningham and David W. Moore); "The Comprehension of Important…

  12. Maine's Employability Skills Program

    ERIC Educational Resources Information Center

    McMahon, John M.; Wolffe, Karen E.; Wolfe, Judy; Brooker, Carrie

    2013-01-01

    This Practice Report describes the development and implementation of the "Maine Employability Skills Program," a model employment program developed by the Maine Division for the Blind and Visually Impaired (DBVI). The program was designed to support the efforts of the chronically unemployed or underemployed. These consumers were either…

  13. Partitioning of sodium, chlorine and sulfur during coal and char combustion in a fluid bed

    SciTech Connect

    Bhattacharya, S.P.; He, Y.

    1998-12-31

    Advanced power generation technologies (IGCC, Advanced PFBC) using high moisture low-rank coals require gasification of coal followed by combustion of char in a fluid bed. A study was undertaken to investigate the bed behaviour of char during combustion in a fluid bed. Three high moisture Australian low-rank coals, which are currently used in Victorian power stations, were chosen for this study. These were air dried, ground and sieved to 1--4 mm size. Char was prepared from these coals by devolatilising in a 76-mm diameter spouted bed at 700 C in presence of nitrogen. Char samples were combusted in the same spouted bed under hydrodynamic conditions similar to that in an atmospheric circulating fluid bed at temperatures of 800 C and 900 C. The three coal samples were also combusted under similar conditions to compare with the combustion behaviour of the char. No significant agglomeration problems were observed during combustion of these coals for periods of up to four hours. For one char, the bed defluidized 70 minutes after combustion at 900 C, while the two remaining chars didn`t present any significant agglomeration during the test period of four hours. Ultimate and inorganic analyses were carried out for the coal and char samples before the tests. The bed materials and cyclone ash after each combustion test were analyzed for inorganics and phases using chemical analysis, XRD and DTA techniques. A significant separation of the sodium and chlorine in coal was observed during pyrolysis of the coal to char. During combustion of char, most of the sodium (in char) was captured in the bed materials. This information was used to explain the bed behaviour observed during char combustion. This paper discusses the results and suggest strategies for mitigation of defluidization, that are currently under trial.

  14. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect

    Srinivasan, K. K.; Krishnan, S. R.; Qi, Y.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas₋air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed "relative combustion phasing" ). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60° BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  15. Flameless Combustion for Gas Turbines

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Li, Guoqiang; Overman, Nick; Cornwell, Michael; Stankovic, Dragan; Fuchs, Laszlo; Milosavljevic, Vladimir

    2006-11-01

    An experimental study of a novel flameless combustor for gas turbine engines is presented. Flameless combustion is characterized by distributed flame and even temperature distribution for high preheat air temperature and large amount of recirculating low oxygen exhaust gases. Extremely low emissions of NOx, CO, and UHC are reported. Measurements of the flame chemiluminescence, CO and NOx emissions, acoustic pressure, temperature and velocity fields as a function of the preheat temperature, inlet air mass flow rate, exhaust nozzle contraction ratio, and combustor chamber diameter are described. The data indicate that larger pressure drop promotes flameless combustion and low NOx emissions at the same flame temperature. High preheated temperature and flow rates also help in forming stable combustion and therefore are favorable for flameless combustion.

  16. Thermophysics Characterization of Kerosene Combustion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2001-01-01

    A one-formula surrogate fuel formulation and its quasi-global combustion kinetics model are developed to support the design of injectors and thrust chambers of kerosene-fueled rocket engines. This surrogate fuel model depicts a fuel blend that properly represents the general physical and chemical properties of kerosene. The accompanying gaseous-phase thermodynamics of the surrogate fuel is anchored with the heat of formation of kerosene and verified by comparing a series of one-dimensional rocket thrust chamber calculations. The quasi-global combustion kinetics model consists of several global steps for parent fuel decomposition, soot formation, and soot oxidation and a detailed wet-CO mechanism to complete the combustion process. The final thermophysics formulations are incorporated with a computational fluid dynamics model for prediction of the combustion efficiency of an unielement, tripropellant combustor and the radiation of a kerosene-fueled thruster plume. The model predictions agreed reasonably well with those of the tests.

  17. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  18. Fifth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    1999-01-01

    This conference proceedings document is a compilation of 120 papers presented orally or as poster displays to the Fifth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 18-20, 1999. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from at least eight international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for the Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  19. Sixth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    2001-01-01

    This conference proceedings document is a compilation of papers presented orally or as poster displays to the Sixth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 22-24, 2001. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  20. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.