Science.gov

Sample records for advanced manufacturing ncam

  1. National Center for Advanced Manufacturing Overview

    NASA Technical Reports Server (NTRS)

    Vickers, J.

    2001-01-01

    The National Center for Advanced Manufacturing (NCAM) is a strategy, organization, and partnership focused on long-term technology development. The NCAM initially will be a regional partnership, however the intent is national in scope. Benchmarking is needed to follow the concept to the finished project, not using trial and error. Significant progress has been made to date, and NCAM is setting the vision for the future.

  2. NASA's National Center for Advanced Manufacturing

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  3. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  4. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  5. Advancements in asphere manufacturing

    NASA Astrophysics Data System (ADS)

    Fess, Edward; DeFisher, Scott

    2013-09-01

    Aspheric optics can pose as a challenge to the manufacturing community due to the surface shape and level of quality required. The aspheric surface may have inflection points that limit the usable tool size during manufacturing, or there may be a stringent tolerance on the slope for mid-spatial frequencies that may be problematic for sub-aperture finishing techniques to achieve. As aspheres become more commonplace in the optics community, requests for more complex aspheres have risen. OptiPro Systems has been developing technologies to create a robust aspheric manufacturing process. Contour deterministic microgrinding is performed on a Pro80 or eSX platform. These platforms utilize software and the latest advancements in machine motion to accurately contour the aspheric shape. Then the optics are finished using UltraForm Finishing (UFF), which is a sub-aperture polishing process. This process has the capability to adjust the diameter and compliance of the polishing lap to allow for finishing over a wide range of shapes and conditions. Finally, the aspheric surfaces are qualified using an OptiTrace contact profilometer, or an UltraSurf non-contact 3D surface scanner. The OptiTrace uses a stylus to scan across the surface of the part, and the UltraSurf utilizes several different optical pens to scan the surface and generate a topographical map of the surface under test. This presentation will focus on the challenges for asphere manufacturing, how OptiPro has implemented its technologies to combat these challenges, and provide surface data for analysis.

  6. Advanced Manufacture of Reflectors

    SciTech Connect

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  7. Advanced Computing for Manufacturing.

    ERIC Educational Resources Information Center

    Erisman, Albert M.; Neves, Kenneth W.

    1987-01-01

    Discusses ways that supercomputers are being used in the manufacturing industry, including the design and production of airplanes and automobiles. Describes problems that need to be solved in the next few years for supercomputers to assume a major role in industry. (TW)

  8. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  9. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  10. Advanced Technology Composite Fuselage - Manufacturing

    NASA Technical Reports Server (NTRS)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  11. Intracellular transport and cell surface delivery of the neural cell adhesion molecule (NCAM).

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2015-01-01

    The neural cell adhesion molecule (NCAM) regulates differentiation and functioning of neurons by accumulating at the cell surface where it mediates the interactions of neurons with the extracellular environment. NCAM also induces a number of intracellular signaling cascades, which coordinate interactions at the cell surface with intracellular processes including changes in gene expression, transport and cytoskeleton remodeling. Since NCAM functions at the cell surface, its transport and delivery to the cell surface play a critical role. Here, we review recent advances in our understanding of the molecular mechanisms of the intracellular transport and cell surface delivery of NCAM. We also discuss the data suggesting a possibility of cross talk between activation of NCAM at the cell surface and the intracellular transport and cell surface delivery of NCAM.

  12. Manufacturing development of DC-10 advanced rudder

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1979-01-01

    The design, manufacture, and ground test activities during development of production methods for an advanced composite rudder for the DC-10 transport aircraft are described. The advanced composite aft rudder is satisfactory for airline service and a cost saving in a full production manufacturing mode is anticipated.

  13. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  14. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  15. Advanced Manufacturing Training: Mobile Learning Labs

    ERIC Educational Resources Information Center

    Vukich, John C.; Ackerman, Amanda A.

    2010-01-01

    Across Colorado, manufacturing employers forecast an on-going need not only for workers who are interested in career opportunities but who are prepared to enter the advanced manufacturing industry with the necessary high-tech skills. Additionally, employers report concerns about replacing retiring workers that take with them decades of…

  16. Advancing manufacturing through computational chemistry

    SciTech Connect

    Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

    1995-12-31

    The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

  17. Advancing Manufacturing Research Through Competitions

    SciTech Connect

    Balakirsky, Stephen; Madhavan, Raj

    2009-01-01

    Competitions provide a technique for building interest and collaboration in targeted research areas. This paper will present a new competition that aims to increase collaboration amongst Universities, automation end-users, and automation manufacturers through a virtual competition. The virtual nature of the competition allows for reduced infrastructure requirements while maintaining realism in both the robotic equipment deployed and the scenarios. Details of the virtual environment as well as the competitions objectives, rules, and scoring metrics will be presented.

  18. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  19. Advanced Manufacturing of Superconducting Magnets

    NASA Technical Reports Server (NTRS)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  20. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  1. Distinctive PSA-NCAM and NCAM hallmarks in glutamate-induced dendritic atrophy and synaptic disassembly.

    PubMed

    Podestá, María Fernanda; Yam, Patricia; Codagnone, Martín Gabriel; Uccelli, Nonthué Alejandra; Colman, David; Reinés, Analía

    2014-01-01

    Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss.

  2. Advances in recombinant antibody manufacturing.

    PubMed

    Kunert, Renate; Reinhart, David

    2016-04-01

    Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today.

  3. Development of Advanced Ceramic Manufacturing Technology

    SciTech Connect

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  4. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  5. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA Lewis Research Center, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  6. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA LRC, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  7. Distinctive PSA-NCAM and NCAM Hallmarks in Glutamate-Induced Dendritic Atrophy and Synaptic Disassembly

    PubMed Central

    Podestá, María Fernanda; Yam, Patricia; Codagnone, Martín Gabriel; Uccelli, Nonthué Alejandra; Colman, David; Reinés, Analía

    2014-01-01

    Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss. PMID:25279838

  8. Distinctive PSA-NCAM and NCAM hallmarks in glutamate-induced dendritic atrophy and synaptic disassembly.

    PubMed

    Podestá, María Fernanda; Yam, Patricia; Codagnone, Martín Gabriel; Uccelli, Nonthué Alejandra; Colman, David; Reinés, Analía

    2014-01-01

    Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss. PMID:25279838

  9. Recovery of emotional behaviour in neural cell adhesion molecule (NCAM) null mutant mice through transgenic expression of NCAM180.

    PubMed

    Stork, O; Welzl, H; Wolfer, D; Schuster, T; Mantei, N; Stork, S; Hoyer, D; Lipp, H; Obata, K; Schachner, M

    2000-09-01

    In the present study we further investigate functions of the neural cell adhesion molecule (NCAM) in the mature central nervous system and its implications for animal behaviour. To this end we generated transgenic mice expressing the major NCAM isoform with the largest cytoplasmic domain, NCAM180, under control of a promoter for the small form neurofilament gene. Transgenic mice were also bred with mice deficient in endogenous NCAM (Ncam-/- mice) so that effects of NCAM180 could be analysed in the presence and absence of endogenous NCAM. While overexpression of transgenic NCAM180 was without apparent behavioural or morphological effect, its expression in Ncam-/- mice counteracted NCAM ablation-induced aggressive, anxiety-like and antidepressant-like behaviour. It furthermore prevented a hypersensitivity of Ncam-/- mice to the anxiolytic serotonin1A (5-HT1A) receptor agonist buspirone. Such recovery of emotional behaviour and behavioural 5-HT1A response occurred in spite of misdevelopment of the olfactory bulb and hippocampus that is characteristic of Ncam-/- mice, and without an apparent change in the expression of 5-HT1A binding sites in the brain. Hippocampus- and amygdala-dependent learning, though disturbed in Ncam-/- mice, remained unaffected by the transgenic NCAM180. We suggest an involvement of NCAM180-mediated cell recognition processes in the serotonergic modulation of emotional behaviour in adult mice.

  10. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  11. Organizational Considerations for Advanced Manufacturing Technology

    ERIC Educational Resources Information Center

    DeRuntz, Bruce D.; Turner, Roger M.

    2003-01-01

    In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…

  12. Kinesin-1 promotes post-Golgi trafficking of NCAM140 and NCAM180 to the cell surface.

    PubMed

    Wobst, Hilke; Schmitz, Brigitte; Schachner, Melitta; Diestel, Simone; Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2015-08-01

    The neural cell adhesion molecule (NCAM, also known as NCAM1) is important during neural development, because it contributes to neurite outgrowth in response to its ligands at the cell surface. In the adult brain, NCAM is involved in regulating synaptic plasticity. The molecular mechanisms underlying delivery of NCAM to the neuronal cell surface remain poorly understood. We used a protein macroarray and identified the kinesin light chain 1 (KLC1), a component of the kinesin-1 motor protein, as a binding partner of the intracellular domains of the two transmembrane isoforms of NCAM, NCAM140 and NCAM180. KLC1 binds to amino acids CGKAGPGA within the intracellular domain of NCAM and colocalizes with kinesin-1 in the Golgi compartment. Delivery of NCAM180 to the cell surface is increased in CHO cells and neurons co-transfected with kinesin-1. We further demonstrate that the p21-activated kinase 1 (PAK1) competes with KLC1 for binding to the intracellular domain of NCAM and contributes to the regulation of the membrane insertion of NCAM. Our results indicate that NCAM is delivered to the cell surface through a kinesin-1-mediated transport mechanism in a PAK1-dependent manner.

  13. Advances in gamma titanium aluminides and their manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal; Radhakrishnan, Ramachandran; Wereley, Norman M.

    2012-11-01

    Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

  14. Evaluation of advanced polymers for additive manufacturing

    SciTech Connect

    Rios, Orlando; Morrison, Crystal

    2015-09-01

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and is inherently low-cost.

  15. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  16. Advanced manufacturing technologies on color plasma displays

    NASA Astrophysics Data System (ADS)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  17. Energy intensity, electricity consumption, and advanced manufacturing-technology usage

    SciTech Connect

    Doms, M.E.; Dunne, T.

    1995-07-01

    This article reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants that utilize AMTs are less-energy intensive than plants not using AMTs, but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants. 25 refs., 3 tabs.

  18. Open architecture controllers for advanced manufacturing

    SciTech Connect

    Gore, R.A.

    1994-03-01

    The application of intelligent control systems to the real world of machining and manufacturing will benefit form the presence of open architecture control systems on the machines or the processes. The ability to modify the control system as the process or product changes can be essential to the success of the application of neural net or fuzzy logic controllers. The effort at Los Alamos to obtain a commercially available open architecture machine tool controller is described.

  19. A review of advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Broughton, T.

    1981-03-01

    Joining techniques, hot forming technology, forging technology, investment casting, small cooling hole manufacturing, combustor technology, quality assurance, and chip forming machining of gas turbine engine components are discussed. Electron and laser beam welding; laser hard facing techniques; automatic TIG and plasma welding; diffusion brazing of titanium and nickel alloys; heated die forming: blow forming; superplastic forming; fan and compressor blade forging; and wheel and disk forging from powder superalloys are described.

  20. Advanced non-disruptive manufacturing rule checks (MRC)

    NASA Astrophysics Data System (ADS)

    Moore, Bill; Do, Tanya; Morgan, Ray E.

    2006-10-01

    New advanced mask rule checking (MRC) solutions are required to ensure cost effective, high yield photomask manufacturing processes at 65nm and below and are needed to provide new verification capabilities for mask makers and data prep engineers alike. Traditional MRC, which implements fundamental geometric data checks on limited data formats, is not sufficient for advanced photomask manufacturing. Like recent advances in design rule checking (DRC) software, which includes extensive "manufacturing-aware" rules (or DFM rules), MRC solutions must evolve to include a more comprehensive and intelligent rule checks for the mask manufacturing process. This paper describes the development and testing of an advanced MRC software solution developed within the CATS TM mask data preparation (MDP) solution from Synopsys Inc. The new MRC solution enables the inspection and analysis of mask layout patterns for simple and advanced data verification checks. Proposed applications for mask data prep applications are discussed and include incoming design verification, fracture data correction, inspection tool data tags, mask manufacturing tool or inspection tool selection, and job deck verification.

  1. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.

    1995-10-01

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. A materials/manufacturing plan was developed in FY 1994 with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. The plan outlines seven major subelements which focus on materials issues and manufacturing processes. Work is currently under way in four of the seven major subelements. There are now major projects on coatings and process development, scale-up of single crystal airfoil manufacturing technology, materials characterization, and technology information exchange.

  2. The American Institute for Manufacturing Integrated Photonics: advancing the ecosystem

    NASA Astrophysics Data System (ADS)

    Koch, Thomas L.; Liehr, Michael; Coolbaugh, Douglas; Bowers, John E.; Alferness, Rod; Watts, Michael; Kimerling, Lionel

    2016-02-01

    The American Institute for Manufacturing Integrated Photonics (AIM Photonics) is focused on developing an end-to-end integrated photonics ecosystem in the U.S., including domestic foundry access, integrated design tools, automated packaging, assembly and test, and workforce development. This paper describes how the institute has been structured to achieve these goals, with an emphasis on advancing the integrated photonics ecosystem. Additionally, it briefly highlights several of the technological development targets that have been identified to provide enabling advances in the manufacture and application of integrated photonics.

  3. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  4. Composite intermediate case manufacturing scale-up for advanced engines

    NASA Technical Reports Server (NTRS)

    Ecklund, Rowena H.

    1992-01-01

    This Manufacturing Technology for Propulsion Program developed a process to produce a composite intermediate case for advanced gas turbine engines. The method selected to manufacture this large, complex part uses hard tooling for surfaces in the airflow path and trapped rubber to force the composite against the mold. Subelements were manufactured and tested to verify the selected design, tools, and processes. The most significant subelement produced was a half-scale version of a composite intermediate case. The half-scale subelement maintained the geometry and key dimensions of the full-scale case, allowing relevant process development and structural verification testing to be performed on the subelement before manufacturing the first full-scale case.

  5. Impact of advanced manufacturing technology on prosthetic and orthotic practice.

    PubMed

    Jones, D

    1988-04-01

    Radical changes in the technology applied to prosthetics and orthotics are being proposed. This paper attempts to define the scope and character of advanced manufacturing technology and examines the rehabilitation problems which are or could be tackled. Lower-limb prosthetics has been the major area under investigation so far, but orthopaedic footwear, spinal orthotics and custom seating for the disabled have also been investigated using similar technological approaches. The whole process of patient measurement, device design, and component manufacture is conceived as an integrated system relying upon shape or tissue property sensing, computer based device design and computer-numerically-controlled or robot manufacturing processes. The aim is to retain flexibility for custom design which is necessary to provide for individual patients, and yet improve the rapidity and precision of overall device manufacture and service delivery.

  6. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    ERIC Educational Resources Information Center

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90 firms in…

  7. Advanced Initiation Systems Manufacturing Level 2 Milestone Completion Summary

    SciTech Connect

    Chow, R; Schmidt, M

    2009-10-01

    Milestone Description - Advanced Initiation Systems Detonator Design and Prototype. Milestone Grading Criteria - Design new generation chip slapper detonator and manufacture a prototype using advanced manufacturing processes, such as all-dry chip metallization and solvent-less flyer coatings. The advanced processes have been developed for manufacturing detonators with high material compatibility and reliability to support future LEPs, e.g. the B61, and new weapons systems. Perform velocimetry measurements to determine slapper velocity as a function of flight distance. A prototype detonator assembly and stripline was designed for low-energy chip slappers. Pictures of the prototype detonator and stripline are shown. All-dry manufacturing processes were used to address compatibility issues. KCP metallized the chips in a physical vapor deposition system through precision-aligned shadow masks. LLNL deposited a solvent-less polyimide flyer with a processes called SLIP, which stands for solvent-less vapor deposition followed by in-situ polymerization. LANL manufactured the high-surface-area (HSA) high explosive (HE) pellets. Test fires of two chip slapper designs, radius and bowtie, were performed at LLNL in the High Explosives Application Facility (HEAF). Test fires with HE were conducted to establish the threshold firing voltages. pictures of the chip slappers before and after test fires are shown. Velocimetry tests were then performed to obtain slapper velocities at or above the threshold firing voltages. Figure 5 shows the slapper velocity as a function of distance and time at the threshold voltage, for both radius and bowtie bridge designs. Both designs were successful at initiating the HE at low energy levels. Summary of Accomplishments are: (1) All-dry process for chip manufacture developed; (2) Solventless process for slapper materials developed; (3) High-surface area explosive pellets developed; (4) High performance chip slappers developed; (5) Low-energy chip

  8. Process development status report for advanced manufacturing projects

    SciTech Connect

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  9. Spacesuit glove manufacturing enhancements through the use of advanced technologies

    NASA Technical Reports Server (NTRS)

    Cadogan, David; Bradley, David; Kosmo, Joseph

    1993-01-01

    The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.

  10. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  11. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  12. Spacesuit glove manufacturing enhancements through the use of advanced technologies

    NASA Astrophysics Data System (ADS)

    Cadogan, David; Bradley, David; Kosmo, Joseph

    The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.

  13. Spectrophotometric Procedure for Fast Reactor Advanced Coolant Manufacture Control

    NASA Astrophysics Data System (ADS)

    Andrienko, O. S.; Egorov, N. B.; Zherin, I. I.; Indyk, D. V.

    2016-01-01

    The paper describes a spectrophotometric procedure for fast reactor advanced coolant manufacture control. The molar absorption coefficient of dimethyllead dibromide with dithizone was defined as equal to 68864 ± 795 l·mole-1·cm-1, limit of detection as equal to 0.583 · 10-6 g/ml. The spectrophotometric procedure application range was found to be equal to 37.88 - 196.3 g. of dimethyllead dibromide in the sample. The procedure was used within the framework of the development of the method of synthesis of the advanced coolant for fast reactors.

  14. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  15. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  16. National Center for Advanced Information Components Manufacturing. Program summary report, Volume 1

    SciTech Connect

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, summaries of the technical projects, and key program accomplishments.

  17. 78 FR 34346 - Proposed Information Collection; Comment Request; NIST MEP Advanced Manufacturing Jobs and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... Advanced Manufacturing Jobs and Innovation Accelerator Challenge (AMJIAC) Client Impact Survey AGENCY... information collection. The purpose of the Advanced Manufacturing Jobs and Innovation Accelerator Challenge... to support job creation, encourage economic development, and enhance the competitiveness of...

  18. Feature-based tolerancing for advanced manufacturing applications

    SciTech Connect

    Brown, C.W.; Kirk, W.J. III; Simons, W.R.; Ward, R.C.; Brooks, S.L.

    1994-11-01

    A primary requirement for the successful deployment of advanced manufacturing applications is the need for a complete and accessible definition of the product. This product definition must not only provide an unambiguous description of a product`s nominal shape but must also contain complete tolerance specification and general property attributes. Likewise, the product definition`s geometry, topology, tolerance data, and modeler manipulative routines must be fully accessible through a robust application programmer interface. This paper describes a tolerancing capability using features that complements a geometric solid model with a representation of conventional and geometric tolerances and non-shape property attributes. This capability guarantees a complete and unambiguous definition of tolerances for manufacturing applications. An object-oriented analysis and design of the feature-based tolerance domain was performed. The design represents and relates tolerance features, tolerances, and datum reference frames. The design also incorporates operations that verify correctness and check for the completeness of the overall tolerance definition. The checking algorithm is based upon the notion of satisfying all of a feature`s toleranceable aspects. Benefits from the feature-based tolerance modeler include: advancing complete product definition initiatives, incorporating tolerances in product data exchange, and supplying computer-integrated manufacturing applications with tolerance information.

  19. Advances in the manufacturing, types, and applications of biosensors

    NASA Astrophysics Data System (ADS)

    Ravindra, Nuggehalli M.; Prodan, Camelia; Fnu, Shanmugamurthy; Padronl, Ivan; Sikha, Sushil K.

    2007-12-01

    In recent years, there have been significant technological advancements in the manufacturing, types, and applications of biosensors. Applications include clinical and non-clinical diagnostics for home, bio-defense, bio-remediation, environment, agriculture, and the food industry. Biosensors have progressed beyond the detection of biological threats such as anthrax and are finding use in a number of non-biological applications. Emerging biosensor technologies such as lab-on-a-chip have revolutionized the integration approaches for a very flexible, innovative, and user-friendly platform. An overview of the fundamentals, types, applications, and manufacturers, as well as the market trends of biosensors is presented here. Two case studies are discussed: one focused on a characterization technique—patch clamping and dielectric spectroscopy as a biological sensor—and the other about lithium phthalocyanine, a material that is being developed for in-vivo oxymetry.

  20. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.; Ferber, M.K.; Hoffman, E.E.

    1995-12-31

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/ Manufacturing Technology Program which is coordinated by DOE Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this sub-element are aimed toward hastening the incorporation of new materials and components in gas turbines.

  1. Advanced manufacturing technologies for the BeCOAT telescope

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael N.; Rajic, Slobodan; Seals, Roland D.

    1994-02-01

    The beryllium cryogenic off-axis telescope (BeCOAT) uses a two-mirror, non re-imaging, off- axis, Ritchey Chretian design with all-beryllium optics, structures and baffles. The purpose of this telescope is the system level demonstration of advanced manufacturing technologies for optics, optical benches, and baffle assemblies. The key issues that are addressed are single point diamond turning of beryllium optics, survivable fastening techniques, minimum beryllium utilization, and technologies leading to self-aligning, all-beryllium optical systems.

  2. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    SciTech Connect

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.

  3. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  4. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  5. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  6. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  7. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  8. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  9. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  10. Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems

    SciTech Connect

    McHugh, K.M.

    1994-12-31

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.

  11. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  12. Potential roles of NCAM/PSA-NCAM proteins in depression and the mechanism of action of antidepressant drugs.

    PubMed

    Wędzony, Krzysztof; Chocyk, Agnieszka; Maćkowiak, Marzena

    2013-01-01

    Recently, it has been proposed that abnormalities in neuronal structural plasticity may underlie the pathogenesis of major depression, resulting in changes in the volume of specific brain regions, including the hippocampus (HIP), the prefrontal cortex (PC), and the amygdala (AMY), as well as the morphology of individual neurons in these brain regions. In the present survey, we compile the data regarding the involvement of the neural cell adhesion molecule (NCAM) protein and its polysialylated form (PSA-NCAM) in the pathogenesis of depression and the mechanism of action of antidepressant drugs (ADDs). Elevated expression of PSA-NCAM may reflect neuroplastic changes, whereas decreased expression implies a rigidification of neuronal morphology and an impedance of dynamic changes in synaptic structure. Special emphasis is placed on the clinical data, genetic models, and the effects of ADDs on NCAM/PSA-NCAM expression in the brain regions in which these proteins are constitutively expressed and neurogenesis is not a major factor; this emphasis is necessary to prevent cell proliferation and neurogenesis from obscuring the issue of brain plasticity. PMID:24552994

  13. Towards manufacturing of advanced logic devices by double-patterning

    NASA Astrophysics Data System (ADS)

    Koay, Chiew-seng; Halle, Scott; Holmes, Steven; Petrillo, Karen; Colburn, Matthew; van Dommelen, Youri; Jiang, Aiqin; Crouse, Michael; Dunn, Shannon; Hetzer, David; Kawakami, Shinichiro; Cantone, Jason; Huli, Lior; Rodgers, Martin; Martinick, Brian

    2011-04-01

    As reported previously, the IBM Alliance has established a DETO (Double-Expose-Track-Optimized) baseline, in collaboration with ASML, TEL, and CNSE, to evaluate commercially available DETO photoresist system for the manufacturing of advanced logic devices. Although EUV lithography is the baseline strategy for <2x nm logic nodes, alternative techniques are still being pursued. The DETO technique produces pitch-split patterns capable of supporting 16 nm and 11 nm node semiconductor devices. We present the long-term monitoring performances of CD uniformity (CDU), overlay, and defectivity of our DETO process. CDU and overlay performances for controlled experiments are also presented. Two alignment schemes in DETO are compared experimentally for their effects on inter-level & intralevel overlays, and space CDU. We also experimented with methods for improving CDU, in which the CD-OptimizerTMand DoseMapperTM were evaluated separately and in tandem. Overlay improvements using the Correction Per Exposure (CPE) and the intra-field High-Order Process Correction (i-HOPC) were compared against the usual linear correction method. The effects of the exposure field size are also compared between a small field and the full field. Included in all the above, we also compare the performances derived from stack-integrated wafers and bare-Si wafers.

  14. Impacts of advanced manufacturing technology on parametric estimating

    NASA Astrophysics Data System (ADS)

    Hough, Paul G.

    1989-12-01

    The introduction of advanced manufacturing technology in the aerospace industry poses serious challenges for government cost analysts. Traditionally, the analysts have relied on parametric estimating techniques for both planning and budgeting. Despite its problems, this approach has proven to be a remarkably useful and robust tool for estimating new weapon system costs. However, rapid improvements in both product and process technology could exacerbate current difficulties, and diminish the utility of the parametric approach. This paper reviews some weakness associated with parametrics, then proceeds to examine how specific aspects of the factory of the future may further impact parametric estimating, and suggests avenues of research for their resolution. This paper is an extended version of Cost Estimating for the Factory of the Future. Parametric estimating is a method by which aggregated costs are derived as a function of high-level product characteristics or parameters. The resulting equations are known as cost estimating relationships (CERs). Such equations are particularly useful when detailed technical specifications are not available.

  15. Prosperity Game: Advanced Manufacturing Day, May 17, 1994

    SciTech Connect

    Berman, M.

    1994-12-01

    Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents a 90-minute Prosperity Game conducted as part of Advanced Manufacturing Day on May 17, 1994. This was the fourth game conducted under the direction of the Center for National Industrial Alliances at Sandia. Although previous games lasted from one to two days, this abbreviated game produced interesting and important results. Most of the strategies proposed in previous games were reiterated here. These included policy changes in international trade, tax laws, the legal system, and the educational system. Government support of new technologies was encouraged as well as government-industry partnerships. The importance of language in international trade was an original contribution of this game. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, and the development, delivery and commercialization of new technologies.

  16. National Center for Advanced Information Components Manufacturing. Program summary report, Volume II

    SciTech Connect

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, program history, summaries of the technical projects, and key program accomplishments.

  17. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    NASA Technical Reports Server (NTRS)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  18. Training Welders in Advanced Manufacturing Philosophies Nets Employability

    ERIC Educational Resources Information Center

    Wilson, Kristin

    2011-01-01

    As of September 2010, the U.S. manufacturing sector grew for the 14th consecutive month, leading some economists to speculate that, as with the Great Depression, American manufacturing will lead the economy out of the recession. It is a little bit of good news in a long stream of depressing employment reports. Career and technical educators…

  19. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  20. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  1. PSA modification of NCAM supports the survival of injured retinal ganglion cells in adulthood.

    PubMed

    Lobanovskaya, Natalia; Zharkovsky, Tamara; Jaako, Külli; Jürgenson, Monika; Aonurm-Helm, Anu; Zharkovsky, Alexander

    2015-11-01

    Neural cell adhesion molecule (NCAM) is known as the cell surface glycoprotein, and it belongs to the immunoglobulin superfamily of adhesion molecules. Polysialic acid (PSA) is a carbohydrate attached to NCAM via either of two specific sialyltransferases: ST8SiaII and ST8SiaIV. Polysialylated neural cell adhesion molecule (PSA-NCAM) mediates cell interactions, plays a role in axon growth, migration, synaptic plasticity during development and cell regeneration. Some evidence has shown that PSA-NCAM supports the survival of neurons. It was demonstrated that PSA-NCAM is present in abundance in the retina during development and in adulthood. The aim of this study was to investigate whether PSA-NCAM promotes retinal ganglion cell (RGC) survival in transgenic mice with deficiencies in sialyltransferases or NCAM or after the administration of endoneuraminidase (Endo-N). RGC injury was induced by intravitreal administration of kainic acid (KA). These studies showed that injection of Endo-N after 14 days enhances the toxicity of KA to RGCs in wild-type (WT) mice by 18%. In contrast, in knockout mice (ST8SiaII-/-, ST8SiaIV-/-, NCAM-/-), survival of RGCs after KA injury did not change. Deficiencies of either ST8SiaII or ST8SiaIV did not influence the level of PSA-NCAM in the adult retina, however, in neonatal animals, decreased levels of PSA-NCAM were observed. In knockout ST8SiaII-/- adults, a reduced number of RGCs was detected, whereas in contrast, increased numbers of RGCs were noted in NCAM-/- mice. In conclusion, these data demonstrate that PSA-NCAM supports the survival of injured RGCs in adulthood. However, the role of PSA-NCAM in the adult retina requires further clarification. PMID:26319680

  2. Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.

    SciTech Connect

    Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr.; Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

    2007-07-01

    An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

  3. Transfer of advanced manufacturing technologies to eastern Kentucky industries

    SciTech Connect

    Gillies, J.A.; Kruzich, R.

    1988-05-01

    This study concludes that there are opportunities to provide assistance in the adoption of manufacturing technologies for small- and medium-sized firms in eastern Kentucky. However, the new markets created by Toyota are not adequate to justify a directed technology transfer program targeting the auto supply industry in eastern Kentucky because supplier markets have been determined for some time, and manufacturers in eastern Kentucky were not competitive in this early selection process. The results of the study strongly reinforce a reorientation of state business-assistance programs. The study also concludes that the quality and quantity of available labor is a pervasive problem in eastern Kentucky and has particular relevance as the economy changes. The study also investigated what type of technology-transfer programs would be appropriate to assist manufacturing firms in eastern Kentucky and if there were a critical number of firms to make such a program feasible.

  4. The ergonomics of computer aided design within advanced manufacturing technology.

    PubMed

    John, P A

    1988-03-01

    Many manufacturing companies have now awakened to the significance of computer aided design (CAD), although the majority of them have only been able to purchase computerised draughting systems of which only a subset produce direct manufacturing data. Such companies are moving steadily towards the concept of computer integrated manufacture (CIM), and this demands CAD to address more than draughting. CAD architects are thus having to rethink the basic specification of such systems, although they typically suffer from an insufficient understanding of the design task and have consequently been working with inadequate specifications. It is at this fundamental level that ergonomics has much to offer, making its contribution by encouraging user-centred design. The discussion considers the relationships between CAD and: the design task; the organisation and people; creativity; and artificial intelligence. It finishes with a summary of the contribution of ergonomics.

  5. Cost analysis of advanced turbine blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  6. Gender differences on the job satisfaction in the phase of implementing advanced manufacturing technology in the Chinese manufacturing firms.

    PubMed

    Yu, Na; Shen, Li Ming; Lewark, Siegfried

    2012-01-01

    This research gave an effort to study on gender differences in the job satisfaction for technological innovation at Chinese manufacturing firm. The exploratory study was conducted in four Chinese furniture manufacturing firms, which are all in the phases of introducing advanced manufacturing system. The results of statistical analysis show that general satisfaction of female employees to their jobs is significantly higher than male employees. In addition, supervisory satisfaction of female employees is significantly higher than male employees. The findings of the study reveal that activities are suggested to be carried out to increase the job satisfaction of male employees, especially improve communication and relationship between the managerial and the non-managerial levels in the innovation process. In addition, the higher job satisfaction of female employees could be considered a positive factor for the successful implementation of AMT in the technological innovation, although male employees are still dominated work force in the case study firms. PMID:22317383

  7. Innovation Training within the Australian Advanced Manufacturing Industry

    ERIC Educational Resources Information Center

    Donovan, Jerome Denis; Maritz, Alex; McLellan, Andrew

    2013-01-01

    Innovation has emerged as a core driver for the future profitability and success of the manufacturing sector, and increasingly both governments and the private sector are examining ways to support the development of innovation capabilities within organisations. In this research, we have evaluated a government-funded innovation training course…

  8. Regional Advanced Manufacturing Academy: An Agent of Change

    ERIC Educational Resources Information Center

    Schmeling, Daniel M.; Rose, Kevin

    2010-01-01

    Three Northeast Texas community colleges put aside service delivery areas and matters of "turf" to create Centers of Excellence that provided training throughout a nine county area. This consortium; along with 14 manufacturers, seven economic development corporations, and the regional workforce board, led the change in training a highly skilled…

  9. The ubiquitous neural cell adhesion molecule (N-CAM).

    PubMed

    Weledji, Elroy P; Assob, Jules C

    2014-09-01

    Adhesive interactions are important for cell trafficking, differentiation, function and tissue differentiation. Neural cell adhesion molecule (NCAM) is involved in a diverse range of contact-mediated interactions among neurons, astrocytes, oligodendrocytes, and myotubes. It is widely but transiently expressed in many tissues early in embryogenesis. Four main isoforms exist but there are many other variants resulting from alternative splicing and post-translational modifications. This review discusses the actions and association of N-CAM and variants, PSA CAM. L1CAM and receptor tyrosine kinase. Their interactions with the interstitial cells of Cajal - the pacemaker cells of the gut in the manifestation of gut motility disorders, expression in carcinomas and mesenchymal tumours are discussed. PMID:25568792

  10. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  11. 21q21 deletion involving NCAM2: report of 3 cases with neurodevelopmental disorders.

    PubMed

    Petit, Florence; Plessis, Ghislaine; Decamp, Matthieu; Cuisset, Jean-Marie; Blyth, Moira; Pendlebury, Maria; Andrieux, Joris

    2015-01-01

    Here we report three patients affected with neurodevelopmental disorders and harbouring 21q21 deletions involving NCAM2 gene. NCAM (Neural Cell Adhesion Molecule) proteins are involved in axonal migration, synaptic formation and plasticity. Poor axonal growth and fasciculation is observed in animal models deficient for NCAM2. Moreover, this gene has been proposed as a candidate for autism, based on genome-wide association studies. In this report, we provide a comprehensive molecular and phenotypical characterisation of three deletion cases giving additional clues for the involvement of NCAM2 in neurodevelopment. PMID:25464110

  12. 21q21 deletion involving NCAM2: report of 3 cases with neurodevelopmental disorders.

    PubMed

    Petit, Florence; Plessis, Ghislaine; Decamp, Matthieu; Cuisset, Jean-Marie; Blyth, Moira; Pendlebury, Maria; Andrieux, Joris

    2015-01-01

    Here we report three patients affected with neurodevelopmental disorders and harbouring 21q21 deletions involving NCAM2 gene. NCAM (Neural Cell Adhesion Molecule) proteins are involved in axonal migration, synaptic formation and plasticity. Poor axonal growth and fasciculation is observed in animal models deficient for NCAM2. Moreover, this gene has been proposed as a candidate for autism, based on genome-wide association studies. In this report, we provide a comprehensive molecular and phenotypical characterisation of three deletion cases giving additional clues for the involvement of NCAM2 in neurodevelopment.

  13. Advances in infrastructure support for flat panel display manufacturing

    NASA Astrophysics Data System (ADS)

    Bardsley, James N.; Ciesinski, Michael F.; Pinnel, M. Robert

    1997-07-01

    The success of the US display industry, both in providing high-performance displays for the US Department of Defense at reasonable cost and in capturing a significant share of the global civilian market, depends on maintaining technological leadership and on building efficient manufacturing capabilities. The US Display Consortium (USDC) was set up in 1993 by the US Government and private industry to guide the development of the infrastructure needed to support the manufacturing of flat panel displays. This mainly involves the supply of equipment and materials, but also includes the formation of partnerships and the training of a skilled labor force. Examples are given of successful development projects, some involving USDC participation, others through independent efforts of its member companies. These examples show that US-based companies can achieve leadership positions in this young and rapidly growing global market.

  14. Advanced manufacturing of SIMOX for low power electronics

    NASA Astrophysics Data System (ADS)

    Alles, Michael; Krull, Wade

    1996-04-01

    Silicon-on-insulator (SOI) has emerged as a key technology for low power electronics. The merits of SOI technology have been demonstrated, and are gaining acceptance in the semiconductor industry. In order for the SOI approach to be viable, several factors must converge, including the availability of SOI substrates in sufficient quantity, of acceptable quality, and at a competitive price. This work describes developments in SIMOX manufacturing technology and summarizes progress in each of these areas.

  15. Strategic methodology for advancing food manufacturing waste management paradigms

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.

    2004-12-01

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not as materials in need of disposal, but rather as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector there are many examples of value-added use of processing residues, although many of these focus solely on utilization as livestock feed ingredients. In addition to livestock feed, though, many other potential avenues exist for food processing waste streams, including food grade as well as industrial products. Unfortunately, the challenge to food processors is actually conducting the byproduct development work. In fact, no clear delineation exists that describes necessary components for an effective byproduct development program. This paper describes one such strategic methodology that could help fill this void. It consists of identifying, quantifying, characterizing, developing, analyzing, optimizing, and modeling the waste stream of interest. This approach to byproduct development represents an inclusive strategy that can be used to more effectively implement value-added utilization programs. Not only is this methodology applicable to food processing operations, but any industrial or manufacturing firm could benefit from instituting the formal components described here. Thus, this methodology, if implemented by a manufacturer, could hold the potential for increasing the probability of meeting the goals of industrial ecology, namely, that of developing and operating sustainable systems.

  16. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  17. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    NASA Astrophysics Data System (ADS)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  18. Materials/manufacturing support element for the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Hoffman, E.E.; Parks, W.P.

    1994-12-31

    In 1993, DOE initiated a program to develop advanced gas turbines for power generation in utility and industrial applications. A materials/manufacturing plan was developed in several stages with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. This plan was developed by a small advanced materials and turbine technology team over a 6-month period. The technology plan calls for initiation of several high priority projects in FY 1995. The technical program for the materials/manufacturing element focuses on generic materials issues, components, and manufacturing processes. Categories include coatings and process development, turbine airfoil development, ceramics adaptation, directional solidification and single crystal airfoils manufactoring technology, materials characterization, catalytic combustor materials, and technology information exchange.

  19. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    PubMed

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies.

  20. Enhanced bio-manufacturing through advanced multivariate statistical technologies.

    PubMed

    Martin, E B; Morris, A J

    2002-11-13

    The paper describes the interrogation of data, from a reaction vessel producing an active pharmaceutical ingredient (API), using advanced multivariate statistical techniques. Due to the limited number of batches available, data augmentation was used to increase the number of batches thereby enabling the extraction of more subtle process behaviour from the data. A second methodology investigated was that of multi-group modelling. This allowed between cluster variability to be removed, thus allowing attention to focus on within process variability. The paper describes how the different approaches enabled the realisation of a better understanding of the factors causing the onset of an impurity formation to be obtained as well demonstrating the power of multivariate statistical data analysis techniques to provide an enhanced understanding of the process.

  1. Manufacturing an advanced process characterization reticle incorporating halftone biasing

    NASA Astrophysics Data System (ADS)

    Nakagawa, Kent H.; Van Den Broeke, Douglas J.; Chen, J. Fung; Laidig, Thomas L.; Wampler, Kurt E.; Caldwell, Roger F.

    1999-04-01

    As the semiconductor roadmap continues to require imaging of smaller feature son wafers, we continue to explore new approaches in OPC strategies to extend the lifespan of existing technology. In this paper, we study a new OPC technology, called halftone biasing, and its application on an OPC characterization reticle, designed by MicroUnity Systems Engineering, Inc. The RTP9 test reticle is the latest in a series of 'LineSweeper' characterization reticles. Each reticle contains a wide range of line width sand pitches, each with several alternative OPC treatments, including references cases, scattering bars, and fine biasing. One of RTP9's design requirements was to support very fine, incremental biases for densely-pitched lines. Ordinarily, this would dictate a reduced address unit and with it the costly penalty of a square-law increase in e- beam write time. RTP9 incorporates a new OPC strategy, called halftone biasing, which has been proposed to address this problem. Taking advantage of optical reduction printing, this technique applies a sub-resolution halftone screen to the edges of figures to accomplish fine biasing equivalent to using an address unit one-fourth of the size of the actual e-beam writing grid. The resulting edge structure has some of the characteristics of aggressive OPC structures, but can be used in areas where traditional scattering bars cannot be placed. The trade-off between the faster write times achieved and the inflation of pattern file size is examined. The manufacturability and inspectability of halftone-biased lines on the RTP9 test reticle are explored. Pattern fidelity is examined using both optical and SEM tools. Printed 0.18 micrometers DUV resist line edge profiles are compared for both halftone and non- halftone feature edges. The CD uniformity of the OPC features, and result of die-to-database inspection are reported. The application of halftone biasing to real circuits, including the impact of data volume and saved write time

  2. Advanced carbon manufacturing for energy and biological applications

    NASA Astrophysics Data System (ADS)

    Turon Teixidor, Genis

    The science of miniaturization has experienced revolutionary advances during the last decades, witnessing the development of the Integrated Circuit and the emergence of MEMS and Nanotechnology. Particularly, MEMS technology has pioneered the use of non-traditional materials in microfabrication by including polymers, ceramics and composites to the well known list of metals and semiconductors. One of the latest additions to this set of materials is carbon, which represents a very important inclusion given its significance in electrochemical energy conversion systems and in applications where it is used as sensor probe material. For these applications, carbon is optimal in several counts: It has a wide electrochemical stability window, good electrical and thermal conductivity, high corrosion resistance and mechanical stability, and is available in high purity at a low cost. Furthermore carbon is biocompatible. This thesis presents several microfabricated devices that take advantage of these properties. The thesis has two clearly differentiated parts. In the first one, applications of micromachined carbon in the field of energy conversion and energy storage are presented. These applications include lithium ion micro batteries and the development of new carbon electrodes with fractal geometries. In the second part, the focus shifts to biological applications. First, the study of the interaction of living cells with micromachined carbon is presented, followed by the description of a sensor based on interdigitated nano-electrode arrays, and finally the development of the new instrumentation needed to address arrays of carbon electrodes, a multiplexed potentiostat. The underlying theme that connects all these seemingly different topics is the use of carbon microfabrication techniques in electrochemical systems.

  3. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  4. Advanced Manufacturing as an Online Case Study for Global Geography Education

    ERIC Educational Resources Information Center

    Glass, Michael R.; Kalafsky, Ronald V.; Drake, Dawn M.

    2013-01-01

    Advanced manufacturing continues to be an important sector for emerging and industrialized economies, therefore, remaining an important topic for economic geography education. This article describes a case study created for the Association of American Geographer's Center for Global Geography Education and its implementation. The international…

  5. Overview of the manufacturing sequence of the Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Chapman, John S.; Nix, Michael B.

    1992-01-01

    The manufacturing sequence of NASA's new Advanced Solid Rocket Motor, developed as a replacement of the Space Shuttle's existing Redesigned Solid Rocket Motor, is overviewed. Special attention is given to the case preparation, the propellant mix/cast, the nondestructuve evaluation, the motor finishing, and the refurbishment. The fabrication sequences of the case, the nozzle, and the igniter are described.

  6. Noninvasive sensors for in-situ process monitoring and control in advanced microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Moslehi, Mehrdad M.

    1991-04-01

    The combination of noninvasive in-situ monitoring sensors single-wafer processing modules vacuum-integrated cluster tools and computer-integrated manufacturing (CIM) can provide a suitable fabrication environment for flexible and high-yield advanced semiconductor device manufacturing. The use of in-situ sensors for monitoring of equipment process and wafer parameters results in increased equipment/process up-time reduced process and device parameter spread improved cluster tool reliability and functionality and reduced overall device manufacturing cycle time. This paper will present an overview of the main features and impact of noninvasive in-situ monitoring sensors for semiconductor device manufacturing applications. Specific examples will be presented for the use of critical sensors in conjunction with cluster tools for advanced CMOS device processing. A noninvasive temperature sensor will be presented which can monitor true wafer temperature via infrared (5. 35 jtm) pyrometery and laser-assisted real-time spectral wafer emissivity measurements. This sensor design eliminates any. temperature measurement errors caused by the heating lamp radiation and wafer emissivity variations. 1. SENSORS: MOTIVATIONS AND IMPACT Semiconductor chip manufacturing factories usually employ well-established statistical process control (SPC) techniques to minimize the process parameter deviations and to increase the device fabrication yield. The conventional fabrication environments rely on controlling a limited set of critical equipment and process parameters (e. g. process pressure gas flow rates substrate temperature RF power etc. ) however most of the significant wafer process and equipment parameters of interest are not monitored in real

  7. Integrated Design for Manufacturing of Braided Preforms for Advanced Composites Part I: 2D Braiding

    NASA Astrophysics Data System (ADS)

    Gao, Yan Tao; Ko, Frank K.; Hu, Hong

    2013-12-01

    This paper presents a 2D braiding design system for advanced textile structural composites was based on dynamic models. A software package to assist in the design of braided preform manufacturing has been developed. The package allows design parameters (machine speeds, fiber volume fraction, tightness factor, etc.) to be easily obtained and the relationships between said parameters to be demonstrated graphically. The fabirc geometry model (FGM) method was adopted to evaluate the mechanical properties of the composites. Experimental evidence demonstrates the success of the use of dynamic models in the design software for the manufacture of braided fabric preforms.

  8. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease

    PubMed Central

    Leshchyns'ka, Iryna; Liew, Heng Tai; Shepherd, Claire; Halliday, Glenda M.; Stevens, Claire H.; Ke, Yazi D.; Ittner, Lars M.; Sytnyk, Vladimir

    2015-01-01

    Alzheimer's disease (AD) is characterized by synapse loss due to mechanisms that remain poorly understood. We show that the neural cell adhesion molecule 2 (NCAM2) is enriched in synapses in the human hippocampus. This enrichment is abolished in the hippocampus of AD patients and in brains of mice overexpressing the human amyloid-β (Aβ) precursor protein carrying the pathogenic Swedish mutation. Aβ binds to NCAM2 at the cell surface of cultured hippocampal neurons and induces removal of NCAM2 from synapses. In AD hippocampus, cleavage of the membrane proximal external region of NCAM2 is increased and soluble extracellular fragments of NCAM2 (NCAM2-ED) accumulate. Knockdown of NCAM2 expression or incubation with NCAM2-ED induces disassembly of GluR1-containing glutamatergic synapses in cultured hippocampal neurons. Aβ-dependent disassembly of GluR1-containing synapses is inhibited in neurons overexpressing a cleavage-resistant mutant of NCAM2. Our data indicate that Aβ-dependent disruption of NCAM2 functions in AD hippocampus contributes to synapse loss. PMID:26611261

  9. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease.

    PubMed

    Leshchyns'ka, Iryna; Liew, Heng Tai; Shepherd, Claire; Halliday, Glenda M; Stevens, Claire H; Ke, Yazi D; Ittner, Lars M; Sytnyk, Vladimir

    2015-01-01

    Alzheimer's disease (AD) is characterized by synapse loss due to mechanisms that remain poorly understood. We show that the neural cell adhesion molecule 2 (NCAM2) is enriched in synapses in the human hippocampus. This enrichment is abolished in the hippocampus of AD patients and in brains of mice overexpressing the human amyloid-β (Aβ) precursor protein carrying the pathogenic Swedish mutation. Aβ binds to NCAM2 at the cell surface of cultured hippocampal neurons and induces removal of NCAM2 from synapses. In AD hippocampus, cleavage of the membrane proximal external region of NCAM2 is increased and soluble extracellular fragments of NCAM2 (NCAM2-ED) accumulate. Knockdown of NCAM2 expression or incubation with NCAM2-ED induces disassembly of GluR1-containing glutamatergic synapses in cultured hippocampal neurons. Aβ-dependent disassembly of GluR1-containing synapses is inhibited in neurons overexpressing a cleavage-resistant mutant of NCAM2. Our data indicate that Aβ-dependent disruption of NCAM2 functions in AD hippocampus contributes to synapse loss. PMID:26611261

  10. Effect of N-CAM on in vitro invasion of human adenoid cystic carcinoma cells.

    PubMed

    França, C M; Jaeger, R G; Freitas, V M; Araújo, N S; Jaeger, M M

    2001-12-01

    Adenoid cystic carcinoma of salivary glands is characterised by aggressive behaviour, high rate of local recurrences, neurotropism and late metastasis. In a previous work we demonstrated that adenoid cystic carcinoma cultured cells (CAC2 cells) expressed N-CAM. It was suggested that this expression, modulated by extracellular matrix, would be correlated to cell movement. The aim of our study was to verify whether CAC2 cells presented invasion capacity. Moreover, we tested whether the neural adhesion molecule (N-CAM) would participate in this process. CAC2 cells were either previously treated, or not (control), with a monoclonal antibody against N-CAM. Invasion assays were carried out using a modified Boyden chamber (Transwell chamber). CAC2 cells (10(5)) were dispensed into Transwell upper chamber on the top of Matrigel coated filter. The cells that invaded the filters in the first 8 h were counted under light microscopy, yielding data for the invasion rates (%). Control CAC2 cells presented an invasion rate of 5.28+/-0.04%. The invasion rate raised to 6.53+/-0.2% when N-CAM was blocked with monoclonal antibody. N-CAM impaired the adenoid cystic carcinoma cell invasion in vitro. Therefore, we suggest an anti-invasive role for N-CAM in adenoid cystic carcinoma.

  11. The advanced manufacturing science and technology program. FY 95 Annual Report

    SciTech Connect

    Hill, J.

    1996-03-01

    This is the Fiscal Year 1995 Annual Report for the Advanced Manufacturing Science and Technology (AMST) sector of Los Alamos Tactical Goal 6, Industrial Partnering. During this past fiscal year, the AMST project leader formed a committee whose members represented the divisions and program offices with a manufacturing interest to examine the Laboratory`s expertise and needs in manufacturing. From a list of about two hundred interest areas, the committee selected nineteen of the most pressing needs for weapon manufacturing. Based upon Los Alamos mission requirements and the needs of the weapon manufacturing (Advanced Design and Production Technologies (ADaPT)) program plan and the other tactical goals, the committee selected four of the nineteen areas for strategic planning and possible industrial partnering. The areas selected were Casting Technology, Constitutive Modeling, Non-Destructive Testing and Evaluation, and Polymer Aging and Lifetime Prediction. For each area, the AMST committee formed a team to write a roadmap and serve as a partnering technical consultant. To date, the roadmaps have been completed for each of the four areas. The Casting Technology and Polymer Aging teams are negotiating with specific potential partners now, at the close of the fiscal year. For each focus area we have created a list of existing collaborations and other ongoing partnering activities. In early Fiscal Year 1996, we will continue to develop partnerships in these four areas. Los Alamos National Laboratory instituted the tactical goals for industrial partnering to focus our institutional resources on partnerships that enhance core competencies and capabilities required to meet our national security mission of reducing the nuclear danger. The second industry sector targeted by Tactical Goal 6 was the chemical industry. Tactical Goal 6 is championed by the Industrial Partnership Office.

  12. Expression of the neural cell adhesion molecule (NCAM) during second- and third-molar development in the mouse.

    PubMed

    Obara, N; Takeda, M

    1993-07-01

    Distribution of the neural cell adhesion molecule (NCAM) during the development of the mandibular second- and third-molars of the mouse was studied by indirect immunofluorescence techniques. At the initial stage, NCAM was intensely expressed by the mesenchymal cells surrounding the dental lamina, and by the cap stage NCAM expression by the mesenchymal cells became restricted to the dental follicle. After that, in addition to the follicular mesenchyme, some cells in the basal part of the dental papilla showed NCAM-immunoreactivity for a while after the hard tissue formation had started. During root formation, the follicular cells lost NCAM first from the level of the cervical root and later from the coronal part, while an additional NCAM positive area appeared deep in the dental papilla. Even after the teeth had erupted, NCAM was expressed in the tissue surrounding the apical root and in the pulp core. During the initial and bud stages, the pattern of NCAM expression in the second and third molars was different from that in the first molar, where NCAM was found only after the late bud stage; while from the cap stage onward, it changed in the same sequence as in the first molar. The different pattern of NCAM expression implies that there is a difference in developmental events between the early stages of the first and the other two molars. On the other hand, the common sequence of NCAM expression in the tooth germs later than the cap stage suggests that NCAM plays an essential role in the formation of the basic structure of the teeth and periodontal tissues. PMID:8214621

  13. Brain structure, cognition and negative symptoms in schizophrenia are associated with serum levels of polysialic acid-modified NCAM.

    PubMed

    Piras, F; Schiff, M; Chiapponi, C; Bossù, P; Mühlenhoff, M; Caltagirone, C; Gerardy-Schahn, R; Hildebrandt, H; Spalletta, G

    2015-01-01

    The neural cell adhesion molecule (NCAM) is a glycoprotein implicated in cell-cell adhesion, neurite outgrowth and synaptic plasticity. Polysialic acid (polySia) is mainly attached to NCAM (polySia-NCAM) and has an essential role in regulating NCAM-dependent developmental processes that require plasticity, that is, cell migration, axon guidance and synapse formation. Post-mortem and genetic evidence suggests that dysregulation of polySia-NCAM is involved in schizophrenia (SZ). We enrolled 45 patients diagnosed with SZ and 45 healthy individuals who were submitted to polySia-NCAM peripheral quantification, cognitive and psychopathological assessment and structural neuroimaging (brain volumes and diffusion tensor imaging). PolySia-NCAM serum levels were increased in SZ patients, independently of antipsychotic treatment, and were associated with negative symptoms, blunted affect and declarative memory impairment. The increased polySia-NCAM levels were associated with decreased volume in the left prefrontal cortex, namely Brodmann area 46, in patients and increased volume in the same brain area of healthy individuals. As this brain region is involved in the pathophysiology of SZ and its associated phenomenology, the data indicate that polySia-NCAM deserves further scrutiny because of its possible role in early neurodevelopmental mechanisms of the disorder. PMID:26460482

  14. Role of stress system disturbance and enhanced novelty response in spatial learning of NCAM-deficient mice.

    PubMed

    Brandewiede, Joerg; Jakovcevski, Mira; Stork, Oliver; Schachner, Melitta

    2013-11-01

    The neural cell adhesion molecule (NCAM) plays a crucial role in stress-related brain function, emotional behavior and memory formation. In this study, we investigated the functions of the glucocorticoid and serotonergic systems in mice constitutively deficient for NCAM (NCAM-/- mice). Our data provide evidence for a hyperfunction of the hypothalamic-pituitary-adrenal axis, with enlarged adrenal glands and increased stress-induced corticosterone release, but reduced hippocampal glucocorticoid receptor expression in NCAM-/- mice when compared to NCAM+/+ mice. We also obtained evidence for a hypofunction of 5-HT1A autoreceptors as indicated by increased 8-0H-DPAT-induced hypothermia. These findings suggest a disturbance of both humoral and neural stress systems in NCAM-/- mice. Accordingly, we not only confirmed previously observed hyperarousal of NCAM-/- mice in various anxiety tests, but also observed an increased response to novelty exposure in these animals. Spatial learning deficits of the NCAM-/- mice in a Morris Water maze persisted, even when mice were pretrained to prevent effects of novelty or stress. We suggest that NCAM-mediated processes are involved in both novelty/stress-related emotional behavior and in cognitive function during spatial learning.

  15. Brain structure, cognition and negative symptoms in schizophrenia are associated with serum levels of polysialic acid-modified NCAM

    PubMed Central

    Piras, F; Schiff, M; Chiapponi, C; Bossù, P; Mühlenhoff, M; Caltagirone, C; Gerardy-Schahn, R; Hildebrandt, H; Spalletta, G

    2015-01-01

    The neural cell adhesion molecule (NCAM) is a glycoprotein implicated in cell–cell adhesion, neurite outgrowth and synaptic plasticity. Polysialic acid (polySia) is mainly attached to NCAM (polySia-NCAM) and has an essential role in regulating NCAM-dependent developmental processes that require plasticity, that is, cell migration, axon guidance and synapse formation. Post-mortem and genetic evidence suggests that dysregulation of polySia-NCAM is involved in schizophrenia (SZ). We enrolled 45 patients diagnosed with SZ and 45 healthy individuals who were submitted to polySia-NCAM peripheral quantification, cognitive and psychopathological assessment and structural neuroimaging (brain volumes and diffusion tensor imaging). PolySia-NCAM serum levels were increased in SZ patients, independently of antipsychotic treatment, and were associated with negative symptoms, blunted affect and declarative memory impairment. The increased polySia-NCAM levels were associated with decreased volume in the left prefrontal cortex, namely Brodmann area 46, in patients and increased volume in the same brain area of healthy individuals. As this brain region is involved in the pathophysiology of SZ and its associated phenomenology, the data indicate that polySia-NCAM deserves further scrutiny because of its possible role in early neurodevelopmental mechanisms of the disorder. PMID:26460482

  16. Brain structure, cognition and negative symptoms in schizophrenia are associated with serum levels of polysialic acid-modified NCAM.

    PubMed

    Piras, F; Schiff, M; Chiapponi, C; Bossù, P; Mühlenhoff, M; Caltagirone, C; Gerardy-Schahn, R; Hildebrandt, H; Spalletta, G

    2015-01-01

    The neural cell adhesion molecule (NCAM) is a glycoprotein implicated in cell-cell adhesion, neurite outgrowth and synaptic plasticity. Polysialic acid (polySia) is mainly attached to NCAM (polySia-NCAM) and has an essential role in regulating NCAM-dependent developmental processes that require plasticity, that is, cell migration, axon guidance and synapse formation. Post-mortem and genetic evidence suggests that dysregulation of polySia-NCAM is involved in schizophrenia (SZ). We enrolled 45 patients diagnosed with SZ and 45 healthy individuals who were submitted to polySia-NCAM peripheral quantification, cognitive and psychopathological assessment and structural neuroimaging (brain volumes and diffusion tensor imaging). PolySia-NCAM serum levels were increased in SZ patients, independently of antipsychotic treatment, and were associated with negative symptoms, blunted affect and declarative memory impairment. The increased polySia-NCAM levels were associated with decreased volume in the left prefrontal cortex, namely Brodmann area 46, in patients and increased volume in the same brain area of healthy individuals. As this brain region is involved in the pathophysiology of SZ and its associated phenomenology, the data indicate that polySia-NCAM deserves further scrutiny because of its possible role in early neurodevelopmental mechanisms of the disorder.

  17. Advanced manufacturing rules check (MRC) for fully automated assessment of complex reticle designs: Part II

    NASA Astrophysics Data System (ADS)

    Straub, J. A.; Aguilar, D.; Buck, P. D.; Dawkins, D.; Gladhill, R.; Nolke, S.; Riddick, J.

    2006-10-01

    Advanced electronic design automation (EDA) tools, with their simulation, modeling, design rule checking, and optical proximity correction capabilities, have facilitated the improvement of first pass wafer yields. While the data produced by these tools may have been processed for optimal wafer manufacturing, it is possible for the same data to be far from ideal for photomask manufacturing, particularly at lithography and inspection stages, resulting in production delays and increased costs. The same EDA tools used to produce the data can be used to detect potential problems for photomask manufacturing in the data. In the previous paper, it was shown how photomask MRC is used to uncover data related problems prior to automated defect inspection. It was demonstrated how jobs which are likely to have problems at inspection could be identified and separated from those which are not. The use of photomask MRC in production was shown to reduce time lost to aborted runs and troubleshooting due to data issues. In this paper, the effectiveness of this photomask MRC program in a high volume photomask factory over the course of a year as applied to more than ten thousand jobs will be shown. Statistics on the results of the MRC runs will be presented along with the associated impact to the automated defect inspection process. Common design problems will be shown as well as their impact to mask manufacturing throughput and productivity. Finally, solutions to the most common and most severe problems will be offered and discussed.

  18. New Paradigms in International University/Industry/Government Cooperation. Canada-China Collaboration in Advanced Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Bulgak, Akif Asil; Liquan, He

    1996-01-01

    A Chinese university and a Canadian university collaborated on an advanced manufacturing technologies project designed to address human resource development needs in China. The project featured university/industry/government partnership and attention to environmental issues. (SK)

  19. An experiment in remote manufacturing using the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Tsatsoulis, Costas; Frost, Victor

    1991-01-01

    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic.

  20. Advanced manufacturing technology effectiveness: A review of literature and some issues

    NASA Astrophysics Data System (ADS)

    Goyal, Sanjeev; Grover, Sandeep

    2012-09-01

    Advanced manufacturing technology (AMT) provides advantages to manufacturing managers in terms of flexibility, quality, reduced delivery times, and global competitiveness. Although a large number of publications had presented the importance of this technology, only a few had delved into related literature review. Considering the importance of this technology and the recent contributions by various authors, the present paper conducts a more comprehensive review. Literature was reviewed in a way that will help researchers, academicians, and practitioners to take a closer look at the implementation, evaluation, and justification of the AMT. The authors reviewed various papers, proposed a different classification scheme, and identified certain gaps that will provide hints for further research in AMT management.

  1. An experiment in remote manufacturing using the advanced communications technology satellite

    NASA Astrophysics Data System (ADS)

    Tsatsoulis, Costas; Frost, Victor

    1991-10-01

    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic.

  2. Polysialylation of NCAM characterizes the proliferation period of contractile elements during postnatal development of the epididymis.

    PubMed

    Simon, Peter; Feuerstacke, Caroline; Kaese, Miriam; Saboor, Farhan; Middendorff, Ralf; Galuska, Sebastian P

    2015-01-01

    Polysialic acid (polySia) attached to the neural cell adhesion molecule (NCAM) regulates inter alia the proliferation and differentiation via the interactions with neurotrophins. Since in postnatal epididymis neurotrophins and their receptors like the Low-Affinity Nerve Growth Factor Receptor p75 and TrK B receptor are expressed, we wanted to analyze if the polysialylation of NCAM is also involved during the development of the epididymis. To this end, we monitored the developmental changes in the expression of the polysialyltransferases and NCAM polysialylation using murine epididymis at different time points during postnatal development. Our results revealed that during postnatal development of the epididymis both polysialyltransferases, ST8SiaII and ST8SiaIV, were expressed and that the expression levels dropped with increasing age. In agreement with the expression levels of the polysialyltransferases the highest content of polysialylated NCAM was present during the first 10 days after birth. Interestingly, proliferating smooth muscle cell populations prevalently expressed polysialylated NCAM. Furthermore, we observed that inverse to the decrease in polysialylation of smooth muscle cells a strong up-regulation of collagen takes place suggesting a functional relationship since collagen was recently described to induce the turnover of polysialylated NCAM via an induction of endocytosis in cellulo. The same time course of polySia and collagen synthesis was also observed in other regions of the male reproductive system e.g. vas deferens and tunica albuginea (testis). Together, we identified a spatio-temporal expression pattern of polySia-NCAM characterized by high proliferation rate of smooth muscle cells and low collagen content.

  3. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  4. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  5. Promotion of cell migration by neural cell adhesion molecule (NCAM) is enhanced by PSA in a polysialyltransferase-specific manner.

    PubMed

    Guan, Feng; Wang, Xin; He, Fa

    2015-01-01

    Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components. PMID:25885924

  6. Composites Materials and Manufacturing Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  7. Rapid Intelligent Inspection Process Definition for dimensional measurement in advanced manufacturing

    SciTech Connect

    Brown, C.W.

    1993-03-01

    The Rapid Intelligent Inspection Process Definition (RIIPD) project is an industry-led effort to advance computer integrated manufacturing (CIM) systems for the creation and modification of inspection process definitions. The RIIPD project will define, design, develop, and demonstrate an automated tool (i.e., software) to generate inspection process plans and coordinate measuring machine (CMM) inspection programs, as well as produce support information for the dimensional measurement of piece parts. The goal of this project is to make the inspection and part verification function, specifically CMM measurements, a more effective production support tool by reducing inspection process definition flowtime, creating consistent and standard inspections, increasing confidence of measurement results, and capturing inspection expertise. This objective is accomplished through importing STEP geometry definitions, applying solid modeling, incorporating explicit tolerance representations, establishing dimensional inspection,techniques, embedding artificial intelligence techniques, and adhering to the Dimensional Measuring Interface Standard (DMIS) national standard.

  8. Isotope Separation and Advanced Manufacturing Technology. ISAM semiannual report, Volume 3, Number 1, October 1993--March 1994

    SciTech Connect

    Carpenter, J.; Kan, T.

    1994-10-01

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (I) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (II) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  9. Analysis of advanced vapor source for cadmium telluride solar cell manufacturing

    NASA Astrophysics Data System (ADS)

    Khetani, Tejas Harshadkumar

    A thin film CdS/CdTe solar cell manufacturing line has been developed in the Materials Engineering Laboratory at Colorado State University. The original design incorporated infrared lamps for heating the vapor source. This system has been redesigned to improve the energy efficiency of the system, allow co-sublimation and allow longer run time before the sources have to be replenished. The advanced vapor source incorporates conduction heating with heating elements embedded in graphite. The advanced vapor source was modeled by computational fluid dynamics (CFD). From these models, the required maximum operating temperature of the element was determined to be 720 C for the processing of CdS/CdTe solar cells. Nichrome and Kanthal A1 were primarily selected for this application at temperature of 720 °C in vacuum with oxygen partial pressure. Research on oxidation effects and life due to oxidation as well as creep deformation was done, and Nichrome was found more suitable for this application. A study of the life of the Nichrome heating elements in this application was conducted and the estimate of life is approximately 1900 years for repeated on-off application. This is many orders of magnitude higher than the life of infrared heat lamps. Ceramic cement based on aluminum oxide (Resbond 920) is used for bonding the elements to the graphite. Thermodynamic calculations showed that this cement is inert to the heating element. An earlier design of the advanced source encountered failure of the element. The failed element was studies by scanning electron microscopy and the failure was attributed to loss of adhesion between the graphite and the ceramic element. The design has been modified and the advanced vapor source is currently in operation.

  10. Activity-dependent mobilization of the adhesion molecule polysialic NCAM to the cell surface of neurons and endocrine cells.

    PubMed Central

    Kiss, J Z; Wang, C; Olive, S; Rougon, G; Lang, J; Baetens, D; Harry, D; Pralong, W F

    1994-01-01

    The alpha-2,8-linked sialic acid polymer (PSA) on the neural cell adhesion molecule (NCAM) is an important regulator of cell surface interactions. We have examined the translocation of PSA-NCAM to the surface of cultured cortical neurons and insulin secreting beta cells under different conditions of cell activity. Endoneuraminidase N, an enzyme that specifically cleaves PSA chains, was used to remove pre-existing PSA from the plasma membrane and the re-expression of the molecule was monitored by immunocytochemistry. Punctate PSA immunostaining was restored on the surface of 68% of neurons within 1 h. This recovery was almost completely prevented by tetrodotoxin, suggesting that spontaneous electrical activity is required. K+ depolarization (50 mM) allowed recovery of PSA surface staining in the presence of tetrodotoxin and this effect required the presence of extracellular Ca2+. Rapid redistribution of PSA-NCAM to the surface of beta cells was observed under conditions that stimulate insulin secretion. Ca2+ channel inhibition decreased both PSA-NCAM expression and insulin secretion to control, non-stimulated levels. Finally, subcellular fractionation of an insulin-secreting cell line showed that the secretory vesicle fraction is highly enriched in PSA-NCAM. These results suggest that PSA-NCAM can be translocated to the cell surface via regulated exocytosis. Taken together, our results provide unprecedented evidence linking cell activity and PSA-NCAM expression, and suggest a mechanism for rapid modulation of cell surface interactions. Images PMID:7957094

  11. Reciprocal actions of NCAM and tPA via a Ras-dependent MAPK activation in rat hippocampal neurons.

    PubMed

    Son, Hyeon; Seuk Kim, Jin; Mogg Kim, Jung; Lee, Sang-Hun; Lee, Yong-Sung

    2002-10-25

    In an attempt to identify the functions of neural cell adhesion molecule (NCAM) and tissue plasminogen activator (tPA) in hippocampal synaptic plasticity, we investigated the relationship between the two molecules by focusing on mitogen-activated protein kinase (MAPK), an essential enzyme in this process. NCAM clustering in cultured hippocampal neurons transiently induced MAPK within 10min. Moreover, soluble NCAM also induced a Ras-dependent MAPK activation. Conversely, MAPK activation led to an increase in the expressions of all three isoforms of NCAM. Treatment of neurons with tPA and plasminogen induced a Ras-dependent MAPK activation and tPA-plasmin degradation of NCAM was mediated in a MAPK-dependent manner. Soluble NCAM transiently inhibited tPA mRNA expression levels in a MAPK-dependent manner, while stimulation of MAPK alone induced tPA reduction in cells. These results collectively indicate that NCAM and tPA reciprocally act as important regulators in the modulation of synaptic plasticity via a Ras-MAPK-involved signaling pathway. In turn, MAPK activation may cause tPA degradation or a decrease in expression to promote synaptic plasticity.

  12. Restoration of synaptic plasticity and learning in young and aged NCAM-deficient mice by enhancing neurotransmission mediated by GluN2A-containing NMDA receptors.

    PubMed

    Kochlamazashvili, Gaga; Bukalo, Olena; Senkov, Oleg; Salmen, Benedikt; Gerardy-Schahn, Rita; Engel, Andreas K; Schachner, Melitta; Dityatev, Alexander

    2012-02-15

    Neural cell adhesion molecule (NCAM) is the predominant carrier of the unusual glycan polysialic acid (PSA). Deficits in PSA and/or NCAM expression cause impairments in hippocampal long-term potentiation and depression (LTP and LTD) and are associated with schizophrenia and aging. In this study, we show that impaired LTP in adult NCAM-deficient (NCAM(-/-)) mice is restored by increasing the activity of the NMDA subtype of glutamate receptor (GluN) through either reducing the extracellular Mg2+ concentration or applying d-cycloserine (DCS), a partial agonist of the GluN glycine binding site. Pharmacological inhibition of the GluN2A subtype reduced LTP to the same level in NCAM(-/-) and wild-type (NCAM(+/+)) littermate mice and abolished the rescue by DCS in NCAM(-/-) mice, suggesting that the effects of DCS are mainly mediated by GluN2A. The insufficient contribution of GluN to LTD in NCAM(-/-) mice was also compensated for by DCS. Furthermore, impaired contextual and cued fear conditioning levels were restored in NCAM(-/-) mice by administration of DCS before conditioning. In 12-month-old NCAM(-/-), but not NCAM(+/+) mice, there was a decline in LTP compared with 3-month-old mice that could be rescued by DCS. In 24-month-old mice of both genotypes, there was a reduction in LTP that could be fully restored by DCS in NCAM(+/+) mice but only partially restored in NCAM(-/-) mice. Thus, several deficiencies of NCAM(-/-) mice can be ameliorated by enhancing GluN2A-mediated neurotransmission with DCS.

  13. Improvement of process control using wafer geometry for enhanced manufacturability of advanced semiconductor devices

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Lee, Jongsu; Kim, Sang Min; Lee, Changhwan; Han, Sangjun; Kim, Myoungsoo; Kwon, Wontaik; Park, Sung-Ki; Vukkadala, Pradeep; Awasthi, Amartya; Kim, J. H.; Veeraraghavan, Sathish; Choi, DongSub; Huang, Kevin; Dighe, Prasanna; Lee, Cheouljung; Byeon, Jungho; Dey, Soham; Sinha, Jaydeep

    2015-03-01

    Aggressive advancements in semiconductor technology have resulted in integrated chip (IC) manufacturing capability at sub-20nm half-pitch nodes. With this, lithography overlay error budgets are becoming increasingly stringent. The delay in EUV lithography readiness for high volume manufacturing (HVM) and the need for multiple-patterning lithography with 193i technology has further amplified the overlay issue. Thus there exists a need for technologies that can improve overlay errors in HVM. The traditional method for reducing overlay errors predominantly focused on improving lithography scanner printability performance. However, processes outside of the lithography sector known as processinduced overlay errors can contribute significantly to the total overlay at the current requirements. Monitoring and characterizing process-induced overlay has become critical for advanced node patterning. Recently a relatively new technique for overlay control that uses high-resolution wafer geometry measurements has gained significance. In this work we present the implementation of this technique in an IC fabrication environment to monitor wafer geometry changes induced across several points in the process flow, of multiple product layers with critical overlay performance requirement. Several production wafer lots were measured and analyzed on a patterned wafer geometry tool. Changes induced in wafer geometry as a result of wafer processing were related to down-stream overlay error contribution using the analytical in-plane distortion (IPD) calculation model. Through this segmentation, process steps that are major contributors to down-stream overlay were identified. Subsequent process optimization was then isolated to those process steps where maximum benefit might be realized. Root-cause for the within-wafer, wafer-to-wafer, tool-to-tool, and station-to-station variations observed were further investigated using local shape curvature changes - which is directly related to

  14. A Peptide Mimetic Targeting Trans-Homophilic NCAM Binding Sites Promotes Spatial Learning and Neural Plasticity in the Hippocampus

    PubMed Central

    Kohler, Lene B.; Fantin, Martina; Jennings, Alistair; Venero, Cesar; Popov, Victor; Rusakov, Dmitri; Stewart, Michael G.; Bock, Elisabeth; Berezin, Vladimir; Sandi, Carmen

    2011-01-01

    The key roles played by the neural cell adhesion molecule (NCAM) in plasticity and cognition underscore this membrane protein as a relevant target to develop cognitive-enhancing drugs. However, NCAM is a structurally and functionally complex molecule with multiple domains engaged in a variety of actions, which raise the question as to which NCAM fragment should be targeted. Synthetic NCAM mimetic peptides that mimic NCAM sequences relevant to specific interactions allow identification of the most promising targets within NCAM. Recently, a decapeptide ligand of NCAM—plannexin, which mimics a homophilic trans-binding site in Ig2 and binds to Ig3—was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal cultures and improves spatial learning in rats, both under basal conditions and under conditions involving a deficit in a key plasticity-promoting posttranslational modification of NCAM, its polysialylation. We also found that plannexin enhances excitatory synaptic transmission in hippocampal area CA1, where it also increases the number of mushroom spines and the synaptic expression of the AMPAR subunits GluA1 and GluA2. Altogether, these findings provide compelling evidence that plannexin is an important facilitator of synaptic functional, structural and molecular plasticity in the hippocampal CA1 region, highlighting the fragment in NCAM's Ig3 module where plannexin binds as a novel target for the development of cognition-enhancing drugs. PMID:21887252

  15. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  16. Manufacturing of 100mm diameter GaSb substrates for advanced space based applications

    NASA Astrophysics Data System (ADS)

    Allen, L. P.; Flint, J. P.; Meshew, G.; Trevethan, J.; Dallas, G.; Khoshakhlagh, A.; Hill, C. J.

    2012-01-01

    Engineered substrates such as large diameter (100mm) GaSb wafers need to be ready years in advance of any major shift in DoD and commercial technology, and typically before much of the rest of the materials and equipment for fabricating next generation devices. Antimony based III-V semiconductors are of significant interest for advanced applications in optoelectronics, high speed transistors, microwave devices, and photovoltaics. GaSb demand is increasing due to its lattice parameter matching of various ternary and quaternary III-V compounds, as their bandgaps can be engineered to cover a wide spectral range. For these stealth and spaced based applications, larger format IRFPAs benefit clearly from next generation starting substrates. In this study, we have manufactured and tested 100mm GaSb substrates. This paper describes the characterization process that provides the best possible GaSb material for advanced IRFPA and SLS epi growth. The analysis of substrate by AFM surface roughness, particles, haze, GaSb oxide character and desorption using XPS, flatness measurements, and SLS based epitaxy quality are shown. By implementing subtle changes in our substrate processing, we show that a Sb-oxide rich surface is routinely provided for rapid desorption. Post-MBE CBIRD structures on the 100mm ULD GaSb were examined and reveals a high intensity, 6.6nm periodicity, low (15.48 arcsec) FWHM peak distribution that suggests low surface strain and excellent lattice matching. The Ra for GaSb is a consistent ~0.2-4nm, with average batch wafer warp of ~4 μm to provide a clean, flat GaSb template critical for next generation epi growth.

  17. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    SciTech Connect

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  18. Chrysler Partners with North Lake High School in an Advanced Manufacturing Technology Program for Special Needs Students.

    ERIC Educational Resources Information Center

    Karbon, Patrick J.; Kuhn, Cynthia

    1996-01-01

    Chrysler Corporation and North Lake High School cooperated to develop and deploy Advanced Manufacturing Technology for high school students identified as at risk or hard to serve. Chrysler provided curriculum that was delivered by training center instructors; teachers ensured student competence in academic areas. (JOW)

  19. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  20. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    SciTech Connect

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  1. Regional and Duration of Illness Differences in the Alteration of NCAM-180 mRNA Expression within the Cortex of Subjects with Schizophrenia

    PubMed Central

    Gibbons, A. S.; Thomas, E. A.; Dean, B

    2009-01-01

    Schizophrenia has been proposed to have a neurodevelopmental aetiology. Neural Cell Adhesion Molecule 1 (NCAM1) is involved in several neurodevelopmental processes and abnormal expression of this gene has been associated in the pathology of schizophrenia and, thus, altered NCAM1 expression may be characteristic of the early stages of the illness. Alternative splicing of the NCAM1 transcript produces 3 major isoforms. Using qPCR we analysed mRNA expression of one of these isoforms; the 180 kDa isoform of NCAM1 (NCAM-180), in Brodmann Area (BA) 46, BA10 and BA17, postmortem, from 15 subjects with a short duration of illness of schizophrenia (<7 years) and 15 control subjects. NCAM-180 mRNA expression was increased in BA46 from subjects with schizophrenia compared to controls (P=0.013). By contrast, there were no significant differences in the expression of NCAM-180 mRNA in BA10 (P=0.575) or BA17 (P=0.772). We then analysed NCAM-180 mRNA expression in BA46 from 15 subjects with a longer duration of illness of schizophrenia (>22 years) and 15 controls. There was no significant difference in NCAM-180 mRNA expression in this second cohort. This data suggests NCAM-180 mRNA expression is altered in a regionally-specific manner in schizophrenia and these changes are associated with the early period following diagnosis. PMID:19411161

  2. Report to the President on Ensuring American Leadership in Advanced Manufacturing

    ERIC Educational Resources Information Center

    Anderson, Alan

    2011-01-01

    The United States has long thrived as a result of its ability to manufacture goods and sell them to global markets. Manufacturing activity has supported its economic growth, leading the Nation's exports and employing millions of Americans. The manufacturing sector has also driven knowledge production and innovation in the United States, by…

  3. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    NASA Astrophysics Data System (ADS)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  4. Using advanced manufacturing to produce unmanned aerial vehicles: a feasibility study

    NASA Astrophysics Data System (ADS)

    Easter, Steven; Turman, Jonathan; Sheffler, David; Balazs, Michael; Rotner, Jonathan

    2013-05-01

    This paper reports on a feasibility study to explore the impact of advanced manufacturing on the production and maintenance of a 3D printed, unmanned aerial vehicle (UAV) in theatre. Specifically, this report focuses on fused deposition modeling (FDM), the selective deposition of a molten thermoplastic. FDM is already a forward deployed technology, primarily used for printing custom tools and replacement parts. The authors ask if it is feasible to expand the printers' capacity to produce aerial platforms; the reduction in logistics and labor could significantly decrease costs per unit and enable far more platform customization and specialized deployment scenarios than are available in existing aircraft. The University of Virginia and The MITRE Corporation designed and built a prototype, 3D printed UAV for use as an aerial sensor platform. This report • Discusses the printed aerial platform, summarizes the design process, and compares printing methods • Describes the benefits and limitations to selecting FDM printers as the technology both for deployment as well as UAV design • Concludes with the current state and future expectations for FDM printing technologies relevant to UAV production. Our findings suggest that although 3D printing is not yet entirely field-ready, many of its advantages can already be realized.

  5. Lack of association between NCAM1 and early onset schizophrenia in a family based study in Shandong peninsula of China

    PubMed Central

    Chen, Xing; Tang, Jian; Liu, Yang; Luan, Meng; An, Kun; Zhang, Yan; Li, Fuhui; Zhou, Peng; Liu, Wenmin; Liu, Jintong; Chen, Gang

    2012-01-01

    The neural cell adhesion molecule (NCAM1) gene plays important roles in cellular migration, synaptic integrity and neurodevelopment. Multiple NCAM1 proteins are differentially altered in schizophrenia (SZ). A whole genome association study was first carried out on Affymetrix genome-wide human single-nucleotide polymorphism (SNP) Array 6.0 and two pooled DNA samples consisting of 89 early onset SZ (EOS) cases and 1,000 controls. Association between rs10891495 and EOS was detected (χ2 = 2 3.66, P = 1.15E-06). The position of this SNP is just within the NCAM1 gene. Since several previous studies reported that NCAM1 was a candidate gene for SZ, we further performed a family based association study and genotyped six SNPs (rs10891495, rs1245133, rs1821693, rs686050, rs12794326, rs674246) within NCAM1 gene in 100 EOS nuclear families. We found no evidence for association with SZ status either for SNP or for haplotype. Therefore, the NCAM1 gene is unlikely to play a major role in the etiology of early-onset SZ in the Chinese population.

  6. Kv1.1 channel antisense attenuates learning and modulation of dentate polysialylated NCAM.

    PubMed

    Gratacós, E; Ghelardini, C; Gherardini, L M; Galeotti, N; Murphy, K J; Bartolini, A; Regan, C M

    1998-08-24

    The distribution and modulation of neural cell adhesion molecule polysialylation state (NCAM PSA) and the consequence of antisense inactivation of the Kv1.1 potassium channel was investigated following avoidance learning in mice. PSA immunoreactivity was most notable on cells at the inner denate border and in cortical layer II. Task acquisition resulted in a significant 30% transient increase in the frequency of dentate polysialylated neurons at the 12 h post-training time. In contrast, animals pretreated with the Kv1.1 antisense oligonucleotide exhibited both attenuated recall avoidance latencies and polysialylated cell frequency. As Kv1.1 is enriched on the dendrites of these granule-like cells, the attenuated polysialylation response is considered secondary to NCAM-mediated events during their transient synapse production in the 6-8 h post-training period.

  7. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  8. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect

    Xiaodi Huang; Richard Gertsch

    2005-02-04

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  9. An NCAM mimetic, FGL, alters hippocampal cellular morphometry in young adult (4 month-old) rats.

    PubMed

    Ojo, Bunmi; Gabbott, Paul L; Rezaie, Payam; Corbett, Nicola; Medvedev, Nikolay I; Cowley, Thelma R; Lynch, Marina A; Stewart, Michael G

    2013-06-01

    The neural cell adhesion molecule, NCAM, is ubiquitously expressed within the CNS and has roles in development, cognition, neural plasticity and regulation of the immune system. NCAM is thus potentially an important pharmacological target for treatment of brain diseases. A cell adhesion mimetic FGL, a 15 amino-acid peptide derived from the second fibronectin type-III module of NCAM, has been shown to act as a neuroprotective agent in experimental disease and ageing models, restoring hippocampal/cognitive function and markedly alleviating deleterious changes in the CNS. However, the effects of FGL on the hippocampus of young healthy rats are unknown. The present study has examined the cellular neurobiological consequences of subcutaneous injections of FGL, on hippocampal cell morphometry in young (4 month-old) rats. We determined the effects of FGL on hippocampal volume, pyramidal neuron number/density (using unbiased quantitative stereology), and examined aspects of neurogenesis (using 2D morphometric analyses). FGL treatment reduced total volume of the dorsal hippocampus (associated with a decrease in total pyramidal neuron numbers in CA1 and CA3), and elevated the number of doublecortin immunolabeled neurons in the dentate gyrus, indicating a likely influence on neurogenesis in young healthy rats. These data indicate that FGL has a specific age dependent effect on the hippocampus, differing according to the development and maturity of the CNS.

  10. Polysialic acid enters the cell nucleus attached to a fragment of the neural cell adhesion molecule NCAM to regulate the circadian rhythm in mouse brain.

    PubMed

    Westphal, Nina; Kleene, Ralf; Lutz, David; Theis, Thomas; Schachner, Melitta

    2016-07-01

    In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm.

  11. The activation of the tissue plasminogen activator-plasmin system induced in the mouse hippocampus after injection of trimethyltin: possible proteolysis of highly polysialylated NCAM.

    PubMed

    Endo, A; Hashimoto, K; Takada, Y; Takada, A

    1999-10-01

    Trimethyltin (TMT) is a neurotoxicant that causes the death of granule cells and degrades highly polysialylated NCAM (PSA-NCAM) in the dentate gyrus. To investigate the role of the tPA-plasmin system in the degradation of PSA-NCAM, we injected trimethyltin (TMT) into mice. As a result, tPA activity was significantly increased in CA1-CA4 and the dentate gyrus after TMT injection. These results suggest that up-regulated tPA may contribute to the degradation of PSA-NCAM.

  12. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  13. Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests

    NASA Technical Reports Server (NTRS)

    Lehman, G. M.; Purdy, D. M.; Cominsky, A.; Hawley, A. V.; Amason, M. P.; Kung, J. T.; Palmer, R. J.; Purves, N. B.; Marra, P. J.; Hancock, G. R.

    1976-01-01

    Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder.

  14. The bi-specific CD3 x NCAM antibody: a model to preactivate T cells prior to tumour cell lysis.

    PubMed

    Jensen, M; Ernestus, K; Kemshead, J; Klehr, M; Von Bergwelt-Baildon, M S; Schinköthe, T; Schultze, J L; Berthold, F

    2003-11-01

    To target the neural cell adhesion molecule (NCAM, CD56) on neuroblastoma by T cell-based immunotherapy we have generated a bi-specific CD3 x NCAM antibody (OE-1). This antibody can be used to redirect T cells to NCAM+ cells. Expectedly, the antibody binds specifically to NCAM+ neuroblastoma cells and CD3+ T cells. OE-1 induces T cell activation, expansion and effector function in peripheral blood mononuclear cell (PBMC)-derived CD4+ and CD8+ T cells. T cell activation was shown to depend on the presence of normal natural killer (NK) cells in the culture. Interestingly, while PBMC- derived T cells were activated by OE-1, NK cells were almost completely depleted, suggesting that T cells activated by OE-1 deleted the NK cells. Activated CD4+ and CD8+ T cells differentiate into a larger CCR7+ central memory and a smaller CCR7- effector memory cell population. Most importantly, preactivated T cells were highly cytotoxic for neuroblastoma cells. In eight of 11 experiments tumour-directed cytotoxicity was enhanced when NK cells were present during preactivation with OE-1. These data strongly support a bi-phasic therapeutic concept of primarily stimulating T cells with the bi-specific antibody in the presence of normal NCAM+ cells to induce T cell activation, migratory capacity and finally tumour cell lysis.

  15. Association of NCAM1 Polymorphisms with Autism and Parental Age at Conception in a Chinese Han Population

    PubMed Central

    Wang, Aihua; Li, Yan; Lu, Xiaoyan; Wang, Fang

    2014-01-01

    Aims: The neural cell adhesion molecule (NCAM) has been reported to be involved in the development of the central nervous system and its mRNA level might decrease in the serum of autistic patients. However, there was no evidence of the association of the NCAM1 gene polymorphisms with autism. In the present study, we enrolled 237 children with autism and 451 healthy control subjects. Then, we used the direct DNA sequencing for genotyping five tag single-nucleotide polymorphisms (SNPs) in the NCAM1 gene. Results: By using case–control association analyses, we found that three SNPs at the NCAM1 gene were associated with autism (rs4937786, p=0.015; rs12418058, p=0.0076; rs1436109, p=0.0023). Two of them remained significant after the Bonferroni multiple testing correction (rs12418058, pcorrcted=0.038; rs1436109, pcorrcted=0.012). Moreover, two of the SNPs were associated with the parental age at conception in autism (rs12418058, p=0.037; rs1436109, p=0.01). Conclusion: These results showed that NCAM1 might play an important role in the pathogenesis of autism. PMID:25137309

  16. Recent advance on design and manufacturing of composite anisogrid structures for space launchers

    NASA Astrophysics Data System (ADS)

    Totaro, G.; De Nicola, F.

    2012-12-01

    Anisogrid composite shells have been developed and applied since the eighties by the Russian technology aiming at critical weight structures for space launchers, as interstages and cone adapters. The manufacturing process commonly applied is based on the wet filament winding. The paper concerns with some developments of design and manufacturing recently performed at the Italian Aerospace Research Center on a cylindrical structural model representative of this kind of structures. The framework of preliminary design is improved by introducing the concept of suboptimal configuration in order to match the stiffness requirement of the shell and minimise the mass, in conjunction with the typical strength constraints. The undertaken manufacturing process is based on dry robotic winding for the lattice structure and for the outer skin, with the aid of usual rubber tooling and new devices for the automated deposition strategy. Resin infusion under vacuum bag and co-cure of the system of ribs and skin is finally applied out-of-autoclave, with the aid of a heated mandrel. With such approach an interstage structural model (scale factor 1:1.5) has been designed, manufactured and tested. Design requirements and loads refer to a typical space launcher whose baseline configuration is made in aluminium. The global mechanical test of the manufactured structure has confirmed the expected high structural performance. The possibility to reach substantial weight savings in comparison with the aluminium benchmark has been fully demonstrated.

  17. Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-04-01

    Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres' shells were characterized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The microscopic evaluations revealed that the shells consist of sintered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various parameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper content results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness.

  18. Development of a method for determining the relative manufacturing complexity of advanced engineering materials

    NASA Astrophysics Data System (ADS)

    Pandya, Shardul Yogendra

    The immediate adaptation of newly developed materials--with unique and highly desirable properties--is hampered by several factors, including: (1) high material cost and limited availability, (2) lack of information on them, including prior experience in their design and manufacture, immature manufacturing processes and general uncertainty in their behavior patterns, (3) unique handling issues, such as excessive manual labor, high process temperatures, toxicity, disposal problems, limited working lives, and low damage tolerance Therefore, in spite of their significant benefits, potential users tend to shy away from the widespread use of new materials, instead preferring conventional and tested materials forms. This dissertation is on a methodology developed to compare manufacturing complexity of new materials with that of conventional ones. It entails development of a 5 level multi-attribute hierarchy of 18 factors and several processes that influence the manufacturing risk of new materials. A Manufacturing Complexity Factor (MCF) and a Delta Complexity Factor (DCF) are developed to compare new materials with older, traditional ones. The Analytic Hierarchy Process is used to judiciously assign weights to all factors and sub-factors. Materials are assigned "ranks" based on information available about their unique properties and requirements. From the rank and attribute priorities, values for MCF/DCF can be obtained. Since information available is often limited, the ranks assigned to materials are not highly accurate values. The Monte Carlo simulation technique is used to take away some of the uncertainty in the ranks of the newly developed materials and generate a more "robust" MCF/DCF value. Sensitivity of the method to varying inputs is examined. An attempt is made to compare this practical methodology with two popular approaches, one used for analyzing the complexity of composite materials and another that develops manufacturing complexity factors for given input

  19. Dynein interacts with the neural cell adhesion molecule (NCAM180) to tether dynamic microtubules and maintain synaptic density in cortical neurons.

    PubMed

    Perlson, Eran; Hendricks, Adam G; Lazarus, Jacob E; Ben-Yaakov, Keren; Gradus, Tal; Tokito, Mariko; Holzbaur, Erika L F

    2013-09-27

    Cytoplasmic dynein is well characterized as an organelle motor, but dynein also acts to tether and stabilize dynamic microtubule plus-ends in vitro. Here we identify a novel and direct interaction between dynein and the 180-kDa isoform of the neural cell adhesion molecule (NCAM). Optical trapping experiments indicate that dynein bound to beads via the NCAM180 interaction domain can tether projecting microtubule plus-ends. Live cell assays indicate that the NCAM180-dependent recruitment of dynein to the cortex leads to the selective stabilization of microtubules projecting to NCAM180 patches at the cell periphery. The dynein-NCAM180 interaction also enhances cell-cell adhesion in heterologous cell assays. Dynein and NCAM180 co-precipitate from mouse brain extract and from synaptosomal fractions, consistent with an endogenous interaction in neurons. Thus, we examined microtubule dynamics and synaptic density in primary cortical neurons. We find that depletion of NCAM, inhibition of the dynein-NCAM180 interaction, or dampening of microtubule dynamics with low dose nocodazole all result in significantly decreased in synaptic density. Based on these observations, we propose a working model for the role of dynein at the synapse, in which the anchoring of the motor to the cortex via binding to an adhesion molecule mediates the tethering of dynamic microtubule plus-ends to potentiate synaptic stabilization.

  20. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  1. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control

    PubMed Central

    Koehl, U.; Kalberer, C.; Spanholtz, J.; Lee, D. A.; Miller, J. S.; Cooley, S.; Lowdell, M.; Uharek, L.; Klingemann, H.; Curti, A.; Leung, W.; Alici, E.

    2016-01-01

    ABSTRACT Natural killer (NK) cells are increasingly used in clinical studies in order to treat patients with various malignancies. The following review summarizes platform lectures and 2013–2015 consortium meetings on manufacturing and clinical use of NK cells in Europe and United States. A broad overview of recent pre-clinical and clinical results in NK cell therapies is provided based on unstimulated, cytokine-activated, as well as genetically engineered NK cells using chimeric antigen receptors (CAR). Differences in donor selection, manufacturing and quality control of NK cells for cancer immunotherapies are described and basic recommendations are outlined for harmonization in future NK cell studies. PMID:27141397

  2. Principals' Perceptions on the Necessity to Prepare Students for Careers in Advanced Manufacturing

    ERIC Educational Resources Information Center

    Lee, Matthew

    2015-01-01

    The United States (U.S.) is undergoing a paradigm shift in manufacturing as it progresses from an era of low skill employees who stood in one place controlling machines that drilled, stamped, cut, and milled products that passed through the effective and efficient assembly line, to one that is derived from scientific inquiry and technological…

  3. Exploring Functional β-Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker

    PubMed Central

    Karaca, Melis; Castel, Julien; Tourrel-Cuzin, Cécile; Brun, Manuel; Géant, Anne; Dubois, Mathilde; Catesson, Sandra; Rodriguez, Marianne; Luquet, Serge; Cattan, Pierre; Lockhart, Brian; Lang, Jochen; Ktorza, Alain

    2009-01-01

    Background The mass of pancreatic β-cells varies according to increases in insulin demand. It is hypothesized that functionally heterogeneous β-cell subpopulations take part in this process. Here we characterized two functionally distinct groups of β-cells and investigated their physiological relevance in increased insulin demand conditions in rats. Methods Two rat β-cell populations were sorted by FACS according to their PSA-NCAM surface expression, i.e. βhigh and βlow-cells. Insulin release, Ca2+ movements, ATP and cAMP contents in response to various secretagogues were analyzed. Gene expression profiles and exocytosis machinery were also investigated. In a second part, βhigh and βlow-cell distribution and functionality were investigated in animal models with decreased or increased β-cell function: the Zucker Diabetic Fatty rat and the 48 h glucose-infused rat. Results We show that β-cells are heterogeneous for PSA-NCAM in rat pancreas. Unlike βlow-cells, βhigh-cells express functional β-cell markers and are highly responsive to various insulin secretagogues. Whereas βlow-cells represent the main population in diabetic pancreas, an increase in βhigh-cells is associated with gain of function that follows sustained glucose overload. Conclusion Our data show that a functional heterogeneity of β-cells, assessed by PSA-NCAM surface expression, exists in vivo. These findings pinpoint new target populations involved in endocrine pancreas plasticity and in β-cell defects in type 2 diabetes. PMID:19440374

  4. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  5. Amygdala upregulation of NCAM polysialylation induced by auditory fear conditioning is not required for memory formation, but plays a role in fear extinction.

    PubMed

    Markram, Kamila; Lopez Fernandez, Miguel Angel; Abrous, Djoher Nora; Sandi, Carmen

    2007-05-01

    There is much interest to understand the mechanisms leading to the establishment, maintenance, and extinction of fear memories. The amygdala has been critically involved in the processing of fear memories and a number of molecular changes have been implicated in this brain region in relation to fear learning. Although neural cell adhesion molecules (NCAMs) have been hypothesized to play a role, information available about their contribution to fear memories is scarce. We investigate here whether polysialylated NCAM (PSA-NCAM) contributes to auditory fear conditioning in the amygdala. First, PSA-NCAM expression was evaluated in different amygdala nuclei after auditory fear conditioning at two different shock intensities. Results showed that PSA-NCAM expression was increased 24 h post-training only in animals subjected to the highest shock intensity (1mA). Second, PSA-NCAM was cleaved in the basolateral amygdaloid complex through micro-infusions of the enzyme endoneuraminidase N, and the consequences of such treatment were investigated on the acquisition, consolidation, remote memory expression, and extinction of conditioned fear memories. Intra-amygdaloid cleavage of PSA-NCAM did not affect acquisition, consolidation or expression of remote fear memories. However, intra-amygdaloid PSA-NCAM cleavage enhanced fear extinction processes. These results suggest that upregulation of PSA-NCAM is a correlate of fear conditioning that is not necessary for the establishment of fear memory in the amygdala, but participates in mechanisms precluding fear extinction. These findings point out PSA-NCAM as a potential target for the treatment of psychopathologies that involve impairment in fear extinction.

  6. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  7. Production of general purpose heat source (GPHS) using advanced manufacturing methods

    NASA Astrophysics Data System (ADS)

    Miller, Roger G.

    1996-03-01

    Mankind will continue to explore the stars through the use of unmanned space craft until the technology and costs are compatible with sending travelers to the outer planets of our solar system and beyond. Unmanned probes of the present and future will be necessary to develop the necessary technologies and obtain information that will make this travel possible. Because of the significant costs incurred, the use of modern manufacturing technologies must be used to lower the investment needed even when shared by international partnerships. For over the last 30 years, radioisotopes have provided the heat from which electrical power is extracted. Electric power for future spacecraft will be provided by either Radioisotope Thermoelectric Generators (RTG), Radioisotopic Thermophotovoltaic systems (RTPV), radioisotope Stirling systems, or a combination of these. All of these systems will be thermally driven by General Purpose Heat Source (GPHS) fueled clad in some configuration. The GPHS clad contains a 238PuO2 pellet encapsulated in an iridium alloy container. Historically, the fabrication of the iridium alloy shells has been performed at EG&G Mound and Oak Ridge National Laboratory (ORNL), and girth welding at Westinghouse Savannah River Corporation (WSRC) and Los Alamos National Laboratory (LANL). This paper will describe the use of laser processing for welding, drilling, cutting, and machining with other manufacturing methods to reduce the costs of producing GPHS fueled clad components and compléted assemblies. Incorporation of new quality technologies will compliment these manufacturing methods to reduce cost.

  8. L1-CAM and N-CAM: From Adhesion Proteins to Pharmacological Targets.

    PubMed

    Colombo, Federico; Meldolesi, Jacopo

    2015-11-01

    L1 cell adhesion molecule (L1-CAM) and neural cell adhesion molecule (N-CAM), key members of the immunoglobulin-like CAM (Ig-CAM) family, were first recognized to play critical roles in surface interactions of neurons, by binding with each other and with extracellular matrix (ECM) proteins. Subsequently, adhesion was recognized to include signaling due to both activation of β-integrin, with the generation of intracellular cascades, and integration with the surface cytoskeleton. The importance of the two Ig-CAMs was revealed by their activation of the tyrosine kinase receptors of fibroblast growth factor (FGF), epidermal growth factor (EGF), and nerve growth factor (NGF). Based on these complex signaling properties, L1-CAM and N-CAM have become of great potential pharmacological interest in neurons and cancers. Treatment of neurodegenerative disorders and cognitive deficits of neurons is aimed to increase the cell Ig-CAM tone, possibly provided by synthetic/mimetic peptides. In cancer cells, where Ig-CAMs are often overexpressed, the proteins are employed for prognosis. The approaches to therapy are based on protein downregulation, antibodies, and adoptive immunotherapy. PMID:26478212

  9. Production of general purpose heat source (GPHS) using advanced manufacturing methods

    SciTech Connect

    Miller, R.G.

    1996-03-01

    Mankind will continue to explore the stars through the use of unmanned space craft until the technology and costs are compatible with sending travelers to the outer planets of our solar system and beyond. Unmanned probes of the present and future will be necessary to develop the necessary technologies and obtain information that will make this travel possible. Because of the significant costs incurred, the use of modern manufacturing technologies must be used to lower the investment needed even when shared by international partnerships. For over the last 30 years, radioisotopes have provided the heat from which electrical power is extracted. Electric power for future spacecraft will be provided by either Radioisotope Thermoelectric Generators (RTG), Radioisotopic Thermophotovoltaic systems (RTPV), radioisotope Stirling systems, or a combination of these. All of these systems will be thermally driven by General Purpose Heat Source (GPHS) fueled clad in some configuration. The GPHS clad contains a {sup 238}PuO{sub 2} pellet encapsulated in an iridium alloy container. Historically, the fabrication of the iridium alloy shells has been performed at EG&G Mound and Oak Ridge National Laboratory (ORNL), and girth welding at Westinghouse Savannah River Corporation (WSRC) and Los Alamos National Laboratory (LANL). This paper will describe the use of laser processing for welding, drilling, cutting, and machining with other manufacturing methods to reduce the costs of producing GPHS fueled clad components and compl{acute e}ted assemblies. Incorporation of new quality technologies will compliment these manufacturing methods to reduce cost. {copyright} {ital 1996 American Institute of Physics.}

  10. Manufacturing technology

    SciTech Connect

    Blaedel, K.L.

    1997-02-01

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  11. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Arrieta, Victor M.

    2013-01-01

    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  12. Advances in directed self assembly integration and manufacturability at 300 mm

    NASA Astrophysics Data System (ADS)

    Rathsack, Benjamen; Somervell, Mark; Muramatsu, Makato; Tanouchi, Keiji; Kitano, Takahiro; Nishimura, Eiichi; Yatsuda, Koichi; Nagahara, Seiji; Iwaki, Hiroyuki; Akai, Keiji; Ozawa, Mariko; Romo Negreira, Ainhoa; Tahara, Shigeru; Nafus, Kathleen

    2013-03-01

    Directed self-assembly (DSA) has the potential to extend scaling for both line/space and hole patterns. DSA has shown the capability for pitch reduction (multiplication), hole shrinks, CD self-healing as well as a pathway towards LWR and pattern collapse improvement [1-10]. TEL has developed a DSA development ecosystem (collaboration with customers, consortia, inspection vendors and material suppliers) to successfully demonstrate directed PS-PMMA DSA patterns using chemo-epitaxy (lift-off and etch guide) and grapho-epitaxy integrations on 300 mm wafers. New processes are being developed to simplify process integration, to reduce defects and to address design integration challenges with the long term goal of robust manufacturability. For hole DSA applications, a wet development process has been developed that enables traditional post-develop metrology through the high selectivity removal of PMMA cylindrical cores. For line/ space DSA applications, new track, cleans and etch processes have been developed to improve manufacturability. In collaboration with universities and consortia, fundamental process studies and simulations are used to drive process improvement and defect investigation. To extend DSA resolution beyond a PS-PMMA system, high chi materials and processes are also explored. In this paper, TEL's latest process solutions for both hole and line/space DSA process integrations are presented.

  13. Computer-assisted generation of individual training concepts for advanced education in manufacturing metrology

    NASA Astrophysics Data System (ADS)

    Werner, Teresa; Weckenmann, Albert

    2010-05-01

    Due to increasing requirements on the accuracy and reproducibility of measurement results together with a rapid development of novel technologies for the execution of measurements, there is a high demand for adequately qualified metrologists. Accordingly, a variety of training offers are provided by machine manufacturers, universities and other institutions. Yet, for an interested learner it is very difficult to define an optimal training schedule for his/her individual demands. Therefore, a computer-based assistance tool is developed to support a demand-responsive scheduling of training. Based on the difference between the actual and intended competence profile and under consideration of amending requirements, an optimally customized qualification concept is derived. For this, available training offers are categorized according to different dimensions: regarding contents of the course, but also intended target groups, focus of the imparted competences, implemented methods of learning and teaching, expected constraints for learning and necessary preknowledge. After completing a course, the achieved competences and the transferability of gathered knowledge are evaluated. Based on the results, recommendations for amending measures of learning are provided. Thus, a customized qualification for manufacturing metrology is facilitated, adapted to the specific needs and constraints of each individual learner.

  14. Aircrew helmet design and manufacturing enhancements through the use of advanced technologies

    NASA Astrophysics Data System (ADS)

    Cadogan, David P.; George, Alan E.; Winkler, Edward R.

    1993-12-01

    With the development of helmet mounted displays (HMD) and night vision systems (NVS) for use in military and civil aviation roles, new methods of helmet development need to be explored. The helmet must be designed to provide the user with the most lightweight, form fitting system, while meeting other system performance requirements. This can be achieved through a complete analysis of the system requirements. One such technique for systems analysis, a quality function deployment (QFD) matrix, is explored for this purpose. The advanced helmet development process for developing aircrew helmets includes the utilization of several emerging technologies such as laser scanning, computer aided design (CAD), computer generated patterns from 3-D surfaces, laser cutting of patterns and components, and rapid prototyping (stereolithography). Advanced anthropometry methods for helmet development are also available for use. Besides the application of advanced technologies to be used in the development of helmet assemblies, methods of mass reduction are also discussed. The use of these advanced technologies will minimize errors in the development cycle of the helmet and molds, and should enhance system performance while reducing development time and cost.

  15. Effects of pharmacological treatments on hippocampal NCAM1 and ERK2 expression in epileptic rats with cognitive dysfunction

    PubMed Central

    Kong, Qingxia; Min, Xia; Sun, Ran; Gao, Jianying; Liang, Ruqing; Li, Lei; Chu, Xu

    2016-01-01

    The present study aimed to investigate the effects of various pharmacological agents on the hippocampal expression of neural cell adhesion molecule 1 (NCAM1) and extracellular signal-regulated kinase 2 (ERK2) in epileptic rats with cognitive dysfunction. The experiments were conducted using 120 Wistar rats: 20 controls and 100 with pilocarpine-induced status epilepticus (SE). The SE rats were randomly assigned to 5 groups (n=20/group) that received daily treatments for 1 month with one of the following: (i) saline (no effect on epilepsy); (ii) carbamazepine (an anticonvulsant); (iii) oxcarbazepine (an anticonvulsant); (iv) aniracetam (a nootropic); or (v) donepezil (an acetylcholinesterase inhibitor). Spatial learning and memory were assessed using a Morris Water Maze (MWM). Hippocampal tissue was assessed for NCAM1 and ERK2 messenger RNA (mRNA) expression by reverse transcription polymerase chain reaction, and protein expression by immunochemistry. The results revealed that SE rats had significantly poorer MWM performances compared with controls (P<0.01). Performance in SE rats was improved with donepezil treatment (P<0.01), but declined with carbamazepine (P<0.01). Compared with controls, saline-treated SE rats exhibited increased hippocampal NCAM1 mRNA expression (P<0.01). Among SE rats, NCAM1 mRNA expression was highest in those treated with donepezil, followed by aniracetam-, saline-, oxcarbazepine- and carbamazepine-treated rats. Compared to controls, saline-treated SE rats exhibited decreased hippocampal ERK2 mRNA expression (P<0.01). Among SE rats, ERK2 mRNA expression was highest in those treated with donepezil, followed by aniracetam, saline, oxcarbazepine and carbamazepine. NCAM1 and ERK2 protein expression levels were parallel to those of the mRNA. In saline-treated SE rats, hippocampal ERK2 expression was decreased and NCAM1 expression was increased; thus, these two molecules may be involved in the impairment of spatial memory. Carbamazepine augmented

  16. Distribution and role in regeneration of N-CAM in the basal laminae of muscle and Schwann cells.

    PubMed

    Rieger, F; Nicolet, M; Pinçon-Raymond, M; Murawsky, M; Levi, G; Edelman, G M

    1988-08-01

    The neural cell adhesion molecule (N-CAM) is a membrane glycoprotein involved in neuron-neuron and neuron-muscle adhesion. It can be synthesized in various forms by both nerve and muscle and it becomes concentrated at the motor endplate. Biochemical analysis of a frog muscle extract enriched in basal lamina revealed the presence of a polydisperse, polysialylated form of N-CAM with an average Mr of approximately 160,000 as determined by SDS-PAGE, which was converted to a form of 125,000 Mr by treatment with neuraminidase. To define further the role of N-CAM in neuromuscular junction organization, we studied the distribution of N-CAM in an in vivo preparation of frog basal lamina sheaths obtained by inducing the degeneration of both nerve and muscle fibers. Immunoreactive material could be readily detected by anti-N-CAM antibodies in such basal lamina sheaths. Ultrastructural analysis using immunogold techniques revealed N-CAM in close association with the basal lamina sheaths, present in dense accumulation at places that presumably correspond to synaptic regions. N-CAM epitopes were also associated with collagen fibrils in the extracellular matrix. The ability of anti-N-CAM antibodies to perturb nerve regeneration and reinnervation of the remaining basal lamina sheaths was then examined. In control animals, myelinating Schwann cells wrapped around the regenerated axon and reinnervation occurred only at the old synaptic areas; new contacts between nerve and basal lamina had a terminal Schwann cell capping the nerve terminal. In the presence of anti-N-CAM antibodies, three major abnormalities were observed in the regeneration and reinnervation processes: (a) regenerated axons in nerve trunks that had grown back into the old Schwann cell basal lamina were rarely associated with myelinating Schwann cell processes, (b) ectopic synapses were often present, and (c) many of the axon terminals lacked a terminal Schwann cell capping the nerve-basal lamina contact area. These

  17. Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting

    SciTech Connect

    Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

    2012-03-31

    GE Lighting Solutions will develop precise and efficient manufacturing techniques for the “remote phosphor” platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

  18. Next generation grinding spindle for cost-effective manufacture of advanced ceramic components

    SciTech Connect

    Kovach, J.A.; Laurich, M.A.

    2000-01-01

    Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

  19. The Recent Revolution in the Design and Manufacture of Cranial Implants: Modern Advancements and Future Directions.

    PubMed

    Bonda, David J; Manjila, Sunil; Selman, Warren R; Dean, David

    2015-11-01

    Large format (i.e., >25 cm) cranioplasty is a challenging procedure not only from a cosmesis standpoint, but also in terms of ensuring that the patient's brain will be well-protected from direct trauma. Until recently, when a patient's own cranial flap was unavailable, these goals were unattainable. Recent advances in implant computer-aided design and 3-dimensional (3-D) printing are leveraging other advances in regenerative medicine. It is now possible to 3-D-print patient-specific implants from a variety of polymer, ceramic, or metal components. A skull template may be used to design the external shape of an implant that will become well integrated in the skull, while also providing beneficial distribution of mechanical force in the event of trauma. Furthermore, an internal pore geometry can be utilized to facilitate the seeding of banked allograft cells. Implants may be cultured in a bioreactor along with recombinant growth factors to produce implants coated with bone progenitor cells and extracellular matrix that appear to the body as a graft, albeit a tissue-engineered graft. The growth factors would be left behind in the bioreactor and the graft would resorb as new host bone invades the space and is remodeled into strong bone. As we describe in this review, such advancements will lead to optimal replacement of cranial defects that are both patient-specific and regenerative. PMID:26171578

  20. SNPs in the neural cell adhesion molecule 1 gene (NCAM1) may be associated with human neural tube defects

    PubMed Central

    Deak, Kristen L.; Boyles, Abee L.; Etchevers, Heather C.; Melvin, Elizabeth C.; Siegel, Deborah G.; Graham, Felicia L.; Slifer, Susan H.; Enterline, David S.; George, Timothy M.; Vekemans, Michel; McClay, David; Bassuk, Alexander G.; Kessler, John A.; Linney, Elwood; Gilbert, John R.

    2011-01-01

    Neural tube defects (NTDs) are common birth defects, occurring in approximately 1/1,000 births; both genetic and environmental factors are implicated. To date, no major genetic risk factors have been identified. Throughout development, cell adhesion molecules are strongly implicated in cell–cell interactions, and may play a role in the formation and closure of the neural tube. To evaluate the role of neural cell adhesion molecule 1 (NCAM1) in risk of human NTDs, we screened for novel single-nucleotide polymorphisms (SNPs) within the gene. Eleven SNPs across NCAM1 were genotyped using TaqMan. We utilized a family-based approach to evaluate evidence for association and/or linkage disequilibrium. We evaluated American Caucasian simplex lumbosacral myelomeningocele families (n=132 families) using the family based association test (FBAT) and the pedigree disequilibrium test (PDT). Association analysis revealed a significant association between risk for NTDs and intronic SNP rs2298526 using both the FBAT test (P=0.0018) and the PDT (P=0.0025). Using the HBAT version of the FBAT to look for haplotype association, all pairwise comparisons with SNP rs2298526 were also significant. A replication study set, consisting of 72 additional families showed no significant association; however, the overall trend for overtransmission of the less common allele of SNP rs2298526 remained significant in the combined sample set. In addition, we analyzed the expression pattern of the NCAM1 protein in human embryos, and while NCAM1 is not expressed within the neural tube at the time of closure, it is expressed in the surrounding and later in differentiated neurons of the CNS. These results suggest variations in NCAM1 may influence risk for human NTDs. PMID:15883837

  1. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect

    Xiaodi Huang; Richard Gertsch

    2002-08-27

    The project has seen quite a bit of activity in this quarter, highlighted by the fabrication of a bit insert for field testing. In addition: (1) Several alternative process techniques were attempted to prevent bloating, cracking and delamination of FM material that occurs during binder burnout. The approaches included fabrication of FM material by three pass extrusion and warm isostatic pressing of green material, slow and confined burnouts as well as, burnout of thin plate instead of rod stock. Happily, a confined burnout followed by HIPing, produced FM button inserts without bloating or delamination. (2) Four rock bit inserts were produced from FM material and are ready for use on blast hole bits in the field. (3) Six of the project participants from Michigan Technological University, Advanced Ceramic Manufacturing, and The Robbins Group visited the Superior Rock Bit Company in Minnesota and planned the field test of FM inserts.

  2. Implementation of a TMP Advanced Quality Control System at a Newsprint Manufacturing Plant

    SciTech Connect

    Sebastien Kidd

    2006-02-14

    This project provided for the implementation of an advanced, model predictive multi-variant controller that works with the mill that has existing distributed control system. The method provides real time and online predictive models and modifies control actions to maximize quality and minimize energy costs. Using software sensors, the system can predict difficult-to-measure quality and process variables and make necessary process control decisions to accurately control pulp quality while minimizing electrical usage. This method of control has allowed Augusta Newsprint Company to optimize the operation of its Thermo Mechanical Pulp mill for lower energy consumption and lower pulp quality variance.

  3. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry.

    PubMed

    Zheng, Tianlong; Wang, Qunhui; Zhang, Tao; Shi, Zhining; Tian, Yanli; Shi, Shanshan; Smale, Nicholas; Wang, Juan

    2015-04-28

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×10(5) counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  4. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry.

    PubMed

    Zheng, Tianlong; Wang, Qunhui; Zhang, Tao; Shi, Zhining; Tian, Yanli; Shi, Shanshan; Smale, Nicholas; Wang, Juan

    2015-04-28

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×10(5) counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry. PMID:25681716

  5. Advances in computer-aided design and computer-aided manufacture technology.

    PubMed

    Calamia, J R

    1996-01-01

    Although the development of computer-aided design (CAD) and computer-aided manufacture (CAM) technology and the benefits of increased productivity became obvious in the automobile and aerospace industries in the 1970s, investigations of this technology's application in the field of dentistry did not begin until the 1980s. Only now are we beginning to see the fruits of this work with the commercial availability of some systems; the potential for this technology seems boundless. This article reviews the recent literature with emphasis on the period from June 1992 to May 1993. This review should familiarize the reader with some of the latest developments in this technology, including a brief description of some systems currently available and the clinical and economical rationale for their acceptance into the dental mainstream. This article concentrates on a particular system, the Cerec (Siemens/Pelton and Crane, Charlotte, NC) system, for three reasons: First, this system has been available since 1985 and, as a result, has a track record of almost 7 years of data. Most of the data have just recently been released and consequently, much of this year's literature on CAD-CAM is monopolized by studies using this system. Second, this system was developed as a mobile, affordable, direct chairside CAD-CAM restorative method. As such, it is of special interest to the patient, providing a one-visit restoration. Third, the author is currently engaged in research using this particular system and has a working knowledge of this system's capabilities.

  6. Advances in computer-aided design and computer-aided manufacture technology.

    PubMed

    Calamia, J R

    1994-01-01

    Although the development of computer-aided design (CAD) and computer-aided manufacture (CAM) technology and the benefits of increased productivity became obvious in the automobile and aerospace industries in the 1970s, investigations of this technology's application in the field of dentistry did not begin until the 1980s. Only now are we beginning to see the fruits of this work with the commercial availability of some systems; the potential for this technology seems boundless. This article reviews the recent literature with emphasis on the period from June 1992 to May 1993. This review should familiarize the reader with some of the latest developments in this technology, including a brief description of some systems currently available and the clinical and economical rationale for their acceptance into the dental mainstream. This article concentrates on a particular system, the Cerec (Siemens/Pelton and Crane, Charlotte, NC) system, for three reasons: first, this system has been available since 1985 and, as a result, has a track record of almost 7 years of data. Most of the data have just recently been released and consequently, much of this year's literature on CAD-CAM is monopolized by studies using this system. Second, this system was developed as a mobile, affordable, direct chairside CAD-CAM restorative method. As such, it is of special interest to the dentist who will offer this new technology directly to the patient, providing a one-visit restoration. Third, the author is currently engaged in research using this particular system and has a working knowledge of this system's capabilities.

  7. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    SciTech Connect

    Friedman, Douglas C.

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  8. Advanced gas atomization processing for Ti and Ti alloy powder manufacturing

    SciTech Connect

    Heidloff, A.J.; Rieken, J.R.; Anderson, I.E.; Byrd, D.; Sears, J.; Glynn, M.; Ward, M.

    2010-02-14

    The feasibility of a precision ceramic pouring tube has been demonstrated for efficient production of large quantities of fine spherical powders of pure Ti and Ti alloys by an advanced gas atomization method during initial trials of Ti alloy pouring and free-fall gas atomization. The experiments at University of Birmingham utilized a novel ceramic/metal composite tundish/pour tube and existing bottom pouring cold wall crucible induction melting capability, with pouring stream temperatures measured by a 2-color pyrometer. Minimal reaction/dissolution of both pour tubes was verified by microscopic and micro-analytical examination. The trials produced a chill cast ingot and spherical powder of Ti-6Al-4V (wt.%) and the composition and microstructure of both also were analyzed. Progress on close-coupled gas atomization studies at Iowa State University also will be reported.

  9. Immunoelectron microscopic localization of the neural cell adhesion molecules L1 and N-CAM during postnatal development of the mouse cerebellum

    PubMed Central

    1987-01-01

    The cellular and subcellular localization of the neural cell adhesion molecules L1 and N-CAM was studied by pre- and postembedding immunoelectron microscopic labeling procedures in the developing mouse cerebellar cortex. The salient features of the study are: L1 displays a previously unrecognized restricted expression by particular neuronal cell types (i.e., it is expressed by granule cells but not by stellate and basket cells) and by particular subcellular compartments (i.e., it is expressed on axons but not on dendrites or cell bodies of Purkinje cells). L1 is always expressed on fasciculating axons and on postmitotic, premigratory, and migrating granule cells at sites of neuron-neuron contact, but never at contact sites between neuron and glia, thus strengthening the view that L1 is not involved in granule cell migration as a neuron-glia adhesion molecule. While N-CAM antibodies reacting with the three major components of N-CAM (180, 140, and 120 kD) show a rather uniform labeling of all cell types, antibodies to the 180-kD component (N-CAM180) stain only the postmigratory granule cell bodies supporting the notion that N-CAM180, the N-CAM component with the longest cytoplasmic domain, is not expressed before stable cell contacts are formed. Furthermore, N-CAM180 is only transiently expressed on Purkinje cell dendrites. N-CAM is present in synapses on both pre- and post-synaptic membranes. L1 is expressed only preterminally and not in the subsynaptic membranes. These observations indicate an exquisite degree of fine tuning in adhesion molecule expression during neural development and suggest a rich combinatorial repertoire in the specification of cell surface contacts. PMID:3301870

  10. Voxel Advanced Digital-Manufacturing for Earth and Regolith in Space Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mueller, Robert P.

    2015-01-01

    A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will conceptualize and study various approaches in order to develop a proof of concept 3D printing device that utilizes regolith as the material of the voxels. The goal is to develop a digital printer head capable of placing discrete self-aligning voxels in additive layers in order to fabricate small parts that can be given structural integrity through a post-printing sintering or other binding process. The quicker speeds possible with the voxel 3D printing approach along with the utilization of regolith material as the substrate will advance the use of this technology to applications for In-Situ Resource Utilization (ISRU), which is key to reducing logistics from Earth to Space, thus making long-duration human exploration missions to other celestial bodies more possible.

  11. PSA-NCAM in the posterodorsal medial amygdala is necessary for the pubertal emergence of attraction to female odors in male hamsters.

    PubMed

    Job, Martin O; Cooke, Bradley M

    2015-09-01

    During puberty, attention turns away from same-sex socialization to focus on the opposite sex. How the brain mediates this change in perception and motivation is unknown. Polysialylated neural cell adhesion molecule (PSA-NCAM) virtually disappears from most of the central nervous system after embryogenesis, but it remains elevated in discrete regions of the adult brain. One such brain area is the posterodorsal subnucleus of the medial amygdala (MePD). The MePD has been implicated in male sexual attraction, measured here as the preference to investigate female odors. We hypothesize that PSA-NCAM gates hormone-dependent plasticity necessary for the emergence of males' attraction to females. To evaluate this idea, we first measured PSA-NCAM levels across puberty in several brain regions, and identified when female odor preference normally emerges in male Syrian hamsters. We found that MePD PSA-NCAM staining peaks shortly before the surge of pubertal androgen and the emergence of preference. To test the necessity of PSA-NCAM for female odor preference, we infused endo-neuraminidase-N into the MePD to deplete it of PSAs before female odor preference normally appears. This blocked female odor preference, which suggests that PSA-NCAM facilitates behaviorally relevant, hormone-driven plasticity. PMID:26335887

  12. PSA-NCAM-negative neural crest cells emerging during neural induction of pluripotent stem cells cause mesodermal tumors and unwanted grafts.

    PubMed

    Lee, Dongjin R; Yoo, Jeong-Eun; Lee, Jae Souk; Park, Sanghyun; Lee, Junwon; Park, Chul-Yong; Ji, Eunhyun; Kim, Han-Soo; Hwang, Dong-Youn; Kim, Dae-Sung; Kim, Dong-Wook

    2015-05-12

    Tumorigenic potential of human pluripotent stem cells (hPSCs) is an important issue in clinical applications. Despite many efforts, PSC-derived neural precursor cells (NPCs) have repeatedly induced tumors in animal models even though pluripotent cells were not detected. We found that polysialic acid-neural cell adhesion molecule (PSA-NCAM)(-) cells among the early NPCs caused tumors, whereas PSA-NCAM(+) cells were nontumorigenic. Molecular profiling, global gene analysis, and multilineage differentiation of PSA-NCAM(-) cells confirm that they are multipotent neural crest stem cells (NCSCs) that could differentiate into both ectodermal and mesodermal lineages. Transplantation of PSA-NCAM(-) cells in a gradient manner mixed with PSA-NCAM(+) cells proportionally increased mesodermal tumor formation and unwanted grafts such as PERIPHERIN(+) cells or pigmented cells in the rat brain. Therefore, we suggest that NCSCs are a critical target for tumor prevention in hPSC-derived NPCs, and removal of PSA-NCAM(-) cells eliminates the tumorigenic potential originating from NCSCs after transplantation. PMID:25937368

  13. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    SciTech Connect

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  14. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  15. Ectopic expression of transcription factor AP-2δ in developing retina: effect on PSA-NCAM and axon routing.

    PubMed

    Li, Xiaodong; Monckton, Elizabeth A; Godbout, Roseline

    2014-04-01

    Retinal ganglion cells transmit the visual signal from the retina to the brain. We have previously shown that the activator protein 2 (AP-2)δ (TFAP2D) transcription factor is expressed in one third of ganglion cells in developing retina suggesting a specialized role for these AP-2δ-expressing cells. Here, we address the role of AP-2δ in retina by in ovo electroporation of RCAS/AP-2δ retroviral constructs into the eyes of chick embryos at day 2 of gestation. Ectopic expression of AP-2δ does not affect lineage differentiation in the developing retina. However, immunostaining of retinal tissue with markers associated with axonal growth such as growth-associated protein 43 and polysialic acid-neural cell adhesion molecule (PSA-NCAM) demonstrates axonal misrouting and abnormal axonal bundling. Treatment of AP-2δ-misexpressing retinal cell cultures with endoneuraminidase, an enzyme that removes PSA from NCAM, decreases AP-2δ-induced axonal bundling. Our data suggest a role for AP-2δ in polysialylation of NCAM, with ectopic expression of AP-2δ resulting in premature bundling of emerging axons and misrouting of axons. We propose that expression of AP-2δ in a subset of ganglion cells contributes to the fine-tuning of axonal growth in the developing retina. PMID:24188130

  16. Role of RIS/APC for manufacturing RFG/LSD. [Refinery Information Systems/Advanced Process Control, ReFormulated Gasoline/Low Sulfur Diesels

    SciTech Connect

    Latour, P.R. )

    1994-01-01

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer-integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions: performance measurement, optimization, scheduling, control and integration are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  17. Isolation and nucleotide sequence of mouse NCAM cDNA that codes for a Mr 79,000 polypeptide without a membrane-spanning region.

    PubMed Central

    Barthels, D; Santoni, M J; Wille, W; Ruppert, C; Chaix, J C; Hirsch, M R; Fontecilla-Camps, J C; Goridis, C

    1987-01-01

    The neural cell adhesion molecule (NCAM) exists in several isoforms which are selectively expressed by different cell types and at different stages of development. In the mouse, three proteins with apparent Mr's of 180,000, 140,000 and 120,000 have been distinguished that are encoded by 4-5 different mRNAs. Here we report the full amino acid sequence of a NCAM protein inferred from the sequences of overlapping cDNA clones. The 706-residue polypeptide contains, towards its N-terminus, 5 domains that share structural homology with members of the immunoglobulin supergene family. The sequence does not encode a typical membrane-spanning segment, but ends with 24 uncharged amino acids followed by two stop codons. This fact, together with size considerations, make it highly likely that our sequence represents NCAM-120, which lacks transmembrane or cytoplasmic domains and is attached to the membrane by phospholipid. Probes from the 5' region detect all four NCAM gene transcripts present in mouse brain consistent with the notion that the extracellular domains are common to most NCAM forms. However, a 3' probe corresponding to the hydrophobic tail and non-coding region hybridizes specifically with the smallest mRNA species. S1 nuclease protection experiments indicate that this region is encoded by exon(s) spliced out from the other mRNAs. Furthermore, our clones that are highly homologous to a published chicken NCAM sequence which codes for putative transmembrane and cytoplasmic domains elsewhere, diverge from it at the presumptive splice junction. It appears thus that alternate use of exons determines whether NCAM proteins with membrane-spanning domains are synthesized.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 3. Fig. 4. Fig. 5. PMID:3595563

  18. Advanced Battery Manufacturing (VA)

    SciTech Connect

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  19. Solving the Big Data (BD) Problem in Advanced Manufacturing (Subcategory for work done at Georgia Tech. Study Process and Design Factors for Additive Manufacturing Improvement)

    SciTech Connect

    Clark, Brett W.; Diaz, Kimberly A.; Ochiobi, Chinaza Darlene; Paynabar, Kamran

    2015-09-01

    3D printing originally known as additive manufacturing is a process of making 3 dimensional solid objects from a CAD file. This ground breaking technology is widely used for industrial and biomedical purposes such as building objects, tools, body parts and cosmetics. An important benefit of 3D printing is the cost reduction and manufacturing flexibility; complex parts are built at the fraction of the price. However, layer by layer printing of complex shapes adds error due to the surface roughness. Any such error results in poor quality products with inaccurate dimensions. The main purpose of this research is to measure the amount of printing errors for parts with different geometric shapes and to analyze them for finding optimal printing settings to minimize the error. We use a Design of Experiments framework, and focus on studying parts with cone and ellipsoid shapes. We found that the orientation and the shape of geometric shapes have significant effect on the printing error. From our analysis, we also determined the optimal orientation that gives the least printing error.

  20. Comparison between two HNK-1-related antibodies immunoreactivity (HNK-1-anti-leu 7 and anti-HNK-1/N-CAM) during rat cephalogenesis.

    PubMed

    Louryan, S; Werry-Huet, A; Van Sint Jan, S

    1996-11-01

    The fixation sites of two antibodies, HNK-1-anti-leu 7 and anti- HNK-1/N-CAM, were studied during visceral cephalogenesis in the rat. The labelling patterns of both antibodies were different. Anti-leu 7 staining was restricted to trunk neural crest cells, the peripheral nervous system, myotomes and premuscular cells, the eye rudiment and the olfactory vesicle. On the other hand, anti- HNK-1/N-CAM extended to the otocyst, several epithelia (including tooth germs) and precartilages. Anti-HNK-1/N-CAM staining of somites and cranial nerve ganglia was more precocious than anti-leu 7 labelling. We conclude that both antibodies, despite several common sites labelling, display quite different immunological properties, and that the expression "HNK-1" positive has no absolute significance. PMID:8982638

  1. PSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II

    PubMed Central

    Varea, Emilio; Belles, Maria; Vidueira, Sandra; Blasco-Ibáñez, José M.; Crespo, Carlos; Pastor, Ángel M.; Nacher, Juan

    2011-01-01

    Neuronal production persists during adulthood in the dentate gyrus and the olfactory bulb, where substantial numbers of immature neurons can be found. These cells can also be found in the paleocortex layer II of adult rodents, but in this case most of them have been generated during embryogenesis. Recent reports have described the presence of similar cells, with a wider distribution, in the cerebral cortex of adult cats and primates and have suggested that they may develop into interneurons. The objective of this study is to verify this hypothesis and to explore the origin of these immature neurons in adult cats. We have analyzed their distribution using immunohistochemical analysis of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) and their phenotype using markers of mature neurons and different interneuronal populations. Additionally, we have explored the origin of these cells administering 5′bromodeoxyuridine (5′BrdU) during adulthood. Immature neurons were widely dispersed in the cerebral cortex layers II and upper III, being specially abundant in the piriform and entorhinal cortices, in the ventral portions of the frontal and temporoparietal lobes, but relatively scarce in dorsal regions, such as the primary visual areas. Only a small fraction of PSA-NCAM expressing cells in layer II expressed the mature neuronal marker NeuN and virtually none of them expressed calcium binding proteins or neuropeptides. By contrast, most, if not all of these cells expressed the transcription factor Tbr-1, specifically expressed by pallium-derived principal neurons, but not CAMKII, a marker of mature excitatory neurons. Absence of PSA-NCAM/5′BrdU colocalization suggests that, as in rats, these cells were not generated during adulthood. Together, these results indicate that immature neurons in the adult cat cerebral cortex layer II are not recently generated and that they may differentiate into principal neurons. PMID:21415912

  2. Apparel Manufacture

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  3. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  4. A synopsis of the Defense Advanced Research Projects Agency (DARPA) investment in additive manufacture and what challenges remain

    NASA Astrophysics Data System (ADS)

    Maher, Michael; Smith, Adrien; Margiotta, Jesse

    2014-03-01

    DARPA's interest in additive manufacture dates back to the mid-80s with seedling programs that developed the foundational knowledge and equipment that led to the Solid Freeform Fabrication program in 1990. The drivers for this program included reducing development times by enabling "tool-less" manufacturing as well as integration of design and fabrication tools. DARPA consistently pushed the boundaries of additive manufacture with follow-on programs that expanded the material suite available for 3-D printing as well as new processes that expanded the technology's capability base. Programs such as the Mesoscopic Integrated Conformal Electronics (MICE) program incorporated functionality to the manufacturing processes through direct write of electronics. DARPA's investment in additive manufacture continues to this day but the focus has changed. DARPA's early investments were focused on developing and demonstrating the technology's capabilities. Now that the technology has been demonstrated, there is serious interest in taking advantage of the attributes unique to the processing methodology (such as customization and new design possibilities) for producing production parts. Accordingly, today's investment at DARPA addresses the systematic barriers to implementation rather than the technology itself. The Open Manufacturing program is enabling rapid qualification of new technologies for the manufacturing environment through the development of new modeling and informatics tools. While the technology is becoming more mainstream, there are plenty of challenges that need to be addressed. And as the technology continues to mature, the agency will continue to look for those "DARPA-hard" challenges that enable revolutionary changes in capability and performance for the Department of Defense.

  5. Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant.

    PubMed

    Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit

    2014-10-01

    It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality. PMID:24974987

  6. Characterization of the cell adhesion molecules L1, N-CAM and J1 in the mouse intestine.

    PubMed Central

    Thor, G; Probstmeier, R; Schachner, M

    1987-01-01

    To gain insight into the cellular and molecular mechanisms underlying epithelial cell surface interactions in the adult mouse intestine, we have characterized the cell adhesion molecules L1, N-CAM and J1 by immunocytological, biochemical and cell biological methods. Whereas N-CAM and J1 expression was found to be confined to the mesenchymal and neuroectodermally-derived parts of the intestine, L1 was localized in the proliferating epithelial progenitor cells of crypts, but not in the more differentiated epithelial cells of villi. L1 was detected in crypt cells by Western blot analysis in the molecular forms characteristic of peripheral neural cells, with apparent mol. wts of 230, 180 and 150 kd. Aggregation of single, enriched crypt, but not villus cells, was strongly inhibited in the presence of Fab fragments of polyclonal L1 antibodies. These observations show that L1 is not confined to the nervous system and that it may play a functional role in the histogenesis of the intestine in the adult animal. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3315649

  7. Effects of PSA Removal from NCAM on the Critical Period Plasticity Triggered by the Antidepressant Fluoxetine in the Visual Cortex.

    PubMed

    Guirado, Ramon; La Terra, Danilo; Bourguignon, Mathieu; Carceller, Hector; Umemori, Juzoh; Sipilä, Pia; Nacher, Juan; Castrén, Eero

    2016-01-01

    Neuronal plasticity peaks during critical periods of postnatal development and is reduced towards adulthood. Recent data suggests that windows of juvenile-like plasticity can be triggered in the adult brain by antidepressant drugs such as Fluoxetine. Although the exact mechanisms of how Fluoxetine promotes such plasticity remains unknown, several studies indicate that inhibitory circuits play an important role. The polysialylated form of the neural cell adhesion molecules (PSA-NCAM) has been suggested to mediate the effects of Fluoxetine and it is expressed in the adult brain by mature interneurons. Moreover, the enzymatic removal of PSA by neuroaminidase-N not only affects the structure of interneurons but also has been shown to play a role in the onset of critical periods during development. We have here used ocular dominance plasticity in the mouse visual cortex as a model to investigate whether removal of PSA might influence the Fluoxetine-induced plasticity. We demonstrate that PSA removal in the adult visual cortex alters neither the baseline ocular dominance, nor the fluoxetine-induced shift in the ocular dominance. We also show that both chronic Fluoxetine treatment and PSA removal independently increase the basal FosB expression in parvalbumin (PV) interneurons in the primary visual cortex. Therefore, our data suggest that although PSA-NCAM regulates inhibitory circuitry, it is not required for the reactivation of juvenile-like plasticity triggered by Fluoxetine. PMID:26903807

  8. Effects of PSA Removal from NCAM on the Critical Period Plasticity Triggered by the Antidepressant Fluoxetine in the Visual Cortex

    PubMed Central

    Guirado, Ramon; La Terra, Danilo; Bourguignon, Mathieu; Carceller, Hector; Umemori, Juzoh; Sipilä, Pia; Nacher, Juan; Castrén, Eero

    2016-01-01

    Neuronal plasticity peaks during critical periods of postnatal development and is reduced towards adulthood. Recent data suggests that windows of juvenile-like plasticity can be triggered in the adult brain by antidepressant drugs such as Fluoxetine. Although the exact mechanisms of how Fluoxetine promotes such plasticity remains unknown, several studies indicate that inhibitory circuits play an important role. The polysialylated form of the neural cell adhesion molecules (PSA-NCAM) has been suggested to mediate the effects of Fluoxetine and it is expressed in the adult brain by mature interneurons. Moreover, the enzymatic removal of PSA by neuroaminidase-N not only affects the structure of interneurons but also has been shown to play a role in the onset of critical periods during development. We have here used ocular dominance plasticity in the mouse visual cortex as a model to investigate whether removal of PSA might influence the Fluoxetine-induced plasticity. We demonstrate that PSA removal in the adult visual cortex alters neither the baseline ocular dominance, nor the fluoxetine-induced shift in the ocular dominance. We also show that both chronic Fluoxetine treatment and PSA removal independently increase the basal FosB expression in parvalbumin (PV) interneurons in the primary visual cortex. Therefore, our data suggest that although PSA-NCAM regulates inhibitory circuitry, it is not required for the reactivation of juvenile-like plasticity triggered by Fluoxetine. PMID:26903807

  9. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect

    Xiaodi Huang; Richard Gertsch

    2003-02-27

    The project was highlighted by continued fabrication of drill bit inserts and testing them: (1) The inserts were subjected to hammer tests to determine brittleness. Selected inserts experienced multiple blows from a 16 pound sledge hammer. The resulting damage was minimal. (2) Three inserts were placed on three different 16.5 inch diameter rotary drill bits, and the bits drilled taconite rock until the entire bit failed. (3) The inserts had somewhat less wear resistance than current art, and exhibited no brittle failures. (4) More work is needed to produce the inserts at near net shape. The test inserts required too much machining. The project next turned to manufacturing 6.5 inch diameter disc cutters. The cutters will feature a core of tungsten carbide (TC) in a disc body composed of H13 tool steel. The TC inserts are in manufacture and the dies for the disc are being designed. The plan for next quarter: (1) Investigate materials and manufacturing changes for the fibrous monolith drill bit inserts that will increase their wear life. (2) Begin manufacturing disc cutters.

  10. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect

    Xiaodi Huang; Richard Gertsch

    2004-02-27

    In this reporting period, full disc prototype manufacturing tests continued. The disc size and HIP can problems were corrected. Unfortunately, cracking still occurred on insert interface, possibly due to oxidation film on the particle boundaries. This indicates improper off-gassing.

  11. The novel chimeric anti-NCAM (neural cell adhesion molecule) antibody ch.MK1 displays antitumor activity in SCID mice but does not activate complement-dependent cytolysis (CDC).

    PubMed

    Klehr, Martin; Koehl, Ulrike; Mühlenhoff, Martina; Tawadros, Samir; Fischer, Thomas; Schomäcker, Klaus; Heuckmann, Johannes M; Bochennek, Konrad; Jensen, Markus

    2009-06-01

    A monoclonal chimeric antibody ch.MK1 was generated by immunizing F004 mice expressing human instead of murine IgG1/kappa immunoglobulin constant regions. The novel antibody specifically binds cell surface-expressed human neural cell adhesion molecule (NCAM) as shown by immunoprecipitation, flow cytometry and cytospins. Functional analysis revealed nearly complete absence of complement-dependent cytolysis in ch.MK1 and in all other anti-NCAM antibodies tested for reference (UJ13a, ERIC1, 123C3, ch.5A2, B159), indicating an unexpected and group-specific property of anti-NCAM antibodies. As a most plausible mechanism, posttranslational modification of NCAM by complement-inhibiting polysialic acid is discussed. The antibody ch.MK1 demonstrated significant in vivo activity against NCAM-positive neuroblastoma in SCID mice in presence of human peripheral blood mononuclear cell. In absence of human peripheral blood mononuclear cell no distinct antitumor activity of the antibody alone was observed. In ch.MK1 the cellular component of the immune system seems to be the dominant effector mechanism, whereas complement-dependent cytolysis seems not to be necessarily required for antitumor activity. These observations help us to understand immunotherapeutic mechanisms of native anti-NCAM antibodies and may additionally contribute to the understanding of results of currently ongoing clinical studies with conjugated anti-NCAM antibodies.

  12. Antibody Binding Specificity for Kappa (Vκ) Light Chain-containing Human (IgM) Antibodies: Polysialic Acid (PSA) Attached to NCAM as a Case Study

    PubMed Central

    Watzlawik, Jens O.; Kahoud, Robert J.; Wootla, Bharath; Painter, Meghan M.; Warrington, Arthur E.; Carey, William A.; Rodriguez, Moses

    2016-01-01

    Antibodies of the IgM isotype are often neglected as potential therapeutics in human trials, animal models of human diseases as well as detecting agents in standard laboratory techniques. In contrast, several human IgMs demonstrated proof of efficacy in cancer models and models of CNS disorders including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Reasons for their lack of consideration include difficulties to express, purify and stabilize IgM antibodies, challenge to identify (non-protein) antigens, low affinity binding and fundamental knowledge gaps in carbohydrate and lipid research. This manuscript uses HIgM12 as an example to provide a detailed protocol to detect antigens by Western blotting, immunoprecipitations and immunocytochemistry. HIgM12 targets polysialic acid (PSA) attached to the neural cell adhesion molecule (NCAM). Early postnatal mouse brain tissue from wild type (WT) and NCAM knockout (KO) mice lacking the three major central nervous system (CNS) splice variants NCAM180, 140 and 120 was used to evaluate the importance of NCAM for binding to HIgM12. Further enzymatic digestion of CNS tissue and cultured CNS cells using endoneuraminidases led us to identify PSA as the specific binding epitope for HIgM12. PMID:27404858

  13. An Exploratory Analysis for the Selection and Implementation of Advanced Manufacturing Technology by Fuzzy Multi-criteria Decision Making Methods: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Nath, Surajit; Sarkar, Bijan

    2016-06-01

    Advanced Manufacturing Technologies (AMTs) offer opportunities for the manufacturing organizations to excel their competitiveness and in turn their effectiveness in manufacturing. Proper selection and evaluation of AMTs is the most significant task in today's modern world. But this involves a lot of uncertainty and vagueness as it requires many conflicting criteria to deal with. So the task of selection and evaluation of AMTs becomes very tedious for the evaluators as they are not able to provide crisp data for the criteria. Different Fuzzy Multi-criteria Decision Making (MCDM) methods help greatly in dealing with this problem. This paper focuses on the application of two very much potential Fuzzy MCDM methods namely COPRAS-G, EVAMIX and a comparative study between them on some rarely mentioned criteria. Each of the two methods is very powerful evaluation tool and has beauty in its own. Although, performance wise these two methods are almost at same level, but, the approach of each one of them are quite unique. This uniqueness is revealed by introducing a numerical example of selection of AMT.

  14. Advanced technology and manufacturing practices for machining and inspecting metal matrix composites. Final CRADA report for CRADA number Y-1292-0092

    SciTech Connect

    Fell, H.A.; Shelton, J.E.; LaMance, G.M.; Kennedy, C.R.

    1995-02-26

    Lockheed Martin Energy Systems, Inc. (Energy Systems) and the Lanxide Corporation (Lanxide) negotiated a Cooperative Research and Development Agreement (CRADA) to develop advanced technology and manufacturing practices for machining and inspecting metal matrix composites (MMC). The objective of this CRADA was to develop machining parameters to allow manufacturing of automotive components from MMCs. These parts exhibit a range of shapes and dimensional tolerances and require a large number of machining operations. The common characteristic of the components is the use of the light weight MMC materials to replace heavier materials. This allows smaller and lighter moving parts and supporting structural components thereby increasing fuel mileage. The CRADA was divided into three areas: basic investigation of cutting parameters, establishment of a mock production line for components, and optimization of parameters in the mock facility. This report covers the manufacturing of MMCs and preliminary Phase I testing for silicon carbide having various loading percentages and extensive Phase I testing of cutting parameters on 30% alumina loaded aluminum. On January 26, 1995, a letter from the vice president, technology at Lanxide was issued terminating the CRADA due to changes in business. 9 refs., 18 figs., 3 tabs.

  15. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 4: Full scale ground test

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Dorwald, F.

    1982-01-01

    The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.

  16. Computers in Manufacturing.

    ERIC Educational Resources Information Center

    Hudson, C. A.

    1982-01-01

    Advances in factory computerization (computer-aided design and computer-aided manufacturing) are reviewed, including discussions of robotics, human factors engineering, and the sociological impact of automation. (JN)

  17. Clean Energy Manufacturing Initiative

    SciTech Connect

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  18. GMP facilities for manufacturing of advanced therapy medicinal products for clinical trials: an overview for clinical researchers.

    PubMed

    Alici, Evren; Blomberg, Pontus

    2010-12-01

    To be able to produce advanced therapy medicinal products, compliance with regulatory standards while maintaining flexibility is mandatory. For this purpose, careful planning is vital in the design or upgrade of a facility. Similarly, extensive foresight is elemental to anticipate upcoming needs and requirements. Failing this may lead to the facility's in-ability to meet the demands. In this chapter we aimed to outline the current issues with regards to the European Union Directives (EUD) and the proposal for Advanced Therapies, which are of importance to cellular and gene therapy facilities in Europe. This chapter is an attempt to elucidate what the minimum requirements for GMP facilities for cell and gene therapy products are and what is considered necessary to comply with the regulations in Europe.

  19. Advanced manufacturing technologies for reduced cost and weight in portable ruggedized VIS-IR and multi-mode optical systems for land, sea, and air

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael; Spinazzola, Robert; Morrison, Donald; Macklin, Dennis; Marion, Jared

    2011-06-01

    Homeland security systems, special forces, unmanned aerial vehicles (UAV), and marine patrols require low cost, high performance, multi-mode visible through infrared (VIS-IR) wavelength optical systems to identify and neutralize potential threats that often arise at long ranges and under poor visibility conditions. Long range and wide spectral performance requirements favor reflective optical system design solutions. The limited field of view of such designs can be significantly enhanced by the use of catadioptric optical solutions that utilize molded or diamond point machined VIS-IR lenses downstream from reflective objective optics. A common optical aperture that services multiple modes of field-of-view, operating wavelength, and includes laser ranging and spotting, provides the highest utility and is most ideal for size and weight. Such a design also often requires fast, highly aspheric, reflective, refractive, and sometimes diffractive surfaces using high performance and aggressively light-weighted materials that demand the finest of manufacturing technologies. Visible wavelength performance sets the bar for component optical surface irregularity on the order of 20 nm RMS and surface finishes less than 3.0 nm RMS. Aluminum mirrors and structures can also be precision machined to yield "snap together alignment" or limited compensation assembly approaches to reduce cost and enhance interchangeability. Diamond point turning, die cast and investment cast mirror substrates and structures, computerized optical polishing, mirror replication, lens molding and other advanced manufacturing technologies can all be used to minimize the cost of this type of optical equipment. This paper discusses the tradeoffs among materials and process selection for catadioptric, multi-mode systems that are under development for a variety of DoD and Homeland Security applications. Several examples are profiled to illuminate the confluence of applicable design and manufacturing

  20. Manufacturing Success

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    According to the National Association of Manufacturers (NAM), "manufacturing is the engine that drives American prosperity". When NAM and its research and education arm, The Manufacturing Institute, released the handbook, "The Facts About Modern Manufacturing," in October 2006, NAM President John Engler noted, that manufacturing output in America…

  1. Manufacturing with the Sun

    NASA Technical Reports Server (NTRS)

    Murphy, Lawrence M.; Hauser, Steven G.; Clyne, Richard J.

    1991-01-01

    Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface.

  2. A novel mask proximity correction software combining accuracy and reduced writing time for the manufacturing of advanced photomasks

    NASA Astrophysics Data System (ADS)

    Schiavone, Patrick; Martin, Luc; Browning, Clyde; Farys, Vincent; Sundermann, Frank; Narukawa, Shogo; Takikawa, Tadahiko; Hayashi, Naoya

    2012-06-01

    The new generations of photomasks are seen to bring more and more challenges to the mask manufacturer. Maskshops face two conflicting requirements, namely improving pattern fidelity and reducing or at least maintaining acceptable writing time. These requirements are getting more and more challenging since pattern size continuously shrinks and data volumes continuously grows. Although the classical dose modulation Proximity Effect Correction is able to provide sufficient process control to the mainstream products, an increased number of published and wafer data show that the mask process is becoming a nonnegligible contributor to the 28nm technology yield. We will show in this paper that a novel approach of mask proximity effect correction is able to meet the dual challenge of the new generation of masks. Unlike the classical approach, the technique presented in this paper is based on a concurrent optimization of the dose and geometry of the fractured shots. Adding one more parameter allows providing the best possible compromise between accuracy and writing time since energy latitude can be taken into account as well. This solution is implemented in the Inscale software package from Aselta Nanographics. We have assessed the capability of this technology on several levels of a 28nm technology. On this set, the writing time has been reduced up to 25% without sacrificing the accuracy which at the same time has been improved significantly compared to the existing process. The experiments presented in the paper confirm that a versatile proximity effect correction strategy, combining dose and geometry modulation helps the users to tradeoff between resolution/accuracy and e-beam write time.

  3. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 3: Production readiness verification testing

    NASA Technical Reports Server (NTRS)

    Jackson, A.; Sandifer, J.; Sandorff, P.; Vancleave, R.

    1984-01-01

    Twenty-two specimens of each of two key structural elements of the Advance Composite Vertical Fin (ACVF) were fabricated and tested. One element represented the front spar at the fuselage attachment area and the other element represented the cover at the fuselage joint area. Ten specimens of each element were selected for static testing. The coefficient of variation resulting from the tests was 3.28 percent for the ten cover specimens and 6.11 percent for the ten spar specimens, which compare well with metallic structures. The remaining twelve cover and twelve spar specimens were durability tested in environmental chambers which permitted the temperature and humidity environment to be cycled as well as the applied loads. Results of the durability tests indicated that such components will survive the service environment.

  4. Glial cell line-derived neurotrophic factor (GDNF) induces neuritogenesis in the cochlear spiral ganglion via neural cell adhesion molecule (NCAM).

    PubMed

    Euteneuer, Sara; Yang, Kuo H; Chavez, Eduardo; Leichtle, Anke; Loers, Gabriele; Olshansky, Adel; Pak, Kwang; Schachner, Melitta; Ryan, Allen F

    2013-05-01

    Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion.

  5. Manufacturing technology

    SciTech Connect

    Blaedel, K L

    1998-01-01

    The mission of the Manufacturing Technology thrust area at Lawrence Livermore National Laboratory (LLNL) has been to have an adequate base of manufacturing technology, not necessarily resident at LLNL, to conduct their future business. The specific goals were (1) to develop an understanding of fundamental fabrication processes; (2) to construct general purpose process models that have wide applicability; (3) to document their findings and models in journals; (4) to transfer technology to LLNL programs, industry, and colleagues; and (5) to develop continuing relationships with the industrial and academic communities to advance their collective understanding of fabrication processes. In support of this mission, two projects were reported here, each of which explores a way to bring higher precision to the manufacturing challenges that we face over the next few years. The first, ''A Spatial-Frequency-Domain Approach to Designing a Precision Machine Tools,'' is an overall view of how they design machine tools and instruments to make or measure workpieces that are specified in terms of the spatial frequency content of the residual errors of the workpiece surface. This represents an improvement of an ''error budget,'' a design tool that saw significant development in the early 1980's, and has been in active use since then. The second project, ''Micro-Drilling of ICF Capsules,'' is an attempt to define the current state in commercial industry for drilling small holes, particularly laser-drilling. The report concludes that 1-{micro}m diameter holes cannot currently be drilled to high aspect ratios, and then defines the engineering challenges that will have to be overcome to machine holes small enough for NIF capsules.

  6. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect

    Littleton, Harry; Griffin, John

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  7. ANKK1, TTC12, and NCAM1 Polymorphisms and Heroin Dependence – importance of considering drug exposure

    PubMed Central

    Nelson, Elliot C.; Lynskey, Michael T.; Heath, Andrew C.; Wray, Naomi; Agrawal, Arpana; Shand, Fiona L.; Henders, Anjali K.; Wallace, Leanne; Todorov, Alexandre A.; Schrage, Andrew J.; Saccone, Nancy L.; Madden, Pamela A.F.; Degenhardt, Louisa; Martin, Nicholas G.; Montgomery, Grant W.

    2013-01-01

    Context The genetic contribution to liability for opioid dependence is well-established; identification of the responsible genes has proved challenging. Objective To examine association of 1430 candidate gene single-nucleotide polymorphisms (SNPs) with heroin dependence, reporting here only the 71 SNPs in the chromosome 11 gene cluster (NCAM1, TTC12, ANKK1, DRD2) that include the strongest observed associations. Design Case-control genetic association study that included two control groups (lacking an established optimal control group). Setting Semi-structured psychiatric interviews Participants Australian cases (N=1459) ascertained from opioid replacement therapy (ORT) clinics, neighborhood controls (N=531) ascertained from economically disadvantaged areas near opioid replacement therapy clinics, and unrelated Australian Twin Registry (ATR) controls (N=1495) not dependent on alcohol or illicit drugs selected from a twin and family sample. Main Outcome Measure Lifetime heroin dependence Results Comparison of cases with Australian Twin Registry controls found minimal evidence of association for all chromosome 11 cluster SNPs (p≥.01); a similar comparison to neighborhood controls revealed greater differences (p≥1.8 × 10−4). Comparing cases (N=1459) with the subgroup of neighborhood controls not dependent on illicit drugs (N=340), three SNPs were significantly associated (correcting for multiple testing): ANKK1 SNP rs877138 [most strongly associated; odds ratio 1.59; 95%CI (1.32–1.92); p=9.7 × 10−7], ANKK1 SNP rs4938013 and TTC12 SNP rs7130431. A similar pattern of association was observed when comparing illicit drug-dependent (N=191) and non-dependent (N=340) neighborhood controls, suggesting that liability likely extends to non-opioid illicit drug dependence. Aggregate heroin dependence risk associated with two SNPs, rs877138 and rs4492854 (located in NCAM1), varied more than 4-fold (p= 2.74 × 10−9 for the risk-associated linear trend). Conclusions

  8. Energy 101: Clean Energy Manufacturing

    SciTech Connect

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  9. Custom Machines Advance Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all are composites. Formed of two or more unlike materials - such as cellulose and lignin in the case of wood, or glass fibers and plastic resin in the case of fiberglass-composites provide enhanced mechanical and physical properties through the combination of their constituent materials. For this reason, composites are used in everything from buildings, bathtubs, and countertops to boats, racecars, and sports equipment. NASA continually works to develop new materials to enable future space missions - lighter, less expensive materials that can still withstand the extreme demands of space travel. Composites such as carbon fiber materials offer promising solutions in this regard, providing strength and stiffness comparable to metals like aluminum but with less weight, allowing for benefits like better fuel efficiency and simpler propulsion system design. Composites can also be made fatigue tolerant and thermally stable - useful in space where temperatures can swing hundreds of degrees. NASA has recently explored the use of composites for aerospace applications through projects like the Composite Crew Module (CCM), a composite-constructed version of the aluminum-lithium Multipurpose Crew Capsule. The CCM was designed to give NASA engineers a chance to gain valuable experience developing and testing composite aerospace structures.

  10. Integrated Manufacturing for Advanced MEAs

    SciTech Connect

    Emory S. De Castro; Yu-Min Tsou; Mark G. Roelofs; Olga Polevaya

    2007-03-30

    This program addressed a two-pronged goal for developing fuel cell components: lowering of precious metal content in membrane electrode assemblies (MEAs), thereby reducing the fuel cell cost, and creating MEAs that can operate at 120oC and 25% RH whereby the system efficiency and effectiveness is greatly improved. In completing this program, we have demonstrated a significant reduction in precious metal while at the same time increasing the power output (achieved 2005 goal of 0.6g/Kw). We have also identified a technology that allows for one step fabrication of MEAs and appears to be a feasible path toward achieving DOE’s 2010 targets for precious metal and power (approaches 0.2g/Kw). Our team partner Du Pont invented a new class of polymer electrolyte membrane that has sufficient stability and conductivity to demonstrate feasibility for operation at 120 oC and low relative humidity. Through the course of this project, the public has benefited greatly from numerous presentations and publications on the technical understanding necessary to achieve these goals.

  11. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  12. Manufacturing and producibility technology

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.; Dreshfield, R. L.

    1985-01-01

    Activities of the manufacturing/producibility working group within the Advanced High-Pressure O2/H2 Technology Program are summarized. The objectives of the M/P working group are: to develop and evaluate process and manufacturing techniques for advanced propulsion hardware design and selected materials; and to optimize the producibility of (SSME) components and assemblies by improved performance, increased life, greater reliability, and/or reduced cost. The technologies being developed include: plasma arc, laser, and inertia welding; combustion chamber and turbine blade coatings; coating processes; high performance alloy electroforming; and process control technology.

  13. Stress alleviates reduced expression of cell adhesion molecules (NCAM, L1), and deficits in learning and corticosterone regulation of apolipoprotein E knockout mice.

    PubMed

    Grootendorst, J; Oitzl, M S; Dalm, S; Enthoven, L; Schachner, M; de Kloet, E R; Sandi, C

    2001-11-01

    Cell adhesion molecules (CAMs) involved in synaptic changes underlying learning and memory processes, are implicated in the effect of stress on behavioural performance. The present study was designed to test the hypothesis that (i) expression of CAMs is apolipoprotein E- (apoE) genotype dependent and (ii) repeated exposure to stress modulates the synthesis of CAMs in an apoE-genotype dependent manner. Using ELISA we tested this hypothesis and measured expression of NCAM and L1 in different brain regions of naïve and stressed apolipoprotein E-knockout (apoE0/0) and C57Bl6 (wild-type) mice. Naïve apoE0/0 mice had elevated basal morning corticosterone and ACTH concentrations and decreased expression of NCAM and L1 compared to wild-type mice. Repeated exposure of mice to rats, as the common stressor, alleviated the reduction in expression of CAMs in apoE0/0 mice; seven days after the last rat exposure, expression of NCAM was increased in frontal brain and hippocampus whereas expression of L1 was increased in hippocampus and cerebellum. Rat stress attenuated the elevation of basal morning corticosterone concentration in apoE0/0 mice towards concentrations detected in wild-type mice. Moreover, rat stress improved learning and memory of apoE0/0 mice in the water maze. In conclusion, repeated exposure to stress eliminated apoE-genotype-related differences in expression of CAMs. Under these same conditions the differences in cognitive performance and corticosterone concentrations were abolished between wild type and apoE0/0 mice.

  14. Efficiency and Throughput Advances in Continuous Roll-to-Roll a-Si Alloy PV Manufacturing Technology: Final Subcontract Report, 22 June 1998 -- 5 October 2001

    SciTech Connect

    Ellison, T.

    2002-04-01

    This report describes a roll-to-roll triple-junction amorphous silicon alloy PV manufacturing technology developed and commercialized by Energy Conversion Devices (ECD) and United Solar Systems. This low material cost, roll-to-roll production technology has the economies of scale needed to meet the cost goals necessary for widespread use of PV. ECD has developed and built six generations of a-Si production equipment, including the present 5 MW United Solar manufacturing plant in Troy, Michigan. ECD is now designing and building a new 25-MW facility, also in Michigan. United Solar holds the world's record for amorphous silicon PV conversion efficiency, and manufactures and markets a wide range of PV products, including flexible portable modules, power modules, and innovative building-integrated PV (BIPV) shingle and metal-roofing modules that take advantage of this lightweight, rugged, and flexible PV technology. All of United Solar's power and BIPV products are approved by Underwriters Laboratories and carry a 10-year warranty. In this PVMaT 5A subcontract, ECD and United Solar are addressing issues to reduce the cost and improve the manufacturing technology for the ECD/United Solar PV module manufacturing process. ECD and United Solar identified five technology development areas that would reduce the module manufacturing cost in the present 5-MW production facility, and also be applicable to future larger-scale manufacturing facilities.

  15. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  16. Training for New Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  17. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice.

    PubMed

    Gumuslu, Esen; Cine, Naci; Ertan Gökbayrak, Merve; Mutlu, Oguz; Komsuoglu Celikyurt, Ipek; Ulak, Guner

    2016-01-01

    BACKGROUND Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. MATERIAL AND METHODS The present study demonstrated the effects of exenatide treatment (0.1 µg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. RESULTS The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. CONCLUSIONS Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  18. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  19. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  20. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  1. Efficiency and Throughput Advances in Continuous Roll-To-Roll a{_}Si Alloy PV Manufacturing Technology: Phase II Annual Subcontract Technical Report; June 1999--August 2000

    SciTech Connect

    Ellison, T.

    2000-12-07

    This report describes the project by Energy Conversion Devices, Inc. (ECD) and its American joint venture, United Solar Systems Corp. (United Solar), to develop and commercialize a roll-to-roll triple-junction amorphous silicon alloy PV manufacturing technology. This low material cost, roll-to-roll production technology has the economies of scale to meet the cost goals necessary for widespread use of PV. ECD developed and built the present 5-MW United Solar manufacturing plant in Troy, Michigan, and is now designing and building a new 25-MW facility, also in Michigan. United Solar holds the world's record for amorphous silicon PV conversion efficiency, and manufactures and markets a wide range of PV products including flexible portable modules, power modules, and innovative building-integrated PV (BIPV) shingle and metal-roofing modules that take advantage of this lightweight, rugged, and flexible PV technology. All of United Solar's power and BIPV products are approved by Underwriters Laboratories and carry a 10-year warranty. ECD and United Solar are addressing issues to reduce the cost and to improve the manufacturing technology for the ECD/United Solar PV module manufacturing process. ECD and United Solar identified five technology development tasks that would reduce the module manufacturing cost in the present 5-MW production facility and would also be applicable to future larger-scale manufacturing facilities. These development tasks are: Task 5: Improved substrate heating and monitoring systems; Task 6: The development of new on-line diagnostic systems; Task 7: Development of new back-reflector deposition technology; Task 8: Development of improved RF PECVD reactor cathode and gas distribution configurations; and Task 8A: Development of new pinch valve technology.

  2. ATS materials/manufacturing

    SciTech Connect

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K.

    1997-11-01

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  3. Characterization of Drosophila GDNF Receptor-Like and Evidence for Its Evolutionarily Conserved Interaction with Neural Cell Adhesion Molecule (NCAM)/FasII

    PubMed Central

    Kallijärvi, Jukka; Stratoulias, Vassilis; Virtanen, Kristel; Hietakangas, Ville; Heino, Tapio I.; Saarma, Mart

    2012-01-01

    Background Glial cell line-derived neurotrophic factor (GDNF) family ligands are secreted growth factors distantly related to the TGF-β superfamily. In mammals, they bind to the GDNF family receptor α (Gfrα) and signal through the Ret receptor tyrosine kinase. In order to gain insight into the evolution of the Ret-Gfr-Gdnf signaling system, we have cloned and characterized the first invertebrate Gfr-like cDNA (DmGfrl) from Drosophila melanogaster and generated a DmGfrl mutant allele. Results We found that DmGfrl encodes a large GPI-anchored membrane protein with four GFR-like domains. In line with the fact that insects lack GDNF ligands, DmGfrl mediated neither Drosophila Ret phosphorylation nor mammalian RET phosphorylation. In situ hybridization analysis revealed that DmGfrl is expressed in the central and peripheral nervous systems throughout Drosophila development, but, surprisingly, DmGfrl and DmRet expression patterns were largely non-overlapping. We generated a DmGfrl null allele by genomic FLP deletion and found that both DmGfrl null females and males are viable but display fertility defects. The female fertility defect manifested as dorsal appendage malformation, small size and reduced viability of eggs laid by mutant females. In male flies DmGfrl interacted genetically with the Drosophila Ncam (neural cell adhesion molecule) homolog FasII to regulate fertility. Conclusion Our results suggest that Ret and Gfrl did not function as an in cis receptor-coreceptor pair before the emergence of GDNF family ligands, and that the Ncam-Gfr interaction predated the in cis Ret-Gfr interaction in evolution. The fertility defects that we describe in DmGfrl null flies suggest that GDNF receptor-like has an evolutionarily ancient role in regulating male fertility and a previously unrecognized role in regulating oogenesis. Significance These results shed light on the evolutionary aspects of the structure, expression and function of Ret-Gfrα and Ncam-Gfrα signaling

  4. Environmental impacts on the developing CNS: CD15, NCAM-L1, and GFAP expression in rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Sulkowski, G. M.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    We have previously reported that the developing rat cerebellum is affected by hypergravity exposure. The effect is observed during a period of both granule and glial cell proliferation and neuronal migration in the cerebellum and coincides with changes in thyroid hormone levels. The present study begins to address the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of cerebellar proteins that are known to be directly involved in cell-cell interactions [protein expressing 3-fucosyl- N-acetyl-lactosamine antigen (CD15), neuronal cell adhesion molecule (NCAM-L1)] and those that affect cell-cell interactions indirectly [glial fibrillary acidic protein (GFAP)] in rat neonates exposed to centrifuge-produced hypergravity. Cerebellar mass and protein expression in rat neonates exposed to hypergravity (1.5 G) from gestational day (G) 11 to postnatal day (P) 30 were compared at one of six time points between P6 and P30 against rat neonates developing under normal gravity. Proteins were analyzed by quantitative western blots of cerebellar homogenates prepared from male or female neonates. Cerebellar size was most clearly reduced in male neonates on P6 and in female neonates on P9, with a significant gender difference; differences in cerebellar mass remained significant even when change in total body mass was factored in. Densitometric analysis of western blots revealed both quantitative and temporal changes in the expression of selected cerebellar proteins that coincided with changes in cerebellar mass and were gender-specific. In fact, our data indicated certain significant differences even between male and female control animals. A maximal decrease in expression of CD15 was observed in HG females on P9, coinciding with maximal change in their cerebellar mass. A shift in the time-course of NCAM-L1 expression resulted in a significant increase in NCAM-L1 in HG males on P18, an isolated time at which

  5. Environmental impacts on the developing CNS: CD15, NCAM-L1, and GFAP expression in rat neonates exposed to hypergravity

    NASA Technical Reports Server (NTRS)

    Sulkowski, G. M.; Li, G-H; Sajdel-Sulkowska, E. M.

    2004-01-01

    We have previously reported that the developing rat cerebellum is affected by hypergravity exposure. The effect is observed during a period of both granule and glial cell proliferation and neuronal migration in the cerebellum and coincides with changes in thyroid hormone levels. The present study begins to address the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of cerebellar proteins that are known to be directly involved in cell-cell interactions [protein expressing 3-fucosyl-N-acetyl-lactosamine antigen (CD15), neuronal cell adhesion molecule (NCAM-L1)] and those that affect cell-cell interactions indirectly [glial fibrillary acidic protein (GFAP)] in rat neonates exposed to centrifuge-produced hypergravity. Cerebellar mass and protein expression in rat neonates exposed to hypergravity (1.5 G) from gestational day (G) 11 to postnatal day (P) 30 were compared at one of six time points between P6 and P30 against rat neonates developing under normal gravity. Proteins were analyzed by quantitative western blots of cerebellar homogenates prepared from male or female neonates. Cerebellar size was most clearly reduced in male neonates on P6 and in female neonates on P9, with a significant gender difference; differences in cerebellar mass remained significant even when change in total body mass was factored in. Densitometric analysis of western blots revealed both quantitative and temporal changes in the expression of selected cerebellar proteins that coincided with changes in cerebellar mass and were gender-specific. In fact, our data indicated certain significant differences even between male and female control animals. A maximal decrease in expression of CD15 was observed in HG females on P9, coinciding with maximal change in their cerebellar mass. A shift in the time-course of NCAM-L1 expression resulted in a significant increase in NCAM-L1 in HG males on P18, an isolated time at which

  6. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing. PMID:25898070

  7. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  8. Manufacturing Aids

    NASA Astrophysics Data System (ADS)

    1983-01-01

    Contractor's work for Lewis Research Center on "thermal barrier" coatings designed to improve aircraft engine efficiency resulted in two related but separate spinoffs. The Materials and Manufacturing Technology Center of TRW, Inc. invented a robotic system for applying the coating, and in the course of that research found it necessary to develop a new, extremely accurate type of optical gage that offers multiple improvements in controlling the quality of certain manufactured parts.

  9. Depletion of Polysialic Acid from Neural Cell Adhesion Molecule (PSA-NCAM) Increases CA3 Dendritic Arborization and Increases Vulnerability to Excitotoxicity

    PubMed Central

    McCall, Trudy; Weil, Zachary M.; Nacher, Juan; Bloss, Erik B.; El Marouf, Abderrahman; Rutishauser, Urs; McEwen, Bruce S.

    2012-01-01

    Chronic immobilization stress (CIS) shortens apical dendritic trees of CA3 pyramidal neurons in the hippocampus of the male rat, and dendritic length may be a determinant of vulnerability to stress. Expression of the polysialylated form of neural cell adhesion molecule (PSA-NCAM) in the hippocampal formation is increased by stress, while PSA removal by Endoneuraminidase-N (endo-N) is known to cause the mossy fibers to defasciculate and synapse ectopically in their CA3 target area. We show here that enzymatic removal of PSA produced a remarkable expansion of dendritic arbors of CA3 pyramidal neurons, with a lesser effect in CA1. This expansion eclipsed the CIS-induced shortening of CA3 dendrites, with the expanded dendrites of both no-stress-endo-N and CIS-endo-N rats being longer than those in no-stress-control rats and much longer than those in CIS-control rats. As predicted by the hypothesis that ENDO-N-induced dendritic expansion might increase vulnerability to excitotoxic challenge, systemic injection with kainic acid, showed markedly increased neuronal degeneration, as assessed by fluorojade B histochemistry, in rats that had been treated with ENDO-N compared to vehicle treated rats throughout the entire hippocampal formation. PSA removal also exacerbated the CIS-induced reduction in body weight and abolished effects of CIS on NPY and NR2B mRNA levels. These findings support the hypothesis that CA3 arbor plasticity plays a protective role during prolonged stress and clarify the role of PSA-NCAM in stress-induced dendritic plasticity. PMID:23219884

  10. Molecular clock regulates daily α1-2-fucosylation of the neural cell adhesion molecule (NCAM) within mouse secondary olfactory neurons.

    PubMed

    Kondoh, Daisuke; Tateno, Hiroaki; Hirabayashi, Jun; Yasumoto, Yuki; Nakao, Reiko; Oishi, Katsutaka

    2014-12-26

    The circadian clock regulates various behavioral and physiological rhythms in mammals. Circadian changes in olfactory functions such as neuronal firing in the olfactory bulb (OB) and olfactory sensitivity have recently been identified, although the underlying molecular mechanisms remain unknown. We analyzed the temporal profiles of glycan structures in the mouse OB using a high-density microarray that includes 96 lectins, because glycoconjugates play important roles in the nervous system such as neurite outgrowth and synaptogenesis. Sixteen lectin signals significantly fluctuated in the OB, and the intensity of all three that had high affinity for α1-2-fucose (α1-2Fuc) glycan in the microarray was higher during the nighttime. Histochemical analysis revealed that α1-2Fuc glycan is located in a diurnal manner in the lateral olfactory tract that comprises axon bundles of secondary olfactory neurons. The amount of α1-2Fuc glycan associated with the major target glycoprotein neural cell adhesion molecule (NCAM) varied in a diurnal fashion, although the mRNA and protein expression of Ncam1 did not. The mRNA and protein expression of Fut1, a α1-2-specific fucosyltransferase gene, was diurnal in the OB. Daily fluctuation of the α1-2Fuc glycan was obviously damped in homozygous Clock mutant mice with disrupted diurnal Fut1 expression, suggesting that the molecular clock governs rhythmic α1-2-fucosylation in secondary olfactory neurons. These findings suggest the possibility that the molecular clock is involved in the diurnal regulation of olfaction via α1-2-fucosylation in the olfactory system.

  11. Microgravity Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Manufacturing capability in outer space remains one of the critical milestones to surpass to allow humans to conduct long-duration manned space exploration. The high cost-to-orbit for leaving the Earth's gravitational field continues to be the limiting factor in carrying sufficient hardware to maintain extended life support in microgravity or on other planets. Additive manufacturing techniques, or 'chipless' fabrication, like RP are being considered as the most promising technologies for achieving in situ or remote processing of hardware components, as well as for the repair of existing hardware. At least three RP technologies are currently being explored for use in microgravity and extraterrestrial fabrication.

  12. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Coroado, J.; dos Santos, J. M. F.; Lühl, L.; Wolff, T.; Kanngießer, B.; Carvalho, M. L.

    2011-05-01

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with μ-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each "layer". Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  13. Working with U.S. Manufacturers to Succeed in Global Markets (Poster)

    SciTech Connect

    Not Available

    2012-06-01

    Poster created for the Advanced Manufacturing Office to be used at meetings, presentations, and exhibits. The Advanced Manufacturing Office (AMO) fosters advanced manufacturing innovation, facilitates public and private partnerships, and drives rapid deployment of technologies to help manufacturers: Save energy and money, Reduce environmental impacts, Enhance workforce development, and Improve national energy security and competitiveness throughout the supply chain.

  14. Green Manufacturing

    SciTech Connect

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  15. Computers in manufacturing

    NASA Astrophysics Data System (ADS)

    Hudson, C. A.

    1982-02-01

    CAD/CAM advances and applications for enhancing productivity in industry are explored. Wide-spread use of CAD/CAM devices are projected to occur by the time period 1992-1997, resulting in a higher percentage of technicians in the manufacturing process, while the cost of computers and software will continue to fall and become more widely available. Computer aided design is becoming a commercially viable system for design and geometric modeling, engineering analysis, kinematics, and drafting, and efforts to bridge the gap between CAD and CAM are indicated, with particular attention given to layering, wherein individual monitoring of different parts of the manufacturing process can be effected without crossover of unnecessary information. The potentials and barriers to the use of robotics are described, with the added optimism that displaced workers to date have moved up to jobs of higher skill and interest.

  16. A role for hippocampal PSA-NCAM and NMDA-NR2B receptor function in flavonoid-induced spatial memory improvements in young rats.

    PubMed

    Rendeiro, Catarina; Foley, Andrew; Lau, Vera C; Ring, Rebecca; Rodriguez-Mateos, Ana; Vauzour, David; Williams, Claire M; Regan, Ciaran; Spencer, Jeremy P E

    2014-04-01

    The increase in incidence and prevalence of neurodegenerative diseases highlights the need for a more comprehensive understanding of how food components may affect neural systems. In particular, flavonoids have been recognized as promising agents capable of influencing different aspects of synaptic plasticity resulting in improvements in memory and learning in both animals and humans. Our previous studies highlight the efficacy of flavonoids in reversing memory impairments in aged rats, yet little is known about the effects of these compounds in healthy animals, particularly with respect to the molecular mechanisms by which flavonoids might alter the underlying synaptic modifications responsible for behavioral changes. We demonstrate that a 3-week intervention with two dietary doses of flavonoids (Dose I: 8.7 mg/day and Dose II: 17.4 mg/day) facilitates spatial memory acquisition and consolidation (24 recall) (p < 0.05) in young healthy rats. We show for the first time that these behavioral improvements are linked to increased levels in the polysialylated form of the neural adhesion molecule (PSA-NCAM) in the dentate gyrus (DG) of the hippocampus, which is known to be required for the establishment of durable memories. We observed parallel increases in hippocampal NMDA receptors containing the NR2B subunit for both 8.7 mg/day (p < 0.05) and 17.4 mg/day (p < 0.001) doses, suggesting an enhancement of glutamate signaling following flavonoid intervention. This is further strengthened by the simultaneous modulation of hippocampal ERK/CREB/BDNF signaling and the activation of the Akt/mTOR/Arc pathway, which are crucial in inducing changes in the strength of hippocampal synaptic connections that underlie learning. Collectively, the present data supports a new role for PSA-NCAM and NMDA-NR2B receptor on flavonoid-induced improvements in learning and memory, contributing further to the growing body of evidence suggesting beneficial effects of flavonoids in

  17. Integrated flexible manufacturing program for manufacturing automation and rapid prototyping

    NASA Technical Reports Server (NTRS)

    Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.

    1993-01-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  18. The science of and advanced technology for cost-effective manufacture of high precision engineering products. Volume 4. Thermal effects on the accuracy of numerically controlled machine tool

    NASA Astrophysics Data System (ADS)

    Venugopal, R.; Barash, M. M.; Liu, C. R.

    1985-10-01

    Thermal effects on the accuracy of numerically controlled machine tools are specially important in the context of unmanned manufacture or under conditions of precision metal cutting. Removal of the operator from the direct control of the metal cutting process has created problems in terms of maintaining accuracy. The objective of this research is to study thermal effects on the accuracy of numerically controlled machine tools. The initial part of the research report is concerned with the analysis of a hypothetical machine. The thermal characteristics of this machine are studied. Numerical methods for evaluating the errors exhibited by the slides of the machine are proposed and the possibility of predicting thermally induced errors by the use of regression equations is investigated. A method for computing the workspace error is also presented. The final part is concerned with the actual measurement of errors on a modern CNC machining center. Thermal influences on the errors is the main objective of the experimental work. Thermal influences on the errors of machine tools are predictable. Techniques for determining thermal effects on machine tools at a design stage are also presented. ; Error models and prediction; Metrology; Automation.

  19. Manufacturing Systems

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Advanced Process Systems designed a portable purge unit for NASA use. The unit is designed to protect flight and ground crews from toxic fumes and to provide a post-landing controlled environment for sensitive electronic equipment. Although the work has future spinoff potential, it has also led to a research and development program in conjunction with several universities.

  20. Linking dopamine neurotransmission and neurogenesis: The evolutionary history of the NTAD (NCAM1-TTC12-ANKK1-DRD2) gene cluster.

    PubMed

    Mota, Nina Roth; Araujo-Jnr, Eli Vieira; Paixão-Côrtes, Vanessa Rodrigues; Bortolini, Maria Cátira; Bau, Claiton Henrique Dotto

    2012-12-01

    Genetic studies have long suggested the important role of the DRD2 gene in psychiatric disorders and behavior. Further research has shown a conjoined effect of genes in the Chr11q22-23 region, which includes the NCAM1, TTC12, ANKK1 and DRD2 genes, or NTAD cluster. Despite a growing need to unravel the role of this cluster, few studies have taken into account interspecies and evolutionary approaches. This study shows that behaviorally relevant SNPs from the NTAD cluster, such as rs1800497 (Taq1A) and rs6277, are ancient polymorphisms that date back to the common ancestor between modern humans and Neanderthals/Denisovans. Conserved synteny and neighborhood indicate the NTAD cluster seems to have been established at least 400 million years ago, when the first Sarcopterygians emerged. The NTAD genes are apparently co-regulated and this could be attributed to adaptive functional properties, including those that emerged when the central nervous system became more complex. Finally, our findings indicate that NTAD genes, which are related to neurogenesis and dopaminergic neurotransmission, should be approached as a unit in behavioral and psychiatric genetic studies. PMID:23412349

  1. Linking dopamine neurotransmission and neurogenesis: The evolutionary history of the NTAD (NCAM1-TTC12-ANKK1-DRD2) gene cluster

    PubMed Central

    Mota, Nina Roth; Araujo-Jnr, Eli Vieira; Paixão-Côrtes, Vanessa Rodrigues; Bortolini, Maria Cátira; Bau, Claiton Henrique Dotto

    2012-01-01

    Genetic studies have long suggested the important role of the DRD2 gene in psychiatric disorders and behavior. Further research has shown a conjoined effect of genes in the Chr11q22–23 region, which includes the NCAM1, TTC12, ANKK1 and DRD2 genes, or NTAD cluster. Despite a growing need to unravel the role of this cluster, few studies have taken into account interspecies and evolutionary approaches. This study shows that behaviorally relevant SNPs from the NTAD cluster, such as rs1800497 (Taq1A) and rs6277, are ancient polymorphisms that date back to the common ancestor between modern humans and Neanderthals/Denisovans. Conserved synteny and neighborhood indicate the NTAD cluster seems to have been established at least 400 million years ago, when the first Sarcopterygians emerged. The NTAD genes are apparently co-regulated and this could be attributed to adaptive functional properties, including those that emerged when the central nervous system became more complex. Finally, our findings indicate that NTAD genes, which are related to neurogenesis and dopaminergic neurotransmission, should be approached as a unit in behavioral and psychiatric genetic studies. PMID:23412349

  2. Preparing the Next American Manufacturing Workforce

    ERIC Educational Resources Information Center

    Taraman, Khalil S.

    2010-01-01

    Manufacturing has a new face--and the future it offers is exciting. But in order to take advantage of what it offers, one needs a plan and he/she has to know how to execute it. In this article, the author discusses how the Society of Manufacturing Engineers (SME) is working to get the message out that the future of advanced manufacturing will…

  3. Manufacturing Careers, Skilled Workers and the Economy

    ERIC Educational Resources Information Center

    Martino, Lisa

    2011-01-01

    In order to jumpstart the economy, "Made in the U.S.A." needs to be synonymous with in-demand, high-quality products sold throughout the world. Recognizing the importance of the manufacturing industry and its connection to a healthy economy, President Obama addressed Carnegie Mellon University and launched the Advanced Manufacturing Partnership…

  4. Proceedings: EPRI Manufactured Gas Plants 2003 Forum

    SciTech Connect

    2004-02-01

    The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

  5. Ultra-precision processes for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  6. Analysis of residual stress and hardness in regions of pre-manufactured and manual bends in fixation plates for maxillary advancement.

    PubMed

    Araújo, Marcelo Marotta; Lauria, Andrezza; Mendes, Marcelo Breno Meneses; Claro, Ana Paula Rosifini Alves; Claro, Cristiane Aparecida de Assis; Moreira, Roger William Fernandes

    2015-12-01

    The aim of this study was to analyze, through Vickers hardness test and photoelasticity analysis, pre-bent areas, manually bent areas, and areas without bends of 10-mm advancement pre-bent titanium plates (Leibinger system). The work was divided into three groups: group I-region without bend, group II-region of 90° manual bend, and group III-region of 90° pre-fabricated bends. All the materials were evaluated through hardness analysis by the Vickers hardness test, stress analysis by residual images obtained in a polariscope, and photoelastic analysis by reflection during the manual bending. The data obtained from the hardness tests were statistically analyzed using ANOVA and Tukey's tests at a significance level of 5 %. The pre-bent plate (group III) showed hardness means statistically significantly higher (P < 0.05) than those of the other groups (I-region without bends, II-90° manually bent region). Through the study of photoelastic reflection, it was possible to identify that the stress gradually increased, reaching a pink color (1.81 δ / λ), as the bending was performed. A general analysis of the results showed that the bent plate region of pre-bent titanium presented the best results.

  7. Advanced 3D mesh manipulation in stereolithographic files and post-print processing for the manufacturing of patient-specific vascular flow phantoms

    NASA Astrophysics Data System (ADS)

    O'Hara, Ryan P.; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M.; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N.

    2016-03-01

    Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 - 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations.

  8. Challenges in teaching modern manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-07-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform.

  9. Cloud manufacturing: a new manufacturing paradigm

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Luo, Yongliang; Tao, Fei; Li, Bo Hu; Ren, Lei; Zhang, Xuesong; Guo, Hua; Cheng, Ying; Hu, Anrui; Liu, Yongkui

    2014-03-01

    Combining with the emerged technologies such as cloud computing, the Internet of things, service-oriented technologies and high performance computing, a new manufacturing paradigm - cloud manufacturing (CMfg) - for solving the bottlenecks in the informatisation development and manufacturing applications is introduced. The concept of CMfg, including its architecture, typical characteristics and the key technologies for implementing a CMfg service platform, is discussed. Three core components for constructing a CMfg system, i.e. CMfg resources, manufacturing cloud service and manufacturing cloud are studied, and the constructing method for manufacturing cloud is investigated. Finally, a prototype of CMfg and the existing related works conducted by the authors' group on CMfg are briefly presented.

  10. Manufacturing Aids

    NASA Technical Reports Server (NTRS)

    1989-01-01

    During a research program, MMTC/Textron invented a computer-aided automatic robotic system for spraying hot plasma onto a turbine blade. The need to control the thickness of the plasma deposit led to the development of advanced optical gaging techniques to monitor and control plasma spray build-up on blade surfaces. The techniques led to computerized optical gages for inspecting aircraft, industrial turbine blades, etc. MMTC offers 10 standard commercial robotic gages. The system also generates two dimensional profiles for assessing status and specifying repairs to the electromechanical cathodes used to make the parts. It is capable of accuracies to a ten-thousandth of an inch. An expanded product line is currently marketed. The gages offer multiple improvements in quality control and significant savings.

  11. Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL.

    PubMed

    Ojo, Bunmi; Rezaie, Payam; Gabbott, Paul L; Davies, Heather; Colyer, Frances; Cowley, Thelma R; Lynch, Marina; Stewart, Michael G

    2012-07-01

    Altered synaptic morphology, progressive loss of synapses and glial (astrocyte and microglial) cell activation are considered as characteristic hallmarks of aging. Recent evidence suggests that there is a concomitant age-related decrease in expression of the presynaptic protein, synaptophysin, and the neuronal glycoprotein CD200, which, by interacting with its receptor, plays a role in maintaining microglia in a quiescent state. These age-related changes may be indicative of reduced neuroglial support of synapses. FG Loop (FGL) peptide synthesized from the second fibronectin type III module of neural cell adhesion molecule (NCAM), has previously been shown to attenuate age-related glial cell activation, and to 'restore' cognitive function in aged rats. The mechanisms by which FGL exerts these neuroprotective effects remain unclear, but could involve regulation of CD200, modifying glial-synaptic interactions (affecting neuroglial 'support' at synapses), or impacting directly on synaptic function. Light and electron microscopic (EM) analyses were undertaken to investigate whether systemic treatment with FGL (i) alters CD200, synaptophysin (presynaptic) and PSD-95 (postsynaptic) immunohistochemical expression levels, (ii) affects synaptic number, or (iii) exerts any effects on glial-synaptic interactions within young (4 month-old) and aged (22 month-old) rat hippocampus. Treatment with FGL attenuated the age-related loss of synaptophysin immunoreactivity (-ir) within CA3 and hilus (with no major effect on PSD-95-ir), and of CD200-ir specifically in the CA3 region. Ultrastructural morphometric analyses showed that FGL treatment (i) prevented age-related loss in astrocyte-synaptic contacts, (ii) reduced microglia-synaptic contacts in the CA3 stratum radiatum, but (iii) had no effect on the mean number of synapses in this region. These data suggest that FGL mediates its neuroprotective effects by regulating glial-synaptic interaction.

  12. CT-assisted agile manufacturing

    NASA Astrophysics Data System (ADS)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  13. Passive component manufacturing in Asia

    NASA Astrophysics Data System (ADS)

    Yen, Walter

    2005-01-01

    The serious downturn of optical fiber communication industry in the past three years speeds up the consolidation of passive component manufacturing. Automation activity and investment stopped due to no driving force from the volume demand. A lot of skillful but low cost labors must be needed in the future for manufacturing when the demand comes back. Except MEMS based VOA, most of components based on advanced technology seem to get delayed in most applications. Furthermore, the highly integrated products are also delayed and become uncertain, especially AWG technology. Most of the manufacturing of passive components already moved or are moving to Asia especially China. Browave already built its manufacturing factory and is almost doing all the manufacturing in Zhong Shan. Browave tries to optimize the value of Taiwan plus China, i.e., Tawan provides superior management system, quality systems and manufacturing engineering support where China provides a lot of skillful but low cost labors. Browave is now not only providing the basic elements like Couplers, Isolators, TFF add/drop filter, Thin Film based GFF (Gain Flattened Filters), but also providing "Dedicated Lines" for the components/modules/subsystems for the players who need the value as mentioned above.

  14. Emerging antibody products and Nicotiana manufacturing.

    PubMed

    Whaley, Kevin J; Hiatt, Andrew; Zeitlin, Larry

    2011-03-01

    Antibody based products are not widely available to address multiple global health challenges due to high costs, limited manufacturing capacity, and long manufacturing lead times. Nicotiana-based manufacturing of antibody products may now begin to address these challenges as a result of revolutionary advances in transient expression and altered glycosylation pathways. This review provides examples of emerging antibody-based products (mucosal and systemic) that could be competitive and commercially viable when the attributes of Nicotiana-based manufacturing (large scale, versatile, rapid, low cost) are utilized.

  15. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  16. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL

  17. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  18. Polyolefin catalyst manufacturing

    SciTech Connect

    Inkrott, K.E.; Scinta, J.; Smith, P.D. )

    1989-10-16

    Statistical process control (SPC) procedures are absolutely essential for making new-generation polyolefin catalysts with the consistent high quality required by modern polyolefin processes. Stringent quality assurance is critical to the production of today's high-performance catalysts. Research and development efforts during the last 20 years have led to major technological improvements in the polyolefin industry. New generation catalysts, which once were laboratory curiosities, must now be produced commercially on a regular and consistent basis to meet the increasing requirements of the plastics manufacturing industry. To illustrate the more stringent requirements for producing the new generation polyolefin catalysts, the authors compare the relatively simple, first-generation polypropylene catalyst production requirements with some of the basic requirements of manufacturing a more complex new-generation catalyst, such as Catalyst Resources Inc.'s LYNX 900. The principles which hold true for the new-generation catalysts such as LYNX 900 are shown to apply equally to the scale-up of other advanced technology polyolefin catalysts.

  19. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  20. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    SciTech Connect

    Love, Lonnie J.

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  1. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  2. Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration

    SciTech Connect

    ASHWILL, THOMAS D.

    2003-05-01

    The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

  3. Manufacturing laser glass by continuous melting

    SciTech Connect

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  4. Robotics in space-age manufacturing

    NASA Technical Reports Server (NTRS)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  5. Agile manufacturing prototyping system (AMPS)

    SciTech Connect

    Garcia, P.

    1998-05-09

    The Agile Manufacturing Prototyping System (AMPS) is being integrated at Sandia National Laboratories. AMPS consists of state of the industry flexible manufacturing hardware and software enhanced with Sandia advancements in sensor and model based control; automated programming, assembly and task planning; flexible fixturing; and automated reconfiguration technology. AMPS is focused on the agile production of complex electromechanical parts. It currently includes 7 robots (4 Adept One, 2 Adept 505, 1 Staubli RX90), conveyance equipment, and a collection of process equipment to form a flexible production line capable of assembling a wide range of electromechanical products. This system became operational in September 1995. Additional smart manufacturing processes will be integrated in the future. An automated spray cleaning workcell capable of handling alcohol and similar solvents was added in 1996 as well as parts cleaning and encapsulation equipment, automated deburring, and automated vision inspection stations. Plans for 1997 and out years include adding manufacturing processes for the rapid prototyping of electronic components such as soldering, paste dispensing and pick-and-place hardware.

  6. Energy Use in Manufacturing

    EIA Publications

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  7. Workforce Development for Manufacturing

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2007-01-01

    In a recent skills gap report, the National Association of Manufacturers (NAM) noted some disturbing trends in the gap between the demand for highly skilled manufacturing workers and the potential supply. The NAM report notes that smaller manufacturers rank finding qualified workers ahead of energy costs, taxes and government regulations on the…

  8. Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.

    1996-01-01

    Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.

  9. Manufacturing Planning Guide

    NASA Technical Reports Server (NTRS)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  10. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  11. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  12. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    SciTech Connect

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, III, Harry M.; Phelps, Tommy

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  13. Advanced Polymer Processing Facility

    SciTech Connect

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  14. Demand Activated Manufacturing Architecture

    SciTech Connect

    Bender, T.R.; Zimmerman, J.J.

    2001-02-07

    per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

  15. FRIDA integral field unit manufacturing

    NASA Astrophysics Data System (ADS)

    Cuevas, Salvador; Eikenberry, Stephen S.; Sánchez, Beatriz

    2014-07-01

    FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) has been designed as a cryogenic and diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy (IFS). Both, the imaging mode and IFS observing modes will use the same Teledyne 2Kx2K detector. This instrument will be installed at Nasmyth B station, behind the GTC Adaptive Optics system (GTCAO). FRIDA will provide the IFS mode using a 30 slices Integral Field Unit (IFU). This IFU design is based on the University of Florida FISICA where the mirror block arrays are diamond turned on monolithic metal blocks. The FRIDA IFU is of the slicer type; conformed mainly by 3 mirror blocks with 30 spherical mirrors each. It also has a Schwarzschild relay based on two off axis spherical mirrors and an afocal system of two parabolic off axis mirrors. Including two insertion mirrors the IFU holds 96 metal mirrors. All the mirrors have been manufactured by diamond turning techniques on monolithic blocks of aluminum 6061-T6 coated by a Nickel alloy. Except for the Schwarzschild relay and the insertion mirrors, 92 mirrors were manufactured by Corning in Keene NH, USA. The different blocks and mirrors are mounted on an opto-mechanical support that ensures the image quality and integrity of the complete IFU. In this work advances on the manufacturing of the FRIDA IFU components are described. Furthermore, the mirror blocks individual verification tests and are also described.

  16. Computer integrated manufacturing and technology transfer for improving aerospace productivity

    NASA Astrophysics Data System (ADS)

    Farrington, P. A.; Sica, J.

    1992-03-01

    This paper reviews a cooperative effort, between the Alabama Industial Development Training Institute and the University of Alabama in Huntsville, to implement a prototype computer integrated manufacturing system. The primary use of this system will be to educate Alabama companies on the organizational and technological issues involved in the implementation of advanced manufacturing systems.

  17. 10 CFR 611.207 - Small automobile and component manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Small automobile and component manufacturers. 611.207 Section 611.207 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.207 Small automobile and...

  18. 10 CFR 611.207 - Small automobile and component manufacturers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Small automobile and component manufacturers. 611.207 Section 611.207 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.207 Small automobile and...

  19. 10 CFR 611.207 - Small automobile and component manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Small automobile and component manufacturers. 611.207 Section 611.207 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.207 Small automobile and...

  20. 10 CFR 611.207 - Small automobile and component manufacturers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Small automobile and component manufacturers. 611.207 Section 611.207 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.207 Small automobile and...

  1. 10 CFR 611.207 - Small automobile and component manufacturers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Small automobile and component manufacturers. 611.207 Section 611.207 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.207 Small automobile and...

  2. Small Engine Manufacturing in Wisconsin: Work Reorganization and Training Needs.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Center on Wisconsin Strategy.

    Wisconsin is the country's leading manufacturer of small engines, and the network of companies and suppliers constituting the small engine industry accounts for more than 5% of the state's entire manufacturing base. For the past 15 years, the industry has been rocked by intensified international competition and rapid technological advancement. A…

  3. Manufacturers' support policies.

    PubMed

    1992-09-01

    Choosing an effective plan for supporting a medical device is critical to its safe use, cost-effectiveness, and longevity. Hospitals can choose from a variety of support providers, including manufacturers, third-party service vendors, or hospital clinical engineering (CE) departments. However, if the hospital plans to use a third-party service vendor or its own CE department to provide support, the manufacturer's cooperation or assistance will still be needed to implement the support plan effectively. Over the years, ECRI has received many comments from hospitals about the way in which manufacturers respond to their equipment support needs. We have learned that some manufacturers are not willing to assist third-party service vendors or in-house service programs or do not always deliver the support they promise. Also, hospitals do not always consider their support needs before purchase, when they have the most leverage to negotiate flexible support arrangements. To help foster better equipment support and customer satisfaction, we polled manufacturers that have participated in recent Health Devices Evaluations to obtain detailed information about their policies toward manufacturers' contract, third-party, and in-house support. Ready access to this information will help hospitals evaluate whether manufacturers' support policies will meet their needs, and it will allow them to minimize problems by working with the manufacturer to negotiate optimal support arrangements during the purchase process. In this article, we briefly discuss the factors to consider when evaluating support alternatives and manufacturers' support policies. We also present the questions posed to each manufacturer on our Manufacturers' Support Policies Questionnaire, along with a summary of the responses that we received for each question.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1428903

  4. Microgravity Manufacturing: Extending Rapid Prototyping Past the Horizon

    NASA Technical Reports Server (NTRS)

    Cooper, Ken

    2003-01-01

    Over the last decade, rapid prototyping (RP) technologies have continued to advance in all aspects of operation and application. From continuously advanced materials and processes development to more hard-core manufacturing uses, the RP realm has stretched considerably past its original expectations as a prototyping capability. This paper discusses the unique applications for which NASA has chosen these manufacturing techniques to be utilized in outer space.

  5. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  6. Mechanical Prototyping and Manufacturing Internship

    NASA Technical Reports Server (NTRS)

    Grenfell, Peter

    2016-01-01

    The internship was located at the Johnson Space Center (JSC) Innovation Design Center (IDC), which is a facility where the JSC workforce can meet and conduct hands-on innovative design, fabrication, evaluation, and testing of ideas and concepts relevant to NASA's mission. The tasks of the internship included mechanical prototyping design and manufacturing projects in service of research and development as well as assisting the users of the IDC in completing their manufacturing projects. The first project was to manufacture hatch mechanisms for a team in the Systems Engineering and Project Advancement Program (SETMAP) hexacopter competition. These mechanisms were intended to improve the performance of the servomotors and offer an access point that would also seal to prevent cross-contamination. I also assisted other teams as they were constructing and modifying their hexacopters. The success of this competition demonstrated a proof of concept for aerial reconnaissance and sample return to be potentially used in future NASA missions. I also worked with Dr. Kumar Krishen to prototype an improved thermos and a novel, portable solar array. Computer-aided design (CAD) software was used to model the parts for both of these projects. Then, 3D printing as well as conventional techniques were used to produce the parts. These prototypes were then subjected to trials to determine the success of the designs. The solar array is intended to work in a cluster that is easy to set up and take down and doesn't require powered servomechanisms. It could be used terrestrially in areas not serviced by power grids. Both projects improve planetary exploration capabilities to future astronauts. Other projects included manufacturing custom rail brackets for EG-2, assisting engineers working on underwater instrument and tool cases for the NEEMO project, and helping to create mock-up parts for Space Center Houston. The use of the IDC enabled efficient completion of these projects at

  7. Manufacturer evaluations of endograft modifications.

    PubMed

    Waninger, Matthew S; Whirley, Robert G; Smith, Louis J; Wolf, Ben S

    2013-03-01

    The motivation to modify the design of a vascular device can arise from a number of sources. Clinical experience with the unmodified device could suggest new design modifications to improve device performance or clinical outcomes. Similarly, clinical success with a device often suggests modifications that could broaden the applicability of the device to enable treatment of different or more advanced disease states. As a specific example, both of these scenarios have arisen during the last decade in the evolution of endovascular grafts for the treatment of abdominal aortic aneurysms, with modifications enabling the treatment of patients with shorter infrarenal necks, more angulated anatomy, and smaller access vessels. These modifications have been made by manufacturers and additionally by physicians who create branched and fenestrated devices. The experience to date with the use of fenestrated devices and the development of chimney, snorkel, and periscope techniques suggests that modifications to off-the-shelf devices may provide some clinical benefit. This experience provides additional motivation for manufacturers to develop devices to address the clinical needs not met with their current product lines. For manufacturers, the device development process includes an assessment of the new device design to determine the appropriate evaluation strategy to support the safety and effectiveness of the modified device. This report provides a high-level overview of the process generally followed by device manufacturers to evaluate a proposed device modification before market release, in accordance with local country regulations and recognized international standards such as the International Organization of Standardization (ISO) standards for endovascular grafts (ISO 25539 Part 1).

  8. Manufacturer evaluations of endograft modifications.

    PubMed

    Waninger, Matthew S; Whirley, Robert G; Smith, Louis J; Wolf, Ben S

    2013-03-01

    The motivation to modify the design of a vascular device can arise from a number of sources. Clinical experience with the unmodified device could suggest new design modifications to improve device performance or clinical outcomes. Similarly, clinical success with a device often suggests modifications that could broaden the applicability of the device to enable treatment of different or more advanced disease states. As a specific example, both of these scenarios have arisen during the last decade in the evolution of endovascular grafts for the treatment of abdominal aortic aneurysms, with modifications enabling the treatment of patients with shorter infrarenal necks, more angulated anatomy, and smaller access vessels. These modifications have been made by manufacturers and additionally by physicians who create branched and fenestrated devices. The experience to date with the use of fenestrated devices and the development of chimney, snorkel, and periscope techniques suggests that modifications to off-the-shelf devices may provide some clinical benefit. This experience provides additional motivation for manufacturers to develop devices to address the clinical needs not met with their current product lines. For manufacturers, the device development process includes an assessment of the new device design to determine the appropriate evaluation strategy to support the safety and effectiveness of the modified device. This report provides a high-level overview of the process generally followed by device manufacturers to evaluate a proposed device modification before market release, in accordance with local country regulations and recognized international standards such as the International Organization of Standardization (ISO) standards for endovascular grafts (ISO 25539 Part 1). PMID:23446123

  9. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  10. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    SciTech Connect

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  11. Fabricating specialised orthopaedic implants using additive manufacturing

    NASA Astrophysics Data System (ADS)

    Unwin, Paul

    2014-03-01

    It has been hypothesised that AM is ideal for patient specific orthopaedic implants such as those used in bone cancer treatment, that can rapidly build structures such as lattices for bone and tissues to in-grow, that would be impossible using current conventional subtractive manufacturing techniques. The aim of this study was to describe the adoption of AM (direct metal laser sintering and electron beam melting) into the design manufacturing and post-manufacturing processes and the early clinical use. Prior to the clinical use of AM implants, extensive metallurgical and mechanical testing of both laser and electron beam fabrications were undertaken. Concurrently, post-manufacturing processes evaluated included hipping, cleaning and coating treatments. The first clinical application of a titanium alloy mega-implant was undertaken in November 2010. A 3D model of the pelvic wing implant was designed from CT scans. Novel key features included extensive lattice structures at the bone interfaces and integral flanges to fix the implant to the bone. The pelvic device was implanted with the aid of navigation and to date the patient remains active. A further 18 patient specific mega-implants have now been implanted. The early use of this advanced manufacturing route for patient specific implants has been very encouraging enabling the engineer to produce more advanced and anatomical conforming implants. However, there are a new set of design, manufacturing and regulatory challenges that require addressing to permit this technique to be used more widely. This technology is changing the design and manufacturing paradigm for the fabrication of specialised orthopaedic implants.

  12. Flexible Manufacturing Systems: What's in It for the Manufacturer.

    ERIC Educational Resources Information Center

    Chowdhury, A. R.; Peckman, Donald C.

    1987-01-01

    The authors define the Flexible Manufacturing System and outline its history. They describe what the processing time includes and provide advantages and disadvantages of Flexible Manufacturing Systems compared to conventional manufacturing. (CH)

  13. Rapid small lot manufacturing

    SciTech Connect

    Harrigan, R.W.

    1998-05-09

    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  14. Agile manufacturing concept

    NASA Astrophysics Data System (ADS)

    Goldman, Steven L.

    1994-03-01

    The initial conceptualization of agile manufacturing was the result of a 1991 study -- chaired by Lehigh Professor Roger N. Nagel and California-based entrepreneur Rick Dove, President of Paradigm Shifts, International -- of what it would take for U.S. industry to regain global manufacturing competitiveness by the early twenty-first century. This industry-led study, reviewed by senior management at over 100 companies before its release, concluded that incremental improvement of the current system of manufacturing would not be enough to be competitive in today's global marketplace. Computer-based information and production technologies that were becoming available to industry opened up the possibility of an altogether new system of manufacturing, one that would be characterized by a distinctive integration of people and technologies; of management and labor; of customers, producers, suppliers, and society.

  15. Manufacturing information system

    NASA Astrophysics Data System (ADS)

    Allen, D. K.; Smith, P. R.; Smart, M. J.

    1983-12-01

    The size and cost of manufacturing equipment has made it extremely difficult to perform realistic modeling and simulation of the manufacturing process in university research laboratories. Likewise the size and cost factors, coupled with many uncontrolled variables of the production situation has even made it difficult to perform adequate manufacturing research in the industrial setting. Only the largest companies can afford manufacturing research laboratories; research results are often held proprietary and seldom find their way into the university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development of miniature prototype equipment suitable for use in an integrated CAD/CAM Laboratory. The equipment being developed is capable of actually performing production operations (e.g. drilling, milling, turning, punching, etc.) on metallic and non-metallic workpieces. The integrated CAD/CAM Mini-Lab is integrating high resolution, computer graphics, parametric design, parametric N/C parts programmings, CNC machine control, automated storage and retrieval, with robotics materials handling. The availability of miniature CAD/CAM laboratory equipment will provide the basis for intensive laboratory research on manufacturing information systems.

  16. Minding the Gap: Investing in a Skilled Manufacturing Workforce

    ERIC Educational Resources Information Center

    Richard, Alan

    2015-01-01

    Advanced manufacturing is growing and thriving in the United States. Companies are in great need of reliable employees who can communicate well, effectively make decisions, and are interested in long-term careers with opportunity for advancement. Employers have identified a need for a more robust talent pipeline to narrow America's skills gap--a…

  17. GEM detector conductor manufacturing experience

    SciTech Connect

    Martovetsky, N.N.; Pace, J.R.; Reardon, P.J.; Richied, D.E.; Camille, R.J.; Marston, P.G.; Smith, B.A.; Deis, G.A.; Bohanan, J.S.; Gertsen, J.H.

    1994-10-07

    Feasibility studies and manufacturing experience on the GEM Magnet superconductor are presented, including all components - NbTi strand, cable, conduit manufacture, cable pulling, and aluminum sheath application.

  18. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  19. Manufacturing tailored property ceramic composites

    SciTech Connect

    Ewsuk, K.G.; Harrison, L.W.

    1994-11-14

    Composite materials are desirable for many advanced engineering applications where the properties of a single phase material cannot meet all of the service requirements; however, existing process technology has limited the development and commercialization of composites. Lack of reproducible sintering to high density is one of the major obstacles to commercializing ceramic composites. Final-stage, non-reactive liquid phase sintering (NLPS) theory provides metrics for sinterability that can be used as guidelines to design and manufacture dense ceramic-filled-glass (CFG) composites. Additionally, within the constraints defined by the NLPS theory, sum-property models can be used to predict CFG composite properties, and to design composites with properties tailored to specific applications. By integrating composite process models with composite property models, processable, application-tailored CFG composites for microelectronics packaging have been designed and fabricated.

  20. 75 FR 104 - Manufacturing & Services' Sustainable Manufacturing Initiative; Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... International Trade Administration Manufacturing & Services' Sustainable Manufacturing Initiative; Update ACTION: Notice and request for input on proposed new areas of work for the Sustainable Manufacturing Initiative... (ITA) Manufacturing & Services Unit held a Sustainability and U.S. Competitiveness Summit on October...

  1. National Center for Manufacturing Sciences: Environmentally conscious manufacturing

    NASA Technical Reports Server (NTRS)

    Vinton, Clare

    1995-01-01

    The purpose of this presentation is to share the results and some of the thinking of the Environmentally Conscious Manufacturing - Strategic Initiative Group (ECM-SIG) at the National Center for Manufacturing Sciences (NCMS). NCMS is a consortium of more than 185 North American Manufacturing organizations comprised of about 75 percent for profit manufacturing companies and about 25 percent nonprofit organizations that support manufacturing activities. NCMS conducts collaborative R&D programs designed to improve global competitiveness of its members and other North American manufacturers to address common issues that are important to manufacturing industries. NCMS is an industry driven organization whose agenda is established by industry with input from appropriate government agencies.

  2. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 4: Manufacturing Engineering Technology, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  3. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    NASA Astrophysics Data System (ADS)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  4. Silicon Film[trademark] photovoltaic manufacturing technology

    SciTech Connect

    Bottenberg, W.R.; Hall, R.B.; Jackson, E.L.; Lampo, S.; Mulligan, W.E.; Barnett, A.M. )

    1993-04-01

    This report describes work on a project to develop an advanced low-cost manufacturing process for a new utility-scale flatplate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film[trademark] process. This new power module is based on a new large solar cell that is 675 cm[sup 2] in area. Eighteen of these solar cells form a 170-W module. Twelve ofthese modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film[trademark] wafer machine that can manufacture wafer 675 cm[sup 2] in size with a total product cost reductionof 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film[trademark] wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with asubstantially lower cost.

  5. 78 FR 67117 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity to Apply for Membership on the Manufacturing Council.... manufacturing industry to fill five vacant positions on the Manufacturing Council (Council). The purpose of...

  6. Environmentally sound manufacturing

    NASA Technical Reports Server (NTRS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    1994-01-01

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  7. Environmentally sound manufacturing

    NASA Astrophysics Data System (ADS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  8. Photovoltaic manufacturing technology

    SciTech Connect

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. )

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  9. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  10. Manufacturing Technology. Curriculum Guide.

    ERIC Educational Resources Information Center

    North Dakota State Board for Vocational Education, Bismarck.

    This guide provides the basic foundation to develop a one-semester course based on the cluster concept, manufacturing technology. One of a set of six guides for an industrial arts curriculum at the junior high school level, it suggests activities that allow students (1) to become familiar with and use some of the tools, materials, and processes…

  11. Illinois Manufacturing Technology Curriculum.

    ERIC Educational Resources Information Center

    Cliffe, Roger; And Others

    This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,…

  12. Manufacturing and Merchandising Careers

    ERIC Educational Resources Information Center

    Ryan, Peter J.; And Others

    1977-01-01

    Anyone with a flair for business, product development, or promotion might consider a manufacturing or merchandising occupation. The music industry offers many career opportunities for administrators, salespersons, marketing specialists--the record industry offers positions from promotion manager to rack jobber. Describes instrument company…

  13. Drug development and manufacturing

    SciTech Connect

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  14. Turbine airfoil manufacturing technology

    SciTech Connect

    Kortovich, C.

    1995-12-31

    The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

  15. Virtual manufacturing in reality

    NASA Astrophysics Data System (ADS)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  16. Reusing Old Manufacturing Buildings

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.…

  17. Manufacturing (Industrial) Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 35 units to consider for use in a tech prep competency profile for the occupation of manufacturing (industrial) technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific…

  18. MEGARA optical manufacturing process

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Páez, G.; Granados, F.; Percino, E.; Castillo-Domínguez, E.; Avilés, J. L.; García-Vargas, M. L.; Gil de Paz, A.; Gallego, J.; Iglesias-Páramo, J.; Cedazo, R.

    2014-07-01

    MEGARA is the future visible integral-field and multi-object spectrograph for the GTC 10.4-m telescope located in La Palma. INAOE is a member of the MEGARA Consortium and it is in charge of the Optics Manufacturing work package. MEGARA passed the Optics Detailed Design Review in May 2013, and the blanks of the main optics have been already ordered and their manufacturing is in progress. Except for the optical fibers and microlenses, the complete MEGARA optical system will be manufactured in Mexico, shared between the workshops of INAOE and CIO. This includes a field lens, a 5-lenses collimator, a 7-lenses camera and a complete set of volume phase holographic gratings with 36 flat windows and 24 prisms, being all these elements very large and complex. Additionally, the optical tests and the complete assembly of the camera and collimator subsystems will be carried out in Mexico. Here we describe the current status of the optics manufacturing process.

  19. Novel Nanotube Manufacturing Streamlines Production

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Nanotubes have novel qualities that make them uniquely qualified for a plethora of uses, including applications in electronics, optics, and other scientific and industrial fields. The NASA process for creating these nanostructures involves using helium arc welding to vaporize an amorphous carbon rod and then form nanotubes by depositing the vapor onto a water-cooled carbon cathode, which then yields bundles, or ropes, of single-walled nanotubes at a rate of 2 grams per hour using a single setup. This eliminates costs associated with the use of metal catalysts, including the cost of product purification, resulting in a relatively inexpensive, high-quality, very pure end product. While managing to be less expensive, safer, and simpler, the process also increases the quality of the nanotubes. Goddard's Innovative Partnerships Program (IPP) Office promoted the technology, and in 2005, Boise-based Idaho Space Materials Inc. (ISM) was formed and applied for a nonexclusive license for the single-walled carbon nanotube (SWCNT) manufacturing technology. ISM commercialized its products, and the inexpensive, robust nanotubes are now in the hands of the scientists who will create the next generation of composite polymers, metals, and ceramics that will impact the way we live. In fact, researchers are examining ways for these newfound materials to be used in the manufacture of transistors and fuel cells, large screen televisions, ultra-sensitive sensors, high-resolution atomic force microscopy probes, supercapacitors, transparent conducting films, drug carriers, catalysts, and advanced composite materials, to name just a few of the myriad technologies to benefit.

  20. Wafer Manufacturing and Slicing Using Wiresaw

    NASA Astrophysics Data System (ADS)

    Kao, Imin; Chung, Chunhui; Moreno Rodriguez, Roosevelt

    Wafer manufacturing (or wafer production) refers to a series of modern manufacturing processes of producing single-crystalline or poly-crystalline wafers from crystal ingot (or boule) of different sizes and materials. The majority of wafers are single-crystalline silicon wafers used in microelectronics fabrication although there is increasing importance in slicing poly-crystalline photovoltaic (PV) silicon wafers as well as wafers of different materials such as aluminum oxide, lithium niobate, quartz, sapphire, III-V and II-VI compounds, and others. Slicing is the first major post crystal growth manufacturing process toward wafer production. The modern wiresaw has emerged as the technology for slicing various types of wafers, especially for large silicon wafers, gradually replacing the ID saw which has been the technology for wafer slicing in the last 30 years of the 20th century. Modern slurry wiresaw has been deployed to slice wafers from small to large diameters with varying wafer thickness characterized by minimum kerf loss and high surface quality. The needs for slicing large crystal ingots (300 mm in diameter or larger) effectively with minimum kerf losses and high surface quality have made it indispensable to employ the modern slurry wiresaw as the preferred tool for slicing. In this chapter, advances in technology and research on the modern slurry wiresaw manufacturing machines and technology are reviewed. Fundamental research in modeling and control of modern wiresaw manufacturing process are required in order to understand the cutting mechanism and to make it relevant for improving industrial processes. To this end, investigation and research have been conducted for the modeling, characterization, metrology, and control of the modern wiresaw manufacturing processes to meet the stringent precision requirements of the semiconductor industry. Research results in mathematical modeling, numerical simulation, experiments, and composition of slurry versus wafer

  1. A Knowledge Database on Thermal Control in Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Hirasawa, Shigeki; Satoh, Isao

    A prototype version of a knowledge database on thermal control in manufacturing processes, specifically, molding, semiconductor manufacturing, and micro-scale manufacturing has been developed. The knowledge database has search functions for technical data, evaluated benchmark data, academic papers, and patents. The database also displays trends and future roadmaps for research topics. It has quick-calculation functions for basic design. This paper summarizes present research topics and future research on thermal control in manufacturing engineering to collate the information to the knowledge database. In the molding process, the initial mold and melt temperatures are very important parameters. In addition, thermal control is related to many semiconductor processes, and the main parameter is temperature variation in wafers. Accurate in-situ temperature measurment of wafers is important. And many technologies are being developed to manufacture micro-structures. Accordingly, the knowledge database will help further advance these technologies.

  2. Single-use disposable technologies for biopharmaceutical manufacturing.

    PubMed

    Shukla, Abhinav A; Gottschalk, Uwe

    2013-03-01

    The manufacture of protein biopharmaceuticals is conducted under current good manufacturing practice (cGMP) and involves multiple unit operations for upstream production and downstream purification. Until recently, production facilities relied on the use of relatively inflexible, hard-piped equipment including large stainless steel bioreactors and tanks to hold product intermediates and buffers. However, there is an increasing trend towards the adoption of single-use technologies across the manufacturing process. Technical advances have now made an end-to-end single-use manufacturing facility possible, but several aspects of single-use technology require further improvement and are continually evolving. This article provides a perspective on the current state-of-the-art in single-use technologies and highlights trends that will improve performance and increase the market penetration of disposable manufacturing in the future.

  3. Applying Additive Manufacturing to a New Liquid Oxygen Turbopump Design

    NASA Technical Reports Server (NTRS)

    O'Neal, Derek

    2016-01-01

    A liquid oxygen turbopump has been designed at Marshall Space Flight Center as part of the in-house, Advanced Manufacturing Demonstrator Engine (AMDE) project. Additive manufacturing, specifically direct metal laser sintering (DMLS) of Inconel 718, is used for 77% of the parts by mass. These parts include the impeller, turbine components, and housings. The near-net shape DMLS parts have been delivered and final machining is underway. Fabrication of the traditionally manufactured hardware is also proceeding. Testing in liquid oxygen is planned for Q2 of FY2017. This topic explores the design of the turbopump along with fabrication and material testing of the DMLS hardware.

  4. Trials and tribulations of optical manufacturing: asphere edition

    NASA Astrophysics Data System (ADS)

    Frisch, Gregory; Medicus, Kate; Schickler, Mark; Light, Brandon; DeGroote Nelson, Jessica

    2015-09-01

    With the ongoing advancements in aspheric manufacturing and metrology, companies have to overcome processing challenges and from time to time learn costly lessons along the way. Optimax Systems, Inc., a leader in quick delivery prototype optics, has been manufacturing aspheric lenses for over 20 years. Along the way, we have learned many lessons, some the hard way. In this paper, I will share a few stories of how aspheres have humbled us, how we overcame the problem, and provide takeaways for other manufactures and designers.

  5. Applications of Metal Additive Manufacturing in Veterinary Orthopedic Surgery

    NASA Astrophysics Data System (ADS)

    Harrysson, Ola L. A.; Marcellin-Little, Denis J.; Horn, Timothy J.

    2015-03-01

    Veterinary medicine has undergone a rapid increase in specialization over the last three decades. Veterinarians now routinely perform joint replacement, neurosurgery, limb-sparing surgery, interventional radiology, radiation therapy, and other complex medical procedures. Many procedures involve advanced imaging and surgical planning. Evidence-based medicine has also become part of the modus operandi of veterinary clinicians. Modeling and additive manufacturing can provide individualized or customized therapeutic solutions to support the management of companion animals with complex medical problems. The use of metal additive manufacturing is increasing in veterinary orthopedic surgery. This review describes and discusses current and potential applications of metal additive manufacturing in veterinary orthopedic surgery.

  6. Perspectives on Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  7. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  8. Electrohydrodynamic Printing and Manufacturing

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor); Poon, Hak Fei (Inventor); Korkut, Sibel (Inventor); Chen, Chuan-hua (Inventor)

    2014-01-01

    An stable electrohydrodynamic filament is obtained by causing a straight electrohydrodynamic filament formed from a liquid to emerge from a Taylor cone, the filament having a diameter of from 10 nm to 100.mu.m. Such filaments are useful in electrohydrodynamic printing and manufacturing techniques and their application in liquid drop/particle and fiber production, colloidal deployment and assembly, and composite materials processing.

  9. Advanced cryogenic tank development status

    NASA Astrophysics Data System (ADS)

    Braun, G. F.; Tack, W. T.; Scholz, E. F.

    1993-06-01

    Significant advances have been made in the development of materials, structures, and manufacturing technologies for the next generation of cryogenic propellant tanks under the auspices of a joint U.S. Air Force/NASA sponsored advanced development program. This paper summarizes the achievements of this three-year program, particularly in the evolution and properties of Weldalite 049, net shape component technology, Al-Li welding technology, and efficient manufacturing concepts. Results of a recent mechanical property characterization of a full-scale integrally stiffened barrel panel extrusion are presented, as well as plans for an additional weld process optimization program using response surface design of experiment techniques. A further discussion is given to the status of hardware completed for the Advanced Manufacturing Development Center and Martin Marietta's commitment to the integration of these technologies into the production of low-cost, light-weight cryogenic propellant tanks.

  10. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  11. Manufactured Homes Tool

    2005-03-09

    The MH Tool software is designed to evaluate existing and new manufactured homes for structural adequacy in high winds. Users define design elements of a manufactured home and then select the hazard(s) for analysis. MH Tool then calculates and reports structural analysis results for the specified design and hazard Method of Solution: Design engineers input information (geometries, materials, etc.) describing the structure of a manufactured home, from which the software automatically creates a mathematical model.more » Windows, doors, and interior walls can be added to the initial design. HUD Code loads (wind, snow loads, interior live loads, etc.) are automatically applied. A finite element analysis is automatically performed using a third party solver to find forces and stresses throughout the structure. The designer may then employ components of strength (and cost) most appropriate for the loads that must be carried at each location, and then re-run the analysis for verification. If forces and stresses are still within tolerable limits (such as the HUD requirements), construction costs would be reduced without sacrificing quality.« less

  12. 77 FR 2275 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... manufacturing and alternative energy manufacturing sectors. Additional factors that may be considered in the... Washington, DC. The next meeting is scheduled to take place on January 20, 2012 in Washington, DC. See 76...

  13. Dermatitis in rubber manufacturing industries

    SciTech Connect

    White, I.R.

    1988-01-01

    This review describes the history of rubber technology and the manufacturing techniques used in rubber manufacturing industries. The important aspects of the acquisition of allergic and irritant contact dermatitis within the industry are presented for the reader.

  14. 75 FR 80040 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On November 23, 2010, the Department of Commerce's International Trade Administration published a notice in the Federal Register (75 FR 71417) soliciting applications to fill...

  15. 75 FR 30781 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On March 16, 2010, the Department of Commerce's International Trade Administration published a notice in the Federal Register (75 FR 12507) soliciting applications for membership...

  16. 77 FR 69794 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On September 14, 2012, the Department of Commerce's International Trade Administration (ITA) published a notice in the Federal Register (77 FR 56811) soliciting applications...

  17. 77 FR 66179 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... manufacturing council. SUMMARY: On September 14, 2012, the Department of Commerce's International Trade Administration published a notice in the Federal Register (77 FR 56811) soliciting applications for...

  18. Manufacturing a Superconductor in School.

    ERIC Educational Resources Information Center

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  19. Decision Guidance for Sustainable Manufacturing

    ERIC Educational Resources Information Center

    Shao, Guodong

    2013-01-01

    Sustainable manufacturing has significant impacts on a company's business performance and competitiveness in today's world. A growing number of manufacturing industries are initiating efforts to address sustainability issues; however, to achieve a higher level of sustainability, manufacturers need methodologies for formally describing, analyzing,…

  20. 77 FR 56811 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity to Apply for Membership on the Manufacturing Council... ] Manufacturing Council (Council) for a two-year term to begin in fall 2012. The purpose of the Council is...

  1. 76 FR 33244 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity To Apply for Membership on the Manufacturing Council... Manufacturing Council (Council). The purpose of the Council is to advise the Secretary of Commerce on...

  2. Out of bounds additive manufacturing

    DOE PAGES

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  3. Manufacturing Curriculum Grant. Final Report.

    ERIC Educational Resources Information Center

    Scarborough, Jule Dee

    A manufacturing curriculum for secondary vocational programs was designed to bridge the gap between grades 9-10 level courses and the community college-level curriculum of the Illinois Plan for Industrial Education. During the project, a literature review of manufacturing curriculum materials was conducted, a manufacturing conceptual framework was…

  4. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  5. Additive manufacturing of biologically-inspired materials.

    PubMed

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities.

  6. Advanced defect and metrology solutions

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2014-05-01

    Cost, weight, performance, and lifetime requirements for precision components used throughout the aerospace and defense industries are driving innovative mechanical designs, manufacturing processes and use of new materials. In turn, these advanced components typically require tighter dimensional and surface tolerances to function as designed. Scratch testers, microscope-based systems, and other traditional metrology systems are inadequate for roughness, small-scale geometry, and defect determination on many of these parts. This talk will examine the advantages and disadvantages of some of the new technologies developed to provide more robust, versatile, and sensitive measurements of precision components for advanced manufacturing environments.

  7. Costs and Benefits of Advanced Aeronautical Technology

    NASA Technical Reports Server (NTRS)

    Bobick, J. C.; Denny, R. E.

    1983-01-01

    Programs available from COSMIC used to evaluate economic feasibility of applying advanced aeronautical technology to civil aircraft of future. Programs are composed of three major models: Fleet Accounting Module, Airframe manufacturer Module, and Air Carrier Module.

  8. Advanced composite stabilizer for Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Activities related to development of an advanced composites stabilizer for the Boeing 737 commercial transport are reported. Activities include discussion of criteria and objectives, design loads, the fatigue spectrum definition to be used for all spectrum fatigue testing, fatigue analysis, manufacturing producibility studies, the ancillary test program, quality assurance, and manufacturing development.

  9. Metal Additive Manufacturing: A Review

    NASA Astrophysics Data System (ADS)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  10. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 1; A Study Employing Neural Cell Adhesion Molecules (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy)

    NASA Technical Reports Server (NTRS)

    Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  11. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  12. Manufactured soil screening test

    SciTech Connect

    1999-05-01

    The purpose of this technical note is to provide a screening test that can be used to evaluate the potential for manufacturing artificial soil using dredged material, cellulose waste materials (e.g., yard waste compost, sawdust, wastepaper), and biosolids (e.g., N-Viro-reconditioned sewage sludge, BIONSOIL-reconstituted cow manure). This procedure will allow the most productive blend of any dredged material (uncontaminated or contaminated), cellulose, and biosolids to be determined and recommended for use in an environmentally productive and beneficial manner.

  13. Manufacturing of microarrays.

    PubMed

    Petersen, David W; Kawasaki, Ernest S

    2007-01-01

    DNA microarray technology has become a powerful tool in the arsenal of the molecular biologist. Capitalizing on high precision robotics and the wealth of DNA sequences annotated from the genomes of a large number of organisms, the manufacture of microarrays is now possible for the average academic laboratory with the funds and motivation. Microarray production requires attention to both biological and physical resources, including DNA libraries, robotics, and qualified personnel. While the fabrication of microarrays is a very labor-intensive process, production of quality microarrays individually tailored on a project-by-project basis will help researchers shed light on future scientific questions.

  14. Intelligent processing equipment developments within the Navy's Manufacturing Technology Centers of Excellence

    NASA Astrophysics Data System (ADS)

    Nanzetta, Philip

    1992-04-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  15. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  16. Global drivers, sustainable manufacturing and systems ergonomics.

    PubMed

    Siemieniuch, C E; Sinclair, M A; Henshaw, M J deC

    2015-11-01

    This paper briefly explores the expected impact of the 'Global Drivers' (such as population demographics, food security; energy security; community security and safety), and the role of sustainability engineering in mitigating the potential effects of these Global Drivers. The message of the paper is that sustainability requires a significant input from Ergonomics/Human Factors, but the profession needs some expansion in its thinking in order to make this contribution. Creating a future sustainable world in which people experience an acceptable way of life will not happen without a large input from manufacturing industry into all the Global Drivers, both in delivering products that meet sustainability criteria (such as durability, reliability, minimised material requirement and low energy consumption), and in developing sustainable processes to deliver products for sustainability (such as minimum waste, minimum emissions and low energy consumption). Appropriate changes are already being implemented in manufacturing industry, including new business models, new jobs and new skills. Considerable high-level planning around the world is in progress and is bringing about these changes; for example, there is the US 'Advanced Manufacturing National Program' (AMNP)', the German 'Industrie 4.0' plan, the French plan 'la nouvelle France industrielle' and the UK Foresight publications on the 'Future of Manufacturing'. All of these activities recognise the central part that humans will continue to play in the new manufacturing paradigms; however, they do not discuss many of the issues that systems ergonomics professionals acknowledge. This paper discusses a number of these issues, highlighting the need for some new thinking and knowledge capture by systems ergonomics professionals. Among these are ethical issues, job content and skills issues. Towards the end, there is a summary of knowledge extensions considered necessary in order that systems ergonomists can be fully

  17. Additive Manufacturing for Affordable Rocket Engines

    NASA Technical Reports Server (NTRS)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  18. Global drivers, sustainable manufacturing and systems ergonomics.

    PubMed

    Siemieniuch, C E; Sinclair, M A; Henshaw, M J deC

    2015-11-01

    This paper briefly explores the expected impact of the 'Global Drivers' (such as population demographics, food security; energy security; community security and safety), and the role of sustainability engineering in mitigating the potential effects of these Global Drivers. The message of the paper is that sustainability requires a significant input from Ergonomics/Human Factors, but the profession needs some expansion in its thinking in order to make this contribution. Creating a future sustainable world in which people experience an acceptable way of life will not happen without a large input from manufacturing industry into all the Global Drivers, both in delivering products that meet sustainability criteria (such as durability, reliability, minimised material requirement and low energy consumption), and in developing sustainable processes to deliver products for sustainability (such as minimum waste, minimum emissions and low energy consumption). Appropriate changes are already being implemented in manufacturing industry, including new business models, new jobs and new skills. Considerable high-level planning around the world is in progress and is bringing about these changes; for example, there is the US 'Advanced Manufacturing National Program' (AMNP)', the German 'Industrie 4.0' plan, the French plan 'la nouvelle France industrielle' and the UK Foresight publications on the 'Future of Manufacturing'. All of these activities recognise the central part that humans will continue to play in the new manufacturing paradigms; however, they do not discuss many of the issues that systems ergonomics professionals acknowledge. This paper discusses a number of these issues, highlighting the need for some new thinking and knowledge capture by systems ergonomics professionals. Among these are ethical issues, job content and skills issues. Towards the end, there is a summary of knowledge extensions considered necessary in order that systems ergonomists can be fully

  19. Integrating post-manufacturing issues into design and manufacturing decisions

    NASA Technical Reports Server (NTRS)

    Eubanks, Charles F.

    1996-01-01

    An investigation is conducted on research into some of the fundamental issues underlying the design for manufacturing, service and recycling that affect engineering decisions early in the conceptual design phase of mechanical systems. The investigation focuses on a system-based approach to material selection, manufacturing methods and assembly processes related to overall product requirements, performance and life-cycle costs. Particular emphasis is placed on concurrent engineering decision support for post-manufacturing issues such as serviceability, recyclability, and product retirement.

  20. 75 FR 38078 - Manufacturing and Services' Manufacture America Initiative and Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... International Trade Administration Manufacturing and Services' Manufacture America Initiative and Events ACTION... manufacturing. SUMMARY: The International Trade Administration's Manufacturing and Services Unit is launching a... government agencies as well as universities. To address these challenges, the Manufacturing and...

  1. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  2. Using microwave Doppler radar in automated manufacturing applications

    NASA Astrophysics Data System (ADS)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help

  3. Manufacturing Technology Information Analysis Center: Knowledge is strength

    NASA Astrophysics Data System (ADS)

    Safar, Michal

    1992-04-01

    The Center's primary function is to facilitate technology transfer within DoD, other government agencies and industry. The DoD has recognized the importance of technology transfer, not only to support specific weapon system manufacture, but to strengthen the industrial base that sustains DoD. MTIAC uses an experienced technical staff of engineers and information specialists to acquire, analyze, and disseminate technical information. Besides ManTech project data, MTIAC collects manufacturing technology from other government agencies, commercial publications, proceedings, and various international sources. MTIAC has various means of disseminating this information. Much of the technical data is on user accessible data bases. The Center researches and writes a number of technical reports each year and publishes a newsletter monthly. Customized research is performed in response to specific inquiries from government and industry. MTIAC serves as a link between Government and Industry to strengthen the manufacturing technology base through the dissemination of advanced manufacturing information.

  4. Thermodynamically consistent microstructure prediction of additively manufactured materials

    NASA Astrophysics Data System (ADS)

    Smith, Jacob; Xiong, Wei; Cao, Jian; Liu, Wing Kam

    2016-03-01

    Additive manufacturing has risen to the top of research interest in advanced manufacturing in recent years due to process flexibility, achievability of geometric complexity, and the ability to locally modify and optimize materials. The present work is focused on providing an approach for incorporating thermodynamically consistent properties and microstructure evolution for non-equilibrium supercooling, as observed in additive manufacturing processes, into finite element analysis. There are two primary benefits of this work: (1) the resulting prediction is based on the material composition and (2) the nonlinear behavior caused by the thermodynamic properties of the material during the non-equilibrium solution is accounted for with extremely high resolution. The predicted temperature response and microstructure evolution for additively manufactured stainless steel 316L using standard handbook-obtained thermodynamic properties are compared with the thermodynamic properties calculated using the CALculation of PHAse Diagrams (CALPHAD) approach. Data transfer from the CALPHAD approach to finite element analysis is discussed.

  5. Manufacture and quality control of interconnecting wire hardnesses, Volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A standard is presented for manufacture, installation, and quality control of eight types of interconnecting wire harnesses. The processes, process controls, and inspection and test requirements reflected are based on acknowledgment of harness design requirements, acknowledgment of harness installation requirements, identification of the various parts, materials, etc., utilized in harness manufacture, and formulation of a typical manufacturing flow diagram for identification of each manufacturing and quality control process, operation, inspection, and test. The document covers interconnecting wire harnesses defined in the design standard, including type 1, enclosed in fluorocarbon elastomer convolute, tubing; type 2, enclosed in TFE convolute tubing lines with fiberglass braid; type 3, enclosed in TFE convolute tubing; and type 5, combination of types 3 and 4. Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated.

  6. Turbine airfoil manufacturing technology

    SciTech Connect

    Kortovich, C.

    1995-10-01

    The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.

  7. Manufacture of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  8. Technique for microswitch manufacture

    NASA Astrophysics Data System (ADS)

    Kitamura, T.; Kiyoyama, S.

    1983-05-01

    A five-step technique for microswitch manufacture is described: (1) A clad board is inlaid with a precious metal and the board is pressed. (2) One end of the fixed contact containing a precious metal inlay section is curved, and this edge of the precious metal inlay section becomes a fixed contact. (3) Inserts are formed in the unit body and terminal strips are placed through the top and bottom of the base and held. (4) The unit body is held by the base and the sequential contact strips are cut off. (5) Movable stripes are attached to the support of the terminal strips on the movable side and movable contacts are placed opposite the fixed contacts.

  9. REGIONAL MANUFACTURING TECHNICAL DEVELOPMENT

    SciTech Connect

    EASON, H.A.

    1997-02-21

    This project covers four CRADAS (Cooperative Research and Development Agreements) which were initiated in 1991 and 1993. The two CRADAS with the state of Tennessee and the state of Florida were to provide technical assistance to small manufacturers in those states and the CRADA with the Tennessee Technology Foundation was to engage in joint economic development activities within the state. These three CRADAS do not fit the traditional definition of CRADAS and would be administered by other agreement mechanisms, today. But in these early days of technology transfer efforts, the CRADA mechanism was already developed and usable. The CRADA with Coors Ceramics is a good example of a CRADA and was used to develop nondestructive testing technology for ceramic component inspection. The report describes the background of this project, its economic impact, and its benefits to the U. S. Department of Energy.

  10. Technique for microswitch manufacture

    NASA Technical Reports Server (NTRS)

    Kitamura, T.; Kiyoyama, S.

    1983-01-01

    A five-step technique for microswitch manufacture is described: (1) A clad board is inlaid with a precious metal and the board is pressed. (2) One end of the fixed contact containing a precious metal inlay section is curved, and this edge of the precious metal inlay section becomes a fixed contact. (3) Inserts are formed in the unit body and terminal strips are placed through the top and bottom of the base and held. (4) The unit body is held by the base and the sequential contact strips are cut off. (5) Movable stripes are attached to the support of the terminal strips on the movable side and movable contacts are placed opposite the fixed contacts.

  11. Manufacturing consumption of energy 1994

    SciTech Connect

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  12. Additive manufacturing of optical components

    NASA Astrophysics Data System (ADS)

    Heinrich, Andreas; Rank, Manuel; Maillard, Philippe; Suckow, Anne; Bauckhage, Yannick; Rößler, Patrick; Lang, Johannes; Shariff, Fatin; Pekrul, Sven

    2016-08-01

    The development of additive manufacturing methods has enlarged rapidly in recent years. Thereby, the work mainly focuses on the realization of mechanical components, but the additive manufacturing technology offers a high potential in the field of optics as well. Owing to new design possibilities, completely new solutions are possible. This article briefly reviews and compares the most important additive manufacturing methods for polymer optics. Additionally, it points out the characteristics of additive manufactured polymer optics. Thereby, surface quality is of crucial importance. In order to improve it, appropriate post-processing steps are necessary (e.g. robot polishing or coating), which will be discussed. An essential part of this paper deals with various additive manufactured optical components and their use, especially in optical systems for shape metrology (e.g. borehole sensor, tilt sensor, freeform surface sensor, fisheye lens). The examples should demonstrate the potentials and limitations of optical components produced by additive manufacturing.

  13. Manufacturing consumption of energy 1991

    SciTech Connect

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  14. Manufacturing scale-up of composite fuselage crown panels

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Gessel, M.; Grant, Carroll G.; Brown, T.

    1993-01-01

    The goal of the Boeing effort under the NASA ACT program is to reduce manufacturing costs of composite fuselage structure. Materials, fabrication of complex subcomponents and assembly issues are expected to drive the costs of composite fuselage structure. Several manufacturing concepts for the crown section of the fuselage were evaluated through the efforts of a Design Build Team (DBT). A skin-stringer-frame intricate bond design that required no fasteners for the panel assembly was selected for further manufacturing demonstrations. The manufacturing processes selected for the intricate bond design include Advanced Tow Placement (ATP) for multiple skin fabrication, resin transfer molding (RTM) of fuselage frames, innovative cure tooling, and utilization of low-cost material forms. Optimization of these processes for final design/manufacturing configuration was evaluated through the fabrication of several intricate bond panels. Panels up to 7 ft. by 10 ft. in size were fabricated to simulate half scale production parts. The qualitative and quantitative results of these manufacturing demonstrations were used to assess manufacturing risks and technology readiness for production.

  15. Manufacturing road map for tissue engineering and regenerative medicine technologies.

    PubMed

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James; Atala, Anthony

    2015-02-01

    The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM.

  16. Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies

    PubMed Central

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James

    2015-01-01

    Summary The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM. PMID:25575525

  17. Additive Manufacturing: Making Imagination the Major Limitation

    NASA Astrophysics Data System (ADS)

    Zhai, Yuwei; Lados, Diana A.; LaGoy, Jane L.

    2014-05-01

    Additive manufacturing (AM) refers to an advanced technology used for the fabrication of three-dimensional near-net-shaped functional components directly from computer models, using unit materials. The fundamentals and working principle of AM offer several advantages, including near-net-shape capabilities, superior design and geometrical flexibility, innovative multi-material fabrication, reduced tooling and fixturing, shorter cycle time for design and manufacturing, instant local production at a global scale, and material, energy, and cost efficiency. Well suiting the requests of modern manufacturing climate, AM is viewed as the new industrial revolution, making its way into a continuously increasing number of industries, such as aerospace, defense, automotive, medical, architecture, art, jewelry, and food. This overview was created to relate the historical evolution of the AM technology to its state-of-the-art developments and emerging applications. Generic thoughts on the microstructural characteristics, properties, and performance of AM-fabricated materials will also be discussed, primarily related to metallic materials. This write-up will introduce the general reader to specifics of the AM field vis-à-vis advantages and common techniques, materials and properties, current applications, and future opportunities.

  18. Materials and Manufacturing Research and Collaboration with the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Vickers, John H.

    2005-01-01

    A strong materials and manufacturing base is an essential element to enable sustained and affordable human and robotic space exploration. NASA requires development and implementation of advanced technologies from wide-ranging segments of materials and manufacturing to provide capabilities in areas such as propulsion, power, vehicle and habitat structures, optics, radiation protection, thermal protection, in-situ manufacturing, and information technologies. This presentation will explore the latest challenges, opportunities, initiatives, and developments aimed at addressing NASA technological needs.

  19. Perspectives on internet-based frameworks/infrastructures for virtual manufacturing enterprises : a literature review.

    SciTech Connect

    Bowers, John S.; Cecil, Joe

    2005-03-01

    Virtual manufacturing enterprises (VMEs) are a current, viable, and strategic form of organization for business and other organizations. The perspectives described in this literature review are based upon a basic cluster analysis that identified and classified papers into homogenous subgroups with meaningful themes, or categories. These general themes are related to strategies for business organization and advanced information technologies, virtual industrial/manufacturing organizations/enterprises, frameworks supporting virtual manufacturing enterprises (VMEs), and information technology infrastructures for VMEs.

  20. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  1. Wireless technology for integrated manufacturing

    SciTech Connect

    Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

    1996-08-01

    This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

  2. Industrial Arts 7-9. Manufacturing: Metalwork, Plastics, Woodwork, Manufacturing.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg. Div. of Vocational Education.

    This curriculum guide provides materials for the industrial arts (grades 7-9) subject cluster of manufacturing. This subject cluster has four areas of study: metalwork, plastics, woodwork, and manufacturing. Introductory materials include an overview of the industrial arts curriculum in its entirety, a listing of program objectives for each of the…

  3. Exploring Manufacturing Occupations. Instructor's Guide. The Manufacturing Cluster.

    ERIC Educational Resources Information Center

    Fairleigh Dickinson Univ., Rutherford, NJ.

    The major focus of this guide and its accompanying student manual (CE 010 397) is to help the student understand the manufacturing enterprise. (The guide and student manual are part of a manufacturing cluster series which addresses itself to career awareness, orientation, exploration, and preparation.) Seven sections are included. An overview of…

  4. Exploring Manufacturing Occupations. Student's Manual. The Manufacturing Cluster.

    ERIC Educational Resources Information Center

    Fairleigh Dickinson Univ., Rutherford, NJ.

    This student manual and the accompanying instructor's guide (CE 010 376) are directed toward exploring manufacturing occupations. It is designed to help the student explore the various career, occupational, and job related fields found within the manufacturing occupations. Four sections are included. An overview of career education and…

  5. Device overlay method for high volume manufacturing

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Han, Sangjun; Kim, Youngsik; Kim, Myoungsoo; Heo, Hoyoung; Jeon, Sanghuck; Choi, DongSub; Nabeth, Jeremy; Brinster, Irina; Pierson, Bill; Robinson, John C.

    2016-03-01

    Advancing technology nodes with smaller process margins require improved photolithography overlay control. Overlay control at develop inspection (DI) based on optical metrology targets is well established in semiconductor manufacturing. Advances in target design and metrology technology have enabled significant improvements in overlay precision and accuracy. One approach to represent in-die on-device as-etched overlay is to measure at final inspection (FI) with a scanning electron microscope (SEM). Disadvantages to this approach include inability to rework, limited layer coverage due to lack of transparency, and higher cost of ownership (CoO). A hybrid approach is investigated in this report whereby infrequent DI/FI bias is characterized and the results are used to compensate the frequent DI overlay results. The bias characterization is done on an infrequent basis, either based on time or triggered from change points. On a per-device and per-layer basis, the optical target overlay at DI is compared with SEM on-device overlay at FI. The bias characterization results are validated and tracked for use in compensating the DI APC controller. Results of the DI/FI bias characterization and sources of variation are presented, as well as the impact on the DI correctables feeding the APC system. Implementation details in a high volume manufacturing (HVM) wafer fab will be reviewed. Finally future directions of the investigation will be discussed.

  6. 75 FR 6355 - Manufacturing Extension Partnership (MEP) Availability of Funds for Three Regions Including the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... methodology for delivering advanced manufacturing technology to small- and medium-sized manufacturers and... the Federal Register Notice of February 11, 2008 (73 FR 7696), are applicable to this notice. Please refer to http://www.gpoaccess.gov/fr/ . Dun and Bradstreet Data Universal Numbering System: On the...

  7. 77 FR 37653 - Manufacturing Extension Partnership (MEP) Centers for Arizona, Maryland and Rhode Island...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Mechanisms. Does the proposal clearly and sharply define an effective methodology for delivering advanced manufacturing technology to small- and medium-sized manufacturers and mechanism(s) for accelerating the adoption..., which are contained in the Federal Register notice of February 11, 2008 (73 FR 7696), are applicable...

  8. Manufacturing the MFTF magnet

    SciTech Connect

    Dalder, E.N.C.; Hinkle, R.E.; Hodges, A.J.

    1980-10-13

    The Mirror Fusion Test Facility (MFTF) is a large mirror program experiment for magnetic fusion energy. It will combine and extend the near-classical plasma confinement achieved in 2XIIB with advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime.

  9. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1980-01-01

    Progress in the transfer of aerospace technology to solve key problems in the manufacturing sector of the economy is reported. Potential RTOP programs are summarized along with dissemination activities. The impact of transferred NASA manufacturing technology is discussed. Specific areas covered include aircraft production, robot technology, machining of alloys, and electrical switching systems.

  10. 75 FR 12507 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an opportunity to apply for membership on the Manufacturing Council. SUMMARY: The Department of Commerce is currently seeking applications for membership on the...

  11. Graphical simulation for aerospace manufacturing

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Bien, Christopher

    1994-01-01

    Simulation software has become a key technological enabler for integrating flexible manufacturing systems and streamlining the overall aerospace manufacturing process. In particular, robot simulation and offline programming software is being credited for reducing down time and labor cost, while boosting quality and significantly increasing productivity.

  12. Job Prospects for Manufacturing Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    Coming from a variety of disciplines, manufacturing engineers are keys to industry's efforts to modernize, with demand exceeding supply. The newest and fastest-growing areas include machine vision, composite materials, and manufacturing automation protocols, each of which is briefly discussed. (JN)

  13. Innovative tissue engineering structures through advanced manufacturing technologies.

    PubMed

    Ciardelli, Gianluca; Chiono, Valeria; Cristallini, Caterina; Barbani, Niccoletta; Ahluwalia, Arti; Vozzi, Giovanni; Previti, Antonino; Tantussi, Giovanni; Giusti, Paolo

    2004-04-01

    Awide range of rapid prototyping (RP) techniques for the construction of three-dimensional (3-D) scaffolds for tissue engineering has been recently developed. In this study, we report and compare two methods for the fabrication of poly-(epsilon-caprolactone) and poly-(epsilon-caprolactone)-poly-(oxyethylene)-poly-(epsilon-caprolactone) copolymer scaffolds. The first technique is based on the use of a microsyringe and a computer-controlled three-axis micropositioner, which regulates motor speed and position. Polymer solutions are extruded through the needle of the microsyringe by the application of a constant pressure of 10-300 mm Hg, resulting in controlled polymer deposition of 5-600 microm lateral dimensions. The second method utilises the heating energy of a laser beam to sinter polymer microparticles according to computer-guided geometries. Materials may be fed either as dry powder or slurry of microparticles. Both powder granulometry and laser working parameters influence resolution (generally 300 microm x 700 microm), accuracy of sintering and surface and bulk properties of the final structures. The two RP methods allow the fabrication of 3-D scaffolds with a controlled architecture, providing a powerful means to study cell response to an environment similar to that found

  14. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  15. Environmental assessment of advanced thin film manufacturing process. Final report

    SciTech Connect

    Cunningham, D.W.; Mopas, E.; Skinner, D.; McGuire, L.; Strehlow, M.

    1998-09-01

    This report describes work performed by BP Solar, Inc., to provide an extensive preproduction analysis of waste-stream abatement at its plant in Fairfield, California. During the study, numerous technologies were thoroughly evaluated, which allowed BP Solar to select systems that outperformed the stringent federal and state regulations. The main issues were originally perceived to be controlling cadmium compound releases to both air and wastewater to acceptable levels and adopting technologies for air and water waste streams in an efficient, cost-effective manner. BP Solar proposed high-efficiency, reliable control equipment that would reduce air-contaminant emission levels below levels of concern. Cadmium telluride dust is successfully controlled with high-efficiency (>99.9%) bag-in/bag-out filters. For air abatement, carbon canisters provide efficient VOC reduction, and wastewater pretreatment is required per federal pretreatment standards. BP Solar installed a cadmium-scavenging ion exchange system and electrowinning system capable of removing cadmium to <10 ppb (local publicly-owned-treatment-works limits for cadmium is 30 ppb). BP Solar plans to maximize potential reuse of rinse waters by phasing in additional wastewater treatment technologies. Finally, the work to date has identified the areas that need to be revisited as production scales up to ensure that all health, safety, and environmental goals are met.

  16. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of substation of modified CNCs is determined by quantitative direct carbon MAS NMR for malonate CNCs, malate CNCs and Citrate CNCs are found to be 0.16, 0.22 and 0.18, respectively. Re-hydrolysis experiments are performed and the yield of citrate CNCs was increased to 55% with little effect on CNC crystallinity or morphology. Citrate CNCs are then used for a myriad of applications such as polymer reinforcement (polyvinyl alcohol (PVOH) and bio-temptation of inorganic nanoparticles. Introduction of just 1% citrate CNCs results in a 40°C increase in PVOH's thermal stability (T50%). Appendant citrate groups are used for the direct reduction of silver nanoparticles without any external reducing agents. Finally citrate CNCs are used to reinforce collagen hydrogels. Chapter four builds on "grafting from" reactions of poly(methyl methacrylate) (PMMA) onto the surface of CNCs to further increase the HDT of PLAs above 100°C. Taking advantage of the PMMA-PLLA miscibility, the presence of PMMA grafts on the CNC surface clearly improves CNC dispersion in PLLA, and reduces CNC aggregation thus enhancing the PLAs HDT. Herein "grafting from" reactions of poly(methyl methacrylate) (PMMA) on the surface of CNCs was is performed by free-radical grafting in water using two different redox initiators: Fe2+/H2O2 (Fenton's reagent) and ceric ammonium nitrate (CAN). The amount of grafted PMMA could be easily tuned according to the initiator and CAN clearly represents the most efficient initiator. From rheological data, high grafting levels favor the percolation of CNC with the development of a long-range 3D network. PLA's (HDT) higher was increased to over 130°C. Chapter five reports blending PLA with another renewable poly(o-hydroxytetradecanoic acid) (PC14).The goal of this chapter is to enhance the poor brittleness of PLA by blending with a rubbery polymer such as PC14. Like most polymer blends, PLA and PC14 are however found to be immiscible by simple blending. To achieve this goal, a fully bio-sourced PLA based polymer blend is conceived by incorporating small quantities of poly(o-hydroxytetradecanoic acid) (PC14). PC14 is produced by polycondensation, thus we explore ring opening polymerization of poly(w-pentadecalactone) using enzymatic reactive extrusion. The final chapter of this thesis concerns the feasibility of conducting an enzymatic ring-opening polymerization on the basis of lipase enzymes by reactive extrusion (REX) at high shear and temperature conditions. The ability of lipases to catalyze ring-opening and condensation polymerizations at relatively low temperatures (e.g. 70--90°C) is advantageous to reduce energy input and to preserve thermally sensitive chemical moieties. However, when high molecular weight polymer synthesis is desired, corresponding diffusional constraints must be overcome by either running reactions at higher temperatures (e.g. 150--220°C) or by adding solvent. Reactive extrusion (REX) has been used to overcome the aforementioned problems of bulk polymerizations that slows chain growth. In the chapter using immobilized Candida antarctica Lipase B (CALB) as catalyst at temperatures ranging from 90 to 130°C is investigated. (Abstract shortened by UMI.).

  17. Advanced Manufacturing and Value-added Products from US Agriculture

    NASA Technical Reports Server (NTRS)

    Villet, Ruxton H.; Child, Dennis R.; Acock, Basil

    1992-01-01

    An objective of the US Department of Agriculture (USDA) Agriculture Research Service (ARS) is to develop technology leading to a broad portfolio of value-added marketable products. Modern scientific disciplines such as chemical engineering are brought into play to develop processes for converting bulk commodities into high-margin products. To accomplish this, the extremely sophisticated processing devices which form the basis of modern biotechnology, namely, genes and enzymes, can be tailored to perform the required functions. The USDA/ARS is a leader in the development of intelligent processing equipment (IPE) for agriculture in the broadest sense. Applications of IPE are found in the production, processing, grading, and marketing aspects of agriculture. Various biotechnology applications of IPE are discussed.

  18. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  19. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of substation of modified CNCs is determined by quantitative direct carbon MAS NMR for malonate CNCs, malate CNCs and Citrate CNCs are found to be 0.16, 0.22 and 0.18, respectively. Re-hydrolysis experiments are performed and the yield of citrate CNCs was increased to 55% with little effect on CNC crystallinity or morphology. Citrate CNCs are then used for a myriad of applications such as polymer reinforcement (polyvinyl alcohol (PVOH) and bio-temptation of inorganic nanoparticles. Introduction of just 1% citrate CNCs results in a 40°C increase in PVOH's thermal stability (T50%). Appendant citrate groups are used for the direct reduction of silver nanoparticles without any external reducing agents. Finally citrate CNCs are used to reinforce collagen hydrogels. Chapter four builds on "grafting from" reactions of poly(methyl methacrylate) (PMMA) onto the surface of CNCs to further increase the HDT of PLAs above 100°C. Taking advantage of the PMMA-PLLA miscibility, the presence of PMMA grafts on the CNC surface clearly improves CNC dispersion in PLLA, and reduces CNC aggregation thus enhancing the PLAs HDT. Herein "grafting from" reactions of poly(methyl methacrylate) (PMMA) on the surface of CNCs was is performed by free-radical grafting in water using two different redox initiators: Fe2+/H2O2 (Fenton's reagent) and ceric ammonium nitrate (CAN). The amount of grafted PMMA could be easily tuned according to the initiator and CAN clearly represents the most efficient initiator. From rheological data, high grafting levels favor the percolation of CNC with the development of a long-range 3D network. PLA's (HDT) higher was increased to over 130°C. Chapter five reports blending PLA with another renewable poly(o-hydroxytetradecanoic acid) (PC14).The goal of this chapter is to enhance the poor brittleness of PLA by blending with a rubbery polymer such as PC14. Like most polymer blends, PLA and PC14 are however found to be immiscible by simple blending. To achieve this goal, a fully bio-sourced PLA based polymer blend is conceived by incorporating

  20. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  1. Nano-Magnets and Additive Manufacturing for Electric Motors

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2014-01-01

    High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.

  2. Beryllium Manufacturing Processes

    SciTech Connect

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  3. Manufacturability considerations for DSA

    NASA Astrophysics Data System (ADS)

    Farrell, Richard A.; Hosler, Erik R.; Schmid, Gerard M.; Xu, Ji; Preil, Moshe E.; Rastogi, Vinayak; Mohanty, Nihar; Kumar, Kaushik; Cicoria, Michael J.; Hetzer, David R.; DeVilliers, Anton

    2014-03-01

    Implementation of Directed Self-Assembly (DSA) as a viable lithographic technology for high volume manufacturing will require significant efforts to co-optimize the DSA process options and constraints with existing work flows. These work flows include established etch stacks, integration schemes, and design layout principles. The two foremost patterning schemes for DSA, chemoepitaxy and graphoepitaxy, each have their own advantages and disadvantages. Chemoepitaxy is well suited for regular repeating patterns, but has challenges when non-periodic design elements are required. As the line-space polystyrene-block-polymethylmethacrylate chemoepitaxy DSA processes mature, considerable progress has been made on reducing the density of topological (dislocation and disclination) defects but little is known about the existence of 3D buried defects and their subsequent pattern transfer to underlayers. In this paper, we highlight the emergence of a specific type of buried bridging defect within our two 28 nm pitch DSA flows and summarize our efforts to characterize and eliminate the buried defects using process, materials, and plasma-etch optimization. We also discuss how the optimization and removal of the buried defects impacts both the process window and pitch multiplication, facilitates measurement of the pattern roughness rectification, and demonstrate hard-mask open within a back-end-of-line integration flow. Finally, since graphoepitaxy has intrinsic benefits in terms of design flexibility when compared to chemoepitaxy, we highlight our initial investigations on implementing high-chi block copolymer patterning using multiple graphoepitaxy flows to realize sub-20 nm pitch line-space patterns and discuss the benefits of using high-chi block copolymers for roughness reduction.

  4. Benefits of modern refinery information systems for manufacturing cleaner fuels

    SciTech Connect

    Latour, P.R.

    1995-12-31

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions -- performance measurement, optimization, scheduling, control and integration -- are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  5. A factory concept for processing and manufacturing with lunar material

    NASA Technical Reports Server (NTRS)

    Driggers, G. W.

    1977-01-01

    A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.

  6. Targeting the neural cell adhesion molecule in cancer.

    PubMed

    Jensen, Markus; Berthold, Frank

    2007-12-01

    NCAM is a tumour associated antigen expressed on small cell lung cancer, neuroblastoma, rhabdomyosarkoma, brain tumours, multiple myelomas and acute myeloid leukaemia. Constant and strong expression of NCAM is a prerequisite for the development of antibody-based immunotherapies. From the spectrum of existing anti-NCAM compounds, radioimmunoconjugates and immunotoxins represent the clinically most advanced and successful strategies. Here we provide an overview of the evolving field of anti-NCAM immunotherapy for cancer and discuss its indications and limitations.

  7. [INVITED] Lasers in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Pinkerton, Andrew J.

    2016-04-01

    Additive manufacturing is a topic of considerable ongoing interest, with forecasts predicting it to have major impact on industry in the future. This paper focusses on the current status and potential future development of the technology, with particular reference to the role of lasers within it. It begins by making clear the types and roles of lasers in the different categories of additive manufacturing. This is followed by concise reviews of the economic benefits and disadvantages of the technology, current state of the market and use of additive manufacturing in different industries. Details of these fields are referenced rather than expanded in detail. The paper continues, focusing on current indicators to the future of additive manufacturing. Barriers to its development, trends and opportunities in major industrial sectors, and wider opportunities for its development are covered. Evidence indicates that additive manufacturing may not become the dominant manufacturing technology in all industries, but represents an excellent opportunity for lasers to increase their influence in manufacturing as a whole.

  8. Design and manufacturing of complex optics: the dragonfly eye optic.

    SciTech Connect

    Claudet, Andre A.; Sweatt, William C.; Hodges, V. Carter; Adams, David Price; Gill, David Dennis; Vasile, Michael J.

    2006-01-01

    The ''Design and Manufacturing of Complex Optics'' LDRD sought to develop new advanced methods for the design and manufacturing of very complex optical systems. The project team developed methods for including manufacturability into optical designs and also researched extensions of manufacturing techniques to meet the challenging needs of aspherical, 3D, multi-level lenslet arrays on non-planar surfaces. In order to confirm the applicability of the developed techniques, the team chose the Dragonfly Eye optic as a testbed. This optic has arrays of aspherical micro-lenslets on both the exterior and the interior of a 4mm diameter hemispherical shell. Manufacturing of the dragonfly eye required new methods of plunge milling aspherical optics and the development of a method to create the milling tools using focused ion beam milling. The team showed the ability to create aspherical concave milling tools which will have great significance to the optical industry. A prototype dragonfly eye exterior was created during the research, and the methods of including manufacturability in the optical design process were shown to be successful as well.

  9. Advanced soldering processes

    SciTech Connect

    Jellison, J.L.; Golden, J.; Frear, D.R.; Hosking, F.M.; Keicher, D.M.; Yost, F.G.

    1993-02-20

    Advanced soldering processes are discussed in a complete manner. The ability to meet the needs of electronic manufacturing, while addressing the environmental issues are challenging goals. Government regulations mandate the elimination of most solvents in solder flux removal. Alternative approaches to promoting wetting are discussed. Inert atmosphere soldering, acid vapor fluxless soldering, atomic and ionic hydrogen as reactive atmospheres, fluxless laser soldering in a controlled atmosphere are offered as soldering mechanisms for the future. Laser are discussed as alternate heat sources. Various types of lasers, advantages of lasers, and fiber optic beam delivery are considered.

  10. The Milstar Advanced Processor

    NASA Astrophysics Data System (ADS)

    Tjia, Khiem-Hian; Heely, Stephen D.; Morphet, John P.; Wirick, Kevin S.

    The Milstar Advanced Processor (MAP) is a 'drop-in' replacement for its predecessor which preserves existing interfaces with other Milstar satellite processors and minimizes the impact of such upgrading to already-developed application software. In addition to flight software development, and hardware development that involves the application of VHSIC technology to the electrical design, the MAP project is developing two sophisticated and similar test environments. High density RAM and ROM are employed by the MAP memory array. Attention is given to the fine-pitch VHSIC design techniques and lead designs used, as well as the tole of TQM and concurrent engineering in the development of the MAP manufacturing process.

  11. Applications of time-frequency analysis to signals from manufacturing and machine monitoring sensors

    SciTech Connect

    Atlas, L.E.; Narayanan, S.B.; Bernard, G.D.

    1996-09-01

    Manufacturing industries are now demanding substantial increases in flexibility, productivity and reliability from their process machines as well as increased quality and value of their products. One important strategy to support this goal is sensor-based, on-line, real-time evaluation of key characteristics of both machines and products, throughout the manufacturing process. Recent advances in time-frequency (TF) analysis are particularly well suited to extracting key vibrational characteristics from monitoring sensors. Thus this paper presents applications of TF analysis to several important manufacturing and machine monitoring tasks, to show the value of these forms of digital signal processing applied to manufacturing.

  12. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  13. Photovoltaic Manufacturing Technology Phase 1

    SciTech Connect

    Stern, M.J. )

    1991-11-01

    This report documents Utility Power Group's (UPG) contract under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) project. Specifically, the report contains the results of a manufacturing technology cost analysis based on an existing PV module production facility. It also projects the cost analysis of a future production facility based on a larger module area, a larger production rate, and the elimination of several technical obstacles. With a coordinated 18-month engineering effort, the technical obstacles could be overcome. Therefore, if solutions to the financial obstacles concerning production expansion were found, UPG would be able to manufacture PV modules at a cost of under $1.25 per watt by 1994.

  14. 77 FR 27029 - The Manufacturing Council: Teleconference Meeting of the Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... International Trade Administration The Manufacturing Council: Teleconference Meeting of the Manufacturing... Manufacturing Council (Council). The agenda may change to accommodate Council business. The final agenda will be... Manufacturing Council, Room 4043, 1401 Constitution Avenue NW., Washington, DC 20230, telephone...

  15. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  16. 7 CFR 1170.5 - Manufacturer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Orders; Milk), DEPARTMENT OF AGRICULTURE DAIRY PRODUCT MANDATORY REPORTING § 1170.5 Manufacturer. Manufacturer means any person engaged in the business of buying milk in commerce for the purpose of manufacturing dairy products in one or more locations....

  17. 7 CFR 1170.5 - Manufacturer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MILK), DEPARTMENT OF AGRICULTURE DAIRY PRODUCT MANDATORY REPORTING § 1170.5 Manufacturer. Manufacturer means any person engaged in the business of buying milk in commerce for the purpose of manufacturing dairy products in one or more locations....

  18. 7 CFR 1170.5 - Manufacturer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Orders; Milk), DEPARTMENT OF AGRICULTURE DAIRY PRODUCT MANDATORY REPORTING § 1170.5 Manufacturer. Manufacturer means any person engaged in the business of buying milk in commerce for the purpose of manufacturing dairy products in one or more locations....

  19. Advanced CCD camera developments

    SciTech Connect

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  20. Manufacturers use of business services

    SciTech Connect

    Calzonetti, F.; Allison, T.

    1992-12-31

    This paper summarized findings from a Colorado and Utah survey of manufacturing and business service establishments which provided information on the use of business services among different types of firms in this interior region of the United States. The paper provides information which helps to shed light on various areas of inquiry on the relationship between manufacturers and producer services, but certainly calls for additional investigation. Most of the findings are consistent with those found by studies in other areas. Manufacturers are not a major source of sales for business service firms and the availability of business services is not cited as an important location consideration for manufacturers. Given the strong mining and agricultural sectors in these states, the fact that so little trade was with the primary sector may have been surprising. However, most of the responses in the surveys were from the urban areas of Denver and Salt Lake City. One of the hypotheses in the literature, as defined by Perry and Goe, concerns whether the growth in business services and the decline in manufacturing employment is a result of the trend toward the use of contracted services by manufacturers. The aggregate results of the study do not provide much evidence to support the proposition that this occurs. However, the results show that the larger firms internalize certain specialized business services more so than the smaller firms. The greater use company-provided legal services by the larger manufacturers is a case in point. This finding is consistent with Scott`s finding in the printed circuits industry in which larger establishments provided more functions internally than did the smaller establishments. In the case of engineering, architectural, and business management services it appears that many smaller manufacturers do not use such services at all, but that the larger establishments have more needs for professional services.

  1. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  2. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  3. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  4. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  5. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  6. Environmental challenges in computer manufacturing.

    PubMed

    Yang, J; Sieben, C

    2001-07-01

    The purpose of this research is to examine the environmental policies and programs that have been instituted by four large computer manufacturers. These environmental concerns, while not highly publicized, present an extremely important challenge to computer manufacturers, as well as to our society in general. Though the environmental programs of these computer manufacturers have been in place for several years, the topic of environmental health and safety (EHS) in computer manufacturing is still a relatively new one. Four major computer manufacturers that have instituted environmental programs are selected in this research. Their environmental policies and programs are examined in detail and compared with each other to show the relative strength and weakness. The result of this research highlights that with the amazing growth of computer use for both business and in our daily life, it will only be a matter of time before the issue -- the environmental challenges in computer manufacturing -- gains prominence and exposure in our society on a large-scale basis.

  7. Synthesis of Evolving Cells for Reconfigurable Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Padayachee, J.; Bright, G.

    2014-07-01

    The concept of Reconfigurable Manufacturing Systems (RMSs) was formulated due to the global necessity for production systems that are able to economically evolve according to changes in markets and products. Technologies and design methods are under development to enable RMSs to exhibit transformable system layouts, reconfigurable processes, cells and machines. Existing factory design methods and software have not yet advanced to include reconfigurable manufacturing concepts. This paper presents the underlying group technology framework for the design of manufacturing cells that are able to evolve according to a changing product mix by mechanisms of reconfiguration. The framework is based on a Norton- Bass forecast and time variant BOM models. An adaptation of legacy group technology methods is presented for the synthesis of evolving cells and two optimization problems are presented within this context.

  8. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  9. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  10. Combined additive manufacturing approaches in tissue engineering.

    PubMed

    Giannitelli, S M; Mozetic, P; Trombetta, M; Rainer, A

    2015-09-01

    Advances introduced by additive manufacturing (AM) have significantly improved the control over the microarchitecture of scaffolds for tissue engineering. This has led to the flourishing of research works addressing the optimization of AM scaffolds microarchitecture to optimally trade-off between conflicting requirements (e.g. mechanical stiffness and porosity level). A fascinating trend concerns the integration of AM with other scaffold fabrication methods (i.e. "combined" AM), leading to hybrid architectures with complementary structural features. Although this innovative approach is still at its beginning, significant results have been achieved in terms of improved biological response to the scaffold, especially targeting the regeneration of complex tissues. This review paper reports the state of the art in the field of combined AM, posing the accent on recent trends, challenges, and future perspectives.

  11. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  12. Management of CAD/CAM information: Key to improved manufacturing productivity

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Brainin, J.

    1984-01-01

    A key element to improved industry productivity is effective management of CAD/CAM information. To stimulate advancements in this area, a joint NASA/Navy/industry project designated Intergrated Programs for Aerospace-Vehicle Design (IPAD) is underway with the goal of raising aerospace industry productivity through advancement of technology to integrate and manage information involved in the design and manufacturing process. The project complements traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer-Aided Manufacturing (ICAM) program to advance CAM technology. IPAD research is guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies.

  13. Critical factors in manufacturing multi-layer tablets--assessing material attributes, in-process controls, manufacturing process and product performance.

    PubMed

    Vaithiyalingam, Sivakumar R; Sayeed, Vilayat A

    2010-10-15

    Advancement in the fields of material science, analytical methodologies, instrumentation, automation, continuous monitoring, feed forward/feed back control and comprehensive data collection have led to continual improvement of pharmaceutical tablet manufacturing technology, notably the multi-layer tablets. This review highlights the material attributes, formulation design, process parameters that impact the performance, and manufacturability of the multi-layer tablets. It also highlights on critical-to-quality elements that needs to be addressed in the regulatory submission.

  14. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  15. Recent advances in polyethylene separator technology

    NASA Astrophysics Data System (ADS)

    Weighall, M. J.

    The well known technical and production benefits of polyethylene separator materials over other separator materials have prompted a dramatic increase in polyethylene separator usage in recent years. Separator trends in the United States from 1980 to 1996, and in Europe from 1987 to 1992, are shown. The manufacturing process for polyethylene separators is outlined, with particular emphasis on the latest advances in manufacturing technology. These improvements have resulted in a higher quality product, and also benefit the environment because of the sophisticated oil extraction and solvent recovery system. The product quality improvements resulting from the latest manufacturing technology include consistent conformance to dimensional specifications, low electrical resistance, close control of residual oil content, virtual elimination of pinholes, and good running properties on the battery manufacturers' plate enveloping machines. The material can also be manufactured with a very thin backweb to reduce electrical resistance still further.

  16. High-end spectroscopic diffraction gratings: design and manufacturing

    NASA Astrophysics Data System (ADS)

    Glaser, Tilman

    2015-02-01

    Diffraction gratings are key components for spectroscopic systems. For high-end applications, they have to meet advanced requirements as, e.g., maximum efficiency, lowest possible scattered light level, high numerical aperture, and minimal aberrations. Diffraction gratings are demanded to allow spectrometer designs with highest resolution, a maximal étendue, and minimal stray light, built within a minimal volume. This tutorial is intended to provide an overview of different high-end spectroscopic gratings, their theoretical design and manufacturing technologies.

  17. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices

    PubMed Central

    Shen, Richang; Gurkan, Umut A.

    2016-01-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing. PMID:27512530

  18. New approaches in catalyst manufacture

    SciTech Connect

    Lostaglio, V.J.; Carruthers, J.D.

    1986-03-01

    Changes in both petroleum refinery feedstocks and refinery product slates during the past 10 years have necessitated new approaches in catalyst manufacture. New hydrotreating catalysts are expected to improve polynuclear aromatic saturation, and to increase cetane index, mild hydrocracking, asphaltene conversion, and contaminant metal removal. Sulfur and nitrogen removal were once considered the sole benefits of hydroprocessing. To accommodate these needs, catalyst manufacturers have focused added attention on defining and achieving rigorous physical and chemical specifications for each new catalyst. It is considered essential to continually improve quality and process control in each manufacturing step. In addition, manufacturers have introduced new technology both in the process and in the evaluation of product. The importance of pore size distribution (PSD), for example, has been appreciated for 20 years or more but it is only within the past 10 years that routine measurement of PSD by mercury and/or nitrogen porosimetry has been applied throughout the entire manufacturing process. A greater emphasis on heavy oil hydrotreating has spurred demands for wide pore catalysts of small external dimensions to overcome the problems of diffusion-limited reactions. In turn, however, these properties may create problems with crush strength and catalyst attrition.

  19. Cellular manufacturing for clinical applications.

    PubMed

    Sheu, Jonathan; Klassen, Henry; Bauer, Gerhard

    2014-01-01

    Rapid progress has been made in the development of novel cell-based approaches for the potential treatment of retinal degenerative diseases. As a result, one must consider carefully the conditions under which these therapeutics are manufactured if they are to be used in clinical studies or, ultimately, be approved as licensed cellular therapeutics. Here, we describe the principles behind the manufacturing of clinical-grade cellular products, as well as potential methods for large-scale expansion and processing according to Good Manufacturing Practice (GMP) standards sets by the United States Food and Drug Administration. Standards for personnel, materials, procedures, and facilities required for such manufacturing processes are reviewed. We also discuss current and future scale-up methods for the manufacturing of large doses of cellular therapeutics under GMP conditions and compare the use of conventional culture methods such as tissue culture flasks and multi-layered cell factories with novel systems such as closed system hollow-fiber bioreactors. Incorporation of these novel bioreactor systems into GMP facilities may enable us to provide adequate cell numbers for multi-center clinical trials and paves the way for development of cellular therapeutics with the potential to treat very large numbers of patients.

  20. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; Patterson, Clark; Santelle, Tom; Mehl, Jeremy

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  1. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    SciTech Connect

    Cotrell, J.; Stelhy, T.

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  2. 16 CFR 1102.12 - Manufacturer comments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PUBLICLY AVAILABLE CONSUMER PRODUCT SAFETY INFORMATION DATABASE Content Requirements § 1102.12 Manufacturer... Database if such manufacturer comment meets the following requirements: (1) Manufacturer comment relates to... publication in the Database. (2) Unique identifier. A manufacturer comment must state the unique...

  3. 16 CFR 1102.12 - Manufacturer comments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PUBLICLY AVAILABLE CONSUMER PRODUCT SAFETY INFORMATION DATABASE Content Requirements § 1102.12 Manufacturer... Database if such manufacturer comment meets the following requirements: (1) Manufacturer comment relates to... publication in the Database. (2) Unique identifier. A manufacturer comment must state the unique...

  4. 16 CFR 1102.12 - Manufacturer comments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PUBLICLY AVAILABLE CONSUMER PRODUCT SAFETY INFORMATION DATABASE Content Requirements § 1102.12 Manufacturer... Database if such manufacturer comment meets the following requirements: (1) Manufacturer comment relates to... publication in the Database. (2) Unique identifier. A manufacturer comment must state the unique...

  5. Future requirements for advanced materials

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1980-01-01

    Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.

  6. Advance care directives

    MedlinePlus

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  7. Metrology for Fuel Cell Manufacturing

    SciTech Connect

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  8. Medical device regulation for manufacturers.

    PubMed

    McAllister, P; Jeswiet, J

    2003-01-01

    Manufacturers of medical devices are held to a higher standard than manufacturers of many other products due to the potential severity of the consequences of introducing inferior or unsafe products to the market-place. In Canada, the medical device industry is regulated by Health Canada under the Medical Device Regulations of the Food and Drug Act. The Medical Device Regulations define requirements of medical device design, development and manufacture to ensure that products reaching the public are safe and effective. Health Canada also requires that medical device manufacturers maintain distribution records to ensure that devices can be traced to the source and consumers can be contacted successfully in the event that a device is recalled. Medical devices exported from Canada must be compliant with the regulations of the country of import. The Canadian Medical Device Regulations were based on the Medical Device Directives of the European Union thus facilitating approval of Canadian devices for the European market. The United States Food and Drug Administration has separate and distinct requirements for safety and quality of medical devices. While effort has been made to facilitate approval and trade of Canadian medical devices in the United States and the European Union, obtaining approval from multiple regulatory bodies can result in increased device development time and cost. The Global Harmonization Task Force is an organization composed of members from Japanese, Australian, European, Canadian and American medical device regulatory bodies. This organization was formed with the objective of harmonizing medical device regulations in an effort to facilitate international trade and standardize the quality of medical devices available to all countries. This paper discusses the requirements that must be met by manufacturers when designing and manufacturing medical devices.

  9. The present status and future growth of maintenance in US manufacturing: results from a pilot survey

    PubMed Central

    Jin, Xiaoning; Siegel, David; Weiss, Brian A.; Gamel, Ellen; Wang, Wei; Lee, Jay; Ni, Jun

    2016-01-01

    A research study was conducted (1) to examine the practices employed by US manufacturers to achieve productivity goals and (2) to understand what level of intelligent maintenance technologies and strategies are being incorporated into these practices. This study found that the effectiveness and choice of maintenance strategy were strongly correlated to the size of the manufacturing enterprise; there were large differences in adoption of advanced maintenance practices and diagnostics and prognostics technologies between small and medium-sized enterprises (SMEs). Despite their greater adoption of maintenance practices and technologies, large manufacturing organizations have had only modest success with respect to diagnostics and prognostics and preventive maintenance projects. The varying degrees of success with respect to preventative maintenance programs highlight the opportunity for larger manufacturers to improve their maintenance practices and use of advanced prognostics and health management (PHM) technology. The future outlook for manufacturing PHM technology among the manufacturing organizations considered in this study was overwhelmingly positive; many manufacturing organizations have current and planned projects in this area. Given the current modest state of implementation and positive outlook for this technology, gaps, future trends, and roadmaps for manufacturing PHM and maintenance strategy are presented. PMID:27525253

  10. Manufactured Home Testing in Simulated and Naturally Occurring High Winds

    SciTech Connect

    W. D. Richins; T. K. Larson

    2006-08-01

    sponsored by the US Department of Energy, US Department of Housing and Urban Development, and the Manufactured Housing Institute. The results of this research can lead to savings in annual losses of life and property by providing validated information to enable the advancement of code requirements and by developing engineering software that can predict and optimize wind resistance.

  11. Method for manufacturing glass frit

    DOEpatents

    Budrick, Ronald G.; King, Frank T.; Nolen, Jr., Robert L.; Solomon, David E.

    1977-01-01

    A method of manufacturing a glass frit for use in the manufacture of uniform glass microspheres to serve as containers for laser fusion fuel to be exposed to laser energy which includes the formation of a glass gel which is then dried, pulverized, and very accurately sized to particles in a range of, for example, 125 to 149 micrometers. The particles contain an occluded material such as urea which expands when heated. The sized particles are washed, dried, and subjected to heat to control the moisture content prior to being introduced into a system to form microspheres.

  12. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  13. Cast polycrystalline silicon photovoltaic cell and module manufacturing technology improvements. Annual subcontract report, 1 December 1993--30 November 1994

    SciTech Connect

    Wohlgemuth, J.

    1995-09-01

    This report describes work performed under a 3-y contract to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. Specific objectives are to reduce manufacturing cost for polycrstalline silicon PV modules to less than $1.20/W and to increase manufacturing capacity by a factor of 3. Solarex is working on casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling.

  14. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995

    SciTech Connect

    Wohlgemuth, J

    1996-06-01

    The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three.

  15. Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)

    SciTech Connect

    Not Available

    2013-08-01

    First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

  16. Adv. Simulation for Additive Manufacturing: 11/2014 Wkshp. Report for U.S. DOE/EERE/AMO

    SciTech Connect

    Turner, John A.; Babu, Sudarsanam Suresh; Blue, Craig A.

    2015-07-01

    The overarching question for the workshop was as following: How do we best utilize advanced modeling and high-performance computing (HPC) to address key challenges and opportunities in order to realize the full potential of additive manufacturing; and what are the key challenges of additive manufacturing to which modeling and simulation can contribute solutions, and what will it take to meet these challenges?

  17. 75 FR 10216 - The Manufacturing Council: Meeting of the Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... International Trade Administration The Manufacturing Council: Meeting of the Manufacturing Council AGENCY... Manufacturing Council will hold a meeting to discuss a variety of issues affecting the U.S. manufacturing... relating to the U.S. manufacturing industry. DATES: March 22, 2010. Time: 1:30-3 p.m. (ET)....

  18. Acylinder and freeform optical manufacturing

    NASA Astrophysics Data System (ADS)

    Fess, Edward; Wolfs, Frank; DeFisher, Scott; Ross, James

    2015-10-01

    Aspheric cylinders have the ability to improve optical performance over standard cylindrical surfaces. Over the last several years there has also been development into the application and functionality of utilizing freeform surfaces to improve optical performance. Freeforms have the ability to not only improve image quality over a greater field of view, but can open up the design space of an optical system making it more compact. Freeform geometries, much like aspheric cylinders, may not have an axis of rotation to spin the optic about during manufacturing. This leads to costly fabrication processes and custom metrology set ups, which may inhibit their use. Over the last several years, OptiPro Systems has developed and optimized our eSX grinding, UFF and USF polishing, UltraSurf metrology, and ProSurf software programming technologies to make the processing of these complex geometries much easier and deterministic. In this paper we will discuss the challenges associated with manufacturing complex shapes like aspheric cylinders as well as freeform geometries, and how several technologies working together can overcome them. The technologies focus on metrology feedback to a grinding and polishing machine that is controlled through an iterative computer aided manufacturing software system. We will also present examples of these hard to manufacture shapes with results.

  19. Experiences on IGSCC crack manufacturing

    SciTech Connect

    Veron, P.

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  20. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  1. New Skills in Process Manufacturing.

    ERIC Educational Resources Information Center

    Dumbrell, Tom; de Montfort, Rowena; Finnegan, Wendy

    Recent changes in the nature of work in Australia's process manufacturing industry and their impact on operative-level workers and vocational education and training (VET) were examined. Structured interviews were conducted with training or human resource managers in 16 firms representing a cross-section of small, medium, and large enterprises…

  2. Heat treating of manufactured components

    SciTech Connect

    Ripley, Edward B.

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  3. Hydrogen manufacturing using plasma reformers

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Hochgreb, S.; O`Brien, C.

    1996-10-01

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes; in particular the possibility of virtual elimination of CO{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  4. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  5. Sustainability Characterization for Additive Manufacturing

    PubMed Central

    Mani, Mahesh; Lyons, Kevin W; Gupta, SK

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  6. CNC Preparation Meets Manufacturing Opportunity

    ERIC Educational Resources Information Center

    Cassola, Joel

    2006-01-01

    This article features the machining technology program at Cape Fear Community College (CFCC) of Wilmington, North Carolina. North Carolina's Cape Fear Community College is working to meet diverse industry needs through its CNC training. The school's program has gained the attention of the local manufacturing community and students when it shifted…

  7. Technology: Manufacturing, Transportation, Construction, Communication.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    The technology-based student activities in this curriculum resource book are intended to be incorporated into any industrial arts/technology education program. The activities are classified according to one of four technological systems--construction, communications, manufacturing, and transportation. Within the four parts of the guide, individual…

  8. Sustainability Characterization for Additive Manufacturing.

    PubMed

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts.

  9. 75 FR 36421 - Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Postapproval Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Postapproval Manufacturing Changes Reportable in Annual Reports; Availability AGENCY: Food and... the availability of a draft guidance for industry entitled ``CMC Postapproval Manufacturing...

  10. 78 FR 49546 - Manufacturer of Controlled Substances; Notice of Application; IRIX Manufacturing, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; IRIX Manufacturing... that on January 18, 2013, IRIX Manufacturing, Inc., 309 Delaware Street, Greenville, South...

  11. Applying simulation to assist the planning and design of semiautomated manufacturing cells: a case study

    NASA Astrophysics Data System (ADS)

    Chan, Felix T.; Bidhendi, Essie

    1995-08-01

    This paper describes an application of simulation modeling to enhance system performance in the semi-automated lamps manufacturing industry with a recently developed multiattribute decision analysis. Multiattribute decision techniques seem to provide an easily understood, yet comprehensive, set of quantitative and qualitative approaches to justify advanced manufacturing systems. Much has been written about the use of multiattribute decision application models to evaluate manufacturing technologies. Simulation modeling approach is developed for planning and scheduling of a semi-automated manufacturing system, hence the qualitative and quantitative multiattribute factors of the manufacturing system are evaluated. A new proposal is developed to achieve a high level of productivity of plant and minimize the makespan and cost of production. An experimental comparison is performed on the effectiveness of the proposed system through a real life case study.

  12. Advanced Microsensors

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  13. Advanced Composition

    ERIC Educational Resources Information Center

    Sarantos, R. L.

    1974-01-01

    This is an excerpt from a course for advanced students, designed to teach proficiency in English composition by providing activities specifically geared to the elimination of native language interference. (LG)

  14. Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials

    NASA Technical Reports Server (NTRS)

    Hill, Charles S.

    2012-01-01

    The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.

  15. Friction Stir Welding: Standards and Specifications in Today's U.S. Manufacturing and Fabrication

    NASA Technical Reports Server (NTRS)

    Ding, Robert Jeffrey

    2008-01-01

    New welding and technology advancements are reflected in the friction stir welding (FSW) specifications used in the manufacturing sector. A lack of publicly available specifications as one of the reasons that the FSW process has not propagate through the manufacturing sectors. FSW specifications are an integral supporting document to the legal agreement written between two entities for deliverable items. Understanding the process and supporting specifications is essential for a successful FSW manufacturing operation. This viewgraph presentation provides an overview of current FSW standards in the industry and discusses elements common to weld specifications.

  16. The Telemetry Agile Manufacturing Effort

    SciTech Connect

    Brown, K.D.

    1995-01-01

    The Telemetry Agile Manufacturing Effort (TAME) is an agile enterprising demonstration sponsored by the US Department of Energy (DOE). The project experimented with new approaches to product realization and assessed their impacts on performance, cost, flow time, and agility. The purpose of the project was to design the electrical and mechanical features of an integrated telemetry processor, establish the manufacturing processes, and produce an initial production lot of two to six units. This paper outlines the major methodologies utilized by the TAME, describes the accomplishments that can be attributed to each methodology, and finally, examines the lessons learned and explores the opportunities for improvement associated with the overall effort. The areas for improvement are discussed relative to an ideal vision of the future for agile enterprises. By the end of the experiment, the TAME reduced production flow time by approximately 50% and life cycle cost by more than 30%. Product performance was improved compared with conventional DOE production approaches.

  17. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Izu, M. )

    1992-03-01

    This report examines manufacturing multiple-band-gap, multiple- junction solar cells and photovoltaic modules. Amorphous silicon alloy material is deposited (using microwave plasma-assisted chemical vapor deposition) on a stainless-steel substrate using a roll-to-roll process that is continuous and automated. Rapid thermal equilibration of the metal substrate allows rapid throughput of large-area devices in smaller production machines. Potential improvements in the design, deposition, and module fabrication process are described. Problems are also discussed that could impede using these potential improvements. Energy Conversion Devices, Inc. (ECD) proposes cost and time estimates for investigating and solving these problems. Manufacturing modules for less than $1.00 per peak watt and stable module efficiencies of greater than 10% are near-term goals proposed by ECD. 18 refs.

  18. Additive Manufacturing of Hybrid Circuits

    NASA Astrophysics Data System (ADS)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  19. The Advanced Helical Generator

    SciTech Connect

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  20. Improvements in state-of-the-art uncooled microbolometer system performance based on volume manufacturing experience

    NASA Astrophysics Data System (ADS)

    Backer, Brian S.; Breen, Thomas E.; Hartle, Nancy; Kohin, Margaret; Murphy, Robert

    2003-09-01

    Starting in the early 1990"s, BAE SYSTEMS began a significant investment in the development of MicroIR Uncooled Microbolometers. 160 x 120, 320 x 240, and 640 x 480 focal plane array (FPA) technology advances in both large pixel and small pixel format have driven Noise Equivalent Temperature Difference (NETD), power, size, weight, and price lower. These improvements have resulted in many new applications that previously could not afford larger, heavier, costlier cooled systems. While advancements in state of the art performance have been published regularly at Aerosense and other industry forums, far less has been discussed on the performance advances that have occurred as a result of volume manufacturing. This paper describes the improvements in performance that have been a result of BAE SYSTEMS leadership position in MicroIR microbolometer manufacturing. With over 15,000 units shipped through 2002, ranging from Standard Imaging Modules (SIM) to Standard Camera Cores (SCC) to complete imaging systems, the cumulative expertise gathered from this manufacturing experience over the past seven years has also pushed the state of the art system performance, in ways that single/small quantity technology demonstrators never could. Comparisons of temporal NETD, spatial NETD, dynamic range, operability, throughput, capacity, and other key metrics from early manufacturing lots to the present will be presented to demonstrate the advances that can only be achieved through volume manufacturing.