1992-10-01
Manager , Advanced Transport Operating Systems Program Office Langley Research Center Mail Stop 265 Hampton, VA 23665-5225 United States Programme Committee...J.H.Lind, and C.G.Burge Advanced Cockpit - Mission and Image Management 4 by J. Struck Aircrew Acceptance of Automation in the Cockpit 5 by M. Hicks and I...DESIGN CONCEPTS AND TOOLS A Systems Approach to the Advanced Aircraft Man-Machine Interface 23 by F. Armogida Management of Avionics Data in the Cockpit
Diverse applications of advanced man-telerobot interfaces
NASA Technical Reports Server (NTRS)
Mcaffee, Douglas A.
1991-01-01
Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.
DOT National Transportation Integrated Search
1974-08-01
Volume 3 describes the methodology for man-machine task allocation. It contains a description of man and machine performance capabilities and an explanation of the methodology employed to allocate tasks to human or automated resources. It also presen...
NASA Technical Reports Server (NTRS)
Kerr, Andrew W.
1989-01-01
Programs related to rotorcraft aeromechanics and man-machine integration are discussed which will support advanced army rotorcraft design. In aeromechanics, recent advances in computational fluid dynamics will be used to characterize the complex unsteady flowfields of rotorcraft, and a second-generation comprehensive helicopter analysis system will be used along with models of aerodynamics, engines, and control systems to study the structural dynamics of rotor/body configurations. The man-machine integration program includes the development of advanced cockpit design technology and the evaluation of cockpit and mission equipment concepts in a real-time full-combat environment.
Distribution of man-machine controls in space teleoperation
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1982-01-01
The distribution of control between man and machine is dependent on the tasks, available technology, human performance characteristics and control goals. This dependency has very specific projections on systems designed for teleoperation in space. This paper gives a brief outline of the space-related issues and presents the results of advanced teleoperator research and development at the Jet Propulsion Laboratory (JPL). The research and development work includes smart sensors, flexible computer controls and intelligent man-machine interface devices in the area of visual displays and kinesthetic man-machine coupling in remote control of manipulators. Some of the development results have been tested at the Johnson Space Center (JSC) using the simulated full-scale Shuttle Remote Manipulator System (RMS). The research and development work for advanced space teleoperation is far from complete and poses many interdisciplinary challenges.
Man-machine interface requirements - advanced technology
NASA Technical Reports Server (NTRS)
Remington, R. W.; Wiener, E. L.
1984-01-01
Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.
Proceedings of the 1986 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.
Human evolution in the age of the intelligent machine
NASA Technical Reports Server (NTRS)
Mclaughlin, W. I.
1983-01-01
A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.
Human evolution in the age of the intelligent machine
NASA Astrophysics Data System (ADS)
McLaughlin, W. I.
A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.
NASA Technical Reports Server (NTRS)
Barrett, Eamon B. (Editor); Pearson, James J. (Editor)
1989-01-01
Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.
Man/computer communication in a space environment
NASA Technical Reports Server (NTRS)
Hodges, B. C.; Montoya, G.
1973-01-01
The present work reports on a study of the technology required to advance the state of the art in man/machine communications. The study involved the development and demonstration of both hardware and software to effectively implement man/computer interactive channels of communication. While tactile and visual man/computer communications equipment are standard methods of interaction with machines, man's speech is a natural media for inquiry and control. As part of this study, a word recognition unit was developed capable of recognizing a minimum of one hundred different words or sentences in any one of the currently used conversational languages. The study has proven that efficiency in communication between man and computer can be achieved when the vocabulary to be used is structured in a manner compatible with the rigid communication requirements of the machine while at the same time responsive to the informational needs of the man.
Editorial Research Reports on Modern Man.
ERIC Educational Resources Information Center
Dickinson, William B., Jr., Ed.
Nine reports published in this volume study the uneasy coexistence of modern man and the complex society he has wrought. Man's apparent disorganized behavior is attributed to his inability to adapt readily to the charged pace of technological change. To combat the advancement of machine over man, he must, therefore, insist that moral and…
Advanced automation for space missions: Technical summary
NASA Technical Reports Server (NTRS)
1980-01-01
Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.
Man-machine interface for the control of a lunar transport machine
NASA Technical Reports Server (NTRS)
Ashley, Richard; Bacon, Loring; Carlton, Scott Tim; May, Mark; Moore, Jimmy; Peek, Dennis
1987-01-01
A proposed first generation human interface control panel is described which will be used to control SKITTER, a three-legged lunar walking machine. Under development at Georgia Tech, SKITTER will be a multi-purpose, un-manned vehicle capable of preparing a site for the proposed lunar base in advance of the arrival of men. This walking machine will be able to accept modular special purpose tools, such as a crane, a core sampling drill, and a digging device, among others. The project was concerned with the design of a human interface which could be used, from earth, to control the movements of SKITTER on the lunar surface. Preliminary inquiries were also made into necessary modifications required to adapt the panel to both a shirt-sleeve lunar environment and to a mobile unit which could be used by a man in a space suit at a lunar work site.
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
CESAR research in intelligent machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbin, C.R.
1986-01-01
The Center for Engineering Systems Advanced Research (CESAR) was established in 1983 as a national center for multidisciplinary, long-range research and development in machine intelligence and advanced control theory for energy-related applications. Intelligent machines of interest here are artificially created operational systems that are capable of autonomous decision making and action. The initial emphasis for research is remote operations, with specific application to dexterous manipulation in unstructured dangerous environments where explosives, toxic chemicals, or radioactivity may be present, or in other environments with significant risk such as coal mining or oceanographic missions. Potential benefits include reduced risk to man inmore » hazardous situations, machine replication of scarce expertise, minimization of human error due to fear or fatigue, and enhanced capability using high resolution sensors and powerful computers. A CESAR goal is to explore the interface between the advanced teleoperation capability of today, and the autonomous machines of the future.« less
Technology: The Culture of Machine Living. Program in American History and Civilization.
ERIC Educational Resources Information Center
Tufts Univ., Medford, MA. Lincoln Filene Center for Citizenship and Public Affairs.
The readings in this narrative unit are concerned with the machine's role today and its future use in shaping man's environment. The general teaching objectives are to enable the student: 1) to adapt to a society directed toward total living, rather than one in which he earns a living; 2) to understand that uncontrolled technological advance may…
Man-systems integration and the man-machine interface
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1990-01-01
Viewgraphs on man-systems integration and the man-machine interface are presented. Man-systems integration applies the systems' approach to the integration of the user and the machine to form an effective, symbiotic Man-Machine System (MMS). A MMS is a combination of one or more human beings and one or more physical components that are integrated through the common purpose of achieving some objective. The human operator interacts with the system through the Man-Machine Interface (MMI).
Analysis of tasks for dynamic man/machine load balancing in advanced helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, C.C.
1987-10-01
This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2011-01-01
As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.
Implications of Automation for Operating and Staffing an Advanced Air Traffic Management System
DOT National Transportation Integrated Search
1974-08-01
The role of the air traffic controller in future system operations is expected to be substantially affected by the introduction of new automated features. The number of human operators needed to man the system will almost certainly decrease as machin...
Fundamentals and advances in the development of remote welding fabrication systems
NASA Technical Reports Server (NTRS)
Agapakis, J. E.; Masubuchi, K.; Von Alt, C.
1986-01-01
Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.
THE COMPUTER AND THE ARCHITECTURAL PROFESSION.
ERIC Educational Resources Information Center
HAVILAND, DAVID S.
THE ROLE OF ADVANCING TECHNOLOGY IN THE FIELD OF ARCHITECTURE IS DISCUSSED IN THIS REPORT. PROBLEMS IN COMMUNICATION AND THE DESIGN PROCESS ARE IDENTIFIED. ADVANTAGES AND DISADVANTAGES OF COMPUTERS ARE MENTIONED IN RELATION TO MAN AND MACHINE INTERACTION. PRESENT AND FUTURE IMPLICATIONS OF COMPUTER USAGE ARE IDENTIFIED AND DISCUSSED WITH RESPECT…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.R.; Netrologic, Inc., San Diego, CA)
1988-01-01
Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.
1990-05-01
speech produced by these systems. Finally, perhaps the greatest recent impetus in advancing digital Finally, in the area of speech and speaker recognitio ...XX) Ilz and logarithmic beyond I(XX) Hz (91. ts(n) *n) n)mW0) SWS BNLP LOGO *) -KQfl1 BANoPASS FILTER LOWPASS FILTER 0 fLi fHl f 0 fLP f FIgure 2
Teleoperators - Manual/automatic system requirements.
NASA Technical Reports Server (NTRS)
Janow, C.; Malone, T. B.
1973-01-01
The teleoperator is defined as a remotely controlled, cybernetic, man-machine system designed to extend and augment man's sensory, manipulative, and cognitive capabilities. The teleoperator system incorporates the decision making, adaptive intelligence without requiring its presence. The man and the machine work as a team, each contributing unique and significant capabilities, and each depending on the other to achieve a common goal. Some of the more significant requirements associated with the development of teleoperator systems technology for space, industry, and medicine are examined. Emphasis is placed on the requirement to more effectively use the man and the machine in any man-machine system.
Technology assessment of advanced automation for space missions
NASA Technical Reports Server (NTRS)
1982-01-01
Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.
Some research advances in computer graphics that will enhance applications to engineering design
NASA Technical Reports Server (NTRS)
Allan, J. J., III
1975-01-01
Research in man/machine interactions and graphics hardware/software that will enhance applications to engineering design was described. Research aspects of executive systems, command languages, and networking used in the computer applications laboratory are mentioned. Finally, a few areas where little or no research is being done were identified.
Man-machine cooperation in advanced teleoperation
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Das, Hari; Lee, Sukhan
1993-01-01
Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.
Man Machine Systems in Education.
ERIC Educational Resources Information Center
Sall, Malkit S.
This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…
Compatibility Problems of Network Interfacing.
ERIC Educational Resources Information Center
Stevens, Mary Elizabeth
From the standpoint of information network technology there is a necessary emphasis upon compatibility requirements which, in turn, will be met at least in part by various techniques of achieving convertibility --- between machine and machine, between man and machine, and between man and man. It may be hoped that improved compatibilities between…
NASA Technical Reports Server (NTRS)
Malone, T. B.; Micocci, A.
1975-01-01
The alternate methods of conducting a man-machine interface evaluation are classified as static and dynamic, and are evaluated. A dynamic evaluation tool is presented to provide for a determination of the effectiveness of the man-machine interface in terms of the sequence of operations (task and task sequences) and in terms of the physical characteristics of the interface. This dynamic checklist approach is recommended for shuttle and shuttle payload man-machine interface evaluations based on reduced preparation time, reduced data, and increased sensitivity of critical problems.
Cooperative analysis expert situation assessment research
NASA Technical Reports Server (NTRS)
Mccown, Michael G.
1987-01-01
For the past few decades, Rome Air Development Center (RADC) has been conducting research in Artificial Intelligence (AI). When the recent advances in hardware technology made many AI techniques practical, the Intelligence and Reconnaissance Directorate of RADC initiated an applications program entitled Knowledge Based Intelligence Systems (KBIS). The goal of the program is the development of a generic Intelligent Analyst System, an open machine with the framework for intelligence analysis, natural language processing, and man-machine interface techniques, needing only the specific problem domain knowledge to be operationally useful. The development of KBIS is described.
The War in Man; Media and Machines.
ERIC Educational Resources Information Center
Wilhelmsen, Frederick D.; Bret, Jane
The authors present a picture of contemporary man torn by conflicting forces, caught in a psychic house divided against itself, a victim of war between media and machines. Machines, they state, represent the rationalistic tradition which has brought man to the brink of psychic and social disaster. The media they see as offering hope--true…
Prosthetic EMG control enhancement through the application of man-machine principles
NASA Technical Reports Server (NTRS)
Simcox, W. A.
1977-01-01
An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.
NASA Technical Reports Server (NTRS)
Staveland, Lowell
1994-01-01
This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.
NASA Technical Reports Server (NTRS)
Simpson, M. L.; Sayler, G. S.; Fleming, J. T.; Applegate, B.
2001-01-01
The ability to manipulate systems on the molecular scale naturally leads to speculation about the rational design of molecular-scale machines. Cells might be the ultimate molecular-scale machines and our ability to engineer them is relatively advanced when compared with our ability to control the synthesis and direct the assembly of man-made materials. Indeed, engineered whole cells deployed in biosensors can be considered one of the practical successes of molecular-scale devices. However, these devices explore only a small portion of cellular functionality. Individual cells or self-organized groups of cells perform extremely complex functions that include sensing, communication, navigation, cooperation and even fabrication of synthetic nanoscopic materials. In natural systems, these capabilities are controlled by complex genetic regulatory circuits, which are only partially understood and not readily accessible for use in engineered systems. Here, we focus on efforts to mimic the functionality of man-made information-processing systems within whole cells.
Computation of emotions in man and machines.
Robinson, Peter; el Kaliouby, Rana
2009-12-12
The importance of emotional expression as part of human communication has been understood since Aristotle, and the subject has been explored scientifically since Charles Darwin and others in the nineteenth century. Advances in computer technology now allow machines to recognize and express emotions, paving the way for improved human-computer and human-human communications. Recent advances in psychology have greatly improved our understanding of the role of affect in communication, perception, decision-making, attention and memory. At the same time, advances in technology mean that it is becoming possible for machines to sense, analyse and express emotions. We can now consider how these advances relate to each other and how they can be brought together to influence future research in perception, attention, learning, memory, communication, decision-making and other applications. The computation of emotions includes both recognition and synthesis, using channels such as facial expressions, non-verbal aspects of speech, posture, gestures, physiology, brain imaging and general behaviour. The combination of new results in psychology with new techniques of computation is leading to new technologies with applications in commerce, education, entertainment, security, therapy and everyday life. However, there are important issues of privacy and personal expression that must also be considered.
Computation of emotions in man and machines
Robinson, Peter; el Kaliouby, Rana
2009-01-01
The importance of emotional expression as part of human communication has been understood since Aristotle, and the subject has been explored scientifically since Charles Darwin and others in the nineteenth century. Advances in computer technology now allow machines to recognize and express emotions, paving the way for improved human–computer and human–human communications. Recent advances in psychology have greatly improved our understanding of the role of affect in communication, perception, decision-making, attention and memory. At the same time, advances in technology mean that it is becoming possible for machines to sense, analyse and express emotions. We can now consider how these advances relate to each other and how they can be brought together to influence future research in perception, attention, learning, memory, communication, decision-making and other applications. The computation of emotions includes both recognition and synthesis, using channels such as facial expressions, non-verbal aspects of speech, posture, gestures, physiology, brain imaging and general behaviour. The combination of new results in psychology with new techniques of computation is leading to new technologies with applications in commerce, education, entertainment, security, therapy and everyday life. However, there are important issues of privacy and personal expression that must also be considered. PMID:19884138
Recent advances in technologies required for a "Salad Machine".
Kliss, M; Heyenga, A G; Hoehn, A; Stodieck, L S
2000-01-01
Future long duration, manned space flight missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. Bioregenerative life support systems are a promising approach, but they are far from mature. Early in the development of the NASA Controlled Ecological Life Support System Program, the idea of onboard cultivation of salad-type vegetables for crew consumption was proposed as a first step away from the total reliance on resupply for food in space. Since that time, significant advances in space-based plant growth hardware have occurred, and considerable flight experience has been gained. This paper revisits the "Salad Machine" concept and describes recent developments in subsystem technologies for both plant root and shoot environments that are directly relevant to the development of such a facility.
Recent Advances in Technologies Required for a ``Salad Machine''
NASA Astrophysics Data System (ADS)
Kliss, M.; Heyenga, A. G.; Hoehn, A.; Stodieck, L. S.
Future long duration, manned space flight missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. Bioregenerative life support systems are a promising approach, but they are far from mature. Early in the development of the NASA Controlled Ecological Life Support System Program, the idea of onboard cultivation of salad-type vegetables for crew consumption was proposed as a first step away from the total reliance on resupply for food in space. Since that time, significant advances in space-based plant growth hardware have occurred, and considerable flight experience has been gained. This paper revisits the ``Salad Machine'' concept and describes recent developments in subsystem technologies for both plant root and shoot environments that are directly relevant to the development of such a facility
Fusing human and machine skills for remote robotic operations
NASA Technical Reports Server (NTRS)
Schenker, Paul S.; Kim, Won S.; Venema, Steven C.; Bejczy, Antal K.
1991-01-01
The question of how computer assists can improve teleoperator trajectory tracking during both free and force-constrained motions is addressed. Computer graphics techniques which enable the human operator to both visualize and predict detailed 3D trajectories in real-time are reported. Man-machine interactive control procedures for better management of manipulator contact forces and positioning are also described. It is found that collectively, these novel advanced teleoperations techniques both enhance system performance and significantly reduce control problems long associated with teleoperations under time delay. Ongoing robotic simulations of the 1984 space shuttle Solar Maximum EVA Repair Mission are briefly described.
Advanced warfighter machine interface (Invited Paper)
NASA Astrophysics Data System (ADS)
Franks, Erin
2005-05-01
Future military crewmen may have more individual and shared tasks to complete throughout a mission as a result of smaller crew sizes and an increased number of technology interactions. To maintain reasonable workload levels, the Warfighter Machine Interface (WMI) must provide information in a consistent, logical manner, tailored to the environment in which the soldier will be completing their mission. This paper addresses design criteria for creating an advanced, multi-modal warfighter machine interface for on-the-move mounted operations. The Vetronics Technology Integration (VTI) WMI currently provides capabilities such as mission planning and rehearsal, voice and data communications, and manned/unmanned vehicle payload and mobility control. A history of the crewstation and more importantly, the WMI software will be provided with an overview of requirements and criteria used for completing the design. Multiple phases of field and laboratory testing provide the opportunity to evaluate the design and hardware in stationary and motion environments. Lessons learned related to system usability and user performance are presented with mitigation strategies to be tested in the future.
Space Station man-machine automation trade-off analysis
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Bard, J.; Feinberg, A.
1985-01-01
The man machine automation tradeoff methodology presented is of four research tasks comprising the autonomous spacecraft system technology (ASST) project. ASST was established to identify and study system level design problems for autonomous spacecraft. Using the Space Station as an example spacecraft system requiring a certain level of autonomous control, a system level, man machine automation tradeoff methodology is presented that: (1) optimizes man machine mixes for different ground and on orbit crew functions subject to cost, safety, weight, power, and reliability constraints, and (2) plots the best incorporation plan for new, emerging technologies by weighing cost, relative availability, reliability, safety, importance to out year missions, and ease of retrofit. A fairly straightforward approach is taken by the methodology to valuing human productivity, it is still sensitive to the important subtleties associated with designing a well integrated, man machine system. These subtleties include considerations such as crew preference to retain certain spacecraft control functions; or valuing human integration/decision capabilities over equivalent hardware/software where appropriate.
High-autonomy control of space resource processing plants
NASA Technical Reports Server (NTRS)
Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue
1993-01-01
A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.
1980-03-01
availability and accuracy were vital to continued advance in electronic control and that the man-machine interface should continue to be addressed. Mr Bentz was...why there is not more digital engine control being brought in on a retro fit basis so as to obtain its advantages. Dr Bentz answered that it was too...surge line. Mr Bentz answered that all engines are being designed with digital control in mind. The issue is whether the systems can withstand the
Man-Machine Impact of Technology on Coast Guard Missions and Systems
1979-12-01
t Cost of Rar~dom, Acce~ss eoy~mAlr 97 f-Al 1000 MOS RAM-(409 BITS/CHIP) . 100 _ I• z LLJ 10 (I) UI 1.04 I.-I- ’ YEAR ii A .. I. FiueA-.oecs pedo ...of these advances will iTOSt likely be accomplished through focal plane arrays of detectors, charge coupled device readout techniques for the video
1988-09-01
Group Subgroup Command and control; Computational linguistics; expert system voice recognition; man- machine interface; U.S. Government 19 Abstract...simulates the characteristics of FRESH on a smaller scale. This study assisted NOSC in developing a voice-recognition, man- machine interface that could...scale. This study assisted NOSC in developing a voice-recogni- tion, man- machine interface that could be used with TONE and upgraded at a later date
Human factors - Man-machine symbiosis in space
NASA Technical Reports Server (NTRS)
Brown, Jeri W.
1987-01-01
The relation between man and machine in space is studied. Early spaceflight and the goal of establishing a permanent space presence are described. The need to consider the physiological, psychological, and social integration of humans for each space mission is examined. Human factors must also be considered in the design of spacecraft. The effective utilization of man and machine capabilities, and research in anthropometry and biomechanics aimed at determining the limitations of spacecrews are discussed.
Continuous performance measurement in flight systems. [sequential control model
NASA Technical Reports Server (NTRS)
Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.
1975-01-01
The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.
Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Douglas; Greitzer, Frank L.
In his 1960 paper Man-Machine Symbiosis, Licklider predicted that human brains and computing machines will be coupled in a tight partnership that will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today. Today we are on the threshold of resurrecting the vision of symbiosis. While Licklider’s original vision suggested a co-equal relationship, here we discuss an updated vision, neo-symbiosis, in which the human holds a superordinate position in an intelligent human-computer collaborative environment. This paper was originally published as a journal article and is being publishedmore » as a chapter in an upcoming book series, Advances in Novel Approaches in Cognitive Informatics and Natural Intelligence.« less
Man-Machine Communication Through a Teletypewriter.
ERIC Educational Resources Information Center
Rubinoff, Morris
A ten-year research study designed a mechanized information system in the information processing field. Special attention was paid to implementation criteria entering into on-line retrieval through man-machine dialog from a remote typewriter or video terminal and four major areas were investigated: search strategies, machine stored indexer aids,…
ERIC Educational Resources Information Center
Kafafian, Haig
The volume contains experimental instructional materials designed for teacher and handicapped student use with two man-machine communications systems, Cybertype and Cyber-Go-Round, developed as educational aids for the severely handicapped. Cybertype is a writing machine with various possible configurations of portable keyboards with a reduced…
Multiple man-machine interfaces
NASA Technical Reports Server (NTRS)
Stanton, L.; Cook, C. W.
1981-01-01
The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.
Human capabilities in space. [man machine interaction
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.
1984-01-01
Man's ability to live and perform useful work in space was demonstrated throughout the history of manned space flight. Current planning envisions a multi-functional space station. Man's unique abilities to respond to the unforeseen and to operate at a level of complexity exceeding any reasonable amount of previous planning distinguish him from present day machines. His limitations, however, include his inherent inability to survive without protection, his limited strength, and his propensity to make mistakes when performing repetitive and monotonous tasks. By contrast, an automated system does routine and delicate tasks, exerts force smoothly and precisely, stores, and recalls large amounts of data, and performs deductive reasoning while maintaining a relative insensitivity to the environment. The establishment of a permanent presence of man in space demands that man and machines be appropriately combined in spaceborne systems. To achieve this optimal combination, research is needed in such diverse fields as artificial intelligence, robotics, behavioral psychology, economics, and human factors engineering.
NASA Astrophysics Data System (ADS)
Miao, Yongchun; Kang, Rongxue; Chen, Xuefeng
2017-12-01
In recent years, with the gradual extension of reliability research, the study of production system reliability has become the hot topic in various industries. Man-machine-environment system is a complex system composed of human factors, machinery equipment and environment. The reliability of individual factor must be analyzed in order to gradually transit to the research of three-factor reliability. Meanwhile, the dynamic relationship among man-machine-environment should be considered to establish an effective blurry evaluation mechanism to truly and effectively analyze the reliability of such systems. In this paper, based on the system engineering, fuzzy theory, reliability theory, human error, environmental impact and machinery equipment failure theory, the reliabilities of human factor, machinery equipment and environment of some chemical production system were studied by the method of fuzzy evaluation. At last, the reliability of man-machine-environment system was calculated to obtain the weighted result, which indicated that the reliability value of this chemical production system was 86.29. Through the given evaluation domain it can be seen that the reliability of man-machine-environment integrated system is in a good status, and the effective measures for further improvement were proposed according to the fuzzy calculation results.
A forestry application simulation of man-machine techniques for analyzing remotely sensed data
NASA Technical Reports Server (NTRS)
Berkebile, J.; Russell, J.; Lube, B.
1976-01-01
The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.
The RACE (Research and Development in Advanced Technologies for Europe) Program: A 1989 Update
1989-12-15
Definition TV (HDTV) Expcrimcntal Usage . A......a.d..r Dist special 1081 - Broadband User Network Interface (BUNI)..................... 4 1082 ...develop man/machine which will provide a traffic analyzer and generator. interfaces that are consistent across a wide range of ap-plications. 1082 ... 1082 are to provide usage reference models for the different types of e Define IBC quality of service rquiremnts by usage design issue. It deals with
2016-08-24
global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...synthetic, global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...such as an insect fly eye , but allowing multiple aperture configurations. Due to the desired nature of distributed networked aerial vehicles (for the
ERIC Educational Resources Information Center
Kafafian, Haig
Instructions are given for teaching severely physically and/or neurologically handicapped students to use the 14-key Cybertype man-machine communications system, an electric writing machine with a simplified keyboard to enable persons with limited motor ability or coordination to communicate in written form. Explained are the various possible…
Study of Man-Machine Communications Systems for the Handicapped. Volume III. Final Report.
ERIC Educational Resources Information Center
Kafafian, Haig
The report describes a series of studies conducted to determine the extent to which severly handicapped students who were able to comprehend language and language structure but who were not able to write or type could communicate using various man-machine systems. Included among the systems tested were specialized electric typewriting machines, a…
Proceedings of the NASA Conference on Space Telerobotics, volume 1
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty.
NASA Technical Reports Server (NTRS)
Riedel, Joseph E.; Grasso, Christopher A.
2012-01-01
VML (Virtual Machine Language) is an advanced computing environment that allows spacecraft to operate using mechanisms ranging from simple, time-oriented sequencing to advanced, multicomponent reactive systems. VML has developed in four evolutionary stages. VML 0 is a core execution capability providing multi-threaded command execution, integer data types, and rudimentary branching. VML 1 added named parameterized procedures, extensive polymorphism, data typing, branching, looping issuance of commands using run-time parameters, and named global variables. VML 2 added for loops, data verification, telemetry reaction, and an open flight adaptation architecture. VML 2.1 contains major advances in control flow capabilities for executable state machines. On the resource requirements front, VML 2.1 features a reduced memory footprint in order to fit more capability into modestly sized flight processors, and endian-neutral data access for compatibility with Intel little-endian processors. Sequence packaging has been improved with object-oriented programming constructs and the use of implicit (rather than explicit) time tags on statements. Sequence event detection has been significantly enhanced with multi-variable waiting, which allows a sequence to detect and react to conditions defined by complex expressions with multiple global variables. This multi-variable waiting serves as the basis for implementing parallel rule checking, which in turn, makes possible executable state machines. The new state machine feature in VML 2.1 allows the creation of sophisticated autonomous reactive systems without the need to develop expensive flight software. Users specify named states and transitions, along with the truth conditions required, before taking transitions. Transitions with the same signal name allow separate state machines to coordinate actions: the conditions distributed across all state machines necessary to arm a particular signal are evaluated, and once found true, that signal is raised. The selected signal then causes all identically named transitions in all present state machines to be taken simultaneously. VML 2.1 has relevance to all potential space missions, both manned and unmanned. It was under consideration for use on Orion.
Considerations for a Next Generation UV/Optical Space Telescope
NASA Technical Reports Server (NTRS)
Nein, M. E.; Morgan, S. H.
1989-01-01
During the past 25 years, a remarkable scientific revolution, has occurred in astrophysics as a result of convergence on two advancing fronts. First, instruments and telescopes have been developed to make sensitive measurements throughout the entire electromagnetic spectrum. Secondly, access to space has permitted observations above the obscuring and distorting "dirty window" of our atmosphere. Beginning around the middle of the next decade, a third major path - the availability of the permanently manned Space Station Freedom - will join with the earlier two capabilities, to not only continue this revolution, but to accelerate the quest for answers about the universe that have puzzled mankind for centuries. Beyond Earth-orbit, NASA is actively studying the possibility of a return to the Moon, which would provide a valuable platform for astrophysics observations during the next century. The studies discussed in this paper indicate that the technology requirements associated with the transportation to orbit and the assembly of these telescopes in orbit are major driving forces in the selection of generic design concepts. Ultimately, optical advances which are now becoming available through advanced manufacturing must be matched by technology advances in orbital operations, system modularization, and assembly by man and machine.
Man-machine communication - A transparent switchboard for computers
NASA Technical Reports Server (NTRS)
Rasmussen, H.
1971-01-01
Device uses pattern of transparent contact touch points that are put on cathode ray tube screen. Touch point system compels more precise and unambiguous communication between man and machine than is possible with any other means, and speeds up operation responses.
Proceedings of the 8th Annual Conference on Manual Control
NASA Technical Reports Server (NTRS)
Pew, R. W.
1972-01-01
The volume presents recent developments in the field of manual control theory and applications. The papers give analytical methods as well as examples of the important interplay between man and machine, such as how man controls and stabilizes machine dynamics, and how machines extend man's capability. Included in the broad range of subjects are procedures to evaluate and identify display systems, controllers, manipulators, human operators, aircraft, and non-flying vehicles. Of particular interest is the continuing trend of applying control theory to problems in medicine and psychology, as well as to problems in vehicle control.
A voyage to Mars: A challenge to collaboration between man and machines
NASA Technical Reports Server (NTRS)
Statler, Irving C.
1991-01-01
A speech addressing the design of man machine systems for exploration of space beyond Earth orbit from the human factors perspective is presented. Concerns relative to the design of automated and intelligent systems for the NASA Space Exploration Initiative (SEI) missions are largely based on experiences with integrating humans and comparable systems in aviation. The history, present status, and future prospect, of human factors in machine design are discussed in relation to a manned voyage to Mars. Three different cases for design philosophy are presented. The use of simulation is discussed. Recommendations for required research are given.
The human role in space (THURIS) applications study. Final briefing
NASA Technical Reports Server (NTRS)
Maybee, George W.
1987-01-01
The THURIS (The Human Role in Space) application is an iterative process involving successive assessments of man/machine mixes in terms of performance, cost and technology to arrive at an optimum man/machine mode for the mission application. The process begins with user inputs which define the mission in terms of an event sequence and performance time requirements. The desired initial operational capability date is also an input requirement. THURIS terms and definitions (e.g., generic activities) are applied to the input data converting it into a form which can be analyzed using the THURIS cost model outputs. The cost model produces tabular and graphical outputs for determining the relative cost-effectiveness of a given man/machine mode and generic activity. A technology database is provided to enable assessment of support equipment availability for selected man/machine modes. If technology gaps exist for an application, the database contains information supportive of further investigation into the relevant technologies. The present study concentrated on testing and enhancing the THURIS cost model and subordinate data files and developing a technology database which interfaces directly with the user via technology readiness displays. This effort has resulted in a more powerful, easy-to-use applications system for optimization of man/machine roles. Volume 1 is an executive summary.
The human role in space: Technology, economics and optimization
NASA Technical Reports Server (NTRS)
Hall, S. B. (Editor)
1985-01-01
Man-machine interactions in space are explored in detail. The role and the degree of direct involvement of humans that will be required in future space missions are investigated. An attempt is made to establish valid criteria for allocating functional activities between humans and machines and to provide insight into the technological requirements, economics, and benefits of the human presence in space. Six basic categories of man-machine interactions are considered: manual, supported, augmented, teleoperated, supervised, and independent. Appendices are included which provide human capability data, project analyses, activity timeline profiles and data sheets for 37 generic activities, support equipment and human capabilities required in these activities, and cumulative costs as a function of activity for seven man-machine modes.
Advanced system functions for the office information system
NASA Astrophysics Data System (ADS)
Ishikawa, Tetsuya
First, author describes the functions needed for information management system in office. Next, he mentions the requisites for the enhancement of system functions. In order to make enhancement of system functions, he states, it is necessary to examine them comprehensively from every point of view including processing hour and cost. In this paper, he concentrates on the enhancement of man-machine interface (= human interface), that is, how to make system easy to use for the office workers.
27. Bollinger twinchain tandem, pigcasting machine, located at the north ...
27. Bollinger twin-chain tandem, pig-casting machine, located at the north end of the plant. Prior to closing, approximately 40 percent of the plant's: iron production was cast into pigs and sold to foundry customers. The pig-casting machine employed a controller, lime man, trough man, and crane operator. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH
Man-Machine Communication Research.
1977-02-01
communication difficulty for the computer-naive; discovery of major communication structures in human communication that have been left out of man-machine...processes; creation of a new overview of how human communication functions in cooperative task-oriented activity; and assistance in ARPA policy formation on CAI equipment development.
Development of techniques to enhance man/machine communication
NASA Technical Reports Server (NTRS)
Targ, R.; Cole, P.; Puthoff, H.
1974-01-01
A four-state random stimulus generator, considered to function as an ESP teaching machine was used to investigate an approach to facilitating interactions between man and machines. A subject tries to guess in which of four states the machine is. The machine offers the user feedback and reinforcement as to the correctness of his choice. Using this machine, 148 volunteer subjects were screened under various protocols. Several whose learning slope and/or mean score departed significantly from chance expectation were identified. Direct physiological evidence of perception of remote stimuli not presented to any known sense of the percipient using electroencephalographic (EEG) output when a light was flashed in a distant room was also studied.
1987-12-01
Normally, the system is decomposed into manageable parts with accurately defined interfaces. By rigidly controlling this process, aerospace companies have...Reference A CHANGE IN SYSTEM DESIGN EMPHASIS: FROM MACHINE TO MAN by M.L.Metersky and J.L.Ryder 16 SESSION I1 - MANAGING THE FUl URE SYSTEM DESIGN...PROCESS MANAGING ADVANCED AVIONIC SYSTEM DESIGN by P.Simons 17 ERGONOMIE PSYCHOSENSORIELLE DES COCKPITS, INTERET DES SYSTEMES INFORMATIQUES INTELLIGENTS
Overview and fundamentals of urologic robot-integrated systems.
Allaf, Mohamad; Patriciu, Alexandru; Mazilu, Dumitru; Kavoussi, Louis; Stoianovici, Dan
2004-11-01
Advances in technology have revolutionized urology. Minimally invasive tools now form the core of the urologist's armamentarium. Laparoscopic surgery has become the favored approach for treating many complicated urologic ailments. Surgical robots represent the next evolutionary step in the fruitful man-machine partnership. The introduction of robotic technology in urology changes how urologists learn, teach, plan, and operate. As technology evolves, robots not only will improve performance in minimally invasive procedures, but also enhance other procedures or enable new kinds of operations.
1988-02-01
research dealing with the pharmacological control of states of vigilance, in the context of maximizing the operational value of combat arms personnel...brain activity of human subjects while they process cognitive information, with the research based on care- ful stimulus control , systematic task... control in man-machine interaction. Annual Technical Report 1975-1976, Report # UCLA-ENG-7J51 for Advanced Research Projecto Agency. University of
Man-Machine Integrated Design and Analysis System (MIDAS): Functional Overview
NASA Technical Reports Server (NTRS)
Corker, Kevin; Neukom, Christian
1998-01-01
Included in the series of screen print-outs illustrates the structure and function of the Man-Machine Integrated Design and Analysis System (MIDAS). Views into the use of the system and editors are featured. The use-case in this set of graphs includes the development of a simulation scenario.
Two Dimensional Display for a Naval Duel: Man-Machine Interactive Game.
Man-machine interactive games simulating naval duels are being conducted at the University of Pennsylvania. The players act as the commanding...officers of their respective vessels. They navigate, detect, and analyze their own and their opponent’s activities in the duel . The report describes the two
State of the art in nuclear telerobotics: focus on the man/machine connection
NASA Astrophysics Data System (ADS)
Greaves, Amna E.
1995-12-01
The interface between the human controller and remotely operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface, or UI, is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality, and multi degree-of-freedom input devices lend us the ability to augment the man/machine interface, and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of 3-D input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that lead to the next generation of telerobotic interface systems.
THE DESIGN OF A MAN-MACHINE COUNSELING SYSTEM. A PROFESSIONAL PAPER.
ERIC Educational Resources Information Center
COGSWELL, J.F.; AND OTHERS
TWO PROJECTS ON THE DESIGN, DEVELOPMENT, IMPLEMENTATION, AND EVALUATION OF A MAN-MACHINE SYSTEM FOR COUNSELING IN THE PALO ALTO AND LOS ANGELES SCHOOL DISTRICTS ARE REPORTED. THE EARLIER PHILCO 2000 COMPUTER PROGRAMS SIMULATED A COUNSELOR'S WORK IN THE EDUCATIONAL PLANNING INTERVIEW BY ACCEPTING INPUTS SUCH AS SCHOOL GRADES, TEST SCORES, AND…
Proceedings of the NASA Conference on Space Telerobotics, volume 3
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.
MARTI: man-machine animation real-time interface
NASA Astrophysics Data System (ADS)
Jones, Christian M.; Dlay, Satnam S.
1997-05-01
The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.
Man/Machine Interaction Dynamics And Performance (MMIDAP) capability
NASA Technical Reports Server (NTRS)
Frisch, Harold P.
1991-01-01
The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.
Research on ARM Numerical Control System
NASA Astrophysics Data System (ADS)
Wei, Xu; JiHong, Chen
Computerized Numerical Control (CNC) machine tools is the foundation of modern manufacturing systems, whose advanced digital technology is the key to solve the problem of sustainable development of machine tool manufacturing industry. The paper is to design CNC system embedded on ARM and indicates the hardware design and the software systems supported. On the hardware side: the driving chip of the motor control unit, as the core of components, is MCX314AL of DSP motion control which is developed by NOVA Electronics Co., Ltd. of Japan. It make convenient to control machine because of its excellent performance, simple interface, easy programming. On the Software side, the uC/OS-2 is selected as the embedded operating system of the open source, which makes a detailed breakdown of the modules of the CNC system. Those priorities are designed according to their actual requirements. The ways of communication between the module and the interrupt response are so different that it guarantees real-time property and reliability of the numerical control system. Therefore, it not only meets the requirements of the current social precision machining, but has good man-machine interface and network support to facilitate a variety of craftsmen use.
Re-Design and Beat Testing of the Man-Machine Integration Design and Analysis System: MIDAS
NASA Technical Reports Server (NTRS)
Shively, R. Jay; Rutkowski, Michael (Technical Monitor)
1999-01-01
The Man-machine Design and Analysis System (MIDAS) is a human factors design and analysis system that combines human cognitive models with 3D CAD models and rapid prototyping and simulation techniques. MIDAS allows designers to ask 'what if' types of questions early in concept exploration and development prior to actual hardware development. The system outputs predictions of operator workload, situational awareness and system performance as well as graphical visualization of the cockpit designs interacting with models of the human in a mission scenario. Recently, MIDAS was re-designed to enhance functionality and usability. The goals driving the redesign include more efficient processing, GUI interface, advances in the memory structures, implementation of external vision models and audition. These changes were detailed in an earlier paper. Two Beta test sites with diverse applications have been chosen. One Beta test site is investigating the development of a new airframe and its interaction with the air traffic management system. The second Beta test effort will investigate 3D auditory cueing in conjunction with traditional visual cueing strategies including panel-mounted and heads-up displays. The progress and lessons learned on each of these projects will be discussed.
Intelligent man/machine interfaces on the space station
NASA Technical Reports Server (NTRS)
Daughtrey, Rodney S.
1987-01-01
Some important topics in the development of good, intelligent, usable man/machine interfaces for the Space Station are discussed. These computer interfaces should adhere strictly to three concepts or doctrines: generality, simplicity, and elegance. The motivation for natural language interfaces and their use and value on the Space Station, both now and in the future, are discussed.
Real English: A Translator to Enable Natural Language Man-Machine Conversation.
ERIC Educational Resources Information Center
Gautin, Harvey
This dissertation presents a pragmatic interpreter/translator called Real English to serve as a natural language man-machine communication interface in a multi-mode on-line information retrieval system. This multi-mode feature affords the user a library-like searching tool by giving him access to a dictionary, lexicon, thesaurus, synonym table,…
Advanced Avionics and the Military Aircraft Man/Machine Interface.
1982-07-01
voiture au bas c~t6 de la route, angle d’incidence de l’aile, etc ... Le domaine de variation de chacun de ces param~tres de fonctionnement est en gdn6...ral limit6. Les limites, du domaine autoris6 sont bien souvent floues ; en toute rigueur il faut adniettre qu’au milieu du domaine autoristi, la...rapidement catastrophique 11 est n6anmoihs commode de parler de limite de domaine autoris6 pour chaque para- m~tre de fonctionnement tout en gardant A
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, Renate J.
1990-01-01
The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.
Towards a framework of human factors certification of complex human-machine systems
NASA Technical Reports Server (NTRS)
Bukasa, Birgit
1994-01-01
As far as total automation is not realized, the combination of technical and social components in man-machine systems demands not only contributions from engineers but at least to an equal extent from behavioral scientists. This has been neglected far too long. The psychological, social and cultural aspects of technological innovations were almost totally overlooked. Yet, along with expected safety improvements the institutionalization of human factors is on the way. The introduction of human factors certification of complex man-machine systems will be a milestone in this process.
Man-machine interface issues in space telerobotics: A JPL research and development program
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1987-01-01
Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.
Graphical user interfaces for symbol-oriented database visualization and interaction
NASA Astrophysics Data System (ADS)
Brinkschulte, Uwe; Siormanolakis, Marios; Vogelsang, Holger
1997-04-01
In this approach, two basic services designed for the engineering of computer based systems are combined: a symbol-oriented man-machine-service and a high speed database-service. The man-machine service is used to build graphical user interfaces (GUIs) for the database service; these interfaces are stored using the database service. The idea is to create a GUI-builder and a GUI-manager for the database service based upon the man-machine service using the concept of symbols. With user-definable and predefined symbols, database contents can be visualized and manipulated in a very flexible and intuitive way. Using the GUI-builder and GUI-manager, a user can build and operate its own graphical user interface for a given database according to its needs without writing a single line of code.
NASA Technical Reports Server (NTRS)
Brandli, A. E.; Eckelkamp, R. E.; Kelly, C. M.; Mccandless, W.; Rue, D. L.
1990-01-01
The objective of an operations management system is to provide an orderly and efficient method to operate and maintain aerospace vehicles. Concepts are described for an operations management system and the key technologies are highlighted which will be required if this capability is brought to fruition. Without this automation and decision aiding capability, the growing complexity of avionics will result in an unmanageable workload for the operator, ultimately threatening mission success or survivability of the aircraft or space system. The key technologies include expert system application to operational tasks such as replanning, equipment diagnostics and checkout, global system management, and advanced man machine interfaces. The economical development of operations management systems, which are largely software, will require advancements in other technological areas such as software engineering and computer hardware.
Gerovitch, Slava
2002-06-01
This article reinterprets the debate between orthodox followers of the Pavlovian reflex theory and Soviet "cybernetic physiologists" in the 1950s and 60s as a clash of opposing man-machine metaphors. While both sides accused each other of "mechanistic," reductionist methodology, they did not see anything "mechanistic" about their own central metaphors: the telephone switchboard metaphor for nervous activity (the Pavlovians), and the analogies between the human brain and a computer (the cyberneticians). I argue that the scientific utility of machine analogies was closely intertwined with their philosophical and political meanings and that new interpretations of these metaphors emerged as a result of political conflicts and a realignment of forces within the scientific community and in society at large. I suggest that the constant travel of man-machine analogies, back and forth between physiology and technology has blurred the traditional categories of the "mechanistic" and the "organic" in Soviet neurophysiology, as perhaps in the history of physiology in general.
Proceedings of the NASA Conference on Space Telerobotics, volume 2
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.
Problems in modeling man machine control behavior in biodynamic environments
NASA Technical Reports Server (NTRS)
Jex, H. R.
1972-01-01
Reviewed are some current problems in modeling man-machine control behavior in a biodynamic environment. It is given in two parts: (1) a review of the models which are appropriate for manual control behavior and the added elements necessary to deal with biodynamic interfaces; and (2) a review of some biodynamic interface pilot/vehicle problems which have occurred, been solved, or need to be solved.
NASA Astrophysics Data System (ADS)
Zhou, Qianxiang; Liu, Zhongqi
With the development of manned space technology, space rendezvous and docking (RVD) technology will play a more and more important role. The astronauts’ participation in a final close period of man-machine combination control is an important way of RVD technology. Spacecraft RVD control involves control problem of a total of 12 degrees of freedom (location) and attitude which it relative to the inertial space the orbit. Therefore, in order to reduce the astronauts’ operation load and reduce the security requirements to the ground station and achieve an optimal performance of the whole man-machine system, it is need to study how to design the number of control parameters of astronaut or aircraft automatic control system. In this study, with the laboratory conditions on the ground, a method was put forward to develop an experimental system in which the performance evaluation of spaceship RVD integration control by man and machine could be completed. After the RVD precision requirements were determined, 26 male volunteers aged 20-40 took part in the performance evaluation experiments. The RVD integration control success rates and total thruster ignition time were chosen as evaluation indices. Results show that if less than three RVD parameters control tasks were finished by subject and the rest of parameters control task completed by automation, the RVD success rate would be larger than eighty-eight percent and the fuel consumption would be optimized. In addition, there were two subjects who finished the whole six RVD parameters control tasks by enough train. In conclusion, if the astronauts' role should be integrated into the RVD control, it was suitable for them to finish the heading, pitch and roll control in order to assure the man-machine system high performance. If astronauts were needed to finish all parameter control, two points should be taken into consideration, one was enough fuel and another was enough long operation time.
Dynamic task allocation for a man-machine symbiotic system
NASA Technical Reports Server (NTRS)
Parker, L. E.; Pin, F. G.
1987-01-01
This report presents a methodological approach to the dynamic allocation of tasks in a man-machine symbiotic system in the context of dexterous manipulation and teleoperation. This report addresses a symbiotic system containing two symbiotic partners which work toward controlling a single manipulator arm for the execution of a series of sequential manipulation tasks. It is proposed that an automated task allocator use knowledge about the constraints/criteria of the problem, the available resources, the tasks to be performed, and the environment to dynamically allocate task recommendations for the man and the machine. The presentation of the methodology includes discussions concerning the interaction of the knowledge areas, the flow of control, the necessary communication links, and the replanning of the task allocation. Examples of task allocation are presented to illustrate the results of this methodolgy.
The NASA/OAST telerobot testbed architecture
NASA Technical Reports Server (NTRS)
Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.
1989-01-01
Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.
A Machine Learning System for Analyzing Human Tactics in a Game
NASA Astrophysics Data System (ADS)
Ito, Hirotaka; Tanaka, Toshimitsu; Sugie, Noboru
In order to realize advanced man-machine interfaces, it is desired to develop a system that can infer the mental state of human users and then return appropriate responses. As the first step toward the above goal, we developed a system capable of inferring human tactics in a simple game played between the system and a human. We present a machine learning system that plays a color expectation game. The system infers the tactics of the opponent, and then decides the action based on the result. We employed a modified version of classifier system like XCS in order to design the system. In addition, three methods are proposed in order to accelerate the learning rate. They are a masking method, an iterative method, and tactics templates. The results of computer experiments confirmed that the proposed methods effectively accelerate the machine learning. The masking method and the iterative method are effective to a simple strategy that considers only a part of past information. However, study speed of these methods is not enough for the tactics that refers to a lot of past information. For the case, the tactics template was able to settle the study rapidly when the tactics is identified.
Exploration and Reflection on Teachers' Self-Growth under Network Environment
ERIC Educational Resources Information Center
Li, Shuang
2010-01-01
As is well known, it is network that has turned the traditional "man-man" educational system made up of by only teachers and students into a new system of "man-machine-man" composed of network as well as teachers and students. In the new system, teachers' authority has been lowered sharply because students also have access to…
Vocal emotion of humanoid robots: a study from brain mechanism.
Wang, Youhui; Hu, Xiaohua; Dai, Weihui; Zhou, Jie; Kuo, Taitzong
2014-01-01
Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings.
Flying qualities - A costly lapse in flight-control design
NASA Technical Reports Server (NTRS)
Berry, D. T.
1982-01-01
Generic problems in advanced aircraft with advanced control systems which suffer from control sensitivity, sluggish response, and pilot-induced oscillation tendencies are examined, with a view to improving techniques for eliminating the problems in the design phase. Results of two NASA and NASA/AIAA workshops reached a consensus that flying qualities criteria do not match control system development, control system designers are not relying on past experience in their field, ground-based simulation is relied on too heavily, and communications between flying qualities and control systems engineers need improvement. A summation is offered in that hardware and software have outstripped the pilot's capacity to use the capabilities which new aircraft offer. The flying qualities data base is stressed to be dynamic, and continually redefining the man/machine relationships.
NASA Astrophysics Data System (ADS)
Erickson, David; Lacheray, Hervé; Lambert, Jason Michel; Mantegh, Iraj; Crymble, Derry; Daly, John; Zhao, Yan
2012-06-01
State-of-the-art robotic explosive ordnance disposal robotics have not, in general, adopted recent advances in control technology and man-machine interfaces and lag many years behind academia. This paper describes the Haptics-based Immersive Telerobotic System project investigating an immersive telepresence envrionment incorporating advanced vehicle control systems, Augmented immersive sensory feedback, dynamic 3D visual information, and haptic feedback for explosive ordnance disposal operators. The project aim is to provide operatiors a more sophisticated interface and expand sensory input to perform complex tasks to defeat improvised explosive devices successfully. The introduction of haptics and immersive teleprescence has the potential to shift the way teleprescence systems work for explosive ordnance disposal tasks or more widely for first responders scenarios involving remote unmanned ground vehicles.
1980-05-31
34 International Journal of Man- Machine Studies , Vol. 9, No. 1, 1977, pp. 1-68. [16] Zimmermann, H. J., Theory and Applications of Fuzzy Sets, Institut...Boston, Inc., Hingham, MA, 1978. [18] Yager, R. R., "Multiple Objective Decision-Making Using Fuzzy Sets," International Journal of Man- Machine Studies ...Professor of Industria Engineering ... iv t TABLE OF CONTENTS page ABSTRACT .. .. . ...... . .... ...... ........ iii LIST OF TABLES
Mobile Tactical HF/VHF/EW System for Ground Forces
1989-09-01
presen- tation of what I have learned . I would like to thank my advisor, Professor Robert Partelow, and co-advisor, Commander James R. Powell, for the...analyze newly developed systems to determine how the man- machine interfaces of such systems can best be designed for optimal use by the operators. B...terminals and other controls. If factors like luminance ratio, reflectance, glare illuminance are allowed for good man- machine interface then an effective
Strategic Studies Quarterly. Volume 7, Number 4. Winter 2013
2013-01-01
databases to bridge the man-machine interface, thereby mak- ing both machines and man more capable of complex thought, independent assessment, and...Edward, “China Steps up Effort to Diversify FX Reserves,” Re- uters, 13 January 2013, http://www.reuters.com/article/2013/01/14/us-china- forex ...of attacks in Israel, Russia, and the United States from 1989 to 2008 (see fig. 2). The analysis combines data from the Global Terrorism Database
NASA Technical Reports Server (NTRS)
Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Constantine, Betsy; Murray, Jerry; Neukom, Christian; Prevost, Michael; Shankar, Renuka; Staveland, Lowell
1991-01-01
The Man-Machine Integration Design and Analysis System (MIDAS) is an integrated suite of software components that constitutes a prototype workstation to aid designers in applying human factors principles to the design of complex human-machine systems. MIDAS is intended to be used at the very early stages of conceptual design to provide an environment wherein designers can use computational representations of the crew station and operator, instead of hardware simulators and man-in-the-loop studies, to discover problems and ask 'what if' questions regarding the projected mission, equipment, and environment. This document is the Software Product Specification for MIDAS. Introductory descriptions of the processing requirements, hardware/software environment, structure, I/O, and control are given in the main body of the document for the overall MIDAS system, with detailed discussion of the individual modules included in Annexes A-J.
NASA Technical Reports Server (NTRS)
Malone, T. B.
1972-01-01
Requirements were determined analytically for the man machine interface for a teleoperator system performing on-orbit satellite retrieval and servicing. Requirements are basically of two types; mission/system requirements, and design requirements or design criteria. Two types of teleoperator systems were considered: a free flying vehicle, and a shuttle attached manipulator. No attempt was made to evaluate the relative effectiveness or efficiency of the two system concepts. The methodology used entailed an application of the Essex Man-Systems analysis technique as well as a complete familiarization with relevant work being performed at government agencies and by private industry.
Study on intelligent processing system of man-machine interactive garment frame model
NASA Astrophysics Data System (ADS)
Chen, Shuwang; Yin, Xiaowei; Chang, Ruijiang; Pan, Peiyun; Wang, Xuedi; Shi, Shuze; Wei, Zhongqian
2018-05-01
A man-machine interactive garment frame model intelligent processing system is studied in this paper. The system consists of several sensor device, voice processing module, mechanical parts and data centralized acquisition devices. The sensor device is used to collect information on the environment changes brought by the body near the clothes frame model, the data collection device is used to collect the information of the environment change induced by the sensor device, voice processing module is used for speech recognition of nonspecific person to achieve human-machine interaction, mechanical moving parts are used to make corresponding mechanical responses to the information processed by data collection device.it is connected with data acquisition device by a means of one-way connection. There is a one-way connection between sensor device and data collection device, two-way connection between data acquisition device and voice processing module. The data collection device is one-way connection with mechanical movement parts. The intelligent processing system can judge whether it needs to interact with the customer, realize the man-machine interaction instead of the current rigid frame model.
NASA Technical Reports Server (NTRS)
Heyenga, A. G.; Hoehn, A.; Stodieck, L. S.; Kliss, M.; Arnold, James O. (Technical Monitor)
1998-01-01
The application of bioregenerative life support systems provides an attractive approach to minimize resupply requirement and ultimate self-sufficiency on long duration manned missions in space. The on-board cultivation of salad-type vegetables for crew consumption has been proposed as a first step approach towards reducing a total reliance on the resupply of food. The recent advances in the development of space flight plant growth facilities such as the Plant Generic Bioprocessing Apparatus (PGBA) have established a firm technical basis upon which the implementation of a 'salad machine' concept may be achieved. A presentation on ground based studies will be made evaluating (a) the operational performance of the PGBA facility in a crop production mode and (b) the qualitative and quantitative value of salad plant material produced within the chamber.
2016 New Horizons Lecture: Beyond Imaging-Radiology of Tomorrow.
Hricak, Hedvig
2018-03-01
This article is based on the New Horizons lecture delivered at the 2016 Radiological Society of North America Annual Meeting. It addresses looming changes for radiology, many of which stem from the disruptive effects of the Fourth Industrial Revolution. This is an emerging era of unprecedented rapid innovation marked by the integration of diverse disciplines and technologies, including data science, machine learning, and artificial intelligence-technologies that narrow the gap between man and machine. Technologic advances and the convergence of life sciences, physical sciences, and bioengineering are creating extraordinary opportunities in diagnostic radiology, image-guided therapy, targeted radionuclide therapy, and radiology informatics, including radiologic image analysis. This article uses the example of oncology to make the case that, if members in the field of radiology continue to be innovative and continuously reinvent themselves, radiology can play an ever-increasing role in both precision medicine and value-driven health care. © RSNA, 2018.
Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle.
Park, Namje; Kang, Namhi
2015-12-24
The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, "things" are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks.
Learning Processes in Man, Machine and Society
ERIC Educational Resources Information Center
Malita, Mircea
1977-01-01
Deciphering the learning mechanism which exists in man remains to be solved. This article examines the learning process with respect to association and cybernetics. It is recommended that research should focus on the transdisciplinary processes of learning which could become the next key concept in the science of man. (Author/MA)
Descartes' pineal neuropsychology.
Smith, C U
1998-02-01
The year 1996 marked the quattrocentenary of Descartes' birth. This paper reviews his pineal neuropsychology. It demonstrates that Descartes understood the true anatomical position of the pineal. His intraventricular pineal (or glande H) was a theoretical construct which allowed him to describe the operations of his man-like "earthen machine." In the Treatise of Man he shows how all the behaviors of such machines could then be accounted for without the presence of self-consciousness. Infrahuman animals are "conscious automata." In Passions of the Soul he adds, but only for humans, self-consciousness to the machine. In a modern formulation, only humans not only know but know that they know. Copyright 1998 Academic Press.
Autonomy and the human element in space
NASA Technical Reports Server (NTRS)
1985-01-01
NASA is contemplating the next logical step in the U.S. space program - the permanent presence of humans in space. As currently envisioned, the initial system, planned for the early 1990's, will consist of manned and unmanned platforms situated primarily in low Earth orbit. The manned component will most likely be inhabited by 6-8 crew members performing a variety of tasks such as materials processing, satellite servicing, and life science experiments. The station thus has utility in scientific and commercial enterprises, in national security, and in the development of advanced space technology. The technical foundations for this next step have been firmly established as a result of unmanned spacecraft missions to other planets, the Apollo program, and Skylab. With the shuttle, NASA inaugurates a new era of frequent flights and more routine space operations supporting a larger variety of missions. A permanently manned space system will enable NASA to expand the scope of its activities still further. Since NASA' s inception there has been an intense debate over the relative merits of manned and unmanned space systems. Despite the generally higher costs associated with manned components, astronauts have accomplished numerous essential, complex tasks in space. The unique human talent to evaluate and respond inventively to unanticipated events has been crucial in many missions, and the presence of crews has helped arouse and sustain public interest in the space program. On the other hand, the hostile orbital environment affects astronaut physiology and productivity, is dangerous, and mandates extensive support systems. Safety and cost factors require the entire station complex, both space and ground components, to be highly automated to free people from mundane operational chores. Recent advances in computer technology, artificial intelligence (AI), and robotics have the potential to greatly extend space station operations, offering lower costs and superior productivity. Extended operations can in turn enhance critical technologies and contribute to the competitive economic abilities of the United States. A high degree of automation and autonomy may be required to reduce dependence on ground systems, reduce mission costs, diminish complexity as perceived by the crew, increase mission lifetime and expand mission versatility. However, technologies dealing with heavily automated, long duration habitable spacecraft have not yet been thoroughly investigated by NASA. A highly automated station must amalgamate the diverse capabilities of people, machines, and computers to yield an efficient system which capitalizes on unique human characteristics. The station also must have an initial design which allows evolution to a larger and more sophisticated space presence. In the early years it is likely that AI-based subsystems will be used primarily in an advisory or planning capacity. As human confidence in automated systems grows and as technology advances, machines will take on more critical and interdependent roles. The question is whether, and how much, system autonomy will lead to improved station effectiveness.
SAINT: A combined simulation language for modeling man-machine systems
NASA Technical Reports Server (NTRS)
Seifert, D. J.
1979-01-01
SAINT (Systems Analysis of Integrated Networks of Tasks) is a network modeling and simulation technique for design and analysis of complex man machine systems. SAINT provides the conceptual framework for representing systems that consist of discrete task elements, continuous state variables, and interactions between them. It also provides a mechanism for combining human performance models and dynamic system behaviors in a single modeling structure. The SAINT technique is described and applications of the SAINT are discussed.
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Smith, Barry R.
1993-01-01
The process of designing crew stations for large-scale, complex automated systems is made difficult because of the flexibility of roles that the crew can assume, and by the rapid rate at which system designs become fixed. Modern cockpit automation frequently involves multiple layers of control and display technology in which human operators must exercise equipment in augmented, supervisory, and fully automated control modes. In this context, we maintain that effective human-centered design is dependent on adequate models of human/system performance in which representations of the equipment, the human operator(s), and the mission tasks are available to designers for manipulation and modification. The joint Army-NASA Aircrew/Aircraft Integration (A3I) Program, with its attendant Man-machine Integration Design and Analysis System (MIDAS), was initiated to meet this challenge. MIDAS provides designers with a test bed for analyzing human-system integration in an environment in which both cognitive human function and 'intelligent' machine function are described in similar terms. This distributed object-oriented simulation system, its architecture and assumptions, and our experiences from its application in advanced aviation crew stations are described.
Advanced telepresence surgery system development.
Jensen, J F; Hill, J W
1996-01-01
SRI International is currently developing a prototype remote telepresence surgery system, for the Advanced Research Projects Agency (ARPA), that will bring life-saving surgical care to wounded soldiers in the zone of combat. Remote surgery also has potentially important applications in civilian medicine. In addition, telepresence will find wide medical use in local surgery, in endoscopic, laparoscopic, and microsurgery applications. Key elements of the telepresence technology now being developed for ARPA, including the telepresence surgeon's workstation (TSW) and associated servo control systems, will have direct application to these areas of minimally invasive surgery. The TSW technology will also find use in surgical training, where it will provide an immersive visual and haptic interface for interaction with computer-based anatomical models. In this paper, we discuss our ongoing development of the MEDFAST telesurgery system, focusing on the TSW man-machine interface and its associated servo control electronics.
Artificial intelligence - NASA. [robotics for Space Station
NASA Technical Reports Server (NTRS)
Erickson, J. D.
1985-01-01
Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.
Vocal Emotion of Humanoid Robots: A Study from Brain Mechanism
Wang, Youhui; Hu, Xiaohua; Zhou, Jie; Kuo, Taitzong
2014-01-01
Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings. PMID:24587712
Man-Machine Communication in Remote Manipulation: Task-Oriented Supervisory Command Language (TOSC).
1980-03-01
ORIENTED SUPERVISORY CONTROL SYSTEM METHODOLOGY 3-1 3.1 Overview 3-1 3.2 Background 3-3 3.2.1 General 3-3 3.2.2 Preliminary Principles of Command Language...Design 3-4 3.2.3 Preliminary Principles of Feedback Display Design 3-9 3.3 Man-Machine Communication Models 3-12 3.3.1 Background 3-12 3.3.2 Adapted...and feedback mode. The work ends with the presentation of a performance prediction model and a set of principles and guidelines, applicable to the
Man-machine interfaces in health care
NASA Technical Reports Server (NTRS)
Charles, Steve; Williams, Roy E.
1991-01-01
The surgeon, like the pilot, is confronted with an ever increasing volume of voice, data, and image input. Simultaneously, the surgeon must control a rapidly growing number of devices to deliver care to the patient. The broad disciplines of man-machine interface design, systems integration, and teleoperation will play a role in the operating room of the future. The purpose of this communication is to report the incorporation of these design concepts into new surgical and laser delivery systems. A review of each general problem area and the systems under development to solve the problems are presented.
Curriculum Focus: Occupations and the World of Work. Information Series 5.
ERIC Educational Resources Information Center
DeVore, Paul W.
Technology is now and has been the single most important factor in man's transition. Those in education are faced with deciding whether technology shall serve man or man will be forced to be a cog in the machine. In determining the function of education, the decision will be a value judgement involving one of these two choices: (1) Continuing to…
Robotic Technology: An Assessment and Forecast,
1984-07-01
Research Associates# Inc. Dr. Roger Nagel# Lehigh University Dr. Charles Rosen# Machine Intelligence Corporations and Mr. Jack Thornton# Robot Insider...amr (Subcontractors: systems for assembly and Adopt Technology# inspection Stanford University. SRI) AFSC MANTECH o McDonnell Douglas o Machine ...supervisory controls man- machine interaction and system integration. - .. _ - Foreign R& The U.S. faces a strong technological challenge in robotics from
Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle
Park, Namje; Kang, Namhi
2015-01-01
The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, “things” are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks. PMID:26712759
NASA Technical Reports Server (NTRS)
1985-01-01
The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.
Knowledge representation in space flight operations
NASA Technical Reports Server (NTRS)
Busse, Carl
1989-01-01
In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text.
Computers Simulate Human Experts.
ERIC Educational Resources Information Center
Roberts, Steven K.
1983-01-01
Discusses recent progress in artificial intelligence in such narrowly defined areas as medical and electronic diagnosis. Also discusses use of expert systems, man-machine communication problems, novel programing environments (including comments on LISP and LISP machines), and types of knowledge used (factual, heuristic, and meta-knowledge). (JN)
Construction in space - Toward a fresh definition of the man/machine relation
NASA Technical Reports Server (NTRS)
Watters, H. H.; Stokes, J. W.
1979-01-01
The EVA (extravehicular activity) project forming part of the space construction process is reviewed. The manual EVA constuction, demonstrated by the crew of Skylab 3 by assembling a modest space structure in the form of the twin-pole sunshade, is considered, indicating that the experiment dispelled many doubts about man's ability to execute routine and contingency EVA operations. Tests demonstrating the feasibility of remote teleoperator rendezvous, station keeping, and docking operations, using hand controllers for direct input and television for feedback, are noted. Future plans for designing space construction machines are mentioned.
Mathematical concepts for modeling human behavior in complex man-machine systems
NASA Technical Reports Server (NTRS)
Johannsen, G.; Rouse, W. B.
1979-01-01
Many human behavior (e.g., manual control) models have been found to be inadequate for describing processes in certain real complex man-machine systems. An attempt is made to find a way to overcome this problem by examining the range of applicability of existing mathematical models with respect to the hierarchy of human activities in real complex tasks. Automobile driving is chosen as a baseline scenario, and a hierarchy of human activities is derived by analyzing this task in general terms. A structural description leads to a block diagram and a time-sharing computer analogy.
Cutting the Cord: Discrimination and Command Responsibility in Autonomous Lethal Weapons
2014-02-13
machine responses to identical stimuli, and it was the job of a third party human “witness” to determine which participant was man and which was...machines may be error free, but there are potential benefits to be gained through autonomy if machines can meet or exceed human performance in...lieu of human operators and reap the benefits that autonomy provides. Human and Machine Error It would be foolish to assert that either humans
ERIC Educational Resources Information Center
Shaughnessy, Michael F.
This paper reviews the main research in the area of human reasoning and rational thinking to determine if man is either an "innately inefficient thinking machine" or if man's irrationality is "rooted in basic human nature," as Ellis (1976) suggests. The paper focuses on the work of two English theorists, Wason and…
Rapid Prototyping and the Human Factors Engineering Process
2016-08-29
8217 without the effort and cost associated with conventional man -in-the-loop simulation. Advocates suggest that rapid prototyping is compatible with...use should be made of man -in-the loop simulation to supplement those analyses, but that such simulation is expensive and time consuming, precluding...conventional man -in-the- loop simulation. Rapid prototyping involves the construction and use of an executable model of a human-machine interface
Robotics technology discipline
NASA Technical Reports Server (NTRS)
Montemerlo, Melvin D.
1990-01-01
Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.
Another Long March: Lessons from the Post-Vietnam Rebuild of the Marine Corps, 1969 to 1989
2014-05-22
Weapon light machine gun to each four-man fire team, the arrival of new versions of M60 medium machine guns and M2 heavy machine guns , Mk19 grenade...experiencing an average shortfall of 600,000 to 700,000 barrels of crude oil a day, leading to a shortage of gasoline in the spring and early summer
NASA Astrophysics Data System (ADS)
Luo, Jack Jiqui; Fang, Fengzhou
2009-05-01
Nanomanufacturing is an emerging technology in the field of synthesis of nanomaterials, manufacture of nanodevices, nanosystems and the relevant characterization technologies, and will greatly impact our society and environment: speeding up scientific discovery, technological development, improving healthcare and living standards and slowing down the exhaustion of energy resources, to name but few. The 1st International Conference on Nanomanufacturing (NanoMan2008) was held on the 13-16 July 2008 in Singapore in conjunction with ThinFilm2008 (The 4th International Conference on Technological Advances of Thin Films & Surface Coatings). Approximately 140 delegates from all over the world have participated in the conference and presented their latest discoveries and technological developments. The main focuses of the conference were modern nanomanufacturing by laser machining, focused ion beam fabrication, nano/micro-molding/imprinting, nanomaterial synthesis and characterization, nanometrology and nano/microsystems fabrication and characterization. There was also great interest in applications of nanomanufacturing technologies in traditional areas such as free form machining, polishing and grinding with nano-scale precision and the smoothness of surfaces of objects, and applications in space exploration, military and medicine. This special issue is devoted to NanoMan2008 with a collection of 9 invited talks presented at the conference, covering all the topics of nanomanufacturing technology and development. These papers have been upgraded by the authors with new results and discoveries since the preparation of the conference manuscripts, hence presenting the latest developments. We would like to take this opportunity to thank all the delegates who attended the conference and made the conference successful, and to the authors who contributed papers to this special issue. Thanks also go to the conference committee for their efforts and devotion to the conference. We would like to express our sincere thanks to Dr Ian Forbes and the other members of editorial board of the Journal of Micromechanics and Microengineering of the Institute of Physics for their help and support in making this special section. The conference was a success. We found there is a great demand for continuation of the conference, and it has been agreed by the conference committee to hold the conference biannually from now on. The 2nd International Conference on Nanomanufacturing (NanoMan2010) is to be held in Tianjin, China in 2010. On behalf of the committee we would like to take this opportunity to welcome everybody to NanoMan2010.
Computer-Based Arithmetic Test Generation
ERIC Educational Resources Information Center
Trocchi, Robert F.
1973-01-01
The computer can be a welcome partner in the instructional process, but only if there is man-machine interaction. Man should not compromise system design because of available hardware; the computer must fit the system design for the result to represent an acceptable solution to instructional technology. The Arithmetic Test Generator system fits…
Manipulator system man-machine interface evaluation program. [technology assessment
NASA Technical Reports Server (NTRS)
Malone, T. B.; Kirkpatrick, M.; Shields, N. L.
1974-01-01
Application and requirements for remote manipulator systems for future space missions were investigated. A manipulator evaluation program was established to study the effects of various systems parameters on operator performance of tasks necessary for remotely manned missions. The program and laboratory facilities are described. Evaluation criteria and philosophy are discussed.
Open multi-agent control architecture to support virtual-reality-based man-machine interfaces
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel
2001-10-01
Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.
NASA Astrophysics Data System (ADS)
Hiatt, Keith L.; Rash, Clarence E.
2011-06-01
Background: Army Aviators rely on the ANVIS for night operations. Human factors literature notes that the ANVIS man-machine interface results in reports of visual and spinal complaints. This is the first study that has looked at these issues in the much harsher combat environment. Last year, the authors reported on the statistically significant (p<0.01) increased complaints of visual discomfort, degraded visual cues, and incidence of static and dynamic visual illusions in the combat environment [Proc. SPIE, Vol. 7688, 76880G (2010)]. In this paper we present the findings regarding increased spinal complaints and other man-machine interface issues found in the combat environment. Methods: A survey was administered to Aircrew deployed in support of Operation Enduring Freedom (OEF). Results: 82 Aircrew (representing an aggregate of >89,000 flight hours of which >22,000 were with ANVIS) participated. Analysis demonstrated high complaints of almost all levels of back and neck pain. Additionally, the use of body armor and other Aviation Life Support Equipment (ALSE) caused significant ergonomic complaints when used with ANVIS. Conclusions: ANVIS use in a combat environment resulted in higher and different types of reports of spinal symptoms and other man-machine interface issues over what was previously reported. Data from this study may be more operationally relevant than that of the peacetime literature as it is derived from actual combat and not from training flights, and it may have important implications about making combat predictions based on performance in training scenarios. Notably, Aircrew remarked that they could not execute the mission without ANVIS and ALSE and accepted the degraded ergonomic environment.
Roles and needs of man in space
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1983-01-01
Human capabilities and requirements on space missions are discussed. Utilitarian and humanistic motivations for manned missions are considered, and a general program of development from easy space access and return, to a permanent LEO presence, to the limited self-sufficiency of man in space, is proposed. Man's potential as scientific observer, operator, and engineer/technician is illustrated with examples from the Apollo and Skylab missions. It is shown that future increases in man's space presence will require significant improvements in habitation technology, crew comfort and safety, operational effectiveness and reliability, and man/machine interactions: man-tended systems must be standardized and adapted to (mainly EVA) human servicing; permanently manned systems must be designed to attain levels of comfort, privacy, and overall habitability more like those expected on the ground.
Control system software, simulation, and robotic applications
NASA Technical Reports Server (NTRS)
Frisch, Harold P.
1991-01-01
All essential existing capabilities needed to create a man-machine interaction dynamics and performance (MMIDAP) capability are reviewed. The multibody system dynamics software program Order N DISCOS will be used for machine and musculo-skeletal dynamics modeling. The program JACK will be used for estimating and animating whole body human response to given loading situations and motion constraints. The basic elements of performance (BEP) task decomposition methodologies associated with the Human Performance Institute database will be used for performance assessment. Techniques for resolving the statically indeterminant muscular load sharing problem will be used for a detailed understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and trauma. The envisioned capacity is to be used for mechanical system design, human performance assessment, extrapolation of man/machine interaction test data, biomedical engineering, and soft prototyping within a concurrent engineering (CE) system.
Single molecule detection, thermal fluctuation and life
YANAGIDA, Toshio; ISHII, Yoshiharu
2017-01-01
Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869
NASA Technical Reports Server (NTRS)
1979-01-01
The tests and procedures for the manned remote work station (MRWS) open cherry picker (OCP) development test article (DTA) are described to validate systems requirements and performance specifications. A development test program is outlined to evaluate key design issues and man/machine interfaces when the MRWS OCP is used in a shuttle support role of satellite servicing and in orbit construction of large structures.
NASA Technical Reports Server (NTRS)
Myrabo, Leik N.; Smith, Wayne L. (Editor); Decusatis, Casimer; Frazier, Scott R.; Garrison, James L., Jr.; Meltzer, Jonathan S.; Minucci, Marco A.; Moder, Jeffrey P.; Morales, Ciro; Mueller, Mark T.
1988-01-01
This second year of the NASA/USRA-sponsored Advanced Aeronautical Design effort focused on systems integration and analysis of the Apollo Lightcraft. This beam-powered, single-stage-to-orbit vehicle is envisioned as the shuttlecraft of the 21st century. The five person vehicle was inspired largely by the Apollo Command Module, then reconfigured to include a new front seat with dual cockpit controls for the pilot and co-pilot, while still retaining the 3-abreast crew accommodations in the rear seat. The gross liftoff mass is 5550 kg, of which 500 kg is the payload and 300 kg is the LH2 propellant. The round trip cost to orbit is projected to be three orders of magnitude lower than the current space shuttle orbiter. The advanced laser-driven 5-speed combined-cycle engine has shiftpoints at Mach 1, 5, 11 and 25+. The Apollo Lightcraft can climb into low Earth orbit in three minutes, or fly to any spot on the globe in less than 45 minutes. Detailed investigations of the Apollo Lightcraft Project this second year further evolved the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) re-entry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis. The principal new findings are documented. Advanced design efforts for the next academic year (1988/1989) will center on a one meter+ diameter spacecraft: the Lightcraft Technology Demonstrator (LTD). Detailed engineering design and analyses, as well as critical proof-of-concept experiments, will be carried out on this small, near-term machine. As presently conceived, the LTD could be constructed using state of the art components derived from existing liquid chemical rocket engine technology, advanced composite materials, and high power laser optics.
1986-12-01
subjects such as: - the need to have reliable systems which will be "fault-tolerant’ - the man/machine relationship ; - compatibility between systems. 8. THE...be worked out and that acceptable solutions can be found as regards the man/ machine relationship . It will also be necessary to resolve the problems...management functions of the system should be essentially ground-based. 9. Capacity for coping with demands. 10. ATIM capability and relationship with
Open control/display system for a telerobotics work station
NASA Technical Reports Server (NTRS)
Keslowitz, Saul
1987-01-01
A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.
Jönsson, A; Arvebo, E; Schantz, B
1988-01-01
Experiments with an anthropomorphic dummy for blast research demonstrated that pressures recorded in the lung model of the dummy could be correlated to primary air blast effects on the lungs of experimental animals. The results presented here were obtained with a dummy of the type mentioned above, but with the lung model modified to improve geometric similarity to man. Blast experiments were performed in a shock tube, and impact experiments in a special impact machine. Experiments with nonpenetrating missiles were performed with small-caliber firearms and the dummy protected by body armor. Severity indices derived from the blast experiments were related to established criteria for primary lung injury in man. Impacts delivered in the impact machine and by nonpenetrating missiles are compared. Relationships between severity of impact based on experiments with animals and primary lung injury in man are discussed.
The Psychology of Communication: Seven Essays.
ERIC Educational Resources Information Center
Miller, George A.
One of man's most distinctive characteristics is the manner in which he stores and communicates information. Language has always been an important part of this process, but recently machines have begun to share the spotlight. This book presents a look at the role of language in the process of communication and man's relation, present and future,…
Proceedings of the 1984 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
This conference contains papers on artificial intelligence, pattern recognition, and man-machine systems. Topics considered include concurrent minimization, a robot programming system, system modeling and simulation, camera calibration, thermal power plants, image processing, fault diagnosis, knowledge-based systems, power systems, hydroelectric power plants, expert systems, and electrical transients.
ERIC Educational Resources Information Center
Simpkins, John D.
Processing complex multivariate information effectively when relational properties of information sub-groups are ambiguous is difficult for man and man-machine systems. However, the information processing task is made easier through code study, cybernetic planning, and accurate display mechanisms. An exploratory laboratory study designed for the…
Automated visual imaging interface for the plant floor
NASA Astrophysics Data System (ADS)
Wutke, John R.
1991-03-01
The paper will provide an overview of the challenges facing a user of automated visual imaging (" AVI" ) machines and the philosophies that should be employed in designing them. As manufacturing tools and equipment become more sophisticated it is increasingly difficult to maintain an efficient interaction between the operator and machine. The typical user of an AVI machine in a production environment is technically unsophisticated. Also operator and machine ergonomics are often a neglected or poorly addressed part of an efficient manufacturing process. This paper presents a number of man-machine interface design techniques and philosophies that effectively solve these problems.
NASA Technical Reports Server (NTRS)
Kerr, Andrew W.
1990-01-01
The utilization of advanced simulation technology in the development of the non-real-time MANPRINT design tools in the Army/NASA Aircrew-Aircraft Integration (A3I) program is described. A description is then given of the Crew Station Research and Development Facilities, the primary tool for the application of MANPRINT principles. The purpose of the A3I program is to develop a rational, predictive methodology for helicopter cockpit system design that integrates human factors engineering with other principles at an early stage in the development process, avoiding the high cost of previous system design methods. Enabling technologies such as the MIDAS work station are examined, and the potential of low-cost parallel-processing systems is indicated.
Overview of research in progress at the Center of Excellence
NASA Technical Reports Server (NTRS)
Wandell, Brian A.
1993-01-01
The Center of Excellence (COE) was created nine years ago to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. Significant interchange of ideas and personnel continues between Stanford and participating groups at NASA-Ames; the COE serves its function well. This progress report is organized into sections divided by project. Each section contains a list of investigators, a background statement, progress report, and a proposal for work during the coming year. The projects are: Algorithms for development and calibration of visual systems, Visually optimized image compression, Evaluation of advanced piloting displays, Spectral representations of color, Perception of motion in man and machine, Automation and decision making, and Motion information used for navigation and control.
2014-01-01
System Maneuver COe M4/16 Rifle M9 pistol M2 , MK19, and M240B Machine Guns , M249 Squad Automatic Rifle Bradley Fighting Vehicle Abrams Tank Fires COe 155mm...27 Rifle, Machine Gun , and SAW Training...are called desig- nated weapons. For example, a maintenance company may have some machine guns authorized for self-protection that are manned by
30 CFR 18.48 - Circuit-interrupting devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... two-pole switch of the “dead-man-control” type that must be held closed by hand and will open when hand pressure is released. (e) A machine designed to operate from both trolley wire and portable cable.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is...
30 CFR 18.48 - Circuit-interrupting devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... two-pole switch of the “dead-man-control” type that must be held closed by hand and will open when hand pressure is released. (e) A machine designed to operate from both trolley wire and portable cable.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is...
History for Auto-Mechanics and Machine Trades Students. A Teacher's Guide.
ERIC Educational Resources Information Center
Puntureri, Thomas
The guide for an American history curriculum is designed to give students insight into their field of study by including material on the development of the machine industry and related industries. It is divided into 18 basic units covering shop history and development, American industrialization, sociological development of man, American politics,…
Bergsonian Comedy and the Human Machines in "Star Wars."
ERIC Educational Resources Information Center
Roth, Lane
While analyzing humor is difficult, Henri Bergson's concept of comedy (a person acting like a machine) outlined in the classic essay, "Le Rire," in 1900, is probably too narrow a definition. Science fiction film, a genre which has evolved since the publication of Bergson's essay, has also speculated about man and society, often to…
Cybernetic anthropomorphic machine systems
NASA Technical Reports Server (NTRS)
Gray, W. E.
1974-01-01
Functional descriptions are provided for a number of cybernetic man machine systems that augment the capacity of normal human beings in the areas of strength, reach or physical size, and environmental interaction, and that are also applicable to aiding the neurologically handicapped. Teleoperators, computer control, exoskeletal devices, quadruped vehicles, space maintenance systems, and communications equipment are considered.
NASA Technical Reports Server (NTRS)
Ewing, D. E.
1972-01-01
A modular approach for assessing the affects of radiation environments on man in operational systems has been developed. The feasibility of the model has been proved and the practicality has been assessed. It has been applied to one operational system to date and information obtained has been submitted to systems analysts and mission planners for the assessment of man's vulnerability and impact on systems survivability. In addition, the model has been developed so that the radiobiological data can be input to a sophisticated man-machine interface model to properly relate the radiobiological stress with other mission stresses including the effects of a degraded system.
The 1980 Aircraft Safety and Operating Problems, part 1
NASA Technical Reports Server (NTRS)
Stickle, J. W. (Compiler)
1981-01-01
It is difficult to categorize aircraft operating problems, human factors and safety. Much of NASA's research involves all three and considers the important inter-relationships between man, the machine and the environment, whether the environment be man-made or natural. Topics covered in 20 papers include terminal-area operations; avionics and human factors; and the atmospheric environment.
NASA Technical Reports Server (NTRS)
Karl, D. R.
1972-01-01
An evaluation was made of the feasibility of utilizing a simplified man machine interface concept to manage and control a complex space system involving multiple redundant computers that control multiple redundant subsystems. The concept involves the use of a CRT for display and a simple keyboard for control, with a tree-type control logic for accessing and controlling mission, systems, and subsystem elements. The concept was evaluated in terms of the Phase B space shuttle orbiter, to utilize the wide scope of data management and subsystem control inherent in the central data management subsystem provided by the Phase B design philosophy. Results of these investigations are reported in four volumes.
From pilot's associate to satellite controller's associate
NASA Technical Reports Server (NTRS)
Neyland, David L.; Lizza, Carl; Merkel, Philip A.
1992-01-01
Associate technology is an emerging engineering discipline wherein intelligent automation can significantly augment the performance of man-machine systems. An associate system is one that monitors operator activity and adapts its operational behavior accordingly. Associate technology is most effectively applied when mapped into management of the human-machine interface and display-control loop in typical manned systems. This paper addresses the potential for application of associate technology into the arena of intelligent command and control of satellite systems, from diagnosis of onboard and onground of satellite systems fault conditions, to execution of nominal satellite control functions. Rather than specifying a specific solution, this paper draws parallels between the Pilot's Associate concept and the domain of satellite control.
Chang, G C; Kang, W J; Luh, J J; Cheng, C K; Lai, J S; Chen, J J; Kuo, T S
1996-10-01
The purpose of this study was to develop a real-time electromyogram (EMG) discrimination system to provide control commands for man-machine interface applications. A host computer with a plug-in data acquisition and processing board containing a TMS320 C31 floating-point digital signal processor was used to attain real-time EMG classification. Two-channel EMG signals were collected by two pairs of surface electrodes located bilaterally between the sternocleidomastoid and the upper trapezius. Five motions of the neck and shoulders were discriminated for each subject. The zero-crossing rate was employed to detect the onset of muscle contraction. The cepstral coefficients, derived from autoregressive coefficients and estimated by a recursive least square algorithm, were used as the recognition features. These features were then discriminated using a modified maximum likelihood distance classifier. The total response time of this EMG discrimination system was achieved about within 0.17 s. Four able bodied and two C5/6 quadriplegic subjects took part in the experiment, and achieved 95% mean recognition rate in discrimination between the five specific motions. The response time and the reliability of recognition indicate that this system has the potential to discriminate body motions for man-machine interface applications.
John Henry--The Steel Driving Man
ERIC Educational Resources Information Center
Murphy, David E.; Gulley, Laura L.
2005-01-01
The story of John Henry provided the setting for sixth-grade class to participate in a John Henry Day of mathematics experiments. The students collected data from experiments where students competed against machines and technology. The student analyzed the data by comparing two box plots, a box plot of human data, and a box plot of machine or…
ERIC Educational Resources Information Center
Kafafian, Haig
Teaching instructions, lesson plans, and exercises are provided for severely physically and/or neurologically handicapped persons learning to use the Cybertype electric writing machine with a tongue-body keyboard. The keyboard, which has eight double-throw toggle switches and a three-position state-selector switch, is designed to be used by…
Neuroprotective "agents" in surgery. Secret "agent" man, or common "agent" machine?
NASA Technical Reports Server (NTRS)
Andrews, R. J.
1999-01-01
The search for clinically-effective neuroprotective agents has received enormous support in recent years--an estimated $200 million by pharmaceutical companies on clinical trials for traumatic brain injury alone. At the same time, the pathophysiology of brain injury has proved increasingly complex, rendering the likelihood of a single agent "magic bullet" even more remote. On the other hand, great progress continues with technology that makes surgery less invasive and less risky. One example is the application of endovascular techniques to treat coronary artery stenosis, where both the invasiveness of sternotomy and the significant neurological complication rate (due to microemboli showering the cerebral vasculature) can be eliminated. In this paper we review aspects of intraoperative neuroprotection both present and future. Explanations for the slow progress on pharmacologic neuroprotection during surgery are presented. Examples of technical advances that have had great impact on neuroprotection during surgery are given both from coronary artery stenosis surgery and from surgery for Parkinson's disease. To date, the progress in neuroprotection resulting from such technical advances is an order of magnitude greater than that resulting from pharmacologic agents used during surgery. The progress over the last 20 years in guidance during surgery (CT and MRI image-guidance) and in surgical access (endoscopic and endovascular techniques) will soon be complemented by advances in our ability to evaluate biological tissue intraoperatively in real-time. As an example of such technology, the NASA Smart Probe project is considered. In the long run (i.e., in 10 years or more), pharmacologic "agents" aimed at the complex pathophysiology of nervous system injury in man will be the key to true intraoperative neuroprotection. In the near term, however, it is more likely that mundane "agents" based on computers, microsensors, and microeffectors will be the major impetus to improved intraoperative neuroprotection.
NASA Technical Reports Server (NTRS)
Cannon, Reuben; Henninger, Scott; Levandoski, Mark; Perkins, Jim; Pitchon, Jack; Swats, Robin; Wessels, Roger
1990-01-01
A design of a lunar regolith bag and bagging system is described. The bags of regolith are to be used for construction applications on the lunar surface. The machine is designed to be used in conjunction with the lunar SKITTER currently under development. The bags for this system are 1 cu ft volume and are made from a fiberglass composite weave. The machinery is constructed mostly from a boron/aluminum composite. The machine can fill 120 bags per hour and work for 8 hours a day. The man hours to machine hours ratio to operate the machine is .5/8.
Towards an internal model in pilot training.
Braune, R J; Trollip, S R
1982-10-01
Optimal decision making requires an information seeking behavior which reflects the comprehension of the overall system dynamics. Research in the area of human monitors in man-machine systems supports the notion of an internal model with built-in expectancies. It is doubtful that the current approach to pilot training helps develop this internal model in the most efficient way. But this is crucial since the role of the pilot is changing to a systems' manager and decision maker. An extension of the behavioral framework of pilot training might help to prepare the pilot better for the increasingly complex flight environment. This extension is based on the theoretical model of schema theory, which evolved out of psychological research. The technological advances in aircraft simulators and in-flight performance measurement devices allow investigation of the still-unresolved issues.
A simulator study on information requirements for precision hovering
NASA Technical Reports Server (NTRS)
Lemons, J. L.; Dukes, T. A.
1975-01-01
A fixed base simulator study of an advanced helicopter instrument display utilizing translational acceleration, velocity and position information is reported. The simulation involved piloting a heavy helicopter using the Integrated Trajectory Error Display (ITED) in a precision hover task. The test series explored two basic areas. The effect on hover accuracy of adding acceleration information was of primary concern. Also of interest was the operators' ability to use degraded information derived from less sophisticated sources. The addition of translational acceleration to a display containing velocity and position information did not appear to improve the hover performance significantly. However, displayed acceleration information seemed to increase the damping of the man machine system. Finally, the pilots could use translational information synthesized from attitude and angular acceleration as effectively as perfect acceleration.
Lunar exploration rover program developments
NASA Technical Reports Server (NTRS)
Klarer, P. R.
1994-01-01
The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design's capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program's current status is described, including an outline of the program's work over the past year, recent accomplishments, and plans for follow-on development work.
NASA Astrophysics Data System (ADS)
van Rheenen, Arthur D.; Taule, Petter; Thomassen, Jan Brede; Madsen, Eirik Blix
2018-04-01
We present Minimum-Resolvable Temperature Difference (MRTD) curves obtained by letting an ensemble of observers judge how many of the six four-bar patterns they can "see" in a set of images taken with different bar-to-background contrasts. The same images are analyzed using elemental signal analysis algorithms and machine-analysis based MRTD curves are obtained. We show that by adjusting the minimum required signal-to-noise ratio the machine-based MRTDs are very similar to the ones obtained with the help of the human observers.
1951-03-14
human "We have been very much occupied In perfect. engineering to the improvement of the air-navigation ing the machines and the tools which the...a man-machine system which will ever, if he were only considered as an instrument, yield optimal results in the way of efficiency and a tool , a motor...operation of machines and equipment and system development, which will permit tools , the emphasis has been upon the adjustment of an orderly and
Using Machine Learning to Advance Personality Assessment and Theory.
Bleidorn, Wiebke; Hopwood, Christopher James
2018-05-01
Machine learning has led to important advances in society. One of the most exciting applications of machine learning in psychological science has been the development of assessment tools that can powerfully predict human behavior and personality traits. Thus far, machine learning approaches to personality assessment have focused on the associations between social media and other digital records with established personality measures. The goal of this article is to expand the potential of machine learning approaches to personality assessment by embedding it in a more comprehensive construct validation framework. We review recent applications of machine learning to personality assessment, place machine learning research in the broader context of fundamental principles of construct validation, and provide recommendations for how to use machine learning to advance our understanding of personality.
Prediction and measurement of human pilot dynamic characteristics in a manned rotorcraft simulation
NASA Technical Reports Server (NTRS)
Hess, Ronald A.; Reedy, James T.
1988-01-01
An analytical and experimental study of the human pilot control strategies in a manned rotorcraft simulation is described. The task simulated involves a low-speed, constant-altitude maneuvering task in which a head-down display is utilized to allow the pilot to track a moving hover point. The efficacy of the display law driving an acceleration symbol is determined and the manner in which the prediction and measurement of pilot/vehicle dynamics can be made part of man/machine system evaluations is demonstrated.
NASA Technical Reports Server (NTRS)
Heer, E.
1973-01-01
Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.
NASA Technical Reports Server (NTRS)
Johannsen, G.; Rouse, W. B.
1978-01-01
A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.
ERIC Educational Resources Information Center
Kafafian, Haig
The instruction manual contains lessons for teaching severely physically and/or neurologically handicapped students to use the seven-key Cybertype electric writing machine. Unlike the 14-key keyboard, which requires bilateral coordination in arms, legs, or other parts of the body, the seven-key keyboard requires the use of only one part of the…
Toward a mathematical formalism of performance, task difficulty, and activation
NASA Technical Reports Server (NTRS)
Samaras, George M.
1988-01-01
The rudiments of a mathematical formalism for handling operational, physiological, and psychological concepts are developed for use by the man-machine system design engineer. The formalism provides a framework for developing a structured, systematic approach to the interface design problem, using existing mathematical tools, and simplifying the problem of telling a machine how to measure and use performance.
A new model of Ishikawa diagram for quality assessment
NASA Astrophysics Data System (ADS)
Liliana, Luca
2016-11-01
The paper presents the results of a study concerning the use of the Ishikawa diagram in analyzing the causes that determine errors in the evaluation of theparts precision in the machine construction field. The studied problem was"errors in the evaluation of partsprecision” and this constitutes the head of the Ishikawa diagram skeleton.All the possible, main and secondary causes that could generate the studied problem were identified. The most known Ishikawa models are 4M, 5M, 6M, the initials being in order: materials, methods, man, machines, mother nature, measurement. The paper shows the potential causes of the studied problem, which were firstly grouped in three categories, as follows: causes that lead to errors in assessing the dimensional accuracy, causes that determine errors in the evaluation of shape and position abnormalities and causes for errors in roughness evaluation. We took into account the main components of parts precision in the machine construction field. For each of the three categories of causes there were distributed potential secondary causes on groups of M (man, methods, machines, materials, environment/ medio ambiente-sp.). We opted for a new model of Ishikawa diagram, resulting from the composition of three fish skeletons corresponding to the main categories of parts accuracy.
Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 259)
NASA Technical Reports Server (NTRS)
1984-01-01
A bibliography containing 476 documents introduced into the NASA scientific and technical information system in May 1984 is presented. The primary subject categories included are: life sciences, aerospace medicine, behavioral sciences, man/system technology, life support, and planetary biology. Topics extensively represented were space flight stress, man machine systems, weightlessness, human performance, mental performance, and spacecraft environments. Abstracts for each citation are given.
Machine Shop Suggested Job and Task Sheets. Part II. 21 Advanced Jobs.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
This volume consists of advanced job and task sheets adaptable for use in the regular vocational industrial education programs for the training of machinists and machine shop operators. Twenty-one advanced machine shop job sheets are included. Some or all of this material is provided for each job: an introductory sheet with aim, checking…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…
1986-06-30
Machine Studies .. 14. Minton, S. N., Hayes, P. J., and Fain, J. E. Controlling Search in Flexible Parsing. Proc. Ninth Int. Jt. Conf. on Artificial...interaction through the COUSIN command interface", International Journal of Man- Machine Studies , Vol. 19, No. 3, September 1983, pp. 285-305. 8...in a gracefully interacting user interface," "Dynamic strategy selection in flexible parsing," and "Parsing spoken language: a semantic case frame
Observing Ben Wyckoff: From Basic Research to Programmed Instruction and Social Issues
Escobar, Rogelio; Lattal, Kennon A
2011-01-01
L. Benjamin Wyckoff's seminal contributions to both psychological theory and application are the subject of this review. Wyckoff started his academic career as a graduate student at Indiana University, where he developed the observing-response procedure under the guidance of B. F. Skinner and C. J. Burke. At the University of Wisconsin–Madison, Wyckoff refined his mathematical theory of secondary reinforcement. This theory was the impetus for his creation of an electronic simulation of a rat running a T maze, one of the first “computer models” of learning. Wyckoff next went to Emory University, leaving there to help create two of the most successful companies dedicated to the advancement of programmed instruction and teaching machines: Teaching Machines, Inc. and the Human Development Institute. Wyckoff's involvement in these companies epitomizes the application of basic behavior-analytic principles in the development of technology to improve education and human relationships. The emergent picture of Wyckoff is that of a man who, through his research, professional work in educational applications of behavioral principles, and active involvement in the civil rights movement of the 1960s, was strongly committed to applying behavioral science to positively influence human behavior change. PMID:22532737
The Silver Bird story: A memoir
NASA Technical Reports Server (NTRS)
Saenger-Bredt, I.
1977-01-01
A manned recoverable flying machine that operates both in air and space was discussed. This space shuttle precursor was proposed in the early 1900's by Eugen Sanger. The vehicle was especially to be used as the first stage of booster rockets or to ferry, supply and furnish rescue equipment for manned space stations. Basic concepts of the space aircraft, a cross between a powered booster rocket and an aerodynamic glider, are presented.
An evaluation of the ATM man/machine interface. Phase 3: Analysis of SL-3 and SL-4 data
NASA Technical Reports Server (NTRS)
Bathurst, J. R., Jr.; Pain, R. F.; Ludewig, D. B.
1974-01-01
The functional adequacy of human factored crew operated systems under operational zero-gravity conditions is considered. Skylab ATM experiment operations generated sufficient telemetry and voice transcript data to support such an assessment effort. Discussions are presented pertaining to the methodology and procedures used to evaluate the hardware, training and directive aspects of Skylab 3 and Skylab 4 manned ATM experiment operations.
Man-machine interactive imaging and data processing using high-speed digital mass storage
NASA Technical Reports Server (NTRS)
Alsberg, H.; Nathan, R.
1975-01-01
The role of vision in teleoperation has been recognized as an important element in the man-machine control loop. In most applications of remote manipulation, direct vision cannot be used. To overcome this handicap, the human operator's control capabilities are augmented by a television system. This medium provides a practical and useful link between workspace and the control station from which the operator perform his tasks. Human performance deteriorates when the images are degraded as a result of instrumental and transmission limitations. Image enhancement is used to bring out selected qualities in a picture to increase the perception of the observer. A general purpose digital computer, an extensive special purpose software system is used to perform an almost unlimited repertoire of processing operations.
On PMWs and two-stroke engines.
Bell, W.; Yassi, A.; Cole, D. C.
1998-01-01
On Saturday, August 24, 1996, a 40-year-old man from Edmonton was riding a personal motorized watercraft (PMW, a Seadoo or Jet Ski type of machine) on Shuswap Lake, in south-central British Columbia. He was approximately 200 m offshore. The man motioned to his sister, who was riding another PMW, to follow him across the lake. She did so, but as the turned her head to check for other boat traffic, her brother suddenly slowed down and her machine rode right up on his back, crushing him against his handlebars. His sister, a nurse, held her brother's head above water until help arrived but, 48 minutes after the moment of impact, he was pronounced dead at the Shuswap Lake General Hospital. He had suffered a ruptured aorta. PMID:9789655
Flight telerobotic servicer legacy
NASA Astrophysics Data System (ADS)
Shattuck, Paul L.; Lowrie, James W.
1992-11-01
The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.
NASA Technical Reports Server (NTRS)
Sword, A. J.; Park, W. T.
1975-01-01
A teleoperator system with a computer for manipulator control to combine the capabilities of both man and computer to accomplish a task is described. This system allows objects in unpredictable locations to be successfully located and acquired. By using a method of characterizing the work-space together with man's ability to plan a strategy and coarsely locate an object, the computer is provided with enough information to complete the tedious part of the task. In addition, the use of voice control is shown to be a useful component of the man/machine interface.
NASA Technical Reports Server (NTRS)
Spears, L. T.; Kramer, R. D.
1990-01-01
The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Artificial intelligence in a mission operations and satellite test environment
NASA Technical Reports Server (NTRS)
Busse, Carl
1988-01-01
A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.
NASA Technical Reports Server (NTRS)
1988-01-01
The overall goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary launch vehicle technology that can reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The RPI design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This second year focused on systems integration and analysis of the 'Apollo Lightcraft'. This beam-powered, single-stage-to-orbit vehicle is envisioned as the globe-trotting family shuttlecraft of the 21st century. Detailed investigations of the Apollo Lightcraft Project during the second year of study helped evolve the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) reentry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis.
ERIC Educational Resources Information Center
Kneipp, Janet R.
1974-01-01
Article described the conceptual outlook of a great teacher, Jacob Bronowski, who stressed in his new film series how imagination is influential in presenting scientific material for student audiences. (Author/RK)
Does human cognition allow Human Factors (HF) certification of advanced aircrew systems?
NASA Technical Reports Server (NTRS)
Macleod, Iain S.; Taylor, Robert M.
1994-01-01
This paper has examined the requirements of HF specification and certification within advanced or complex aircrew systems. It suggests reasons for current inadequacies in the use of HF in the design process, giving some examples in support, and suggesting an avenue towards the improvement of the HF certification process. The importance of human cognition to the operation and performance of advanced aircrew systems has been stressed. Many of the shortfalls of advanced aircrew systems must be attributed to over automated designs that show little consideration on either the mental limits or the cognitive capabilities of the human system component. Traditional approaches to system design and HF certification are set within an over physicalistic foundation. Also, traditionally it was assumed that physicalistic system functions could be attributed to either the human or the machine on a one to one basis. Moreover, any problems associated with the parallel needs, or promoting human understanding alongside system operation and direction, were generally equated in reality by the natural flexibility and adaptability of human skills. The consideration of the human component of a complex system is seen as being primarily based on manifestations of human behavior to the almost total exclusion of any appreciation of unobservable human mental and cognitive processes. The argument of this paper is that the considered functionality of any complex human-machine system must contain functions that are purely human and purely cognitive. Human-machine system reliability ultimately depends on human reliability and dependability and, therefore, on the form and frequency of cognitive processes that have to be conducted to support system performance. The greater the demand placed by an advanced aircraft system on the human component's basic knowledge processes or cognition, rather than on skill, the more insiduous the effects the human may have on that system. This paper discusses one example of an attempt to devise an improved method of specificaiton and certification with relation to the advanced aircrew system, that of the RN Merlin helicopter. The method is realized to have limitations in practice, these mainly associated with the late production of the system specification in relation to the system development process. The need for a careful appreciation of the capabilities and support needs of human cognition within the design process of a complex man machine system has been argued, especially with relation to the concept of system functionality. Unlike the physicalistic Fitts list, a new classification of system functionality is proposed, namely: (1) equipment - system equipment related; (2) cognitive - human cognition related; and (3) associated - necessary combinatin of equipment and cognitive. This paper has not proposed a method for a fuller consideration of cognition within systems design, but has suggested the need for such a method and indicated an avenue towards its development. Finally, the HF certification of advanced aircrew systems is seen as only being possible in a qualified sense until the important functions of human cognition are considered within the system design process. (This paper contains the opinions of its authors and does not necessarily refledt the standpoint of their respective organizations).
The Mind and the Machine. On the Conceptual and Moral Implications of Brain-Machine Interaction.
Schermer, Maartje
2009-12-01
Brain-machine interfaces are a growing field of research and application. The increasing possibilities to connect the human brain to electronic devices and computer software can be put to use in medicine, the military, and entertainment. Concrete technologies include cochlear implants, Deep Brain Stimulation, neurofeedback and neuroprosthesis. The expectations for the near and further future are high, though it is difficult to separate hope from hype. The focus in this paper is on the effects that these new technologies may have on our 'symbolic order'-on the ways in which popular categories and concepts may change or be reinterpreted. First, the blurring distinction between man and machine and the idea of the cyborg are discussed. It is argued that the morally relevant difference is that between persons and non-persons, which does not necessarily coincide with the distinction between man and machine. The concept of the person remains useful. It may, however, become more difficult to assess the limits of the human body. Next, the distinction between body and mind is discussed. The mind is increasingly seen as a function of the brain, and thus understood in bodily and mechanical terms. This raises questions concerning concepts of free will and moral responsibility that may have far reaching consequences in the field of law, where some have argued for a revision of our criminal justice system, from retributivist to consequentialist. Even without such a (unlikely and unwarranted) revision occurring, brain-machine interactions raise many interesting questions regarding distribution and attribution of responsibility.
A Concept for Optimizing Behavioural Effectiveness & Efficiency
NASA Astrophysics Data System (ADS)
Barca, Jan Carlo; Rumantir, Grace; Li, Raymond
Both humans and machines exhibit strengths and weaknesses that can be enhanced by merging the two entities. This research aims to provide a broader understanding of how closer interactions between these two entities can facilitate more optimal goal-directed performance through the use of artificial extensions of the human body. Such extensions may assist us in adapting to and manipulating our environments in a more effective way than any system known today. To demonstrate this concept, we have developed a simulation where a semi interactive virtual spider can be navigated through an environment consisting of several obstacles and a virtual predator capable of killing the spider. The virtual spider can be navigated through the use of three different control systems that can be used to assist in optimising overall goal directed performance. The first two control systems use, an onscreen button interface and a touch sensor, respectively to facilitate human navigation of the spider. The third control system is an autonomous navigation system through the use of machine intelligence embedded in the spider. This system enables the spider to navigate and react to changes in its local environment. The results of this study indicate that machines should be allowed to override human control in order to maximise the benefits of collaboration between man and machine. This research further indicates that the development of strong machine intelligence, sensor systems that engage all human senses, extra sensory input systems, physical remote manipulators, multiple intelligent extensions of the human body, as well as a tighter symbiosis between man and machine, can support an upgrade of the human form.
Kirchner, Elsa A.; Kim, Su K.; Tabie, Marc; Wöhrle, Hendrik; Maurus, Michael; Kirchner, Frank
2016-01-01
Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots at remote and hardly accessible places. Such MMIs make use of a virtual environment and can therefore make the operator immerse him-/herself into the environment of the robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can adapt to changes in task load and task engagement online. Applying our approach of embedded Brain Reading we improve user support and efficiency of interaction. The level of task engagement was inferred from the single-trial detectability of P300-related brain activity that was naturally evoked during interaction. With our approach no secondary task is needed to measure task load. It is based on research results on the single-stimulus paradigm, distribution of brain resources and its effect on the P300 event-related component. It further considers effects of the modulation caused by a delayed reaction time on the P300 component evoked by complex responses to task-relevant messages. We prove our concept using single-trial based machine learning analysis, analysis of averaged event-related potentials and behavioral analysis. As main results we show (1) a significant improvement of runtime needed to perform the interaction tasks compared to a setting in which all subjects could easily perform the tasks. We show that (2) the single-trial detectability of the event-related potential P300 can be used to measure the changes in task load and task engagement during complex interaction while also being sensitive to the level of experience of the operator and (3) can be used to adapt the MMI individually to the different needs of users without increasing total workload. Our online adaptation of the proposed MMI is based on a continuous supervision of the operator's cognitive resources by means of embedded Brain Reading. Operators with different qualifications or capabilities receive only as many tasks as they can perform to avoid mental overload as well as mental underload. PMID:27445742
NASA Technical Reports Server (NTRS)
Mann, R. W.
1974-01-01
Design and development of a prosthetic device fitted to an above elbow amputee is reported that derives control information from the human to modulate power to an actuator to drive the substitute limb. In turn, the artificial limb generates sensory information feedback to the human nervous system and brain. This synergetic unity feeds efferent or motor control information from the human to the machine, and the machine responds, delivering afferent or sensory information back to the man.
Human Factors Report on Information Management Requirements for Next- Generation Manned Bombers
1987-12-01
34 James , W. G. (1984). Al applications to military pilot decision aiding -- A perspective • transition. In Third Aerospace Behavioral Engineering Techno.ogy...8217- - . . . Basden , A. (1983). On the application of expert systems. International Journal of Man-Machine Studies, 19, 461-477. Ben-Bassat, M. and Freedy, A...augmentation system design by defining, developing, and applying appropriate design techniques for a variety of airborne platforms. James , W. G
Man-Machine Interface (MMI) Requirements Definition and Design Guidelines
1981-02-01
be provided to interrogate the user to resolve any input ambiguities resulting from hardware limitations; see Smith and Goodwin, 1971 . Reference...Smith, S. L. and Goodwin, N. C’. Alphabetic data v entry via the Touch-Tone pad: A comment. Human Factors, 1971 , 13(2), 189-190. 41 All~ 1.0 General (con...software designer. Reference: Miller, R. B. Response time in man-computer conversational transactions. In Proceedings of the AFIPS kall Joint Computer
The Cognitive Visualization System with the Dynamic Projection of Multidimensional Data
NASA Astrophysics Data System (ADS)
Gorohov, V.; Vitkovskiy, V.
2008-08-01
The phenomenon of cognitive machine drawing consists in the generation on the screen the special graphic representations, which create in the brain of human operator entertainment means. These means seem man by aesthetically attractive and, thus, they stimulate its descriptive imagination, closely related to the intuitive mechanisms of thinking. The essence of cognitive effect lies in the fact that man receives the moving projection as pseudo-three-dimensional object characterizing multidimensional means in the multidimensional space. After the thorough qualitative study of the visual aspects of multidimensional means with the aid of the enumerated algorithms appears the possibility, using algorithms of standard machine drawing to paint the interesting user separate objects or the groups of objects. Then it is possible to again return to the dynamic behavior of the rotation of means for the purpose of checking the intuitive ideas of user about the clusters and the connections in multidimensional data. Is possible the development of the methods of cognitive machine drawing in combination with other information technologies, first of all with the packets of digital processing of images and multidimensional statistical analysis.
Human Adaptation to the Computer.
1986-09-01
advance in man’s civilization [Ref. 3:p. 4]. This advance has caused dramatic changes in man’s way of life. It has caused several emotions in man that...their program run or com- pleting their work project can create within them a loss of human feeling and emotion . There have been a lot of jokes made...aggression 44 3. violence 4. antisocial activity 5. grievances 6. work slowdowns/missed deadlines 7. strikes B. absenteeism 9. tardiness 10. turnover
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Energy Slaves and Environmental Pollution
ERIC Educational Resources Information Center
Blanc, Sam S.
1974-01-01
Modern man pays a price, pollution, with the dependency shift from humans as converters of energy for work to machines as converters of energy. Emphasis is placed on electromechanical appliances and their respective power ratings. (EB)
ERIC Educational Resources Information Center
Air Univ., Gunter AFS, Ala. Extension Course Inst.
This four-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for machinists. Covered in the individual volumes are machine shop fundamentals, metallurgy and advanced machine work, advanced machine work, and tool design and shop management. Each volume in the set contains a series of lessons,…
Monitoring and decision making by people in man machine systems
NASA Technical Reports Server (NTRS)
Johannsen, G.
1979-01-01
The analysis of human monitoring and decision making behavior as well as its modeling are described. Classic and optimal control theoretical, monitoring models are surveyed. The relationship between attention allocation and eye movements is discussed. As an example of applications, the evaluation of predictor displays by means of the optimal control model is explained. Fault detection involving continuous signals and decision making behavior of a human operator engaged in fault diagnosis during different operation and maintenance situations are illustrated. Computer aided decision making is considered as a queueing problem. It is shown to what extent computer aids can be based on the state of human activity as measured by psychophysiological quantities. Finally, management information systems for different application areas are mentioned. The possibilities of mathematical modeling of human behavior in complex man machine systems are also critically assessed.
Upper limb functional electrical stimulation devices and their man-machine interfaces.
Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D
2015-01-01
Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.
1993-04-01
Homme /Machine) Aocesion For ; 1 [ NTIS ’ D:i: Ü J-H CRA& l TAB 3...I’utilisateur. - Enfm, utilise avec le bouton droit de la souris, le poten- tiom&tre de temps 6coul6 permet de charger une alterna- tive dans le syst&me...a a a a rn£Q £ OB E o 15 l | I? ^©J&Mß) NATO ^ OTAN 7 RUE ANCELLE • 92200 NEUILLY-SÜR-SEINE DIFFUSION DES PUBLICATIONS FRANCE AGARD
Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control
NASA Astrophysics Data System (ADS)
Parker, Lynne E.; Pin, Francois G.
1988-10-01
The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.
Technology advancement of the electrochemical CO2 concentrating process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.
1977-01-01
A five-cell, liquid-cooled advanced electrochemical depolarized carbon dioxide concentrator module was fabricated. The cells utilized the advanced, lightweight, plated anode current collector concept and internal liquid-cooling. The five cell module was designed to meet the carbon dioxide removal requirements of one man and was assembled using plexiglass endplates. This one-man module was tested as part of an integrated oxygen generation and recovery subsystem.
Performance of a Working Face Recognition Machine using Cortical Thought Theory
1984-12-04
been considered (2). Recommendations from Bledsoe’s study included research on facial - recognition systems that are "completely automatic (remove the...C. L. Location of some facial features . computer, Palo Alto: Panoramic Research, Aug 1966. 2. Bledsoe, W. W. Man-machine facial recognition : Is...34 image?" It would seem - that the location and size of the features left in this contrast-expanded image contain the essential information of facial
NASA Astrophysics Data System (ADS)
Johnson, Bradley; May, Gayle L.; Korn, Paula
A recent symposium produced papers in the areas of solar system exploration, man machine interfaces, cybernetics, virtual reality, telerobotics, life support systems and the scientific and technology spinoff from the NASA space program. A number of papers also addressed the social and economic impacts of the space program. For individual titles, see A95-87468 through A95-87479.
1983-02-22
Scientific Computing Symposiumn an Han-Machine C om unication (1965) 57-71. 1353 Sutherland , l.3., SUICUPADs a man-machine graphical comunica- tie. systems...Institute and was held at the university’s Idylwild Campus. July 1982 Craig Fields and Clint Kelly of DARPA visited CCA on July 6. Christopher Herot and...on December 9. We gave him an extended PV slide presentation and a demonstration of the system. Clint Kelly of DARPA visited on January 13, and he
Visually Coupled Systems (VCS): The Virtual Panoramic Display (VPD) System
NASA Technical Reports Server (NTRS)
Kocian, Dean F.
1992-01-01
The development and impact is described of new visually coupled system (VCS) equipment designed to support engineering and human factors research in the military aircraft cockpit environment. VCS represents an advanced man-machine interface (MMI). Its potential to improve aircrew situational awareness seems enormous, but its superiority over the conventional cockpit MMI has not been established in a conclusive and rigorous fashion. What has been missing is a 'systems' approach to technology advancement that is comprehensive enough to produce conclusive results concerning the operational viability of the VCS concept and verify any risk factors that might be involved with its general use in the cockpit. The advanced VCS configuration described here, was ruggedized for use in military aircraft environments and was dubbed the Virtual Panoramic Display (VPD). It was designed to answer the VCS portion of the systems problem, and is implemented as a modular system whose performance can be tailored to specific application requirements. The overall system concept and the design of the two most important electronic subsystems that support the helmet mounted parts, a new militarized version of the magnetic helmet mounted sight and correspondingly similar helmet display electronics, are discussed in detail. Significant emphasis is given to illustrating how particular design features in the hardware improve overall system performance and support research activities.
The 14th Annual Conference on Manual Control. [digital simulation of human operator dynamics
NASA Technical Reports Server (NTRS)
1978-01-01
Human operator dynamics during actual manual control or while monitoring the automatic control systems involved in air-to-air tracking, automobile driving, the operator of undersea vehicles, and remote handling are examined. Optimal control models and the use of mathematical theory in representing man behavior in complex man machine system tasks are discussed with emphasis on eye/head tracking and scanning; perception and attention allocation; decision making; and motion simulation and effects.
NASA Technical Reports Server (NTRS)
1977-01-01
The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.
Thermal protection systems manned spacecraft flight experience
NASA Technical Reports Server (NTRS)
Curry, Donald M.
1992-01-01
Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.
A new six-degree-of-freedom force-reflecting hand controller for space telerobotics
NASA Technical Reports Server (NTRS)
Mcaffee, Douglas; Snow, Edward; Townsend, William; Robinson, Lee; Hanson, Joe
1990-01-01
A new 6 degree of freedom universal Force Reflecting Hand Controller (FRHC) was designed for use as the man-machine interface in teleoperated and telerobotic flight systems. The features of this new design include highly intuitive operation, excellent kinesthetic feedback, high fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all 6 DOF, good back-drivability, and zero backlash. In addition, the new design has a much larger work envelope, smaller stowage volume, greater stiffness and responsiveness, and better overlap of the human operator's range of motion than do previous designs. The utility and basic operation of a new, flight prototype FRHC called the Model X is briefly discussed. The design heritage, general design goals, and design implementation of this advanced new generation of FRHCs are presented, followed by a discussion of basic features and the results of initial testing.
Design of an autonomous Lunar construction utility vehicle
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Chew, Mason; Dixon, Iain (Editor)
1990-01-01
In order to prepare a site for a manned lunar base, an autonomously operated construction vehicle is necessary. A Lunar Construction Utility Vehicle (LCUV), which utilizes interchangeable construction implements, was designed conceptually. Some elements of the machine were studied in greater detail. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device was designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and computer interface. A study of hydrogen-oxygen fuel cells has produced estimates of reactant and product size requirements and identified multi-layer insulation techniques. Research on a 100 kW heat rejection system has determined that it is necessary to house a radiator panel on a utility trailer. The impact of a 720 hr use cycle has produced a very large logistical support lien which requires further study.
NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology
NASA Technical Reports Server (NTRS)
Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William
1987-01-01
A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.
NASA Astrophysics Data System (ADS)
Various papers on global telecommunications are presented. The general topics addressed include: multiservice integration with optical fibers, multicompany owned telecommunication networks, softworks quality and reliability, advanced on-board processing, impact of new services and systems on operations and maintenance, analytical studies of protocols for data communication networks, topics in packet radio networking, CCITT No. 7 to support new services, document processing and communication, antenna technology and system aspects in satellite communications. Also considered are: communication systems modelling methodology, experimental integrated local area voice/data nets, spread spectrum communications, motion video at the DS-0 rate, optical and data communications, intelligent work stations, switch performance analysis, novel radio communication systems, wireless local networks, ISDN services, LAN communication protocols, user-system interface, radio propagation and performance, mobile satellite system, software for computer networks, VLSI for ISDN terminals, quality management, man-machine interfaces in switching, and local area network performance.
Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles
NASA Technical Reports Server (NTRS)
Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.
2001-01-01
The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.
Industrial Inspection with Open Eyes: Advance with Machine Vision Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Ukida, H.; Niel, Kurt
Machine vision systems have evolved significantly with the technology advances to tackle the challenges from modern manufacturing industry. A wide range of industrial inspection applications for quality control are benefiting from visual information captured by different types of cameras variously configured in a machine vision system. This chapter screens the state of the art in machine vision technologies in the light of hardware, software tools, and major algorithm advances for industrial inspection. The inspection beyond visual spectrum offers a significant complementary to the visual inspection. The combination with multiple technologies makes it possible for the inspection to achieve a bettermore » performance and efficiency in varied applications. The diversity of the applications demonstrates the great potential of machine vision systems for industry.« less
2014-09-30
This ONR grant promotes the development and application of advanced machine learning techniques for detection and classification of marine mammal...sounds. The objective is to engage a broad community of data scientists in the development and application of advanced machine learning techniques for detection and classification of marine mammal sounds.
NASA Astrophysics Data System (ADS)
Meyerstein, Mike; Cha, Inhyok; Shah, Yogendra
The Third Generation Partnership Project (3GPP) standardisation group currently discusses advanced applications of mobile networks such as Machine-to-Machine (M2M) communication. Several security issues arise in these contexts which warrant a fresh look at mobile networks’ security foundations, resting on smart cards. This paper contributes a security/efficiency analysis to this discussion and highlights the role of trusted platform technology to approach these issues.
Man-machine interfaces in LACIE/ERIPS
NASA Technical Reports Server (NTRS)
Duprey, B. B. (Principal Investigator)
1979-01-01
One of the most important aspects of the interactive portion of the LACIE/ERIPS software system is the way in which the analysis and decision-making capabilities of a human being are integrated with the speed and accuracy of a computer to produce a powerful analysis system. The three major man-machine interfaces in the system are (1) the use of menus for communications between the software and the interactive user; (2) the checkpoint/restart facility to recreate in one job the internal environment achieved in an earlier one; and (3) the error recovery capability which would normally cause job termination. This interactive system, which executes on an IBM 360/75 mainframe, was adapted for use in noninteractive (batch) mode. A case study is presented to show how the interfaces work in practice by defining some fields based on an image screen display, noting the field definitions, and obtaining a film product of the classification map.
NASA Technical Reports Server (NTRS)
Sheridan, Thomas B.; Raju, G. Jagganath; Buzan, Forrest T.; Yared, Wael; Park, Jong
1989-01-01
Projects recently completed or in progress at MIT Man-Machine Systems Laboratory are summarized. (1) A 2-part impedance network model of a single degree of freedom remote manipulation system is presented in which a human operator at the master port interacts with a task object at the slave port in a remote location is presented. (2) The extension of the predictor concept to include force feedback and dynamic modeling of the manipulator and the environment is addressed. (3) A system was constructed to infer intent from the operator's commands and the teleoperation context, and generalize this information to interpret future commands. (4) A command language system is being designed that is robust, easy to learn, and has more natural man-machine communication. A general telerobot problem selected as an important command language context is finding a collision-free path for a robot.
Biocybernetic factors in human perception and memory
NASA Technical Reports Server (NTRS)
Lai, D. C.
1975-01-01
The objective of this research is to develop biocybernetic techniques for use in the analysis and development of skills required for the enhancement of concrete images of the 'eidetic' type. The scan patterns of the eye during inspection of scenes are treated as indicators of the brain's strategy for the intake of visual information. The authors determine the features that differentiate visual scan patterns associated with superior imagery from scan patterns associated with inferior imagery, and simultaneously differentiate the EEG features correlated with superior imagery from those correlated with inferior imagery. A closely-coupled man-machine system has been designed to generate image enhancement and to train the individual to exert greater voluntary control over his own imagery. The models for EEG signals and saccadic eye movement in the man-machine system have been completed. The report describes the details of these models and discusses their usefulness.
Intelligent Systems and Its Applications in Robotics
NASA Astrophysics Data System (ADS)
Kaynak, Okyay
The last decade of the last millennium is characterized by what might be called the intelligent systems revolution, as a result of which, it is now possible to have man made systems that exhibit ability to reason, learn from experience and make rational decisions without human intervention. Prof. Zadeh has coined the word MIQ (machine intelligence quotient) to describe a measure of intelligence of man-made systems. In this perspective, an intelligent system can be defined as a system that has a high MIQ.
Prediction and measurement of human pilot dynamic characteristics
NASA Technical Reports Server (NTRS)
Hess, Ronald A.; Reedy, James T.
1988-01-01
An analytical and experimental study of human pilot control strategies in a manned rotorcraft simulation is described. The task simulated involves a low-speed, constant-altitude maneuvering task in which a head-down display is utilized to allow the pilot to track a moving hover point. The efficacy of the display law driving an 'acceleration symbol' is determined and the manner in which the prediction and measurement of pilot/vehicle dynamics can be made part of man/machine system evaluations is demonstrated.
Experimental Investigation – Magnetic Assisted Electro Discharge Machining
NASA Astrophysics Data System (ADS)
Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali
2018-04-01
Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.
Laser assisted machining: a state of art review
NASA Astrophysics Data System (ADS)
Punugupati, Gurabvaiah; Kandi, Kishore Kumar; Bose, P. S. C.; Rao, C. S. P.
2016-09-01
Difficult-to-cut materials have increasing demand in aerospace and automobile industries due to their high yield stress, high strength to weight ratio, high toughness, high wear resistance, high creep, high corrosion resistivity, ability to retain high strength at high temperature, etc. The machinability of these advanced materials, using conventional methods of machining is typical due to the high temperature and pressure at the cutting zone and tool and properties such as low thermal conductivity, high cutting forces and cutting temperatures makes the materials difficult to machine. Laser assisted machining (LAM) is a new and innovative technique for machining the difficult-to-cut materials. This paper deals with a review on the advances in lasers, tools and the mechanism of machining using LAM and their effects.
Seminar for High School Students “Practice on Manufacturing Technology by Advanced Machine Tools”
NASA Astrophysics Data System (ADS)
Marui, Etsuo; Yamawaki, Masao; Taga, Yuken; Omoto, Ken'ichi; Miyaji, Reiji; Ogura, Takahiro; Tsubata, Yoko; Sakai, Toshimasa
The seminar ‘Practice on Manufacturing Technology by Advanced Machine Tools’ for high school students was held at the supporting center for technology education of Gifu University, under the sponsorship of the Japan Society of Mechanical Engineers. This seminar was held, hoping that many students become interested in manufacturing through the experience of the seminar. Operating CNC milling machine and CNC wire-cut electric discharge machine, they made original nameplates. Participants made the program to control CNC machine tools themselves. In this report, some valuable results obtained through such experience are explained.
NASA Astrophysics Data System (ADS)
Kryuchkov, B. I.; Usov, V. M.; Chertopolokhov, V. A.; Ronzhin, A. L.; Karpov, A. A.
2017-05-01
Extravehicular activity (EVA) on the lunar surface, necessary for the future exploration of the Moon, involves extensive use of robots. One of the factors of safe EVA is a proper interaction between cosmonauts and robots in extreme environments. This requires a simple and natural man-machine interface, e.g. multimodal contactless interface based on recognition of gestures and cosmonaut's poses. When travelling in the "Follow Me" mode (master/slave), a robot uses onboard tools for tracking cosmonaut's position and movements, and on the basis of these data builds its itinerary. The interaction in the system "cosmonaut-robot" on the lunar surface is significantly different from that on the Earth surface. For example, a man, dressed in a space suit, has limited fine motor skills. In addition, EVA is quite tiring for the cosmonauts, and a tired human being less accurately performs movements and often makes mistakes. All this leads to new requirements for the convenient use of the man-machine interface designed for EVA. To improve the reliability and stability of human-robot communication it is necessary to provide options for duplicating commands at the task stages and gesture recognition. New tools and techniques for space missions must be examined at the first stage of works in laboratory conditions, and then in field tests (proof tests at the site of application). The article analyzes the methods of detection and tracking of movements and gesture recognition of the cosmonaut during EVA, which can be used for the design of human-machine interface. A scenario for testing these methods by constructing a virtual environment simulating EVA on the lunar surface is proposed. Simulation involves environment visualization and modeling of the use of the "vision" of the robot to track a moving cosmonaut dressed in a spacesuit.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational speciality areas within the U.S. machine tool and metals-related…
Modeling Stochastic Kinetics of Molecular Machines at Multiple Levels: From Molecules to Modules
Chowdhury, Debashish
2013-01-01
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here. PMID:23746505
Third Conference on Artificial Intelligence for Space Applications, part 1
NASA Technical Reports Server (NTRS)
Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)
1987-01-01
The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.
Contributions of speech science to the technology of man-machine voice interactions
NASA Technical Reports Server (NTRS)
Lea, Wayne A.
1977-01-01
Research in speech understanding was reviewed. Plans which include prosodics research, phonological rules for speech understanding systems, and continued interdisciplinary phonetics research are discussed. Improved acoustic phonetic analysis capabilities in speech recognizers are suggested.
Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic
NASA Astrophysics Data System (ADS)
Mohan Reddy, M.; Gorin, Alexander; Abou-El-Hossein, K. A.
2011-02-01
Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.
NASA Technical Reports Server (NTRS)
1975-01-01
Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.
1983-10-01
by block number) Naval Ship Structures; Composites . Glass Reinforced Plastics, Filament Winding, Minesweepers. 20. ABSTRACT (Continue on reverse side...associated with this method of manufacturing a ship hull out of Glass Reinforced Plastic (GRP). Winding machine and man- drel concepts were reviewed... machine and mandrel concepts were reviewed, as well as the structural requirements and possible materials. A design of a 1/5th scale (30 ft) model
Linear-hall sensor based force detecting unit for lower limb exoskeleton
NASA Astrophysics Data System (ADS)
Li, Hongwu; Zhu, Yanhe; Zhao, Jie; Wang, Tianshuo; Zhang, Zongwei
2018-04-01
This paper describes a knee-joint human-machine interaction force sensor for lower-limb force-assistance exoskeleton. The structure is designed based on hall sensor and series elastic actuator (SEA) structure. The work we have done includes the structure design, the parameter determination and dynamic simulation. By converting the force signal into macro displacement and output voltage, we completed the measurement of man-machine interaction force. And it is proved by experiments that the design is simple, stable and low-cost.
Real time gesture based control: A prototype development
NASA Astrophysics Data System (ADS)
Bhargava, Deepshikha; Solanki, L.; Rai, Satish Kumar
2016-03-01
The computer industry is getting advanced. In a short span of years, industry is growing high with advanced techniques. Robots have been replacing humans, increasing the efficiency, accessibility and accuracy of the system and creating man-machine interaction. Robotic industry is developing many new trends. However, they still need to be controlled by humans itself. This paper presents an approach to control a motor like a robot with hand gestures not by old ways like buttons or physical devices. Controlling robots with hand gestures is very popular now-a-days. Currently, at this level, gesture features are applied for detecting and tracking the hand in real time. A principal component analysis algorithm is being used for identification of a hand gesture by using open CV image processing library. Contours, convex-hull, and convexity defects are the gesture features. PCA is a statistical approach used for reducing the number of variables in hand recognition. While extracting the most relevant information (feature) contained in the images (hand). After detecting and recognizing hand a servo motor is being controlled, which uses hand gesture as an input device (like mouse and keyboard), and reduces human efforts.
Keyboard and message evaluation for cockpit input to data link
DOT National Transportation Integrated Search
1971-11-01
The project reported-herein studied some methods for implementation of the man-machine interface of Digital Data Link for Air Traffic Control. An analysis of information transfer requirements indicated that a vocabulary or less than 200 words could y...
Aerospace medicine and biology: A continuing bibliography with indexes, supplement 273
NASA Technical Reports Server (NTRS)
1985-01-01
This bibliography lists 265 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1985. Topics in aerospace medicine and biology, metabolism, human behavior, man machine systems, and injuries are included.
Advancement in Productivity of Arabic into English Machine Translation Systems from 2008 to 2013
ERIC Educational Resources Information Center
Abu-Al-Sha'r, Awatif M.; AbuSeileek, Ali F.
2013-01-01
This paper attempts to compare between the advancements in the productivity of Arabic into English Machine Translation Systems between two years, 2008 and 2013. It also aims to evaluate the progress achieved by various systems of Arabic into English electronic translation between the two years. For tracing such advancement, a comparative analysis…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Human factors model concerning the man-machine interface of mining crewstations
NASA Technical Reports Server (NTRS)
Rider, James P.; Unger, Richard L.
1989-01-01
The U.S. Bureau of Mines is developing a computer model to analyze the human factors aspect of mining machine operator compartments. The model will be used as a research tool and as a design aid. It will have the capability to perform the following: simulated anthropometric or reach assessment, visibility analysis, illumination analysis, structural analysis of the protective canopy, operator fatigue analysis, and computation of an ingress-egress rating. The model will make extensive use of graphics to simplify data input and output. Two dimensional orthographic projections of the machine and its operator compartment are digitized and the data rebuilt into a three dimensional representation of the mining machine. Anthropometric data from either an individual or any size population may be used. The model is intended for use by equipment manufacturers and mining companies during initial design work on new machines. In addition to its use in machine design, the model should prove helpful as an accident investigation tool and for determining the effects of machine modifications made in the field on the critical areas of visibility and control reach ability.
An evaluative model of system performance in manned teleoperational systems
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1989-01-01
Manned teleoperational systems are used in aerospace operations in which humans must interact with machines remotely. Manual guidance of remotely piloted vehicles, controling a wind tunnel, carrying out a scientific procedure remotely are examples of teleoperations. A four input parameter throughput (Tp) model is presented which can be used to evaluate complex, manned, teleoperations-based systems and make critical comparisons among candidate control systems. The first two parameters of this model deal with nominal (A) and off-nominal (B) predicted events while the last two focus on measured events of two types, human performance (C) and system performance (D). Digital simulations showed that the expression A(1-B)/C+D) produced the greatest homogeneity of variance and distribution symmetry. Results from a recently completed manned life science telescience experiment will be used to further validate the model. Complex, interacting teleoperational systems may be systematically evaluated using this expression much like a computer benchmark is used.
NASA Technical Reports Server (NTRS)
Warren, W. H., Jr.
1983-01-01
The machine-readable catalog provides mean data on the old Slettebak system for 6472 stars. The catalog results from the review, analysis and transformation of 11460 data from 102 sources. Star identification, (major catalog number, name if the star has one, or cluster identification, etc.), a man projected rotational velocity, and a list of source references re included. The references are given in a second file included with the catalog when it is distributed on magnetic tape. The contents and/formats of the the data and reference files of the machine-readable catalog are described to enable users to read and process the data.
Climate and Man (Selected Articles),
1985-08-09
6). Large Caucasus. (7). True altitude, m. a - Alibek; b - Sheki; c - Zakataly; d - Yevlakh; e - Kirovabad; f - Zurnabad; g -Shusha; h - Kedabek...b 10 8 a Ff. M., C m np Ro s a E. 11., q aa 1 4 . r7. 0nmTr pexpea- umwuoueILHKII TeppHT~pHHf MOCKoRCKolk oOAaCTH Ro *pH3HoAoro- KAH marH te - CKNM...MACHINE TRANSLATION FTD-ID(RS)T-1542-84 9 August 1985 MICROFICHE NR: FTD-85- C -Ooo647 CLIMATE AND MAN (Selected Articles) English pages: 171 Source: Klimat
A New Facility Design and Work Method for the Quantitative Fit Testing Laboratory
1989-05-01
AtRV=’Uk kUB C RELEASEIW R190 I ERNEST A. HAYGOOD, 1st Lt, USAF Executive Officer, Civilian Institution Proarams 17. COSATI CODES 18. SUBJECT TERMS...22. NAME O RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Mdud. e Cd) 22c. OFFICE SYMBOL ERNEST A. HAYGOOD, lst Lt, USAF (513) 255-2259 A AFIT/CI DO Form 1473...Morgan et al. C1963) define a link as "any connection between a man and a machine or between one man and another" (p. 322). Lippert [1971) studied the
Variable force and visual feedback effects on teleoperator man/machine performance
NASA Technical Reports Server (NTRS)
Massimino, Michael J.; Sheridan, Thomas B.
1989-01-01
An experimental study was conducted to determine the effects of various forms of visual and force feedback on human performance for several telemanipulation tasks. Experiments were conducted with varying frame rates and subtended visual angles, with and without force feedback.
Artificial Intelligence in Speech Understanding: Two Applications at C.R.I.N.
ERIC Educational Resources Information Center
Carbonell, N.; And Others
1986-01-01
This article explains how techniques of artificial intelligence are applied to expert systems for acoustic-phonetic decoding, phonological interpretation, and multi-knowledge sources for man-machine dialogue implementation. The basic ideas are illustrated with short examples. (Author/JDH)
The benefits of the use of shoulder harness in general aviation aircraft.
DOT National Transportation Integrated Search
1972-02-01
The installation and use of shoulder harnesses is a practical and relatively inexpensive solution to the problem of maintaining separation between man and machine during an aircraft crash sequence. The addition of shoulder harness to the tiedown chai...
ERGONOMICS ABSTRACTS 48347-48982.
ERIC Educational Resources Information Center
Ministry of Technology, London (England). Warren Spring Lab.
IN THIS COLLECTION OF ERGONOMICS ABSTRACTS AND ANNOTATIONS THE FOLLOWING AREAS OF CONCERN ARE REPRESENTED--GENERAL REFERENCES, METHODS, FACILITIES, AND EQUIPMENT RELATING TO ERGONOMICS, SYSTEMS OF MAN AND MACHINES, VISUAL, AUDITORY, AND OTHER SENSORY INPUTS AND PROCESSES (INCLUDING SPEECH AND INTELLIGIBILITY), INPUT CHANNELS, BODY MEASUREMENTS,…
CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY AND FOUNDATIONS FOR QUANTITATION
The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The reliability of the CLSM to obtain specific measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. For man...
Modeling stochastic kinetics of molecular machines at multiple levels: from molecules to modules.
Chowdhury, Debashish
2013-06-04
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Lowest cost, nearest term options for a manned Mars mission
NASA Technical Reports Server (NTRS)
Sauls, Bob; Mortensen, Michael; Myers, Renee; Guacci, Giovanni; Montes, Fred
1992-01-01
This study is part of a NASA/USRA Advanced Design Program project executed for the purpose of examining the requirements of a first manned Mars mission. The mission, classified as a split/sprint mission, has been designed for a crew of six with a total manned trip time of one year.
First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)
NASA Technical Reports Server (NTRS)
Griffin, Sandy (Editor)
1987-01-01
Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered.
The Computer as Adaptive Instructional Decision Maker.
ERIC Educational Resources Information Center
Kopstein, Felix F.; Seidel, Robert J.
The computer's potential for education, and most particularly for instruction, is contingent on the development of a class of instructional decision models (formal instructional strategies) that interact with the student through appropriate peripheral equipment (man-machine interfaces). Computer hardware and software by themselves should not be…
Interactive Relationships with Computers in Teaching Reading.
ERIC Educational Resources Information Center
Doublier, Rene M.
This study summarizes recent achievements in the expanding development of man/machine communications and reviews current technological hurdles associated with the development of artificial intelligence systems which can generate and recognize human speech patterns. With the development of such systems, one potential application would be the…
Concept Design of the Payload Handling Manipulator System. [space shuttle orbiters
NASA Technical Reports Server (NTRS)
1975-01-01
The design, requirements, and interface definition of a remote manipulator system developed to handle orbiter payloads are presented. End effector design, control system concepts, and man-machine engineering are considered along with crew station requirements and closed circuit television system performance requirements.
Computer Page: Computer Studies for All--A Wider Approach
ERIC Educational Resources Information Center
Edens, A. J.
1975-01-01
An approach to teaching children aged 12 through 14 a substantial course about computers is described. Topics covered include simple algorithms, information and communication, man-machine communication, the concept of a system, the definition of a system, and the use of files. (SD)
Biology and the Future of Man.
ERIC Educational Resources Information Center
Canipe, Stephen L.
The purpose of this unit is to provoke discussion and thought by the reader. Topics considered include cloning; amniocentesis and sex determination; predicting abnormalities and abortion; transplants; life prolonging machines; cryogenics; prenatal surgery; sperm and egg banks; radiation; psychobehavior, ESB (electrical stimulation of the brain),…
A manned-machine space station construction concept
NASA Technical Reports Server (NTRS)
Mikulas, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Dorsey, J. T.; Rhodes, M. D.
1984-01-01
A design concept for the construction of a permanent manned space station is developed and discussed. The main considerations examined in developing the design concept are: (1) the support structure of the station be stiff enough to preclude the need for an elaborate on-orbit system to control structural response, (2) the station support structure and solar power system be compatible with existing technology, and (3) the station be capable of growing in a systematic modular fashion. The concept is developed around the assembly of truss platforms by pressure-suited astronauts operating in extravehicular activity (EVA), assisted by a machine (Assembly and Transport Vehicle, ATV) to position the astronauts at joint locations where they latch truss members in place. The ATV is a mobile platform that is attached to and moves on the station support structure using pegs attached to each truss joint. The operation of the ATV is described and a number of conceptual configurations for potential space stations are developed.
A COTS-MQS shipborne EO/IR imaging system
NASA Astrophysics Data System (ADS)
Hutchinson, Mark A.; Miller, John L.; Weaver, James
2005-05-01
The Sea Star SAFIRE is a commercially developed, off the shelf, military qualified system (COTS-MQS) consisting of a 640 by 480 InSb infrared imager, laser rangefinder and visible imager in a gyro-stabilized platform designed for shipborne applications. These applications include search and rescue, surveillance, fire control, fisheries patrol, harbor security, and own-vessel perimeter security and self protection. Particularly challenging considerations unique to shipborne systems include the demanding environment conditions, man-machine interfaces, and effects of atmospheric conditions on sensor performance. Shipborne environmental conditions requiring special attention include electromagnetic fields, as well as resistance to rain, ice and snow, shock, vibration, and salt. Features have been implemented to withstand exposure to water and high humidity; anti-ice/de-ice capability for exposure to snow and ice; wash/wipe of external windows; corrosion resistance for exposure to water and salt spray. A variety of system controller configurations provide man-machine interfaces suitable for operation on ships. EO sensor developments that address areas of haze penetration, glint, and scintillation will be presented.
[Results of salad machine experiment within the MARS-500 project].
Berkovich, Iu A; Erokhin, A N; Ziablova, N V; Krivobok, A S; Krivobok, N M; Smolianina, S O; Mukhamedieva, L N; Pakhomova, A A; Novikova, N D; Poddubko, S V; Korsak, I V
2012-01-01
The salad machine experiment was aimed to fulfill performance testing of a prototype of space conveyor-type cylindrical greenhouse PHYTOCYCLE-SL, to study growth and development of plants, and to evaluate microbial contamination of equipment in the closed manned environment. Crops of leaf cabbage Brassica chinensis L., cultivar Vesnianka were raised in the time interval between MARS-500 days 417 and 515. The greenhouse proved it serviceability demanding 17 min/(man x d) in the normal mode. Most likely that the slow growth rate and deviations in plant morphology were caused by the presence of volatile pollutants in the greenhouse compartment Accumulation of micromycetes was observed at the sites of humid surfaces contact with ambient air; reduction of the artificial soil area contacting with air decreased population of micromycetes in 40 times. Cabbage leafs were free of pathogenic microflora. These results of the experiment helped develop recommendations on how to work out some units and systems in projectable greenhouse VITACYCLE-T
NASA Astrophysics Data System (ADS)
Qianxiang, Zhou
2012-07-01
It is very important to clarify the geometric characteristic of human body segment and constitute analysis model for ergonomic design and the application of ergonomic virtual human. The typical anthropometric data of 1122 Chinese men aged 20-35 years were collected using three-dimensional laser scanner for human body. According to the correlation between different parameters, curve fitting were made between seven trunk parameters and ten body parameters with the SPSS 16.0 software. It can be concluded that hip circumference and shoulder breadth are the most important parameters in the models and the two parameters have high correlation with the others parameters of human body. By comparison with the conventional regressive curves, the present regression equation with the seven trunk parameters is more accurate to forecast the geometric dimensions of head, neck, height and the four limbs with high precision. Therefore, it is greatly valuable for ergonomic design and analysis of man-machine system.This result will be very useful to astronaut body model analysis and application.
The Scientific-Technological Revolution and the Formation of the New Man
ERIC Educational Resources Information Center
Soviet Education, 1976
1976-01-01
This issue contains the proceedings of a round table discussion by Ukranian educators, philosophers, and social scientists on the education of the new Soviet man in the era of scientific-technological revolution. The "new man" is defined as the builder of communism, the participant in the transition to an advanced industrial economy.…
Status of Research in Biomedical Engineering 1968.
ERIC Educational Resources Information Center
National Inst. of General Medical Sciences (NIH), Bethesda, MD.
This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…
A Look at Technologies Vis-a-vis Information Handling Techniques.
ERIC Educational Resources Information Center
Swanson, Rowena W.
The paper examines several ideas for information handling implemented with new technologies that suggest directions for future development. These are grouped under the topic headings: Handling Large Data Banks, Providing Personalized Information Packages, Providing Information Specialist Services, and Expanding Man-Machine Interaction. Guides in…
NASA Technical Reports Server (NTRS)
Goodman, Allen; Shively, R. Joy (Technical Monitor)
1997-01-01
MIDAS, Man-machine Integration Design and Analysis System, is a unique combination of software tools aimed at reducing design cycle time, supporting quantitative predictions of human-system effectiveness and improving the design of crew stations and their associated operating procedures. This project is supported jointly by the US Army and NASA.
Dialogue-Based Research in Man-Machine Communication
1975-11-01
This paper first surveys current knowledge of human communication from a point of view which seeks to find or develop knowledge that will be useful...complexity is explored. Building a useful knowledge of human communication is an extremely complex task. Controlling this complexity and its effects, without
Probability Simulations by Non-Lipschitz Chaos
NASA Technical Reports Server (NTRS)
Zak, Michail
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices. Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
ERIC Educational Resources Information Center
Atwood, E. Barrett, Jr.
1982-01-01
Computer hardware and software alone do not improve a financial management system. They are only the tools that carry out commands. College business offices and related administrative functions must commit effort to improving the overall system. Available from Peat, Marwick, Mitchell & Co., 345 Park Avenue, New York, NY 10154. (MSE)
The Bartlesville System; TGISS Software Documentation.
ERIC Educational Resources Information Center
Roberts, Tommy L.; And Others
TGISS (Total Guidance Information Support System) is an information storage and retrieval system specifically designed to meet the needs and requirements of a counselor in the Bartlesville Public School environment. The system, which is a combination of man/machine capabilities, includes the hardware and software necessary to extend the…
1981-12-01
During 1980 and the first half of 1981, the Marshall Space Flight Center conducted studies concerned with a relatively low-cost, near-term, manned space platform to satisfy current user needs, yet capable of evolutionary growth to meet future needs. The Science and Application Manned Space Platform (SAMSP) studies were to serve as a test bed for developing scientific and operational capabilities required by later, more advanced manned platforms while accomplishing early science and operations. This concept illustrates a manned space platform.
Advanced protein crystal growth programmatic sensitivity study
NASA Technical Reports Server (NTRS)
1992-01-01
The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.
Advances in 3-dimensional braiding
NASA Technical Reports Server (NTRS)
Thaxton, Cirrelia; Reid, Rona; El-Shiekh, Aly
1992-01-01
This paper encompasses an overview of the history of 3-D braiding and an in-depth survey of the most recent, technological advances in machine design and implementation. Its purpose is to review the major efforts of university and industry research and development into the successful machining of this textile process.
Advanced water iodinating system. [for potable water aboard manned spacecraft
NASA Technical Reports Server (NTRS)
Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.
1975-01-01
Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.
A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft
NASA Technical Reports Server (NTRS)
Bjorkman, Michael D.; Hyde, James L.
2008-01-01
Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.
NASA Technical Reports Server (NTRS)
Garin, John; Matteo, Joseph; Jennings, Von Ayre
1988-01-01
The capability for a single operator to simultaneously control complex remote multi degree of freedom robotic arms and associated dextrous end effectors is being developed. An optimal solution within the realm of current technology, can be achieved by recognizing that: (1) machines/computer systems are more effective than humans when the task is routine and specified, and (2) humans process complex data sets and deal with the unpredictable better than machines. These observations lead naturally to a philosophy in which the human's role becomes a higher level function associated with planning, teaching, initiating, monitoring, and intervening when the machine gets into trouble, while the machine performs the codifiable tasks with deliberate efficiency. This concept forms the basis for the integration of man and telerobotics, i.e., robotics with the operator in the control loop. The concept of integration of the human in the loop and maximizing the feed-forward and feed-back data flow is referred to as telepresence.
NASA Technical Reports Server (NTRS)
Duffy, James B.
1993-01-01
This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).
Dust: A major environmental hazard on the earth's moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiken, G.; Vaniman, D.; Lehnert, B.
1990-01-01
On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.
Advances in Machine Learning and Data Mining for Astronomy
NASA Astrophysics Data System (ADS)
Way, Michael J.; Scargle, Jeffrey D.; Ali, Kamal M.; Srivastava, Ashok N.
2012-03-01
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
Wash water reclamation technology for advanced manned spacecraft
NASA Technical Reports Server (NTRS)
Putnam, D. F.
1977-01-01
The results of an analytical study and assessment of state-of-the-art wash water reclamation technology for advanced manned spacecraft is presented. All non-phase-change unit operations, unit processes, and subsystems currently under development by NASA are considered. Included among these are: filtration, ultrafiltration, carbon adsorption, ion exchange, chemical pretreatment, reverse osmosis, hyperfiltration, and certain urea removal techniques. Performance data are given together with the projected weights and sizes of key components and subsystems. In the final assessment, a simple multifiltration approach consisting of surface-type cartridge filters, carbon adsorption and ion exchange resins receives the highest rating for six-man orbital missions of up to 10 years in duration.
A Man-Machine System for Contemporary Counseling Practice: Diagnosis and Prediction.
ERIC Educational Resources Information Center
Roach, Arthur J.
This paper looks at present and future capabilities for diagnosis and prediction in computer-based guidance efforts and reviews the problems and potentials which will accompany the implementation of such capabilities. In addition to necessary procedural refinement in prediction, future developments in computer-based educational and career…
LIBRARY INFORMATION PROCESSING USING AN ON-LINE, REAL-TIME COMPUTER SYSTEM.
ERIC Educational Resources Information Center
HOLZBAUR, FREDERICK W.; FARRIS, EUGENE H.
DIRECT MAN-MACHINE COMMUNICATION IS NOW POSSIBLE THROUGH ON-LINE, REAL-TIME TYPEWRITER TERMINALS DIRECTLY CONNECTED TO COMPUTERS. THESE TERMINAL SYSTEMS PERMIT THE OPERATOR, WHETHER ORDER CLERK, CATALOGER, REFERENCE LIBRARIAN OR TYPIST, TO INTERACT WITH THE COMPUTER IN MANIPULATING DATA STORED WITHIN IT. THE IBM ADMINISTRATIVE TERMINAL SYSTEM…
End-User Use of Data Base Query Language: Pros and Cons.
ERIC Educational Resources Information Center
Nicholes, Walter
1988-01-01
Man-machine interface, the concept of a computer "query," a review of database technology, and a description of the use of query languages at Brigham Young University are discussed. The pros and cons of end-user use of database query languages are explored. (Author/MLW)
Polarized light reveals stress in machined laminated plastics
NASA Technical Reports Server (NTRS)
Frankowski, J.
1967-01-01
Polarized light applied to drilled laminated plastic components exposes to the human eye the locked-in stresses that will result in fractures and delaminations when the soldering procedure takes place. This technique detects stresses early in the production cycle before appreciable man-hours are invested in an item destined for rejection.
Simulations of Probabilities for Quantum Computing
NASA Technical Reports Server (NTRS)
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
1990-10-01
to economic, technological, spatial or logistic concerns, or involve training, man-machine interfaces, or integration into existing systems. Once the...probabilistic reasoning, mixed analysis- and simulation-oriented, mixed computation- and communication-oriented, nonpreemptive static priority...scheduling base, nonrandomized, preemptive static priority scheduling base, randomized, simulation-oriented, and static scheduling base. The selection of both
Transient Classifier Systems and Man-Machine Interface Research.
1987-08-31
different timbre from two different resonant sources, i.e., like a violin and oboe emitting nearly the same fundamental mode fre- quency, but each with its...the subjects by examing both hits and misses for signal and noise stimuli. A pairwise com- parison of the means resulted in significant differences (at
The Army word recognition system
NASA Technical Reports Server (NTRS)
Hadden, David R.; Haratz, David
1977-01-01
The application of speech recognition technology in the Army command and control area is presented. The problems associated with this program are described as well as as its relevance in terms of the man/machine interactions, voice inflexions, and the amount of training needed to interact with and utilize the automated system.
Aircraft-vehicle system interaction. An evaluation of NASA's program in human factors research
NASA Technical Reports Server (NTRS)
1982-01-01
Research in the areas of man machine interaction and human factors engineering are assessed in relation to improved effeciency and aviation safety. The appropriateness, relevance, adequacy, and timeliness of the research is evaluated, and recommendations are provided regarding the objectives, approach and content.
NASA Technical Reports Server (NTRS)
Hibdon, R. A.
1979-01-01
Portable unit and special fixture serve as boring mill. Machine, fabricated primarily from scrap metal, was designed and set up in about 12 working days. It has reduced setup and boring time by 66 percent as compared with existing boring miles, thereby making latter available for other jobs. Unit can be operated by one man.
Study of Man-Machine Communications Systems for the Handicapped. Interim Report.
ERIC Educational Resources Information Center
Kafafian, Haig
Newly developed communications systems for exceptional children include Cybercom; CYBERTYPE; Cyberplace, a keyless keyboard; Cyberphone, a telephonic communication system for deaf and speech impaired persons; Cyberlamp, a visual display; Cyberview, a fiber optic bundle remote visual display; Cybersem, an interface for the blind, fingerless, and…
Use of Computer Speech Technologies To Enhance Learning.
ERIC Educational Resources Information Center
Ferrell, Joe
1999-01-01
Discusses the design of an innovative learning system that uses new technologies for the man-machine interface, incorporating a combination of Automatic Speech Recognition (ASR) and Text To Speech (TTS) synthesis. Highlights include using speech technologies to mimic the attributes of the ideal tutor and design features. (AEF)
Advanced photovoltaic power system technology for lunar base applications
NASA Astrophysics Data System (ADS)
Brinker, David J.; Flood, Dennis J.
1992-09-01
The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Antonison, M.; Myrabo, Leik; Chen, S.; Decusatis, C.; Kusche, K.; Minucci, M.; Moder, J.; Morales, C.; Nelson, C.; Richard, J.
1989-01-01
The ultimate goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary manned launch vehicle technology that can potentially reduce payload transport costs by a factor of 1000 below the space shuttle orbiter. The Rensellaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This year's effort, the detailed description and performance analysis of an unmanned 1.4-m Lightcraft Technology Demonstrator (LTD) drone, is presented. The novel launch system employs a 100-MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120-kg LTD to orbit, with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high-quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware. A mass production cost goal of 10(exp 3)/kg for the LTD vehicle is probably realizable.
Crew workload strategies in advanced cockpits
NASA Technical Reports Server (NTRS)
Hart, Sandra G.
1990-01-01
Many methods of measuring and predicting operator workload have been developed that provide useful information in the design, evaluation, and operation of complex systems and which aid in developing models of human attention and performance. However, the relationships between such measures, imposed task demands, and measures of performance remain complex and even contradictory. It appears that we have ignored an important factor: people do not passively translate task demands into performance. Rather, they actively manage their time, resources, and effort to achieve an acceptable level of performance while maintaining a comfortable level of workload. While such adaptive, creative, and strategic behaviors are the primary reason that human operators remain an essential component of all advanced man-machine systems, they also result in individual differences in the way people respond to the same task demands and inconsistent relationships among measures. Finally, we are able to measure workload and performance, but interpreting such measures remains difficult; it is still not clear how much workload is too much or too little nor the consequences of suboptimal workload on system performance and the mental, physical, and emotional well-being of the human operators. The rationale and philosophy of a program of research developed to address these issues will be reviewed and contrasted to traditional methods of defining, measuring, and predicting human operator workload. Viewgraphs are given.
Chan, Eleanor
2016-01-01
The assumption that the Cartesian bête-machine is the invention of René Descartes (1596-1650) is rarely contested. Close examination of Descartes' texts proves that this is a concept founded not on the basis of his own writings, but a subsequent critical interpretation, which developed and began to dominate his work after his death. Descartes' Treatise on Man, published posthumously in two rival editions, Florentius Schuyl's Latin translation De Homine (1662), and Claude Clerselier's Traité de l'homme, has proved particularly problematic. The surviving manuscript copies of the Treatise on Man left no illustrations, leaving both editors the daunting task of producing a set of images to accompany and clarify the fragmented text. In this intriguing case, the images can be seen to have spoken louder than the text which they illustrated. This paper assesses Schuyl's choice to represent Descartes' Man in a highly stylized manner, without superimposing Clerselier's intentions onto De Homine.
Work stress of women in sewing machine operation.
Nag, A; Desai, H; Nag, P K
1992-06-01
The study examined the work stresses of 107 women who were engaged in sewing machine operation in small garment manufacturing units. Of the three types of sewing machines (motor-operated, full and half shuttle foot-operated), 74% of the machines were foot-operated, where throttle action of the lower limb is required to move the shuttle of the machine. The motor-operated machines were faster than the foot-operated machines. The short cycle sewing work involves repetitive action of hand and feet. The women had to maintain a constant seated position on a stool without backrest and the body inclined forward. Long-term sewing work had a cumulative load on the musculo-skeletal structures, including the vertebral column and reflected in the form of high prevalence of discomfort and pain in different body parts. About 68% of the women complained of back pain, among whom 35% reported a persistent low back pain. Common sewing work accident is piercing of the needle through the fingers, particularly the right forefingers. Unsatisfactory man-machine incompatibility, work posture and fatigue, improper coordination of eye, leg and hand are the major problems of the operators. The design mis-match of the work place may be significantly improved by taking women's anthropometric dimensions in modifying the workplace, i.e. the seat surface, seat height, work height, backrest, etc.
An Advanced Neutron Spectrometer for Future Manned Exploration Missions
NASA Technical Reports Server (NTRS)
Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.;
2014-01-01
An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators
Emmonsia helica Infection in HIV-Infected Man, California, USA.
Rofael, Martin; Schwartz, Ilan S; Sigler, Lynne; Kong, Li K; Nelson, Nicholas
2018-01-01
Emmonsia-like fungi have rarely been reported from North America. We report a fatal case of E. helica infection in a man with advanced HIV infection from California, USA, who had progressive respiratory failure and a brain abscess.
Analysis in Motion Initiative – Human Machine Intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaha, Leslie
As computers and machines become more pervasive in our everyday lives, we are looking for ways for humans and machines to work more intelligently together. How can we help machines understand their users so the team can do smarter things together? The Analysis in Motion Initiative is advancing the science of human machine intelligence — creating human-machine teams that work better together to make correct, useful, and timely interpretations of data.
Design and implementation of a system for laser assisted milling of advanced materials
NASA Astrophysics Data System (ADS)
Wu, Xuefeng; Feng, Gaocheng; Liu, Xianli
2016-09-01
Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.
Space station support of manned Mars missions
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1986-01-01
The assembly of a manned Mars interplanetary spacecraft in low Earth orbit can be best accomplished with the support of the space station. Station payload requirements for microgravity environments of .001 g and pointing stability requirements of less than 1 arc second could mean that the spacecraft may have to be assembled at a station-keeping position about 100 meters or more away from the station. In addition to the assembly of large modules and connective structures, the manned Mars mission assembly tasks may include the connection of power, fluid, and data lines and the handling and activation of components for chemical or nuclear power and propulsion systems. These assembly tasks will require the use of advanced automation and robotics in addition to Orbital Maneuvering Vehicle and Extravehicular Activity (EVA) crew support. Advanced development programs for the space station, including on-orbit demonstrations, could also be used to support manned Mars mission technology objectives. Follow-on studies should be conducted to identify space station activities which could be enhanced or expanded in scope (without significant cost and schedule impact) to help resolve key technical and scientific questions relating to manned Mars missions.
An Evaluation Of Holograms In Training And As Job Performance Aids
NASA Astrophysics Data System (ADS)
Frey, Allan H.
1986-08-01
Experimentation was carried out to evaluate holograms for use in training and as job aids. Holograms were compared against line drawings and photographs as methods of presenting visual information needed to accomplish a number of tasks. The dependent variables were assembly speed and assembly errors with people unstressed, assembly speed and assembly errors with people stressed, the percentage of discovered errors in assemblies, the number of correct assemblies misidentified as erroneous, and information extraction. Holograms generally were as good as or better visual aids than either photographs or line drawings. The use of holograms tends to reduce errors rather than speed assembly time in the assembly tasks used in these experiments. They also enhance the discovery of errors when the subject is attempting to locate assembly errors in a construction. The results of this experimentation suggest that serious consideration should be given to the use of holography in the development of job aids and in training. Besides these advantages for job aids, other advantages we found are that when page formated information is stored in man-readable holograms they are still useable when scratched or damaged even when similarly damaged microfilm is unuseable. Holography can also be used to store man and machine readable data simultaneously. Such storage would provide simplified backup in the event of machine failure, and it would permit the development of compatible machine and manual systems for job aid applications.
Pre-use anesthesia machine check; certified anesthesia technician based quality improvement audit.
Al Suhaibani, Mazen; Al Malki, Assaf; Al Dosary, Saad; Al Barmawi, Hanan; Pogoku, Mahdhav
2014-01-01
Quality assurance of providing a work ready machine in multiple theatre operating rooms in a tertiary modern medical center in Riyadh. The aim of the following study is to keep high quality environment for workers and patients in surgical operating rooms. Technicians based audit by using key performance indicators to assure inspection, passing test of machine worthiness for use daily and in between cases and in case of unexpected failure to provide quick replacement by ready to use another anesthetic machine. The anesthetic machines in all operating rooms are daily and continuously inspected and passed as ready by technicians and verified by anesthesiologist consultant or assistant consultant. The daily records of each machines were collected then inspected for data analysis by quality improvement committee department for descriptive analysis and report the degree of staff compliance to daily inspection as "met" items. Replaced machine during use and overall compliance. Distractive statistic using Microsoft Excel 2003 tables and graphs of sums and percentages of item studied in this audit. Audit obtained highest compliance percentage and low rate of replacement of machine which indicate unexpected machine state of use and quick machine switch. The authors are able to conclude that following regular inspection and running self-check recommended by the manufacturers can contribute to abort any possibility of hazard of anesthesia machine failure during operation. Furthermore in case of unexpected reason to replace the anesthesia machine in quick maneuver contributes to high assured operative utilization of man machine inter-phase in modern surgical operating rooms.
Advances in Pancreatic CT Imaging.
Almeida, Renata R; Lo, Grace C; Patino, Manuel; Bizzo, Bernardo; Canellas, Rodrigo; Sahani, Dushyant V
2018-07-01
The purpose of this article is to discuss the advances in CT acquisition and image postprocessing as they apply to imaging the pancreas and to conceptualize the role of radiogenomics and machine learning in pancreatic imaging. CT is the preferred imaging modality for assessment of pancreatic diseases. Recent advances in CT (dual-energy CT, CT perfusion, CT volumetry, and radiogenomics) and emerging computational algorithms (machine learning) have the potential to further increase the value of CT in pancreatic imaging.
Manual actuator. [for spacecraft exercising machines
NASA Technical Reports Server (NTRS)
Gause, R. L.; Glenn, C. G. (Inventor)
1974-01-01
An actuator for an exercising machine employable by a crewman aboard a manned spacecraft is presented. The actuator is characterized by a force delivery arm projected from a rotary imput shaft of an exercising machine and having a force input handle extended orthogonally from its distal end. The handle includes a hand-grip configured to be received within the palm of the crewman's hand and a grid pivotally supported for angular displacement between a first position, wherein the grid is disposed in an overlying juxtaposition with the hand-grip, and a second position, angularly displaced from the first position, for affording access to the hand-grip, and a latching mechanism fixed to the sole of a shoe worn by the crewman for latching the shoe to the grid when the grid is in the first position.
Key technologies for expeditions to Mars.
NASA Astrophysics Data System (ADS)
French, J. R., Jr.
A round-trip manned Mars landing mission, while difficult, is within the realm of today's technology. However, better understood and more practical advanced technologies offer promising improvements in mass performance, and some also enhance certain aspects of self-reliance for manned missions.
Electric vehicle traction motors - The development of an advanced motor concept
NASA Technical Reports Server (NTRS)
Campbell, P.
1980-01-01
An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.
Advanced Resistive Exercise Device
NASA Technical Reports Server (NTRS)
Raboin, Jasen; Niebuhr, Jason; Cruz, Santana; Lamoreaux, chris
2007-01-01
The advanced resistive exercise device (ARED), now at the prototype stage of development, is a versatile machine that can be used to perform different customized exercises for which, heretofore, it has been necessary to use different machines. Conceived as a means of helping astronauts and others to maintain muscle and bone strength and endurance in low-gravity environments, the ARED could also prove advantageous in terrestrial settings (e.g., health clubs and military training facilities) in which many users are exercising simultaneously and there is heavy demand for use of exercise machines.
Achieving integrated convoys: cargo unmanned ground vehicle development and experimentation
NASA Astrophysics Data System (ADS)
Zych, Noah; Silver, David; Stager, David; Green, Colin; Pilarski, Thomas; Fischer, Jacob
2013-05-01
The Cargo UGV project was initiated in 2010 with the aim of developing and experimenting with advanced autonomous vehicles capable of being integrated unobtrusively into manned logistics convoys. The intent was to validate two hypotheses in complex, operationally representative environments: first, that unmanned tactical wheeled vehicles provide a force protection advantage by creating standoff distance to warfighters during ambushes or improvised explosive device attacks; and second, that these UGVs serve as force multipliers by enabling a single operator to control multiple unmanned assets. To assess whether current state-of-the-art autonomous vehicle technology was sufficiently capable to permit resupply missions to be executed with decreased risk and reduced manpower, and to assess the effect of UGVs on customary convoy tactics, the Marine Corps Warfighting Laboratory and the Joint Ground Robotics Enterprise sponsored Oshkosh Defense and the National Robotics Engineering Center to equip two standard Marine Corps cargo trucks for autonomous operation. This paper details the system architecture, hardware implementation, and software modules developed to meet the vehicle control, perception, and planner requirements compelled by this application. Additionally, the design of a custom human machine interface and an accompanying training program are described, as is the creation of a realistic convoy simulation environment for rapid system development. Finally, results are conveyed from a warfighter experiment in which the effectiveness of the training program for novice operators was assessed, and the impact of the UGVs on convoy operations was observed in a variety of scenarios via direct comparison to a fully manned convoy.
Impact of Advance Rate on Entrapment Risk of a Double-Shielded TBM in Squeezing Ground
NASA Astrophysics Data System (ADS)
Hasanpour, Rohola; Rostami, Jamal; Barla, Giovanni
2015-05-01
Shielded tunnel boring machines (TBMs) can get stuck in squeezing ground due to excessive tunnel convergence under high in situ stress. This typically coincides with extended machine stoppages, when the ground has sufficient time to undergo substantial displacements. Excessive convergence of the ground beyond the designated overboring means ground pressure against the shield and high shield frictional resistance that, in some cases, cannot be overcome by the TBM thrust system. This leads to machine entrapment in the ground, which causes significant delays and requires labor-intensive and risky operations of manual excavation to release the machine. To evaluate the impact of the time factor on the possibility of machine entrapment, a comprehensive 3D finite difference simulation of a double-shielded TBM in squeezing ground was performed. The modeling allowed for observation of the impact of the tunnel advance rate on the possibility of machine entrapment in squeezing ground. For this purpose, the model included rock mass properties related to creep in severe squeezing conditions. This paper offers an overview of the modeling results for a given set of rock mass and TBM parameters, as well as lining characteristics, including the magnitude of displacement and contact forces on shields and ground pressure on segmental lining versus time for different advance rates.
Learning and Optimization of Cognitive Capabilities. Final Project Report.
ERIC Educational Resources Information Center
Lumsdaine, A.A.; And Others
The work of a three-year series of experimental studies of human cognition is summarized in this report. Proglem solving and learning in man-machine interaction was investigated, as well as relevant variables and processes. The work included four separate projects: (1) computer-aided problem solving, (2) computer-aided instruction techniques, (3)…
COMMAND-AND-CONTROL AND MANAGEMENT DECISION MAKING,
Reports that the development of command-and-con trol systems in support of decision making and action taking has been accomplished by military...methods applicable to management systems. Concludes that the command-and-control type system for top management decision making is a man-machine system having as its core an on going, dynamic operation. (Author)
Concepts of Management Information Systems.
ERIC Educational Resources Information Center
Emery, J.C.
The paper attempts to provide a general framework for dealing with management information systems (MIS). An MIS is defined to have the following characteristics: (1) related to ongoing activities of an organization, (2) a man-machine system, (3) composed of a collection of subsystems, and (4) oriented around a large data base. An MIS places a…
The control of manual entry accuracy in management/engineering information systems, phase 1
NASA Technical Reports Server (NTRS)
Hays, Daniel; Nocke, Henry; Wilson, Harold; Woo, John, Jr.; Woo, June
1987-01-01
It was shown that clerical personnel can be tested for proofreading performance under simulated industrial conditions. A statistical study showed that errors in proofreading follow an extreme value probability theory. The study showed that innovative man/machine interfaces can be developed to improve and control accuracy during data entry.
Adaptive Training and Collective Decision Support Based on Man-Machine Interface
2016-03-02
Emotiv Inc., Figure 1) for collection of EEG data. This device is wireless and transmits data via Bluetooth to a PC using a USB dongle. The... Bluetooth to a PC using a USB dongle. The advantage of the system over others is the ability to collect high resolution EEG data without complicated
NASA Astrophysics Data System (ADS)
Cerf, Vint
2018-01-01
As a practising computer scientist, I thought I had a fairly good grasp of Alan Turing’s many contributions to the field. But The Turing Guide by Jack Copeland, Jonathan Bowen, Mark Sprevak and Robin Wilson has opened up a universe of Turing's other pursuits I knew nothing about, inflating my admiration for him and his work.
Earth orbital teleoperator visual system evaluation program
NASA Technical Reports Server (NTRS)
Shields, N. L., Jr.; Kirkpatrick, M., III; Frederick, P. N.; Malone, T. B.
1975-01-01
Empirical tests of range estimation accuracy and resolution, via television, under monoptic and steroptic viewing conditions are discussed. Test data are used to derive man machine interface requirements and make design decisions for an orbital remote manipulator system. Remote manipulator system visual tasks are given and the effects of system parameters of these tasks are evaluated.
Innovation and Entrepreneurship | NREL
disadvantaged businesses. Programs A photo of a woman and a man creating a planning diagram. Energy I-Corps (DOE) national laboratory-developed technologies into the commercial marketplace. Read more A photo of two men working on a machine. Small Business Vouchers Pilot Provides selected clean energy small
The Need for High Speed in Next Generation Rotorcraft
2012-03-01
ROTORCRAFT From the earliest thought of manned flight the helicopter was considered as a viable option to satisfy the requirement for flight. Leonardo Da... Vinci first dreamed of the helicopter flight concept in the year 1480. His adaption of the flying machine, named the "Helical Air Screw,” used the
Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)
NASA Astrophysics Data System (ADS)
Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.
2016-04-01
Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project investigates the complex landscape dynamics between geological and ecological processes. This is done through cross-correlation of mapping results and implementation of modelling techniques that simulate geological and ecological processes in order to extrapolate the landscape evolution
NASA Technical Reports Server (NTRS)
Gundersen, R. T.; Bond, R. L.
1976-01-01
Zero-g workstations were designed throughout manned spaceflight, based on different criteria and requirements for different programs. The history of design of these workstations is presented along with a thorough evaluation of selected Skylab workstations (the best zero-g experience available on the subject). The results were applied to on-going and future programs, with special emphasis on the correlation of neutral body posture in zero-g to workstation design. Where selected samples of shuttle orbiter workstations are shown as currently designed and compared to experience gained during prior programs in terms of man machine interface design, the evaluations were done in a generic sense to show the methods of applying evaluative techniques.
Free-flying teleoperator requirements and conceptual design.
NASA Technical Reports Server (NTRS)
Onega, G. T.; Clingman, J. H.
1973-01-01
A teleoperator, as defined by NASA, is a remotely controlled cybernetic man-machine system designed to augment and extend man's sensory, manipulative, and cognitive capabilities. Teleoperator systems can fulfill an important function in the Space Shuttle program. They can retrieve automated satellites for refurbishment and reuse. Cargo can be transferred over short or large distances and orbital operations can be supported. A requirements analysis is discussed, giving attention to the teleoperator spacecraft, docking and stowage systems, display and controls, propulsion, guidance, navigation, control, the manipulators, the video system, the electrical power, and aspects of communication and data management. Questions of concept definition and evaluation are also examined.
Work with Us | Advanced Manufacturing Research | NREL
advanced manufacturing R&D project through analysis and our world-class facilities. Contact Us Headshot of a man Matthew Ringer Laboratory Program Manager, Advanced Manufacturing Email | 303-275-4469 facilities for your advanced manufacturing R&D projects. License Our Technologies See our technologies
Distributed state machine supervision for long-baseline gravitational-wave detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rollins, Jameson Graef, E-mail: jameson.rollins@ligo.org
The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitatemore » the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.« less
Machining and characterization of self-reinforced polymers
NASA Astrophysics Data System (ADS)
Deepa, A.; Padmanabhan, K.; Kuppan, P.
2017-11-01
This Paper focuses on obtaining the mechanical properties and the effect of the different machining techniques on self-reinforced composites sample and to derive the best machining method with remarkable properties. Each sample was tested by the Tensile and Flexural tests, fabricated using hot compaction test and those loads were calculated. These composites are machined using conventional methods because of lack of advanced machinery in most of the industries. The advanced non-conventional methods like Abrasive water jet machining were used. These machining techniques are used to get the better output for the composite materials with good mechanical properties compared to conventional methods. But the use of non-conventional methods causes the changes in the work piece, tool properties and more economical compared to the conventional methods. Finding out the best method ideal for the designing of these Self Reinforced Composites with and without defects and the use of Scanning Electron Microscope (SEM) analysis for the comparing the microstructure of the PP and PE samples concludes our process.
Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology.
Zhang, Jieru; Ju, Ying; Lu, Huijuan; Xuan, Ping; Zou, Quan
2016-01-01
Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram), have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.
Toward Usable Interactive Analytics: Coupling Cognition and Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; North, Chris; Chang, Remco
Interactive analytics provide users a myriad of computational means to aid in extracting meaningful information from large and complex datasets. Much prior work focuses either on advancing the capabilities of machine-centric approaches by the data mining and machine learning communities, or human-driven methods by the visualization and CHI communities. However, these methods do not yet support a true human-machine symbiotic relationship where users and machines work together collaboratively and adapt to each other to advance an interactive analytic process. In this paper we discuss some of the inherent issues, outlining what we believe are the steps toward usable interactive analyticsmore » that will ultimately increase the effectiveness for both humans and computers to produce insights.« less
Machine Tool Advanced Skills Technology Program (MAST). Overview and Methodology.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology Program (MAST) is a geographical partnership of six of the nation's best two-year colleges located in the six states that have about one-third of the density of metals-related industries in the United States. The purpose of the MAST grant is to develop and implement a national training model to overcome…
Advanced Design Composite Aircraft (ADCA) Study. Volume I
1976-11-01
Aluminum Machined Paits 008 ’— Aluminum Honeycomb 001 - - Steel Machined Parts 0.08 - Titanium 0 66 Fiberglass 1 18 _ Boron Composite 0...Honeycomb 001 ~ Steel Machined Parti 0 09 | Titanium 056 Fi bei glass 037 r i Boron Composite 0 Graphite Composite 6 36 Total 81 2 31 7 42 1...1 Aluminum Machined Parts 006 - 2 1 Aluminum Honeycomb 001 Steel Machined Parts 007 - Trtamum 001 1 Frberglass 029 - Boron Composite 0
17. INTERIOR VIEW INSIDE BUNKER. MAN SEATED AT LEFT LOOKS ...
17. INTERIOR VIEW INSIDE BUNKER. MAN SEATED AT LEFT LOOKS AT OPENING TO CABLE CHASE, HIS HANDS ON MANUALLY-OPERATED PULLEY. INEL PHOTO NUMBER 65-6179, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
Machine intelligence and robotics: Report of the NASA study group
NASA Technical Reports Server (NTRS)
1980-01-01
Opportunities for the application of machine intelligence and robotics in NASA missions and systems were identified. The benefits of successful adoption of machine intelligence and robotics techniques were estimated and forecasts were prepared to show their growth potential. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are presented.
Precision machining of advanced materials with waterjets
NASA Astrophysics Data System (ADS)
Liu, H. T.
2017-01-01
Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.
NASA Technical Reports Server (NTRS)
Apodaca, Tony; Porter, Tom
1989-01-01
The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.
ERIC Educational Resources Information Center
Ch'ien, Evelyn
2011-01-01
This paper describes how a linguistic form, rap, can evolve in tandem with technological advances and manifest human-machine creativity. Rather than assuming that the interplay between machines and technology makes humans robotic or machine-like, the paper explores how the pressure of executing artistic visions using technology can drive…
Radio Frequency Interference Detection using Machine Learning.
NASA Astrophysics Data System (ADS)
Mosiane, Olorato; Oozeer, Nadeem; Aniyan, Arun; Bassett, Bruce A.
2017-05-01
Radio frequency interference (RFI) has plagued radio astronomy which potentially might be as bad or worse by the time the Square Kilometre Array (SKA) comes up. RFI can be either internal (generated by instruments) or external that originates from intentional or unintentional radio emission generated by man. With the huge amount of data that will be available with up coming radio telescopes, an automated aproach will be required to detect RFI. In this paper to try automate this process we present the result of applying machine learning techniques to cross match RFI from the Karoo Array Telescope (KAT-7) data. We found that not all the features selected to characterise RFI are always important. We further investigated 3 machine learning techniques and conclude that the Random forest classifier performs with a 98% Area Under Curve and 91% recall in detecting RFI.
Human factors in space telepresence
NASA Technical Reports Server (NTRS)
Akin, D. L.; Howard, R. D.; Oliveria, J. S.
1983-01-01
The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing.
INFORM: An interactive data collection and display program with debugging capability
NASA Technical Reports Server (NTRS)
Cwynar, D. S.
1980-01-01
A computer program was developed to aid ASSEMBLY language programmers of mini and micro computers in solving the man machine communications problems that exist when scaled integers are involved. In addition to producing displays of quasi-steady state values, INFORM provides an interactive mode for debugging programs, making program patches, and modifying the displays. Auxiliary routines SAMPLE and DATAO add dynamic data acquisition and high speed dynamic display capability to the program. Programming information and flow charts to aid in implementing INFORM on various machines together with descriptions of all supportive software are provided. Program modifications to satisfy the individual user's needs are considered.
Quadcopter control using a BCI
NASA Astrophysics Data System (ADS)
Rosca, S.; Leba, M.; Ionica, A.; Gamulescu, O.
2018-01-01
The paper presents how there can be interconnected two ubiquitous elements nowadays. On one hand, the drones, which are increasingly present and integrated into more and more fields of activity, beyond the military applications they come from, moving towards entertainment, real-estate, delivery and so on. On the other hand, unconventional man-machine interfaces, which are generous topics to explore now and in the future. Of these, we chose brain computer interface (BCI), which allows human-machine interaction without requiring any moving elements. The research consists of mathematical modeling and numerical simulation of a drone and a BCI. Then there is presented an application using a Parrot mini-drone and an Emotiv Insight BCI.
2012-02-01
ORGANIZATION NAME(S) AND ADDRESS(ES) NAVSEA 05 Chief Technology Office (SEA 05T),Washington Navy Yard,DC,20376 8. PERFORMING ORGANIZATION REPORT NUMBER...manning. ALTERNATE PROPULSION AND POWER ARCHITECHTURES Alternate propulsion and power architectures that will offer the most realistic
Final Report of Work Done on Contract NONR-4010(03).
ERIC Educational Resources Information Center
Chapanis, Alphonse
The 24 papers listed report the findings of a study funded by the Office of Naval Research. The study concentrated on the sensory and cognitive factors in man-machine interfaces. The papers are categorized into three groups: perception studies, human engineering studies, and methodological papers. A brief summary of the most noteworthy findings in…
An approach toward function allocation between humans and machines in space station activities
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G.
1982-01-01
Basic guidelines and data to assist in the allocation of functions between humans and automated systems in a manned permanent space station are provided. Human capabilities and limitations are described. Criteria and guidelines for various levels of automation and human participation are described. A collection of human factors data is included.
Automation, the Impact of Technological Change.
ERIC Educational Resources Information Center
Brozen, Yale
The scale of educational activities is increasing because mechanization, automation, cybernation, or whatever new technology is called, makes it possible to do more than could formerly be done. If a man helped by an automatic machine can turn out twice as much per hour, then, presumably, only half as many hours of work will be available for each…
On Periodicity of Trigonometric Functions and Connections with Elementary Number Theoretic Ideas
ERIC Educational Resources Information Center
Stupel, Moshe
2012-01-01
The notion of periodicity stands for regular recurrence of phenomena in a particular order in nature or in the actions of man, machine, etc. Many examples can be given from daily life featuring periodicity. Mathematically the meaning of periodicity is that some value recurs with a constant frequency. Students learn about the periodicity of the…
Graphical Man/Machine Communications
Progress is reported concerning the use of computer controlled graphical displays in the areas of radiaton diffusion and hydrodynamics, general...ventricular dynamics. Progress is continuing on the use of computer graphics in architecture. Some progress in halftone graphics is reported with no basic...developments presented. Colored halftone perspective pictures are being used to represent multivariable situations. Nonlinear waveform processing is
ERIC Educational Resources Information Center
Elias, Ryan J.; Hopfer, Helene; Hofstaedter, Amanda N.; Hayes, John E.
2017-01-01
The human nose is a very sensitive detector and is able to detect potent aroma compounds down to low ng/L levels. These levels are often below detection limits of analytical instrumentation. The following laboratory exercise is designed to compare instrumental and human methods for the detection of volatile odor active compounds. Reference…
Both the oldest and the newest problem areas in communications electronics interfaces are discussed in conjunction with the currently critical...digital communication system evolution. The oldest interface problem, still the most essential is the man machine communications interfaces. The newest is
Models of human problem solving - Detection, diagnosis, and compensation for system failures
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1983-01-01
The role of the human operator as a problem solver in man-machine systems such as vehicles, process plants, transportation networks, etc. is considered. Problem solving is discussed in terms of detection, diagnosis, and compensation. A wide variety of models of these phases of problem solving are reviewed and specifications for an overall model outlined.
Graphical Man/Machine Communications
1972-12-01
several others. The principal accomplishments are the development of a homomorphic imane deblurring method by E. Randolph Cole, the research into human...visual modelling by Patrick Baudelair, the impressive demonstrations of background noise elimination by Neil J. Miller, and the innovation of...characteristics for the homomorphical ly estimated restoration filter in the presence of additive noise were derived, and they show that the
Summarization as the base for text assessment
NASA Astrophysics Data System (ADS)
Karanikolas, Nikitas N.
2015-02-01
We present a model that apply shallow text summarization as a cheap (in resources needed) process for Automatic (machine based) free text answer Assessment (AA). The evaluation of the proposed method induces the inference that the Conventional Assessment (CA, man made assessment of free text answers) does not have an obvious mechanical replacement. However, this is a research challenge.
EMERGING MOLECULAR COMPUTATIONAL APPROACHES FOR CROSS-SPECIES EXTRAPOLATIONS: A WORKSHOP SUMMARY
Advances in molecular technology have led to the elucidation of full genomic sequences of several multicellular organisms, ranging from nematodes to man. The related molecular field of proteomics and metabolomics are now beginning to advance rapidly as well. In addition, advances...
Conceptual Study of Permanent Magnet Machine Ship Propulsion Systems
1977-12-01
cycloconverter subsystem is designed using advanced thyristors and can be either water or air cooled. The machine-cycloconverter, many-phase or parallel...Turnb, Phase, Poles, Air Gap ................................. 3-9 3-5 Machine Characteristics Versus Number of Poles (large machine, 40 000 hp). Poles...cylindrical permanent magnet generator forces the power conditioner to provide for both frequency change and voltage control. The complexity of this dual
NASA Technical Reports Server (NTRS)
Duffy, James B.
1993-01-01
The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo transportation systems (CTRV's) were also examined. The study provided detailed design and analysis of the performance, reliability, and operations of these concepts. The study analyzed these concepts as unique systems and also analyzed several combined CTRV/booster configurations as integrated launch systems (such as for launch abort analyses). Included in the set of CTRV concepts analyzed were the medium CTRV, the integral CTRV (in both a pressurized and unpressurized configuration), the winged CTRV, and an attached cargo carrier for the PLS system known as the PLS caboose.
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Pisanich, Gregory M.; Lebacqz, Victor (Technical Monitor)
1996-01-01
The Man-Machine Interaction Design and Analysis System (MIDAS) has been under development for the past ten years through a joint US Army and NASA cooperative agreement. MIDAS represents multiple human operators and selected perceptual, cognitive, and physical functions of those operators as they interact with simulated systems. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. Specific examples include: nuclear power plant crew simulation, military helicopter flight crew response, and police force emergency dispatch. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communications issues connected with aircraft-based separation assurance.
Overview of the Machine-Tool Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1981-06-08
The Machine Tool Task Force, (MTTF) surveyed the state of the art of machine tool technology for material removal for two and one-half years. This overview gives a brief summary of the approach, specific subjects covered, principal conclusions and some of the key recommendations aimed at improving the technology and advancing the productivity of machine tools. The Task Force consisted of 123 experts from the US and other countries. Their findings are documented in a five-volume report, Technology of Machine Tools.
Creating Situational Awareness in Spacecraft Operations with the Machine Learning Approach
NASA Astrophysics Data System (ADS)
Li, Z.
2016-09-01
This paper presents a machine learning approach for the situational awareness capability in spacecraft operations. There are two types of time dependent data patterns for spacecraft datasets: the absolute time pattern (ATP) and the relative time pattern (RTP). The machine learning captures the data patterns of the satellite datasets through the data training during the normal operations, which is represented by its time dependent trend. The data monitoring compares the values of the incoming data with the predictions of machine learning algorithm, which can detect any meaningful changes to a dataset above the noise level. If the difference between the value of incoming telemetry and the machine learning prediction are larger than the threshold defined by the standard deviation of datasets, it could indicate the potential anomaly that may need special attention. The application of the machine-learning approach to the Advanced Himawari Imager (AHI) on Japanese Himawari spacecraft series is presented, which has the same configuration as the Advanced Baseline Imager (ABI) on Geostationary Environment Operational Satellite (GOES) R series. The time dependent trends generated by the data-training algorithm are in excellent agreement with the datasets. The standard deviation in the time dependent trend provides a metric for measuring the data quality, which is particularly useful in evaluating the detector quality for both AHI and ABI with multiple detectors in each channel. The machine-learning approach creates the situational awareness capability, and enables engineers to handle the huge data volume that would have been impossible with the existing approach, and it leads to significant advances to more dynamic, proactive, and autonomous spacecraft operations.
Contemporary machine learning: techniques for practitioners in the physical sciences
NASA Astrophysics Data System (ADS)
Spears, Brian
2017-10-01
Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Parallel Algorithms for Computer Vision
1990-04-01
NA86-1, Thinking Machines Corporation, Cambridge, MA, December 1986. [43] J. Little, G. Blelloch, and T. Cass. How to program the connection machine for... to program the connection machine for computer vision. In Proc. Workshop on Comp. Architecture for Pattern Analysis and Machine Intell., 1987. [92] J...In Proceedings of SPIE Conf. on Advances in Intelligent Robotics Systems, Bellingham, VA, 1987. SPIE. [91] J. Little, G. Blelloch, and T. Cass. How
Indicator system for advanced nuclear plant control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Advanced nuclear plant control complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Advanced nuclear plant control room complex
Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.
1993-01-01
An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.
Detecting Mode Confusion Through Formal Modeling and Analysis
NASA Technical Reports Server (NTRS)
Miller, Steven P.; Potts, James N.
1999-01-01
Aircraft safety has improved steadily over the last few decades. While much of this improvement can be attributed to the introduction of advanced automation in the cockpit, the growing complexity of these systems also increases the potential for the pilots to become confused about what the automation is doing. This phenomenon, often referred to as mode confusion, has been involved in several accidents involving modern aircraft. This report describes an effort by Rockwell Collins and NASA Langley to identify potential sources of mode confusion through two complementary strategies. The first is to create a clear, executable model of the automation, connect it to a simulation of the flight deck, and use this combination to review of the behavior of the automation and the man-machine interface with the designers, pilots, and experts in human factors. The second strategy is to conduct mathematical analyses of the model by translating it into a formal specification suitable for analysis with automated tools. The approach is illustrated by applying it to a hypothetical, but still realistic, example of the mode logic of a Flight Guidance System.
Automated intelligent video surveillance system for ships
NASA Astrophysics Data System (ADS)
Wei, Hai; Nguyen, Hieu; Ramu, Prakash; Raju, Chaitanya; Liu, Xiaoqing; Yadegar, Jacob
2009-05-01
To protect naval and commercial ships from attack by terrorists and pirates, it is important to have automatic surveillance systems able to detect, identify, track and alert the crew on small watercrafts that might pursue malicious intentions, while ruling out non-threat entities. Radar systems have limitations on the minimum detectable range and lack high-level classification power. In this paper, we present an innovative Automated Intelligent Video Surveillance System for Ships (AIVS3) as a vision-based solution for ship security. Capitalizing on advanced computer vision algorithms and practical machine learning methodologies, the developed AIVS3 is not only capable of efficiently and robustly detecting, classifying, and tracking various maritime targets, but also able to fuse heterogeneous target information to interpret scene activities, associate targets with levels of threat, and issue the corresponding alerts/recommendations to the man-in- the-loop (MITL). AIVS3 has been tested in various maritime scenarios and shown accurate and effective threat detection performance. By reducing the reliance on human eyes to monitor cluttered scenes, AIVS3 will save the manpower while increasing the accuracy in detection and identification of asymmetric attacks for ship protection.
Fluid machines: Expanding the limits, past and future
NASA Technical Reports Server (NTRS)
Hartmann, M. J.; Sandercock, D. M.
1985-01-01
During the 40 yr period from 1940 to 1980, the capabilities and operating limits of fluid machines were greatly extended. This was due to a research program, carried out to meet the needs of aerospace programs. Some of the events are reviewed. Overall advancements of all machinery components are discussed followed by a detailed examination of technology advancements in axial compressors and pumps. Future technology needs are suggested.
Modelling an advanced ManPAD with dual band detectors and a rosette scanning seeker head
NASA Astrophysics Data System (ADS)
Birchenall, Richard P.; Richardson, Mark A.; Butters, Brian; Walmsley, Roy
2012-01-01
Man Portable Air Defence Systems (ManPADs) have been a favoured anti aircraft weapon since their appearance on the military proliferation scene in the mid 1960s. Since this introduction there has been a 'cat and mouse' game of Missile Countermeasures (CMs) and the aircraft protection counter counter measures (CCMs) as missile designers attempt to defeat the aircraft platform protection equipment. Magnesium Teflon Viton (MTV) flares protected the target aircraft until the missile engineers discovered the art of flare rejection using techniques including track memory and track angle bias. These early CCMs relied upon CCM triggering techniques such as the rise rate method which would just sense a sudden increase in target energy and assume that a flare CM had been released by the target aircraft. This was not as reliable as was first thought as aspect changes (bringing another engine into the field of view) or glint from the sun could inadvertently trigger a CCM when not needed. The introduction of dual band detectors in the 1980s saw a major advance in CCM capability allowing comparisons between two distinct IR bands to be made thus allowing the recognition of an MTV flare to occur with minimal false alarms. The development of the rosette scan seeker in the 1980s complemented this advancement allowing the scene in the missile field of view (FOV) to be scanned by a much smaller (1/25) instantaneous FOV (IFOV) with the spectral comparisons being made at each scan point. This took the ManPAD from a basic IR energy detector to a pseudo imaging system capable of analysing individual elements of its overall FOV allowing more complex and robust CCM to be developed. This paper continues the work published in [1,2] and describes the method used to model an advanced ManPAD with a rosette scanning seeker head and robust CCMs similar to the Raytheon Stinger RMP.
Abrasives and Grinding Machines; Machine Shop Work--Advanced: 9557.02.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course outline has been prepared as a guide to assist the instructor in systematically planning and presenting a variety of meaningful lessons to facilitate the necessary training for the machine shop student. The material contained in the outline is designed to enable the student to learn the manipulative skills and related knowledge…
Cardiac imaging: working towards fully-automated machine analysis & interpretation.
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-03-01
Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.
Manned Mars mission communication and data management systems
NASA Technical Reports Server (NTRS)
White, Ronald E.
1986-01-01
A manned Mars mission will involve a small crew and many complex tasks. The productivity of the crew and the entire mission will depend significantly on effective automation of these tasks and the ease with which the crew can interface with them. The technology to support a manned Mars mission is available today; however, evolving software and electronic technology are enabling many interesting possibilities for increasing productivity and safety while reducing life cycle cost. Some of these advanced technologies are identified.
The Concept of C2 Communication and Information Support
2004-06-01
communication and information literacy , • Sensors: technology and systematic development as a branch, • Military prognosis research (combat models...intelligence, • Visualization of actions, suitable forms of information presentation, • Techniques of learning CIS users communication and information ... literacy , • Sensors: technology and systematic development as a branch, • Military prognosis research (combat models), • Man - machine interface. CISu
ERIC Educational Resources Information Center
Hutchins, Sandra E.
By analyzing the lexicology of natural language (English or other languages as they are commonly spoken or written), as compared to computer languages, this study explored the extent to which syntactic and semantic levels of linguistic analysis can be implemented and effectively used on microcomputers. In Phase I of the study, the Apple IIe with…
LLOGO: An Implementation of LOGO in LISP. Artificial Intelligence Memo Number 307.
ERIC Educational Resources Information Center
Goldstein, Ira; And Others
LISP LOGO is a computer language invented for the beginning student of man-machine interaction. The language has the advantages of simplicity and naturalness as well as that of emphasizing the difference between programs and data. The language is based on the LOGO language and uses mnemonic syllables as commands. It can be used in conjunction with…
Proceedings of the international conference on cybernetics and societ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the papers given at a conference on artificial intelligence, expert systems and knowledge bases. Topics considered at the conference included automating expert system development, modeling expert systems, causal maps, data covariances, robot vision, image processing, multiprocessors, parallel processing, VLSI structures, man-machine systems, human factors engineering, cognitive decision analysis, natural language, computerized control systems, and cybernetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borges, Raymond Charles; Beaver, Justin M; Buckner, Mark A
Power system disturbances are inherently complex and can be attributed to a wide range of sources, including both natural and man-made events. Currently, the power system operators are heavily relied on to make decisions regarding the causes of experienced disturbances and the appropriate course of action as a response. In the case of cyber-attacks against a power system, human judgment is less certain since there is an overt attempt to disguise the attack and deceive the operators as to the true state of the system. To enable the human decision maker, we explore the viability of machine learning as amore » means for discriminating types of power system disturbances, and focus specifically on detecting cyber-attacks where deception is a core tenet of the event. We evaluate various machine learning methods as disturbance discriminators and discuss the practical implications for deploying machine learning systems as an enhancement to existing power system architectures.« less
NASA Technical Reports Server (NTRS)
Crane, D. F.
1984-01-01
When human operators are performing precision tracking tasks, their dynamic response can often be modeled by quasilinear describing functions. That fact permits analysis of the effects of delay in certain man machine control systems using linear control system analysis techniques. The analysis indicates that a reduction in system stability is the immediate effect of additional control system delay, and that system characteristics moderate or exaggerate the importance of the delay. A selection of data (simulator and flight test) consistent with the analysis is reviewed. Flight simulator visual-display delay compensation, designed to restore pilot aircraft system stability, was evaluated in several studies which are reviewed here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish the statistical significance of the results) to a brief evaluation of compensation of a computer generated imagery (CGI) visual display system in a full six degree of freedom simulation. The compensation was effective, improvements in pilot performance and workload or aircraft handling qualities rating (HQR) were observed. Results from recent aircraft handling qualities research literature, which support the compensation design approach, are also reviewed.
Evaluating the Surveillance System for Spotted Fever in Brazil Using Machine-Learning Techniques.
Lopez, Diego Montenegro; de Mello, Flávio Luis; Giordano Dias, Cristina Maria; Almeida, Paula; Araújo, Milton; Magalhães, Monica Avelar; Gazeta, Gilberto Salles; Brasil, Reginaldo Peçanha
2017-01-01
This work analyses the performance of the Brazilian spotted fever (SF) surveillance system in diagnosing and confirming suspected cases in the state of Rio de Janeiro (RJ), from 2007 to 2016 (July) using machine-learning techniques. Of the 890 cases reported to the Disease Notification Information System (SINAN), 11.7% were confirmed as SF, 2.9% as dengue, 1.6% as leptospirosis, and 0.7% as tick bite allergy, with the remainder being diagnosed as other categories (10.5%) or unspecified (72.7%). This study confirms the existence of obstacles in the diagnostic classification of suspected cases of SF by clinical signs and symptoms. Unlike man-capybara contact (1.7% of cases), man-tick contact (71.2%) represents an important risk indicator for SF. The analysis of decision trees highlights some clinical symptoms related to SF patient death or cure, such as: respiratory distress, convulsion, shock, petechiae, coma, icterus, and diarrhea. Moreover, cartographic techniques document patient transit between RJ and bordering states and within RJ itself. This work recommends some changes to SINAN that would provide a greater understanding of the dynamics of SF and serve as a model for other endemic areas in Brazil.
One Man's Invasion Is Another Man's Advance: National History in Japan and Korea.
ERIC Educational Resources Information Center
Hurst, G. Cameron, III
The altering of the presentation of Japan's imperialist adventures in Japanese high school history textbooks reflects a continuing dispute between Japan and her Asian neighbors, as well as between a politically conservative bureaucracy in the Ministry of Education and a historical profession heavily influenced by "progressives" who write…
Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth
2017-09-13
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.
NASA Astrophysics Data System (ADS)
Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth
2017-09-01
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.
Interferometric correction system for a numerically controlled machine
Burleson, Robert R.
1978-01-01
An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.
Space Station Human Factors Research Review. Volume 1: EVA Research and Development
NASA Technical Reports Server (NTRS)
Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)
1988-01-01
An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.
Design options for advanced manned launch systems
NASA Astrophysics Data System (ADS)
Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.
1995-03-01
Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.
Advanced beamed-energy and field propulsion concepts
NASA Technical Reports Server (NTRS)
Myrabo, L. N.
1983-01-01
Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.
2017-02-01
DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT FLORIDA INSTITUTE FOR HUMAN AND...AND SUBTITLE DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT 5a. CONTRACT NUMBER...Human and Machine Cognition (IHMC) from 2012-2016 through three phases of the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge
Advanced Metalworking Solutions for Naval Systems that go in Harm’s Way
2009-01-01
friction stir welding (FSW) and advanced machining and casting techniques to produce a prototype Automated weld seam facing on DDG 1000 ships will...transportable friction stir welding (FSW) machine. FSW is a solid state joining technology that offers benefits over traditional welding for several...addition, by locating FSW operation at the construction yard, the aluminum panels that will be friction stir - welded are built to the size needed instead
Perspectives for the high field approach in fusion research and advances within the Ignitor Program
NASA Astrophysics Data System (ADS)
Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Belforte, G.; Boggio-Sella, E.; Cardinali, A.; Cenacchi, G.; Conti, F.; Costa, E.; D'Amico, A.; Detragiache, P.; De Tommasi, G.; DeVellis, A.; Faelli, G.; Ferraris, P.; Frattolillo, A.; Giammanco, F.; Grasso, G.; Lazzaretti, M.; Mantovani, S.; Merriman, L.; Migliori, S.; Napoli, R.; Perona, A.; Pierattini, S.; Pironti, A.; Ramogida, G.; Rubinacci, G.; Sassi, M.; Sestero, A.; Spillantini, S.; Tavani, M.; Tumino, A.; Villone, F.; Zucchi, L.
2015-05-01
The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets.
A Study of Multifunctional Document Centers that Are Accessible to People Who Are Visually Impaired
ERIC Educational Resources Information Center
Huffman, Lee A.; Uslan, Mark M.; Burton, Darren M.; Eghtesadi, Caesar
2009-01-01
The capabilities of modern photocopy machines have advanced beyond the simple duplication of documents. In addition to the standard functions of copying, collating, and stapling, such machines can be a part of telecommunication networks and provide printing, scanning, faxing, and e-mailing functions. No longer just copy machines, these devices are…
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)
1975-01-01
The author has identified the following significant results. It was found that the high speed man machine interaction capability is a distinct advantage of the image 100; however, the small size of the digital computer in the system is a definite limitation. The system can be highly useful in an analysis mode in which it complements a large general purpose computer. The image 100 was found to be extremely valuable in the analysis of aircraft MSS data where the spatial resolution begins to approach photographic quality and the analyst can exercise interpretation judgements and readily interact with the machine.
Recognition of surface lithologic and topographic patterns in southwest Colorado with ADP techniques
NASA Technical Reports Server (NTRS)
Melhorn, W. N.; Sinnock, S.
1973-01-01
Analysis of ERTS-1 multispectral data by automatic pattern recognition procedures is applicable toward grappling with current and future resource stresses by providing a means for refining existing geologic maps. The procedures used in the current analysis already yield encouraging results toward the eventual machine recognition of extensive surface lithologic and topographic patterns. Automatic mapping of a series of hogbacks, strike valleys, and alluvial surfaces along the northwest flank of the San Juan Basin in Colorado can be obtained by minimal man-machine interaction. The determination of causes for separable spectral signatures is dependent upon extensive correlation of micro- and macro field based ground truth observations and aircraft underflight data with the satellite data.
Department of Cybernetic Acoustics
NASA Astrophysics Data System (ADS)
The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.
Tool path strategy and cutting process monitoring in intelligent machining
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei
2018-06-01
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.
High pressure water jet mining machine
Barker, Clark R.
1981-05-05
A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.
Machine Learning Applications to Resting-State Functional MR Imaging Analysis.
Billings, John M; Eder, Maxwell; Flood, William C; Dhami, Devendra Singh; Natarajan, Sriraam; Whitlow, Christopher T
2017-11-01
Machine learning is one of the most exciting and rapidly expanding fields within computer science. Academic and commercial research entities are investing in machine learning methods, especially in personalized medicine via patient-level classification. There is great promise that machine learning methods combined with resting state functional MR imaging will aid in diagnosis of disease and guide potential treatment for conditions thought to be impossible to identify based on imaging alone, such as psychiatric disorders. We discuss machine learning methods and explore recent advances. Copyright © 2017 Elsevier Inc. All rights reserved.
A review of advances in the study of diseases of fish: 1954-1964
Post, G.
1965-01-01
STUDY OF DISEASE IN ANIMALS, INCLUDING MAN, has progressed rapidly in the past decade. Looking back, we find amazing success in the study of man's diseases and possibly only a little less success in studies of diseases of domesticated homeothermic animals. We who are interested in the poikilothermic animals may feel at times that we have not advanced so rapidly in our field. The reason for this may be closely associated with economics. The market for drugs and therapeutic agents is greater for domestic livestock than for cultured fishes. A larger income is derived from rearing domestic livestock. Therefore, more public funds are available for study of diseases of man and domestic livestock, while such funds are limited for the study of diseases of fish. The Federal and State fish-cultural systems, as well as colleges and universities, have been most active in research on fish disease and probably will continue to be so.
Fingelkurts, Andrew A; Fingelkurts, Alexander A; Neves, Carlos F H
2012-01-05
Instead of using low-level neurophysiology mimicking and exploratory programming methods commonly used in the machine consciousness field, the hierarchical operational architectonics (OA) framework of brain and mind functioning proposes an alternative conceptual-theoretical framework as a new direction in the area of model-driven machine (robot) consciousness engineering. The unified brain-mind theoretical OA model explicitly captures (though in an informal way) the basic essence of brain functional architecture, which indeed constitutes a theory of consciousness. The OA describes the neurophysiological basis of the phenomenal level of brain organization. In this context the problem of producing man-made "machine" consciousness and "artificial" thought is a matter of duplicating all levels of the operational architectonics hierarchy (with its inherent rules and mechanisms) found in the brain electromagnetic field. We hope that the conceptual-theoretical framework described in this paper will stimulate the interest of mathematicians and/or computer scientists to abstract and formalize principles of hierarchy of brain operations which are the building blocks for phenomenal consciousness and thought. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Nolan, Sean; Neubek, Deb; Baxmann, C. J.
1988-01-01
The Manned Mars Explorer (MME) project responds to the fundamental problems of sending human beings to Mars in a mission scenario and schematic vehicle designs. The mission scenario targets an opposition class Venus inbound swingby for its trajectory with concentration on Phobos and/or Deimos as a staging base for initial and future Mars vicinity operations. Optional vehicles are presented as a comparison using nuclear electric power/propulsion technology. A Manned Planetary Vehicle and Crew Command Vehicle are used to accomplish the targeted mission. The Manned Planetary Vehicle utilizes the mature technology of chemical propulsion combined with an advanced aerobrake, tether and pressurized environment system. The Crew Command Vehicle is the workhorse of the mission performing many different functions including a manned Mars landing, and Phobos rendezvous.
Intelligent Systems Technologies for Ops
NASA Technical Reports Server (NTRS)
Smith, Ernest E.; Korsmeyer, David J.
2012-01-01
As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration programs.
Enhanced ultrasonically assisted turning of a β-titanium alloy.
Maurotto, Agostino; Muhammad, Riaz; Roy, Anish; Silberschmidt, Vadim V
2013-09-01
Although titanium alloys have outstanding mechanical properties such as high hot hardness, a good strength-to-weight ratio and high corrosion resistance; their low thermal conductivity, high chemical affinity to tool materials severely impair their machinability. Ultrasonically assisted machining (UAM) is an advanced machining technique, which has been shown to improve machinability of a β-titanium alloy, namely, Ti-15-3-3-3, when compared to conventional turning processes. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, Robert; McConnell, Elizabeth
Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes.more » Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.« less
Zhang, Bin; He, Xin; Ouyang, Fusheng; Gu, Dongsheng; Dong, Yuhao; Zhang, Lu; Mo, Xiaokai; Huang, Wenhui; Tian, Jie; Zhang, Shuixing
2017-09-10
We aimed to identify optimal machine-learning methods for radiomics-based prediction of local failure and distant failure in advanced nasopharyngeal carcinoma (NPC). We enrolled 110 patients with advanced NPC. A total of 970 radiomic features were extracted from MRI images for each patient. Six feature selection methods and nine classification methods were evaluated in terms of their performance. We applied the 10-fold cross-validation as the criterion for feature selection and classification. We repeated each combination for 50 times to obtain the mean area under the curve (AUC) and test error. We observed that the combination methods Random Forest (RF) + RF (AUC, 0.8464 ± 0.0069; test error, 0.3135 ± 0.0088) had the highest prognostic performance, followed by RF + Adaptive Boosting (AdaBoost) (AUC, 0.8204 ± 0.0095; test error, 0.3384 ± 0.0097), and Sure Independence Screening (SIS) + Linear Support Vector Machines (LSVM) (AUC, 0.7883 ± 0.0096; test error, 0.3985 ± 0.0100). Our radiomics study identified optimal machine-learning methods for the radiomics-based prediction of local failure and distant failure in advanced NPC, which could enhance the applications of radiomics in precision oncology and clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.
Ethical problems of interaction between ground-based personnel and orbital station crewmembers.
Grigoriev, A I; Kozerenko, O P; Myasnikov, V I; Egorov, A D
1988-02-01
Manned missions onboard orbital stations Salyut-6 and Salyut-7 have led us to the conclusion that a long-term space mission can be viewed as a complex socio-man-machine system whose effectiveness largely depends on the quality of interaction between its subsystems. When analyzing and assessing the reliability of this system, it is important to consider ethical aspects, because they concern human relations, permeating its very component and in the long run determining its efficiency. Psychological and medical examinations before, during and after manned missions have helped us to identify the major points of interaction of the subsystems which require adequate monitoring and optimization using socio-psychological and organization-technical approaches: arrangement and evaluation of the quality of work, arrangement of proper leisure, psychological comfort in the interpersonality and intergroup relations during prolonged space missions. This paper also discusses adaptive changes in the mental and physical state due to prolonged exposure to space flight factors such as microgravity and confinement.
NASA Technical Reports Server (NTRS)
Mccllough, J. R.; Sharpe, A.; Doetsch, K. H.
1980-01-01
The SIMFAC has played a vital role in the design, development, and performance verification of the shuttle remote manipulator system (SRMS) to be installed in the space shuttle orbiter. The facility provides for realistic man-in-the-loop operation of the SRMS by an operator in the operator complex, a flightlike crew station patterned after the orbiter aft flight deck with all necessary man machine interface elements, including SRMS displays and controls and simulated out-of-the-window and CCTV scenes. The characteristics of the manipulator system, including arm and joint servo dynamics and control algorithms, are simulated by a comprehensive mathematical model within the simulation subsystem of the facility. Major studies carried out using SIMFAC include: SRMS parameter sensitivity evaluations; the development, evaluation, and verification of operating procedures; and malfunction simulation and analysis of malfunction performance. Among the most important and comprehensive man-in-the-loop simulations carried out to date on SIMFAC are those which support SRMS performance verification and certification when the SRMS is part of the integrated orbiter-manipulator system.
Ergonomics and the physiotherapist: a report on a research project on working postures.
Bullock, M I; Lanchester, J J
1969-09-01
In a series of lectures on biomechanical principles, Professor E. R. Tichauer, an authority on man-machine-task systems, stated: "Only a few years ago, the physical work load imposed on the individual employee was much heavier than is the case today, but it was, in many occupations, fairly evenly distributed over the entire musculo skeletal system. Today, the total energy demanded from man in the performance of an industrial task has often been reduced, but stress is concentrated on individual and small components of the worker's anatomy," The techniques for combating these new stresses are found in the science of ergonomics (Hopkins 1966). Copyright © 1969 Australian Physiotherapy Association. Published by . All rights reserved.
Report of Apollo 204 Review Board
NASA Technical Reports Server (NTRS)
1967-01-01
The Nation's space program requires that man and machine achieve the highest capability to pursue the exploration of space. The Apollo 204 Review Board was charged with the responsibility of reviewing the circumstances surrounding the accident, reporting its findings relating to the cause of the accident, and formulating recommendations so that inherent hazards are reduced to a minimum. The Board is very concerned that its description of the defects in the Apollo Program that led to the condition existing at the time of the Apollo 204 accident will be interpreted as an indictment of the entire manned space flight program and a castigation of the many people associated with that program. This report, rather than presenting a total picture of that program, is concerned with the deficiencies uncovered.
Safety Features in Anaesthesia Machine
Subrahmanyam, M; Mohan, S
2013-01-01
Anaesthesia is one of the few sub-specialties of medicine, which has quickly adapted technology to improve patient safety. This application of technology can be seen in patient monitoring, advances in anaesthesia machines, intubating devices, ultrasound for visualisation of nerves and vessels, etc., Anaesthesia machines have come a long way in the last 100 years, the improvements being driven both by patient safety as well as functionality and economy of use. Incorporation of safety features in anaesthesia machines and ensuring that a proper check of the machine is done before use on a patient ensures patient safety. This review will trace all the present safety features in the machine and their evolution. PMID:24249880
1984-06-01
emostraion. Tese eserch ool wee deignted and experimental demonstrations wre successfully con- for demonstrations. These research tools wre designated ...Topics 4.02 Instructional Systems Design Methodology Instructional Systems Development and Effectiveness Evaluation .................................... 1...6 53 0 0 67w Report Page 10.07 Human Performance Variables/Factors 10.08 Man-Machine Design Methodology Computer Assisted Methods for Human
NASA Technical Reports Server (NTRS)
Sheridan, Thomas B.; Roseborough, James B.; Das, Hari; Chin, Kan-Ping; Inoue, Seiichi
1989-01-01
Four separate projects recently completed or in progress at the MIT Man-Machine Systems Laboratory are summarized. They are: a decision aid for retrieving a tumbling satellite in space; kinematic control and graphic display of redundant teleoperators; real time terrain/object generation: a quad-tree approach; and two dimensional control for three dimensional obstacle avoidance.
Defense AT and L. Volume 45, Number 3
2016-06-01
CRM ). During the 1980s, the commercial airlines and military invested heavily in CRM training, aiming to increase crew coordination and improve...cockpit management. These CRM training programs focused on human factors train- ing—also called man-machine interfaces—with specific concentration on...leadership and decision making. CRM has evolved over the years with emphasis now placed on the acquisition of timely, appropriate infor- mation
NASA Technical Reports Server (NTRS)
Mileryan, Y. A.
1975-01-01
A summary of research on psychological factors that cause substantial changes in the reliability indicators of an operators work is followed by a conclusion that strong moral-volitional qualities are the basic factors that make the human behavior under conditions of stress effective; emotional subcortical subdominants affect a person's conscious organization and self control in a man machine environment.
Readings on Managing Organizational Quality
1990-05-01
Produc- tivify Review, Autumn, 1985. VI. Acknow ledg- Ishikawa , Kaoru . Guide to Quality Control. Tokyo: Asian Productivity Organization.m ents 1976. We are...indebted to many people for the develop- Ishikawa , Kaoru What is Total Quality Con- ment of the ideas expressed in this paper. Chief trol?: The...Developed by Kaoru Ishikawa , this di- Yes agram breaks the causes into general categories like methods. .............. materials, machines, and man, and
Biocybernetic Control in Man-Machine Interaction: Final Technical Report 1973 - 1974
1974-12-01
itfaifHiiTcmriimiiiiiiiiiiliü Mi iitihtiittiT-L-"’"*^t’l^ltj’—--■■-•- ■»-. ti;,.--^, yt^^r..,^,_ 0« (0 • + 0 CD tD (D (0 (D CO CD m CD... 3uv /mm 510002 0.3 510003 0.5 510004 1.0 510005 1.5 510006 > ► 2.0 . f
Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application
1993-05-01
The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.
An Assessment of Reliability of Dialogue Annotation Instructions
1977-01-01
This report is part of an ongoing research effort on man-machine communication, which is engaged in transforming knowledge of how human communication works...certain kinds of recurring features in transcripts of human communication . These methods involve having a trained person, called an Observer, annotate...right kind of data for developing human communication theory. It is a confirmation of the appropriateness and potential effectiveness of using this
NASA Technical Reports Server (NTRS)
Carrington, Connie; Howell, Joe
2001-01-01
The path to human presence beyond near-Earth will be paved by the development of infrastructure. A fundamental technology in this infrastructure is energy, which enables not only the basic function of providing shelter for man and machine, but also enables transportation, scientific endeavors, and exploration. This paper discusses the near-term needs in technology that develop the infrastructure for HEDS.
Diagnostic Assessment of Troubleshooting Skill in an Intelligent Tutoring System
1994-03-01
the information that can be provided from studying gauges and indicators and conventional test equipment procedures. Experts are particularly adept at...uses the results of the strategy and action evaluator to update the student profile, represented as a network, using the ERGO ( Noetic Systems, 1993...1990). Individualized tutoring using an intelligent fuzzy temporal relational database. International Tournal of Man-Machine Studies . & 409-429. . 34
TDRSS operations control analysis study
NASA Technical Reports Server (NTRS)
1976-01-01
The use of an operational Tracking and Data Relay Satellite System (TDRSS) and the remaining ground stations for the STDN (GSTDN) was investigated. The operational aspects of TDRSS concepts, GSTDN as a 14-site network, and GSTDN as a 7 site-network were compared and operations control concepts for the configurations developed. Man/machine interface, scheduling system, and hardware/software tradeoff analyses were among the factors considered in the analysis.
Cardiac imaging: working towards fully-automated machine analysis & interpretation
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-01-01
Introduction Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation. PMID:28277804
Machine learning for science: state of the art and future prospects.
Mjolsness, E; DeCoste, D
2001-09-14
Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.
ERIC Educational Resources Information Center
Crossley, Scott A.
2013-01-01
This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…
DOT National Transportation Integrated Search
1974-08-01
Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work force, computer resources, controller productivity, system manning, failure ef...
A new look at oxygen production on Mars - In situ propellant production (ISPP)
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.; French, James R., Jr.; Lawton, Emil A.
1987-01-01
Consideration is given to the technique of producing oxygen on Mars from CO2 in the Martian atmosphere via in situ propellent production (ISPP). Mission implications of ISPP for both manned and unmanned Mars missions are described as well as ways to improve system reliability. Technology options that improve reliability and reduce power requirements include the use of adsorption pumps and advanced zirconia membranes. It is concluded that both manned and unmanned missions will benefit greatly from ISPP, especially in the context of a permanent manned base on Mars.
NASA/USRA advanced design program, 1990 - 1991
NASA Technical Reports Server (NTRS)
1991-01-01
Twenty-four UCLA students, in groups of four or five, participated in a mission design for a manned expedition to Mars that was based on the concept of mid-course refueling from electrically propelled tankers launched ahead of the manned mission. The study was conducted during the 1991 spring term. Some of the student groups opted for non-nuclear propulsion of the manned ship, based on LOX and LH2; others opted for one based on nuclear thermal propulsion. By way of example, the first option is presented here.
Environmental control and life support technologies for advanced manned space missions
NASA Technical Reports Server (NTRS)
Powell, F. T.; Wynveen, R. A.; Lin, C.
1986-01-01
Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.
Virtual C Machine and Integrated Development Environment for ATMS Controllers.
DOT National Transportation Integrated Search
2000-04-01
The overall objective of this project is to develop a prototype virtual machine that fits on current Advanced Traffic Management Systems (ATMS) controllers and provides functionality for complex traffic operations.;Prepared in cooperation with Utah S...
Liquid lens: advances in adaptive optics
NASA Astrophysics Data System (ADS)
Casey, Shawn Patrick
2010-12-01
'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.
DOT National Transportation Integrated Search
1974-08-01
Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...
Work, Leisure Time and Adult Education in Technically Advanced Industrial Countries.
ERIC Educational Resources Information Center
European Centre for Leisure and Education, Prague (Czechoslovakia).
An outline of the increasing amount of change required of modern man, specifically in Czechoslovakia, to cope with the demands of a rapidly advancing technology is presented. Consideration is given to leisure time, work requirements, and educational needs. (CK)
Technologies for developing an advanced intelligent ATM with self-defence capabilities
NASA Astrophysics Data System (ADS)
Sako, Hiroshi
2010-01-01
We have developed several technologies for protecting automated teller machines. These technologies are based mainly on pattern recognition and are used to implement various self-defence functions. They include (i) banknote recognition and information retrieval for preventing machines from accepting counterfeit and damaged banknotes and for retrieving information about detected counterfeits from a relational database, (ii) form processing and character recognition for preventing machines from accepting remittance forms without due dates and/or insufficient payment, (iii) person identification to prevent machines from transacting with non-customers, and (iv) object recognition to guard machines against foreign objects such as spy cams that might be surreptitiously attached to them and to protect users against someone attempting to peek at their user information such as their personal identification number. The person identification technology has been implemented in most ATMs in Japan, and field tests have demonstrated that the banknote recognition technology can recognise more then 200 types of banknote from 30 different countries. We are developing an "advanced intelligent ATM" that incorporates all of these technologies.
Motion Simulation Analysis of Rail Weld CNC Fine Milling Machine
NASA Astrophysics Data System (ADS)
Mao, Huajie; Shu, Min; Li, Chao; Zhang, Baojun
CNC fine milling machine is a new advanced equipment of rail weld precision machining with high precision, high efficiency, low environmental pollution and other technical advantages. The motion performance of this machine directly affects its machining accuracy and stability, which makes it an important consideration for its design. Based on the design drawings, this article completed 3D modeling of 60mm/kg rail weld CNC fine milling machine by using Solidworks. After that, the geometry was imported into Adams to finish the motion simulation analysis. The displacement, velocity, angular velocity and some other kinematical parameters curves of the main components were obtained in the post-processing and these are the scientific basis for the design and development for this machine.
Marsden, P D; Alvarenga, N J; Soares, V A; Gama, M P
1979-01-01
Two stocks of Trypanosoma cruzi isolated from patients with advanced megaoesophagus produced megastomach in chronically infected mice. The mice showed evidence of stomach dilatation and a delay in intestinal transit time. These findings are discussed in the light of the hypothesis that regional variations in T. cruzi determines mega formation in man.
ERIC Educational Resources Information Center
Almquist, Alan J.; Cronin, John E.
This is one of several study guides on contemporary problems produced by the American Association for the Advancement of Science with support of the National Science Foundation. This guide focuses on the origin of man. Part I, The Biochemical Evidence for Human Evolution, contains four sections: (1) Introduction; (2) Macromolecular Data; (3)…
NASA Technical Reports Server (NTRS)
Klein, Karl E. (Editor); Contant, Jean-Michel (Editor)
1992-01-01
The present symposium on living and working in space encompasses the physiological responses of humans in space and biomedical support for the conditions associated with space travel. Specific physiological issues addressed include cerebral and sensorimotor functions, effects on the cardiovascular and respiratory system, musculoskeletal system, body fluid, hormones and electrolytes, and some orthostatic hypotension mechanisms as countermeasures. The biomedical support techniques examined include selection training, and care, teleoperation and artificial intelligence, robotic automation, bioregenerative life support, and toxic hazard risks in space habitats. Also addressed are determinants of orientation in microgravity, the hormonal control of body fluid metabolism, integrated human-machine intelligence in space machines, and material flow estimation in CELSS.
An overview of rotating machine systems with high-temperature bulk superconductors
NASA Astrophysics Data System (ADS)
Zhou, Difan; Izumi, Mitsuru; Miki, Motohiro; Felder, Brice; Ida, Tetsuya; Kitano, Masahiro
2012-10-01
The paper contains a review of recent advancements in rotating machines with bulk high-temperature superconductors (HTS). The high critical current density of bulk HTS enables us to design rotating machines with a compact configuration in a practical scheme. The development of an axial-gap-type trapped flux synchronous rotating machine together with the systematic research works at the Tokyo University of Marine Science and Technology since 2001 are briefly introduced. Developments in bulk HTS rotating machines in other research groups are also summarized. The key issues of bulk HTS machines, including material progress of bulk HTS, in situ magnetization, and cooling together with AC loss at low-temperature operation are discussed.
Simeonov, Plamen L
2017-12-01
The goal of this paper is to advance an extensible theory of living systems using an approach to biomathematics and biocomputation that suitably addresses self-organized, self-referential and anticipatory systems with multi-temporal multi-agents. Our first step is to provide foundations for modelling of emergent and evolving dynamic multi-level organic complexes and their sustentative processes in artificial and natural life systems. Main applications are in life sciences, medicine, ecology and astrobiology, as well as robotics, industrial automation, man-machine interface and creative design. Since 2011 over 100 scientists from a number of disciplines have been exploring a substantial set of theoretical frameworks for a comprehensive theory of life known as Integral Biomathics. That effort identified the need for a robust core model of organisms as dynamic wholes, using advanced and adequately computable mathematics. The work described here for that core combines the advantages of a situation and context aware multivalent computational logic for active self-organizing networks, Wandering Logic Intelligence (WLI), and a multi-scale dynamic category theory, Memory Evolutive Systems (MES), hence WLIMES. This is presented to the modeller via a formal augmented reality language as a first step towards practical modelling and simulation of multi-level living systems. Initial work focuses on the design and implementation of this visual language and calculus (VLC) and its graphical user interface. The results will be integrated within the current methodology and practices of theoretical biology and (personalized) medicine to deepen and to enhance the holistic understanding of life. Copyright © 2017 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
1974-08-01
Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...
POTENTIAL IMPACTS OF GENOMIC ON EPA REGULATORY AND RISK ASSESSMENT APPLICATIONS
Advances in molecular technology have led to the elucidation of full genomic sequences of several multicellular organisms, ranging from namatodes to man. The related molecular fields of proteomics and metabolomics are now beginning to advance rapidly as well. In addition, advan...
GODDESS: A Goal-Directed Decision Structuring System.
1980-06-01
differ- ent support techniques. From a practical viewpoint, though, the major drawback of manual interviews is their length and cost. Since real - time ...conducting his future inquiries. A direct man-machine interface could provide three distinct advantages. First, it offers the capability of real - time ...knowledge in tree form. In many real -world applications, the decision maker may not perceive a problem in the form of a time sequence of decision
Determination of Motion and Visual System Requirements for Flight Training Simulators
1981-08-01
maneuvers, and making use of the learned response of the aircraft by em- ploying increasingly more precognitive control actions. A convenient means of...istics, and external disturbances. Beyond this we also want to consider skill development in terms of compensatory, pursuit; and precognitive behavior...essentially complete knowledge of the man-machine characteristics, i.e., be a complete internal model. Although this might be H plausible at the precognitive
Un-Building Blocks: A Model of Reverse Engineering and Applicable Heuristics
2015-12-01
CONCLUSIONS The machine does not isolate man from the great problems of nature but plunges him more deeply into them. Antoine de Saint-Exupery— Wind ...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Reverse engineering is the problem -solving activity that ensues when one takes a...Douglas Moses, Vice Provost for Academic Affairs iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Reverse engineering is the problem -solving
The ZOG Technology Demonstration Project: A System Evaluation of USS CARL VINSON (CVN 70)
1984-12-01
part of a larger project involving development of a wide range of computer technologies, including artifcial intelligence and a long-range computer...shipboard manage- ment, aircraft management, expert systems, menu selection, man- machine interface, artificial intelligence , automation; shipboard It AWM...functions, planning, evaluation, training, hierarchical data bases The objective of this project was to conduct an evaluation of ZOG, a general purpose
1980-12-01
data un Israeli experience with troops lacking literacy , elementary education, and/or psychomotor skills required for many current military occupations...overview of the relationship of cognitive skills to training and performance, with special reference to man-machine systems, (,nd the problems that...effective use of troops with low educational levels and psychomotor skills . Some IDF reports on these subjects are known to exist, and some interviews
Machine-Assisted Translation in West Germany
1977-03-04
the Ger- man, English , French or Russian languages are recorded, where it is known that they have been used in translation or teaching assignments...German literary language encompasses about 300,000 words, English about 600,000, and the vocabulary of a person of average education is about...Terminology Recording and Evaluation Method ) was developed in the language service of the Siemens company in Munich as an aid for in-house application
Man-Machine Interaction: Operator.
1984-06-01
EASTER OF SCIENCI I COMPUTER SCIENCE Justification from the Distribution/ Availability Codes NAVal POSTGBADUATE SCHOOL Avail and/or June 1984 Dlst...Few pecple, if any, remember everything they see or hear but an anazingly large amount of material can be recalled years after it has been acquired...and skill, learning takes tine. The time required for the learning process will generally vary with the coaplexity of the material cr task he is
Grounding the RPA Force: Why Machine Needs Man
2016-06-01
emotional stressors, the perception of inequality amongst peers, and lower school and promotion selection rates have led to highly qualified RPA...operational tempo, a challenge with addressing the mental and emotional stressors placed on the RPA operators, a sense of inequality from within the pilot...pilots and concerns over what that may mean to the pilots’ mental health . Wayne Chappelle, chief of aerospace psychology at the Air Force School of
Recent developments in turning hardened steels - A review
NASA Astrophysics Data System (ADS)
Sivaraman, V.; Prakash, S.
2017-05-01
Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.
Task-oriented display design - Concept and example
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
1989-01-01
The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.
Design of handwriting drawing board based on common copper clad laminate
NASA Astrophysics Data System (ADS)
Wang, Hongyuan; Gao, Wenzhi; Wang, Yuan
2015-02-01
Handwriting drawing board is not only a subject which can be used to write and draw, but also a method to measure and process weak signals. This design adopts 8051 single chip microprocessor as the main controller. It applies a constant-current source[1][2] to copper plate and collects the voltage value according to the resistance divider effect. Then it amplifies the signal with low-noise and high-precision amplifier[3] AD620 which is placed in the low impedance and anti-interference pen. It converts analog signal to digital signal by an 11-channel, 12-bit A/D converter TLC2543. Adoption of average filtering algorithm can effectively improve the measuring accuracy, reduce the error and make the collected voltage signal more stable. The accurate position can be detected by scanning the horizontal and vertical ordinates with the analog switch via the internal bridge of module L298 which can change the direction of X-Y axis signal scan. DM12864 is used as man-machine interface and this hominization design is convenient for man-machine communication. This collecting system has high accuracy, high stability and strong anti-interference capability. It's easy to control and has very large development space in the future.
Task-oriented display design: Concept and example
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
1989-01-01
The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.
Albrecht Ludwig Berblinger--inventor of the spring prosthesis and hang-glider (1811).
Harsch, Viktor; Kriebel, Juergen
2006-10-01
Albrecht Ludwig Berblinger (1770-1829), known as the "Flying Tailor of Ulm", started with flight experiments in Ulm, Germany, in the early 19th century. He gained experience in downhill gliding with a maneuverable airworthy semi-rigid hang-glider and then attempted to cross the Danube River at Ulm's Eagle's Bastion on the 31st of May 1811. The tricky local winds caused him to crash and he was rescued by fishermen, making him the first survivor of a water immersion accident of a heavier-than-air manned "flight machine". Though he failed in his attempt to be the first man to fly, Berblinger can be regarded as one of the significant aviation pioneers who applied the "heavier than air" principle and paved the way for the more effective glide-flights of Otto Lilienthal (1891) and the Wright Brothers (1902). Less known are Berblinger's significant contributions to the construction of artificial limbs for medical use, as well as the spring-application in aviation. His invention of a special mechanical joint was also used for the juncture of the wings of his "flying machine". Because of his worthwhile contributions to medicine and flight, in 1993 the German Academy of Aviation Medicine named an annual award for young scientists in the field of aerospace medicine in his honor.
Exploration of the utility of military man in space in the year 2025
NASA Astrophysics Data System (ADS)
Hansen, Daniel L.
1992-03-01
It is absolutely essential for the well being of today's space forces as well as the future space forces of 2025, that DOD develop manned advanced technology space systems in lieu of or in addition to unmannned systems to effectively utilize mulitary man's compelling and aggressive warfighting abilities to accomplish the critical wartime mission elements of space control and force application. National space policy, military space doctrine and common all dictate they should do so if space superiority during future, inevitable conflict with enemy space forces is the paramount objective. Deploying military man in space will provide that space superiority and he will finally become the 'center of gravity' of the U.S. space program.
The determination of effective injury controls for metal-cutting lathe operators.
Etherton, J R; Trump, T R; Jensen, R C
1981-01-01
Operators of metal-working lathes are one of the largest manufacturing machine worker populations in the United States. Machines (other than vehicular) account for over 10% of occupational injuries each year. An estimated 3,400 operators of metal-working lathes suffer lost-time injuries annually in the United States. Some of these are fatal. Therefore an investigation was undertaken to determine methods for reducing injuries to lathe operators. Three methods were used: (i) review of injury reports, (ii) human factors analysis, and (iii) fault-tree procedures. The investigation followed the man-machine systems approach of looking for injury-producing dysfunctions between the lathe and the lathe operator. The major sources of injury were found to be chips and workholding devices. Secondary tasks were found to be more hazardous than is generally recognized. The use of three methods for approaching the problem was found to be useful in that injury controls were identified which are likely to be adopted because of their potential for improving safety without adversely affecting productivity.
Use of Advanced Machine-Learning Techniques for Non-Invasive Monitoring of Hemorrhage
2010-04-01
that state-of-the-art machine learning techniques when integrated with novel non-invasive monitoring technologies could detect subtle, physiological...decompensation. Continuous, non-invasively measured hemodynamic signals (e.g., ECG, blood pressures, stroke volume) were used for the development of machine ... learning algorithms. Accuracy estimates were obtained by building models using 27 subjects and testing on the 28th. This process was repeated 28 times
1985-11-01
also the combat system design for the proposed new attack submarine class, SSN 21. In December 1983, the Navy awarded the International Business Machines...VI: Comments From International Business 35 Machines Corporation Abbreviations DNSARC Department of the Navy Systems Acquisition Review Council DSARC...Defense Systems Acquisition Review Council GAO General Accounting Office IBM International Business Machines Corporation NAVsEA Naval Sea Systems
Applications of space teleoperator technology to the problems of the handicapped
NASA Technical Reports Server (NTRS)
Malone, T. B.; Deutsch, S.; Rubin, G.; Shenk, S. W.
1973-01-01
The identification of feasible and practical applications of space teleoperator technology for the problems of the handicapped were studied. A teleoperator system is defined by NASA as a remotely controlled, cybernetic, man-machine system designed to extend and augment man's sensory, manipulative, and locomotive capabilities. Based on a consideration of teleoperator systems, the scope of the study was limited to an investigation of these handicapped persons limited in sensory, manipulative, and locomotive capabilities. If the technology being developed for teleoperators has any direct application, it must be in these functional areas. Feasible and practical applications of teleoperator technology for the problems of the handicapped are described, and design criteria are presented with each application. A development plan is established to bring the application to the point of use.
Space power technology into the 21st century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1984-01-01
This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.
Space power technology into the 21st Century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1983-01-01
The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.
DART: Delta Advanced Reusable Transport. An alternate manned space system proposal
NASA Technical Reports Server (NTRS)
1991-01-01
The Delta Advanced Reusable Transport (DART) craft is being developed to add, multiple, rapid, and cost effective space access to the U.S. capability and to further the efforts towards a permanent space presence. The DART craft provides an augmentative and an alternative system to the Shuttle. As a supplement launch vehicle, the DART adds low cost and easily accessible transport of crew and cargo to specific space destinations to the U.S. program. This adds significant opportunities for manned rated missions that do not require Shuttle capabilities. In its alternative role, the DART can provide emergency space access and satellite repair, the continuation of scientific research, and the furthering of U.S. manned efforts in the event of Shuttle incapabilities. In addition, the DART is being designed for Space Station Freedom compatibility, including its use as a 'lifeboat' emergency reentry craft for Freedom astronauts, as well as the transport of crew and cargo for station resupply.
Advanced Platform Systems Technology study. Volume 2: Trade study and technology selection
NASA Technical Reports Server (NTRS)
1983-01-01
Three primary tasks were identified which include task 1-trade studies, task 2-trade study comparison and technology selection, and task 3-technology definition. Task 1 general objectives were to identify candidate technology trade areas, determine which areas have the highest potential payoff, define specific trades within the high payoff areas, and perform the trade studies. In order to satisfy these objectives, a structured, organized approach was employed. Candidate technology areas and specific trades were screened using consistent selection criteria and considering possible interrelationships. A data base comprising both manned and unmanned space platform documentation was used as a source of system and subsystem requirements. When requirements were not stated in the data base documentation, assumptions were made and recorded where necessary to characterize a particular spacecraft system. The requirements and assumptions were used together with the selection criteria to establish technology advancement goals and select trade studies. While both manned and unmanned platform data were used, the study was focused on the concept of an early manned space station.
Photovoltaics for high capacity space power systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.
Photovoltaics for high capacity space power systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.
Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks
Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo
2012-01-01
Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190
NASA Technical Reports Server (NTRS)
Powell, Ferolyn T.; Sedej, Melaine; Lin, Chin
1987-01-01
NASA has completed an environmental control and life support system (ECLSS) technology R&D plan for advanced missions which gave attention to the drivers (crew size, mission duration, etc.) of a range of manned missions under consideration. Key planning guidelines encompassed a time horizon greater than 50 years, funding resource requirements, an evolutionary approach to goal definition, and the funding of more than one approach to satisfy a given perceived requirement. Attention was given to the ECLSS requirements of transportation and service vehicles, platforms, bases and settlements, ECLSS functions and average load requirements, unique drivers for various missions, and potentially exploitable commonalities among vehicles and habitats.
Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars
NASA Technical Reports Server (NTRS)
Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin
1994-01-01
Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.
Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars
NASA Astrophysics Data System (ADS)
Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin; Ralston, Michael
1994-06-01
Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.
Machine Translation: The Alternative for the 21st Century?
ERIC Educational Resources Information Center
Cribb, V. Michael
2000-01-01
Outlines a scenario for the future of Teaching English as a Second or Other Languages that has seldom, if ever been considered in academic discussion: that advances in and availability of quality machine translation could mitigate the need for English language learning. (Author/VWL)
Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method
NASA Astrophysics Data System (ADS)
Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.
2017-03-01
One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.
Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter
2017-06-28
High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org. Copyright © 2017 Elsevier Inc. All rights reserved.
Trends and developments in industrial machine vision: 2013
NASA Astrophysics Data System (ADS)
Niel, Kurt; Heinzl, Christoph
2014-03-01
When following current advancements and implementations in the field of machine vision there seems to be no borders for future developments: Calculating power constantly increases, and new ideas are spreading and previously challenging approaches are introduced in to mass market. Within the past decades these advances have had dramatic impacts on our lives. Consumer electronics, e.g. computers or telephones, which once occupied large volumes, now fit in the palm of a hand. To note just a few examples e.g. face recognition was adopted by the consumer market, 3D capturing became cheap, due to the huge community SW-coding got easier using sophisticated development platforms. However, still there is a remaining gap between consumer and industrial applications. While the first ones have to be entertaining, the second have to be reliable. Recent studies (e.g. VDMA [1], Germany) show a moderately increasing market for machine vision in industry. Asking industry regarding their needs the main challenges for industrial machine vision are simple usage and reliability for the process, quick support, full automation, self/easy adjustment at changing process parameters, "forget it in the line". Furthermore a big challenge is to support quality control: Nowadays the operator has to accurately define the tested features for checking the probes. There is an upcoming development also to let automated machine vision applications find out essential parameters in a more abstract level (top down). In this work we focus on three current and future topics for industrial machine vision: Metrology supporting automation, quality control (inline/atline/offline) as well as visualization and analysis of datasets with steadily growing sizes. Finally the general trend of the pixel orientated towards object orientated evaluation is addressed. We do not directly address the field of robotics taking advances from machine vision. This is actually a fast changing area which is worth an own contribution.
Human-machine interface for a VR-based medical imaging environment
NASA Astrophysics Data System (ADS)
Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans
1997-05-01
Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.
The Modern Integrated Anaesthesia Workstation
Patil, Vijaya P; Shetmahajan, Madhavi G; Divatia, Jigeeshu V
2013-01-01
Over the years, the conventional anaesthesia machine has evolved into an advanced carestation. The new machines use advanced electronics, software and technology to offer extensive capabilities for ventilation, monitoring, inhaled agent delivery, low-flow anaesthesia and closed-loop anaesthesia. They offer integrated monitoring and recording facilities and seamless integration with anaesthesia information systems. It is possible to deliver tidal volumes accurately and eliminate several hazards associated with the low pressure system and oxygen flush. Appropriate use can result in enhanced safety and ergonomy of anaesthetic delivery and monitoring. However, these workstations have brought in a new set of limitations and potential drawbacks. There are differences in technology and operational principles amongst the new workstations. Understand the principles of operation of these workstations and have a thorough knowledge of the operating manual of the individual machines. PMID:24249877
Robotic inspection of fiber reinforced composites using phased array UT
NASA Astrophysics Data System (ADS)
Stetson, Jeffrey T.; De Odorico, Walter
2014-02-01
Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.
Rationale and Roadmap for Moon Exploration
NASA Astrophysics Data System (ADS)
Foing, B. H.; ILEWG Team
We discuss the different rationale for Moon exploration. This starts with areas of scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life. The rationale includes also the advancement of instrumentation: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package; Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector. There are technologies in robotic and human exploration that are a drive for the creativity and economical competitivity of our industries: Mecha-electronics-sensors; Tele control, telepresence, virtual reality; Regional mobility rover; Autonomy and Navigation; Artificially intelligent robots, Complex systems, Man-Machine interface and performances. Moon-Mars Exploration can inspire solutions to global Earth sustained development: In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental protection aspects; Life sciences laboratories; Support to human exploration. We also report on the IAA Cosmic Study on Next Steps In Exploring Deep Space, and ongoing IAA Cosmic Studies, ILEWG/IMEWG ongoing activities, and we finally discuss possible roadmaps for robotic and human exploration, starting with the Moon-Mars missions for the coming decade, and building effectively on joint technology developments.
NASA Astrophysics Data System (ADS)
Peinsipp-Byma, E.; Geisler, Jürgen; Bader, Thomas
2009-05-01
System concepts for network enabled image-based ISR (intelligence, surveillance, reconnaissance) is the major mission of Fraunhofer IITB's applied research in the area of defence and security solutions. For the TechDemo08 as part of the NATO CNAD POW Defence against terrorism Fraunhofer IITB advanced a new multi display concept to handle the shear amount and high complexity of ISR data acquired by networked, distributed surveillance systems with the objective to support the generation of a common situation picture. Amount and Complexity of ISR data demands an innovative man-machine interface concept for humans to deal with it. The IITB's concept is the Digital Map & Situation Surface. This concept offers to the user a coherent multi display environment combining a horizontal surface for the situation overview from the bird's eye view, an attached vertical display for collateral information and so-called foveatablets as personalized magic lenses in order to obtain high resolved and role-specific information about a focused areaof- interest and to interact with it. In the context of TechDemo08 the Digital Map & Situation Surface served as workspace for team-based situation visualization and analysis. Multiple sea- and landside surveillance components were connected to the system.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1990-01-01
All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.
Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials
NASA Astrophysics Data System (ADS)
Guo, Xiaoguang; Li, Qiang; Liu, Tao; Kang, Renke; Jin, Zhuji; Guo, Dongming
2017-03-01
Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However, these materials display poor machinability because of their hard and brittle properties. Damages such as surface micro-crack and subsurface damage often occur during machining of hard and brittle materials. Ultra-precision machining is widely used in processing hard and brittle materials to obtain nanoscale machining quality. However, the theoretical mechanism underlying this method remains unclear. This paper provides a review of present research on the molecular dynamics simulation of ultra-precision machining of hard and brittle materials. The future trends in this field are also discussed.
Knowledge Discovery and Data Mining in Iran's Climatic Researches
NASA Astrophysics Data System (ADS)
Karimi, Mostafa
2013-04-01
Advances in measurement technology and data collection is the database gets larger. Large databases require powerful tools for analysis data. Iterative process of acquiring knowledge from information obtained from data processing is done in various forms in all scientific fields. However, when the data volume large, and many of the problems the Traditional methods cannot respond. in the recent years, use of databases in various scientific fields, especially atmospheric databases in climatology expanded. in addition, increases in the amount of data generated by the climate models is a challenge for analysis of it for extraction of hidden pattern and knowledge. The approach to this problem has been made in recent years uses the process of knowledge discovery and data mining techniques with the use of the concepts of machine learning, artificial intelligence and expert (professional) systems is overall performance. Data manning is analytically process for manning in massive volume data. The ultimate goal of data mining is access to information and finally knowledge. climatology is a part of science that uses variety and massive volume data. Goal of the climate data manning is Achieve to information from variety and massive atmospheric and non-atmospheric data. in fact, Knowledge Discovery performs these activities in a logical and predetermined and almost automatic process. The goal of this research is study of uses knowledge Discovery and data mining technique in Iranian climate research. For Achieve This goal, study content (descriptive) analysis and classify base method and issue. The result shown that in climatic research of Iran most clustering, k-means and wards applied and in terms of issues precipitation and atmospheric circulation patterns most introduced. Although several studies in geography and climate issues with statistical techniques such as clustering and pattern extraction is done, Due to the nature of statistics and data mining, but cannot say for internal climate studies in data mining and knowledge discovery techniques are used. However, it is necessary to use the KDD Approach and DM techniques in the climatic studies, specific interpreter of climate modeling result.
Assessing Advanced Technology in CENATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallent, Nathan R.; Barker, Kevin J.; Gioiosa, Roberto
PNNL's Center for Advanced Technology Evaluation (CENATE) is a new U.S. Department of Energy center whose mission is to assess and facilitate access to emerging computing technology. CENATE is assessing a range of advanced technologies, from evolutionary to disruptive. Technologies of interest include the processor socket (homogeneous and accelerated systems), memories (dynamic, static, memory cubes), motherboards, networks (network interface cards and switches), and input/output and storage devices. CENATE is developing a multi-perspective evaluation process based on integrating advanced system instrumentation, performance measurements, and modeling and simulation. We show evaluations of two emerging network technologies: silicon photonics interconnects and the Datamore » Vortex network. CENATE's evaluation also addresses the question of which machine is best for a given workload under certain constraints. We show a performance-power tradeoff analysis of a well-known machine learning application on two systems.« less
ERIC Educational Resources Information Center
Woodard, Colin
2006-01-01
This article describes the latest advancement in the development of prosthetic arms. Bionic researchers are making significant advances in creating more agile prosthetics that users can control via their own nervous system. The bionic arm, which is still under development, can not only execute complex, thought-controlled movements, but also can…