Science.gov

Sample records for advanced manned launch

  1. Advanced Manned Launch System (AMLS) study

    NASA Technical Reports Server (NTRS)

    Ehrlich, Carl F., Jr.; Potts, Jack; Brown, Jerry; Schell, Ken; Manley, Mary; Chen, Irving; Earhart, Richard; Urrutia, Chuck; Randolph, Ray; Morris, Jim

    1992-01-01

    To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed.

  2. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  3. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Astrophysics Data System (ADS)

    Duffy, James B.

    1993-12-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  4. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  5. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  6. Design challenges for tomorrow's manned launch systems

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.

    1993-01-01

    This paper attempts to capture some of the technical and national challenges facing the design of America's next manned launch system (MLS). There are three basic paths for pursuing tomorrow's MLS; each with variations. Some characteristics that will be sought regardless of the concept selected include low development (or front-end) and life-cycle costs, safety, operability, availability, and a host of other 'ilities'. In order to discriminate among the concepts, a robust design environment and a variety of new and improved analysis tools are needed that produce critical metrics in a timely, efficient manner from a large study space. This paper presents some of the challenges in development, integration, and application of optimization, costing, operations modeling, and several engineering disciplinary tools including geometry modeling, structures, aerodynamics/aeroheating, and trajectory/performance.

  7. Advanced small launch vehicle study

    NASA Technical Reports Server (NTRS)

    Reins, G. E.; Alvis, J. F.

    1972-01-01

    A conceptual design study was conducted to determine the most economical (lowest cost/launch) approach for the development of an advanced small launch vehicle (ASLV) for use over the next decade. The ASLV design objective was to place a 340 kg (750 lb) payload into a 556 km (300 n.mi.) circular orbit when launched due east from Wallops Island, Virginia. The investigation encompassed improvements to the current Scout launch vehicle; use of existing military and NASA launch vehicle stages; and new, optionally staged vehicles. Staging analyses included use of liquid, solid, and hybrid propellants. Improvements in guidance, controls, interstages, telemetry, and payload shroud were also considered. It was concluded that the most economical approach is to progressively improve the Scout launch vehicle in three phased steps which are discussed.

  8. The Advanced Launch System (ALS)

    NASA Astrophysics Data System (ADS)

    Eldred, Charles H.

    The Advanced Launch System (ALS) is an unmanned vehicle that will achieve low hardware cost by using a reusable booster stage which flies back to the launch site, and a core stage in which the rocket engines and redundant avionics are in a module that is returned to earth and recovered for reuse. The booster's utilization of liquid propellant instead of solid propellant will help lower the consumable costs. The ALS also includes launch processing and flight control facilities, necessary support equipment, and ground- and flight-operations infrastructure. The ALS program studies show that, through the ALS, the United States can launch a major Mars initiative economically and with confidence. It is estimated that the objective ALS can be operational in the late 1990s.

  9. Advanced manned earth-to-orbit vehicle

    NASA Astrophysics Data System (ADS)

    Eldred, Charles H.

    1986-10-01

    Advanced manned launch vehicle concepts which are designed to meet the space transportation architecture and mission needs for the early 21st century are described. Concepts are described which are based both on modest (evolutionary) and revolutionary advancements in performance technologies but with emphasis on defining operations cost. Design options feature fully reusable, vertical-takeoff, horizontal-landing, rocket-powered concepts and include a variety of possible staging arrangements depending on the desired mission emphasis and the available technologies.

  10. NASA Manned Launch Vehicle Lightning Protection Development

    NASA Technical Reports Server (NTRS)

    McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.

    2009-01-01

    Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle

  11. Safety and mission capabilities of manned launch vehicles

    NASA Astrophysics Data System (ADS)

    Utz, H.; Hornik, A.; Sax, H.; Loetzerich, K.

    In this paper we compare and discuss the safety of vertical launched manned spacecraft: capsules as well as winged vehicles. As examples we use HERMES and a manned capsule suitable for ARIANE 5. In the calculations we use ARIANE 5 as launcher for the compared vehicles. The installation of safety and rescue systems like ejection seats or rescue capsules always leads to additional weight and usually causes a reduction of payload capability. Due to relatively low launching rates it is hard to obtain exact safety data of manned space vehicles and launchers. Therefore we discuss the relative safety gains of different rescue systems by investigating their properties, such as mission capabilities, weight and operational aspects. We also consider the advantages of these rescue systems for the safety of manned spacecraft. The main criterion of our comparison is the payload that each type of manned vehicle is able to transport in LEO under nearly equal safety conditions during ascent - i.e., by installing comparable rescue systems. Capsules offer a better payload capability then winged launch vehicles. The advantages of winged launch vehicles must be paid for by essential loss of margins for additional safety equipment. Operational aspects like mision abort during ascent and payload accommodation are also included in this comparison.

  12. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Work breakdown structure and work breakdown structure dictionary

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1992-01-01

    The report describes the work breakdown structure (WBS) and its associated WBS dictionary for task area 1 of contract NAS8-39207, advanced transportation system studies (ATSS). This WBS format is consistent with the preliminary design level of detail employed by both task area 1 and task area 4 in the ATSS study and is intended to provide an estimating structure for parametric cost estimates.

  13. Launch strategy for manned spacecraft: Improving safety or increasing of launch mass?

    NASA Astrophysics Data System (ADS)

    Murtazin, Rafail; Petrov, Nikolay; Ulybyshev, Yuri

    2011-09-01

    Traditionally the launch mass of a crew vehicle with a launch abort system (LAS) should be in compliance with the ultimate launch vehicle (LV) payload mass capability. The LAS is used to provide crew safety in the case of LV failure. An additional propellant for the LV (that exceeds the mass of propellant required for the injection into a nominal orbit) may contribute to crew safety in the case of LV failures. Currently rescue strategies used to provide emergency landing or splashdown along the ground track (for a spacecraft with a low lift-to-drag ratio ( L/D), such as the Soyuz descent capsule) or landing on a back-up runway located near the flight path (for spacecraft with a high L/D, such as the Buran or Space Shuttle Orbiter). The advanced Russian human spacecraft with a low L/D that delivers crew to the International Space Station is designed to launch from the new Vostochny launch site. Major part of the LV ground track will pass over the Pacific Ocean. It means that any rescue operation will be challenging and complex. The paper explores possible launch abort strategies when an additional LV propellant is used. The optimal strategy is to provide a controlled abort landing into specified areas. The number and size of the areas should be minimal in order to minimize search-and-rescue time. A qualitative comparison between the traditional and proposed strategies is shortly discussed.

  14. Cost and Economics for Advanced Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Whitfield, Jeff

    1998-01-01

    Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.

  15. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  16. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  17. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  18. Evaluation of advanced propulsion options for the next manned transportation system: Propulsion evolution study

    NASA Technical Reports Server (NTRS)

    Spears, L. T.; Kramer, R. D.

    1990-01-01

    The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.

  19. Delta Advanced Reusable Transport (DART): An alternative manned spacecraft

    NASA Technical Reports Server (NTRS)

    Lewerenz, T.; Kosha, M.; Magazu, H.

    1991-01-01

    Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.

  20. Delta Advanced Reusable Transport (DART): An alternative manned spacecraft

    NASA Astrophysics Data System (ADS)

    Lewerenz, T.; Kosha, M.; Magazu, H.

    Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.

  1. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  2. Man-machine interface requirements - advanced technology

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  3. A Geometric Analysis to Protect Manned Assets from Newly Launched Objects - COLA Gap Analysis

    NASA Technical Reports Server (NTRS)

    Hametz, Mark E.; Beaver, Brian A.

    2012-01-01

    A safety risk was identified for the International Space Station (ISS) by The Aerospace Corporation following the launch of GPS IIR-20 (March 24, 2009), when the spent upper stage of the launch vehicle unexpectedly crossed inside the ISS notification box shortly after launch. This event highlighted a 56-hour vulnerability period following the end of the launch Collision Avoidance (COLA) process where the ISS would be unable to react to a conjunction with a newly launched object. Current launch COLA processes screen each launched object across the launch window to determine if an object's nominal trajectory is predicted to pass within 200 km of the ISS (or any other manned/mannable object), resulting in a launch time closure. These launch COLA screens are performed from launch through separation plus I 00 minutes. Once the objects are in orbit, they are cataloged and evaluated as part of routine on-orbit conjunction assessment processes. However, as the GPS IIR-20 scenario illustrated, there is a vulnerability period in the time line between the end of launch COLA coverage and the beginning of standard on-orbit COLA assessment activities. The gap between existing launch and on-orbit COLA processes is driven by the time it takes to track and catalog a launched object, identify a conjunction, and plan and execute a collision avoidance maneuver. For the ISS, the total time required to accomplish an of these steps is 56 hours. To protect human lives, NASA/JSC has requested that an US launches take additional steps to protect the ISS during this "COLA gap" period. The uncertainty in the state of a spent upper stage can be quite large after all bums are complete and all remaining propellants are expelled to safe the stage. Simply extending the launch COLA process an additional 56 hours is not a viable option as the 3-sigma position uncertainty will far exceed the 200 km miss-distance criterion. Additionally, performing a probability of collision (Pc) analysis over this

  4. Advanced Electric Propulsion for RLV Launched Geosynchronous Spacecraft

    NASA Technical Reports Server (NTRS)

    Oleson, Steven

    1999-01-01

    Solar Electric Propulsion (SEP) when used for station keeping and final orbit insertion has been shown to increase a geostationary satellite's payload when launched by existing expendable launch vehicles. In the case of reusable launch vehicles or expendable launch vehicles where an upper stage is an expensive option, this methodology can be modified by using the existing on-board apogee chemical system to perform a perigee burn and then letting the electric propulsion system complete the transfer to geostationary orbit. The elimination of upper stages using on-board chemical and electric propulsion systems was thus examined for GEO spacecraft. Launch vehicle step-down from an Atlas IIAR to a Delta 7920 (no upper stage) was achieved using expanded on-board chemical tanks, 40 kW payload power for electric propulsion, and a 60 day elliptical to GEO SEP orbit insertion. Optimal combined chemical and electric trajectories were found using SEPSPOT. While Hall and ion thrusters provided launch vehicle step-down and even more payload for longer insertion times, NH3 arcjets had insufficient performance to allow launch vehicle step-down. Degradation levels were only 5% to 7% for launch step-down cases using advanced solar arrays. Results were parameterized to allow comparisons for future reusable launch vehicles. Results showed that for an 8 W/kg initial power/launch mass power density spacecraft, 50% to 100% more payload can be launched using this method.

  5. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Astrophysics Data System (ADS)

    1993-10-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  6. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  7. High Voltage EEE Parts for EMA/EHA Applications on Manned Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Griffin, Trent; Young, David

    2011-01-01

    The objective of this paper is an assessment of high voltage electronic components required for high horsepower electric thrust vector control (TVC) systems for human spaceflight launch critical application. The scope consists of creating of a database of available Grade 1 electrical, electronic and electromechanical (EEE) parts suited to this application, a qualification path for potential non-Grade 1 EEE parts that could be used in these designs, and pathfinder testing to validate aspects of the proposed qualification plan. Advances in the state of the art in high power electric power systems enable high horsepower electric actuators, such as the electromechnical actuator (EMA) and the electro-hydrostatic actuator (EHA), to be used in launch vehicle TVC systems, dramaticly reducing weight, complexity and operating costs. Designs typically use high voltage insulated gate bipolar transistors (HV-IGBT). However, no Grade 1 HV-IGBT exists and it is unlikely that market factors alone will produce such high quality parts. Furthermore, the perception of risk, the lack of qualification methodoloy, the absence of manned space flight heritage and other barriers impede the adoption of commercial grade parts onto the critical path. The method of approach is to identify high voltage electronic component types and key parameters for parts currently used in high horsepower EMA/EHA applications, to search for higher quality substitutes and custom manufacturers, to create a database for these parts, and then to explore ways to qualify these parts for use in human spaceflight launch critical application, including grossly derating and possibly treating hybrid parts as modules. This effort is ongoing, but results thus far include identification of over 60 HV-IGBT from four manufacturers, including some with a high reliability process flow. Voltage ranges for HV-IGBT have been identified, as has screening tests used to characterize HV-IGBT. BSI BS ISO 21350 Space systems Off

  8. Manned Mars lander launch-to-rendezvous analysis for a 1981 Venus-swingby mission

    NASA Technical Reports Server (NTRS)

    Faust, N. L.; Murtagh, T. B.

    1971-01-01

    A description is given of the return of a manned Mars lander by a launch from the surface of Mars to some intermediate orbit, with subsequent maneuvers to rendezvous with a primary spacecraft (called the orbiter) in a Mars parking orbit. The type of Mars mission used to demonstrate the analytical technique includes a Venus swingby on the Mars-to-Earth portion of the trajectory in order to reduce the total mission velocity requirement. The total velocity requirement for the mission considered (if inplane launches are assumed) is approximately 17,500 ft/sec.

  9. The National Launch System Advanced Development Program: A brief overview

    NASA Technical Reports Server (NTRS)

    Battenburg, J. A.

    1993-01-01

    A broad-based Advanced Development Program is being conducted to modernize the technological base and support the systems design of the National Launch System. While the principal concentration of efforts has been in propulsion, significant work is being accomplished in all of the disciplinary areas associated with space launch. Tasks are selected that offer reduced costs, increased reliability, and enhanced operability with anticipated task completion times which are consistent with NLS development.

  10. Man-machine cooperation in advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Das, Hari; Lee, Sukhan

    1993-01-01

    Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.

  11. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  12. Space Launch System Advanced Development Office, FY 2013 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2013-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013.

  13. Robust Neighboring Optimal Guidance for the Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Hull, David G.

    1993-01-01

    In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.

  14. Prospects for advanced rocket-powered launch vehicles

    NASA Astrophysics Data System (ADS)

    Eldred, C. H.; Talay, T. A.

    1986-10-01

    The potential for advanced rocket-powered launch vehicles to meet the challenging cost, operational, and performance demands of space transportation in the early 21st century is examined. Space transportation requirements from recent studies underscoring the need for growth in capacity in support of an increasing diversity of space activities and the need for significant reductions in operational and life-cycle costs are reviewed. Fully reusable rocket powered concepts based on moderate levels of evolutionary advanced technology are described. These vehicles provide a broad range of attractive concept alternatives with the potential to meet demanding operational and cost goals and the flexibility to satisfy a variety of vehicle architecture, mission, vehicle concept, and technology options.

  15. Prospects for advanced rocket-powered launch vehicles

    NASA Astrophysics Data System (ADS)

    Eldred, Charles H.; Talay, Theodore A.

    The potential for advanced rocket-powered launch vehicles to meet the challenging cost, operational, and performance demands of space transportation in the early 21st century is examined. Space transportation requirements from recent studies underscoring the need for growth in capacity in support of an increasing diversity of space activities and the need for significant reductions in operational and life-cycle costs are reviewed. Fully reusable rocket powered concepts based on moderate levels of evolutionary advanced technology are described. These vehicles provide a broad range of attractive concept alternatives with the potential to meet demanding operational and cost goals and the flexibility to satisfy a variety of vehicle architecture, mission, vehicle concept, and technology options.

  16. Advanced launch vehicle system concepts: An historical overview

    NASA Astrophysics Data System (ADS)

    Ehrlich, Carl F.

    1997-01-01

    Many studies leading to advanced launch vehicle system concepts have been undertaken during the years leading to the Space Shuttle development and since it was started. All of these have focused on nebulous and wide-ranging mission requirements. As a result, many launch system concepts have been defined, each addressing a different mission, yielding a wide range of points of departure once the "real" mission, or missions, have been identified. Future studies have this database available from which to depart once the "real" next generation mission is defined. This paper discusses some of the main issues surrounding the development of future systems. This subject really addresses the three principal requirements needed to be resolved for these systems to come into being: system architecture—what does the system look like and what is its makeup?, technologies—what are the technologies required to make the new system a successful venture and meet the requirements set forth in the mission statement?, and finally, the mission—what do we need to do and when?. The principal focus here will be on the past studies reviewing past concepts which address particular aspects of potential mission requirements with technology development and concepts discussed as we go along.

  17. Advanced launch vehicle system concepts: An historical overview

    SciTech Connect

    Ehrlich, C.F. Jr.

    1997-01-01

    Many studies leading to advanced launch vehicle system concepts have been undertaken during the years leading to the Space Shuttle development and since it was started. All of these have focused on nebulous and wide-ranging mission requirements. As a result, many launch system concepts have been defined, each addressing a different mission, yielding a wide range of points of departure once the {open_quotes}real{close_quotes} mission, or missions, have been identified. Future studies have this database available from which to depart once the {open_quotes}real{close_quotes} next generation mission is defined. This paper discusses some of the main issues surrounding the development of future systems. This subject really addresses the three principal requirements needed to be resolved for these systems to come into being: system architecture{emdash}what does the system look like and what is its makeup?, technologies{emdash}what are the technologies required to make the new system a successful venture and meet the requirements set forth in the mission statement?, and finally, the mission{emdash}what do we need to do and when?. The principal focus here will be on the past studies reviewing past concepts which address particular aspects of potential mission requirements with technology development and concepts discussed as we go along. {copyright} {ital 1997 American Institute of Physics.}

  18. Techniques for developing approximate optimal advanced launch system guidance

    NASA Technical Reports Server (NTRS)

    Feeley, Timothy S.; Speyer, Jason L.

    1991-01-01

    An extension to the authors' previous technique used to develop a real-time guidance scheme for the Advanced Launch System is presented. The approach is to construct an optimal guidance law based upon an asymptotic expansion associated with small physical parameters, epsilon. The trajectory of a rocket modeled as a point mass is considered with the flight restricted to an equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of this problem can be separated into primary effects due to thrust and gravitational forces, and perturbation effects which include the aerodynamic forces and the remaining inertial forces. An analytic solution to the reduced-order problem represented by the primary dynamics is possible. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form.

  19. Robust neighboring extremal guidance for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Bain, John; Speyer, Jason L.

    1993-01-01

    With the availability of modern flight computers, realtime neighboring extremal guidance seems feasible. To overcome sensitivity to unknown system parameters and environmental uncertainties, a robust neighboring extremal guidance scheme is proposed. About the optimal trajectory, the accessory problem in the calculus of variations is formed, generating a quadratic cost criterion in the perturbed states and controls. By formulating a disturbance attenuation problem based upon the second variation cost criterion, a differential game is formulated. The game theoretic cost criterion is minimized with respect to the perturbed control but maximized with respect to the unknown parameters in the linearized dynamics. The resulting differential game problem gives rise to a two-point boundary-value problem solved using the sweep method. The sweep method solution provides a linear robust neighboring extremal guidance scheme that is applied to the Advanced Launch System.

  20. DART: Delta Advanced Reusable Transport. An alternate manned space system proposal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Delta Advanced Reusable Transport (DART) craft is being developed to add, multiple, rapid, and cost effective space access to the U.S. capability and to further the efforts towards a permanent space presence. The DART craft provides an augmentative and an alternative system to the Shuttle. As a supplement launch vehicle, the DART adds low cost and easily accessible transport of crew and cargo to specific space destinations to the U.S. program. This adds significant opportunities for manned rated missions that do not require Shuttle capabilities. In its alternative role, the DART can provide emergency space access and satellite repair, the continuation of scientific research, and the furthering of U.S. manned efforts in the event of Shuttle incapabilities. In addition, the DART is being designed for Space Station Freedom compatibility, including its use as a 'lifeboat' emergency reentry craft for Freedom astronauts, as well as the transport of crew and cargo for station resupply.

  1. Advanced water iodinating system. [for potable water aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.

    1975-01-01

    Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.

  2. An advanced neutron spectrometer for future manned exploration missions

    NASA Astrophysics Data System (ADS)

    Christl, Mark

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with lithium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators.

  3. An Advanced Neutron Spectrometer for Future Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; Norwood, Joseph K.; Merril, Garrick W.; Watts, John W.; Sabra, Mohammad S.; Smith, Dennis A.; Rodriquez-Otero, Miguel A.

    2014-01-01

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

  4. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  5. Advanced launch system trajectory optimization using suboptimal control

    NASA Technical Reports Server (NTRS)

    Shaver, Douglas A.; Hull, David G.

    1993-01-01

    The maximum-final mass trajectory of a proposed configuration of the Advanced Launch System is presented. A model for the two-stage rocket is given; the optimal control problem is formulated as a parameter optimization problem; and the optimal trajectory is computed using a nonlinear programming code called VF02AD. Numerical results are presented for the controls (angle of attack and velocity roll angle) and the states. After the initial rotation, the angle of attack goes to a positive value to keep the trajectory as high as possible, returns to near zero to pass through the transonic regime and satisfy the dynamic pressure constraint, returns to a positive value to keep the trajectory high and to take advantage of minimum drag at positive angle of attack due to aerodynamic shading of the booster, and then rolls off to negative values to satisfy the constraints. Because the engines cannot be throttled, the maximum dynamic pressure occurs at a single point; there is no maximum dynamic pressure subarc. To test approximations for obtaining analytical solutions for guidance, two additional optimal trajectories are computed: one using untrimmed aerodynamics and one using no atmospheric effects except for the dynamic pressure constraint. It is concluded that untrimmed aerodynamics has a negligible effect on the optimal trajectory and that approximate optimal controls should be able to be obtained by treating atmospheric effects as perturbations.

  6. Study on fault-tolerant processors for advanced launch system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Liu, Jyh-Charn

    1990-01-01

    Issues related to the reliability of a redundant system with large main memory are addressed. The Fault-Tolerant Processor (FTP) for the Advanced Launch System (ALS) is used as a basis for the presentation. When the system is free of latent faults, the probability of system crash due to multiple channel faults is shown to be insignificant even when voting on the outputs of computing channels is infrequent. Using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing redundancy or the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by those CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs (with a very low hardware overhead) can be used to dramatically reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, two different schemes were developed to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.

  7. Project APEX: Advanced manned exploration of the Martian moon Phobos

    NASA Technical Reports Server (NTRS)

    Eisley, Joe G.; Akers, Jim

    1992-01-01

    A preliminary design has been developed for a manned mission to the Martian moon Phobos. The spacecraft is to carry a crew of five and will be launched from Low Earth Orbit in the year 2010. The outbound trajectory to Mars uses a gravitational assisted swingby of Venus and takes eight months to complete. The stay at Phobos is scheduled for 60 days. During this time, the crew will be busily engaged in setting up a prototype fuel processing facility. The vehicle will then return to Earth orbit after a total mission duration of 656 days. The spacecraft is powered by three nuclear thermal rockets which also provide the primary electrical power via dual mode operation. The overall spacecraft length is 110 m, and the total mass departing from Low Earth Orbit is 900 metric tons.

  8. Wash water reclamation technology for advanced manned spacecraft

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.

    1977-01-01

    The results of an analytical study and assessment of state-of-the-art wash water reclamation technology for advanced manned spacecraft is presented. All non-phase-change unit operations, unit processes, and subsystems currently under development by NASA are considered. Included among these are: filtration, ultrafiltration, carbon adsorption, ion exchange, chemical pretreatment, reverse osmosis, hyperfiltration, and certain urea removal techniques. Performance data are given together with the projected weights and sizes of key components and subsystems. In the final assessment, a simple multifiltration approach consisting of surface-type cartridge filters, carbon adsorption and ion exchange resins receives the highest rating for six-man orbital missions of up to 10 years in duration.

  9. A Geometric Analysis to Protect Manned Assets from Newly Launched Objects - Cola Gap Analysis

    NASA Technical Reports Server (NTRS)

    Hametz, Mark E.; Beaver, Brian A.

    2013-01-01

    A safety risk was identified for the International Space Station (ISS) by The Aerospace Corporation, where the ISS would be unable to react to a conjunction with a newly launched object following the end of the launch Collision Avoidance (COLA) process. Once an object is launched, there is a finite period of time required to track, catalog, and evaluate that new object as part of standard onorbit COLA screening processes. Additionally, should a conjunction be identified, there is an additional period of time required to plan and execute a collision avoidance maneuver. While the computed prelaunch probability of collision with any object is extremely low, NASA/JSC has requested that all US launches take additional steps to protect the ISS during this "COLA gap" period. This paper details a geometric-based COLA gap analysis method developed by the NASA Launch Services Program to determine if launch window cutouts are required to mitigate this risk. Additionally, this paper presents the results of several missions where this process has been used operationally.

  10. Advanced Crew Rescue Vehicle/Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Craig, Jerry W.

    1993-01-01

    The Advanced Crew Rescue Vehicle (ACRV) will be an essential element of the Space Station to respond to three specific missions, all of which have occurred during the history space exploration by the U.S. and the Soviets: (1) Mission DRM-1: Return of disabled crew members during medical emergencies; (2) Mission DRM-2: Return of crew members from accidents or as a result of failures of Space Station systems; and (3) Mission DRM-3: Return of crew members during interruption of Space Shuttle launches. The ACRV will have the ability to transport up to eight astronauts during a 24-hour mission. Not only would the ACRV serve as a lifeboat to provide transportation back to Earth, but it would also be available as a immediately available safe refuge in case the Space Station were severely damaged by space debris or other catastrophe. Upon return to Earth, existing world-wide search and rescue assets operated by the Coast Guard and Department of Defense would be able to retrieve personnel returned to Earth via the ACRV. The operational approach proposed for the ACRV is tailored to satisfying mission requirements for simplicity of operation (no piloting skills or specially trained personnel are required), continuous availability, high reliability and affordability. By using proven systems as the basis for many critical ACRV systems, the ACRV program is more likely to achieve each of these mission requirements. Nonetheless, the need for the ACRV to operate reliably with little preflight preparation after, perhaps, 5 to 10 years in orbit imposes challenges not faced by any previous space system of this complexity. Specific concerns exist regarding micrometeoroid impacts, battery life, and degradation of recovery parachutes while in storage.

  11. Task 8.6 -- Advanced man machine interface (MMI)

    SciTech Connect

    1997-12-31

    The Solar/DOE ATS engine program seeks to improve the utilization of turbomachinery resources through the development of an Advanced Man Machine Interface (MMI). The program goals include timely and succinct feedback to the operations personnel to enhance their decision making process. As part of the Solar ATS Phase 2 technology development program, enabling technologies, including graphics environments, communications technology, and operating systems were explored to determine their viability to support the overall MMI requirements. This report discusses the research and prototyping effort, as well as the conclusions reached.

  12. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  13. Man-machine interface builders at the Advanced Photon Source

    SciTech Connect

    Anderson, M.D.

    1991-12-31

    Argonne National Laboratory is constructing a 7-GeV Advanced Photon Source for use as a synchrotron radiation source in basic and applied research. The controls and computing environment for this accelerator complex includes graphical operator interfaces to the machine based on Motif, X11, and PHIGS/PEX. Construction and operation of the control system for this accelerator relies upon interactive interface builder and diagram/editor type tools, as well as a run-time environment for the constructed displays which communicate with the physical machine via network connections. This paper discusses our experience with several commercial CUI builders, the inadequacies found in these, motivation for the development of an application- specific builder, and design and implementation strategies employed in the development of our own Man-Machine Interface builder. 5 refs.

  14. Man-machine interface builders at the Advanced Photon Source

    SciTech Connect

    Anderson, M.D.

    1991-01-01

    Argonne National Laboratory is constructing a 7-GeV Advanced Photon Source for use as a synchrotron radiation source in basic and applied research. The controls and computing environment for this accelerator complex includes graphical operator interfaces to the machine based on Motif, X11, and PHIGS/PEX. Construction and operation of the control system for this accelerator relies upon interactive interface builder and diagram/editor type tools, as well as a run-time environment for the constructed displays which communicate with the physical machine via network connections. This paper discusses our experience with several commercial CUI builders, the inadequacies found in these, motivation for the development of an application- specific builder, and design and implementation strategies employed in the development of our own Man-Machine Interface builder. 5 refs.

  15. Weight and cost forecasting for advanced manned space vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  16. Optimal guidance law development for an advanced launch system

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Leung, Martin S. K.

    1995-01-01

    The objective of this research effort was to develop a real-time guidance approach for launch vehicles ascent to orbit injection. Various analytical approaches combined with a variety of model order and model complexity reduction have been investigated. Singular perturbation methods were first attempted and found to be unsatisfactory. The second approach based on regular perturbation analysis was subsequently investigated. It also fails because the aerodynamic effects (ignored in the zero order solution) are too large to be treated as perturbations. Therefore, the study demonstrates that perturbation methods alone (both regular and singular perturbations) are inadequate for use in developing a guidance algorithm for the atmospheric flight phase of a launch vehicle. During a second phase of the research effort, a hybrid analytic/numerical approach was developed and evaluated. The approach combines the numerical methods of collocation and the analytical method of regular perturbations. The concept of choosing intelligent interpolating functions is also introduced. Regular perturbation analysis allows the use of a crude representation for the collocation solution, and intelligent interpolating functions further reduce the number of elements without sacrificing the approximation accuracy. As a result, the combined method forms a powerful tool for solving real-time optimal control problems. Details of the approach are illustrated in a fourth order nonlinear example. The hybrid approach is then applied to the launch vehicle problem. The collocation solution is derived from a bilinear tangent steering law, and results in a guidance solution for the entire flight regime that includes both atmospheric and exoatmospheric flight phases.

  17. Recent Advances in Launch Vehicle Toxic Hazard and Risk Analysis

    NASA Astrophysics Data System (ADS)

    Nyman, R. L.

    2012-01-01

    A number of widely used rocket propellants produce toxic combustion byproducts or are themselves toxic in their un-reacted state. In this paper we focus on the methodology used to evaluate early flight catastrophic failures and nominal launch emissions that release large amounts of propellant or combustion products into the planetary boundary layer that pose a potential risk to launch area personnel, spectators, or the general public. The United States has traditionally used the Rocket Exhaust Effluent Diffusion Model (REEDM) [1] to access the hazard zones associated with such releases. REEDM is a 1970's vintage Gaussian atmospheric dispersion model that is limited in its ability to accurately simulate certain aspects of the initial source geometry and dynamics of a vehicle breakup and propellant fragment dispersion. The Launch Area Toxic Risk Analysis 3-Dimensional (LATRA3D) [2] computer program has been developed that addresses many of REEDM's deficiencies. LATRA3D is a probabilistic risk analysis tool that simulates both nominal vehicle flight and in-flight failure emissions.

  18. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  19. Advanced aviation technology for reusable launch vehicle improvement

    NASA Astrophysics Data System (ADS)

    Filatyev, Alexander S.; Buzuluk, Valentin; Yanova, Olga; Ryabukha, Nikolay; Petrov, Andrey

    2014-07-01

    The new project of a spacecraft launcher (SL) with reusable winged 1st stage boosters (RWB) developed by Khrunichev Space Center is considered. Since SL is operated in the atmosphere only, it makes sense to employ technologies which may be new for the space industry but have been applied in aviation. Particular attention is given to RWB power-off reentry to a suitable airfield along the ascent lane instead of direct flying back to the launch site after staging, as well as a profound controlled RWB reconfiguration before reentry. The paper talks about results of integrated analysis of aerodynamics, through-optimized trajectories and masses of the RWB and SL, as well as an expert assessment of the maintenance costs sufficient to substantiate effectiveness of the recovery airfields solution in terms of the payload mass, launch reliability, and operational costs reduction. Four RWB layouts are considered, including ones with a delta- and unswept tilting wing, with and without subsonic air-breathing engines, and the original RWB-transformer. Objective peculiarities of the RWB recovery are highlighted for Russian and Kourou cosmodromes.

  20. Robust perturbation guidance for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Speyer, Jason L.; Jarmark, Bernt S. A.

    1989-01-01

    Real-time optimal trajectory generation for constructing guidance laws seems feasible. However, these deterministic guidance schemes may be sensitive to system and environmental uncertainties. To overcome this deficiency, it is suggested that the accessory problem about an optimal path, which generates a quadratic cost criterion in the perturbed states and control away from the optimal trajectory, be used as the cost criterion. A modified quadratic cost is minimized with respect to the perturbed control but maximized with respect to additive uncertainties in the linearized dynamics and in the linearized measurements. In this way, a robust neighboring optimum scheme is constructed. A perturbed guidance scheme is stated. To illustrate the theory, the second stage of a launch vehicle is considered. An optimal path is generated, and about this path a robust neighboring optimum guidance law is constructed and tested.

  1. Optimal guidance law development for an advanced launch system

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Hodges, Dewey H.; Leung, Martin S.; Bless, Robert R.

    1991-01-01

    The proposed investigation on a Matched Asymptotic Expansion (MAE) method was carried out. It was concluded that the method of MAE is not applicable to launch vehicle ascent trajectory optimization due to a lack of a suitable stretched variable. More work was done on the earlier regular perturbation approach using a piecewise analytic zeroth order solution to generate a more accurate approximation. In the meantime, a singular perturbation approach using manifold theory is also under current investigation. Work on a general computational environment based on the use of MACSYMA and the weak Hamiltonian finite element method continued during this period. This methodology is capable of the solution of a large class of optimal control problems.

  2. Advanced launch system (ALS) actuation and power systems impact operability and cost

    SciTech Connect

    Sundberg, G.R. . Lewis Research Center)

    1990-09-01

    To obtain the advanced launch system (ALS) primary goals of reduced costs ($300/lb earth to LEO) and improved operability, there must be significant reductions in the launch operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using electrical actuation integrated with a single vehicle electrical power system and controls for all actuation and avionics requirements. This paper reviews the ALS and its associated advanced development program to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the ALS goals (cryogenic fuel valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles and a multitude of commercial applications.

  3. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  4. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    NASA Technical Reports Server (NTRS)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  5. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  6. Approximate optimal guidance for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Feeley, T. S.; Speyer, J. L.

    1993-01-01

    A real-time guidance scheme for the problem of maximizing the payload into orbit subject to the equations of motion for a rocket over a spherical, non-rotating earth is presented. An approximate optimal launch guidance law is developed based upon an asymptotic expansion of the Hamilton - Jacobi - Bellman or dynamic programming equation. The expansion is performed in terms of a small parameter, which is used to separate the dynamics of the problem into primary and perturbation dynamics. For the zeroth-order problem the small parameter is set to zero and a closed-form solution to the zeroth-order expansion term of Hamilton - Jacobi - Bellman equation is obtained. Higher-order terms of the expansion include the effects of the neglected perturbation dynamics. These higher-order terms are determined from the solution of first-order linear partial differential equations requiring only the evaluation of quadratures. This technique is preferred as a real-time, on-line guidance scheme to alternative numerical iterative optimization schemes because of the unreliable convergence properties of these iterative guidance schemes and because the quadratures needed for the approximate optimal guidance law can be performed rapidly and by parallel processing. Even if the approximate solution is not nearly optimal, when using this technique the zeroth-order solution always provides a path which satisfies the terminal constraints. Results for two-degree-of-freedom simulations are presented for the simplified problem of flight in the equatorial plane and compared to the guidance scheme generated by the shooting method which is an iterative second-order technique.

  7. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  8. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  9. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  10. Utilization of a bipolar lead acid battery for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Gentry, William O.; Vidas, Robin; Miles, Ronald; Eckles, Steven

    1991-01-01

    The development of a battery comprised of bipolar lead acid modules is discussed. The battery is designed to satisfy the requirements of the Advanced Launch System (ALS). The battery will have the following design features: (1) conventional lead acid chemistry; (2) thin electrode/active materials; (3) a thin separator; (4) sealed construction (gas recombinant); and (5) welded plastic frames for the external seal.

  11. Advanced transportation system studies. Technical area 2: Heavy lift launch vehicle development. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sections 10 to 13 of the Advanced Transportation System Studies final report are included in this volume. Section 10 contains a copy of an executive summary that was prepared by Lockheed Space Operations Company (LSOC) to document their support to the TA-2 contract during the first-year period of performance of the contract, May 1992 through May 1993. LSOC participated on the TA-2 contract as part of the concurrent engineering launch system definition team, and provided outstanding heavy lift launch vehicle (HLLV) ground operations requirements and concept assessments for Lockheed Missiles and Space Company (LMSC) through an intercompany work transfer as well as providing specific HLLV ground operations assessments at the direction of NASA KSC through KSC funding that was routed to the TA-2 contract. Section 11 contains a copy of a vehicle-independent, launch system health management requirements assessment. The purpose of the assessment was to define both health management requirements and the associated interfaces between a generic advanced transportation system launch vehicle and all related elements of the entire transportation system, including the ground segment. Section 12 presents the major TA-2 presentations provided to summarize the significant results and conclusions that were developed over the course of the contract. Finally, Section 13 presents the design and assessment report on the first lunar outpost heavy lift launch vehicle.

  12. The advanced launch system: Application of total quality management principles to low-cost space transportation system development

    NASA Astrophysics Data System (ADS)

    Wolfe, M. G.; Rothwell, T. G.; Rosenberg, D. A.; Oliver, M. B.

    Recognizing that a major inhibitor of man's rapid expansion of the use of space is the high cost (direct and induced) of space transportation, the U.S. has embarked on a major national program to radically reduce the cost of placing payloads into orbit while, at the same time, making equally radical improvements inlaunch system operability. The program is entitled "The Advanced Launch System" (ALS) and is a joint Department of Defense/National Aeronautics and Space Administration (DoD/NASA) program which will provide launch capability in the post 2000 timeframe. It is currently in Phase II (System Definition), which began in January 1989, and will serve as a major source of U.S. launch system technology over the next several years. The ALS is characterized by a new approach to space system design, development, and operation. The practices that are being implemented by the ALS are expected to affect the management and technical operation of all future launch systems. In this regard, the two most significant initiatives being implemented on the ALS program are the practices of Total Quality Management (TQM) and the Unified Information System (Unis). TQM is a DoD initiative to improve the quality of the DoD acquisition system, contractor management systems, and the technical disciplines associated with the design, development, and operation of major systems. TQM has been mandated for all new programs and affects the way every group within the system currently does business. In order to implement the practices of TQM, new methods are needed. A program on the scale of the ALS generates vast amounts of information which must be used effectively to make sound decisions. Unis is an information network that will connect all ALS participants throughout all phases of the ALS development. Unis is providing support for project management and system design, and in following phases will provide decision support for launch operations, computer integrated manufacturing, automated

  13. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  14. Design of advanced turbopump drive turbines for National Launch System application

    NASA Technical Reports Server (NTRS)

    Huber, F. W.; Johnson, P. D.; Montesdeoca, X. A.; Rowey, R. J.; Griffin, L. W.

    1992-01-01

    The aerodynamic design of advanced fuel and oxidizer pump drive turbine systems being developed for application in the main propulsion system of the National Launch System are discussed. The detail design process is presented along with the final baseline fuel and oxidizer turbine configurations. Computed airfoil surface static pressure distributions and flow characteristics are shown. Both turbine configurations employ unconventional high turning blading (approximately 160 deg) and are expected to provide significant cost and performance benefits in comparison with traditional configurations.

  15. English 591, 592, and 593--Advance Program: Images of Man.

    ERIC Educational Resources Information Center

    Jefferson County Board of Education, Louisville, KY.

    For those students who qualify, the Advance Program offers an opportunity to follow a stimulating curriculum designed for the academically talented. The purposes of the course outlined in this guide for twelfth grade English are to bring the previous three years' studies in Advance Program English to a meaningful culmination; to provide a…

  16. Space Launch System Spacecraft/Payloads Integration and Evolution Office Advanced Development FY 2014 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2015-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 36 separate tasks were funded by ADO in FY 2014.

  17. Advanced research to qualify man for long term weightlessness.

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1972-01-01

    NASA is in the process of conducting a broad program of research and development of technology to qualify, support, and permit the successful use of man in long-term space flight. The technological tasks include human engineering, extravehicular engineering, life support, and human research to assess the effect of space stresses on human physiology and psychology. Various testing techniques that are being used may have future relevance to world health. These include a biocybernetic approach to the study of cardiovascular stresses, measurement of blood flow by means of the Doppler effect, and a device for simulating radiation dosages similar to those produced in solar flares. The planned program includes a study of both humans and animals.

  18. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  19. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    NASA Astrophysics Data System (ADS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  20. Reusable launch vehicles, enabling technology for the development of advanced upper stages and payloads

    NASA Astrophysics Data System (ADS)

    Metzger, John D.

    1998-01-01

    In the near future there will be classes of upper stages and payloads that will require initial operation at a high-earth orbit to reduce the probability of an inadvertent reentry that could result in a detrimental impact on humans and the biosphere. A nuclear propulsion system, such as was being developed under the Space Nuclear Thermal Propulsion (SNTP) Program, is an example of such a potential payload. This paper uses the results of a reusable launch vehicle (RLV) study to demonstrate the potential importance of a Reusable Launch Vehicle (RLV) to test and implement an advanced upper stage (AUS) or payload in a safe orbit and in a cost effective and reliable manner. The RLV is a horizontal takeoff and horizontal landing (HTHL), two-stage-to-orbit (TSTO) vehicle. The results of the study shows that an HTHL is cost effective because it implements airplane-like operation, infrastructure, and flight operations. The first stage of the TSTO is powered by Rocket-Based-Combined-Cycle (RBCC) engines, the second stage is powered by a LOX/LH rocket engine. The TSTO is used since it most effectively utilizes the capability of the RBCC engine. The analysis uses the NASA code POST (Program to Optimize Simulated Trajectories) to determine trajectories and weight in high-earth orbit for AUS/advanced payloads. Cost and reliability of an RLV versus current generation expandable launch vehicles are presented.

  1. Reusable launch vehicles, enabling technology for the development of advanced upper stages and payloads

    SciTech Connect

    Metzger, John D.

    1998-01-15

    In the near future there will be classes of upper stages and payloads that will require initial operation at a high-earth orbit to reduce the probability of an inadvertent reentry that could result in a detrimental impact on humans and the biosphere. A nuclear propulsion system, such as was being developed under the Space Nuclear Thermal Propulsion (SNTP) Program, is an example of such a potential payload. This paper uses the results of a reusable launch vehicle (RLV) study to demonstrate the potential importance of a Reusable Launch Vehicle (RLV) to test and implement an advanced upper stage (AUS) or payload in a safe orbit and in a cost effective and reliable manner. The RLV is a horizontal takeoff and horizontal landing (HTHL), two-stage-to-orbit (TSTO) vehicle. The results of the study shows that an HTHL is cost effective because it implements airplane-like operation, infrastructure, and flight operations. The first stage of the TSTO is powered by Rocket-Based-Combined-Cycle (RBCC) engines, the second stage is powered by a LOX/LH rocket engine. The TSTO is used since it most effectively utilizes the capability of the RBCC engine. The analysis uses the NASA code POST (Program to Optimize Simulated Trajectories) to determine trajectories and weight in high-earth orbit for AUS/advanced payloads. Cost and reliability of an RLV versus current generation expandable launch vehicles are presented.

  2. Commercial and operational impacts on design for the Hotol advanced launch vehicle

    NASA Astrophysics Data System (ADS)

    Salt, D. J.; Parkinson, R. C.

    1990-10-01

    The development of future Space exploration and exploitation will be paced by launch system capabilities. Current systems are high cost, low reliability, unavailable and inflexible when compared to other forms of transport. Advanced launch systems now being proposed (Hotol, Saenger, NASP) seek to dramatically reduce these drawbacks, particularly to reduce the cost of transport into low earth orbit. There is a more severe requirement on vehicle design and operation than hitherto. The high cost of vehicle losses require system reliability and survivability. Survivability requires an extensive abort capability in all phases of flight. Achieving low operational costs places requirements on vehicle maintainability, turn-around and integration, and the requirements for achieving a high flight rate without compromising system reliability or resiliency. The paper considers the way in which commercial and operational aspects have affected the physical design of the Hotol system.

  3. A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Fogle, Frank (Technical Monitor)

    2002-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety/reliability and cost requirements for the next generation of reusable launch vehicle (RLV). This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies would have saved a RLV with the same failure mode, the additional vehicle problems where this technology applies, and the costs associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is at the point where we can took to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AG&C, current technology efforts, and the additional work needed for making this goal a reality.

  4. Advanced Deuterium Fusion Rocket Propulsion for Manned Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    Excluding speculations about future breakthrough discoveries in physics, it is shown that with what is at present known, and also what is technically feasible, manned space flight to the limits of the solar system and beyond deep into the Oort cloud is quite possible. Using deuterium as the rocket fuel of choice, abundantly available on the comets of the Oort cloud, rockets driven by deuterium fusion can there be refuelled. To obtain a high thrust with high specific impulse favours the propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The cost to develop this kind of a propulsion system in space would be very high, but it can also be developed on Earth by a magnetically insulated Super Marx Generator. Since the ignition of deuterium is theoretically possible with the Super Marx Generator, making obsolete the ignition of deuterium-tritium with a laser, where 80% of the energy goes into neutrons, this would also mean a breakthrough in fusion research, and therefore would justify the large development costs.

  5. Advanced Development Projects for Constellation From The Next Generation Launch Technology Program Elements

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Saiyed, Naseem H.; Swith, Marion Shayne

    2005-01-01

    When United States President George W. Bush announced the Vision for Space Exploration in January 2004, twelve propulsion and launch system projects were being pursued in the Next Generation Launch Technology (NGLT) Program. These projects underwent a review for near-term relevance to the Vision. Subsequently, five projects were chosen as advanced development projects by NASA s Exploration Systems Mission Directorate (ESMD). These five projects were Auxiliary Propulsion, Integrated Powerhead Demonstrator, Propulsion Technology and Integration, Vehicle Subsystems, and Constellation University Institutes. Recently, an NGLT effort in Vehicle Structures was identified as a gap technology that was executed via the Advanced Development Projects Office within ESMD. For all of these advanced development projects, there is an emphasis on producing specific, near-term technical deliverables related to space transportation that constitute a subset of the promised NGLT capabilities. The purpose of this paper is to provide a brief description of the relevancy review process and provide a status of the aforementioned projects. For each project, the background, objectives, significant technical accomplishments, and future plans will be discussed. In contrast to many of the current ESMD activities, these areas are providing hardware and testing to further develop relevant technologies in support of the Vision for Space Exploration.

  6. Post Launch Calibration and Testing of the Advanced Baseline Imager on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  7. Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization

    NASA Technical Reports Server (NTRS)

    Baker, Robert L.

    1993-01-01

    The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28.

  8. Post launch calibration and testing of the Advanced Baseline Imager on the GOES-R satellite

    NASA Astrophysics Data System (ADS)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  9. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, Donald; Mathias, Donovan; Reuther, James; Garn, Michelle

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  10. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    NASA Technical Reports Server (NTRS)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  11. Treatment of advanced heart failure in a young man with familial cardiomyopathy.

    PubMed Central

    Massin, E K

    1998-01-01

    We report the case of a young man with familial cardiomyopathy whose symptoms became difficult to control as his myopathy worsened. He had persistent cardiac arrhythmias and was intolerant of angiotensin-converting enzyme inhibitor therapy. His case illustrates the difficulties that can be encountered in treating patients with advanced heart failure. PMID:9885106

  12. An analytical framework for determining life cycle cost implications of the advanced launch system

    NASA Astrophysics Data System (ADS)

    Stockman, William K.

    1988-12-01

    The product of this research effort was a simplified cost analysis tool that can be used to determine life cycle costs for the Advanced Launch System. The major objective was to develop a tool that would allow quick analysis of proposals and provide data input in a timely fashion. This effort produced a core program that can be used to determine life cycle costs as a function of system components, production infrastructures, reliability assumptions and flexible mission models. The life cycle cost model can operate in either a deterministic or stochastic mode depending on user inputs. An additional effort modeled the production infrastructure using a network flow system. This system modeled the flow of the basic vehicle components from initial production through final launch. The analysis tool uses a commercially available spreadsheet package available for most personal computers. The analyst using this program operates in a user-friendly environment that simplifies data input and problem formulation. The user has a wide variety of output formats and graphics options that simplify report generation.

  13. The Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Piland, William M.; Talay, Theodore A.; Stone, Howard W.

    1990-01-01

    NASA has begun to study candidate vehicles for manned access to space in support of the Space Station or other future missions requiring on-demand transportation of people to and from earth orbit. One such system, which would be used to complement the present Shuttle or an upgraded version, is the Personnel Launch System (PLS), which is envisioned as a reusable priority vehicle to place people and small payloads into orbit using an experimental launch vehicle. The design of the PLS is based on a Space Station crew changeout requirement whereby eight passengers and two crew members are flown to the station and a like number are returned within a 72 hour mission duration. Experimental and computational aerothermodynamic heating studies have been conducted using a new two-color thermographic technique that involved coating the model with a phosphor that radiates at varying color intensities as a function of temperature when illuminated with UV light. A full-scale model, the HL-20, has been produced and will be used for man-machine research. Three launch vehicle concepts are being considered, a Titan IV, the Advanced Launch System, and a Shuttle equipped with liquid rocket boosters.

  14. Finite element method for optimal guidance of an advanced launch vehicle

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin

    1992-01-01

    A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.

  15. A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin

    1989-01-01

    A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.

  16. 'Booster Recovery Module' - A reusability concept for the advanced launch system

    NASA Astrophysics Data System (ADS)

    Sedillo, Mark J.

    1990-07-01

    The aerospace industry is looking at different approaches to achieve a recurring cost goal of 300 $/lb to low earth orbit for the Advanced Launch System. A booster recovery module concept has been defined that takes advantage of a partial propulsion system reusability approach. An overview of a cost-effective, low risk propulsion system concept is presented. Booster engine recovery and reuse have been shown to be a viable option to reduce the engine system costs that result from both vehicle performance and operational requirements. A flight experiment is outlined to conduct a subscale booster recovery demonstration. This Atlas E flight experiment will also serve to determine cost-effective main engine options, such as: modularity, sea water effects/isolation, environmental limitations, assessment of existing margins and factors of safety, and selection of material.

  17. NASA's Space Launch System Advanced Booster Engineering Demonstration and/or Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Dumbacher, Daniel L.; May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, with a stated intent to reduce risks leading to an affordable advanced booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the advanced boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit (BEO), opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable advanced booster that meets the SLS performance requirements

  18. NASA's Space Launch System Advanced Booster Engineering Demonstration and Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; May, Todd; Dumbacher, Daniel

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, and its stated intent was to reduce risks leading to an affordable Advanced Booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the Advanced Boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the Advanced Boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit, opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable Advanced Booster that meets the SLS performance requirements. Demonstrations and

  19. Advanced X-ray Astrophysics Facility - Extending man's vision into the X-ray universe

    NASA Technical Reports Server (NTRS)

    Miller, Lee A.; Hammond, Walter E.; Ballance, Judy L. C.

    1990-01-01

    The Advanced X-ray Astrophysics Facility will open a clear window into the X-ray universe. This paper presents an overview of the history, objectives, and status of the program and its projected impact on man's knowledge of the cosmos. The program is shown to be a total system composed of subsystems and their interfaces, verification activities, operations considerations, and a comprehensive interface with the scientific community.

  20. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  1. Modelling an advanced ManPAD with dual band detectors and a rosette scanning seeker head

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Butters, Brian; Walmsley, Roy

    2012-01-01

    Man Portable Air Defence Systems (ManPADs) have been a favoured anti aircraft weapon since their appearance on the military proliferation scene in the mid 1960s. Since this introduction there has been a 'cat and mouse' game of Missile Countermeasures (CMs) and the aircraft protection counter counter measures (CCMs) as missile designers attempt to defeat the aircraft platform protection equipment. Magnesium Teflon Viton (MTV) flares protected the target aircraft until the missile engineers discovered the art of flare rejection using techniques including track memory and track angle bias. These early CCMs relied upon CCM triggering techniques such as the rise rate method which would just sense a sudden increase in target energy and assume that a flare CM had been released by the target aircraft. This was not as reliable as was first thought as aspect changes (bringing another engine into the field of view) or glint from the sun could inadvertently trigger a CCM when not needed. The introduction of dual band detectors in the 1980s saw a major advance in CCM capability allowing comparisons between two distinct IR bands to be made thus allowing the recognition of an MTV flare to occur with minimal false alarms. The development of the rosette scan seeker in the 1980s complemented this advancement allowing the scene in the missile field of view (FOV) to be scanned by a much smaller (1/25) instantaneous FOV (IFOV) with the spectral comparisons being made at each scan point. This took the ManPAD from a basic IR energy detector to a pseudo imaging system capable of analysing individual elements of its overall FOV allowing more complex and robust CCM to be developed. This paper continues the work published in [1,2] and describes the method used to model an advanced ManPAD with a rosette scanning seeker head and robust CCMs similar to the Raytheon Stinger RMP.

  2. NASA's Advanced Propulsion Technology Activities for Third Generation Fully Reusable Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2000-01-01

    NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.

  3. Advanced transportation system studies technical area 2(TA-2): Heavy lift launch vehicle development. volume 1; Executive summary

    NASA Technical Reports Server (NTRS)

    McCurry, J.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).

  4. Risk reduction activities for an F-1-based advanced booster for NASA's Space Launch System

    NASA Astrophysics Data System (ADS)

    Crocker, A. M.; Doering, K. B.; Cook, S. A.; Meadows, R. G.; Lariviere, B. W.; Bachtel, F. D.

    For NASA's Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) procurement, Dynetics, Inc. and Pratt & Whitney Rocketdyne (PWR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's goal of enabling competition on an affordable booster that meets the evolved capabilities of the SLS. During the ABEDRR effort, the Dynetics Team will apply state-of-the-art manufacturing and processing techniques to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. ABEDRR will use NASA test facilities to perform full-scale F-1 gas generator and powerpack hot-fire test campaigns for engine risk reduction. Dynetics will also fabricate and test a tank assembly to verify the structural design. The Dynetics Team is partnered with NASA through Space Act Agreements (SAAs) to maximize the expertise and capabilities applied to ABEDRR.

  5. Project APEX: Advanced Phobos Exploration. Manned mission to the Martian moon Phobos

    NASA Astrophysics Data System (ADS)

    1992-04-01

    The manned exploration of Mars is a massive undertaking which requires careful consideration. A mission to the moon of Mars called Phobos as a prelude to manned landings on the Martian surface offers some advantages. One is that the energy requirements, in terms of delta 5, is only slightly higher than going to the Moon's surface. Another is that Phobos is a potential source of water and carbon which could be extracted and processed for life support and cryogenic propellants for use in future missions; thus, Phobos might serve as a base for extended Mars exploration or for exploration of the outer planets. The design of a vehicle for such a mission is the subject of our Aerospace System Design course this year. The materials and equipment needed for the processing plant would be delivered to Phobos in a prior unmanned mission. This study focuses on what it would take to send a crew to Phobos, set up the processing plant for extraction and storage of water and hydrocarbons, conduct scientific experiments, and return safely to Earth. The size, configuration, and subsystems of the vehicle are described in some detail. The spacecraft carries a crew of five and is launched from low Earth orbit in the year 2010. The outbound trajectory to Mars uses a gravitational assisted swing by of Venus and takes eight months to complete. The stay at Phobos is 60 days at which time the crew will be engaged in setting up the processing facility. The crew will then return to Earth orbit after a total mission duration of 656 days. Both stellar and solar observations will be conducted on both legs of the mission. The design of the spacecraft addresses human factors and life science; mission analysis and control; propulsion; power generation and distribution; thermal control; structural analysis; and planetary, solar, and stellar science. A 0.5 g artificial gravity is generated during transit by spinning about the lateral body axis. Nuclear thermal rockets using hydrogen as fuel are

  6. Project APEX: Advanced Phobos Exploration. Manned mission to the Martian moon Phobos

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The manned exploration of Mars is a massive undertaking which requires careful consideration. A mission to the moon of Mars called Phobos as a prelude to manned landings on the Martian surface offers some advantages. One is that the energy requirements, in terms of delta 5, is only slightly higher than going to the Moon's surface. Another is that Phobos is a potential source of water and carbon which could be extracted and processed for life support and cryogenic propellants for use in future missions; thus, Phobos might serve as a base for extended Mars exploration or for exploration of the outer planets. The design of a vehicle for such a mission is the subject of our Aerospace System Design course this year. The materials and equipment needed for the processing plant would be delivered to Phobos in a prior unmanned mission. This study focuses on what it would take to send a crew to Phobos, set up the processing plant for extraction and storage of water and hydrocarbons, conduct scientific experiments, and return safely to Earth. The size, configuration, and subsystems of the vehicle are described in some detail. The spacecraft carries a crew of five and is launched from low Earth orbit in the year 2010. The outbound trajectory to Mars uses a gravitational assisted swing by of Venus and takes eight months to complete. The stay at Phobos is 60 days at which time the crew will be engaged in setting up the processing facility. The crew will then return to Earth orbit after a total mission duration of 656 days. Both stellar and solar observations will be conducted on both legs of the mission. The design of the spacecraft addresses human factors and life science; mission analysis and control; propulsion; power generation and distribution; thermal control; structural analysis; and planetary, solar, and stellar science. A 0.5 g artificial gravity is generated during transit by spinning about the lateral body axis. Nuclear thermal rockets using hydrogen as fuel are

  7. Advanced Transportation System Studies Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development Contract. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.

  8. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andrew M.; Doering, Kimberly B; Meadows, Robert G.; Lariviere, Brian W.; Graham, Jerry B.

    2015-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS; and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. For NASA's SLS ABEDRR procurement, Dynetics and AR formed a team to offer a series of full-scale risk mitigation hardware demonstrations for an affordable booster approach that meets the evolved capabilities of the SLS. To establish a basis for the risk reduction activities, the Dynetics Team developed a booster design that takes advantage of the flight-proven Apollo-Saturn F-1. Using NASA's vehicle assumptions for the SLS Block 2, a two-engine, F-1-based booster design delivers 150 mT (331 klbm) payload to LEO, 20 mT (44 klbm) above NASA's requirements. This enables a low-cost, robust approach to structural design. During the ABEDRR effort, the Dynetics Team has modified proven Apollo-Saturn components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the

  9. Advanced man-machine interface systems and advanced information management systems programs

    SciTech Connect

    Naser, J.; Gray, S.; Machiels, A.

    1997-12-01

    The Advanced Light Water Reactor (ALWR) Program started in the early 1980`s. This work involves the development and NRC review of the ALWR Utility Requirements Documents, the development and design certification of ALWR designs, the analysis of the Early Site Permit process, and the First-of-a-Kind Engineering for two of the ALWR plant designs. ALWRs will embody modern proven technology. However, technologies expected to be used in these plants are changing very rapidly so that additional capabilities will become available that will be beneficial for future plants. To remain competitive on a life-cycle basis in the future, the ALWR must take advantage of the best and most modem technologies available. 1 ref.

  10. Importance of the Natural Terrestrial Environment with Regard to Advanced Launch Vehicle Design and Development

    NASA Technical Reports Server (NTRS)

    Pearson, S. D.; Vaughan, W. W.; Batts, G. W.; Jasper, G. L.

    1996-01-01

    The terrestrial environment is an important forcing function in the design and development of the launch vehicle. The scope of the terrestrial environment includes the following phenomena: Winds; Atmospheric Thermodynamic Models and Properties; Thermal Radiation; U.S. and World Surface Environment Extremes; Humidity; Precipitation, Fog, and Icing; Cloud Characteristics and Cloud Cover Models; Atmospheric Electricity; Atmospheric Constituents; Vehicle Engine Exhaust and Toxic Chemical Release; Occurrences of Tornadoes and Hurricanes; Geological Hazards, and Sea States. One must remember that the flight profile of any launch vehicle is in the terrestrial environment. Terrestrial environment definitions are usually limited to information below 90 km. Thus, a launch vehicle's operations will always be influenced to some degree by the terrestrial environment with which it interacts. As a result, the definition of the terrestrial environment and its interpretation is one of the key launch vehicle design and development inputs. This definition is a significant role, for example, in the areas of structures, control systems, trajectory shaping (performance), aerodynamic heating and take off/landing capabilities. The launch vehicle's capabilities which result from the design, in turn, determines the constraints and flight opportunities for tests and operations.

  11. Changes in splicing factor expression are associated with advancing age in man.

    PubMed

    Holly, Alice C; Melzer, David; Pilling, Luke C; Fellows, Alexander C; Tanaka, Toshiko; Ferrucci, Luigi; Harries, Lorna W

    2013-09-01

    Human ageing is associated with decreased cellular plasticity and adaptability. Changes in alternative splicing with advancing age have been reported in man, which may arise from age-related alterations in splicing factor expression. We determined whether the mRNA expression of key splicing factors differed with age, by microarray analysis in blood from two human populations and by qRT-PCR in senescent primary fibroblasts and endothelial cells. Potential regulators of splicing factor expression were investigated by siRNA analysis. Approximately one third of splicing factors demonstrated age-related transcript expression changes in two human populations. Ataxia Telangiectasia Mutated (ATM) transcript expression correlated with splicing factor expression in human microarray data. Senescent primary fibroblasts and endothelial cells also demonstrated alterations in splicing factor expression, and changes in alternative splicing. Targeted knockdown of the ATM gene in primary fibroblasts resulted in up-regulation of some age-responsive splicing factor transcripts. We conclude that isoform ratios and splicing factor expression alters with age in vivo and in vitro, and that ATM may have an inhibitory role on the expression of some splicing factors. These findings suggest for the first time that ATM, a core element in the DNA damage response, is a key regulator of the splicing machinery in man.

  12. A view toward future launch vehicles - A civil perspective

    NASA Technical Reports Server (NTRS)

    Darwin, Charles R.; Austin, Gene; Varnado, Lee; Eudy, Glenn

    1989-01-01

    Prospective NASA launch vehicle development efforts, which in addition to follow-on developments of the Space Shuttle encompass the Shuttle-C cargo version, various possible Advanced Launch System (ALS) configurations, and various Heavy Lift Launch System (HLLS) design options. Fully and partially reusable manned vehicle alternatives are also under consideration. In addition to improving on the current Space Shuttle's reliability and flexibility, ALS and HLLV development efforts are expected to concentrate on the reduction of operating costs for the given payload-launch capability.

  13. Skin Temperatures During Unaided Egress: Unsuited and While Wearing the NASA Launch and Entry or Advanced Crew Escape Suits

    NASA Technical Reports Server (NTRS)

    Woodruff, Kristin K.; Lee, Stuart M. C.; Greenisen, Michael C.; Schneider, Suzanne M.

    2000-01-01

    The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.

  14. Space Launch System Animation

    NASA Video Gallery

    NASA is ready to move forward with the development of the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new national capability for human exploration be...

  15. An approach to optimal guidance of an advanced launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Leung, Martin S.; Calise, Anthony J.

    1990-01-01

    An approximate solution for the maximum payload trajectory of a two-stage launch vehicle using a regular perturbation technique is presented. A zero-order solution for a two-stage vehicle based on a flat-earth approximation and negligible atmospheric effects is obtained in closed form. High-order correction terms are obtained from the solution of nonhomogeneous, first-order linear differential equations by quadrature. This promises the capability for an onboard optimal guidance law implementation.

  16. Space Launch System NASA Research Announcement Advanced Booster Engineering Demonstration and/or Risk Reduction

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Craig, Kellie D.

    2011-01-01

    The intent of the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort is to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Key Concepts (1) Offerors must propose an Advanced Booster concept that meets SLS Program requirements (2) Engineering Demonstration and/or Risk Reduction must relate to the Offeror s Advanced Booster concept (3) NASA Research Announcement (NRA) will not be prescriptive in defining Engineering Demonstration and/or Risk Reduction

  17. The Advanced Launch System - Application of total quality management principles to low-cost space transportation system development

    NASA Astrophysics Data System (ADS)

    Wolfe, M. G.; Rothwell, T. G.; Oliver, M. B.; Rosenberg, D. A.

    1989-10-01

    The Advanced Launch System (ALS) is a joint NASA/DOD program for the development of a vehicle with expanded payload capabilities and improved economics in the post-year 2000 time-frame. The two most significant initiatives being implemented within the ALS program are those of Total Quality Management (TQM) and the Unified Information System, designated 'Unis'; attention is presently given to the former. TQM encompasses a variety of techniques which minimize variability in the design, manufacturing, production, and operation of a system. TQM is being implemented in the current, system-definition phase of the ALS.

  18. Advanced transportation system studies technical area 2 (TA-2): Heavy lift launch vehicle development. volume 3; Program Cost estimates

    NASA Technical Reports Server (NTRS)

    McCurry, J. B.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.

  19. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Graham, Bart

    2016-01-01

    Dynetics has designed innovative structure assemblies; manufactured them using Friction Stir Welding (FSW) to leverage NASA investments in tools, facilities, and processes; conducted proof and burst testing, demonstrating viability of design/build processes Dynetics/AR has applied state-of-the-art manufacturing and processing techniques to the heritage F-1, reducing risk for engine development Dynetics/AR has also made progress on technology demonstrations for ORSC cycle engine, which offers affordability and performance for both NASA and other launch vehicles Full-scale integrated oxidizer-rich test article. Testing will evaluate performance and combustion stability characteristics. Contributes to technology maturation for ox-rich staged combustion engines.

  20. Real-time approximate optimal guidance laws for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Speyer, Jason L.; Feeley, Timothy; Hull, David G.

    1989-01-01

    An approach to optimal ascent guidance for a launch vehicle is developed using an expansion technique. The problem is to maximize the payload put into orbit subject to the equations of motion of a rocket over a rotating spherical earth. It is assumed that the thrust and gravitational forces dominate over the aerodynamic forces. It is shown that these forces can be separated by a small parameter epsilon, where epsilon is the ratio of the atmospheric scale height to the radius of the earth. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in a series where the zeroth-order term (epsilon = 0) can be obtained in closed form. The zeroth-order problem is that of putting maximum payload into orbit subject to the equations of motion of a rocket in a vacuum over a flat earth. The neglected inertial and aerodynamic terms are included in higher order terms of the expansion, which are determined from the solution of first-order linear partial differential equations requiring only quadrature integrations. These quadrature integrations can be performed rapidly, so that real-time approximate optimization can be used to construct the launch guidance law.

  1. Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  2. Advanced launch vehicle upper stages using liquid propulsion and metallized propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, B. A.

    1990-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum particles are the metal additives. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellants for volume- and mass-constrained upper stages can deliver modest increases in performance for Low Earth Orbit to Geosynchronous Earth Orbit and other Earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System and Space Transportation System-Cargo launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  3. Evaluation of Advanced Thermal Protection Techniques for Future Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Cowart, Kris

    2001-01-01

    A method for integrating Aeroheating analysis into conceptual reusable launch vehicle RLV design is presented in this thesis. This process allows for faster turn-around time to converge a RLV design through the advent of designing an optimized thermal protection system (TPS). It consists of the coupling and automation of four computer software packages: MINIVER, TPSX, TCAT and ADS. MINIVER is an Aeroheating code that produces centerline radiation equilibrium temperatures, convective heating rates, and heat loads over simplified vehicle geometries. These include flat plates and swept cylinders that model wings and leading edges, respectively. TPSX is a NASA Ames material properties database that is available on the World Wide Web. The newly developed Thermal Calculation Analysis Tool (TCAT) uses finite difference methods to carry out a transient in-depth I-D conduction analysis over the center mold line of the vehicle. This is used along with the Automated Design Synthesis (ADS) code to correctly size the vehicle's thermal protection system JPS). The numerical optimizer ADS uses algorithms that solve constrained and unconstrained design problems. The resulting outputs for this process are TPS material types, unit thicknesses, and acreage percentages. TCAT was developed for several purposes. First, it provides a means to calculate the transient in-depth conduction seen by the surface of the TPS material that protects a vehicle during ascent and reentry. Along with the in-depth conduction, radiation from the surface of the material is calculated along with the temperatures at the backface and interior parts of the TPS material. Secondly, TCAT contributes added speed and automation to the overall design process. Another motivation in the development of TCAT is optimization.

  4. Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Piland, William M.

    2004-01-01

    A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.

  5. Advanced Launch Technology Life Cycle Analysis Using the Architectural Comparison Tool (ACT)

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.

    2015-01-01

    Life cycle technology impact comparisons for nanolauncher technology concepts were performed using an Affordability Comparison Tool (ACT) prototype. Examined are cost drivers and whether technology investments can dramatically affect the life cycle characteristics. Primary among the selected applications was the prospect of improving nanolauncher systems. As a result, findings and conclusions are documented for ways of creating more productive and affordable nanolauncher systems; e.g., an Express Lane-Flex Lane concept is forwarded, and the beneficial effect of incorporating advanced integrated avionics is explored. Also, a Functional Systems Breakdown Structure (F-SBS) was developed to derive consistent definitions of the flight and ground systems for both system performance and life cycle analysis. Further, a comprehensive catalog of ground segment functions was created.

  6. Measurement of Carbon Dioxide Accumulation and Physiological Function in the Launch and Entry and Advanced Crew Escape Suits

    NASA Technical Reports Server (NTRS)

    Bishop, Phillip; Greenisen, M. C.

    1997-01-01

    The Launch and Entry Suit (LES) and Advanced Crew Escape Suit (ACES) are worn by astronauts for launch and entry. Previous work by Waligora, et al., 1992, Waligora and Gilbert, 1992, and Dalrymple 1996, have found that carbon dioxide (CO2) accumulation in the LES/ACES helmet may be problematic. CO2 accumulation is important because high inspired levels of CO2 reduce physical function and pose a safety hazard (e.g. levels of CO2 accumulation of 3.6% in the Extravehicular Mobility Unit are sufficient to terminate Extra Vehicular Activities). My task was to design a suitable test protocol for determining the important physiological aspects of LES/ACES use. Three basic issues arose. First was the determination of the astronaut's CO2 inspiration during visor-down use at rest and during walking at 3.5 mph. A sub-issue was the impact of a pneumotach on CO2 since it has been previously observed that when the Aerosport pneumotach was used, performance seemed improved, which might be attributable to a lowered respiration rate when using the pneumotach. The second issue was the energy costs of waLking in the LES/ACES with various G-suit inflation levels, since G-suit inflation increases metabolic costs and metabolic costs influence the C02 production in the LES/ACES helmet. Since G-suit inflation improves orthostatic tolerance after space flight, but likely increases the energy costs of walking, the balance between G-suit inflation and C02 accumulation is an important safety consideration. The third issue which arose from pilot work was the substantial reduction in physical function after a 10 min visor-down period prior to walk.

  7. The Advanced Re-Entry Vehicle (ARV) a Development Step from ATV Toward Manned Transportation Systems

    NASA Astrophysics Data System (ADS)

    Bottacini, M.; Berthe, P.; Vo, X.; Pietsch, K.

    2011-08-01

    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of un-pressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU's); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and deorbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat- hield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a

  8. The Advanced Re-Entry Vehicle (ARV) A Development Step From ATV Toward Manned Transportation Systems

    NASA Astrophysics Data System (ADS)

    Bottacini, Massimiliano; Berthe, Philippe; Vo, Xavier; Pietsch, Klaus

    2011-05-01

    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of unpressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU’s); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and de-orbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat-shield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on

  9. Advances in shutter drive technology to enhance man-portable infrared cameras

    NASA Astrophysics Data System (ADS)

    Durfee, David

    2012-06-01

    With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.

  10. Proceedings of the topical meeting on advances in human factors research on man/computer interactions

    SciTech Connect

    Not Available

    1990-01-01

    This book discusses the following topics: expert systems and knowledge engineering-I; verification and validation of software; methods for modeling UMAN/computer performance; MAN/computer interaction problems in producing procedures -1-2; progress and problems with automation-1-2; experience with electronic presentation of procedures-2; intelligent displays and monitors; modeling user/computer interface; and computer-based human decision-making aids.

  11. A Method of Integrating Aeroheating into Conceptual Reusable Launch Vehicle Design: Evaluation of Advanced Thermal Protection Techniques for Future Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Cowart, Kris

    2001-01-01

    A method for integrating Aeroheating analysis into conceptual reusable launch vehicle (RLV) design is presented in this thesis. This process allows for faster turn-around time to converge a RLV design through the advent of designing an optimized thermal protection system (TPS). It consists of the coupling and automation of four computer software packages: MINIVER, TPSX, TCAT, and ADS. MINIVER is an Aeroheating code that produces centerline radiation equilibrium temperatures, convective heating rates, and heat loads over simplified vehicle geometries. These include flat plates and swept cylinders that model wings and leading edges, respectively. TPSX is a NASA Ames material properties database that is available on the World Wide Web. The newly developed Thermal Calculation Analysis Tool (TCAT) uses finite difference methods to carry out a transient in-depth 1-D conduction analysis over the center mold line of the vehicle. This is used along with the Automated Design Synthesis (ADS) code to correctly size the vehicle's thermal protection system (TPS). The numerical optimizer ADS uses algorithms that solve constrained and unconstrained design problems. The resulting outputs for this process are TPS material types, unit thicknesses, and acreage percentages. TCAT was developed for several purposes. First, it provides a means to calculate the transient in-depth conduction seen by the surface of the TPS material that protects a vehicle during ascent and reentry. Along with the in-depth conduction, radiation from the surface of the material is calculated along with the temperatures at the backface and interior parts of the TPS material. Secondly, TCAT contributes added speed and automation to the overall design process. Another motivation in the development of TCAT is optimization. In some vehicles, the TPS accounts for a high percentage of the overall vehicle dry weight. Optimizing the weight of the TPS will thereby lower the percentage of the dry weight accounted for by

  12. Launch site integration for mixed fleet operations

    NASA Technical Reports Server (NTRS)

    Scott, L. P.

    1990-01-01

    Launch site impacts and integration planning issues are presented to support launch operations for a mixed vehicle fleet (manned and cargo). Proposed ground systems and launch site configurations are described. Prelaunch processing scenarios and schedules are developed for candidate launch vehicles. Earth-to-orbit (ETO) vehicle architectures are presented to meet future launch requirements, including the Space Exploration Initiative (SEI). Flight vehicle design recommendations to enhance launch processing are discussed. The significance of operational designs for future launch vehicles is shown to be a critical factor in planning for mixed fleet launch site operations.

  13. Experience with a three-axis side-located controller during a static and centrifuge simulation of the piloted launch of a manned multistage vehicle

    NASA Technical Reports Server (NTRS)

    Andrews, William H.; Holleman, Euclid C.

    1960-01-01

    An investigation was conducted to determine a human pilot's ability to control a multistage vehicle through the launch trajectory. The simulation was performed statically and dynamically by utilizing a human centrifuge. An interesting byproduct of the program was the three-axis side-located controller incorporated for pilot control inputs. This method of control proved to be acceptable for the successful completion of the tracking task during the simulation. There was no apparent effect of acceleration on the mechanical operation of the controller, but the pilot's control feel deteriorated as his dexterity decreased at high levels of acceleration. The application of control in a specific control mode was not difficult. However, coordination of more than one mode was difficult, and, in many instances, resulted in inadvertent control inputs. The acceptable control harmony at an acceleration level of 1 g became unacceptable at higher acceleration levels. Proper control-force harmony for a particular control task appears to be more critical for a three-axis controller than for conventional controllers. During simulations in which the pilot wore a pressure suit, the nature of the suit gloves further aggravated this condition.

  14. Recent Advances in Near-Net-Shape Fabrication of Al-Li Alloy 2195 for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Wagner, John; Domack, Marcia; Hoffman, Eric

    2007-01-01

    Recent applications in launch vehicles use 2195 processed to Super Lightweight Tank specifications. Potential benefits exist by tailoring heat treatment and other processing parameters to the application. Assess the potential benefits and advocate application of Al-Li near-net-shape technologies for other launch vehicle structural components. Work with manufacturing and material producers to optimize Al-Li ingot shape and size for enhanced near-net-shape processing. Examine time dependent properties of 2195 critical for reusable applications.

  15. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    NASA Technical Reports Server (NTRS)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  16. Research in software allocation for advanced manned mission communications and tracking systems

    NASA Technical Reports Server (NTRS)

    Warnagiris, Tom; Wolff, Bill; Kusmanoff, Antone

    1990-01-01

    An assessment of the planned processing hardware and software/firmware for the Communications and Tracking System of the Space Station Freedom (SSF) was performed. The intent of the assessment was to determine the optimum distribution of software/firmware in the processing hardware for maximum throughput with minimum required memory. As a product of the assessment process an assessment methodology was to be developed that could be used for similar assessments of future manned spacecraft system designs. The assessment process was hampered by changing requirements for the Space Station. As a result, the initial objective of determining the optimum software/firmware allocation was not fulfilled, but several useful conclusions and recommendations resulted from the assessment. It was concluded that the assessment process would not be completely successful for a system with changing requirements. It was also concluded that memory requirements and hardware requirements were being modified to fit as a consequence of the change process, and although throughput could not be quantitized, potential problem areas could be identified. Finally, inherent flexibility of the system design was essential for the success of a system design with changing requirements. Recommendations resulting from the assessment included development of common software for some embedded controller functions, reduction of embedded processor requirements by hardwiring some Orbital Replacement Units (ORUs) to make better use of processor capabilities, and improvement in communications between software development personnel to enhance the integration process. Lastly, a critical observation was made regarding the software integration tasks did not appear to be addressed in the design process to the degree necessary for successful satisfaction of the system requirements.

  17. Combining natural and man-made DNA tracers to advance understanding of hydrologic flow pathway evolution

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Walter, M. T.; Lyon, S. W.; Rosqvist, G. N.

    2014-12-01

    Identifying and characterizing the sources, pathways and residence times of water and associated constituents is critical to developing improved understanding of watershed-stream connections and hydrological/ecological/biogeochemical models. To date the most robust information is obtained from integrated studies that combine natural tracers (e.g. isotopes, geochemical tracers) with controlled chemical tracer (e.g., bromide, dyes) or colloidal tracer (e.g., carboxilated microspheres, tagged clay particles, microorganisms) applications. In the presented study we explore how understanding of sources and flow pathways of water derived from natural tracer studies can be improved and expanded in space and time by simultaneously introducing man-made, synthetic DNA-based microtracers. The microtracer used were composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated. Tracer experiments using both natural tracers and the DNA-based microtracers were conducted in the sub-arctic, glacierized Tarfala (21.7 km2) catchment in northern Sweden. Isotopic hydrograph separations revealed that even though storm runoff was dominated by pre-event water the event water (i.e. rainfall) contributions to streamflow increased throughout the summer season as glacial snow cover decreased. This suggests that glaciers are a major source of the rainwater fraction in streamflow. Simultaneous injections of ten unique DNA-based microtracers confirmed this hypothesis and revealed that the transit time of water traveling from the glacier surface to the stream decreased fourfold over the summer season leading to instantaneous rainwater contributions during storm events. These results highlight that integrating simultaneous tracer injections (injecting tracers at multiple places at one time) with traditional tracer methods (sampling multiple times at one place) rather than using either approach in isolation can

  18. Lunar launch and landing facilities and operations

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Florida Institute of Technology established an Interdisciplinary Design Team to design a lunar based facility whose primary function involves launch and landing operations for future moon missions. Both manned and unmanned flight operations were considered in the study with particular design emphasis on the utilization (or reutilization) of all materials available on the moon. This resource availability includes man-made materials which might arrive in the form of expendable landing vehicles as well as in situ lunar minerals. From an engineering standpoint, all such materials are considered as to their suitability for constructing new lunar facilities and/or repairing or expanding existing structures. Also considered in this design study was a determination of the feasibility of using naturally occurring lunar materials to provide fuel components to support lunar launch operations. Conventional launch and landing operations similar to those used during the Apollo Program were investigated as well as less conventional techniques such as rail guns and electromagnetic mass drivers. The Advanced Space Design team consisted of students majoring in Physics and Space Science as well as Electrical, Mechanical, Chemical and Ocean Engineering.

  19. Technology advancements for the U.S. manned Space Station - An overview

    NASA Technical Reports Server (NTRS)

    Simon, William E.

    1987-01-01

    The structure and methodology of the Johnson Space Center (JSC) advanced development program is described. An overview of the program is given, and the technology transfer process to other disciplines is described. The test bed and flight experiment programs are described, as is the technology assessment which was performed at the end of the Phase B program. The technology program within each discipline is summarized, and the coordination and integration of the JSC program with the activities of other NASA centers and with work package contractors are discussed.

  20. Advanced Cardiac Life Support (ACLS) utilizing Man-Tended Capability (MTC) hardware onboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, M.; Barratt, M.; Lloyd, C.

    1992-01-01

    Because of the time and distance involved in returning a patient from space to a definitive medical care facility, the capability for Advanced Cardiac Life Support (ACLS) exists onboard Space Station Freedom. Methods: In order to evaluate the effectiveness of terrestrial ACLS protocols in microgravity, a medical team conducted simulations during parabolic flights onboard the KC-135 aircraft. The hardware planned for use during the MTC phase of the space station was utilized to increase the fidelity of the scenario and to evaluate the prototype equipment. Based on initial KC-135 testing of CPR and ACLS, changes were made to the ventricular fibrillation algorithm in order to accommodate the space environment. Other constraints to delivery of ACLS onboard the space station include crew size, minimum training, crew deconditioning, and limited supplies and equipment. Results: The delivery of ACLS in microgravity is hindered by the environment, but should be adequate. Factors specific to microgravity were identified for inclusion in the protocol including immediate restraint of the patient and early intubation to insure airway. External cardiac compressions of adequate force and frequency were administered using various methods. The more significant limiting factors appear to be crew training, crew size, and limited supplies. Conclusions: Although ACLS is possible in the microgravity environment, future evaluations are necessary to further refine the protocols. Proper patient and medical officer restraint is crucial prior to advanced procedures. Also emphasis should be placed on early intubation for airway management and drug administration. Preliminary results and further testing will be utilized in the design of medical hardware, determination of crew training, and medical operations for space station and beyond.

  1. GaN-based THz advanced quantum cascade lasers for manned and unmanned systems

    NASA Astrophysics Data System (ADS)

    Anwar, A. F. M.; Manzur, Tariq; Lefebvre, Kevin R.; Carapezza, Edward M.

    2009-09-01

    In recent years the use of Unmanned Autonomous Vehicles (UAV) has seen a wider range of applications. However, their applications are restricted due to (a) advanced integrated sensing and processing electronics and (b) limited energy storage or on-board energy generation to name a few. The availability of a wide variety of sensing elements, operating at room temperatures, provides a great degree of flexibility with an extended application domain. Though sensors responding to a variable spectrum of input excitations ranging from (a) chemical, (b) biological, (c) atmospheric, (d) magnetic and (e) visual/IR imaging have been implemented in UAVs, the use of THz as a technology has not been implemented due to the absence of systems operating at room temperature. The integration of multi-phenomenological onboard sensors on small and miniature unmanned air vehicles will dramatically impact the detection and processing of challenging targets, such as humans carrying weapons or wearing suicide bomb vests. Unmanned air vehicles have the potential of flying over crowds of people and quickly discriminating non-threat humans from treat humans. The state of the art in small and miniature UAV's has progressed to vehicles of less than 1 pound in weight but with payloads of only a fraction of a pound. Uncooled IR sensors, such as amorphous silicon and vanadium oxide microbolometers with MRT's of less than 70mK and requiring power of less than 250mW, are available for integration into small UAV's. These sensors are responsive only up to approximately 14 microns and do not favorably compare with THz imaging systems for remotely detecting and classifying concealed weapons and bombs. In the following we propose the use of THz GaN-based QCL operating at room temperature as a possible alternative.

  2. Scout Launch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Scout Launch. James Hansen wrote: 'As this sequence of photos demonstrates, the launch of ST-5 on 30 June 1961 went well; however, a failure of the rocket's third stage doomed the payload, a scientific satellite known as S-55 designed for micrometeorite studies in orbit.'

  3. Advanced Transportation System Studies Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development Contract. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The sections in this report include: Single Stage to Orbit (SSTO) Design Ground-rules; Operations Issues and Lessons Learned; Vertical-Takeoff/Landing Versus Vertical-Takeoff/Horizontal-Landing; SSTO Design Results; SSTO Simulation Results; SSTO Assessment Results; SSTO Sizing Tool User's Guide; SSto Turnaround Assessment Report; Ground Operations Assessment First Year Executive Summary; Health Management System Definition Study; Major TA-2 Presentations; First Lunar Outpost Heavy Lift Launch Vehicle Design and Assessment; and the section, Russian Propulsion Technology Assessment Reports.

  4. A New Way of Doing Business: Reusable Launch Vehicle Advanced Thermal Protection Systems Technology Development: NASA Ames and Rockwell International Partnership

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.

  5. Treatment of Parkinson disease: a 64-year-old man with motor complications of advanced Parkinson disease.

    PubMed

    Tarsy, Daniel

    2012-06-01

    In early stages, Parkinson disease typically begins with asymmetric or unilateral motor symptoms due to combinations of mild bradykinesia, rigidity, and tremor. In most cases, with progression, signs of more generalized bradykinesia appear, which include facial masking, reduced voice volume, and slowing of activities of daily living. In more advanced Parkinson disease, other disabling manifestations may follow, such as impaired balance, gait freezing, falls, speech disturbance, and cognitive impairment. Levodopa is the most effective medical treatment for Parkinson disease. However, motor complications uniquely related to levodopa treatment may emerge that may be difficult to manage. These include fluctuating levodopa responses and involuntary movements and postures known as dyskinesia and dystonia. Medication adjustments are usually effective, but in some cases surgical intervention with deep brain stimulation becomes necessary to alleviate motor complications. The case of Mr L, a man with an 11-year history of Parkinson disease, illustrates these emerging motor complications and the manner in which they may be managed both medically and surgically.

  6. Launch system design for access to space

    NASA Technical Reports Server (NTRS)

    Barnes, Corbin

    1994-01-01

    Here, a hybrid launch system is developed. The hybrid launch system combines the lower operating cost advantage of an non-man-rated SSTO (Single Stage to Orbit) MLV (Medium Launch Vehicle) with the crew survivability advantage of a ballistic escape pod. Ultimately, it was found that a non-man-made MLV is configured the same as a man-rated MLV and offers no significant savings in operational cost. However, addition of the proposed escape system would increase the crew survivability rate of the SSTO while incurring only a small cost per pound payload penalty.

  7. NPP Launch

    NASA Video Gallery

    NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft was launched aboard a Delta II rocket at 5:48 a.m. EDT today, on a mission to measure ...

  8. KSC Vertical Launch Site Evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, Lynne V.

    2007-01-01

    RS&H was tasked to evaluate the potential available launch sites for a combined two user launch pad. The Launch sites were to be contained entirely within current Kennedy Space Center property lines. The user launch vehicles to be used for evaluation are in the one million pounds of first stage thrust range. Additionally a second evaluation criterion was added early on in the study. A single user launch site was to be evaluated for a two million pound first stage thrust vehicle. Both scenarios were to be included in the report. To provide fidelity to the study criteria, a specific launch vehicle in the one million pound thrust range was chosen as a guide post or straw-man launch vehicle. The RpK K-1 vehicle is a current Commercial Orbital Transportation System (COTS), contract awardee along with the SpaceX Falcon 9 vehicle. SpaceX, at the time of writing, is planning to launch COTS and possibly other payloads from Cx-40 on Cape Canaveral Air Force Station property. RpK has yet to declare a specific launch site as their east coast US launch location. As such it was deemed appropriate that RpK's vehicle requirements be used as conceptual criteria. For the purposes of this study those criteria were marginally generalized to make them less specifiC.

  9. Launch Vehicle Demonstrator Using Shuttle Assets

    NASA Technical Reports Server (NTRS)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration

  10. Soviet launch vehicles - An overview

    NASA Astrophysics Data System (ADS)

    Clark, P. S.

    1982-02-01

    The different families of Soviet launch vehicles are described, along with a history of applications. The Sapwood family, which was used to launch the Moniya spacecraft, is the most often-used launch vehicle in the world. Like the Sapwood, the Sandal, Skean, and Scarp vehicles are all modifications of military rockets. Specific impulses, launch records, payloads, fuels, mass, length, and diameters are provided for launches in the period 1975-1981. The Proton series is the largest currently operational vehicle in the Soviet space program, although exact dimensions are not available. Manned space missions, space stations, and heavy satellites have been delegated to the Proton booster, which has also been used for the Luna 24 and Veneras 11 and 12 probes.

  11. Technology development for launch vehicles

    NASA Astrophysics Data System (ADS)

    Robinson, Michael J.; Leonard, Bruce G.

    1990-10-01

    A program to develop technology for launch vehicles is now under way in the U.S. The Advanced Launch System (ALS) program was initiated by NASA and the USAF to develop a highly reliable heavy lift launch system that would deliver payloads to orbit at a cost of $300 per lb, as mandated by the U.S. Congress. The system development is proceeding in concert wth a technology development program, now called the Advanced Launch Development Program, described in this paper. A secondary objective of ALS is to transfer the technologies to other launch vehicles. Projects are under way in the following areas: propulsion, avionics, structures/materials/manufacturing, aerothermodynamics, recovery, operations, and subsystems. Brief overviews of each area are presented. In addition, a more detailed discussion of one of the projects, regarding expendable composite launch vehicle structures, is presented as an example.

  12. Electromagnetic Launch to Space

    NASA Astrophysics Data System (ADS)

    McNab, I. R.

    Many advances in electromagnetic (EM) propulsion technology have occurred in recent years. Linear motor technology for low-velocity and high-mass applications is being developed for naval catapults. Such technology could serve as the basis for a first-stage booster launch--as suggested by the US National Aeronautics and Space Administration (NASA) in the Maglifter concept. Using railguns, laboratory experiments have demonstrated launch velocities of 2-3 km/s and muzzle energies > 8 MJ. The extension of this technology to the muzzle velocities ( 7500 m/s) and energies ( 10 GJ) needed for the direct launch of payloads into orbit is very challenging but may not be impossible. For launch to orbit, even long launchers (> 1000 m) would need to operate at accelerations > 1000 G to reach the required velocities, so it would only be possible to launch rugged payloads, such as fuel, water, and materiel. Interest is being shown in such concepts by US, European, Russian, and Chinese researchers. An intermediate step proposed in France could be to launch payloads to sounding rocket altitudes for ionospheric research.

  13. Balloon Launch.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1994-01-01

    This article describes a science learning experience in which intermediate grade students launched balloons with attached postcards to study wind currents. More than 200 (of over 900 balloons) were returned, and their analysis supported the students' hypothesis about the direction of wind currents. (DB)

  14. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  15. Pre-Launch Characterization of the Advanced Technology Microwave Sounder (ATMS) on the Joint Polar Satellite System-1 Satellite (JPSS-1)

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Leslie, Vince; Lyu, Joseph; Smith, Craig; McCormick, Lisa; Anderson, Kent

    2016-04-01

    The Advanced Technology Microwave Sounder (ATMS) is the newest generation of microwave sounder in the international fleet of polar-orbiting weather satellites, replacing the Advanced Microwave Sounding Unit (AMSU) which first entered service in 1998. The first ATMS was launched aboard the Suomi NPP (S-NPP) satellite in late 2011. The second ATMS is manifested on the Joint Polar Satellite System-1 Satellite (JPSS-1). ATMS provides 22 channels of temperature and humidity sounding observations over a frequency range from 23 to 183 GHz. These microwave soundings provide the highest impact data ingested by operational Numerical Weather Prediction (NWP) models, and are the most critical of the polar-orbiting satellite observations, particularly because microwave sensing can penetrate clouds. This paper will present performance characterizations from pre-launch calibration measurements of the JPSS-1 ATMS just completed in December, 2015. The measurements were conducted in a thermal vacuum chamber with blackbody targets simulating cold space, ambient, and a variable Earth scene. They represent the best opportunity for calibration characterization of the instrument since the environment can be carefully controlled. We will present characterizations of the sensitivity (NEDT), accuracy, nonlinearity, noise spectral characteristics, gain stability, repeatability, and inter-channel correlation. An estimate of expected "striping" will be presented, and a discussion of reflector emissivity effects will also be provided. Comparisons will be made with the S-NPP flight unit. Finally, we will describe planned on-orbit characterizations - such as pitch and roll maneuvers - that will further improve both the measurement quality and the understanding of various error contributions.

  16. Calibration of the Visible and Near-Infrared Channels of the Advanced Very High Resolution Radiometer (AVHRR) After Launch

    NASA Technical Reports Server (NTRS)

    Rao, C. R. Nagaraja; Chen, Jianhua

    1993-01-01

    The relative degradation in time of the visible(channel 1: approx.0.58-0.6 microns) and near-infrared(channel 2: approx. O.72-1.1 microns) channels of the Advanced Very High Resolution Radiometer(AVHRR), onboard the NOAA Polar-orbiting Operational Environmental Satellites(POES), has been determined, using the southeastern Libyan desert(21-23 deg N latitude; 28- 29 deg E longitude) as a time-invariant calibration target. A statistical procedure was used on the reflectance data for the two channels from the B3 data of the International Satellite Cloud Climatology Project(ISCCP) to obtain the degradation rates for the AVERRs on NOAA-7, -9, and -11 spacecraft. The degradation rates per year for channels 1 and 2 are respectively: 3.6% and 4.3%(NOAA-7); 5.9% and 3.5%(NOAA-9); and 1.2% and 2.0%(NOAA-11). The use of the degradation rates thus determined, in conjunction with 'absolute' calibrations obtained from congruent aircraft and satellite measurements, in the development of correction algorithms is illustrated with the AVHRR on the NOAA-9 spacecraft.

  17. Task 4 supporting technology. Part 2: Detailed test plan for thermal seals. Thermal seals evaluation, improvement and test. CAN8-1, Reusable Launch Vehicle (RLV), advanced technology demonstrator: X-33. Leading edge and seals thermal protection system technology demonstration

    NASA Astrophysics Data System (ADS)

    Hogenson, P. A.; Lu, Tina

    1995-05-01

    The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.

  18. Task 4 supporting technology. Part 2: Detailed test plan for thermal seals. Thermal seals evaluation, improvement and test. CAN8-1, Reusable Launch Vehicle (RLV), advanced technology demonstrator: X-33. Leading edge and seals thermal protection system technology demonstration

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Lu, Tina

    1995-01-01

    The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.

  19. Manned Mars mission cost estimate

    NASA Technical Reports Server (NTRS)

    Hamaker, Joseph; Smith, Keith

    1986-01-01

    The potential costs of several options of a manned Mars mission are examined. A cost estimating methodology based primarily on existing Marshall Space Flight Center (MSFC) parametric cost models is summarized. These models include the MSFC Space Station Cost Model and the MSFC Launch Vehicle Cost Model as well as other modes and techniques. The ground rules and assumptions of the cost estimating methodology are discussed and cost estimates presented for six potential mission options which were studied. The estimated manned Mars mission costs are compared to the cost of the somewhat analogous Apollo Program cost after normalizing the Apollo cost to the environment and ground rules of the manned Mars missions. It is concluded that a manned Mars mission, as currently defined, could be accomplished for under $30 billion in 1985 dollars excluding launch vehicle development and mission operations.

  20. Physiological responses to wearing the space shuttle launch and entry suit and the prototype advanced crew escape suit compared to the unsuited condition

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Mcbrine, John J.; Hayes, Judith C.; Stricklin, Marcella D.; Greenisen, Michael C.

    1993-01-01

    The launch and entry suit (LES) is a life support suit worn during Orbiter ascent and descent. The impact of suit weight and restricted mobility on egress from the Orbiter during an emergency is unknown. An alternate suit - the advanced crew escape suite (ACES) - is being evaluated. The physiological responses to ambulatory exercise of six subjects wearing the LES and ACES were measured and compared to those measurements taken while unsuited. Dependent variables included heart rate and metabolic response to treadmill walking at 5.6 km/h (3.5 mph), and also bilateral concentric muscle strength about the knee, shoulder, and elbow. No significant (p greater than 0.06) differences in heart rate or metabolic variables were measured in either suit while walking at 5.6 km/h. Significant (p less than 0.05) decreases in all metabolic variables were remarked when both suits were compared to the unsuited condition. There were no significant (p greater than 0.05) differences among the three suit conditions at 30 or 180 deg/s for muscles about the elbow and knee; however, about the shoulder, a significant (p = 0.0215) difference between the ACES and the unsuited condition was noted. Therefore, wearing a life support suit while performing Orbiter egress imposes a significant metabolic demand on crewmembers. Selective upper body strength movements may be compromised.

  1. Mode Conversion of High-Field-Side-Launched Fast Waves at the Second Harmonic of Minority Hydrogen in Advanced Tokamak Reactors

    NASA Astrophysics Data System (ADS)

    Sund, R.; Scharer, J.

    2003-12-01

    Under advanced tokamak reactor conditions, the Ion-Bernstein wave (IBW) can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side on the second harmonic resonance of a minority hydrogen component, with near 100% efficiency. IBWs have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. The relatively high frequency (around 200 MHz) minimizes parasitic electron absorption and permits the converted IBW to approach the 5th tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. The scheme is applicable to reactors with aspect ratios < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Large machine size and adequate separation of the mode conversion layer from the magnetic axis minimize poloidal field effects in the conversion zone and permit a 1-D full-wave analysis. 2-D ray tracing of the IBW indicates a slightly bean-shaped equilibrium allows access to the tritium resonance.

  2. CubeSat Launch Initiative

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  3. Transport vehicle for manned Mars missions powered by inertial confinement fusion

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nathan; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial confinement fusion (ICF) is an ideal engine power source for manned spacecraft to Mars because of its inherently high power-to-mass ratios and high specific impulses. In this paper a concept is produced for a vehicle powered by ICF and utilizing a magnetic thrust chamber to avoid plasma thermalization with wall structures and the resultant degradation of specific impulse, that are unavoidable with the use of mechanical thrust chambers. This vehicle is capable of 100-day manned Mars missions with a 100-metric-ton payload and a total vehicle launch mass near 6000 metric tons, based on advanced technology assumed to be available by A.D. 2020.

  4. Magnetic Launch Assist Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  5. Small Space Launch: Origins & Challenges

    NASA Astrophysics Data System (ADS)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  6. Venture Class Launch Services

    NASA Technical Reports Server (NTRS)

    Wiese, Mark

    2016-01-01

    Provide an introduction to the Launch Services Program, and specifically the strategic initiative that drove the Venture Class Launch Services contracts. Provide information from the VCLS request for proposals, as well as the Agency's CubeSat Launch Initiative.

  7. Launch summary for 1978

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1978-01-01

    Sounding rocket, satellite, and space probe launchings are presented. Time, date, and location of the launches are provided. The sponsoring countries and the institutions responsible for the launch are listed.

  8. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU.

    PubMed

    Ribeiro, Ana R; Nunes, Olga C; Pereira, Manuel F R; Silva, Adrián M T

    2015-02-01

    Environmental pollution is a recognized issue of major concern since a wide range of contaminants has been found in aquatic environment at ngL(-1) to μgL(-1) levels. In the year 2000, a strategy was defined to identify the priority substances concerning aquatic ecosystems, followed by the definition of environmental quality standards (EQS) in 2008. Recently it was launched the Directive 2013/39/EU that updates the water framework policy highlighting the need to develop new water treatment technologies to deal with such problem. This review summarizes the data published in the last decade regarding the application of advanced oxidation processes (AOPs) to treat priority compounds and certain other pollutants defined in this Directive, excluding the inorganic species (cadmium, lead, mercury, nickel and their derivatives). The Directive 2013/39/EU includes several pesticides (aldrin, dichlorodiphenyltrichloroethane, dicofol, dieldrin, endrin, endosulfan, isodrin, heptachlor, lindane, pentachlorophenol, chlorpyrifos, chlorfenvinphos, dichlorvos, atrazine, simazine, terbutryn, diuron, isoproturon, trifluralin, cypermethrin, alachlor), solvents (dichloromethane, dichloroethane, trichloromethane and carbon tetrachloride), perfluorooctane sulfonic acid and its derivatives (PFOS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenol and octylphenol, as well as the three compounds included in the recommendation for the first watch list of substances (diclofenac, 17-alpha-ethinylestradiol (EE2) and 17-beta-estradiol (E2)). Some particular pesticides (aclonifen, bifenox, cybutryne, quinoxyfen), organotin compounds (tributyltin), dioxins and dioxin-like compounds, brominated diphenylethers, hexabromocyclododecanes and di(2-ethylhexyl)phthalate are also defined in this Directive, but studies dealing with AOPs are missing. AOPs are recognized tools to destroy recalcitrant compounds or, at least, to transform them into biodegradable species

  9. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU.

    PubMed

    Ribeiro, Ana R; Nunes, Olga C; Pereira, Manuel F R; Silva, Adrián M T

    2015-02-01

    Environmental pollution is a recognized issue of major concern since a wide range of contaminants has been found in aquatic environment at ngL(-1) to μgL(-1) levels. In the year 2000, a strategy was defined to identify the priority substances concerning aquatic ecosystems, followed by the definition of environmental quality standards (EQS) in 2008. Recently it was launched the Directive 2013/39/EU that updates the water framework policy highlighting the need to develop new water treatment technologies to deal with such problem. This review summarizes the data published in the last decade regarding the application of advanced oxidation processes (AOPs) to treat priority compounds and certain other pollutants defined in this Directive, excluding the inorganic species (cadmium, lead, mercury, nickel and their derivatives). The Directive 2013/39/EU includes several pesticides (aldrin, dichlorodiphenyltrichloroethane, dicofol, dieldrin, endrin, endosulfan, isodrin, heptachlor, lindane, pentachlorophenol, chlorpyrifos, chlorfenvinphos, dichlorvos, atrazine, simazine, terbutryn, diuron, isoproturon, trifluralin, cypermethrin, alachlor), solvents (dichloromethane, dichloroethane, trichloromethane and carbon tetrachloride), perfluorooctane sulfonic acid and its derivatives (PFOS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenol and octylphenol, as well as the three compounds included in the recommendation for the first watch list of substances (diclofenac, 17-alpha-ethinylestradiol (EE2) and 17-beta-estradiol (E2)). Some particular pesticides (aclonifen, bifenox, cybutryne, quinoxyfen), organotin compounds (tributyltin), dioxins and dioxin-like compounds, brominated diphenylethers, hexabromocyclododecanes and di(2-ethylhexyl)phthalate are also defined in this Directive, but studies dealing with AOPs are missing. AOPs are recognized tools to destroy recalcitrant compounds or, at least, to transform them into biodegradable species

  10. Transforming KSC to be the World's Premier 21st Century Launch Complex

    NASA Technical Reports Server (NTRS)

    Engler, Tom

    2011-01-01

    This slide presentation reviews the work being done to transform the Kennedy Space Center into what is hoped to be the world's premier launch complex, capable of launching commercial and government satellites and manned spacecraft.

  11. Advanced solid electrolyte cell for CO2 and H2O electrolysis. [for extended duration manned spaceflights

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Berger, T. A.

    1978-01-01

    A solid electrolyte cell with improved sealing characteristics was examined. A tube cell was designed, developed, fabricated, and tested. Design concepts incorporated in the tube cell to improve its sealing capability included minimizing the number of seals per cell and moving seals to lower temperature regions. The advanced tube cell design consists of one high temperature ceramic cement seal, one high temperature gasket seal, and three low temperature silicone elastomer seals. The two high temperature seals in the tube cell design represent a significant improvement over the ten high temperature precious metal seals required by the electrolyzer drum design. For the tube cell design the solid electrolyte was 8 mole percent yttria stabilized zirconium oxide slip cast into the shape of a tube with electrodes applied on the inside and outside surfaces.

  12. The competitive effects of launch vehicle technology

    SciTech Connect

    Dupnick, E.; Hopkins, C.

    1996-03-01

    We performed a study to evaluate the economics of advanced technology incorporation in selected expendable launch vehicles, the Ariane, the Atlas, and the Delta. The competitive merits of these launch vehicles were assessed against a reference mission{emdash}the delivery of a telecommunications satellite to geostationary orbit. We provide estimates of the cost of the launch services for the competing missions; the GE PRICE models were used to provide cost estimates for the three launch vehicles. Using publicly available data, a comparison of cost with price for the launch was utilized to examine the issue of potential profit earned and/or subsidization of the cost. Other factors such as the location of the launch site, transportation costs, exchange rates, the availability of financing at competitive rates and communication problems was also considered in evaluating the competitive launch vehicle systems. {copyright} {ital 1996 American Institute of Physics.}

  13. Starfire 1 Consort III Launch

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Consort 3 is a commercial suborbital rocket that carried 12 microgravity experiments. It was launched on a Starfire rocket on May 16, 1990, from the Naval Ordnance Missile Test Station facilities at the U.S. Army's White Sands Missile Range (WSMR), NM. The videotape opens with approximately 2 minutes of a man speaking into a microphone but there is no sound. This is followed by a brief summary of the payload, and the expected trajectory, a view of the launch vehicle, the countdown and the launch. The videotape then shows a film clip from the University of Alabama, with Dr. Francis Wessling, project manager for the Consort 3 project, speaking about the mission goals in the materials sciences experimentation. The video shows footage of the payload being assembled. The next section is a discussion by Dr. Roy Hammustedt, of Pennsylvania State University, who reviews the Penn State Bio Module,and the goal of learning about the effects of gravity on physiology. This is followed by George Maybee, from McDonald Douglas, who spoke about the payload integration process while the video shows some of the construction. The last section of the videotape shows a press conference at the launch site. Ana Villamil answers questions from the press about the flight.

  14. First-in-Man Demonstration of Fully Implanted Myoelectric Sensors for Control of an Advanced Electromechanical Arm by Transradial Amputees

    PubMed Central

    Pasquina, Paul F.; Evangelista, Melissa; Carvalho, Antonio J.; Lockhart, Joseph; Griffin, Sarah; Nanos, George; McKay, Patricia; Hansen, Morten; Ipsen, Derek; Vandersea, James; Butkus, Josef; Miller, Matthew; Murphy, Ian; Hankin, David

    2014-01-01

    Background Advanced motorized prosthetic devices are currently controlled by EMG signals generated by residual muscles and recorded by surface electrodes on the skin. These surface recordings are often inconsistent and unreliable, leading to high prosthetic abandonment rates for individuals with upper limb amputation. Surface electrodes are limited because of poor skin contact, socket rotation, residual limb sweating, and their ability to only record signals from superficial muscles, whose function frequently does not relate to the intended prosthetic function. More sophisticated prosthetic devices require a stable and reliable interface between the user and robotic hand to improve upper limb prosthetic function. New Method Implantable Myoelectric Sensors (IMES®) are small electrodes intended to detect and wirelessly transmit EMG signals to an electromechanical prosthetic hand via an electromagnetic coil built into the prosthetic socket. This system is designed to simultaneously capture EMG signals from multiple residual limb muscles, allowing the natural control of multiple degrees of freedom simultaneously. Results We report the status of the first FDA-approved clinical trial of the IMES® System. This study is currently in progress, limiting reporting to only preliminary results. Comparison with Existing Methods Our first subject has reported the ability to accomplish a greater variety and complexity of tasks in his everyday life compared to what could be achieved with his previous myoelectric prosthesis. Conclusion The interim results of this study indicate the feasibility of utilizing IMES® technology to reliably sense and wirelessly transmit EMG signals from residual muscles to intuitively control a three degree-of-freedom prosthetic arm. PMID:25102286

  15. APOLLO 12: A heartstopping launch

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 12: A heartstopping launch as the rocket is struck by lightning. From the film documentary 'APOLLO 12: 'Pinpoint for Science'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 12: Second manned lunar landing and return with Charles 'Pete' Conrad, Jr., Richard F. Gordon, and Alan F. Bean. Landed in the Ocean of Storms on November 19, 1969; deployed television camera and ALSEP experiments; two EVA's performed; collected core samples and lunar materials; photographed and retrieved parts from surveyor 3 spacecraft. Mission duration 244hrs 36min 24sec

  16. Apollo 11 astronaut Neil Armstrong suits up before launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  17. Magnetic Launch Assist Experimental Track

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  18. Rocket man

    NASA Astrophysics Data System (ADS)

    Becklake, John

    2008-06-01

    In the 1950s and 1960s, Wernher von Braun was famous as the man who led the West's journey into space. Some also remember him as the German engineer who developed the V-2 missile that bombarded Antwerp and London at the end of the Second World War. However, many still celebrate Von Braun, who died in 1977, as the man who put the astronauts on the Moon. While this is not strictly true, there is no doubt that Von Braun was one of the most influential engineers, lobbyists and personalities in the Moon-landing project.

  19. Orbital Rolls to Launch Pad at Wallops for Station Flight

    NASA Video Gallery

    An Orbital Sciences Corporation Antares rolled out to launch Pad-0A at NASA's Wallops Flight Facility, Sunday, January 5, 2014, in advance of a planned Wednesday, Jan. 8th, 1:32 p.m. EST launch. Th...

  20. Fifth FLTSATCOM to be launched

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Launch of the FLTSATOOM-E, into an elliptical orbit by the Atlas Centaur launch vehicle is announced. The launch and relevant launch operations are described. A chart of the launch sequence for FLTSATCOM-E communication satellite is given.

  1. Shuttle Era: Launch Directors

    NASA Video Gallery

    A space shuttle launch director is the leader of the complex choreography that goes into a shuttle liftoff. Ten people have served as shuttle launch directors, making the final decision whether the...

  2. IRIS Launch Animation

    NASA Video Gallery

    This animation demonstrates the launch and deployment of NASA's Interface Region Imaging Spectrograph (IRIS) mission satellite via a Pegasus rocket. The launch is scheduled for June 26, 2013 from V...

  3. CELSS for advanced manned mission

    NASA Technical Reports Server (NTRS)

    Olson, R. L.; Oleson, M. W.; Slavin, T. J.

    1988-01-01

    An overview of the major concepts of Controlled Ecological Life Support System (CELSS) includes an identification of environmental factors, such as gravity levels, light levels, and growth volume, that influence the type of CELSS system that can be developed. Various plant growth systems are described together with their possible space applications. Life support functions performed by plants include food production, atmosphere regeneration, and water purification. Selected relationships between biological and physical-chemical life support techniques are considered as a part of these functions. Consumers in a CELSS may be humans, animals, or microorganisms, but nutritional, water, and atmosphere requirements of humans are emphasized in this report, as they are the primary requirement drivers for a CELSS design. The human role in waste generation is discussed as it affects plant nutrient availability. The role of waste management systems in recovering nutrients for plant growth and requirements for CELSS are defined for air, water, and food. Both physical and a biological nutrient recovery/waste disposal systems are examined. The separate subsystems of a CELSS are identified and discussed. Nutrient recovery, plant irradiation, automation, and facilities equipment and applications are reviewed with special attention to direct solar irradiation using fiber optics. These subsystems, along with other environmental control systems, such as thermal, humidity, and ventilation, are essential to plant growth in the space environment.

  4. CELSS for advanced manned mission.

    PubMed

    Olson, R L; Oleson, M W; Slavin, T J

    1988-04-01

    An overview of the major concepts of Controlled Ecological Life Support System (CELSS) includes an identification of environmental factors, such as gravity levels, light levels, and growth volume, that influence the type of CELSS system that can be developed. Various plant growth systems are described together with their possible space applications. Life support functions performed by plants include food production, atmosphere regeneration, and water purification. Selected relationships between biological and physical-chemical life support techniques are considered as a part of these functions. Consumers in a CELSS may be humans, animals, or microorganisms, but nutritional, water, and atmosphere requirements of humans are emphasized in this report, as they are the primary requirement drivers for a CELSS design. The human role in waste generation is discussed as it affects plant nutrient availability. The role of waste management systems in recovering nutrients for plant growth and requirements for CELSS are defined for air, water, and food. Both physical and a biological nutrient recovery/waste disposal systems are examined. The separate subsystems of a CELSS are identified and discussed. Nutrient recovery, plant irradiation, automation, and facilities equipment and applications are reviewed with special attention to direct solar irradiation using fiber optics. These subsystems, along with other environmental control systems, such as thermal, humidity, and ventilation, are essential to plant growth in the space environment.

  5. Launch Vehicle Operations Simulator

    NASA Technical Reports Server (NTRS)

    Blackledge, J. W.

    1974-01-01

    The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.

  6. Launch Summary for 1979

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1980-01-01

    Spacecraft launching for 1979 are identified and listed under the categories of (1) sounding rockets, and (2) artificial Earth satellites and space probes. The sounding rockets section includes a listing of the experiments, index of launch sites and tables of the meanings and codes used in the launch listing.

  7. Current CFD Practices in Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2012-01-01

    The quest for sustained space exploration will require the development of advanced launch vehicles, and efficient and reliable operating systems. Development of launch vehicles via test-fail-fix approach is very expensive and time consuming. For decision making, modeling and simulation (M&S) has played increasingly important roles in many aspects of launch vehicle development. It is therefore essential to develop and maintain most advanced M&S capability. More specifically computational fluid dynamics (CFD) has been providing critical data for developing launch vehicles complementing expensive testing. During the past three decades CFD capability has increased remarkably along with advances in computer hardware and computing technology. However, most of the fundamental CFD capability in launch vehicle applications is derived from the past advances. Specific gaps in the solution procedures are being filled primarily through "piggy backed" efforts.on various projects while solving today's problems. Therefore, some of the advanced capabilities are not readily available for various new tasks, and mission-support problems are often analyzed using ad hoc approaches. The current report is intended to present our view on state-of-the-art (SOA) in CFD and its shortcomings in support of space transport vehicle development. Best practices in solving current issues will be discussed using examples from ascending launch vehicles. Some of the pacing will be discussed in conjunction with these examples.

  8. Recommended Screening Practices for Launch Collision Aviodance

    NASA Technical Reports Server (NTRS)

    Beaver, Brian A.; Hametz, Mark E.; Ollivierre, Jarmaine C.; Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    The objective of this document is to assess the value of launch collision avoidance (COLA) practices and provide recommendations regarding its implementation for NASA robotic missions. The scope of this effort is limited to launch COLA screens against catalog objects that are either spacecraft or debris. No modifications to manned safety COLA practices are considered in this effort. An assessment of the value of launch COLA can be broken down into two fundamental questions: 1) Does collision during launch represent a significant risk to either the payload being launched or the space environment? 2) Can launch collision mitigation be performed in a manner that provides meaningful risk reduction at an acceptable level of operational impact? While it has been possible to piece together partial answers to these questions for some time, the first attempt to comprehensively address them is documented in reference (a), Launch COLA Operations: an Examination of Data Products, Procedures, and Thresholds, Revision A. This report is the product of an extensive study that addressed fundamental technical questions surrounding launch collision avoidance analysis and practice. The results provided in reference (a) will be cited throughout this document as these two questions are addressed. The premise of this assessment is that in order to conclude that launch COLA is a value-added activity, the answer to both of these questions must be affirmative. A "no" answer to either of these questions points toward the conclusion that launch COLA provides little or no risk mitigation benefit. The remainder of this assessment will focus on addressing these two questions.

  9. Launch summary for 1980

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1981-01-01

    Sounding rockets, artificial Earth satellites, and space probes launched betweeen January 1 and December 31, 1980 are listed. Data tabulated for the rocket launchings show launching site, instruments carried, date of launch, agency rocket identification, sponsoring country, experiment discipline, peak altitude, and the experimenter or institution responsible. Tables for satellites and space probes show COSPAR designation, spacecraft name, country, launch date, epoch date, orbit type, apoapsis, periapsis and inclination period. The functions and responsibilities of the World Data Center and the areas of scientific interest at the seven subcenters are defined. An alphabetical listing of experimenters using the sounding rockets is also provided.

  10. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  11. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  12. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  13. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  14. China's Launch Vehicle Operations

    NASA Astrophysics Data System (ADS)

    Bai, Jingwu

    2002-01-01

    China's Launch Vehicle technologies have been started since 1950s. With the efforts made by several-generation Chinese Space people, the Long March (LM) Launch Vehicles, China's main space transportation tools, have undergone a development road from conventional propellants to cryogenic propellants, from stage-by-stage to strap-on, from dedicated-launch to multiple-launch, from satellite-launching to space capsule-launching. The LM Launch Vehicles are capable of sending various payloads to different orbits with low cost and high reliability. Till now, the LM Launch Vehicles have conducted 67 launch missions, putting 76 spacecraft into the given orbits since the successful mission made by LM-1 in 1970. Especially, they have performed 22 international commercial satellite-launching missions, sending 27 foreign satellites successfully. The footprints of LM Launch Vehicles reflect the development and progress of Chinese Space Industry. At the beginning of the 21st century, with the development of launch vehicle technology and the economic globalization, it is an inexorable trend that Chinese space industry must participate in the international cooperation and competition. Being faced with both opportunities and challenges, Chinese Space Industry should promote actively the commercial launch service market to increase service quality and improve the comprehensive competition capabilities. In order to maintain the sustaining development of China's launch vehicle technology and to meet the increasing needs in the international commercial launch service market, Chinese space industry is now doing research work on developing new-generation Chinese launchers. The new launchers will be large-scale, powerful and non-contamination. The presence of the new-generation Chinese launchers will greatly speed up the development of the whole space-related industries in China, as well as other parts of the world. In the first part, this paper gives an overview on China Aerospace Science

  15. COSMOS Launch Services

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  16. Man-Amplifying Exoskeleton

    NASA Astrophysics Data System (ADS)

    Rosheim, Mark E.

    1990-03-01

    This paper describes a design for a man-amplifying exoskeleton, an electrically powered, articulated frame worn by an operator. The design features modular construction and employ anthropomorphic pitch-yaw joints for arms and legs. These singularity-free designs offer a significant advancement over simple pivot-type joints used in older designs. Twenty-six degrees-of-freedom excluding the hands gives the Man-Amplifier its unique dexterity. A five hundred-pound load capacity is engineered for a diverse range of tasks. Potential applications in emergency rescue work, restoring functionality to the handicapped, and military applications ranging from material handling to an elite fighting core are discussed. A bibliography concludes this paper.

  17. 66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS IN CONSOLE LOCATED CENTRALLY IN SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT IN BACKGROUND: LAUNCH OPERATOR, LAUNCH ANALYST, AND FACILITIES PANELS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Space Launch System (SLS) Program Overview NASA Research Announcement (NRA) Advanced Booster (AB) Engineering Demonstration and Risk Reduction (EDRR) Industry Day

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2011-01-01

    SLS is a national capability that empowers entirely new exploration for missions of national importance. Program key tenets are safety, affordability, and sustainability. SLS builds on a solid foundation of experience and current capacities to enable a timely initial capability and evolve to a flexible heavy-lift capability through competitive opportunities: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability and performance The road ahead promises to be an exciting journey for present and future generations, and we look forward to working with you to continue America fs space exploration.

  19. Remeasuring man.

    PubMed

    Weisberg, Michael

    2014-05-01

    Samuel George Morton (1799-1851) was the most highly regarded American scientist of the early and middle 19th century. Thanks largely to Stephen Jay Gould's book The Mismeasure of Man, Morton's cranial capacity measurements of different races is now held up as a prime example of and cautionary tale against scientific racism. A team of anthropologists recently reevaluated Morton's work and argued that it was Gould, not Morton, who was biased in his analysis. This article is a reexamination of the Morton and Gould controversy. It argues that most of Gould's arguments against Morton are sound. Although Gould made some errors and overstated his case in a number of places, he provided prima facia evidence, as yet unrefuted, that Morton did indeed mismeasure his skulls in ways that conformed to 19th century racial biases. Gould's critique of Morton ought to remain as an illustration of implicit bias in science. PMID:24761929

  20. Remeasuring man.

    PubMed

    Weisberg, Michael

    2014-05-01

    Samuel George Morton (1799-1851) was the most highly regarded American scientist of the early and middle 19th century. Thanks largely to Stephen Jay Gould's book The Mismeasure of Man, Morton's cranial capacity measurements of different races is now held up as a prime example of and cautionary tale against scientific racism. A team of anthropologists recently reevaluated Morton's work and argued that it was Gould, not Morton, who was biased in his analysis. This article is a reexamination of the Morton and Gould controversy. It argues that most of Gould's arguments against Morton are sound. Although Gould made some errors and overstated his case in a number of places, he provided prima facia evidence, as yet unrefuted, that Morton did indeed mismeasure his skulls in ways that conformed to 19th century racial biases. Gould's critique of Morton ought to remain as an illustration of implicit bias in science.

  1. Launch Pad in a Box

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Tamasy, G. J.; Mueller, R. P.; Townsend, I. I.; Sampson, J. W.; Lane, M. A.

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests

  2. GPM: Waiting for Launch

    NASA Video Gallery

    The Global Precipitation Measurement mission's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, ...

  3. Expedition 28 Launch

    NASA Video Gallery

    Three new Expedition 28 flight engineers -- NASA astronaut Mike Fossum, Russian cosmonaut Sergei Volkov and Japan Aerospace Exploration Agency astronaut Satoshi Furukawa -- launch from the Baikonur...

  4. Kestrel balloon launch system

    SciTech Connect

    Newman, M.J.

    1991-10-01

    Kestrel is a high-altitude, Helium-gas-filled-balloon system used to launch scientific payloads in winds up to 20 knots, from small platforms or ships, anywhere over land or water, with a minimal crew and be able to hold in standby conditions. Its major components consist of two balloons (a tow balloon and a main balloon), the main deployment system, helium measurement system, a parachute recovery unit, and the scientific payload package. The main scope of the launch system was to eliminate the problems of being dependent of launching on long airfield runways, low wind conditions, and long launch preparation time. These objectives were clearly met with Kestrel 3.

  5. Design and Construction of Manned Lunar Base

    NASA Astrophysics Data System (ADS)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  6. Report of the Horizontal Launch Study

    NASA Technical Reports Server (NTRS)

    Wilhite, Alan W.; Bartolotta, Paul A.

    2011-01-01

    A study of horizontal launch concepts has been conducted. This study, jointly sponsored by the Defense Advanced Research Projects Agency (DARPA) and the National Aeronautics and Space Administration (NASA) was tasked to estimate the economic and technical viability of horizontal launch approaches. The study team identified the key parameters and critical technologies which determine mission viability and reported on the state of the art of critical technologies, along with objectives for technology development.

  7. Launch Pad Escape System Design (Human Spaceflight)

    NASA Technical Reports Server (NTRS)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at

  8. Atomic hydrogen as a launch vehicle propellant

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb (sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 1b(sub f)/s/lb(sub m) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  9. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  10. Comparison of Two Recent Launch Abort Platforms

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Harding, Adam

    2011-01-01

    The development of new and safer manned space vehicles is a top priority at NASA. Recently two different approaches of how to accomplish this mission of keeping astronauts safe was successfully demonstrated. With work already underway on an Apollo-like launch abort system for the Orion Crew Exploration Vehicle (CEV), an alternative design concept named the Max Launch Abort System, or MLAS, was developed as a parallel effort. The Orion system, managed by the Constellation office, is based on the design of a single solid launch abort motor in a tower positioned above the capsule. The MLAS design takes a different approach placing the solid launch abort motor underneath the capsule. This effort was led by the NASA Engineering and Safety Center (NESC). Both escape systems were designed with the Ares I Rocket as the launch vehicle and had the same primary requirement to safely propel a crew module away from any emergency event either on the launch pad or during accent. Beyond these two parameters, there was little else in common between the two projects, except that they both concluded in successful launches that will further promote the development of crew launch abort systems. A comparison of these projects from the standpoint of technical requirements; program management and flight test objectives will be done to highlight the synergistic lessons learned by two engineers who worked on each program. This comparison will demonstrate how the scope of the project architecture and management involvement in innovation should be tailored to meet the specific needs of the system under development.

  11. An Air-Launched Low-Cost Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Hudson, Gary C.

    2005-02-01

    The QuickReach concept is a responsive, mobile, air-launched, two-stage liquid pressure-fed rocket that is capable of placing nearly 2,000 pounds into low earth orbit. The rocket is extracted from a transport aircraft using gravity and a small drogue parachute for orientation stabilization. The design of the container holding the rocket allows the use of existing transport aircraft without any modification. Propulsion is LOX and propane using the Vapak concept for tank pressurization. Structures make use of advanced composites.

  12. 65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Reusable launch vehicle development research

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.

  14. Study of launch site processing and facilities for future launch vehicles

    NASA Technical Reports Server (NTRS)

    Shaffer, Rex

    1995-01-01

    The purpose of this research is to provide innovative and creative approaches to assess the impact to the Kennedy Space Center and other launch sites for a range of candidate manned and unmanned space transportation systems. The general scope of the research includes the engineering activities, analyses, and evaluations defined in the four tasks below: (1) development of innovative approaches and computer aided tools; (2) operations analyses of launch vehicle concepts and designs; (3) assessment of ground operations impacts; and (4) development of methodologies to identify promising technologies.

  15. Study of launch site processing and facilities for future launch vehicles

    NASA Astrophysics Data System (ADS)

    Shaffer, Rex

    1995-03-01

    The purpose of this research is to provide innovative and creative approaches to assess the impact to the Kennedy Space Center and other launch sites for a range of candidate manned and unmanned space transportation systems. The general scope of the research includes the engineering activities, analyses, and evaluations defined in the four tasks below: (1) development of innovative approaches and computer aided tools; (2) operations analyses of launch vehicle concepts and designs; (3) assessment of ground operations impacts; and (4) development of methodologies to identify promising technologies.

  16. Arianespace streamlines launch procedures

    NASA Astrophysics Data System (ADS)

    Lenorovitch, Jeffrey M.

    1992-06-01

    Ariane has entered a new operational phase in which launch procedures have been enhanced to reduce the length of launch campaigns, lower mission costs, and increase operational availability/flexibility of the three-stage vehicle. The V50 mission utilized the first vehicle from a 50-launcher production lot ordered by Arianespace, and was the initial flight with a stretched third stage that enhances Ariane's performance. New operational procedures were introduced gradually over more than a year, starting with the V42 launch in January 1991.

  17. Launch Pad Tour Stop

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Launch Pad tour stop at the Mississippi I-10 Welcome Center in Hancock County, Miss., is the point of origin for all tours of Stennis Space Center and StenniSphere. At the Launch Pad, visitors waiting to catch the shuttle buses are provided information and can see videos on StenniSphere exhibits and on the missions and programs of Stennis Space Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily, and buses depart from the Launch Pad to StenniSphere every 15 to 20 minutes.

  18. Large payload launch vehicles examined

    NASA Astrophysics Data System (ADS)

    Brahney, J. H.

    1985-04-01

    Several Shuttle-derived vehicle (SDV) designs have been envisioned for near-term NASA and DOD heavy lift launch vehicle (HLLV) missions into the 21st century. Studies performed at the Marshall Center have included SRB-X, side mount and in-line boostered configurations, each an evolutive concept incorporating STS features to deliver 144,000-195,000 lb payloads into LEO or 10,000 lb into GEO. A three-stage multitank design sporting a cluster of eight 1.757 Mlb thrust engines on the first stage is emerging as a favored HLLV. The second stage would be lofted by four 481,000 lb thrust SSME derivative engines and the third stage would have two of the derivatives. All stages would be drogue-parachuted to water touchdown for reuse. The technology requiring the greatest advances to realize the design is a reusable, long-life liquid oxygen/hydrocarbon fueled booster. The 5-6 yr development span would require associated selections of launch sites and the construction of launch facilities which would not interfere with STS operations.

  19. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  20. Optimal control theory determination of feasible return-to-launch-site aborts for the HL-20 Personnel Launch System vehicle

    NASA Astrophysics Data System (ADS)

    Dutton, Kevin E.

    1994-07-01

    The personnel launch system (PLS) being studied by NASA is a system to complement the space shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return to launch site (RTLS) abort. This work details an investigation, using optimal control theory, of the RTLS abort scenario. The objective of the optimization was to maximize final altitude. With final altitude as the cost function, the feasibility of an RTLS abort at different times during the ascent was determined. The method of differential inclusions was used to determine the optimal state trajectories, and the optimal controls were then calculated from the optimal states and state rates.

  1. Optimal control theory determination of feasible return-to-launch-site aborts for the HL-20 Personnel Launch System vehicle

    NASA Technical Reports Server (NTRS)

    Dutton, Kevin E.

    1994-01-01

    The personnel launch system (PLS) being studied by NASA is a system to complement the space shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return to launch site (RTLS) abort. This work details an investigation, using optimal control theory, of the RTLS abort scenario. The objective of the optimization was to maximize final altitude. With final altitude as the cost function, the feasibility of an RTLS abort at different times during the ascent was determined. The method of differential inclusions was used to determine the optimal state trajectories, and the optimal controls were then calculated from the optimal states and state rates.

  2. MAN-MACHINE SYSTEMS IN EDUCATION.

    ERIC Educational Resources Information Center

    LOUGHARY, JOHN W.

    THIS BOOK INCLUDES 5 PARTS. THE FIRST, BACKGROUND, PROVIDES A THEORETICAL AND CONCEPTUAL BASE FOR THE MAN-MACHINE SYSTEMS DESCRIBED LATER. IT DEFINES MAN-MACHINE SYSTEMS, DESCRIBES COMPUTERS, AND DISCUSSES THE RELATIONSHIPS BETWEEN MEDIA TECHNOLOGY AND LEARNING PROCESSES. PART 2, INSTRUCTION, DESCRIBES ADVANCED SYSTEMS IN EDUCATION WHICH ARE…

  3. Dr. Wernher Von Braun at the launch of Apollo 11.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Mission officials relax, all smiles, a few moments after the successful launch of the Apollo 11 spacecraft by Saturn V vehicle AS-506. Relieved of the tension of waiting through the countdown are (left to right) Charles W. Matthews, NASA deputy associate administrator for manned space flight; Dr. Wernher Von Braun, Director of the Marshall Space Flight Center; Dr. George E. Meuller, NASA associate administrator for manned spaceflight, and Lt. General Samuel C. Phillips, director of the Apollo program.

  4. Expedition 27 Launch

    NASA Video Gallery

    NASA astronaut Ron Garan and Russian cosmonauts Andrey Borisenko and Alexander Samokutyaev launch in their Soyuz TMA-21 spacecraft from the Baikonur Cosmodrome in Kazakhstan on April 4, 2011 (April...

  5. NASA Now: Glory Launch

    NASA Video Gallery

    In this episode of NASA Now, Dr. Hal Maring joins us to explain why the upcoming launch of the Glory satellite is so important to further our understanding of climate change. He also will speak on ...

  6. Launch of Juno!

    NASA Video Gallery

    An Atlas V rocket lofted the Juno spacecraft toward Jupiter from Space Launch Complex-41. The 4-ton Juno spacecraft will take five years to reach Jupiter on a mission to study its structure and dec...

  7. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  8. Hi-C Launch

    NASA Video Gallery

    The High resolution Coronal Imager (Hi-C) was launched on a NASA Black Brant IX two-stage rocket from White Sands Missile Range in New Mexico July 11, 2012. The experiment reached a maximum velocit...

  9. GPM Launch Coverage

    NASA Video Gallery

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory aboard, launched from the Tanegashima Space Center in Japan o...

  10. IRVE 3 Launch

    NASA Video Gallery

    The Inflatable Reentry Vehicle Experiment, or IRVE-3, launched on July 23, 2012, from NASA's Wallops Flight Facility. The purpose of the IRVE-3 test was to show that a space capsule can use an infl...

  11. Anchor Trial Launch

    Cancer.gov

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  12. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  13. Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    Perez, Jose

    2000-01-01

    The objectives of this program are to: (1) To develop a safe, reliable, inexpensive, and minimum operation launch assist system for sending payloads into orbit using ground powered, magnetic suspension and propulsion technologies; (2) Improve safety, reliability, operability for third generation Reusable Launch Vehicles (RLV); (3) Reduce vehicle weight and increase payload capacity; and (4) Support operational testing of Rocket Based Combine Cycle (RBCC) engines.

  14. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Passing through some of the trailer clouds of an overcast sky which temporarily postponed its launch, the Space Shuttle Discovery heads for its 19th Earth orbital flight. Several kilometers away, astronaut John H. Casper, Jr., who took this picture, was piloting the Shuttle Training Aircraft (STA) from which the launch and landing area weather was being monitored. Onboard Discovery were astronauts Richard N. Richards, L. Blaine Hammond, Jr., Mark C. Lee, Carl J. Meade, Susan J. Helms, and Jerry M. Linenger.

  15. STS-51 Launch

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Shuttle Discovery takes off from Launch Pad 39B at the Kennedy Space Center, Florida, to begin Mission STS-51 on 12 September 1993. The 57th shuttle mission began at 7:45 a.m. EDT, and lasted 9 days, 20 hours, 11 minutes, 11 seconds, while traveling a total distance of 4,106,411 miles. The Advanced Communications Technology Satellite (ACTS) was one of the projects deployed. This satellite serves as a test bed for advanced experimental communications satellite concepts and technology. Another payload on this mission was the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) telescope mounted on the Shuttle Pallet Satellite (SPAS) payload carrier. ORFEUS was designed to investigate very hot and very cold matter in the universe. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into

  16. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  17. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  18. NASA Headquarters/Kennedy Space Center: Organization and Small Spacecraft Launch Services

    NASA Technical Reports Server (NTRS)

    Sierra, Albert; Beddel, Darren

    1999-01-01

    The objectives of the Kennedy Space Center's (KSC) Expendable Launch Vehicles (ELV) Program are to provide safe, reliable, cost effective ELV launches, maximize customer satisfaction, and perform advanced payload processing capability development. Details are given on the ELV program organization, products and services, foreign launch vehicle policy, how to get a NASA launch service, and some of the recent NASA payloads.

  19. The future of manned spaceflight

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1993-01-01

    This paper examines the future of manned spaceflight in context of past accomplishments and possible future benefits of space exploration. Three technological advances mentioned are a device called the rotating wall vessel, also known as the 'bioreactor,' which allows the study of the growth of cells in three dimensions; the use of microgravity to produce high-quality electronic, magnetic, and superconducting thin films; and mining of helium-3 from the lunar surface for use in future fusion reactions with deuterium. The author then makes recommendations on how NASA should meet the challenges of manned spaceflight.

  20. Adaptive Attitude Control of the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Muse, Jonathan

    2010-01-01

    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.

  1. Magnetic Launch Assist System Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  2. Tabletop Experimental Track for Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  3. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  4. NASA Technology Area 1: Launch Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McConnaughey, Paul; Femminineo, Mark; Koelfgen, Syri; Lepsch, Roger; Ryan, Richard M.; Taylor, Steven A.

    2011-01-01

    This slide presentation reviews the technology advancements plans for the NASA Technology Area 1, Launch Propulsion Systems Technology Area (LPSTA). The draft roadmap reviews various propulsion system technologies that will be developed during the next 25 + years. This roadmap will be reviewed by the National Research Council which will issue a final report, that will include findings and recommendations.

  5. Use of lunar produced propellants for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Babb, Gus R.; Stump, William R.

    1986-01-01

    Manned Mars Mission departures from low lunar orbit (LLO), L2, and low Earth orbit (LEO), using oxygen or oxygen and hydrogen produced on the Lunar surface; or Phobos produced propellants; are compared to departures from LEO using Earth produced propellants. The economy of a given scheme is a function of the ratio of Earth launch to lunar launch costs per unit mass. To achieve savings on the order of 40% of total Earth launch costs for steady state operations requires the availability of both oxygen and hydrogen on the Moon and launch per unit mass costs of lunar surface to LLO in the range of 25% of Earth to LEO costs.

  6. Preliminary definition of a lunar landing and launch facility (Complex 39L)

    NASA Technical Reports Server (NTRS)

    Matthews, H. Dennis; Jenson, Eric B.; Linsley, Jerald N.

    1992-01-01

    A preliminary definition of a lunar landing and launch facility has been formulated. A permanently manned lunar base and a baseline lunar module are assumed. The major features of the facility are specified and major design areas are described.

  7. Zvezda Launch Coverage

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Footage shows the Proton Rocket (containing the Zvezda module) ready for launch at the Baikonur Cosmodrome in Kazakhstan, Russia. The interior and exterior of Zvezda are seen during construction. Computerized simulations show the solar arrays deploying on Zvezda in space, the maneuvers of the module as it approaches and connects with the International Space Station (ISS), the installation of the Z1 truss on the ISS and its solar arrays deploying, and the installations of the Destiny Laboratory, Remote Manipulator System, and Kibo Experiment Module. Live footage then shows the successful launch of the Proton Rocket.

  8. STS-56 Launch

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The second try works like a charm as the Space Shuttle Discovery lifts off from Launch Pad 39B on Mission STS-56 at 1:29:00 a.m., EDT, April 8. First attempt to launch Discovery on its 16th space voyage was halted at T-11 seconds on April 6. Aboard for the second Space Shuttle mission of 1993 are a crew of five and the Atmospheric Laboratory for Applications and Science 2 (ATLAS 2), the second in a series of missions to study the sun's energy output and Earth's middle atmosphere chemical makeup, and how these factors affect levels of ozone.

  9. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With a crew of six NASA astronauts aboard, the Space Shuttle Discovery heads for its nineteenth Earth-orbital mission. Launch was delayed because of weather, but all systems were 'go,' and the spacecraft left the launch pad at 6:23 p.m. (EDT) on September 9, 1994. Onboard were astronauts Richard N. Richards, L. Blaine Hammond, Carl J. Meade, Mark C. Lee, Susan J. Helms, and Jerry M. Linenger (051-2); Making a bright reflection in nearby marsh waters, the Space Shuttle Discovery heads for its 19th mission in earth orbit (053).

  10. Failure to Launch: Confronting the Male College Student Achievement Gap

    ERIC Educational Resources Information Center

    Glenn, Lane A.; Van Wert, Suzanne

    2010-01-01

    A few years ago, Mathew McConaughey and Sarah Jessica Parker generated big laughs and big box office sales in "Failure to Launch," an absurd comedy about a 26-year old man still living in his parents' basement, spending his days watching television and playing video games while the world passed him by. The film was closer to the truth than many of…

  11. NASA Launch Services Program Overview

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has need to procure a variety of launch vehicles and services for its unmanned spacecraft. The Launch Services Program (LSP) provides the Agency with a single focus for the acquisition and management of Expendable Launch Vehicle (ELV) launch services. This presentation will provide an overview of the LSP and its organization, approach, and activities.

  12. Atomic hydrogen as a launch vehicle propellant

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb(sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 lb(sub f)/s/lb(sub m)) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  13. Atomic hydrogen as a launch vehicle propellant

    SciTech Connect

    Palaszewski, B.A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I{sub sp}) were 750 and 1500 lb{sub f}/s/lb{sub m}. The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I{sub sp} (greater than 750 lb{sub f}/s/lb{sub m}) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  14. 2011 Mars Science Laboratory Launch Period Design

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2011-01-01

    The Mars Science Laboratory mission, set to launch in the fall of 2011, has the primary objective of landing the most advanced rover to date to the surface of Mars to assess whether Mars ever was, or still is today, able to sustain carbon-based life. Arriving at Mars in August 2012, the Mars Science Laboratory will also demonstrate the ability to deliver large payloads to the surface of Mars, land more accurately (than previous missions) in a 20-km by 25-km ellipse, and traverse up to 20 km. Following guided entry and parachute deployment, the spacecraft will descend on a parachute and a Powered Descent Vehicle to safely land the rover on the surface of Mars. The launch/arrival strategy is driven by several key requirements, which include: launch vehicle capability, atmosphere-relative entry speed, communications coverage during Entry, Descent and Landing, latitude accessibility, and dust storm season avoidance. Notable among these requirements is maintaining a telecommunications link from atmospheric entry to landing plus one minute, via a Direct-To-Earth X-band link and via orbital assets using an UHF link, to ensure that any failure during Entry, Descent and Landing can be reconstructed in case of a mission anomaly. Due to concerns related to the lifetime of the relay orbiters, two additional launch/arrival strategies have been developed to improve Entry, Descent, and Landing communications. This paper discusses the final launch/arrival strategy selected prior to the launch period down-selection that is scheduled to occur in August 2011. It is also important to note that this paper is an update to Ref. 1 in that it includes two new Type 1 launch periods and drops the Type 2 launch period that is no longer considered.

  15. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  16. NPP After Launch: Characterizing ATMS Performance

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn

    2011-01-01

    The NPOESS Preparatory Project (NPP) mission is scheduled to launch in the fall of 2011. Although several teams from the government and the instrument contractor will be assessing and characterizing the performance of the Advanced Technology Microwave Sounder (ATMS) and the Cross-track Infrared Sounder (CrIS) sounding suite, the NASA NPP Science Team will be paying particular attention to the aspects of these sensors that affect their utility for atmospheric and climate research. In this talk we discuss relevant aspects of ATMS and our post launch analysis approach.

  17. Launch cost analyses for reusable space transportation systems (Sänger II)

    NASA Astrophysics Data System (ADS)

    Koelle, Dietrich E.

    With the revival of studies for more economic fully reusable launch vehicles on both sides of the Atlantic, cost estimation analyses become of major importance. This is due to the fact that the essential cost reduction expected by fully reusable launch systems need to be substantiated for the justification of the development effort. The TRANSCOST model developed in the 1970-1983 period for launch vehicle cost analyses dealt mainly with expendable launch vehicles. This paper shows updated material and CERs for launch cost including fabrication and operations cost for future reusable and winged systems, such as Sänger II with the ETHV hypersonic manned winged upper stage.

  18. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  19. Possible Scenarios for Mars Manned Exploration

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Schumacher, Daniel M.

    2012-01-01

    Over the last five decades there have been numerous studies devoted to developing, launching and conducting a manned mission to Mars by both Russian and U.S. organizations. These studies have proposed various crew sizes, mission length, propulsion systems, habitation modules, and scientific goals. As a first step towards establishing an international partnership approach to a Mars mission, the most recent Russian concepts are explored and then compared to NASA's current Mars reference mission.

  20. A Study for Mars Manned Exploration

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Scimemi, Sam

    2012-01-01

    Over the last five decades there have been numerous studies devoted to developing, launching and conducting a manned mission to Mars by both Russian and U.S. organizations. These studies have proposed various crew sizes, mission length, propulsion systems, habitation modules, and scientific goals. As a first step towards establishing an international partnership approach to a Mars mission, the most recent Russian concepts are explored and then compared to NASA's latest Mars reference mission.

  1. The Next Great Ship: NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2013-01-01

    Topics covered include: Most Capable U.S. Launch Vehicle; Liquid engines Progress; Boosters Progress; Stages and Avionics Progress; Systems Engineering and Integration Progress; Spacecraft and Payload Integration Progress; Advanced Development Progress.

  2. The Computer and Man

    ERIC Educational Resources Information Center

    Hedges, William D.

    1976-01-01

    The theme of this article concerns the sketching in of a number of the factors in man's evolutionary interaction with tools, leading toward the predicted eventuality in his development, the replacement of man by machines. (Author)

  3. Man's Evolutionary Future

    ERIC Educational Resources Information Center

    Dobzhansky, Theodosius

    1972-01-01

    Man can aspire to control his evolution and direct it towards goals which he finds good, salutary, worth living for....The one most 'natural' thing for man is to modify nature by means of his knowledge." (Author/AL)

  4. Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs

    NASA Technical Reports Server (NTRS)

    Urschel, Peter H.; Cox, Timothy H.

    2003-01-01

    The Defense Advanced Research Projects Agency has proposed a two-stage system to deliver a small payload to orbit. The proposal calls for an airplane to perform an exo-atmospheric zoom climb maneuver, from which a second-stage rocket is launched carrying the payload into orbit. The NASA Dryden Flight Research Center has conducted an in-house generic simulation study to determine how accurately a human-piloted airplane can deliver a second-stage rocket to a desired exo-atmospheric launch condition. A high-performance, fighter-type, fixed-base, real-time, pilot-in-the-loop airplane simulation has been modified to perform exo-atmospheric zoom climb maneuvers. Four research pilots tracked a reference trajectory in the presence of winds, initial offsets, and degraded engine thrust to a second-stage launch condition. These launch conditions have been compared to the reference launch condition to characterize the expected deviation. At each launch condition, a speed change was applied to the second-stage rocket to insert the payload onto a transfer orbit to the desired operational orbit. The most sensitive of the test cases was the degraded thrust case, yielding second-stage launch energies that were too low to achieve the radius of the desired operational orbit. The handling qualities of the airplane, as a first-stage vehicle, have also been investigated.

  5. Cassini launch contingency effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; O'Neil, John M.; McGrath, Brian E.; Heyler, Gene A.; Brenza, Pete T.

    2002-01-01

    On 15 October 1997 at 4:43 AM EDT, the Cassini spacecraft was successfully launched on a Titan IVB/Centaur on a mission to explore the Saturnian system. It carried three Radioisotope Thermoelectric Generators (RTGs) and 117 Light Weight Radioisotope Heater Units (LWRHUs). As part of the joint National Aeronautics and Space Administration (NASA)/U.S. Department of Energy (DoE) safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbital reentry. The objective of the plan was to develop procedures to predict, within hours, the Earth impact footprints (EIFs) for the nuclear heat sources released during the atmospheric reentry. The footprint predictions would be used in subsequent notification and recovery efforts. As part of a multi-agency team, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had the responsibility to predict the EIFs of the heat sources after a reentry, given the heat sources' release conditions from the main spacecraft. (No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing.) JHU/APL's other role was to predict the time of reentry from a potential orbital decay. The tools used were a three degree-of-freedom trajectory code, a database of aerodynamic coefficients for the heat sources, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. In the weeks and days prior to launch, all the codes and procedures were exercised. Notional EIFs were derived from hypothetical reentry conditions. EIFs predicted by JHU/APL were compared to those by JPL and US SPACECOM, and were found to be in good agreement. The reentry time from orbital decay for a booster rocket for the Russian Progress M-36 freighter, a cargo ship for the Mir space station, was predicted to within 5 minutes more than two hours before reentry. For the

  6. ASTP (SA-210) Launch vehicle operational flight trajectory. Part 3: Final documentation

    NASA Technical Reports Server (NTRS)

    Carter, A. B.; Klug, G. W.; Williams, N. W.

    1975-01-01

    Trajectory data are presented for a nominal and two launch window trajectory simulations. These trajectories are designed to insert a manned Apollo spacecraft into a 150/167 km. (81/90 n. mi.) earth orbit inclined at 51.78 degrees for rendezvous with a Soyuz spacecraft, which will be orbiting at approximately 225 km. (121.5 n. mi.). The launch window allocation defined for this launch is 500 pounds of S-IVB stage propellant. The launch window opening trajectory simulation depicts the earliest launch time deviation from a planar flight launch which conforms to this constraint. The launch window closing trajectory simulation was developed for the more stringent Air Force Eastern Test Range (AFETR) flight azimuth restriction of 37.4 degrees east-of-north. These trajectories enclose a 12.09 minute launch window, pertinent features of which are provided in a tabulation. Planar flight data are included for mid-window reference.

  7. Shuttle derived launch vehicle wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Tewell, J. R.; Buell, D. N.

    1985-01-01

    Studies are being conducted regarding new launch vehicle configurations which may effectively and economically share the delivery of payloads to orbit with the present Space Transportation System (STS). The role envisaged for these launch vehicles is related to the execution of missions whose requirements exceed the STS Shuttle capabilities, taking into account the delivery of much heavier or larger payloads. One class of advanced launch vehicles is configured to take advantage of the existing Shuttle hardware and facilities. Such vehicles are referred to as Shuttle Derived Vehicles (SDV). One version of an SDV consists of two STS elements, including the external tank (ET) and solid rocket boosters, and a cargo carrier. Attention is given to wind tunnel tests, which are being conducted with SDV sidemount configurations incorporating various size payload modules.

  8. Constellation Launch Vehicles Overview

    NASA Technical Reports Server (NTRS)

    Cook, Steve; Fragola, Joseph R.; Priskos, Alex; Davis, Danny; Kaynard, Mike; Hutt, John; Davis, Stephan; Creech, Steve

    2009-01-01

    This slide presentation reviews the current status of the launch vehicles associated with the Constellation Program. These are the Ares I and the Ares V. An overview of the Ares launch vehicles is included. The presentation stresses that the major criteria for the Ares I launcher is the safety of the crew, and the presentation reviews the various features that are designed to assure that aim. The Ares I vehicle is being built on a foundation of proven technologies, and the Ares V will give NASA unprecedented performance and payload volume that can enable a range of future missions. The CDs contain videos of scenes from various activities surrounding the design, construction and testing of the vehicles.

  9. Russian Soyuz in Launch Position

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle is shown in the vertical position for its launch from Baikonur, carrying the first resident crew to the International Space Station. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960s until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  10. Launch of Zoological Letters.

    PubMed

    Fukatsu, Takema; Kuratani, Shigeru

    2016-02-01

    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal.

  11. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  12. Space Shuttle Endeavour launch

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  13. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  14. Launch of Zoological Letters.

    PubMed

    Fukatsu, Takema; Kuratani, Shigeru

    2016-02-01

    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal. PMID:26853862

  15. 73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Quality function deployment in launch operations

    NASA Astrophysics Data System (ADS)

    Portanova, P. L.; Tomei, E. J., Jr.

    1990-11-01

    The goal of the Advanced Launch System (ALS) is a more efficient launch capability that provides a highly reliable and operable system at substantially lower cost than current launch systems. Total Quality Management (TQM) principles are being emphasized throughout the ALS program. A continuous improvement philosophy is directed toward satisfying users' and customer's requirements in terms of quality, performance, schedule, and cost. Quality Function Deployment (QFD) is interpreted as the voice of the customer (or user), and it is an important planning tool in translating these requirements throughout the whole process of design, development, manufacture, and operations. This report explores the application of QFD methodology to launch operations, including the modification and addition of events (operations planning) in the engineering development cycle, and presents an informal status of study results to date. QFD is a technique for systematically analyzing the customer's (Space Command) perceptions of what constitutes a highly reliable and operable system and functionally breaking down those attributes to identify the critical characteristics that determine an efficient launch system capability. In applying the principle of QFD, a series of matrices or charts are developed with emphasis on the one commonly known as the House of Quality (because of its roof-like format), which identifies and translates the most critical information.

  17. Design and Construction of Manned Lunar Base

    NASA Astrophysics Data System (ADS)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  18. SMAP Launch and Deployment Sequence

    NASA Video Gallery

    This video combines file footage of a Delta II rocket and computer animation to depict the launch and deployment of NASA's Soil Moisture Active Passive satellite. SMAP is scheduled to launch on Nov...

  19. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  20. Heavy Lift Launch Vehicle Concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the Space Shuttle development phase, Marshall plarners concluded a Heavy Lift Launch Vehicle (HLLV) would be needed for successful Space Industrialization. Shown here in this 1976's artist's conception is an early version of the HLLV during launch.

  1. Launching Garbage-Bag Balloons.

    ERIC Educational Resources Information Center

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  2. Intelsat satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The launch schedule for Intelsat 5-B, the prime Intelsat satellite to provide communications services between the Americas, Europe, the Middle East, and Africa, is presented. The planned placement of the satellite into an elliptical transfer orbit, and circularization of the orbit at geosynchronous altitude over the equator are described. Characteristics of the Atlas Centaur launch vehicle, AC-56, are given. The launch operation is summarized and the launch sequence presented. The Intelsat team and contractors are listed.

  3. Proceedings of the Second Manned Space Flight Meeting

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The papers presented in this report represent the classified portion of the Second Manned Space Flight Meeting which was held in Dallas, TX, on April 22-24, 1963. The meeting was co-sponsored by the American Institute of Aeronautics and Astronautics and the National Aeronautics and Space Administration. The following subjects are discussed in the report: Manned Space Flight Programs, Launch Vehicles, Spacecraft Design, and Guidance and Control.

  4. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  5. X-33 Demonstrates Reusable Launch Vehicle Technologies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA is developing advanced technologies that will revolutionize America's space launch capabilities and unleash the commercial potential of space. The challenge is to develop advanced technologies for affordable reusble launch vehicles. NASA's goal is to reduce the payload cost of access to space by an order of magnitude, from $10,000 to $1,000 per pound, within 10 years, and by an additional order of magnitude, to $100's per pound within 25 years. This research is part of NASA's Aeronautics and Space Transportation Technology (ASTT) Enterprise's strategy to sustain U.S. leadership in aeronautics and space. The Enterprise has set bold goals that are grouped into Three Pillars: Global Civil Aviation, Revolutionary Technology Leaps and Access to Space.

  6. [Post launch studies].

    PubMed

    Akaza, Hideyuki; Ohashi, Yasuo; Shimada, Yasuhiro; Ikeda, Tadashi; Saijo, Nagahiro; Isonishi, Seiji; Hirao, Yoshihiko; Tsuruo, Takashi; Tsukagoshi, Shigeru; Sone, Saburo; Nakamura, Seigo; Kato, Masuhiro; Mikami, Osamu; von Euler, Mikael; Blackledge, George; Milsted, Bob; Vose, Brent

    2002-11-01

    Evidence Based Medicine (EBM) is a growing concept in Japan as it is elsewhere. Central to improving the use of EBM is generation of data through well conducted controlled clinical studies. There are many problems associated with conduct of clinical studies after launch in Japan, and many initiatives are ongoing to improve the situation. Development of Clinical Research Coordinators (CRO) and central Data Management centers are key to improving the quality of clinical research in Japan. Currently Japan has an undeveloped legal system with regard to post-launch trials and off-label use of registered drugs. There is no reimbursement for off-label and various restrictions imposed on the recipients of the Ministry of Health, Labour and Welfare's (MHLW) funds. Maybe the biggest problem is the high cost of post-marketing studies sponsored by pharmaceutical manufacturers. A high quality system to support post launch clinical studies need a solid financial base. There is a need for a suitable review system for investigator initiated multi-centre studies, as the current IRB system is not sufficient. There are also challenges regarding the differences, perceived or real, in treatment practice and available registrations in Japan and in the West, causing problems in choosing suitable comparators and study designs. At the present time it is not clear whether investigator initiated trials will be acceptable for registration purposes in Japan. The agreed first priority is to build a suitable and strong infrastructure within the academic community to support researchers to investigate important questions with or without pharmaceutical company support. Despite all these issues, several groundbreaking projects are under way throughout Japan, in many different areas and by different collaborative groups, some with government support. In fact, researcher-initiated clinical trials achieved a rapid growth in Japan in the past year.

  7. Launch team training system

    NASA Technical Reports Server (NTRS)

    Webb, J. T.

    1988-01-01

    A new approach to the training, certification, recertification, and proficiency maintenance of the Shuttle launch team is proposed. Previous training approaches are first reviewed. Short term program goals include expanding current training methods, improving the existing simulation capability, and scheduling training exercises with the same priority as hardware tests. Long-term goals include developing user requirements which would take advantage of state-of-the-art tools and techniques. Training requirements for the different groups of people to be trained are identified, and future goals are outlined.

  8. STS-39 Launch

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Launched aboard the Space Shuttle Discovery on April 28, 1991 at 7:33:14 am (EDT), STS-39 was a Department of Defense (DOD) mission. The crew included seven astronauts: Michael L. Coats, commander; L. Blaine Hammond, pilot; Guion S. Buford, Jr., mission specialist 1; Gregory J. Harbaugh, mission specialist 2; Richard J. Hieb, mission specialist 3; Donald R. McMonagle, mission specialist 4; and Charles L. Veach, mission specialist 5. The primary unclassified payload included the Air Force Program 675 (AFP-675), the Infrared Background Signature Survey (IBSS), and the Shuttle Pallet Satellite II (SPAS II).

  9. Expendable launch vehicle studies

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to

  10. WIND Spacecraft Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An international effort to learn more about the complex interaction between the Earth and Sun took another step forward with the launch of WIND spacecraft from Kennedy Space Center (KSC). WIND spacecraft is studded with eight scientific instruments - six US, one French, and one - the first Russian instrument to fly on a US spacecraft - that collected data about the influence of the solar wind on the Earth and its atmosphere. WIND is part of the Global Geospace Science (GGS) initiative, the US contribution to NASA's International Solar Terrestrial Physics (ISTP) program.

  11. Space Launch System for Exploration and Science

    NASA Astrophysics Data System (ADS)

    Klaus, K.

    2013-12-01

    low-risk, direct return of Martian material. For the Europa Clipper mission the SLS eliminates Venus and Earth flybys, providing a direct launch to the Jovian system, arriving four years earlier than missions utilizing existing launch vehicles. This architecture allows increased mass for radiation shielding, expansion of the science payload and provides a model for other outer planet missions. SLS provides a direct launch to the Uranus system, reducing travel time by two years when compared to existing launch capabilities. SLS can launch the Advanced Technology Large-Aperture Space Telescope (ATLAST 16 m) to SEL2, providing researchers 10 times the resolution of the James Webb Space Telescope and up to 300 times the sensitivity of the Hubble Space Telescope. SLS is the only vehicle capable of deploying telescopes of this mass and size in a single launch. It simplifies mission design and reduces risks by eliminating the need for multiple launches and in-space assembly. SLS greatly shortens interstellar travel time, delivering the Interstellar Explorer to 200 AU in about 15 years with a maximum speed of 63 km/sec--13.3 AU per year (Neptune orbits the sun at an approximate distance of 30 AU ).

  12. The Venture Star Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This artist's concept is of the X-33 Advanced Technology Demonstrator, a subscale prototype Reusable Launch Vehicle (RLV), in its 1997 configuration. Named the Venture Star, this vehicle manufactured by Lockheed Martin Skunk Works, is shown in orbit with a deployed payload. The Venture Star was one of the earliest versions of the RLV's developed in attempt to replace the aging shuttle fleet. The X-33 program has been discontinued.

  13. Launch vehicle for continuous mining apparatus

    SciTech Connect

    Addington, L.C.; Addington, R.R.; Addington, L.M.; Lynch, A.E.; Susla, J.; Conley, D.L.; Sartaine, J.J.; Price, D.E.

    1993-08-03

    A launch vehicle is described for a continuous mining system including modular conveyor units that may be connected together to form a conveyor train, comprising: a main frame movably supporting a rear portion of said conveyor train; means attached to said main frame for selectively advancing and withdrawing said conveyor train; and receiving means attached to said main frame for continuously receiving aggregate material from said conveyor train as each said modular conveyor unit is added to said conveyor train.

  14. Real-Time Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Wilson, Heath; Alday, Nathan; Walker, David; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory (SIL) at the Marshall Space Flight Center (MSFC). The primary purpose of the Ares SIL is to test the vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time software backbone to stimulate all required Ares components through high-fidelity simulation. ARTEMIS has been designed to take full advantage of the advances in underlying computational power now available to support HWIL testing. A modular real-time design relying on a fully distributed computing architecture has been achieved. Two fundamental requirements drove ARTEMIS to pursue the use of high-fidelity simulation models in a real-time environment. First, ARTEMIS must be used to test a man-rated integrated avionics hardware and software system, thus requiring a wide variety of nominal and off-nominal simulation capabilities to certify system robustness. The second driving requirement - derived from a nationwide review of current state-of-the-art HWIL facilities - was that preserving digital model fidelity significantly reduced overall vehicle lifecycle cost by reducing testing time for certification runs and increasing flight tempo through an expanded operational envelope. These two driving requirements necessitated the use of high-fidelity models throughout the ARTEMIS simulation. The nature of the Ares mission profile imposed a variety of additional requirements on the ARTEMIS simulation. The Ares I vehicle is composed of multiple elements, including the First Stage Solid Rocket Booster (SRB), the Upper Stage powered by the J- 2X engine, the Orion Crew Exploration Vehicle (CEV) which houses the crew, the Launch Abort System (LAS), and various secondary elements that separate from the vehicle. At launch, the

  15. A first in man, dose-finding study of the mTORC1/mTORC2 inhibitor OSI-027 in patients with advanced solid malignancies

    PubMed Central

    Mateo, Joaquin; Olmos, David; Dumez, Herlinde; Poondru, Srinivasu; Samberg, Nancy L; Barr, Sharon; Van Tornout, Jan M; Jie, Fei; Sandhu, Shahneen; Tan, Daniel S; Moreno, Victor; LoRusso, Patricia M; Kaye, Stan B; Schöffski, Patrick

    2016-01-01

    Background: The kinase activity of mTOR involves 2 multiprotein complexes, (mTORC1-mTORC2). Targeting mTORC1 with rapalogues induces compensatory feedback loops resulting in AKT/ERK activation, which may be abrogated by mTORC2 inhibition. A first-in-human trial evaluating tolerability, pharmacokinetics and pharmacodynamics of the dual TORC1/TORC2 inhibitor OSI-027 was conducted. Methods: Dose escalation was pursued for three schedules of administration (three consecutive days per week (S1), once a week (S2) and daily dosing (S3)), until dose-limiting toxicities (DLT) were identified. Expansion cohorts with paired tumour biopsies were initiated based on tolerability and pharmacodynamics. Results: One hundred and twenty eight patients with advanced cancer were enrolled. DLT consisted predominantly of fatigue, renal function disturbances and cardiac events. OSI-027 exposure was dose proportional, with Tmax within 4 h and a half-life of ∼14 h. Expansion cohorts were initiated for S1 and S2, as MTD for S3 was overall considered suboptimal. Target modulation in peripheral blood mononuclear cells were observed from 30 mg, but in tumour biopsies 120 mg QD were needed, which was a non-tolerable dose due to renal toxicity. No RECIST responses were recorded, with stable disease >6 months in six (5%) patients. Conclusions: OSI-027 inhibits mTORC1/2 in patients with advanced tumour s in a dose-dependent manner but doses above the tolerable levels in S1 and S3 are required for a sustained biological effect in tumour biopsies. PMID:27002938

  16. Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    Jacobs, W. A.

    2000-01-01

    With the ever-increasing cost of getting to space and the need for safe, reliable, and inexpensive ways to access space, NASA is taking a look at technologies that will get us there. One of these technologies is Magnetic Launch Assist (MagLev). This is the concept of using both magnetic levitation and magnetic propulsion to provide an initial velocity by using electrical power from ground sources. The use of ground based power can significantly reduce operational costs over the consumables necessary to attain the same velocity. The technologies to accomplish this are both old and new. The concept of MagLev has been around for a long time and several MagLev Trains have already been made. Where NASA's MagLev diverges from the traditional train is in the immense power required to propel this vehicle to 600 feet per second in less than 10 seconds. New technologies or the upgrade of existing technologies will need to be investigated in areas of energy storage and power switching. Plus the separation of a very large mass (the space vehicle) and the aerodynamics of that vehicle while on the carrier are also of great concern and require considerable study and testing. NASA's plan is to mature these technologies in the next 10 years to achieve our goal of launching a full sized space vehicle off a MagLev rail.

  17. STS-86 Atlantis Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Atlantis blazes through the night sky to begin the STS-86 mission, slated to be the seventh of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Liftoff on Sept. 25 from Launch Pad 39A was at 10:34:19 p.m. EDT, within seconds of the preferred time, during a six-minute, 45- second launch window. The 10-day flight will include the transfer of the sixth U.S. astronaut to live and work aboard the Mir. After the docking, STS-86 Mission Specialist David A. Wolf will become a member of the Mir 24 crew, replacing astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the remainder of the STS-86 crew. Foale has been on the Russian Space Station since mid-May. Wolf is scheduled to remain there about four months. Besides Wolf (embarking to Mir) and Foale (returning), the STS-86 crew includes Commander James D. Wetherbee, Pilot Michael J. Bloomfield, and Mission Specialists Wendy B. Lawrence, Scott E. Parazynski, Vladimir Georgievich Titov of the Russian Space Agency, and Jean-Loup J.M. Chretien of the French Space Agency, CNES. Other primary objectives of the mission are a spacewalk by Parazynski and Titov, and the exchange of about three-and-a-half tons of science/logistical equipment and supplies between Atlantis and the Mir.

  18. STS-86 Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Atlantis blazes through the night sky to begin the STS-86 mission, slated to be the seventh of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Liftoff on September 25 from Launch Pad 39A was at 10:34 p.m. EDT, within seconds of the preferred time, during a six minute, 45 second launch window. The 10 day flight will include the transfer of the sixth U.S. astronaut to live and work aboard the Mir. After the docking, STS-86 Mission Specialist David A. Wolf will become a member of the Mir 24 crew, replacing astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the remainder of the STS-86 crew. Foale has been on the Russian Space Station since mid May. Wolf is scheduled to remain there about four months. Besides Wolf (embarking to Mir) and Foale (returning), the STS-86 crew includes Commander James D. Wetherbee, Pilot Michael J. Bloomfield, and Mission Specialists Wendy B. Lawrence, Scott E. Parazynski, Vladimir Georgievich Titov of the Russian Space Agency, and Jean-Loup J.M. Chretien of the French Space Agency, CNES. Other primary objectives of the mission are a spacewalk by Parazynski and Titov, and the exchange of about 3.5 tons of science/logistical equipment and supplies between Atlantis and the Mir.

  19. New Product Launching Ideas

    NASA Astrophysics Data System (ADS)

    Kiruthika, E.

    2012-09-01

    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  20. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  1. Lunar base launch and landing facilities conceptual design

    NASA Technical Reports Server (NTRS)

    Phillips, Paul G.; Simonds, Charles H.; Stump, William R.

    1992-01-01

    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.

  2. Launch vehicle selection model

    NASA Technical Reports Server (NTRS)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction

  3. STS-87 Columbia Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers.

  4. STS-92 Discovery Launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Viewed from across the waters of Banana Creek, clouds of smoke and steam are illuminated by the flames from Space Shuttle Discovery'''s perfect on-time launch at 7:17 p.m. EDT. Discovery carries a crew of seven on a construction flight to the International Space Station. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  5. LAUNCH_BLTMS.DLL

    2005-12-14

    Postprocessor for the integration of the BLT-MS (Breach Leach Transport-Multi Species) code with GoldSim{trademark}. The program is intended as a DLL for use with a GoldSim{trademark}. The program is intended as a DLL for use with a GoldSim{trademark} model file. The code executes BTLMS.EXE using a standard BLT-MS input file and allocated parameters to memory for subsequent input of BLTMS.EXE output dat to a GoldSim{trademark} model file. This DLL is used for performing Monte Carlomore » analyses. The software is used as part of a modeling package that consists of BLTMS.EXE, GoldSim{trademark}, Read_BLT.DLL and Launch_BLTMS.DLL. The modeling package is used to run Monte Crlo analyses for performance assessment of Low level Radioactive Waste Repositories.« less

  6. The Launch of an Atlas/Centaur Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  7. Control of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.

    2014-01-01

    The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).

  8. Lunar landing and launch facilities and operations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A preliminary design of a lunar landing and launch facility for a Phase 3 lunar base is formulated. A single multipurpose vehicle for the lunar module is assumed. Three traffic levels are envisioned: 6, 12, and 24 landings/launches per year. The facility is broken down into nine major design items. A conceptual description of each of these items is included. Preliminary sizes, capacities, and/or other relevant design data for some of these items are obtained. A quonset hut tent-like structure constructed of aluminum rods and aluminized mylar panels is proposed. This structure is used to provide a constant thermal environment for the lunar modules. A structural design and thermal analysis is presented. Two independent designs for a bridge crane to unload/load heavy cargo from the lunar module are included. Preliminary investigations into cryogenic propellant storage and handling, landing/launch guidance and control, and lunar module maintenance requirements are performed. Also, an initial study into advanced concepts for application to Phase 4 or 5 lunar bases has been completed in a report on capturing, condensing, and recycling the exhaust plume from a lunar launch.

  9. Microorganisms and Man.

    ERIC Educational Resources Information Center

    Noble, W. C.

    1983-01-01

    Provides information to update Institute of Biology's Studies in Biology No. 111, "Microorganisms and Man," by W. C. Noble and Jay Naidoo (Edward Arnold, 1979). Topics include: (1) food poisoning; (2) airborn infections in man; (3) infection in animals and plants; and (4) biodegradation and biosynthesis. (JN)

  10. The Green Man

    ERIC Educational Resources Information Center

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  11. Man of Fire.

    ERIC Educational Resources Information Center

    Phipps, Helene Juarez

    1993-01-01

    The themes of Jose Clemente Orozco's murals, several of which are found on U.S. college campuses, are as relevant today as they were during the Mexican Revolution. Orozco (1883-1949) painted the world as he saw it, portraying corruption, violence, and man's inhumanity to man. (LP)

  12. Manned Mars missions using propellant from space

    SciTech Connect

    Zuppero, A.C.; Olson, T.S. ); Redd, L.R. )

    1993-01-10

    .A recent discovery (8/14/92) of a near-earth object containing materials potentially useful for space activities could perhaps change the entire way humans access and operate in space. A near-Earth object ([number sign]4015, 1979 VA, comet Wilson-Harrington) contains water ice that could be used for space propulsion. In addition, this type of object may contain structural and lifesustaining materials (complex hydrocarbons, ammonia and/or bound nitrogen compounds) for space structures, manned planetary bases, or planetary surface terraforming. The retrieval and utilization of rocket propellant from near-Earth objects, for manned Mars missions in particular, has been investigated and the benefits of this scenario to over performing a Mars mission with terrestrial propellants have been documented. The results show water extracted from these objects and retrieved to Earth orbit for use in going to Mars may actually enable manned Mars exploration by reducing the number of Heavy Lift Launch Vehicle (HLLV) flights or eliminating the need for HLLV's altogether. The mission can perhaps be supported with existing launch vehicles and not required heavy lift capability. Also, the development of a nuclear thermal rocket for this alternate approach may be simplified substantially by reducing the operating temperature required.

  13. Research on sleep, circadian rhythms and aging - Applications to manned spaceflight

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles A.; Chiasera, August J.; Duffy, Jeanne F.

    1991-01-01

    Disorders of sleep and circadian rhythmicity are characteristic of both advancing age and manned spaceflight. Sleep fragmentation, reduced nocturnal sleep tendency and sleep efficiency, reduced daytime alertness, and increased daytime napping are common to both of these conditions. Recent research on the pathophysiology and treatment of disrupted sleep in older people has led to a better understanding of how the human circadian pacemaker regulates the timing of the daily sleep-wake cycle and how it responds to the periodic changes in the light-dark cycle to which we are ordinarily exposed. These findings have led to new treatments for some of the sleep disorders common to older individuals, using carefully timed exposure to bright light and darkness to manipulate the phase and/or amplitude of the circadian timing system. These insights and treatment approaches have direct applications in the design of countermeasures allowing astronauts to overcome some of the challenges which manned spaceflight poses for the human circadian timing system. We have conducted an operational feasibility study on the use of scheduled exposure to bright light and darkness prior to launch in order to facilitate adaptation of the circadian system of a NASA Space Shuttle crew to the altered sleep-wake schedule required for their mission. The results of this study illustrate how an understanding of the properties of the human circadian timing system and the consequences of circadian disruption can be applied to manned spaceflight.

  14. Peer Review of Launch Environments

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.

    2011-01-01

    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  15. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  16. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This wide lux image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station shows the base of the launch pad as well as the orbiter just clearing the gantry. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  17. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 70mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  18. Assessment of candidate-expendable launch vehicles for large payloads

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In recent years the U.S. Air Force and NASA conducted design studies of 3 expendable launch vehicle configurations that could serve as a backup to the space shuttle--the Titan 34D7/Centaur, the Atlas II/Centaur, and the shuttle-derived SRB-X--as well as studies of advanced shuttle-derived launch vehicles with much larger payload capabilities than the shuttle. The 3 candidate complementary launch vehicles are judged to be roughly equivalent in cost, development time, reliability, and payload-to-orbit performance. Advanced shuttle-derived vehicles are considered viable candidates to meet future heavy lift launch requirements; however, they do not appear likely to result in significant reduction in cost-per-pound to orbit.

  19. Structural Analysis of Lightning Protection System for New Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cope, Anne; Moore, Steve; Pruss, Richard

    2008-01-01

    This project includes the design and specification of a lightning protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the lightning protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct lightning strikes during launch processing and other activities prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct Lightning Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the lightning protection system and RS&H was responsible for the development of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the lightning protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of lightning protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.

  20. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch schedule. 415.121 Section...

  1. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch plans. 415.119 Section...

  2. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch plans. 415.119 Section...

  3. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch schedule. 415.121 Section...

  4. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch schedule. 415.121 Section...

  5. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Launch schedule. 415.121 Section...

  6. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Launch plans. 415.119 Section...

  7. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Launch plans. 415.119 Section...

  8. Evaluation of the national launch system as a booster for the HL-20

    NASA Technical Reports Server (NTRS)

    Duffy, James B.; Lehner, Jack W.; Pannell, Bill

    1993-01-01

    The capability of a proposed national launch system (NLS) to boost the personnel launch system (PLS) manned vehicle has been examined. A reference NLS configuration, the NLS-2 1.5 stage vehicle, and a reference HL-20 PLS configuration were used for the study. Performance has been analyzed for several PLS insertion orbits to support the Space Station Freedom resupply mission. The reliability of the NLS launch vehicle and its contribution to crew safety requirements have been determined. The launch-processing and launch facility requirements of these combined systems were also analyzed. Previous studies of these two systems have focused on either the PLS manned element or NLS launch vehicle. This paper combines the results of prior studies in an analysis of the integrated NLS/PLS configuration. This analysis has found the proposed NLS 1.5 stage launch vehicle to be an excellent booster for the PLS. Predicted performance margins for this launch-vehicle configuration are more than adequate, and acceptable reliability and safety levels are anticipated. Integration of this NLS/PLS configuration into NASA mixed-fleet launch architectures is feasible.

  9. Initiating Piloted Mars Expeditions with Medium-Lift Launch Systems

    NASA Astrophysics Data System (ADS)

    Bonin, G. R.

    A method of accomplishing manned expeditions to Mars with existing medium-lift launch systems is discussed. In this architecture, 20-tonne propulsion stages are placed individually in low-Earth orbit, where they are mated to Mars-bound payloads and ignited at successive perigees to execute trans-Mars injection. Spacecraft follow conjunction-class trajectories to the red planet and utilize aerobraking for orbital capture and descent. Return vehicles are fuelled with methane/oxygen bipropellant synthesized primarily from Martian resources. Dispatching expeditions from orbit with individual, high-energy stages - rather than directly from the Earth's surface - allows for the division of mission mass into more manageable components, which can be launched by vehicles that exist today. This plan does not require the development of heavy-lift launch technology: an effective yet costly proposition that may otherwise hinder current space exploration initiatives. Without the need for heavy-lift boosters, manned missions to Mars can be undertaken presently, and within the constraints of today's space exploration budgets. It is concluded that the mission design herein represents a less robust, though more economically viable method for initiating manned Mars exploration than proposals which require heavy-lift technology - an alternative method by which a new planet could be opened to humanity.

  10. 7. OVERALL VIEW OF LAUNCH PAD, SHOWING HELIPAD AT LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OVERALL VIEW OF LAUNCH PAD, SHOWING HELIPAD AT LAUNCH AREA, WHEN VIEWED WITH NEGATIVE NO. CA-57-8(BELOW), LOOKING NORTH. BASKETBALL COURT IN BACKGROUND Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  11. PTTI-aided ephemeris calculation and rapid data link acquisition for manned space flight

    NASA Technical Reports Server (NTRS)

    Anderman, Alfred

    1993-01-01

    Complexity of future manned space flight mission control can be significantly reduced by integrating GPS, the PTTI source, into telemetry, tracking, and command (TT&C). Future telecommunications, space tracking electronic intelligence, metrology, navigation, and data acquisition will thereby be served, including: on-board ephemeris determination, reduced synchronization time for time division multiple access (TDMA) links, and in-flight clock calibration, increasing on-board autonomy and reducing ground support costs. Manned space transportation through the first quarter of the 21st century will probably depend on a mix of vehicles, including the Advanced Manned Launch System (AMLS), the Personnel Launch System (PLS), and continued use of the Shuttle Fleet. Precise Ephemeris is important on-board for mission success, status monitoring, also for rendezvous and docking. Use of GPS can eliminate ground based tracking/processing, enhancing autonomy and reducing communications bandwidth. GPS time can simplify complicated functions used in bandwidth efficient time division multiple access (TDMA) communications, such as: precise and realtime synchronization of receive reference timing, transmit-timing and acquisition control, unique synchronization word (UW) detection, and elastic buffering. High clock accuracy provides increased signal-to-noise (S/N) ratio during acquisition, permitting narrower acquisition frequency and time windows. Spaceborne systems requirements to provide capabilities such as: refinement of the GEM-72 gravity model based on satellite tracking observations from ATS-6 to GEOS-3, relativistic clock experiments, NASA crustal dynamics program for developing space geodetic techniques to study the earth's crust, its gravity field, and earthquake mechanisms, and multi-disciplinary space geodetic tracking for studying global climatic changes are also reviewed.

  12. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  13. NASA's Launch Propulsion Systems Technology Roadmap

    NASA Technical Reports Server (NTRS)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  14. History society launches journal

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A fledgling international organization plans to launch, in the next few months, a journal devoted to the study of the history of the earth sciences. The journal, to be published by the History of Earth Sciences Society (HESS), will be edited by Gerald M. Friedman ot the Rensselaer Polytechnic Institute.HESS will promote interest and scholarship in the history of the earth sciences by publishing the semiannual journal, by organizing meetings about the history of earth sciences, and by supporting the efforts of other associations displaying similar interests, according to the society's draft constitution. An organizational meeting to ratify the constitution and to elect officers will be held in conjunction with the annual meeting of the Geological Society of America in October. The interim officers and the proposed slate for 1983 include David B. Kitts (University of Oklahoma, Norman), president; Albert V. Carrozi (University of Illinois, Urbana), president-elect; and Ellis L. Yochelson (U.S. Geological Survey, National Museum of Natural History), secretary.

  15. Launch Support Video Site

    NASA Technical Reports Server (NTRS)

    OFarrell, Zachary L.

    2013-01-01

    The goal of this project is to create a website that displays video, countdown clock, and event times to customers during launches, without needing to be connected to the internal operations network. The requirements of this project are to also minimize the delay in the clock and events to be less than two seconds. The two parts of this are the webpage, which will display the data and videos to the user, and a server to send clock and event data to the webpage. The webpage is written in HTML with CSS and JavaScript. The JavaScript is responsible for connecting to the server, receiving new clock data, and updating the webpage. JavaScript is used for this because it can send custom HTTP requests from the webpage, and provides the ability to update parts of the webpage without having to refresh the entire page. The server application will act as a relay between the operations network, and the open internet. On the operations network side, the application receives multicast packets that contain countdown clock and events data. It will then parse the data into current countdown times and events, and create a packet with that information that can be sent to webpages. The other part will accept HTTP requests from the webpage, and respond to them with current data. The server is written in C# with some C++ files used to define the structure of data packets. The videos for the webpage will be shown in an embedded player from UStream.

  16. Urban poor program launched.

    PubMed

    1991-01-01

    The government of the Philippines has launched a program to deal with the rapidly growing urban poor population. 60 cities (including Metro Manila) are expected to increase their bloated population by 3.8% over 1990 which would be 27.7 million for 1991. Currently there is an exodus of people from the rural areas and by 2000 half the urban population will be squatters and slum dwellers. Basic services like health and nutrition are not expected to be able to handle this type of volume without a loss in the quality of service. The basic strategy of the new program is to recruit private medical practitioners to fortify the health care delivery and nutrition services. Currently the doctor/urban dweller ration is 1:9000. The program will develop a system to pool the efforts of government and private physicians in servicing the target population. Barangay Escopa has been chosen as the pilot city because it typifies the conditions of a highly populated urban area. The projects has 2 objectives: 1) demonstrate the systematic delivery of health and nutrition services by the private sector through the coordination of the government, 2) reduce mortality and morbidity in the community, especially in the 0-6 age group as well as pregnant women and lactating mothers.

  17. Airborne Simulation of Launch Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2014-01-01

    In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity-turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is optimized for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using NASA Dryden Flight Research Center's Full-scale Advanced Systems Testbed (FAST), a modified F/A-18 airplane, over a range of scenarios designed to stress the SLS's adaptive augmenting control (AAC) algorithm.

  18. Airborne Simulation of Launch Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Orr, Jeb S.; Hanson, Curtis E.; Gilligan, Eric T.

    2015-01-01

    In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is configured for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight-test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Fullscale Advanced Systems Testbed (FAST), a modified F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), over a range of scenarios designed to stress the SLS's Adaptive Augmenting Control (AAC) algorithm.

  19. Parametric Testing of Launch Vehicle FDDR Models

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  20. Launch Vehicle Dynamics Demonstrator Model

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Launch Vehicle Dynamics Demonstrator Model. The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control. [Entire movie available on DVD from CASI as Doc ID 20070030984. Contact help@sti.nasa.gov

  1. Launch systems operations cost modeling

    NASA Astrophysics Data System (ADS)

    Jacobs, Mark K.

    1999-01-01

    This paper describes the launch systems operations modeling portion of a larger model development effort, NASA's Space Operations Cost Model (SOCM), led by NASA HQ. The SOCM study team, which includes cost and technical experts from each NASA Field Center and various contractors, has been tasked to model operations costs for all future NASA mission concepts including planetary and Earth orbiting science missions, space facilities, and launch systems. The launch systems operations modeling effort has near term significance for assessing affordability of our next generation launch vehicles and directing technology investments, although it provides only a part of the necessary inputs to assess life cycle costs for all elements that determine affordability for a launch system. Presented here is a methodology to estimate requirements associated with a launch facility infrastructure, or Spaceport, from start-up/initialization into steady-state operation. Included are descriptions of the reference data used, the unique estimating methodology that combines cost lookup tables, parametric relationships, and constructively-developed correlations of cost driver input values to collected reference data, and the output categories that can be used by economic and market models. Also, future plans to improve integration of launch vehicle development cost models, reliability and maintainability models, economic and market models, and this operations model to facilitate overall launch system life cycle performance simulations will be presented.

  2. Delta launch vehicle accident investigation

    NASA Astrophysics Data System (ADS)

    1986-03-01

    The text of the testimony given by several witnesses during the House hearings on the Delta launch vehicle accident of May 3, 1986 is given. Pre-launch procedures, failure analysis, the possibility of sabotage, and design and testing are among the topics discussed.

  3. No Launch Before Its Time

    NASA Technical Reports Server (NTRS)

    Townsend, Bill

    2004-01-01

    Aura is an Earth-observing satellite developed to help us study the quality of the air we breathe. It will look at the state of the ozone and the atmospheric composition in regards to the Earth's changing climate. I headed to California on July 5, 2004. The plan was that the satellite would launch on the tenth, but we had a few problems getting it off. This was the fifty-ninth launch of my career, and it was also a little different than most of my previous launches. Most of the time it's weather that postpones a launch; there aren't usually that many technical issues this late in the game. This time. however, we had several problems, equally split between the launch vehicle and the spacecraft. I remember a member of the crew asking me, 'Is this normal?' And in my experience, it wasn't.

  4. Pioneer Launch on Delta Vehicle

    NASA Technical Reports Server (NTRS)

    1969-01-01

    NASA launches the last in the series of interplanetary Pioneer spacecraft, Pioneer 10 from Cape Kennedy, Florida. The long-tank Delta launch vehicle placed the spacecraft in a solar orbit along the path of Earth's orbit. The spacecraft then passed inside and outside Earth's orbit, alternately speeding up and slowing down relative to Earth. The Delta launch vehicle family started development in 1959. The Delta was composed of parts from the Thor, an intermediate-range ballistic missile, as its first stage, and the Vanguard as its second. The first Delta was launched from Cape Canaveral on May 13, 1960 and was powerful enough to deliver a 100-pound spacecraft into geostationary transfer orbit. Delta has been used to launch civil, commercial, and military satellites into orbit. For more information about Delta, please see Chapter 3 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  5. The role of manned extravehicular activity in reducing the cost of space payloads

    NASA Technical Reports Server (NTRS)

    Alton, L. R.; Patrick, J. W.

    1974-01-01

    Substantial cost savings and performance improvement will result by the use of Extravehicular Activity (EVA) to supplement or replace automation. Taking an all-pallet version of Langley Research Center's Advanced Technology Laboratory payload as an example, $54.5 million should be saved by EVA over automation, considering deployment and stowing only. Additional savings should accrue when reduced-reliability equipment (where permitted) is substituted for high reliability equipment and EVA is used for repairs. More comprehensively, launch and operation costs could also be reduced by elimination of the need to return to the ground for repairs; and production spending might be reduced when an entire vehicle was saved by manned EVA repair not feasible via automation. Potential disadvantages include increased cost due to development and manufacture of EVA equipment, payload provisions to enable EVA interfaces, training, orbiter modification, and prevention of EVA-caused contamination. Possible applications to the Space Shuttle missions are discussed.

  6. Future manned systems advanced avionics study

    NASA Technical Reports Server (NTRS)

    Sawamura, Bob; Radke, Kathie

    1992-01-01

    COTS+ was defined in this study as commercial off-the-shelf (COTS) products, ruggedized and militarized components, and COTS technology. This study cites the benefits of integrating COTS+ in space, postulates a COTS+ integration methodology, and develops requirements and an architecture to achieve integration. Developmental needs and concerns were identified throughout the study; these needs, concerns, and recommendations relative to their abatement are subsequently presented for further action and study. The COTS+ concept appears workable in part or in totality. No COTS+ technology gaps were identified; however, radiation tolerance was cited as a concern, and the deferred maintenance issue resurfaced. Further study is recommended to explore COTS+ cost-effectiveness, maintenance philosophy, needs, concerns, and utility metrics. The generation of a development plan to further investigate and integrate COTS+ technology is recommended. A COTS+ transitional integration program is recommended. Sponsoring and establishing technology maturation programs and COTS+ engineering and standards committees are deemed necessary and are recommended for furthering COTS+ integration in space.

  7. STS-29: Pre-Launch Preparations/Launch and Landing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Live footage shows the crewmembers of STS-29, Commander Michael L. Coats, Pilot John E. Blaha, and Mission Specialists James P. Bagian, James F. Buchli, and Robert C. Springer, seated in the White Room with the traditional cake. The crew is seen performing various pre-launch activities including suit-up, and walk out to the Astro-van. This early morning launch shows countdown, main engine start, liftoff, booster separation, and various isolated footage of the launch from different cameras. Also presented are footage of the approach, gear touchdown, rollout at Edwards Air Force Base, and various isolated views of the landing.

  8. Launch Order, Launch Separation, and Loiter in the Constellation 1 1/2-Launch Solution

    NASA Technical Reports Server (NTRS)

    Stromgren, Chel; Cates, Grant; Cirillo, William

    2009-01-01

    The NASA Constellation Program (CxP) is developing a two-element Earth-to-Orbit launch system to enable human exploration of the Moon. The first element, Ares I, is a human-rated system that consists of a first stage based on the Space Shuttle Program's solid rocket booster (SRB) and an upper stage that consists of a four-crew Orion capsule, a service module, and a Launch Escape System. The second element, Ares V, is a Saturn V-plus category launch system that consists of the core stage with a cluster of six RS-68B engines and augmented with two 5.5-segment SRBs, a Saturn-derived J-2X engine powering an Earth Departure Stage (EDS), and the lunar-lander vehicle payload, Altair. Initial plans called for the Ares V to be launched first, followed the next day by the Ares I. After the EDS performs the final portion of ascent and subsequent orbit circularization, the Orion spacecraft then performs a rendezvous and docks with the EDS and its Altair payload. Following checkout, the integrated stack loiters in low Earth orbit (LEO) until the appropriate Trans-Lunar Injection (TLI) window opportunity opens, at which time the EDS propels the integrated Orion Altair to the Moon. Successful completion of this 1 1/2-launch solution carries risks related to both the orbital lifetime of the assets and the probability of achieving the launch of the second vehicle within the orbital lifetime of the first. These risks, which are significant in terms of overall system design choices and probability of mission success, dictated a thorough reevaluation of the launch strategy, including the order of vehicle launch and the planned time period between launches. The goal of the effort described in this paper was to select a launch strategy that would result in the greatest possible expected system performance, while accounting for launch risks and the cost of increased orbital lifetime. Discrete Event Simulation (DES) model of the launch strategies was created to determine the probability

  9. STS Derived Exploration Launch Operations

    NASA Technical Reports Server (NTRS)

    Best, Joel; Sorge, L.; Siders, J.; Sias, Dave

    2004-01-01

    A key aspect of the new space exploration programs will be the approach to optimize launch operations. A STS Derived Launch Vehicle (SDLV) Program can provide a cost effective, low risk, and logical step to launch all of the elements of the exploration program. Many benefits can be gained by utilizing the synergy of a common launch site as an exploration spaceport as well as evolving the resources of the current Space Shuttle Program (SSP) to meet the challenges of the Vision for Space Exploration. In particular, the launch operation resources of the SSP can be transitioned to the exploration program and combined with the operations efficiencies of unmanned EELVs to obtain the best of both worlds, resulting in lean launch operations for crew and cargo missions of the exploration program. The SDLV Program would then not only capture the extensive human space flight launch operations knowledge, but also provide for the safe fly-out of the SSP through continuity of system critical skills, manufacturing infrastructure, and ability to maintain and attract critical skill personnel. Thus, a SDLV Program can smoothly transition resources from the SSP and meet the transportation needs to continue the voyage of discovery of the space exploration program.

  10. Launch vehicles for communications satellites

    NASA Technical Reports Server (NTRS)

    Mahon, J. B.

    1982-01-01

    After giving brief development histories of the Delta and the Atlas Centaur launch vehicles, attention is given to the operational characteristics of the ascent, parking orbit, transfer orbit, and orbital insertion phases of the delivery of a communications satellite to a geostationary orbit by means of a Delta launch vehicle. NASA plans to employ Delta vehicles for as long as they are needed during the transition period to the Space Shuttle. NASA planning for Atlas Centaur includes launches through 1985 for INTELSAT-VA, and through 1986 for FLTSATCOM satellites.

  11. Japan's launch vehicle program update

    NASA Astrophysics Data System (ADS)

    Tadakawa, Tsuguo

    1987-06-01

    NASDA is actively engaged in the development of H-I and H-II launch vehicle performance capabilities in anticipation of future mission requirements. The H-I has both two-stage and three-stage versions for medium-altitude and geosynchronous orbits, respectively; the restart capability of the second stage affords considerable mission planning flexibility. The H-II vehicle is a two-stage liquid rocket primary propulsion design employing two solid rocket boosters for secondary power; it is capable of launching two-ton satellites into geosynchronous orbit, and reduces manufacture and launch costs by extensively employing off-the-shelf technology.

  12. Mars Pathfinder Status at Launch

    NASA Technical Reports Server (NTRS)

    Spear, A. J.; Freeman, Delma C., Jr.; Braun, Robert D.

    1996-01-01

    The Mars Pathfinder Flight System is in final test, assembly and launch preparations at the Kennedy Space Center in Florida. Launch is scheduled for 2 Dec. 1996. The Flight System development, in particular the Entry, Descent, and Landing (EDL) system, was a major team effort involving JPL, other NASA centers and industry. This paper provides a summary Mars Pathfinder description and status at launch. In addition, a section by NASA's Langley Research Center, a key EDL contributor, is provided on their support to Mars Pathfinder. This section is included as an example of the work performed by Pathfinder team members outside JPL.

  13. Aerogel insulation systems for space launch applications

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.

    2006-02-01

    New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.

  14. Aerogel Insulation Systems for Space Launch Applications

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2005-01-01

    New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.

  15. Manned NEO Mission EVA Challenges

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The President has proposed to land astronauts on an asteroid by 2025. However, Manned NEO (Near Earth Objects) Missions will present a host of new and exciting problems that will need to be better defined and solved before such a mission is launched. Here I will focus on the challenges for conducting asteroidal EVAs. Specfically, crew locomotion, sampling, drilling, documentation, and instrument deployment issues arising from the micro gravity environments associated with NEOs. Therefore, novel methods and techniques will need to be developed and tested in order to achieve specific mission science objectives. Walking or driving on the surface will not be a realistic option due to the small sizes (10 s to 100 s of meters in diameter) and hence extremely low gravity of the present day known candidate NEOs. EVAs will have to be carried out with crew members either using a self propelled device (akin to the MMU and SAFER units used on Shuttle/ISS) and or tethers. When using tethers a grid system could be deployed which is anchored to the asteroid. These anchor points could be inserted by firing penetrators into the surface from the spacecraft while it is still at a safe standoff distance. These penetrators would pull double duty by being laden with scientific instrumentation to probe the subsurface. Dust and debris generated by sample collection and locomotion in a microgravity environment could also pose some problems that will require forethought.

  16. Hermes - A manned European system

    NASA Astrophysics Data System (ADS)

    Cretenet, J.-C.

    Features of a European hypersonic winged reentry vehicle, Hermes, are presented, together with the technology requirements for its development and the missions it would serve. LEO is beginning to hold promise for the manufacture of materials in microgravity and/or vacuum conditions in orbiting facilities which need to be serviced. A manned, reusable, winged reentry vehicle would permit the delivery and return of payloads from space, recovery of the first stage of the Ariane V rocket for reuse, and return of the Hermes to a landing at the Kourou launch site. The avionics would be similar to those of modern aircraft, as would the landing system. In-orbit operational techniques would be needed, as would an internal environment similar to Spacelab, a rigid turnaround time, high utilization rate, and a 10 yr lifetime. The length of the Hermes is projected as 12.5 m, wingtip to wingtip breadth of 7.4 m, and a total mass of 11,400 kg for a heliosynchronous orbit mission, while 15,400 kg are available for a circular, 490 m/sec orbit.

  17. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  18. Development of Advanced Plant Habitat Flight Unit

    NASA Technical Reports Server (NTRS)

    Johnson, Curtis J., Jr

    2013-01-01

    With NASA's current goals and resources moving forward to bring the idea of Manned Deep-Space missions from a long-thought concept to a reality, innovative research methods and expertise are being utilized for studies that integrate human needs with that of technology to make for the most efficient operations possible. Through the capability to supply food, provide oxygen from what was once carbon dioxide, and various others which help to make plant research one of the prime factors of future long-duration mission, the Advanced Plant Habitat will be the largest microgravity plant growth chamber on the International Space Station when it is launched in the near future (2014- 2015). Soon, the Advanced Plant Habitat unit will continue on and enrich the discoveries and studies on the long-term effects of microgravity on plants.

  19. Reusable launch vehicle facts and fantasies

    NASA Astrophysics Data System (ADS)

    Kaplan, Marshall H.

    2002-01-01

    Many people refuse to address many of the realities of reusable launch vehicle systems, technologies, operations and economics. Basic principles of physics, space flight operations, and business limitations are applied to the creation of a practical vision of future expectations. While reusable launcher concepts have been proposed for several decades, serious review of potential designs began in the mid-1990s, when NASA decided that a Space Shuttle replacement had to be pursued. A great deal of excitement and interest was quickly generated by the prospect of ``orders-of-magnitude'' reduction in launch costs. The potential for a vastly expanded space program motivated the entire space community. By the late-1990s, and after over one billion dollars were spent on the technology development and privately-funded concepts, it had become clear that there would be no new, near-term operational reusable vehicle. Many factors contributed to a very expensive and disappointing effort to create a new generation of launch vehicles. It began with overly optimistic projections of technology advancements and the belief that a greatly increased demand for satellite launches would be realized early in the 21st century. Contractors contributed to the perception of quickly reachable technology and business goals, thus, accelerating the enthusiasm and helping to create a ``gold rush'' euphoria. Cost, schedule and performance margins were all highly optimistic. Several entrepreneurs launched start up companies to take advantage of the excitement and the availability of investor capital. Millions were raised from private investors and venture capitalists, based on little more than flashy presentations and animations. Well over $500 million were raised by little-known start up groups to create reusable systems, which might complete for the coming market in launch services. By 1999, it was clear that market projections, made just two years earlier, were not going to be realized. Investors

  20. Man-systems integration and the man-machine interface

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1990-01-01

    Viewgraphs on man-systems integration and the man-machine interface are presented. Man-systems integration applies the systems' approach to the integration of the user and the machine to form an effective, symbiotic Man-Machine System (MMS). A MMS is a combination of one or more human beings and one or more physical components that are integrated through the common purpose of achieving some objective. The human operator interacts with the system through the Man-Machine Interface (MMI).

  1. Launch Vehicle Dynamics Demonstrator Model

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control.

  2. Launch Abort System Pathfinder Arrival

    NASA Video Gallery

    The Orion Launch Abort System, or LAS, pathfinder returned home to NASA Langley on Oct. 18 on its way to NASA's Kennedy Space Center. The hardware was built at Langley and was used in preparation f...

  3. STS-135 Fused Launch Video

    NASA Video Gallery

    Imaging experts funded by the Space Shuttle Program and located at NASA's Ames Research Center prepared this video of the STS-135 launch by merging images taken by a set of six cameras capturing fi...

  4. Lighting the Sky: ATREX Launches

    NASA Video Gallery

    NASA successfully launched five suborbital sounding rockets early March 27, 2012 from its Wallops Flight Facility in Virginia as part of a study of the upper level jet stream. The first rocket was ...

  5. Re-entry Experiment Launch

    NASA Video Gallery

    On August 10, 2009, NASA successfully launched the Inflatable Re-entry Vehicle Experiment (IRVE) and proved that spacecraft can use inflatable heat shields to reduce speed and provide protection du...

  6. Genomic Data Commons launches - TCGA

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  7. Closed end launch tube (CELT)

    NASA Astrophysics Data System (ADS)

    Lueck, Dale E.; Parrish, Clyde F.

    2001-02-01

    As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off-the-shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg vehicle to 270 ms-1. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (Generation 2) vehicles, as well as the proposed Gen 3 vehicle. .

  8. Closed End Launch Tube (CELT)

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.; Parrish, Clyde F.; Delgado, H. (Technical Monitor)

    2000-01-01

    As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off the shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg. demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg. vehicle to 270 meters per second. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (generation 2) vehicles, as well as the proposed Gen 3 vehicle.

  9. BARREL Team Launching 20 Balloons

    NASA Video Gallery

    A movie made by the NASA-Funded Balloon Array for Radiation belt Relativistic Electron Losses, or BARREL, team on their work launching 20 balloons in Antarctica during the Dec. 2013/Jan. 2014 campa...

  10. Robonaut 2 Readied for Launch

    NASA Video Gallery

    Robonaut 2 is being prepared for its history making launch to the International Space Station on STS-133. The robot, known as R2, will be the first humanoid machine to work in orbit. With a upper t...

  11. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  12. Nanosatellite Launch Adapter System (NLAS)

    NASA Technical Reports Server (NTRS)

    Yost, Bruce D.; Hines, John W.; Agasid, Elwood F.; Buckley, Steven J.

    2010-01-01

    The utility of small spacecraft based on the University cubesat standard is becoming evident as more and more agencies and organizations are launching or planning to include nanosatellites in their mission portfolios. Cubesats are typically launched as secondary spacecraft in enclosed, containerized deployers such as the CalPoly Poly Picosat Orbital Deployer (P-POD) system. The P-POD allows for ease of integration and significantly reduces the risk exposure to the primary spacecraft and mission. NASA/ARC and the Operationally Responsive Space office are collaborating to develop a Nanosatellite Launch Adapter System (NLAS), which can accommodate multiple cubesat or cubesat-derived spacecraft on a single launch vehicle. NLAS is composed of the adapter structure, P-POD or similar spacecraft dispensers, and a sequencer/deployer system. This paper describes the NLAS system and it s future capabilities, and also provides status on the system s development and potential first use in space.

  13. Environmentally-Preferable Launch Coatings

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA Kennedy Space Center (KSC), Florida, has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of NASA and the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion protecting coatings for launch facilities and ground support equipment (GSE). The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. The project compares coating performance of the selected alternatives to existing coating systems or standards.

  14. Space Launch System: Future Frontier

    NASA Video Gallery

    Featuring NASA Marshall’s Foundations of Influence, Relationships, Success & Teamwork (FIRST) employees and student interns, "Future Frontier" discusses the new Space Launch System (SLS) heavy-li...

  15. Launch vehicle and power level impacts on electric GEO insertion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.

    1996-01-01

    Solar Electric Propulsion (SEP) has been shown to increase net geosynchronous spacecraft mass when used for station keeping and final orbit insertion. The impact of launch vehicle selection and power level on the benefits of this approach were examined for 20 and 25 kW systems launched using the Ariane 5, Atlas IIAR, Long March, Proton, and Sea Launch vehicles. Two advanced on-board propulsion technologies, 5 kW ion and Hall thruster systems, were used to establish the relative merits of the technologies and launch vehicles. GaAs solar arrays were assumed. The analysis identifies the optimal starting orbits for the SEP orbit raising/plane changing while considering the impacts of radiation degradation in the Van Allen belts, shading, power degradation, and oblateness. This use of SEP to provide part of the orbit insertion results in net mass increases of 15 - 38% and 18 - 46% for one to two month trip times, respectively, over just using SEP for 15 years of north/south station keeping. SEP technology was shown to have a greater impact on net masses of launch vehicles with higher launch latitudes when avoidance of solar array and payload degradation is desired. This greater impact of SEP could help reduce the plane changing disadvantage of high latitude launch sites. Comparison with results for 10 and 15 kW systems show clear benefits of incremental increases in SEP power level, suggesting that an evolutionary approach to high power SEP for geosynchronous spacecraft is possible.

  16. NASA Space Launch System Operations Strategy

    NASA Technical Reports Server (NTRS)

    Singer, Joan A.; Cook, Jerry R.; Singer, Christer E.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is charged with delivering a new capability for human and scientific exploration beyond Earth orbit (BEO). The SLS may also provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle (MPCV) on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and Ground Systems Development and Operations (GSDO) programs are working together to create streamlined, affordable operations for sustainable exploration for decades to come.

  17. Launch Vehicle Demonstrator Using Shuttle Assets

    NASA Technical Reports Server (NTRS)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center undertook a study to define candidate early heavy lift demonstration launch vehicle concepts derived from existing space shuttle assets. The objective was to determine the performance capabilities of these vehicles and characterize potential early demonstration test flights. Given the anticipated budgetary constraints that may affect America's civil space program, and a lapse in U.S. heavy launch capability with the retirement of the space shuttle, an early heavy lift launch vehicle demonstration flight would not only demonstrate capabilities that could be utilized for future space exploration missions, but also serve as a building block for the development of our nation s next heavy lift launch system. An early heavy lift demonstration could be utilized as a test platform, demonstrating capabilities of future space exploration systems such as the Multi Purpose Crew Vehicle. By using existing shuttle assets, including the RS-25D engine inventory, the shuttle equipment manufacturing and tooling base, and the segmented solid rocket booster industry, a demonstrator concept could expedite the design-to-flight schedule while retaining critical human skills and capital. In this study two types of vehicle designs are examined. The first utilizes a high margin/safety factor battleship structural design in order to minimize development time as well as monetary investment. Structural design optimization is performed on the second, as if an operational vehicle. Results indicate low earth orbit payload capability is more than sufficient to support various vehicle and vehicle systems test programs including Multi-Purpose Crew Vehicle articles. Furthermore, a shuttle-derived, hydrogen core vehicle configuration offers performance benefits when trading evolutionary paths to maximum capability.

  18. NASA Space Launch System Operations Strategy

    NASA Technical Reports Server (NTRS)

    Singer, Joan A.; Cook, Jerry R.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human and scientific exploration beyond Earth orbit. The SLS also will provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130 t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and 21st Century Ground Systems programs are working together to create streamlined, affordable operations for sustainable exploration.

  19. New Horizons Launch Contingency Effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; Lear, Matthew H.; McGrath, Brian E.; Heyler, Gene A.; Takashima, Naruhisa; Owings, W. Donald

    2007-01-01

    On 19 January 2006 at 2:00 PM EST, the NASA New Horizons spacecraft (SC) was launched from the Cape Canaveral Air Force Station (CCAFS), FL, onboard an Atlas V 551/Centaur/STAR™ 48B launch vehicle (LV) on a mission to explore the Pluto Charon planetary system and possibly other Kuiper Belt Objects. It carried a single Radioisotope Thermoelectric Generator (RTG). As part of the joint NASA/US Department of Energy (DOE) safety effort, contingency plans were prepared to address the unlikely events of launch accidents leading to a near-pad impact, a suborbital reentry, an orbital reentry, or a heliocentric orbit. As the implementing organization. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had expanded roles in the New Horizons launch contingency effort over those for the Cassini mission and Mars Exploration Rovers missions. The expanded tasks included participation in the Radiological Control Center (RADCC) at the Kennedy Space Center (KSC), preparation of contingency plans, coordination of space tracking assets, improved aerodynamics characterization of the RTG's 18 General Purpose Heat Source (GPHS) modules, and development of spacecraft and RTG reentry breakup analysis tools. Other JHU/APL tasks were prediction of the Earth impact footprints (ElFs) for the GPHS modules released during the atmospheric reentry (for purposes of notification and recovery), prediction of the time of SC reentry from a potential orbital decay, pre-launch dissemination of ballistic coefficients of various possible reentry configurations, and launch support of an Emergency Operations Center (EOC) on the JHU/APL campus. For the New Horizons launch, JHU/APL personnel at the RADCC and at the EOC were ready to implement any real-time launch contingency activities. A successful New Horizons launch and interplanetary injection precluded any further contingency actions. The New Horizons launch contingency was an interagency effort by several organizations. This paper

  20. Experimental study of ELF signatures developed by ballistic missile launch

    SciTech Connect

    Peglow, S.G.; Rynne, T.M.

    1993-04-08

    The Lawrence Livermore National Laboratory (Livermore, CA) and SARA, Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. These tests involved the launch of Lance missiles with a subsequent direction of F-15Es into the launch area for subsequent detection and simulated destruction of redeployed missile launchers, LLNL and SARA deployed SARN`s ELF sensors and various data acquisition systems for monitoring of basic phenomena. On 25 January 1993, a single missile launch allowed initial measurements of the phenomena and an assessment of appropriate sensor sensitivity settings as well as the appropriateness of the sensor deployment sites (e.g., with respect to man-made ELF sources such as power distributions and communication lines). On 27 January 1993, a measurement of a double launch of Lance missiles was performed. This technical report covers the results of the analysis of latter measurements. An attempt was made to measure low frequency electromagnetic signatures that may be produced during a missile launch. Hypothetical signature production mechanisms include: (1) Perturbations of the earth geo-potential during the launch of the missile. This signature may arise from the interaction of the ambient electric field with the conducting body of the missile as well as the partially ionized exhaust plume. (2) Production of spatial, charge sources from triboelectric-like mechanisms. Such effects may occur during the initial interaction of the missile plume with the ground material and lead to an initial {open_quotes}spike{close_quotes} output, Additionally, there may exist charge transfer mechanisms produced during the exhausting of the burnt fuel oxidizer.

  1. STS-53 Launch and Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Footage of various stages of the STS-53 Discovery launch is shown, including shots of the crew at breakfast, getting suited up, and departing to board the Orbiter. The launch is seen from many vantage points, as is the landing. On-orbit activities show the crew performing several medical experiments, such as taking a picture of the retina and measuring the pressure on the eyeball. One crewmember demonstrates how to use the rowing machine in an antigravity environment.

  2. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this close-up image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  3. Proposal for a remotely manned space station

    NASA Technical Reports Server (NTRS)

    Minsky, Marvin

    1990-01-01

    The United States is in trouble in space. The costs of the proposed Space Station Freedom have grown beyond reach, and the present design is obsolete. The trouble has come from imagining that there are only two alternatives: manned vs. unmanned. Both choices have led us into designs that do not appear to be practical. On one side, the United States simply does not possess the robotic technology needed to operate or assemble a sophisticated unmanned space station. On the other side, the manned designs that are now under way seem far too costly and dangerous, with all of its thousands of extravehicular activity (EVA) hours. More would be accomplished at far less cost by proceeding in a different way. The design of a space station made of modular, Erector Set-like parts is proposed which is to be assembled using earth-based remotely-controlled binary-tree telerobots. Earth-based workers could be trained to build the station in space using simulators. A small preassembled spacecraft would be launched with a few telerobots, and then, telerobots could be ferried into orbit along with stocks of additional parts. Trained terrestrial workers would remotely assemble a larger station, and materials for additional power and life support systems could be launched. Finally, human scientists and explorers could be sent to the space station. Other aspects of such a space station program are discussed.

  4. Autonomous rendezvous targeting techniques for national launch system application

    NASA Technical Reports Server (NTRS)

    Lomas, James J.; Deaton, A. Wayne

    1991-01-01

    The rendezvous targeting techniques that can be utilized to achieve autonomous guidance for delivering a cargo to Space Station Freedom (SSF) using the National Launch System's (NLS) Heavy Lift Launch Vehicle (HLLV) and the on-orbit Cargo Transfer Vehicle (CTV) are described. This capability is made possible by advancements in autonomous navigation (Global Positioning System - GPS) on-board the CTV and SSF as well as the new generation flight computers. How the HLLV launch window can be decoupled from the CTV phasing window is described. The performance trades that have to be made to determine the length of the launch window and the phasing window between the CTV and SSF are identified and recommendations made that affect mission timelines.

  5. SLI Artist `s Launch Concept

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during launch. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  6. Mercury-Atlas Test Launch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    A NASA Project Mercury spacecraft was test launched at 11:15 AM EST on April 25, 1961 from Cape Canaveral, Florida, in a test designed to qualify the Mercury Spacecraft and all systems, which must function during orbit and reentry from orbit. The Mercury-Atlas vehicle was destroyed by Range Safety Officer about 40 seconds after liftoff. The spacecraft was recovered and appeared to be in good condition. Atlas was designed to launch payloads into low Earth orbit, geosynchronous transfer orbit or geosynchronous orbit. NASA first launched Atlas as a space launch vehicle in 1958. Project SCORE, the first communications satellite that transmitted President Eisenhower's pre-recorded Christmas speech around the world, was launched on an Atlas. For all three robotic lunar exploration programs, Atlas was used. Atlas/ Centaur vehicles launched both Mariner and Pioneer planetary probes. The current operational Atlas II family has a 100% mission success rating. For more information about Atlas, please see Chapter 2 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  7. Reusable launch vehicle technology program

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Austin, R. Eugene

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  8. Man in space.

    PubMed

    Solovjev, V A

    1987-09-01

    Today, more than 20 years after the first in the world man's space walk, soviet cosmonautics gained large experience of extravehicular activity (EVA). Space suits of high reliability, onboard facilities for passing through the airlock, sets of special tools and technological rigging, as well as procedures for carrying out various EVA's were developed. In the course of the Salyut-7 space station orbital operation the EVA's have become regular. The author of the report as the participant of the EVA's considers the main steps of man activities in space and analyzes specific problems arised in performing such activities.

  9. Man/computer communication in a space environment

    NASA Technical Reports Server (NTRS)

    Hodges, B. C.; Montoya, G.

    1973-01-01

    The present work reports on a study of the technology required to advance the state of the art in man/machine communications. The study involved the development and demonstration of both hardware and software to effectively implement man/computer interactive channels of communication. While tactile and visual man/computer communications equipment are standard methods of interaction with machines, man's speech is a natural media for inquiry and control. As part of this study, a word recognition unit was developed capable of recognizing a minimum of one hundred different words or sentences in any one of the currently used conversational languages. The study has proven that efficiency in communication between man and computer can be achieved when the vocabulary to be used is structured in a manner compatible with the rigid communication requirements of the machine while at the same time responsive to the informational needs of the man.

  10. NASA's Space Launch System: Momentum Builds Towards First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment

  11. Next Generation Launch Technology Program Lessons Learned

    NASA Technical Reports Server (NTRS)

    Cook, Stephen; Tyson, Richard

    2005-01-01

    In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.

  12. Biomarkers of immunotoxicity in man.

    PubMed

    Descotes, J; Nicolas, B; Vial, T; Nicolas, J F

    1996-01-01

    Abstract The immunotoxic consequences of chemical exposures include direct immunotoxicity (namely immunosuppression and immunostimulation), hypersensitivity and autoimmunity, and because the mechanisms involved are markedly different, no single immune parameter is likely to ever predict or assess all three types of immunotoxicity. A fairly large number of immunological endpoints have been proposed for use as biomarkers of immunotoxicity in man. Unfortunately, they are often not sensitive enough and/or poorly standardized, so that their relevance for assessing immunotoxic effects in humans is debatable, and actually debated. Immune-mediated sentinel events detected in individuals with a defined history of chemical exposure, may prove helpful until methodological advances, notably with the introduction of technologies derived from molecular biology, provide reliable parameters to be used as biomarkers of immunotoxicity. PMID:23888916

  13. Manned in Situ Confirmation of Lunar Ice

    NASA Astrophysics Data System (ADS)

    Gerené, S. P. B.; Hummeling, R. W. J.; Ockels, W. J.

    A study is performed to investigate the feasibility of a manned expedition to the Moon using the European Ariane-5 launcher. The primary objective of this lunar mission is to confirm the presence of water at the South-Pole craters. It is believed that these permanently shadowed craters contain water in the form of ice. Secondary objective is to perform lunar surface science and making a first step towards a lunar outpost. Early results show that a minimum of two Ariane-5 launches is required. In this `two Ariane' scenario the first launch will bring a Lunar Landing Vehicle (LLV) into low lunar orbit. The second will launch two astronauts in a Crew Transfer Vehicle into a rendez- vous trajectory with the LLV. Arrived at the Moon, the astronauts will enter the LLV, undock from the CTV and land at the designated site located near the rim of the South-Pole Shackleton crater. The transfer strategy for both spacecraft will be the so-called direct transfer, taking about four days. At arrival the LLV will start mapping the landing site at a ground resolution of one meter. As a consequence of the polar orbit, the CTV has to arrive fourteen days later and surface operations can take about twelve days, accumulating in a total mission-duration of 36 days. 32 days for the CTV and 22 days for the LLV. In case a `two Ariane' flight does not posses sufficient capabilities also a `three Ariane' scenario is developed, in which the LLV is split-up into two stages and launched separately. These two will dock at the Moon forming a descent stage and an ascent stage. The third launch will be a CTV. During surface operations, astronauts will set up a solar power unit, install the sample retrieval system and carry out surface science. Samples of the crater floor will be retrieved by means of a probe or robot guided along a cable suspended over the crater rim. Also, this paper shows the way in which European astronauts can be brought to the Moon for other future missions, like the

  14. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, Robert J.; Loughin, Stephen

    1997-01-10

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed.

  15. Eskimo Medicine Man.

    ERIC Educational Resources Information Center

    George, Otto

    "Eskimo Medicine Man" is a record of primitive Alaskan life in the 1930's. It records the experiences in Alaska's remote areas of Dr. Otto George, the last "traveling physician" for the Department of Interior's Indian Service, when in all the territory (an area one-fifth that of the contiguous United States) there were fewer than sixty thousand…

  16. Why Man Explores

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This NASA Educational Publication was prepared from a transcript of a panel discussion held on July 2, 1976, in conjunction with the Viking Missions to Mars. The members of the Why Man Explores panel were selected as authorities in classical disciplines relating to exploration.

  17. Man--Society--Technology.

    ERIC Educational Resources Information Center

    Taxis, Linda A., Ed.

    The 32nd annual American Industrial Arts Association (AIAA) Convention was held in Louisville in 1970. Topics for the AIAA general session addresses were: (1) "Industrial Arts--The Blender Between Social Form and Technical Function," (2) "Technology and Society: Present and Future Challenges," (3) "A Student-Oriented Industrial Arts," (4) "Man:…

  18. Landing A Man Downtown

    ERIC Educational Resources Information Center

    Waters, W. G., II

    1973-01-01

    Analyzes the urban transport problems in comparison with those involved in a journey to the Moon. Indicates that the problem of enabling man to travel through the inner space of conurbations may prove to be more difficult than the transport problem of space travel. (CC)

  19. Myth and Modern Man.

    ERIC Educational Resources Information Center

    Patai, Raphael

    Various theories about the purpose of myth are described briefly, and then the place of myth in modern life is explored. Modern man is found to still create his own myths, and his life is still influenced by mythical prototypes and images. Myths, mythical beliefs, and mythical thinking are discovered in socialist, Communist, and totalitarian…

  20. Man as a Species.

    ERIC Educational Resources Information Center

    Solem, Alan; And Others

    Written in 1964, the document represents experimental material of the Anthropology Curriculum Study Project. The objectives of the project were to discuss the evolution of man as distinguished from the evolution of other species and as related to culture, and to emphasize human diversity. Three brief essays are presented. The first, "The Species…

  1. Reference Man anatomical model

    SciTech Connect

    Cristy, M.

    1994-10-01

    The 70-kg Standard Man or Reference Man has been used in physiological models since at least the 1920s to represent adult males. It came into use in radiation protection in the late 1940s and was developed extensively during the 1950s and used by the International Commission on Radiological Protection (ICRP) in its Publication 2 in 1959. The current Reference Man for Purposes of Radiation Protection is a monumental book published in 1975 by the ICRP as ICRP Publication 23. It has a wealth of information useful for radiation dosimetry, including anatomical and physiological data, gross and elemental composition of the body and organs and tissues of the body. The anatomical data includes specified reference values for an adult male and an adult female. Other reference values are primarily for the adult male. The anatomical data include much data on fetuses and children, although reference values are not established. There is an ICRP task group currently working on revising selected parts of the Reference Man document.

  2. Power system technologies for the manned Mars mission

    NASA Technical Reports Server (NTRS)

    Bents, Dave; Patterson, Michael J.; Berkopec, F.; Myers, Ira; Presler, A.

    1986-01-01

    The high impulse of electric propulsion makes it an attractive option for manned interplanetary missions such as a manned mission to Mars. This option is, however, dependent on the availability of high energy sources for propulsive power in addition to that required for the manned interplanetary transit vehicle. Two power system technologies are presented: nuclear and solar. The ion thruster technology for the interplanetary transit vehicle is described for a typical mission. The power management and distribution system components required for such a mission must be further developed beyond today's technology status. High voltage-high current technology advancements must be achieved. These advancements are described. In addition, large amounts of waste heat must be rejected to the space environment by the thermal management system. Advanced concepts such as the liquid droplet radiator are discussed as possible candidates for the manned Mars mission. These thermal management technologies have great potential for significant weight reductions over the more conventional systems.

  3. Apollo 11 Facts Project [Pre-Launch Activities and Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The crewmembers of Apollo 11, Commander Neil A. Armstrong, Command Module Pilot Michael Collins, and Lunar Module Pilot Edwin E. Aldrin, Jr., are seen during various stages of preparation for the launch of Apollo 11, including suitup, breakfast, and boarding the spacecraft. They are also seen during mission training, including preparation for extravehicular activity on the surface of the Moon. The launch of Apollo 11 is shown. The ground support crew is also seen as they wait for the spacecraft to approach the Moon.

  4. Launching the Virtual Academic Center: Issues and Challenges in Innovation

    ERIC Educational Resources Information Center

    Flynn, Marilyn; Maiden, R. Paul; Smith, Wendy; Wiley, June; Wood, Gary

    2013-01-01

    In October 2010, the University of Southern California School of Social Work entered the online education environment with the launch of the first national web-based MSW program. After an initial enrollment of 80 students, in just 3 years this state-of-the-art MSW, offered in a technology-advanced synchronous and asynchronous format, has generated…

  5. Space station support of manned Mars missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1986-01-01

    The assembly of a manned Mars interplanetary spacecraft in low Earth orbit can be best accomplished with the support of the space station. Station payload requirements for microgravity environments of .001 g and pointing stability requirements of less than 1 arc second could mean that the spacecraft may have to be assembled at a station-keeping position about 100 meters or more away from the station. In addition to the assembly of large modules and connective structures, the manned Mars mission assembly tasks may include the connection of power, fluid, and data lines and the handling and activation of components for chemical or nuclear power and propulsion systems. These assembly tasks will require the use of advanced automation and robotics in addition to Orbital Maneuvering Vehicle and Extravehicular Activity (EVA) crew support. Advanced development programs for the space station, including on-orbit demonstrations, could also be used to support manned Mars mission technology objectives. Follow-on studies should be conducted to identify space station activities which could be enhanced or expanded in scope (without significant cost and schedule impact) to help resolve key technical and scientific questions relating to manned Mars missions.

  6. Going Boldly Beyond: Progress on NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Crumbly, Chris

    2013-01-01

    NASA's Space Launch System is implementing an evolvable configuration approach to system development in a resource-constrained era. Legacy systems enable non-traditional development funding and contribute to sustainability and affordability. Limited simultaneous developments reduce cost and schedule risk. Phased approach to advanced booster development enables innovation and competition, incrementally demonstrating affordability and performance enhancements. Advanced boosters will provide performance for the most capable heavy lift launcher in history, enabling unprecedented space exploration benefiting all of humanity.

  7. The commercial Aquila Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Flittie, Kirk J.; McFarlane, Scott

    1991-06-01

    The American Rocket Company's (AMROC) Aquila Launch Vehicle is a ground-launched, four-stage, all-hybrid propulsion, inertially-guided commercial space booster designed to deliver 2000 pound payloads into low earth orbit. By using AMROC's low-cost hybrid propulsion, the Aquila launch service will provide quick, on-demand, routine access to space; high accuracy orbital placement; and an unprecedented degree of production, ground and flight safety. The first launch of the Aquila will be in early 1995. Aquila utilizes AMROc's unique hybrid propulsion systems consisting of an inert solid polybutadiene fuel and either liquid oxygen or nitrous oxide as oxidizer. A hybrid propulsion system is distinct from all other rocket propulsion systems in that hybrids cannot explode; hybrids offer safe handling, operation and launch pad abort; and hybrids offer start/stop and full throttling capability for trajectory optimization and precise payload placement on orbit. In addition, the exhaust products do not contain hydrogen chlorides which are environmentally degrading.

  8. NASA's SPACE LAUNCH SYSTEM: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS) and robotic probes are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) (Figure 1), that will carry out a series of increasingly challenging missions leading to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (mT) (154,324 pounds) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 mT (286,601 pounds) through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any existing rocket, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward launch readiness in 2018. Every major element of SLS continued to make significant progress in 2015. Engineers fired Qualification Motor 1 (QM-1) in March 2015 to test the 5-segment motor, including new insulation, joint, and propellant grain designs. More than 70 major components of test article and flight hardware for the Core Stage have been manufactured. Seven test firings have been completed with an RS-25 engine under SLS operating conditions. The test article for the Interim Cryogenic Propulsion Stage (ICPS) has also been completed

  9. NASA's Space Launch System: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft

  10. Atlas 1 rocket for GOES-K launch arrives at Skid Strip, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Atlas 1 rocket which will launch the GOES-K advanced weather satellite is unloaded from an Air Force C-5 air cargo plane after arrival at the Skid Strip, Cape Canaveral Air Station (CCAS). The Lockheed Martin-built rocket and its Centaur upper stage will form the AC-79 vehicle, the final vehicle in the Atlas 1 series which began launches for NASA in 1962. Future launches of geostationary operational environmental satellites (GOES) in the current series will be on Atlas II vehicles. GOES-K will be the third spacecraft to be launched in the new advanced series of geostationary weather satellites built for NASA and the National Oceanic and Atmospheric Administration (NOAA). The spacecraft will be designated GOES-10 in orbit. The launch of AC-79/GOES-K is targeted for April 24 from Launch Pad 36B, CCAS.

  11. Improving Conceptual Design for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.

  12. GPM Science Status Fourteen Months after Launch

    NASA Astrophysics Data System (ADS)

    Skofronick Jackson, Gail; Huffman, George

    2015-04-01

    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The Global Precipitation Measurement (GPM) Mission, launched February 27, 2014, is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. The joint NASA-JAXA GPM Core Observatory serves as the cornerstone and anchor to unite the constellation radiometers. The GPM Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of instantaneous precipitation rates and time-integrated rainfall accumulation. Since launch, the instruments have been collecting outstanding precipitation data. New scientific insights resulting from these fourteen months of GPM data, an overview of the GPM mission concept and science activities

  13. STS-107 crew practice emergency egress from the launch pad during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-107 crew practice emergency egress from the launch pad during a simulated launch countdown, part of Terminal Countdown Demonstration Test activities. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .

  14. Personnel Launch System (PLS) study

    NASA Technical Reports Server (NTRS)

    Ehrlich, Carl F., Jr.

    1991-01-01

    NASA is currently studying a personnel launch system (PLS) approach to help satisfy the crew rotation requirements for the Space Station Freedom. Several concepts from low L/D capsules to lifting body vehicles are being examined in a series of studies as a potential augmentation to the Space Shuttle launch system. Rockwell International Corporation, under contract to NASA, analyzed a lifting body concept to determine whether the lifting body class of vehicles is appropriate for the PLS function. The results of the study are given.

  15. The DARPA/USAF Falcon Program Small Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Weeks, David J.; Walker, Steven H.; Thompson, Tim L.; Sackheim, Robert; London, John R., III

    2006-01-01

    Earlier in this decade, the U.S. Air Force Space Command and the Defense Advanced Research Projects Agency (DARPA), in recognizing the need for low-cost responsive small launch vehicles, decided to partner in addressing this national shortcoming. Later, the National Aeronautics and Space Administration (NASA) joined in supporting this effort, dubbed the Falcon Program. The objectives of the Small Launch Vehicle (SLV) element of the DARPA/USAF Falcon Program include the development of a low-cost small launch vehicle(s) that demonstrates responsive launch and has the potential for achieving a per mission cost of less than $5M when based on 20 launches per year for 10 years. This vehicle class can lift 1000 to 2000 lbm payloads to a reference low earth orbit. Responsive operations include launching the rocket within 48 hours of call up. A history of the program and the current status will be discussed with an emphasis on the potential impact on small satellites.

  16. Ares V Launch Capability Enables Future Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    NASA's Ares V cargo launch vehicle offers the potential to completely change the paradigm of future space science mission architectures. A major finding of the NASA Advanced Telescope and Observatory Capability Roadmap Study was that current launch vehicle mass and volume constraints severely limit future space science missions. And thus, that significant technology development is required to package increasingly larger collecting apertures into existing launch shrouds. The Ares V greatly relaxes these constraints. For example, while a Delta IV has the ability to launch approximate a 4.5 meter diameter payload with a mass of 13,000 kg to L2, the Ares V is projected to have the ability to launch an 8 to 12 meter diameter payload with a mass of 60,000 kg to L2 and 130,000 kg to Low Earth Orbit. This paper summarizes the Ares V payload launch capability and introduces how it might enable new classes of future space telescopes such as 6 to 8 meter class monolithic primary mirror observatories, 15 meter class segmented telescopes, 6 to 8 meter class x-ray telescopes or high-energy particle calorimeters.

  17. 33 CFR 144.01-5 - Location and launching of life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Location and launching of life floats. 144.01-5 Section 144.01-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms §...

  18. Apollo 14 crew arrive at White Room atop Pad A, Launch Complex 39

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The three Apollo 14 astronauts arrive at the White Room atop Pad A, Launch Complex 39, during the Apollo 14 prelaunch countdown. Note identifying red bands on the sleeve and leg of Shepard. Standing in the center background is Astronaut Thomas P. Stafford, Chief of the Manned Spacecraft Center Astronaut Office.

  19. Reusable Reentry Satellite (RRS): Launch tradeoff study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A goal of the Phase B study is to define the launch system interfaces for the reusable reentry satellite (RRS) program. The focus of the launch tradeoff study, documented in this report, is to determine which expendable launch vehicles (ELV's) are best suited for the RRS application by understanding the impact of all viable launch systems on RRS design and operation.

  20. Intelsat communications satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1983-01-01

    To be placed into a highly elliptical transfer orbit by the Atlas Centaur (AC-61) launch vehicle, the INTELSAT V-F satellite has 12,000 voice circuits and 2 color television channels and incorporates a maritime communication system for ship to shore communications. The stages of the launch vehicle and the launch operations are described. A table shows the launch sequence.

  1. Manned Mars mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Terrapin Technologies proposes a Manned Mars Mission design study. The purpose of the Manned Mars Mission is to transport ten people and a habitat with all required support systems and supplies from low Earth orbit (LEO) to the surface of Mars and, after an expedition of three months to return the personnel safely to LEO. The proposed hardware design is based on systems and components of demonstrated high capability and reliability. The mission design builds on past mission experience but incorporates innovative design approaches to achieve mission priorities. These priorities, in decreasing order of importance, are safety, reliability, minimum personnel transfer time, minimum weight, and minimum cost. The design demonstrates the feasibility and flexibility of a waverider transfer module. Information is given on how the plan meets the mission requirements.

  2. Conceptual designs study for a Personnel Launch System (PLS)

    NASA Technical Reports Server (NTRS)

    Wetzel, E. D.

    1990-01-01

    A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.

  3. Man in space.

    PubMed

    West, J B

    1986-12-01

    The Challenger disaster focused attention on the hazards as well as the possibilities of man in space. The physiological effects of prolonged weightlessness include important changes in vestibular, bone, muscle, cardiovascular, blood, renal, and pulmonary function. Much has been learned from US and Soviet experiments, but large areas of ignorance remain. Exceptional opportunities for physiological research are provided by Spacelab, a pressurized laboratory planned as a payload of the Space Shuttle.

  4. Man's future in space

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1975-01-01

    Studies evaluating potential operational and commercial uses of space are being conducted, taking into account astronomy, astrophysics, manned bases and laboratories in earth orbit, space colonization, terrestrial communications, space processing and manufacturing, interstellar probes, planetary exploration, and the use of space for terrestrial energy supply. The present status in the exploration of the solar system is examined, giving attention to Jupiter, Venus, Mars, and Mercury. A brief outline of the development of human colonies on Mars is presented.

  5. Typhoon Man-Yi

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Typhoon Man-Yi was pummeling the Japanese island of Okinawa with winds between 230 and 295 kilometers per hour (125-160 knots, 144-184 miles per hour) and heavy rain on the morning of July 13, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image. The immense storm covered hundreds of kilometers with spiraling bands of thunderstorms, though it had lost the distinctive cloud-free eye it exhibited the day before. Typhoons are common in Japan, but powerful typhoons usually strike the island nation later in the year. The Japan Meteorological Agency said that Man-Yi is the fourth typhoon of the 2007 season and may be the most powerful ever observed in the northwest Pacific in July, reported Kyodo News. The Joint Typhoon Warning Center expected the typhoon to strike Kyushu, a southern Japanese island, on July 14, and then curve northeast along the eastern shore of Japan. By the time the storm reaches Tokyo on July 15, it should be degraded to a tropical storm. As of July 13, Typhoon Man-Yi had injured eight and flooded twenty houses in Okinawa, and forced airlines to cancel hundreds of flights, said Kyodo News. The storm was expected to bring heavy rain to Japan's Pacific coast. NASA image created by Jesse Allen, using data provided courtesy of the MODIS Rapid Response team.

  6. The Exploration of Mars Launch and Assembly Simulation

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Stromgren, Chel; Mattfeld, Bryan; Cirillo, William; Goodliff, Kandyce

    2016-01-01

    Advancing human exploration of space beyond Low Earth Orbit, and ultimately to Mars, is of great interest to NASA, other organizations, and space exploration advocates. Various strategies for getting to Mars have been proposed. These include NASA's Design Reference Architecture 5.0, a near-term flyby of Mars advocated by the group Inspiration Mars, and potential options developed for NASA's Evolvable Mars Campaign. Regardless of which approach is used to get to Mars, they all share a need to visualize and analyze their proposed campaign and evaluate the feasibility of the launch and on-orbit assembly segment of the campaign. The launch and assembly segment starts with flight hardware manufacturing and ends with final departure of a Mars Transfer Vehicle (MTV), or set of MTVs, from an assembly orbit near Earth. This paper describes a discrete event simulation based strategic visualization and analysis tool that can be used to evaluate the launch campaign reliability of any proposed strategy for exploration beyond low Earth orbit. The input to the simulation can be any manifest of multiple launches and their associated transit operations between Earth and the exploration destinations, including Earth orbit, lunar orbit, asteroids, moons of Mars, and ultimately Mars. The simulation output includes expected launch dates and ascent outcomes i.e., success or failure. Running 1,000 replications of the simulation provides the capability to perform launch campaign reliability analysis to determine the probability that all launches occur in a timely manner to support departure opportunities and to deliver their payloads to the intended orbit. This allows for quantitative comparisons between alternative scenarios, as well as the capability to analyze options for improving launch campaign reliability. Results are presented for representative strategies.

  7. Life Cycle Analysis of Dedicated Nano-Launch Technologies

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc

    2014-01-01

    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.

  8. Life Cycle Analysis of Dedicated Nano-Launch Technologies

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; McCleskey, Carey; Martin, John; Lepsch, Roger; Hernani, Tosoc

    2014-01-01

    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs. As a result, these launch opportunities await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options.With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.

  9. STS-69 launch view thru trees

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The tranquil beauty of a wildlife refuge serves as a lush backdrop to the drama of a Space Shuttle surging skyward atop a pillar of flame. The Shuttle Endeavour lifted off from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. Only a small portion of the 140,000 acres occupied by the Kennedy Space Center has been developed to support space operations; most of the land is pristine and untouched by man, and is managed by the U.S. Fish and Wildlife Service as a wildlife refuge. On board Endeavour are a crew of five and a payload complement that includes two deployable free-flyers, the Wake Shield Facility-2 and the Spartan-201. David M. Walker is the mission commander; Kenneth D. Cockrell is the pilot; James S. Voss is the payload commander; and the two mission specialists are Michael L. Gernhardt and James H. Newman. The 11-day flight also is scheduled to include an extravehicular activity by Gernhardt and Newman.

  10. Electromagnetic launch of lunar material

    NASA Technical Reports Server (NTRS)

    Snow, William R.; Kolm, Henry H.

    1992-01-01

    Lunar soil can become a source of relatively inexpensive oxygen propellant for vehicles going from low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) and beyond. This lunar oxygen could replace the oxygen propellant that, in current plans for these missions, is launched from the Earth's surface and amounts to approximately 75 percent of the total mass. The reason for considering the use of oxygen produced on the Moon is that the cost for the energy needed to transport things from the lunar surface to LEO is approximately 5 percent the cost from the surface of the Earth to LEO. Electromagnetic launchers, in particular the superconducting quenchgun, provide a method of getting this lunar oxygen off the lunar surface at minimal cost. This cost savings comes from the fact that the superconducting quenchgun gets its launch energy from locally supplied, solar- or nuclear-generated electrical power. We present a preliminary design to show the main features and components of a lunar-based superconducting quenchgun for use in launching 1-ton containers of liquid oxygen, one every 2 hours. At this rate, nearly 4400 tons of liquid oxygen would be launched into low lunar orbit in a year.

  11. Nighttime Launch at NASA Wallops

    NASA Video Gallery

    A U.S. Air Force Minotaur 1 rocket carrying the Department of Defense Operationally Responsive Space office’s ORS-1 satellite was successfully launched at 11:09 p.m. EDT, June 29, 2011, from NASA...

  12. VEGA, a small launch vehicle

    NASA Astrophysics Data System (ADS)

    Duret, François; Fabrizi, Antonio

    1999-09-01

    Several studies have been performed in Europe aiming to promote the full development of a small launch vehicle to put into orbit one ton class spacecrafts. But during the last ten years, the european workforce was mainly oriented towards the qualification of the heavy class ARIANE 5 launch vehicle.Then, due also to lack of visibility on this reduced segment of market, when comparing with the geosatcom market, no proposal was sufficiently attractive to get from the potentially interrested authorities a clear go-ahead, i.e. a financial committment. The situation is now rapidly evolving. Several european states, among them ITALY and FRANCE, are now convinced of the necessity of the availability of such a transportation system, an important argument to promote small missions, using small satellites. Application market will be mainly scientific experiments and earth observation; some telecommunications applications may be also envisaged such as placement of little LEO constellation satellites, or replacement after failure of big LEO constellation satellites. FIAT AVIO and AEROSPATIALE have proposed to their national agencies the development of such a small launch vehicle, named VEGA. The paper presents the story of the industrial proposal, and the present status of the project: Mission spectrum, technical definition, launch service and performance, target development plan and target recurring costs, as well as the industrial organisation for development, procurement, marketing and operations.

  13. Space Shuttle Launch: STS-129

    NASA Video Gallery

    STS-129. Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday, Nov 16, 2009, with a 2:28 p.m. EST launch from NASA's Kennedy S...

  14. NASA's Space Launch System: Momentum Builds Toward First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches

  15. Solar thermal OTV—Applications to reusable and expendable launch vehicles

    NASA Astrophysics Data System (ADS)

    Kassler, Thomas L.; Frye, Patrick; Partch, Russ

    2000-07-01

    The Solar Orbit Transfer Vehicle (SOTV) program being sponsored by the U.S. Air Force Research Laboratory (AFRL) is developing technology that will engender revolutionary benefits to satellites and orbitto-orbit transfer systems. Solar thermal propulsion offers significant advantages for near-term expendable launch vehicles (ELVs) such as Delta IV, mid- to farterm reusable launch vehicles (RLVs) and ultimately to manned exploration of the Moon and Mars. Solar thermal propulsion uses a relatively large mirrored concentrator to focus solar energy onto a compact absorber, which is in turn heated to > 2200 K. This heat can then be used in two major ways. By flowing hydrogen or another working fluid through the absorber, high efficiency thrust can be generated with 800 sec or more specific impulse (Isp), almost twice that of conventional cryogenic stages and comparable with typical solid-core nuclear thermal stages. Within a decade, advances in materials and fabrication processes hold the promise of the Isp ranging up to 1,100 sec. In addition, attached thermionic or alkali metal thermoelectric converter (AMTEC) power converters can be used to generate 20 to 100 kilowatts (kW) of electricity. The SOTV Space Experiment (SOTV-SE), planned to be flown in 2003, will demonstrate both hydrogen propulsion and thermionic power generation, including advanced lightweight deployable concentrators suitable for large-scale applications. Evolutionary geosynchronous-transfer orbit/ geosynchronous-Earth orbit (GTO/GEO) payload lift capability improvements of 50% or more to the Delta IV launch vehicles could be implemented as part of the Delta IV P4I plan shortly thereafter. Beyond that, SOTV technology should allow long-term storage of stages in orbits up to GEO with tremendous maneuvering capability, potentially 4 to 5 km/sec or more. Servicing of low-Earth orbit (LEO) and GEO assets and reusable (ROTVs) are other possible applications. Offering a combination of high Isp and high

  16. Heavy Lift Launch Capability with a New Hydrocarbon Engine

    NASA Technical Reports Server (NTRS)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.

  17. Avionics architectures for the next generation of launch vehicles

    NASA Astrophysics Data System (ADS)

    Stanley, Jeffrey H.

    The challenges and benefits of utilizing current avionics architecture concepts for the next generation of space launch vehicles are examined. The generic integration approach and architecture produced by the Advanced System Avionics (ASA)-Pave Pillar program is the foundation for avionics development in next generation aircraft for the U.S. Department of Defense, and include aircraft such as the USAF advanced tactical fighter (AFTF) and USN advanced tactical aircraft (ATA). The implementation strategies being used by aircraft avionics include the system-wide utilization of common modular building blocks using advanced microelectronics such as VHSIC, standard electronic module (SEM) sizes and integrated racks, and interconnection networks using fiber optics. It is concluded that the Pave Pillar core architecture objectives of high availability, resiliency, supportability, and low life cycle cost are similar to the desired attributes of future space launch vehicles. The core avionics, with tailoring to those requirements, can be used as the design baseline for launch vehicles, and thereby utilize the experience and investment already committed to the advanced modular avionics architecture program.

  18. Launching to the Moon, Mars, and Beyond

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration, announced in 2004, calls on NASA to finish constructing the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return to the Moon and go on the Mars. By exploring space, America continues the tradition of great nations who mastered the Earth, air, and sea, and who then enjoyed the benefits of increased commerce and technological advances. The progress being made today is part of the next chapter in America's history of leadership in space. In order to reach the Moon and Mars within the planned timeline and also within the allowable budget, NASA is building upon the best of proven space transportation systems. Journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. What America learns in reaching for the Moon will teach astronauts how to prepare for the first human footprints on Mars. While robotic science may reveal information about the nature of hydrogen on the Moon, it will most likely tale a human being with a rock hammer to find the real truth about the presence of water, a precious natural resource that opens many possibilities for explorers. In this way, the combination of astronauts using a variety of tools and machines provides a special synergy that will vastly improve our understanding of Earth's cosmic neighborhood.

  19. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system test schedule. For each launch of a launch vehicle flown with a flight safety system, a launch operator must file an updated flight safety system test schedule and points of contact no later than six...) Flight termination system qualification test reports. For the launch of a launch vehicle flown with...

  20. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... system test schedule. For each launch of a launch vehicle flown with a flight safety system, a launch operator must file an updated flight safety system test schedule and points of contact no later than six...) Flight termination system qualification test reports. For the launch of a launch vehicle flown with...

  1. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  2. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  3. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the launch point. (b) For a launch site supporting any expendable launch vehicle, an applicant shall use the largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for...

  4. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  5. Launch vehicle integration requirements for SP-100

    SciTech Connect

    Shaw, L.T. Jr.; Womack, J.R.

    1984-01-31

    SP-100 is the designation for a nuclear reactor-based power plant being developed for both civil and military missions beginning in the 1990s for such potential space applications as communication satellites, space radar, electric propulsion and space stations. Typically, a system using the SP-100 along with a selected upper stage system would be launched by the National Space Transportation System (NSTS) Space Shuttle System into a near-earth orbit, deployed, and through upper stage propulsion burn(s) be inserted/transferred to its mission orbit. The nature of the advanced design SP-100 gives rise to a set of issues that require special attention to assure that payloads using this power plant are physically and functionally compatible with the NSTS and meet the safety requirements thereof. The purpose of this document is to define and present the requirements and interface provisions that, when satisfied, will ensure technical compability between SP-100 systems and the NSTS.

  6. Launch vehicle integration requirements for SP-100

    NASA Technical Reports Server (NTRS)

    Shaw, L. T., Jr.; Womack, J. R.

    1984-01-01

    SP-100 is the designation for a nuclear reactor-based power plant being developed for both civil and military missions beginning in the 1990s for such potential space applications as communication satellites, space radar, electric propulsion and space stations. Typically, a system using the SP-100 along with a selected upper stage system would be launched by the National Space Transportation System (NSTS) Space Shuttle System into a near-earth orbit, deployed, and through upper stage propulsion burn(s) be inserted/transferred to its mission orbit. The nature of the advanced design SP-100 gives rise to a set of issues that require special attention to assure that payloads using this power plant are physically and functionally compatible with the NSTS and meet the safety requirements thereof. The purpose of this document is to define and present the requirements and interface provisions that, when satisfied, will ensure technical compatibility between SP-100 systems and the NSTS.

  7. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect

    Rosko, R.J.; Loughin, S.

    1997-01-01

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  8. EMMI-Electric solar wind sail facilitated Manned Mars Initiative

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Merikallio, Sini; Paton, Mark

    2015-08-01

    The novel propellantless electric solar wind sail concept promises efficient low thrust transportation in the Solar System outside Earth's magnetosphere. Combined with asteroid mining to provide water and synthetic cryogenic rocket fuel in orbits of Earth and Mars, possibilities for affordable continuous manned presence on Mars open up. Orbital fuel and water enable reusable bidirectional Earth-Mars vehicles for continuous manned presence on Mars and allow smaller fuel fraction of spacecraft than what is achievable by traditional means. Water can also be used as radiation shielding of the manned compartment, thus reducing the launch mass further. In addition, the presence of fuel in the orbit of Mars provides the option for an all-propulsive landing, thus potentially eliminating issues of heavy heat shields and augmenting the capability of pinpoint landing. With this E-sail enabled scheme, the recurrent cost of continuous bidirectional traffic between Earth and Mars might ultimately approach the recurrent cost of running the International Space Station, ISS.

  9. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  10. Space Launch System Development Status

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  11. Dynamic Tow Maneuver Orbital Launch Technique

    NASA Technical Reports Server (NTRS)

    Rutan, Elbert L. (Inventor)

    2014-01-01

    An orbital launch system and its method of operation use a maneuver to improve the launch condition of a booster rocket and payload. A towed launch aircraft, to which the booster rocket is mounted, is towed to a predetermined elevation and airspeed. The towed launch aircraft begins the maneuver by increasing its lift, thereby increasing the flight path angle, which increases the tension on the towline connecting the towed launch aircraft to a towing aircraft. The increased tension accelerates the towed launch aircraft and booster rocket, while decreasing the speed (and thus the kinetic energy) of the towing aircraft, while increasing kinetic energy of the towed launch aircraft and booster rocket by transferring energy from the towing aircraft. The potential energy of the towed launch aircraft and booster rocket is also increased, due to the increased lift. The booster rocket is released and ignited, completing the launch.

  12. Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.

    2015-01-01

    This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.

  13. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.

    2008-01-01

    All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).

  14. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life

  15. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. NASA is working to develop this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS program has made in the 2 years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen which combines the use and enhancement of legacy systems and technology with strategic new development projects that will evolve the capabilities of the launch vehicle. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved version of the vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight

  16. The rhinoviruses of man.

    PubMed

    Fiala, M; Guze, L B

    1970-05-01

    Rhinoviruses, prominent agents of the common cold syndrome in man, are small ribonucleic acid (rna) viruses resembling enteroviruses in their physicochemical properties except for high density and lability to acid pH. Rhinoviruses are propagated in human and monkey cells. Highest titers of virus are obtained in HeLa cell cultures. Rhinoviruses produce characteristic cytopathic effect in diploid fibroblasts. A plaque assay in HeLa cells is useful for their titration. The rhinovirus group includes many serotypes. Although rhinoviruses cause predominantly upper respiratory tract symptoms, they may on occasion infect the lower respiratory tract. Volunteers with specific antibody, when challenged with homotypic rhinovirus, are protected against the common cold.

  17. Man and his spaceships

    PubMed Central

    Siefert, Janet L.

    2012-01-01

    The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization. PMID:23481263

  18. The Feasibility of Railgun Horizontal-Launch Assist

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Cox, Robert B.

    2011-01-01

    Railguns typically operate for a few milliseconds, supplying thousands of G's of acceleration to a small projectile, resulting in exceptional speeds. This paper argues through analysis and experiment, that this "standard" technology can be modified to provide 2-3 G's acceleration to a relatively heavy launch vehicle for a time period exceeding several seconds, yielding a launch assist velocity in excess of Mach 1. The key insight here is that an efficient rail gun operates at a speed approximately given by the system resistance divided by the inductance gradient, which can be tailored because recent MOSFET and ultra-capacitor advances allow very low total power supply resistances with high capacitance and augmented railgun architectures provide a scalable inductance gradient. Consequently, it should now be possible to construct a horizontal launch assist system utilizing railgun based architecture.

  19. Manned Mars mission communication and data management systems

    NASA Technical Reports Server (NTRS)

    White, Ronald E.

    1986-01-01

    A manned Mars mission will involve a small crew and many complex tasks. The productivity of the crew and the entire mission will depend significantly on effective automation of these tasks and the ease with which the crew can interface with them. The technology to support a manned Mars mission is available today; however, evolving software and electronic technology are enabling many interesting possibilities for increasing productivity and safety while reducing life cycle cost. Some of these advanced technologies are identified.

  20. Launching jets from accretion belts

    NASA Astrophysics Data System (ADS)

    Schreier, Ron; Soker, Noam

    2016-05-01

    We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.

  1. TDRS is ready for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the early morning hours on Launch Pad 36A, Cape Canaveral Air Force Station, the tower rolls back from NASA's Tracking and Data Relay Satellite (TDRS-H) before liftoff atop an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot- diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system's existing S- and Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit.

  2. Aqua 10 Years After Launch

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2013-01-01

    A little over ten years ago, in the early morning hours of May 4, 2002, crowds of spectators stood anxiously watching as the Delta II rocket carrying NASA's Aqua spacecraft lifted off from its launch pad at Vandenberg Air Force Base in California at 2:55 a.m. The rocket quickly went through a low-lying cloud cover, after which the main portion of the rocket fell to the waters below and the rockets second stage proceeded to carry Aqua south across the Pacific, onward over Antarctica, and north to Africa, where the spacecraft separated from the rocket 59.5 minutes after launch. Then, 12.5 minutes later, the solar array unfurled over Europe, and Aqua was on its way in the first of what by now have become over 50,000 successful orbits of the Earth.

  3. Russian Soyuz Moves to Launch Pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  4. Hermes rescue strategies during launch

    NASA Astrophysics Data System (ADS)

    Cledassou, Rodelphe

    Safety and rescue strategies during the launch of Hermes space plane by Ariane 5 are discussed. Before solid booster separation, the pilots must be ejected by seats which are later recovered. After solid booster separation it becomes possible to extract the plane, which can perform a reentry leading to an available landing site or to sea recovery. When there is no useful landing site, the plane can be injected on a downgraded orbit.

  5. Atmosphere Explorer set for launch

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Atmosphere Explorer-D (Explorer-54) is described which will explore in detail an area of the earth's outer atmosphere where important energy transfer, atomic and molecular processes, and chemical reactions occur that are critical to the heat balance of the atmosphere. Data are presented on the mission facts, launch vehicle operations, AE-D/Delta flight events, spacecraft description, scientific instruments, tracking, and data acquisition.

  6. Minuteman 2 launched small satellite

    NASA Technical Reports Server (NTRS)

    Chan, Sunny; Hinders, Kriss; Martin, Trent; Mcmillian, Shandy; Sharp, Brad; Vajdos, Greg

    1994-01-01

    The goal of LEOSat Industries' Spring 1994 project was to design a small satellite that has a strong technology demonstration or scientific justification and incorporates a high level of student involvement. The satellite is to be launched into low earth orbit by the converted Minuteman 2 satellite launcher designed by Minotaur Designs, Inc. in 1993. The launch vehicle shroud was modified to a height of 90 inches, a diameter of 48 inches at the bottom and 35 inches at the top for a total volume of 85 cubic feet. The maximum allowable mass of the payload is about 1100 lb., depending on the launch site, orbit altitude, and inclination. The satellite designed by LEOSat Industries is TerraSat, a remote-sensing satellite that will provide information for use in space-based earth studies. It will consist of infrared and ultraviolet/visible sensors similar to the SDI-developed sensors being tested on Clementine. The sensors will be mounted on the Defense Systems, Inc. Standard Satellite-1 spacecraft bus. LEOSat has planned for two satellites orbiting the Earth with trajectories similar to that of LANDSAT 5. The semi-major axis is 7080 kilometers, the eccentricity is 0, and the inclination is 98.2 degrees. The estimated mass of TerraSat is 145 kilograms and the estimated volume is 1.8 cubic meters. The estimated cost of TerraSat is $13.7 million. The projected length of time from assembly of the sensors to launch of the spacecraft is 13 months.

  7. Voice command weapons launching system

    NASA Astrophysics Data System (ADS)

    Brown, H. E.

    1984-09-01

    This abstract discloses a voice-controlled weapons launching system for use by a pilot of an aircraft against a plurality of simultaneously appearing (i.e., existing) targets, such as two or more aggressor aircraft (or tanks, or the like) attacking more aggressor aircraft. The system includes, in combination, a voice controlled input device linked to and controlling a computer; apparatus (such as a television camera, receiver, and display), linked to and actuated by the computer by a voice command from the pilot, for acquiring and displaying an image of the multi-target area; a laser, linked to and actuated by the computer by a voice command from the pilot to point to (and to lock on to) any one of the plurality of targets, with the laser emitting a beam toward the designated (i.e., selected) target; and a plurality of laser beam-rider missiles, with a different missile being launched toward and attacking each different designated target by riding the laser beam to that target. Unlike the prior art, the system allows the pilot to use his hands full-time to fly and to control the aircraft, while also permitting him to launch each different missile in rapid sequence by giving a two-word spoken command after he has visually selected each target of the plurality of targets, thereby making it possible for the pilot of a single defender aircraft to prevail against the plurality of simultaneously attacking aircraft, or tanks, or the like.

  8. Mars manned transportation vehicle

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Faymon, Karl A.

    1987-01-01

    A viable power system technology for a surface transportation vehicle to explore the planet Mars is presented. A number of power traction systems were investigated, and it was found that a regenerative hydrogen-oxygen fuel cell appears to be attractive for a manned Mars rover application. Mission requirements were obtained from the Manned Mars Mission Working Group. Power systems weights, power, and reactants requirements were determined as a function of vehicle weights for vehicles weighing from 6,000 to 16,000 lb (2,722 to 7,257 kg), (Earth weight). The vehicle performance requirements were: velocity, 10 km/hr; range, 100 km; slope climbing capability, 30 deg uphill for 50 km; mission duration, 5 days; and crew, 5. Power requirements for the operation of scientific equipment and support system capabilities were also specified and included in this study. The concept developed here would also be applicable to a Lunar based vehicle for Lunar exploration. The reduced gravity on the Lunar surface, (over that on the Martian surface), would result in an increased range or capability over that of the Mars vehicle since many of the power and energy requirements for the vehicle are gravity dependent.

  9. Mars manned transportation vehicle

    SciTech Connect

    Perez-Davis, M.E.; Faymon, K.A.

    1987-07-01

    A viable power system technology for a surface transportation vehicle to explore the planet Mars is presented. A number of power traction systems were investigated, and it was found that a regenerative hydrogen-oxygen fuel cell appears to be attractive for a manned Mars rover application. Mission requirements were obtained from the Manned Mars Mission Working Group. Power systems weights, power, and reactants requirements were determined as a function of vehicle weights for vehicles weighing from 6,000 to 16,000 lb (2,722 to 7,257 kg), (Earth weight). The vehicle performance requirements were: velocity, 10 km/hr; range, 100 km; slope climbing capability, 30 deg uphill for 50 km; mission duration, 5 days; and crew, 5. Power requirements for the operation of scientific equipment and support system capabilities were also specified and included in this study. The concept developed here would also be applicable to a Lunar based vehicle for Lunar exploration. The reduced gravity on the Lunar surface, (over that on the Martian surface), would result in an increased range or capability over that of the Mars vehicle since many of the power and energy requirements for the vehicle are gravity dependent.

  10. Noctilucent Cloud Imaging and Tomography using a Suborbital Reusable Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Reimuller, J. D.; Fritts, D. C.; Thomas, G. E.

    2012-12-01

    Noctilucent Clouds (NLCs) are the highest clouds in the Earth's atmosphere, residing at a mean altitude of 83 km. They have been observed since 1885 around the summer solstice and are considered to be very sensitive indicators for what is going on in the atmosphere at higher altitudes. They have been observed to both increase in brightness and frequency as well as extend to lower latitudes and it has been hypothesized that the anthropogenic causes of climatic change may be directly related to NLC presence. An experiment is currently supported through NASA's Flight Opportunities program to use a Suborbital Reusable Launch Vehicle (SRLV) to fly a manned, stabilized imager suite through an NLC layer to obtain imagery and topography data of unprecedented resolution. The campaign is targeted for July 2014 and will involve a series of flights from a high-latitude spaceport when NLC activity is observed. These data should advance our understanding of energy and momentum deposition to the upper atmosphere through enhanced observations of gravity wave perturbations, instability dynamics, and turbulent regions.

  11. ATLAS V, Launch System for the Next Millenium

    NASA Astrophysics Data System (ADS)

    Sowers, George

    2002-01-01

    The premise behind the Atlas V launch system family is to provide a single system that can accommodate medium-lift to heavy-lift payloads. Lockheed Martin invested significant resources to develop the Atlas V launch vehicle featuring--a Common Core Booster using the RD-180 engine, an advanced solid rocket booster strap-on, advanced fault-tolerant avionics, the Common Element Centaur, and two payload fairings (PLF) sizes--an aluminum 4 meter and a composite 5 meter. With this "mix-and-match" approach, Lockheed Martin can accommodate payloads ranging from 10,900-19,000 lbm to geosynchronous transfer orbit (GTO) and up to 29,000 lbm to low-Earth orbit (LEO) in a single booster configuration. For heavy-lift missions (> 41,000 lbm to geosynchronous orbit), Lockheed Martin has designed a three-body configuration system to place satellites directly into their final orbit. Reliability, producibility, and operability were optimized for this new family while using heritage, flight- proven hardware wherever practical (booster engine, Centaur, payload adapters, payload fairings). With this approach, Lockheed Martin is able to offer a new family of vehicles, with minimum development risk and cost. It is also possible to reduce recurring cost without sacrificing Mission Success accomplishment due to the economies of scale of producing the system and the advanced use of automation during manufacturing and pre-launch processing. Atlas V development, while mainly funded by Lockheed Martin, also received a significant (500M) investment from the USAF under the EELV program. This investment ensures that USAF requirements are an integral part of the Atlas V system, such as standard payload interfaces, and a bracket of USAF and DoD payload performance needs. Lockheed Martin demonstrated the validity of this evolutionary approach on May 24, 2000, when its Atlas III vehicle, AC-201, performed flawlessly placing the EUTELSAT W4 satellite into final orbit. 80% of the Atlas V subsystems were

  12. A Dual Launch Robotic and Human Lunar Mission Architecture

    NASA Technical Reports Server (NTRS)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This

  13. Overview of the Pegasus Air-Launched Space Booster

    NASA Astrophysics Data System (ADS)

    Lindberg, Robert E.

    1989-09-01

    The Pegasus Air-Launched Space Booster is an innovative new space launch vehicle now under full-scale development in a privately-funded joint venture by Orbital Sciences Corporation (OSC) and Hercules Aerospace Company. Pegasus is a three-stage, solid-propellant, inertially-guided, all-composite winged vehicle that is launched at an altitude of 40,000 ft from its carrier aircraft. The 41,000 lb vehicle can deliver payloads as massive as 900 lb to low earth orbit. This status report on the Pegasus developemt program first details the advantages of the airborne launch concept, then describes the design and performance of the Pegasus vehicle and conlcludes with a review of the progress of the program from its conception in April 1987 through September 1989. First launch of Pegasus is scheduled for October 31, 1989, under contract to the Defense Advanced Research Projects Agency (DARPA). The second flight under the DARPA contract will be held several months later.

  14. NASA Crew Launch Vehicle Overview

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The US. Vision for Space Exploration, announced January 2004, outlines the National Aeronautics and Space Administration s (NASA) strategic goals and objectives. These include: 1) Flying the Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human spaceflight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. Following the confirmation of the new NASA Administrator in April 2005, the Agency commissioned a team of aerospace subject matter experts from government and industry to perform the Exploration Systems Architecture Study (ESAS), which provided in-depth information for selecting the follow-on launch vehicle designs to enable these goals, The ESAS team analyzed a number of potential launch systems, with a focus on: (1) a human-rated launch vehicle for crew transport and (2) a heavy lift launch vehicle (HLLV) to carry cargo. After several months of intense study utilizing technical performance, budget, and schedule objectives, the results showed that the optimum architecture to meet the challenge of safe, reliable crew transport is a two-stage variant of the Space Shuttle propulsion system - utilizing the reusable Solid Rocket Booster (SRB) as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit. The CEV that this new Crew Launch Vehicle (CLV) lofts into space

  15. Launch Services, a Proven Model

    NASA Astrophysics Data System (ADS)

    Trafton, W. C.; Simpson, J.

    2002-01-01

    From a commercial perspective, the ability to justify "leap frog" technology such as reusable systems has been difficult to justify because the estimated 5B to 10B investment is not supported in the current flat commercial market coupled with an oversupply of launch service suppliers. The market simply does not justify investment of that magnitude. Currently, next generation Expendable Launch Systems, including Boeing's Delta IV, Lockheed Martin's Atlas 5, Ariane V ESCA and RSC's H-IIA are being introduced into operations signifying that only upgrades to proven systems are planned to meet the changes in anticipated satellite demand (larger satellites, more lifetime, larger volumes, etc.) in the foreseeable future. We do not see a new fleet of ELVs emerging beyond that which is currently being introduced, only continuous upgrades of the fleet to meet the demands. To induce a radical change in the provision of launch services, a Multinational Government investment must be made and justified by World requirements. The commercial market alone cannot justify such an investment. And if an investment is made, we cannot afford to repeat previous mistakes by relying on one system such as shuttle for commercial deployment without having any back-up capability. Other issues that need to be considered are national science and security requirements, which to a large extent fuels the Japanese, Chinese, Indian, Former Soviet Union, European and United States space transportation entries. Additionally, this system must support or replace current Space Transportation Economies with across-the-board benefits. For the next 10 to 20 years, Multinational cooperation will be in the form of piecing together launch components and infrastructure to supplement existing launch systems and reducing the amount of non-recurring investment while meeting the future requirements of the End-User. Virtually all of the current systems have some form of multinational participation: Sea Launch

  16. The Nature of Man and Its Implications.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Gregory, Lura N.

    The many problems presented by the nature of man and in studying man are the focus of this paper which attempts to place these problems in perspective in terms of the past and future. The enigma facing man, that man must study man, is related in an introduction. Freud's, Adler's, and Jung's developments in the study of the nature of man are…

  17. Effectivity of atmospheric electricity on launch availability

    NASA Technical Reports Server (NTRS)

    Ernst, John A.

    1991-01-01

    Thunderstorm days at KSC; percentage of frequency of thunderstorms (1957-1989); effect of lightning advisory on ground operations; Shuttle launch history; Shuttle launch weather history; applied meteorology unit; and goals/operational benefits. This presentation is represented by viewgraphs.

  18. Expedition 30 Soyuz Moves to Launch Pad

    NASA Video Gallery

    On Dec. 19, the Soyuz TMA-03M spacecraft and its booster were moved to the launch pad at the Baikonur Cosmodrome in Kazakhstan for final preparations before launch to the International Space Statio...

  19. Delta launch vehicle inertial guidance system (DIGS)

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1973-01-01

    The Delta inertial guidance system, part of the Delta launch vehicle improvement effort, has been flown on three launches and was found to perform as expected for a variety of mission profiles and vehicle configurations.

  20. NASA's Space Launch System: Powering Forward

    NASA Video Gallery

    One year ago, NASA announced a new capability for America's space program: a heavy-lift rocket to launch humans farther into space than ever before. See how far the Space Launch System has come in ...

  1. Manned spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  2. Taurus lightweight manned spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Chase, Kevin A.; Vandersall, Eric J.; Plotkin, Jennifer; Travisano, Jeffrey J.; Loveless, Dennis; Kaczmarek, Michael; White, Anthony G.; Est, Andy; Bulla, Gregory; Henry, Chris

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff data of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step towards larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the Space Shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster--1300 kg to a 300 km orbit. The Taurus LMS design is divided into six major design sections. The human factors system deals with the problems of life support and spacecraft cooling. The propulsion section contains the abort system, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and power generation. The thermal protection systems and spacecraft structure are contained in the structures section. The avionics section includes navigation, attitude determination, data processing, communication systems, and sensors. The mission analysis section was responsible for ground processing and spacecraft astrodynamics. The systems integration section pulled the above sections together into one spacecraft and addressed costing and reliability.

  3. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Bosset, M.

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  4. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Astrophysics Data System (ADS)

    Bosset, M.

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  5. Man Under Pressure

    PubMed Central

    Kidd, D. J.

    1964-01-01

    Current achievements in environments at pressures higher than atmospheric are reviewed, ranging from the uses of hyperbaric oxygen for treatment to the concept of residence at high pressure for extended Continental Shelf exploration and very deep caisson work. A case is made for the use of high oxygen pressures in the treatment of hypoxias of acute onset, of certain infections, and as an adjunct to radiotherapy. Achievement of the desired high tissue tensions of oxygen while avoiding toxicity requires careful choice of both pressure and duration of exposure. Man has successfully dived to 1000 feet in the sea, and has remained for weeks at high pressures. Adequate prophylactic decompression remains a major problem, since current recompression procedures are to a large extent empirically derived. There are grounds for expecting improved prophylactic and therapeutic procedures when present studies are completed. PMID:14217256

  6. STS-91 Launch of Discovery from Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The last mission of the Shuttle-Mir program begins as the Space Shuttle Discovery lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2. A torrent of water is seen flowing onto the mobile launcher platform (MLP) from numerous large quench nozzles, or 'rainbirds,' mounted on its surface. This water, part of the Sound Suppression System, helps protect the orbiter and its payloads from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during launch. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir.

  7. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... From a Non-Federal Launch Site § 415.109 Launch description. An applicant's safety review document must... hazardous material; and (v) For an unguided suborbital launch vehicle, the location of the rocket's center... predicted impact point and dispersion of each spent stage. (f) Vehicle performance graphs. An applicant...

  8. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... From a Non-Federal Launch Site § 415.109 Launch description. An applicant's safety review document must... hazardous material; and (v) For an unguided suborbital launch vehicle, the location of the rocket's center... predicted impact point and dispersion of each spent stage. (f) Vehicle performance graphs. An applicant...

  9. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... From a Non-Federal Launch Site § 415.109 Launch description. An applicant's safety review document must... hazardous material; and (v) For an unguided suborbital launch vehicle, the location of the rocket's center... predicted impact point and dispersion of each spent stage. (f) Vehicle performance graphs. An applicant...

  10. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... From a Non-Federal Launch Site § 415.109 Launch description. An applicant's safety review document must... hazardous material; and (v) For an unguided suborbital launch vehicle, the location of the rocket's center... predicted impact point and dispersion of each spent stage. (f) Vehicle performance graphs. An applicant...

  11. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... From a Non-Federal Launch Site § 415.109 Launch description. An applicant's safety review document must... hazardous material; and (v) For an unguided suborbital launch vehicle, the location of the rocket's center... predicted impact point and dispersion of each spent stage. (f) Vehicle performance graphs. An applicant...

  12. Saturn I SA-2 Launch

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The second flight of the Saturn I vehicle, the SA-2, was successfully launched from Cape Canaveral, Florida on April 15, 1962. This vehicle had a secondary mission. After the first stage shutoff, at a 65-mile altitude, the water-filled upper stage was exploded, dumping 95 tons of water in the upper atmosphere. The resulting massive ice cloud rose to a height of 90 miles. The experiment, called Project Highwater, was intended to investigate the effects on the ionosphere of the sudden release of such a great volume of water.

  13. STS-26: Preparations for Launch

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Preparations for launch of STS-26 are shown. They include: (1) VAB to OPF high bay rollover; (2) Main engine unpacking and installation; (3) OMS pod installation; (4) Crew hatch removal; (5) Modified crew hatch installation; (6) Nose cap installation; (7) 17 inch disconnect work; (8) Ku-band antenna stow and deploy; (9) Tile work; (10) Oasis payload installation; (11) Solid rocket boosters arrival, preps and stacking; (13) Modified SRB segments: Arrival via train at KSC RPSF; (14) AFT segment rotation to vertical in RPSF; (15) AFT skirt to AFT segment mating; (16) SRB grain inspection; (17) Lift AFT segment; and (18) Lift and mate external tank.

  14. Closed End Launch Tube (CELT)

    NASA Astrophysics Data System (ADS)

    Lueck, Dale E.; Immer, Christopher D.

    2004-02-01

    A small-scale test apparatus has been built and tested for the CELT pneumatic launch assist concept presented at STAIF 2001. The 7.5 cm (3-inch) diameter × 305 M (1000 feet) long system accelerates and pneumatically brakes a 6.35 cm diameter projectile with variable weight (1.5 - 5 Kg). The acceleration and braking tube has been instrumented with optical sensors and pressure transducers at 14 stations to take data throughout the runs. Velocity and pressure profiles for runs with various accelerator pressures and projectile weights are given. This test apparatus can serve as an important experimental tool for verifying this concept.

  15. GRYPHON: Air launched space booster

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  16. Launch vehicle systems design analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  17. GRYPHON: Air launched space booster

    NASA Astrophysics Data System (ADS)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  18. NASA's Reusable Launch Vehicle Technologies: A Composite Materials Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Cook, Steve; Effinger, Mike; Smith, Dennis; Swint, Shayne

    1999-01-01

    A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.

  19. Rich Man, Poor Man: Developmental Differences in Attributions and Perceptions

    ERIC Educational Resources Information Center

    Sigelman, Carol K.

    2012-01-01

    In an examination guided by cognitive developmental and attribution theory of how explanations of wealth and poverty and perceptions of rich and poor people change with age and are interrelated, 6-, 10-, and 14-year-olds (N = 88) were asked for their causal attributions and trait judgments concerning a rich man and a poor man. First graders, like…

  20. Entry Guidance for the Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1999-01-01

    The X-33 Advanced Technology Demonstrator is a half-scale prototype developed to test the key technologies needed for a full-scale single-stage reusable launch vehicle (RLV). The X-33 is a suborbital vehicle that will be launched vertically, and land horizontally. The goals of this research were to develop an alternate entry guidance scheme for the X-33 in parallel to the actual X-33 entry guidance algorithms, provide comparative and complementary study, and identify potential new ways to improve entry guidance performance. Toward these goals, the nominal entry trajectory is defined by a piecewise linear drag-acceleration-versus-energy profile, which is in turn obtained by the solution of a semi-analytical parameter optimization problem. The closed-loop guidance is accomplished by tracking the nominal drag profile with primarily bank-angle modulation on-board. The bank-angle is commanded by a single full-envelope nonlinear trajectory control law. Near the end of the entry flight, the guidance logic is switched to heading control in order to meet strict conditions at the terminal area energy management interface. Two methods, one on ground-track control and the other on heading control, were proposed and examined for this phase of entry guidance where lateral control is emphasized. Trajectory dispersion studies were performed to evaluate the effectiveness of the entry guidance algorithms against a number of uncertainties including those in propulsion system, atmospheric properties, winds, aerodynamics, and propellant loading. Finally, a new trajectory-regulation method is introduced at the end as a promising precision entry guidance method. The guidance principle is very different and preliminary application in X-33 entry guidance simulation showed high precision that is difficult to achieve by existing methods.