Science.gov

Sample records for advanced manufacturing systems

  1. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  2. Intelligent multi-agent coordination system for advanced manufacturing

    NASA Astrophysics Data System (ADS)

    Maturana, Francisco P.; Balasubramanian, Sivaram; Norrie, Douglas H.

    1997-12-01

    Global competition and rapidly changing customer requirements are forcing major changes in the production styles and configuration of manufacturing organizations. Agent-based systems are showing considerable potential as a new paradigm for agile manufacturing systems. With this approach, centralized and sequential manufacturing planning, scheduling, and control systems may be replaced by distributed intelligent systems to facilitate flexible and rapid response to changing production styles and variations in product requirements. In this paper, the characteristics and components of such a multi-agent architecture for advanced manufacturing are described. This architecture addresses agility in terms of the ability of the manufacturing system to solve manufacturing tasks using virtual enterprise mechanisms while maintaining concurrent information processing and control.

  3. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.

    1995-10-01

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. A materials/manufacturing plan was developed in FY 1994 with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. The plan outlines seven major subelements which focus on materials issues and manufacturing processes. Work is currently under way in four of the seven major subelements. There are now major projects on coatings and process development, scale-up of single crystal airfoil manufacturing technology, materials characterization, and technology information exchange.

  4. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  5. Advanced Initiation Systems Manufacturing Level 2 Milestone Completion Summary

    SciTech Connect

    Chow, R; Schmidt, M

    2009-10-01

    Milestone Description - Advanced Initiation Systems Detonator Design and Prototype. Milestone Grading Criteria - Design new generation chip slapper detonator and manufacture a prototype using advanced manufacturing processes, such as all-dry chip metallization and solvent-less flyer coatings. The advanced processes have been developed for manufacturing detonators with high material compatibility and reliability to support future LEPs, e.g. the B61, and new weapons systems. Perform velocimetry measurements to determine slapper velocity as a function of flight distance. A prototype detonator assembly and stripline was designed for low-energy chip slappers. Pictures of the prototype detonator and stripline are shown. All-dry manufacturing processes were used to address compatibility issues. KCP metallized the chips in a physical vapor deposition system through precision-aligned shadow masks. LLNL deposited a solvent-less polyimide flyer with a processes called SLIP, which stands for solvent-less vapor deposition followed by in-situ polymerization. LANL manufactured the high-surface-area (HSA) high explosive (HE) pellets. Test fires of two chip slapper designs, radius and bowtie, were performed at LLNL in the High Explosives Application Facility (HEAF). Test fires with HE were conducted to establish the threshold firing voltages. pictures of the chip slappers before and after test fires are shown. Velocimetry tests were then performed to obtain slapper velocities at or above the threshold firing voltages. Figure 5 shows the slapper velocity as a function of distance and time at the threshold voltage, for both radius and bowtie bridge designs. Both designs were successful at initiating the HE at low energy levels. Summary of Accomplishments are: (1) All-dry process for chip manufacture developed; (2) Solventless process for slapper materials developed; (3) High-surface area explosive pellets developed; (4) High performance chip slappers developed; (5) Low-energy chip

  6. Advanced Manufacturing

    DTIC Science & Technology

    2002-01-01

    manufacturing will enable the mass customization of products and create new market opportunities in the commercial sector. Flexible manufacturing ...the mass customization of products and create new market opportunities in the commercial sector. One of the most promising flexible manufacturing ... manufacturing , increase efficiency and productivity. Research in leading edge technologies continues to promise exciting new manufacturing methods

  7. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2014-01-16

    ZACK JONES AND JIM LYDON OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S M2 SELECTIVE LASER MELTING SYSTEM. THE M2 IS CURRENTLY DEDICATED TO ADVANCED COPPER MATERIAL DEVELOPMENT FOR THE LOW COST UPPER STAGE PROGRAM.

  8. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2016-03-17

    JOHNNIE CLARK, BRIAN WEST, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S XLINE SELECTIVE LASER MELTING SYSTEM. CURRENTLY ONE OF THE LARGEST METAL 3D PRINTERS, THE XLINE AT MARSHALL IS BEING USED TO DEVELOP AND CERTIFY NICKEL ALLOY 718 MATERIAL PROPERTIES AND LARGE MANUFACTURING TECH DEMOS FOR THE RS25 ENGINE AND THE COMMERCIAL CREWED VEHICLE PROJECTS.

  9. Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems

    SciTech Connect

    McHugh, K.M.

    1994-12-31

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.

  10. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2014-01-16

    QUINCY BEAN, JIM LYDON, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S M2 SELECTIVE LASER MELTING SYSTEM. THE M2 IS CURRENTLY DEDICATED TO ADVANCED COPPER MATERIAL DEVELOPMENT FOR THE LOW COST UPPER STAGE PROGRAM.

  11. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  12. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2016-03-17

    KEN COOPER, TEAM LEAD OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH NICKEL ALLOY 718 PARTS FABRICATED USING THE M1 SELECTIVE LASER MELTING SYSTEM. THE M1 MACHINE IS DEDICATED TO BUILDING QUALIFICATION SAMPLES AND HARDWARE DEMONSTRATORS FOR THE RS25 ENGINE PROJECT.

  13. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  14. Advancements in asphere manufacturing

    NASA Astrophysics Data System (ADS)

    Fess, Edward; DeFisher, Scott

    2013-09-01

    Aspheric optics can pose as a challenge to the manufacturing community due to the surface shape and level of quality required. The aspheric surface may have inflection points that limit the usable tool size during manufacturing, or there may be a stringent tolerance on the slope for mid-spatial frequencies that may be problematic for sub-aperture finishing techniques to achieve. As aspheres become more commonplace in the optics community, requests for more complex aspheres have risen. OptiPro Systems has been developing technologies to create a robust aspheric manufacturing process. Contour deterministic microgrinding is performed on a Pro80 or eSX platform. These platforms utilize software and the latest advancements in machine motion to accurately contour the aspheric shape. Then the optics are finished using UltraForm Finishing (UFF), which is a sub-aperture polishing process. This process has the capability to adjust the diameter and compliance of the polishing lap to allow for finishing over a wide range of shapes and conditions. Finally, the aspheric surfaces are qualified using an OptiTrace contact profilometer, or an UltraSurf non-contact 3D surface scanner. The OptiTrace uses a stylus to scan across the surface of the part, and the UltraSurf utilizes several different optical pens to scan the surface and generate a topographical map of the surface under test. This presentation will focus on the challenges for asphere manufacturing, how OptiPro has implemented its technologies to combat these challenges, and provide surface data for analysis.

  15. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  16. Advanced Manufacturing Methods for Systems of Microsystem Nanospacecraft- Status of the Project

    NASA Astrophysics Data System (ADS)

    Plesseria, J. Y.; Corbelli, A.; Masse, C.; Rigo, O.; Pambaguian, L.; Bonvoisin, B.

    2014-06-01

    In the frame of an ESA TRP project, CSL, SIRRIS, ALMASpace and TAS-F associated to evaluate advanced manufacturing methods for application to space hardware.The state of the art of the new manufacturing methods, including additive manufacturing but also advanced bonding, joining and shaping techniques has been reviewed. Then three types of case studies have been developed successively. The first type was a re- manufacture of an existing piece of hardware using advanced techniques to evaluate if there is some potential improvement to be achieved (cost, production time, complexity reduction). The second level was to design and manufacture a part based on the application requirements. The last level was to design and manufacture a part taking into account the subsystem to which it belongs. All case studies have been tested in terms of achieved performances and resistance to the mechanical and thermal environment.

  17. Advanced Manufacture of Reflectors

    SciTech Connect

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  18. Materials/manufacturing support element for the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Hoffman, E.E.; Parks, W.P.

    1994-12-31

    In 1993, DOE initiated a program to develop advanced gas turbines for power generation in utility and industrial applications. A materials/manufacturing plan was developed in several stages with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. This plan was developed by a small advanced materials and turbine technology team over a 6-month period. The technology plan calls for initiation of several high priority projects in FY 1995. The technical program for the materials/manufacturing element focuses on generic materials issues, components, and manufacturing processes. Categories include coatings and process development, turbine airfoil development, ceramics adaptation, directional solidification and single crystal airfoils manufactoring technology, materials characterization, catalytic combustor materials, and technology information exchange.

  19. Advanced Computing for Manufacturing.

    ERIC Educational Resources Information Center

    Erisman, Albert M.; Neves, Kenneth W.

    1987-01-01

    Discusses ways that supercomputers are being used in the manufacturing industry, including the design and production of airplanes and automobiles. Describes problems that need to be solved in the next few years for supercomputers to assume a major role in industry. (TW)

  20. NASA's National Center for Advanced Manufacturing

    NASA Technical Reports Server (NTRS)

    Vickers, John H.; Frazier, Michael K.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    An investment in the future, NASA has designated a new initiative where government, industry, and academia collaborate to meet the manufacturing needs of future space systems. The Marshall Space Flight Center in Huntsville, Alabama has the principal responsibility for implementation of the National Center for Advanced Manufacturing (NCAM). The mission of the NCAM is to build partnerships that will jointly conduct program planning and develop strategies to perform manufacturing research and technology development for critical national missions.

  1. Advanced Battery Manufacturing (VA)

    SciTech Connect

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  2. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  3. Development of STEP-NC Adaptor for Advanced Web Manufacturing System

    NASA Astrophysics Data System (ADS)

    Ajay Konapala, Mr.; Koona, Ramji, Dr.

    2017-08-01

    Information systems play a key role in the modern era of Information Technology. Rapid developments in IT & global competition calls for many changes in basic CAD/CAM/CAPP/CNC manufacturing chain of operations. ‘STEP-NC’ an enhancement to STEP for operating CNC machines, creating new opportunities for collaborative, concurrent, adaptive works across the manufacturing chain of operations. Schemas and data models defined by ISO14649 in liaison with ISO10303 standards made STEP-NC file rich with feature based, rather than mere point to point information of G/M Code format. But one needs to have a suitable information system to understand and modify these files. Various STEP-NC information systems are reviewed to understand the suitability of STEP-NC for web manufacturing. Present work also deals with the development of an adaptor which imports STEP-NC file, organizes its information, allowing modifications to entity values and finally generates a new STEP-NC file to export. The system is designed and developed to work on web to avail additional benefits through the web and also to be part of a proposed ‘Web based STEP-NC manufacturing platform’ which is under development and explained as future scope.

  4. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA Lewis Research Center, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  5. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA Lewis Research Center, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  6. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA LRC, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  7. Advanced Technology Composite Fuselage - Manufacturing

    NASA Technical Reports Server (NTRS)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  8. Development of Advanced Ceramic Manufacturing Technology

    SciTech Connect

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  9. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  10. Implementation of a TMP Advanced Quality Control System at a Newsprint Manufacturing Plant

    SciTech Connect

    Sebastien Kidd

    2006-02-14

    This project provided for the implementation of an advanced, model predictive multi-variant controller that works with the mill that has existing distributed control system. The method provides real time and online predictive models and modifies control actions to maximize quality and minimize energy costs. Using software sensors, the system can predict difficult-to-measure quality and process variables and make necessary process control decisions to accurately control pulp quality while minimizing electrical usage. This method of control has allowed Augusta Newsprint Company to optimize the operation of its Thermo Mechanical Pulp mill for lower energy consumption and lower pulp quality variance.

  11. Combat Ration Advanced Manufacturing Technology Demonstration (CRAMTD). ’Generic Inspection-Statistical Process Control System for a Combat Ration Manufacturing Facility’. Short Term Project (STP) Number 3.

    DTIC Science & Technology

    1996-01-01

    ADVANCED FOOD TECHNOLOGY* Cook College N.J. Agricultural Experiment Station New Brunswick, New Jersey 08903 Principal Investigators: Drs., T-C. Lee H...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Rutgers, The State University of New Jersey REPORT NUMBER The Center for Advanced Food Technology FTR 11.0...DOD. It was recommended that qualitities relevant to food manufacturing control be quantified (Funded as DAAK60-92-C-0087); that key hardware and

  12. Advance Manufacturing Office FY 2017 Budget At-A-Glance

    SciTech Connect

    2016-03-01

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  13. Advanced Manufacturing of Superconducting Magnets

    NASA Technical Reports Server (NTRS)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  14. Research on advanced photovoltaic manufacturing technology

    SciTech Connect

    Jester, T.; Eberspacher, C. )

    1991-11-01

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  15. Manufacturing development of DC-10 advanced rudder

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1979-01-01

    The design, manufacture, and ground test activities during development of production methods for an advanced composite rudder for the DC-10 transport aircraft are described. The advanced composite aft rudder is satisfactory for airline service and a cost saving in a full production manufacturing mode is anticipated.

  16. NASA's National Center for Advanced Manufacturing

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  17. NASA's National Center for Advanced Manufacturing

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  18. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  19. 2001 Industry Studies: Advanced Manufacturing

    DTIC Science & Technology

    2007-11-02

    oriented, 19 and manufacturers are employing the Internet and associated information technologies to better integrate supply chains and form extended...producers, and suppliers. Focus will shift from within the enterprise to the entire market, with business- to-business ( B2B ) e-commerce becoming a...sufficiently disruptive (e.g. the Internet ), alter the course of industries and the broader economy. The transformation of manufacturing has involved

  20. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  1. Advanced Manufacturing Training: Mobile Learning Labs

    ERIC Educational Resources Information Center

    Vukich, John C.; Ackerman, Amanda A.

    2010-01-01

    Across Colorado, manufacturing employers forecast an on-going need not only for workers who are interested in career opportunities but who are prepared to enter the advanced manufacturing industry with the necessary high-tech skills. Additionally, employers report concerns about replacing retiring workers that take with them decades of…

  2. Advanced Manufacturing Training: Mobile Learning Labs

    ERIC Educational Resources Information Center

    Vukich, John C.; Ackerman, Amanda A.

    2010-01-01

    Across Colorado, manufacturing employers forecast an on-going need not only for workers who are interested in career opportunities but who are prepared to enter the advanced manufacturing industry with the necessary high-tech skills. Additionally, employers report concerns about replacing retiring workers that take with them decades of…

  3. The Advanced Manufacturing Laboratory at RPI.

    ERIC Educational Resources Information Center

    Desrochers, A.; DeRusso, P. M.

    1984-01-01

    An Advanced Manufacturing Laboratory (AML) has been established at Rensselaer Polytechnic Institute (RPI). AML courses, course objectives, instructional strategies, student experiences in design and manufacturing, and AML equipment are discussed. Overall recommendations based on student and instructor experiences are also presented. (JN)

  4. Advancing manufacturing through computational chemistry

    SciTech Connect

    Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

    1995-12-31

    The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

  5. Advanced manufacturing technologies for light-weight post- polished snap-together reflective optical system designs

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael N.

    2002-09-01

    Fast, light weight, off-axis, aspheric, reflective optical designs are increasingly being designed and built for space-based remote sensing, fire control systems, aerial reconnaissance, cryovac instrumentation and laser scanning. Diamond point turning (DPT) is the technology of first resort for many of these applications. In many cases the best diamond machining technologies available cannot meet the desired requirements for system wavefront error and scatter. Aluminum, beryllium, AlBeMet and silicon carbide mirrors, layered with thin films of electroless nickel or silicon can be first diamond machined and then post polished to achieve greatly enhanced performance levels for surface scatter, wavefront error (WFE), and alignment registration. By application of post polishing using precise null testing techniques, the objectives of snap-together, or limited compensation alignment of aggressive reflective optical systems can be achieved that are well beyond the performance envelope achievable by diamond machining alone. This paper discusses the tradeoffs among materials and processes selection for post polished reflective systems and illustrates actual applications including telescopes for earth and Mars orbit, and a commercial, high speed, flat field scan engine.

  6. Advancing Manufacturing Research Through Competitions

    SciTech Connect

    Balakirsky, Stephen; Madhavan, Raj

    2009-01-01

    Competitions provide a technique for building interest and collaboration in targeted research areas. This paper will present a new competition that aims to increase collaboration amongst Universities, automation end-users, and automation manufacturers through a virtual competition. The virtual nature of the competition allows for reduced infrastructure requirements while maintaining realism in both the robotic equipment deployed and the scenarios. Details of the virtual environment as well as the competitions objectives, rules, and scoring metrics will be presented.

  7. Manufacturing information system

    NASA Astrophysics Data System (ADS)

    Allen, D. K.; Smith, P. R.; Smart, M. J.

    1983-12-01

    The size and cost of manufacturing equipment has made it extremely difficult to perform realistic modeling and simulation of the manufacturing process in university research laboratories. Likewise the size and cost factors, coupled with many uncontrolled variables of the production situation has even made it difficult to perform adequate manufacturing research in the industrial setting. Only the largest companies can afford manufacturing research laboratories; research results are often held proprietary and seldom find their way into the university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development of miniature prototype equipment suitable for use in an integrated CAD/CAM Laboratory. The equipment being developed is capable of actually performing production operations (e.g. drilling, milling, turning, punching, etc.) on metallic and non-metallic workpieces. The integrated CAD/CAM Mini-Lab is integrating high resolution, computer graphics, parametric design, parametric N/C parts programmings, CNC machine control, automated storage and retrieval, with robotics materials handling. The availability of miniature CAD/CAM laboratory equipment will provide the basis for intensive laboratory research on manufacturing information systems.

  8. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  9. Expert Systems Application In Manufacturing

    NASA Astrophysics Data System (ADS)

    Som, Pradip; Chitturi, Ramesh; Babu, A. J. G.

    1987-05-01

    Expert system, a special branch of Artificial Intelligence finds its way in the domain of manufacturing. This paper presents the basic ideas and features of the expert systems, problems in manufacturing and application of expert systems in manufacturing. As the process planning is an important phase in manufacturing, the suitability of expert systems for process planning area has been highlighted. Several expert systems, developed to solve manufacturing problems are also discussed in the paper.

  10. Role of RIS/APC for manufacturing RFG/LSD. [Refinery Information Systems/Advanced Process Control, ReFormulated Gasoline/Low Sulfur Diesels

    SciTech Connect

    Latour, P.R. )

    1994-01-01

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer-integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions: performance measurement, optimization, scheduling, control and integration are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  11. National Center for Advanced Manufacturing Overview

    NASA Technical Reports Server (NTRS)

    Vickers, John H.

    2000-01-01

    This paper presents a general overview of the National Center for Advanced Manufacturing, with an emphasis on Aerospace Materials, Processes and Environmental Technology. The topics include: 1) Background; 2) Mission; 3) Technology Development Approach; 4) Space Transportation Significance; 5) Partnering; 6) NCAM MAF Project; 7) NASA & Calhoun Community College; 8) Educational Development; and 9) Intelligent Synthesis Environment. This paper is presented in viewgraph form.

  12. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  13. Custom Machines Advance Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all are composites. Formed of two or more unlike materials - such as cellulose and lignin in the case of wood, or glass fibers and plastic resin in the case of fiberglass-composites provide enhanced mechanical and physical properties through the combination of their constituent materials. For this reason, composites are used in everything from buildings, bathtubs, and countertops to boats, racecars, and sports equipment. NASA continually works to develop new materials to enable future space missions - lighter, less expensive materials that can still withstand the extreme demands of space travel. Composites such as carbon fiber materials offer promising solutions in this regard, providing strength and stiffness comparable to metals like aluminum but with less weight, allowing for benefits like better fuel efficiency and simpler propulsion system design. Composites can also be made fatigue tolerant and thermally stable - useful in space where temperatures can swing hundreds of degrees. NASA has recently explored the use of composites for aerospace applications through projects like the Composite Crew Module (CCM), a composite-constructed version of the aluminum-lithium Multipurpose Crew Capsule. The CCM was designed to give NASA engineers a chance to gain valuable experience developing and testing composite aerospace structures.

  14. Integrated Manufacturing for Advanced MEAs

    SciTech Connect

    Emory S. De Castro; Yu-Min Tsou; Mark G. Roelofs; Olga Polevaya

    2007-03-30

    This program addressed a two-pronged goal for developing fuel cell components: lowering of precious metal content in membrane electrode assemblies (MEAs), thereby reducing the fuel cell cost, and creating MEAs that can operate at 120oC and 25% RH whereby the system efficiency and effectiveness is greatly improved. In completing this program, we have demonstrated a significant reduction in precious metal while at the same time increasing the power output (achieved 2005 goal of 0.6g/Kw). We have also identified a technology that allows for one step fabrication of MEAs and appears to be a feasible path toward achieving DOE’s 2010 targets for precious metal and power (approaches 0.2g/Kw). Our team partner Du Pont invented a new class of polymer electrolyte membrane that has sufficient stability and conductivity to demonstrate feasibility for operation at 120 oC and low relative humidity. Through the course of this project, the public has benefited greatly from numerous presentations and publications on the technical understanding necessary to achieve these goals.

  15. Agile manufacturing prototyping system (AMPS)

    SciTech Connect

    Garcia, P.

    1998-05-09

    The Agile Manufacturing Prototyping System (AMPS) is being integrated at Sandia National Laboratories. AMPS consists of state of the industry flexible manufacturing hardware and software enhanced with Sandia advancements in sensor and model based control; automated programming, assembly and task planning; flexible fixturing; and automated reconfiguration technology. AMPS is focused on the agile production of complex electromechanical parts. It currently includes 7 robots (4 Adept One, 2 Adept 505, 1 Staubli RX90), conveyance equipment, and a collection of process equipment to form a flexible production line capable of assembling a wide range of electromechanical products. This system became operational in September 1995. Additional smart manufacturing processes will be integrated in the future. An automated spray cleaning workcell capable of handling alcohol and similar solvents was added in 1996 as well as parts cleaning and encapsulation equipment, automated deburring, and automated vision inspection stations. Plans for 1997 and out years include adding manufacturing processes for the rapid prototyping of electronic components such as soldering, paste dispensing and pick-and-place hardware.

  16. Incentives White Papers for Advanced Manufacturing Technology

    DTIC Science & Technology

    2009-04-15

    capabilities, the design, and the manufacture of weapon systems. The defense industrial community is, more and more, a glob- ally competitive ...will also improve the global competitiveness of our U.S. industrial base. As manufacturing capabilities continue to globalize, overseas sources have...risks and rewards. DoD should work with stakeholders to address the competitive concerns of industry participants. For many organizations

  17. National Center for Advanced Manufacturing Overview

    NASA Technical Reports Server (NTRS)

    Vickers, J.

    2001-01-01

    The National Center for Advanced Manufacturing (NCAM) is a strategy, organization, and partnership focused on long-term technology development. The NCAM initially will be a regional partnership, however the intent is national in scope. Benchmarking is needed to follow the concept to the finished project, not using trial and error. Significant progress has been made to date, and NCAM is setting the vision for the future.

  18. Flexible Manufacturing Systems: What's in It for the Manufacturer.

    ERIC Educational Resources Information Center

    Chowdhury, A. R.; Peckman, Donald C.

    1987-01-01

    The authors define the Flexible Manufacturing System and outline its history. They describe what the processing time includes and provide advantages and disadvantages of Flexible Manufacturing Systems compared to conventional manufacturing. (CH)

  19. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  20. Manufacturing Information System.

    DTIC Science & Technology

    1983-12-22

    university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development...PAUL R. SMITH 175 South 600 East #1 Provo, Utah 84601 (801) 377-8068 CAREER OBJECTIVE: Manufacturing Engineer using skills in development and...university classroom to aid in the education and train- ing of new manufacturing engineers. , . o i . o ., . . . . . - ,’ o . -2- 1.2. NEED There is a current

  1. Quality management of manufacturing process based on manufacturing execution system

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Jiang, Yang; Jiang, Weizhuo

    2017-04-01

    Quality control elements in manufacturing process are elaborated. And the approach of quality management of manufacturing process based on manufacturing execution system (MES) is discussed. The functions of MES for a microcircuit production line are introduced conclusively.

  2. Impact of advanced manufacturing technology on prosthetic and orthotic practice.

    PubMed

    Jones, D

    1988-04-01

    Radical changes in the technology applied to prosthetics and orthotics are being proposed. This paper attempts to define the scope and character of advanced manufacturing technology and examines the rehabilitation problems which are or could be tackled. Lower-limb prosthetics has been the major area under investigation so far, but orthopaedic footwear, spinal orthotics and custom seating for the disabled have also been investigated using similar technological approaches. The whole process of patient measurement, device design, and component manufacture is conceived as an integrated system relying upon shape or tissue property sensing, computer based device design and computer-numerically-controlled or robot manufacturing processes. The aim is to retain flexibility for custom design which is necessary to provide for individual patients, and yet improve the rapidity and precision of overall device manufacture and service delivery.

  3. Software Design Specification for the Manufacturing Optimization (MO) System

    DTIC Science & Technology

    1992-12-01

    system will support Design for Manufacturing and Assembly ( DFMA ) with a set of tools to model the manufacturing processes and manage tradeoffs across...Communications Manager DARPA Defense Advanced Research Projects Agency DBMS Database Management System DFMA Design for Manufacturing and Assembly DICE

  4. Advanced manufacturing technologies for reduced cost and weight in portable ruggedized VIS-IR and multi-mode optical systems for land, sea, and air

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael; Spinazzola, Robert; Morrison, Donald; Macklin, Dennis; Marion, Jared

    2011-06-01

    Homeland security systems, special forces, unmanned aerial vehicles (UAV), and marine patrols require low cost, high performance, multi-mode visible through infrared (VIS-IR) wavelength optical systems to identify and neutralize potential threats that often arise at long ranges and under poor visibility conditions. Long range and wide spectral performance requirements favor reflective optical system design solutions. The limited field of view of such designs can be significantly enhanced by the use of catadioptric optical solutions that utilize molded or diamond point machined VIS-IR lenses downstream from reflective objective optics. A common optical aperture that services multiple modes of field-of-view, operating wavelength, and includes laser ranging and spotting, provides the highest utility and is most ideal for size and weight. Such a design also often requires fast, highly aspheric, reflective, refractive, and sometimes diffractive surfaces using high performance and aggressively light-weighted materials that demand the finest of manufacturing technologies. Visible wavelength performance sets the bar for component optical surface irregularity on the order of 20 nm RMS and surface finishes less than 3.0 nm RMS. Aluminum mirrors and structures can also be precision machined to yield "snap together alignment" or limited compensation assembly approaches to reduce cost and enhance interchangeability. Diamond point turning, die cast and investment cast mirror substrates and structures, computerized optical polishing, mirror replication, lens molding and other advanced manufacturing technologies can all be used to minimize the cost of this type of optical equipment. This paper discusses the tradeoffs among materials and process selection for catadioptric, multi-mode systems that are under development for a variety of DoD and Homeland Security applications. Several examples are profiled to illuminate the confluence of applicable design and manufacturing

  5. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  6. Manufacturing Optimization (MO) System

    DTIC Science & Technology

    1994-02-28

    are passed back to the cross functional (top level) team for their negotiation. 14. SUBJECT TERMS 15. NUMBER OF PAGES 130 DFMA , Process Modeling...Technology ...................................... 12 3.2 Collaborative DFMA Tool .................................................. 12 3.3 Prototype...technologies in Design For Manufacturing and Assembly ( DFMA ). This R&D effort was centralized around the developm.nt of a DFMA analysis tool. The MO

  7. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  8. The Role of Advanced Manufacturing in Our Journey to Mars

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2017-01-01

    The National Additive Manufacturing Innovation Institute was launched in August 2012 as a result of President Obama's proposed need for a whole-of-government advanced manufacturing effort. Mission: To accelerate the adoption of additive manufacturing technologies to increase domestic manufacturing competitiveness. Funding: Five federal agencies - the Departments of Defense, Energy, and Commerce, the National Science Foundation, and NASA - jointly committed to invest $45 million.

  9. Advanced manufacturing technologies for the BeCOAT telescope

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael N.; Rajic, Slobodan; Seals, Roland D.

    1994-02-01

    The beryllium cryogenic off-axis telescope (BeCOAT) uses a two-mirror, non re-imaging, off- axis, Ritchey Chretian design with all-beryllium optics, structures and baffles. The purpose of this telescope is the system level demonstration of advanced manufacturing technologies for optics, optical benches, and baffle assemblies. The key issues that are addressed are single point diamond turning of beryllium optics, survivable fastening techniques, minimum beryllium utilization, and technologies leading to self-aligning, all-beryllium optical systems.

  10. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    PubMed Central

    Sidambe, Alfred T.

    2014-01-01

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy. PMID:28788296

  11. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    PubMed

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  12. Organizational Considerations for Advanced Manufacturing Technology

    ERIC Educational Resources Information Center

    DeRuntz, Bruce D.; Turner, Roger M.

    2003-01-01

    In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…

  13. Advanced computational research in materials processing for design and manufacturing

    SciTech Connect

    Zacharia, T.

    1994-12-31

    The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

  14. System Description Document for the Manufacturing Optimization (MO) System

    DTIC Science & Technology

    1993-07-01

    process changes are traded concurrently in the product and process domains. The system supports Design for Manufacturing and I Assembly ( DFMA ) with a set...Engineering Research Center CM Communications Manager I DARPA Defense Advanced Research Projects Agency DBMS Database Management System DFMA Design for

  15. Advances in gamma titanium aluminides and their manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal; Radhakrishnan, Ramachandran; Wereley, Norman M.

    2012-11-01

    Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

  16. Evaluation of advanced polymers for additive manufacturing

    SciTech Connect

    Rios, Orlando; Morrison, Crystal

    2015-09-01

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and is inherently low-cost.

  17. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  18. Advanced manufacturing technologies on color plasma displays

    NASA Astrophysics Data System (ADS)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  19. Energy intensity, electricity consumption, and advanced manufacturing-technology usage

    SciTech Connect

    Doms, M.E.; Dunne, T.

    1995-07-01

    This article reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants that utilize AMTs are less-energy intensive than plants not using AMTs, but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants. 25 refs., 3 tabs.

  20. 76 FR 43983 - Request for Information on How To Structure Proposed New Program: Advanced Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Program: Advanced Manufacturing Technology Consortia (AMTech) AGENCY: National Institute of Standards and... structure a new public-private partnership program, the Advanced Manufacturing Technology Consortia...

  1. Advanced materials manufacturing for solar energy

    NASA Astrophysics Data System (ADS)

    van Mierlo, Frank

    2012-02-01

    The US has a robust technical roadmap to get to a 1/W total installed cost with several potential winners in the race. We dominate in the new technology arena and there is a good chance that tomorrow's winning technology will be from the current crop of contenders. One potential breakthrough is Direct Wafer^TM a new manufacturing technique to make silicon wafers at a fraction of the traditional cost. Current wafer manufacturing is a multi-step, energy- and capital-intensive process that wastes half of the valuable silicon feedstock. 1366's Direct Wafer technology forms a standard, 156mm multi-crystalline wafer directly from molten silicon in a semi-continuous, efficient, high-throughput process that eliminates silicon waste. Direct Wafer^TM cuts the amount of consumables by a factor of four and requires only half the capital per GigaWatt production capacity thus enabling solar to compete successfully with coal generated electricity.

  2. A review of advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Broughton, T.

    1981-03-01

    Joining techniques, hot forming technology, forging technology, investment casting, small cooling hole manufacturing, combustor technology, quality assurance, and chip forming machining of gas turbine engine components are discussed. Electron and laser beam welding; laser hard facing techniques; automatic TIG and plasma welding; diffusion brazing of titanium and nickel alloys; heated die forming: blow forming; superplastic forming; fan and compressor blade forging; and wheel and disk forging from powder superalloys are described.

  3. Emerging Global Trends in Advanced Manufacturing

    DTIC Science & Technology

    2012-03-01

    in popularity and represent one convergence of trends. Companies are also increasingly pursuing sustainability for marketing or brand-recognition...which is growing in popularity for direct-metal parts due to its energy efficiency and speed. Arcam has focused primarily on high-value markets...strategies tend to be a popular policy for attracting manufacturing enterprises (Popkin and Kobe 2010; National Defense University 2009). However

  4. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  5. The National Center for Advanced Information Components Manufacturing: Program update

    SciTech Connect

    Jorgensen, J.; McBurnett, S.

    1994-02-01

    The National Center for Advanced Information Components Manufacturing (NCAICM) Projects focus on manufacturing processes, materials, user facilities, standard tools, and equipment for large area emissive flat panel displays and microelectronics. Two types of projects are funded: (1) precompetitive projects done at the Center, and (2) joint industry/national laboratory projects, which may carry intellectual property rights, where the work will be done at the appropriate industry or laboratory site. A summary of the NCAICM Projects will be presented.

  6. Global drivers, sustainable manufacturing and systems ergonomics.

    PubMed

    Siemieniuch, C E; Sinclair, M A; Henshaw, M J deC

    2015-11-01

    This paper briefly explores the expected impact of the 'Global Drivers' (such as population demographics, food security; energy security; community security and safety), and the role of sustainability engineering in mitigating the potential effects of these Global Drivers. The message of the paper is that sustainability requires a significant input from Ergonomics/Human Factors, but the profession needs some expansion in its thinking in order to make this contribution. Creating a future sustainable world in which people experience an acceptable way of life will not happen without a large input from manufacturing industry into all the Global Drivers, both in delivering products that meet sustainability criteria (such as durability, reliability, minimised material requirement and low energy consumption), and in developing sustainable processes to deliver products for sustainability (such as minimum waste, minimum emissions and low energy consumption). Appropriate changes are already being implemented in manufacturing industry, including new business models, new jobs and new skills. Considerable high-level planning around the world is in progress and is bringing about these changes; for example, there is the US 'Advanced Manufacturing National Program' (AMNP)', the German 'Industrie 4.0' plan, the French plan 'la nouvelle France industrielle' and the UK Foresight publications on the 'Future of Manufacturing'. All of these activities recognise the central part that humans will continue to play in the new manufacturing paradigms; however, they do not discuss many of the issues that systems ergonomics professionals acknowledge. This paper discusses a number of these issues, highlighting the need for some new thinking and knowledge capture by systems ergonomics professionals. Among these are ethical issues, job content and skills issues. Towards the end, there is a summary of knowledge extensions considered necessary in order that systems ergonomists can be fully

  7. Manufacturing technology methodology for propulsion system parts

    NASA Astrophysics Data System (ADS)

    McRae, M. M.

    1992-07-01

    A development history and a current status evaluation are presented for lost-wax casting of such gas turbine engine components as turbine vanes and blades. The most advanced such systems employ computer-integrated manufacturing methods for high process repeatability, reprogramming versatility, and feedback monitoring. Stereolithography-based plastic model 3D prototyping has also been incorporated for the wax part of the investment casting; it may ultimately be possible to produce the 3D prototype in wax directly, or even to create a ceramic mold directly. Nonintrusive inspections are conducted by X-radiography and neutron radiography.

  8. On Fault Tolerance in Manufacturing Systems.

    DTIC Science & Technology

    1987-10-01

    characteristic of manufacturing systems. Section 2.3 discusses the control issues and section 2.4 describes the communication issues in manufacturing...communications are the control functions of this level. 2.3. Communication issues in manufacturing systems From the hierarchical view, different levels in the

  9. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  10. Sulfur-free cleaning strategy for advanced mask manufacturing

    NASA Astrophysics Data System (ADS)

    Kindt, Louis; Watts, Andrew; Burnham, Jay; Aaskov, William

    2006-10-01

    Existing cleaning technology using sulfuric acid based chemistry has served the mask industry quite well over the years. However, the existence of residue on mask surfaces is becoming more and more of a problem at the high energy wavelengths used in lithography tool for wafer manufacturing. This is evident by the emergence of sub-pellicle defect growth and backside hazing issues. A large source of residual contamination on the surface of masks is from the mask manufacturing process, particularly the cleaning portion involving sulfuric acid. Cleaning strategies can be developed that eliminate the use of sulfuric acid in the cleaning process for advanced photomasks and alternative processes can be used for cleaning masks at various stages of the manufacturing process. Implementation of these new technologies into manufacturing will be discussed as will the resulting improvements, advantages, and disadvantages over pre-existing mask cleaning processes.

  11. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    ERIC Educational Resources Information Center

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90…

  12. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    ERIC Educational Resources Information Center

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90…

  13. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  14. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  15. Advances in High Temperature Materials for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  16. Another Program Simulates A Modular Manufacturing System

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Wang, Jian

    1996-01-01

    SSE5 computer program provides simulation environment for modeling manufacturing systems containing relatively small numbers of stations and operators. Designed to simulate manufacturing of apparel, also used in other manufacturing domains. Valuable for small or medium-size firms, including those lacking expertise to develop detailed mathematical models or have only minimal knowledge in describing manufacturing systems and in analyzing results of simulations on mathematical models. Two other programs available bundled together as SSE (MFS-26245). Each program models slightly different manufacturing scenario. Written in Turbo C v2.0 for IBM PC-series and compatible computers running MS-DOS and successfully compiled using Turbo C++ v3.0.

  17. Process development status report for advanced manufacturing projects

    SciTech Connect

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  18. Cellular Manufacturing Internet Performance Support System

    SciTech Connect

    Bohley, M.C.; Schwartz, M.E.

    1998-03-04

    The objective of this project was to develop an Internet-based electronic performance support system (EPSS) for cellular manufacturing providing hardware/software specifications, process descriptions, estimated cost savings, manufacturing simulations, training information, and service resources for government and industry users of Cincinnati Milacron machine tools and products. AlliedSignal Federal Manufacturing and Technologies (ASFM and T) used expertise in the areas of Internet design and multimedia creation to develop a performance support system (PSS) for the Internet with assistance from CM's subject matter experts from engineering, manufacturing, and technical support. Reference information was both created and re-purposed from other existing formats, then made available on the Internet. On-line references on cellular manufacturing operations include: definitions of cells and cellular manufacturing; illustrations on how cellular manufacturing improves part throughput, resource utilization, part quality, and manufacturing flexibility; illustrations on how cellular manufacturing reduces labor and overhead costs; identification of critical factors driving decisions toward cellular manufacturing; a method for identifying process improvement areas using cellular manufacturing; a method for customizing the size of cells for a specific site; a simulation for making a part using cellular manufacturing technology; and a glossary of terms and concepts.

  19. Prosperity Game: Advanced Manufacturing Day, May 17, 1994

    SciTech Connect

    Berman, M.

    1994-12-01

    Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents a 90-minute Prosperity Game conducted as part of Advanced Manufacturing Day on May 17, 1994. This was the fourth game conducted under the direction of the Center for National Industrial Alliances at Sandia. Although previous games lasted from one to two days, this abbreviated game produced interesting and important results. Most of the strategies proposed in previous games were reiterated here. These included policy changes in international trade, tax laws, the legal system, and the educational system. Government support of new technologies was encouraged as well as government-industry partnerships. The importance of language in international trade was an original contribution of this game. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, and the development, delivery and commercialization of new technologies.

  20. Research and Development Advances Impacting Diminishing Manufacturing Sources and Material Shortages Management

    DTIC Science & Technology

    2016-06-01

    enable better design and both new systems and repairs and modifications. 14 NUWC Keyport, Custom...kind technological capability and highly specialized engineering expertise to design , prototype, and test new microelectronic components and systems ...Intel’s purchase of FPGA manufacturer Altera in 2015 may lead to some important DMSMS advances as aerospace and defense high-performance embedded

  1. Optimization of space manufacturing systems

    NASA Technical Reports Server (NTRS)

    Akin, D. L.

    1979-01-01

    Four separate analyses are detailed: transportation to low earth orbit, orbit-to-orbit optimization, parametric analysis of SPS logistics based on earth and lunar source locations, and an overall program option optimization implemented with linear programming. It is found that smaller vehicles are favored for earth launch, with the current Space Shuttle being right at optimum payload size. Fully reusable launch vehicles represent a savings of 50% over the Space Shuttle; increased reliability with less maintenance could further double the savings. An optimization of orbit-to-orbit propulsion systems using lunar oxygen for propellants shows that ion propulsion is preferable by a 3:1 cost margin over a mass driver reaction engine at optimum values; however, ion engines cannot yet operate in the lower exhaust velocity range where the optimum lies, and total program costs between the two systems are ambiguous. Heavier payloads favor the use of a MDRE. A parametric model of a space manufacturing facility is proposed, and used to analyze recurring costs, total costs, and net present value discounted cash flows. Parameters studied include productivity, effects of discounting, materials source tradeoffs, economic viability of closed-cycle habitats, and effects of varying degrees of nonterrestrial SPS materials needed from earth. Finally, candidate optimal scenarios are chosen, and implemented in a linear program with external constraints in order to arrive at an optimum blend of SPS production strategies in order to maximize returns.

  2. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    PubMed

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  3. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  4. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  5. Spacesuit glove manufacturing enhancements through the use of advanced technologies

    NASA Technical Reports Server (NTRS)

    Cadogan, David; Bradley, David; Kosmo, Joseph

    1993-01-01

    The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.

  6. Spacesuit glove manufacturing enhancements through the use of advanced technologies

    NASA Astrophysics Data System (ADS)

    Cadogan, David; Bradley, David; Kosmo, Joseph

    The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.

  7. Literature Review on Dynamic Cellular Manufacturing System

    NASA Astrophysics Data System (ADS)

    Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.

    2014-06-01

    In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.

  8. Computer-integrated manufacturing system for OPTICAM

    NASA Astrophysics Data System (ADS)

    Tipps, Joe D., Jr.; Czajkowski, Walter C.

    1992-01-01

    Optical design, engineering, and manufacturing operate as independent entities. Outmoded specifications for material, geometry, tolerances, and mounting add to cost, lead time, and manufacturing complexity of both military and commercial optics. The optics industry maintains outdated stand-alone design, engineering, and manufacturing systems that do not support integration or communications. This single island of technology adds greatly to the final cost of optical systems.

  9. Towards manufacturing of advanced logic devices by double-patterning

    NASA Astrophysics Data System (ADS)

    Koay, Chiew-seng; Halle, Scott; Holmes, Steven; Petrillo, Karen; Colburn, Matthew; van Dommelen, Youri; Jiang, Aiqin; Crouse, Michael; Dunn, Shannon; Hetzer, David; Kawakami, Shinichiro; Cantone, Jason; Huli, Lior; Rodgers, Martin; Martinick, Brian

    2011-04-01

    As reported previously, the IBM Alliance has established a DETO (Double-Expose-Track-Optimized) baseline, in collaboration with ASML, TEL, and CNSE, to evaluate commercially available DETO photoresist system for the manufacturing of advanced logic devices. Although EUV lithography is the baseline strategy for <2x nm logic nodes, alternative techniques are still being pursued. The DETO technique produces pitch-split patterns capable of supporting 16 nm and 11 nm node semiconductor devices. We present the long-term monitoring performances of CD uniformity (CDU), overlay, and defectivity of our DETO process. CDU and overlay performances for controlled experiments are also presented. Two alignment schemes in DETO are compared experimentally for their effects on inter-level & intralevel overlays, and space CDU. We also experimented with methods for improving CDU, in which the CD-OptimizerTMand DoseMapperTM were evaluated separately and in tandem. Overlay improvements using the Correction Per Exposure (CPE) and the intra-field High-Order Process Correction (i-HOPC) were compared against the usual linear correction method. The effects of the exposure field size are also compared between a small field and the full field. Included in all the above, we also compare the performances derived from stack-integrated wafers and bare-Si wafers.

  10. Impacts of advanced manufacturing technology on parametric estimating

    NASA Astrophysics Data System (ADS)

    Hough, Paul G.

    1989-12-01

    The introduction of advanced manufacturing technology in the aerospace industry poses serious challenges for government cost analysts. Traditionally, the analysts have relied on parametric estimating techniques for both planning and budgeting. Despite its problems, this approach has proven to be a remarkably useful and robust tool for estimating new weapon system costs. However, rapid improvements in both product and process technology could exacerbate current difficulties, and diminish the utility of the parametric approach. This paper reviews some weakness associated with parametrics, then proceeds to examine how specific aspects of the factory of the future may further impact parametric estimating, and suggests avenues of research for their resolution. This paper is an extended version of Cost Estimating for the Factory of the Future. Parametric estimating is a method by which aggregated costs are derived as a function of high-level product characteristics or parameters. The resulting equations are known as cost estimating relationships (CERs). Such equations are particularly useful when detailed technical specifications are not available.

  11. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  12. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    PubMed

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. Published by Elsevier B.V.

  13. National Center for Advanced Information Components Manufacturing. Program summary report, Volume 1

    SciTech Connect

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, summaries of the technical projects, and key program accomplishments.

  14. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    SciTech Connect

    Ahmad, Iftikhar; Zhang, Pu

    2016-11-30

    For this Vehicle Technologies Incubator/Energy Storage R&D topic, Lambda Technologies teamed with Navitas Systems and proposed a new advanced drying process that promised a 5X reduction in electrode drying time and significant reduction in the cost of large format lithium batteries used in PEV's. The operating principle of the proposed process was to use penetrating radiant energy source Variable Frequency Microwaves (VFM), that are selectively absorbed by the polar water or solvent molecules instantly in the entire volume of the electrode. The solvent molecules are thus driven out of the electrode thickness making the process more efficient and much faster than convective drying method. To evaluate the Advanced Drying Process (ADP) a hybrid prototype system utilizing VFM and hot air flow was designed and fabricated. While VFM drives the solvent out of the electrode thickness, the hot air flow exhausts the solvent vapors out of the chamber. The drying results from this prototype were very encouraging. For water based anodes there is a 5X drying advantage (time & length of oven) in using ADP over standard drying system and for the NMP based cathodes the reduction in drying time has 3X benefit. For energy savings the power consumption measurements were performed to ADP prototype and compared with the convection standard drying oven. The data collected demonstrated over 40% saving in power consumption with ADP as compared to the convection drying systems. The energy savings are one of the operational cost benefits possible with ADP. To further speed up the drying process, the ADP prototype was explored as a booster module before the convection oven and for the electrode material being evaluated it was possible to increase the drying speed by a factor of 4, which could not be accomplished with the standard dryer without surface defects and cracks. The instantaneous penetration of microwave in the entire slurry thickness showed a major advantage in rapid drying of the

  15. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics

    PubMed Central

    Qiao, Guixiu; Weiss, Brian A.

    2016-01-01

    Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172

  16. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics.

    PubMed

    Qiao, Guixiu; Weiss, Brian A

    2016-01-01

    Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.

  17. A manufacturing database of advanced materials used in spacecraft structures

    NASA Astrophysics Data System (ADS)

    Bao, Han P.

    1994-12-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  18. A manufacturing database of advanced materials used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Bao, Han P.

    1994-01-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  19. Multi-agent for manufacturing systems optimization

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.; Tulbure, A.; Huţanu, C.-tin

    2016-08-01

    The paper is meant to be a dynamic approach to optimize manufacturing systems based on multi-agent systems. Multi-agent systems are semiautonomous decision makers and cooperate to optimize the manufacturing process. Increasing production the capacity is achieved by developing, implementing efficient and effective systems from control based on current manufacturing process. The model multi-agent proposed in this paper is based on communication between agents who, based on their mechanisms drive to autonomous decision making. Methods based on multi-agent programming are applied between flexible manufacturing processes and cooperation with agents. Based on multi-agent technology and architecture of intelligent manufacturing can lead to development of strategies for control and optimization of scheduled production resulting from the simulation.

  20. Feature-based tolerancing for advanced manufacturing applications

    SciTech Connect

    Brown, C.W.; Kirk, W.J. III; Simons, W.R.; Ward, R.C.; Brooks, S.L.

    1994-11-01

    A primary requirement for the successful deployment of advanced manufacturing applications is the need for a complete and accessible definition of the product. This product definition must not only provide an unambiguous description of a product`s nominal shape but must also contain complete tolerance specification and general property attributes. Likewise, the product definition`s geometry, topology, tolerance data, and modeler manipulative routines must be fully accessible through a robust application programmer interface. This paper describes a tolerancing capability using features that complements a geometric solid model with a representation of conventional and geometric tolerances and non-shape property attributes. This capability guarantees a complete and unambiguous definition of tolerances for manufacturing applications. An object-oriented analysis and design of the feature-based tolerance domain was performed. The design represents and relates tolerance features, tolerances, and datum reference frames. The design also incorporates operations that verify correctness and check for the completeness of the overall tolerance definition. The checking algorithm is based upon the notion of satisfying all of a feature`s toleranceable aspects. Benefits from the feature-based tolerance modeler include: advancing complete product definition initiatives, incorporating tolerances in product data exchange, and supplying computer-integrated manufacturing applications with tolerance information.

  1. Advanced Electrophysiologic Mapping Systems

    PubMed Central

    2006-01-01

    has not been found to be effective for the treatment of complex arrhythmias such as chronic atrial fibrillation or ventricular tachycardia. Advanced nonfluoroscopic mapping systems have been developed for guiding the ablation of these complex arrhythmias. The Technology Four nonfluoroscopic advanced mapping systems have been licensed by Health Canada: CARTO EP mapping System (manufactured by Biosense Webster, CA) uses weak magnetic fields and a special mapping/ablation catheter with a magnetic sensor to locate the catheter and reconstruct a 3-dimensional geometry of the heart superimposed with colour-coded electric potential maps to guide ablation. EnSite System (manufactured by Endocardial Solutions Inc., MN) includes a multi-electrode non-contact catheter that conducts simultaneous mapping. A processing unit uses the electrical data to computes more than 3,000 isopotential electrograms that are displayed on a reconstructed 3-dimensional geometry of the heart chamber. The navigational system, EnSite NavX, can be used separately with most mapping catheters. The LocaLisa Intracardiac System (manufactured by Medtronics Inc, MN) is a navigational system that uses an electrical field to locate the mapping catheter. It reconstructs the location of the electrodes on the mapping catheter in 3-dimensional virtual space, thereby enabling an ablation catheter to be directed to the electrode that identifies abnormal electric potential. Polar Constellation Advanced Mapping Catheter System (manufactured by Boston Scientific, MA) is a multielectrode basket catheter with 64 electrodes on 8 splines. Once deployed, each electrode is automatically traced. The information enables a 3-dimensional model of the basket catheter to be computed. Colour-coded activation maps are reconstructed online and displayed on a monitor. By using this catheter, a precise electrical map of the atrium can be obtained in several heartbeats. Review Strategy A systematic search of Cochrane, MEDLINE and EMBASE

  2. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  3. Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.

    SciTech Connect

    Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr.; Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

    2007-07-01

    An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

  4. Advances in the manufacturing, types, and applications of biosensors

    NASA Astrophysics Data System (ADS)

    Ravindra, Nuggehalli M.; Prodan, Camelia; Fnu, Shanmugamurthy; Padronl, Ivan; Sikha, Sushil K.

    2007-12-01

    In recent years, there have been significant technological advancements in the manufacturing, types, and applications of biosensors. Applications include clinical and non-clinical diagnostics for home, bio-defense, bio-remediation, environment, agriculture, and the food industry. Biosensors have progressed beyond the detection of biological threats such as anthrax and are finding use in a number of non-biological applications. Emerging biosensor technologies such as lab-on-a-chip have revolutionized the integration approaches for a very flexible, innovative, and user-friendly platform. An overview of the fundamentals, types, applications, and manufacturers, as well as the market trends of biosensors is presented here. Two case studies are discussed: one focused on a characterization technique—patch clamping and dielectric spectroscopy as a biological sensor—and the other about lithium phthalocyanine, a material that is being developed for in-vivo oxymetry.

  5. Cost analysis of advanced turbine blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  6. Space Launch System Launch Vehicle Stage Adapter Hardware Completes Manufacturing

    NASA Image and Video Library

    2017-08-28

    The Launch Vehicle Stage Adapter for the first flight of the Space Launch System, NASA’s new deeps space rocket, recently completed manufacturing at NASA’s Marshal Space Flight Center in Huntsville, Alabama. The LVSA, the largest piece of the rocket welded together in Marshall’s Huntsville manufacturing area, will connect two major sections of SLS – the 27.6-foot diameter core stage and the 16.4-foot interim cryogenic propulsion stage – for the first integrated flight of SLS and the Orion spacecraft. Teledyne Brown Engineering of Huntsville, the prime contractor for the adapter, has completed manufacturing, and engineers are preparing to apply thermal insulation. It will be the largest piece of hardware that Marshall. The LVSA was moved from the NASA welding area to NASA’s Center for Advanced Manufacturing where the thermal protection system will be applied.

  7. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    PubMed

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Software for integrated manufacturing systems, part 2

    NASA Technical Reports Server (NTRS)

    Volz, R. A.; Naylor, A. W.

    1987-01-01

    Part 1 presented an overview of the unified approach to manufacturing software. The specific characteristics of the approach that allow it to realize the goals of reduced cost, increased reliability and increased flexibility are considered. Why the blending of a components view, distributed languages, generics and formal models is important, why each individual part of this approach is essential, and why each component will typically have each of these parts are examined. An example of a specification for a real material handling system is presented using the approach and compared with the standard interface specification given by the manufacturer. Use of the component in a distributed manufacturing system is then compared with use of the traditional specification with a more traditional approach to designing the system. An overview is also provided of the underlying mechanisms used for implementing distributed manufacturing systems using the unified software/hardware component approach.

  9. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  10. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  11. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects....

  12. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects....

  13. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects....

  14. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects....

  15. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects....

  16. Operation of Prisma flexible manufacturing system

    NASA Astrophysics Data System (ADS)

    Schroeder, W.; Rudolph, K.; Mueller, E.

    1985-03-01

    The development of technology and organization in the parts manufacturing taking place in machine construction factories occurs both in job site automation and in process-referred automation. It is characterized by the comprehensive employment of microelectronics which in turn leads to new more highly automated engineering solutions in the areas of manufacturing devices, transport technology and storage technology and manufacturing control. Systems used to process about 850 prismatic individual parts differing in design, differing technologically, and having the maximum dimensions 500 mm x 800 mm x 500 mm are described.

  17. Integrated Design for Manufacturing of Braided Preforms for Advanced Composites Part I: 2D Braiding

    NASA Astrophysics Data System (ADS)

    Gao, Yan Tao; Ko, Frank K.; Hu, Hong

    2013-12-01

    This paper presents a 2D braiding design system for advanced textile structural composites was based on dynamic models. A software package to assist in the design of braided preform manufacturing has been developed. The package allows design parameters (machine speeds, fiber volume fraction, tightness factor, etc.) to be easily obtained and the relationships between said parameters to be demonstrated graphically. The fabirc geometry model (FGM) method was adopted to evaluate the mechanical properties of the composites. Experimental evidence demonstrates the success of the use of dynamic models in the design software for the manufacture of braided fabric preforms.

  18. Program Simulates A Modular Manufacturing System

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Wang, Jian

    1996-01-01

    SSE computer program provides simulation environment for modeling manufacturing systems containing relatively small numbers of stations and operators. Designed to simulate manufacturing of apparel, also used in other manufacturing domains. Excellent for small or medium-size firms including those lacking expertise to develop detailed models or have only minimal knowledge in describing manufacturing systems and in analyzing results of simulations on mathematical models. User does not need to know simulation language to use SSE. Used to design new modules and to evaluate existing modules. Originally written in Turbo C v2.0 for IBM PC-compatible computers running MS-DOS and successfully implemented by use of Turbo C++ v3.0.

  19. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  20. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  1. Synthesis of Evolving Cells for Reconfigurable Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Padayachee, J.; Bright, G.

    2014-07-01

    The concept of Reconfigurable Manufacturing Systems (RMSs) was formulated due to the global necessity for production systems that are able to economically evolve according to changes in markets and products. Technologies and design methods are under development to enable RMSs to exhibit transformable system layouts, reconfigurable processes, cells and machines. Existing factory design methods and software have not yet advanced to include reconfigurable manufacturing concepts. This paper presents the underlying group technology framework for the design of manufacturing cells that are able to evolve according to a changing product mix by mechanisms of reconfiguration. The framework is based on a Norton- Bass forecast and time variant BOM models. An adaptation of legacy group technology methods is presented for the synthesis of evolving cells and two optimization problems are presented within this context.

  2. Evolution of the Advanced Manufacturing Trades Training Program and the Advanced Technology Academy

    SciTech Connect

    GALLEGOS, PHILLIP L.; FORREST, CARLA M.

    2002-11-01

    In an effort to recruit and retain skilled workers in the Manufacturing Science and Technology Center (14000), an innovative and highly diverse team at Sandia National Laboratories and the U.S. Department of Energy joined with concerned community constitutents, such as Albuquerque Technical Vocational Institute and the Albuquerque Public Schools, to offer mentoring and on-the-job training to qualified students in high schools and community colleges. Now, within several years of its inception, the educational program called the Advanced Manufacturing Trades Training Program is a model in the community and the nation, while enabling Sandia to have valuable trained and skilled employees to meet its national mission and workforce demands.

  3. Benefits of modern refinery information systems for manufacturing cleaner fuels

    SciTech Connect

    Latour, P.R.

    1995-12-31

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions -- performance measurement, optimization, scheduling, control and integration -- are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  4. Advances in Neutron Radiography: Application to Additive Manufacturing Inconel 718

    DOE PAGES

    Bilheux, Hassina Z; Song, Gian; An, Ke; ...

    2016-01-01

    Reactor-based neutron radiography is a non-destructive, non-invasive characterization technique that has been extensively used for engineering materials such as inspection of components, evaluation of porosity, and in-operando observations of engineering parts. Neutron radiography has flourished at reactor facilities for more than four decades and is relatively new to accelerator-based neutron sources. Recent advances in neutron source and detector technologies, such as the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN, and the microchannel plate (MCP) detector, respectively, enable new contrast mechanisms using the neutron scattering Bragg features for crystalline information such as averagemore » lattice strain, crystalline plane orientation, and identification of phases in a neutron radiograph. Additive manufacturing (AM) processes or 3D printing have recently become very popular and have a significant potential to revolutionize the manufacturing of materials by enabling new designs with complex geometries that are not feasible using conventional manufacturing processes. However, the technique lacks standards for process optimization and control compared to conventional processes. Residual stresses are a common occurrence in materials that are machined, rolled, heat treated, welded, etc., and have a significant impact on a component s mechanical behavior and durability. They may also arise during the 3D printing process, and defects such as internal cracks can propagate over time as the component relaxes after being removed from its build plate (the base plate utilized to print materials on). Moreover, since access to the AM material is possible only after the component has been fully manufactured, it is difficult to characterize the material for defects a priori to minimize expensive re-runs. Currently, validation of the AM process and materials is mainly through expensive trial-and-error experiments at the

  5. Co-Extrusion: Advanced Manufacturing for Energy Devices

    SciTech Connect

    Cobb, Corie Lynn

    2016-11-18

    The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries builds on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells

  6. Advances in Neutron Radiography: Application to Additive Manufacturing Inconel 718

    SciTech Connect

    Bilheux, Hassina Z; Song, Gian; An, Ke; Bilheux, Jean-Christophe; Kirka, Michael M; Dehoff, Ryan R; Santodonato, Louis J; Gorti, Sarma B; Radhakrishnan, Balasubramaniam; Xie, Qingge

    2016-01-01

    Reactor-based neutron radiography is a non-destructive, non-invasive characterization technique that has been extensively used for engineering materials such as inspection of components, evaluation of porosity, and in-operando observations of engineering parts. Neutron radiography has flourished at reactor facilities for more than four decades and is relatively new to accelerator-based neutron sources. Recent advances in neutron source and detector technologies, such as the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN, and the microchannel plate (MCP) detector, respectively, enable new contrast mechanisms using the neutron scattering Bragg features for crystalline information such as average lattice strain, crystalline plane orientation, and identification of phases in a neutron radiograph. Additive manufacturing (AM) processes or 3D printing have recently become very popular and have a significant potential to revolutionize the manufacturing of materials by enabling new designs with complex geometries that are not feasible using conventional manufacturing processes. However, the technique lacks standards for process optimization and control compared to conventional processes. Residual stresses are a common occurrence in materials that are machined, rolled, heat treated, welded, etc., and have a significant impact on a component s mechanical behavior and durability. They may also arise during the 3D printing process, and defects such as internal cracks can propagate over time as the component relaxes after being removed from its build plate (the base plate utilized to print materials on). Moreover, since access to the AM material is possible only after the component has been fully manufactured, it is difficult to characterize the material for defects a priori to minimize expensive re-runs. Currently, validation of the AM process and materials is mainly through expensive trial-and-error experiments at the component

  7. Strategic methodology for advancing food manufacturing waste management paradigms

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.

    2004-12-01

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not as materials in need of disposal, but rather as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector there are many examples of value-added use of processing residues, although many of these focus solely on utilization as livestock feed ingredients. In addition to livestock feed, though, many other potential avenues exist for food processing waste streams, including food grade as well as industrial products. Unfortunately, the challenge to food processors is actually conducting the byproduct development work. In fact, no clear delineation exists that describes necessary components for an effective byproduct development program. This paper describes one such strategic methodology that could help fill this void. It consists of identifying, quantifying, characterizing, developing, analyzing, optimizing, and modeling the waste stream of interest. This approach to byproduct development represents an inclusive strategy that can be used to more effectively implement value-added utilization programs. Not only is this methodology applicable to food processing operations, but any industrial or manufacturing firm could benefit from instituting the formal components described here. Thus, this methodology, if implemented by a manufacturer, could hold the potential for increasing the probability of meeting the goals of industrial ecology, namely, that of developing and operating sustainable systems.

  8. Flow Battery System Design for Manufacturability.

    SciTech Connect

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  9. Ubiquitous Robotic Technology for Smart Manufacturing System.

    PubMed

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  10. Ubiquitous Robotic Technology for Smart Manufacturing System

    PubMed Central

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  11. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  12. Modelling of Robotized Manufacturing Systems Using MultiAgent Formalism

    NASA Astrophysics Data System (ADS)

    Foit, K.; Gwiazda, A.; Banaś, W.

    2016-08-01

    The evolution of manufacturing systems has greatly accelerated due to development of sophisticated control systems. On top of determined, one way production flow the need of decision making has arisen as a result of growing product range that are manufactured simultaneously, using the same resources. On the other hand, the intelligent flow control could address the “bottleneck” problem caused by the machine failure. This sort of manufacturing systems uses advanced control algorithms that are introduced by the use of logic controllers. The complex algorithms used in the control systems requires to employ appropriate methods during the modelling process, like the agent-based one, which is the subject of this paper. The concept of an agent is derived from the object-based methodology of modelling, so it meets the requirements of representing the physical properties of the machines as well as the logical form of control systems. Each agent has a high level of autonomy and could be considered separately. The multi-agent system consists of minimum two agents that can interact and modify the environment, where they act. This may lead to the creation of self-organizing structure, what could be interesting feature during design and test of manufacturing system.

  13. Photoelectric detection system. [manufacturing automation

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Schansman, R. R. (Inventor)

    1982-01-01

    A photoelectric beam system for the detection of the arrival of an object at a discrete station wherein artificial light, natural light, or no light may be present is described. A signal generator turns on and off a signal light at a selected frequency. When the object in question arrives on station, ambient light is blocked by the object, and the light from the signal light is reflected onto a photoelectric sensor which has a delayed electrical output but is of the frequency of the signal light. Outputs from both the signal source and the photoelectric sensor are fed to inputs of an exclusively OR detector which provides as an output the difference between them. The difference signal is a small width pulse occurring at the frequency of the signal source. By filter means, this signal is distinguished from those responsive to sunlight, darkness, or 120 Hz artificial light. In this fashion, the presence of an object is positively established.

  14. Advanced Worker Protection System

    SciTech Connect

    1996-04-01

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs.

  15. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  16. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    NASA Technical Reports Server (NTRS)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  17. RAPID MANUFACTURING SYSTEM OF ORTHOPEDIC IMPLANTS

    PubMed Central

    Relvas, Carlos; Reis, Joana; Potes, José Alberto Caeiro; Fonseca, Fernando Manuel Ferreira; Simões, José Antonio Oliveira

    2015-01-01

    This study, aimed the development of a methodology for rapid manufacture of orthopedic implants simultaneously with the surgical intervention, considering two potential applications in the fields of orthopedics: the manufacture of anatomically adapted implants and implants for bone loss replacement. This work innovation consists on the capitation of the in situ geometry of the implant by direct capture of the shape using an elastomeric material (polyvinylsiloxane) which allows fine detail and great accuracy of the geometry. After scanning the elastomeric specimen, the implant is obtained by machining using a CNC milling machine programmed with a dedicated CAD/CAM system. After sterilization, the implant is able to be placed on the patient. The concept was developed using low cost technology and commercially available. The system has been tested in an in vivo hip arthroplasty performed on a sheep. The time increase of surgery was 80 minutes being 40 minutes the time of implant manufacturing. The system developed has been tested and the goals defined of the study achieved enabling the rapid manufacture of an implant in a time period compatible with the surgery time. PMID:27004181

  18. AMPS/PC - AUTOMATIC MANUFACTURING PROGRAMMING SYSTEM

    NASA Technical Reports Server (NTRS)

    Schroer, B. J.

    1994-01-01

    The AMPS/PC system is a simulation tool designed to aid the user in defining the specifications of a manufacturing environment and then automatically writing code for the target simulation language, GPSS/PC. The domain of problems that AMPS/PC can simulate are manufacturing assembly lines with subassembly lines and manufacturing cells. The user defines the problem domain by responding to the questions from the interface program. Based on the responses, the interface program creates an internal problem specification file. This file includes the manufacturing process network flow and the attributes for all stations, cells, and stock points. AMPS then uses the problem specification file as input for the automatic code generator program to produce a simulation program in the target language GPSS. The output of the generator program is the source code of the corresponding GPSS/PC simulation program. The system runs entirely on an IBM PC running PC DOS Version 2.0 or higher and is written in Turbo Pascal Version 4 requiring 640K memory and one 360K disk drive. To execute the GPSS program, the PC must have resident the GPSS/PC System Version 2.0 from Minuteman Software. The AMPS/PC program was developed in 1988.

  19. National Center for Advanced Information Components Manufacturing. Program summary report, Volume II

    SciTech Connect

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, program history, summaries of the technical projects, and key program accomplishments.

  20. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  1. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  2. Research of Manufacture Time Management System Based on PLM

    NASA Astrophysics Data System (ADS)

    Jing, Ni; Juan, Zhu; Liangwei, Zhong

    This system is targeted by enterprises manufacturing machine shop, analyzes their business needs and builds the plant management information system of Manufacture time and Manufacture time information management. for manufacturing process Combined with WEB technology, based on EXCEL VBA development of methods, constructs a hybrid model based on PLM workshop Manufacture time management information system framework, discusses the functionality of the system architecture, database structure.

  3. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  4. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    on the issues identified. The two advanced barrier filter systems have been found to have the potential to be significantly more reliable and less expensive to operate than standard ceramic candle filter system designs. Their key development requirements are the assessment of the design and manufacturing feasibility of the ceramic filter elements, and the small-scale demonstration of their conceptual reliability and availability merits.

  5. Dynamic Construction of Virtual System in Real-Virtual Fusion Manufacturing System

    NASA Astrophysics Data System (ADS)

    Qian, Yi; Fujii, Nobutada; Kaihara, Toshiya; Fujii, Susumu; Umeda, Toyohiro

    On automated manufacturing system, it is commonly difficult to execute real production according to the schedule planned in advance because of the external fluctuations such as order change and delayed delivery of materials, and internal uncertain factors such as machine failure and process delay existing in real shop floor. In this study, a new concept of agent-based Real-Virtual Fusion Manufacturing System (RVF-MS) is proposed, which aims to adaptively and effectively consider both the external and internal fluctuations by realizing the fusion between real production shop floor (real system) and manufacturing simulation (virtual system). In this paper, a method of constructing virtual system in dynamic manufacturing environment is proposed, and effectiveness of the proposal is verified by experiments about production planning problem on flexible flow shop using model plant.

  6. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  7. Advanced Computed-Tomography Inspection System

    NASA Technical Reports Server (NTRS)

    Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa

    1993-01-01

    Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.

  8. Training Welders in Advanced Manufacturing Philosophies Nets Employability

    ERIC Educational Resources Information Center

    Wilson, Kristin

    2011-01-01

    As of September 2010, the U.S. manufacturing sector grew for the 14th consecutive month, leading some economists to speculate that, as with the Great Depression, American manufacturing will lead the economy out of the recession. It is a little bit of good news in a long stream of depressing employment reports. Career and technical educators…

  9. Advanced Microturbine Systems

    SciTech Connect

    Lindberg, Laura

    2005-04-29

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  10. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  11. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  12. Contract-net-based scheduling for holonic manufacturing systems

    NASA Astrophysics Data System (ADS)

    Kanchanasevee, Pinij; Biswas, Gautam; Kawamura, Kazuhiko; Tamura, Satoru

    1997-12-01

    Manufacturing is currently undergoing a revolutionary transition with focus shifting from mass production to mass customization. This trend motivates a new generation of advanced manufacturing systems that can dynamically respond to customer orders and changing production environments. It is becoming increasingly important to develop control architectures that are modifiable, extensible, reconfigurable, adaptable, and fault tolerant. Heterarchical control structures, made up of multiple, distributed, locally autonomous entities, provide this kind of control. Our research focus is on efficient and effective scheduling and routing methodologies that can be applied to heterarchically controlled manufacturing processes. The Contract-Net based scheduling approach, developed in distributed artificial intelligence (DAI), adopts a multi-agent cooperative problem- solving paradigm based on bidding and negotiation mechanisms to implement production plans as distributed and localized schedules for individual workstations. This paper discusses a Contract-Net based scheduling algorithm in a realistic manufacturing testbed, a model induction motor assembly plant. This testbed, developed as part of the HMS project, is a typical example of low-volume, high-variety production facility, and it highlights many of the problems that arise from the inflexibility of centralized management system architectures.

  13. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  14. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  15. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  16. Advanced information processing system

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  17. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  18. The optimal planning of computerized manufacturing systems

    NASA Astrophysics Data System (ADS)

    Lewis, W. C., Jr.; Barash, M. M.; Solberg, J. J.

    1980-12-01

    A new class of control algorithms for computer operated manufacturing systems (CMS) was defined and tested. The definition is sufficient to permit construction of any element of the new class by a practitioner with backgrounds in electronic devices, NC machine tools, computer operating systems, and data flow. Reliability, repairability, and extensibility were considered. The test applied the new class to control two simulated systems-one similar to existing systems, the other using adaptive machine tools. For each system, the new class functioned successfully. Non-failing machine tool utilization exceeded 95 percent for failure rates from 3-16 percent per machine tool. The batch weights had a strong effect on relative flow time.

  19. Advanced Manufacturing at the Marshall Space Flight Center and Application to Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Carruth, Ralph

    2008-01-01

    There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.

  20. Process and control systems for composites manufacturing

    NASA Technical Reports Server (NTRS)

    Tsiang, T. H.; Wanamaker, John L.

    1992-01-01

    A precise control of composite material processing would not only improve part quality, but it would also directly reduce the overall manufacturing cost. The development and incorporation of sensors will help to generate real-time information for material processing relationships and equipment characteristics. In the present work, the thermocouple, pressure transducer, and dielectrometer technologies were investigated. The monitoring sensors were integrated with the computerized control system in three non-autoclave fabrication techniques: hot-press, self contained tool (self heating and pressurizing), and pressure vessel). The sensors were implemented in the parts and tools.

  1. Reconfigurable manufacturing execution system for pipe cutting

    NASA Astrophysics Data System (ADS)

    Yin, Y. H.; Xie, J. Y.

    2011-08-01

    This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.

  2. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  3. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini; Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-theshelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  4. Manufacturing Bms/Iso System Review

    NASA Technical Reports Server (NTRS)

    Gomez, Yazmin

    2004-01-01

    The Quality Management System (QMS) is one that recognizes the need to continuously change and improve an organization s products and services as determined by system feedback, and corresponding management decisions. The purpose of a Quality Management System is to minimize quality variability of an organization's products and services. The optimal Quality Management System balances the need for an organization to maintain flexibility in the products and services it provides with the need for providing the appropriate level of discipline and control over the processes used to provide them. The goal of a Quality Management System is to ensure the quality of the products and services while consistently (through minimizing quality variability) meeting or exceeding customer expectations. The GRC Business Management System (BMS) is the foundation of the Center's ISO 9001:2000 registered quality system. ISO 9001 is a quality system model developed by the International Organization for Standardization. BMS supports and promote the Glenn Research Center Quality Policy and wants to ensure the customer satisfaction while also meeting quality standards. My assignment during this summer is to examine the manufacturing processes used to develop research hardware, which in most cases are one of a kind hardware, made with non conventional equipment and materials. During this process of observation I will make a determination, based on my observations of the hardware development processes the best way to meet customer requirements and at the same time achieve the GRC quality standards. The purpose of my task is to review the manufacturing processes identifying opportunities in which to optimize the efficiency of the processes and establish a plan for implementation and continuous improvement.

  5. Manufacturing Bms/Iso System Review

    NASA Technical Reports Server (NTRS)

    Gomez, Yazmin

    2004-01-01

    The Quality Management System (QMS) is one that recognizes the need to continuously change and improve an organization s products and services as determined by system feedback, and corresponding management decisions. The purpose of a Quality Management System is to minimize quality variability of an organization's products and services. The optimal Quality Management System balances the need for an organization to maintain flexibility in the products and services it provides with the need for providing the appropriate level of discipline and control over the processes used to provide them. The goal of a Quality Management System is to ensure the quality of the products and services while consistently (through minimizing quality variability) meeting or exceeding customer expectations. The GRC Business Management System (BMS) is the foundation of the Center's ISO 9001:2000 registered quality system. ISO 9001 is a quality system model developed by the International Organization for Standardization. BMS supports and promote the Glenn Research Center Quality Policy and wants to ensure the customer satisfaction while also meeting quality standards. My assignment during this summer is to examine the manufacturing processes used to develop research hardware, which in most cases are one of a kind hardware, made with non conventional equipment and materials. During this process of observation I will make a determination, based on my observations of the hardware development processes the best way to meet customer requirements and at the same time achieve the GRC quality standards. The purpose of my task is to review the manufacturing processes identifying opportunities in which to optimize the efficiency of the processes and establish a plan for implementation and continuous improvement.

  6. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  7. Transfer of advanced manufacturing technologies to eastern Kentucky industries

    SciTech Connect

    Gillies, J.A.; Kruzich, R.

    1988-05-01

    This study concludes that there are opportunities to provide assistance in the adoption of manufacturing technologies for small- and medium-sized firms in eastern Kentucky. However, the new markets created by Toyota are not adequate to justify a directed technology transfer program targeting the auto supply industry in eastern Kentucky because supplier markets have been determined for some time, and manufacturers in eastern Kentucky were not competitive in this early selection process. The results of the study strongly reinforce a reorientation of state business-assistance programs. The study also concludes that the quality and quantity of available labor is a pervasive problem in eastern Kentucky and has particular relevance as the economy changes. The study also investigated what type of technology-transfer programs would be appropriate to assist manufacturing firms in eastern Kentucky and if there were a critical number of firms to make such a program feasible.

  8. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  9. Additively Manufactured Metals in Oxygen Systems Project

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan

    2015-01-01

    Metals produced by additive manufacturing methods, such as Powder Bed Fusion Technology, are now mature enough to be considered for qualification in human spaceflight oxygen systems. The mechanical properties of metals produced through AM processes are being systematically studied. However, it is unknown whether AM metals in oxygen applications may present an increased risk of flammability or ignition as compared to wrought metals of the same metallurgical composition due to increased porosity. Per NASA-STD-6001B materials to be used in oxygen system applications shall be based on flammability and combustion test data, followed by a flammability assessment. Without systematic flammability and ignition testing in oxygen there is no credible method for NASA to accurately evaluate the risk of using AM metals in oxygen systems.

  10. Study on Process Planning System for Holonic Manufacturing

    NASA Astrophysics Data System (ADS)

    Rais, Suyoto; Sugimura, Nobuhiro; Kokubun, Atsushi

    New architectures of manufacturing systems have been proposed aiming at realizing more flexible control structures of manufacturing systems which can cope with dynamic changes in volume and variety of products. They are so called as holonic manufacturing systems, autonomous distributed manufacturing systems, random manufacturing systems and biological manufacturing systems. The objective of the present research is to develop an integrated process planning and scheduling system which is applicable to the holonic manufacturing systems. In the previous paper, procedures were proposed to recognize the machining features from the product model. A systematic method is proposed, in this paper, to select suitable machining sequences and sequences of machining equipment, by applying the genetic algorithm (GA) and the dynamic programming (DP) methods.

  11. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  12. Innovation Training within the Australian Advanced Manufacturing Industry

    ERIC Educational Resources Information Center

    Donovan, Jerome Denis; Maritz, Alex; McLellan, Andrew

    2013-01-01

    Innovation has emerged as a core driver for the future profitability and success of the manufacturing sector, and increasingly both governments and the private sector are examining ways to support the development of innovation capabilities within organisations. In this research, we have evaluated a government-funded innovation training course…

  13. Innovation Training within the Australian Advanced Manufacturing Industry

    ERIC Educational Resources Information Center

    Donovan, Jerome Denis; Maritz, Alex; McLellan, Andrew

    2013-01-01

    Innovation has emerged as a core driver for the future profitability and success of the manufacturing sector, and increasingly both governments and the private sector are examining ways to support the development of innovation capabilities within organisations. In this research, we have evaluated a government-funded innovation training course…

  14. Regional Advanced Manufacturing Academy: An Agent of Change

    ERIC Educational Resources Information Center

    Schmeling, Daniel M.; Rose, Kevin

    2010-01-01

    Three Northeast Texas community colleges put aside service delivery areas and matters of "turf" to create Centers of Excellence that provided training throughout a nine county area. This consortium; along with 14 manufacturers, seven economic development corporations, and the regional workforce board, led the change in training a highly…

  15. Manufacturing an advanced process characterization reticle incorporating halftone biasing

    NASA Astrophysics Data System (ADS)

    Nakagawa, Kent H.; Van Den Broeke, Douglas J.; Chen, J. Fung; Laidig, Thomas L.; Wampler, Kurt E.; Caldwell, Roger F.

    1999-04-01

    As the semiconductor roadmap continues to require imaging of smaller feature son wafers, we continue to explore new approaches in OPC strategies to extend the lifespan of existing technology. In this paper, we study a new OPC technology, called halftone biasing, and its application on an OPC characterization reticle, designed by MicroUnity Systems Engineering, Inc. The RTP9 test reticle is the latest in a series of 'LineSweeper' characterization reticles. Each reticle contains a wide range of line width sand pitches, each with several alternative OPC treatments, including references cases, scattering bars, and fine biasing. One of RTP9's design requirements was to support very fine, incremental biases for densely-pitched lines. Ordinarily, this would dictate a reduced address unit and with it the costly penalty of a square-law increase in e- beam write time. RTP9 incorporates a new OPC strategy, called halftone biasing, which has been proposed to address this problem. Taking advantage of optical reduction printing, this technique applies a sub-resolution halftone screen to the edges of figures to accomplish fine biasing equivalent to using an address unit one-fourth of the size of the actual e-beam writing grid. The resulting edge structure has some of the characteristics of aggressive OPC structures, but can be used in areas where traditional scattering bars cannot be placed. The trade-off between the faster write times achieved and the inflation of pattern file size is examined. The manufacturability and inspectability of halftone-biased lines on the RTP9 test reticle are explored. Pattern fidelity is examined using both optical and SEM tools. Printed 0.18 micrometers DUV resist line edge profiles are compared for both halftone and non- halftone feature edges. The CD uniformity of the OPC features, and result of die-to-database inspection are reported. The application of halftone biasing to real circuits, including the impact of data volume and saved write time

  16. Advanced carbon manufacturing for energy and biological applications

    NASA Astrophysics Data System (ADS)

    Turon Teixidor, Genis

    The science of miniaturization has experienced revolutionary advances during the last decades, witnessing the development of the Integrated Circuit and the emergence of MEMS and Nanotechnology. Particularly, MEMS technology has pioneered the use of non-traditional materials in microfabrication by including polymers, ceramics and composites to the well known list of metals and semiconductors. One of the latest additions to this set of materials is carbon, which represents a very important inclusion given its significance in electrochemical energy conversion systems and in applications where it is used as sensor probe material. For these applications, carbon is optimal in several counts: It has a wide electrochemical stability window, good electrical and thermal conductivity, high corrosion resistance and mechanical stability, and is available in high purity at a low cost. Furthermore carbon is biocompatible. This thesis presents several microfabricated devices that take advantage of these properties. The thesis has two clearly differentiated parts. In the first one, applications of micromachined carbon in the field of energy conversion and energy storage are presented. These applications include lithium ion micro batteries and the development of new carbon electrodes with fractal geometries. In the second part, the focus shifts to biological applications. First, the study of the interaction of living cells with micromachined carbon is presented, followed by the description of a sensor based on interdigitated nano-electrode arrays, and finally the development of the new instrumentation needed to address arrays of carbon electrodes, a multiplexed potentiostat. The underlying theme that connects all these seemingly different topics is the use of carbon microfabrication techniques in electrochemical systems.

  17. Advanced manufacturing of SIMOX for low power electronics

    NASA Astrophysics Data System (ADS)

    Alles, Michael; Krull, Wade

    1996-04-01

    Silicon-on-insulator (SOI) has emerged as a key technology for low power electronics. The merits of SOI technology have been demonstrated, and are gaining acceptance in the semiconductor industry. In order for the SOI approach to be viable, several factors must converge, including the availability of SOI substrates in sufficient quantity, of acceptable quality, and at a competitive price. This work describes developments in SIMOX manufacturing technology and summarizes progress in each of these areas.

  18. An RFID-Based Manufacturing Control Framework for Loosely Coupled Distributed Manufacturing System Supporting Mass Customization

    NASA Astrophysics Data System (ADS)

    Chen, Ruey-Shun; Tsai, Yung-Shun; Tu, Arthur

    In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.

  19. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  20. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  1. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  2. Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)

    NASA Astrophysics Data System (ADS)

    Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter

    2016-09-01

    As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.

  3. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    NASA Astrophysics Data System (ADS)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  4. Human factors in high consequence manufacturing systems

    SciTech Connect

    Forsythe, C.; Grose, E.

    1997-11-01

    A high consequence system is often defined as one in which the potential exists for severe or catastrophic accidents. Familiar examples include nuclear power plants, airline and other mass transportation, dams and reservoirs, and large-scale food processing. Many manufacturing systems also qualify as high consequence systems. Much of the authors` experience with high consequence systems derives from work associated with the surveillance and dismantlement of nuclear weapons for the US Department of Energy. With such operations, there exists a risk of high explosive detonation accompanied by radiological dispersal and, potentially, nuclear detonation. Analysis of major industrial accidents such as Three Mile Island, Chernobyl and Bhopal have revealed that these incidents were not attributable to a single event or direct cause, but were the result of multiple factors that combined to create a condition ripe for an accident. In each case, human error was a critical factor contributing to the accident. Consequently, many authors have emphasized the need for greater appreciation of systematic factors and in particular, human activities. This paper discusses approaches used in hazard analysis of US nuclear weapons operations to assess risk associated with human factors.

  5. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Friedrich, Klaus; Almajid, Abdulhakim A.

    2013-04-01

    Composite materials, in most cases fiber reinforced polymers, are nowadays used in many applications in which light weight and high specific modulus and strength are critical issues. The constituents of these materials and their special advantages relative to traditional materials are described in this paper. Further details are outlined regarding the present markets of polymer composites in Europe, and their special application in the automotive industry. In particular, the manufacturing of parts from thermoplastic as well as thermosetting, short and continuous fiber reinforced composites is emphasized.

  6. Manufacturing cost/design system: A CAD/CAM dialogue

    NASA Technical Reports Server (NTRS)

    Loshigian, H. H.; Rachowitz, B. I.; Judson, D.

    1980-01-01

    The development of the Manufacturing Cost/Design System (MC/DS) will provide the aerospace design engineer a tool with which to perform heretofore impractical design manufacturing cost tradeoffs. The Air Force Integrated Computer Aided Manufacturing (ICAM) Office has initiated the development and demonstration of an MC/DS which, when fully implemented, will integrate both design and manufacturing data bases to provide real time visibility into the manufacturing costs associated with various design options. The first release of a computerized system will be made before the end of 1981.

  7. Manufacturing cost/design system: A CAD/CAM dialogue

    NASA Technical Reports Server (NTRS)

    Loshigian, H. H.; Rachowitz, B. I.; Judson, D.

    1980-01-01

    The development of the Manufacturing Cost/Design System (MC/DS) will provide the aerospace design engineer a tool with which to perform heretofore impractical design manufacturing cost tradeoffs. The Air Force Integrated Computer Aided Manufacturing (ICAM) Office has initiated the development and demonstration of an MC/DS which, when fully implemented, will integrate both design and manufacturing data bases to provide real time visibility into the manufacturing costs associated with various design options. The first release of a computerized system will be made before the end of 1981.

  8. Review on Advances of Functional Material for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Zulkifli, Nur Amalina Binti; Akmal Johar, Muhammad; Faizan Marwah, Omar Mohd; Irwan Ibrahim, Mohd Halim

    2017-08-01

    The attempt of finding and making new materials in improving products that are already in the market are widely done by researchers nowadays. This project is focusing on making new materials for functional material through additive manufacturing application. The idea of this project came from the ability limitation of capacitor in market nowadays in storing higher charges but smaller in size. Powder glass is the new material that could to be used as a dielectric material for capacitor with the help of palm kernel oil as the binder. This paper reviews on applications done through additive manufacturing method and also types of functional materials used in this method previously. Structure of a capacitor, dielectric properties and measurement techniques that are trying to be carried out are also explains in this paper. Last part of this paper brief on the material proposal and reasons those materials are chosen. New dielectric material for capacitor which are able to store more charges but still small in size are expected to be produced as the outcome of this research.

  9. Advanced hydrologic prediction system

    NASA Astrophysics Data System (ADS)

    Connelly, Brian A.; Braatz, Dean T.; Halquist, John B.; Deweese, Michael M.; Larson, Lee; Ingram, John J.

    1999-08-01

    As our Nation's population and infrastructure grow, natural disasters are becoming a greater threat to our society's stability. In an average year, inland flooding claims 133 lives and resulting property losses exceed 4.0 billion. Last year, 1997, these losses totaled 8.7 billion. Because of this blossoming threat, the National Weather Service (NWS) has requested funding within its 2000 budget to begin national implementation of the Advanced Hydrologic Prediction System (AHPS). With this system in place the NWS will be able to utilize precipitation and climate predictions to provide extended probabilistic river forecasts for risk-based decisions. In addition to flood and drought mitigation benefits, extended river forecasts will benefit water resource managers in decision making regarding water supply, agriculture, navigation, hydropower, and ecosystems. It's estimated that AHPS, if implemented nationwide, would save lives and provide $677 million per year in economic benefits. AHPS is used currently on the Des Moines River basin in Iowa and will be implemented soon on the Minnesota River basin in Minnesota. Experience gained from user interaction is leading to refined and enhanced product formats and displays. This discussion will elaborate on the technical requirements associated with AHPS implementation, its enhanced products and informational displays, and further refinements based on customer feedback.

  10. Manufacturing Systems. Curriculum Guide for Technology Education.

    ERIC Educational Resources Information Center

    Lloyd, Theodore J.

    This curriculum for a 1-semester or 1-year course in manufacturing is designed to give students experience in applying knowledge from other courses and some basic production skills as they become involved in a manufacturing enterprise. Course content is organized around the laboratory activities necessary to organize and operate a process to mass…

  11. Manufacturing Systems. Curriculum Guide for Technology Education.

    ERIC Educational Resources Information Center

    Lloyd, Theodore J.

    This curriculum for a 1-semester or 1-year course in manufacturing is designed to give students experience in applying knowledge from other courses and some basic production skills as they become involved in a manufacturing enterprise. Course content is organized around the laboratory activities necessary to organize and operate a process to mass…

  12. Improvements in state-of-the-art uncooled microbolometer system performance based on volume manufacturing experience

    NASA Astrophysics Data System (ADS)

    Backer, Brian S.; Breen, Thomas E.; Hartle, Nancy; Kohin, Margaret; Murphy, Robert

    2003-09-01

    Starting in the early 1990"s, BAE SYSTEMS began a significant investment in the development of MicroIR Uncooled Microbolometers. 160 x 120, 320 x 240, and 640 x 480 focal plane array (FPA) technology advances in both large pixel and small pixel format have driven Noise Equivalent Temperature Difference (NETD), power, size, weight, and price lower. These improvements have resulted in many new applications that previously could not afford larger, heavier, costlier cooled systems. While advancements in state of the art performance have been published regularly at Aerosense and other industry forums, far less has been discussed on the performance advances that have occurred as a result of volume manufacturing. This paper describes the improvements in performance that have been a result of BAE SYSTEMS leadership position in MicroIR microbolometer manufacturing. With over 15,000 units shipped through 2002, ranging from Standard Imaging Modules (SIM) to Standard Camera Cores (SCC) to complete imaging systems, the cumulative expertise gathered from this manufacturing experience over the past seven years has also pushed the state of the art system performance, in ways that single/small quantity technology demonstrators never could. Comparisons of temporal NETD, spatial NETD, dynamic range, operability, throughput, capacity, and other key metrics from early manufacturing lots to the present will be presented to demonstrate the advances that can only be achieved through volume manufacturing.

  13. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  14. Advanced Power Conditioning System

    NASA Technical Reports Server (NTRS)

    Johnson, N. L.

    1971-01-01

    The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.

  15. Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)

    NASA Astrophysics Data System (ADS)

    Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter

    2016-10-01

    As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.

  16. Distributed optically integrated manufacture system based on CORBA

    NASA Astrophysics Data System (ADS)

    Cen, Ming; Jiang, Jian-chun; Liu, Xing-fa; Hu, Rui-fei

    2007-12-01

    Focused on the shortcoming and insufficiency of reconfigurable manufacture system (RMS) for optical manufacturing in control layer and interface of manufacturing execution systems (MES) and control layer, the difference of MES-plan layer interface and that of MES-control layer is discussed, and an architecture of distributed optically integrated manufacture executing system based on fieldbus/Ethernet network and common object request broker architecture (CORBA) is presented. In this solution, the optical manufacture equipments are connected by fieldbus network, a gateway is used for the communication of fieldbus manufacture equipment and MES in the workshop, and CORBA services which provide a general interface for communication of heterogeneous fieldbus manufacture equipment of workshop are realized on the gateway. Then all specifics of heterogeneous fieldbus manufacture equipments are concealed, which show as virtual equipment and can be accessed in a simple and unified way. So the control layer is composed of virtual equipment and easy to be reconfigured. Similarly workshop management function components are modeled and encapsulated by CORBA interface, and MES could be integrated to RMS expediently. The optical integrated manufacture system presented is proved with good ability of flexible, reconfigurable, opening and high feasibility, and met the reconfigurable requirement of distributed optical manufacturing workshop preferably.

  17. Analysis of advanced vapor source for cadmium telluride solar cell manufacturing

    NASA Astrophysics Data System (ADS)

    Khetani, Tejas Harshadkumar

    A thin film CdS/CdTe solar cell manufacturing line has been developed in the Materials Engineering Laboratory at Colorado State University. The original design incorporated infrared lamps for heating the vapor source. This system has been redesigned to improve the energy efficiency of the system, allow co-sublimation and allow longer run time before the sources have to be replenished. The advanced vapor source incorporates conduction heating with heating elements embedded in graphite. The advanced vapor source was modeled by computational fluid dynamics (CFD). From these models, the required maximum operating temperature of the element was determined to be 720 C for the processing of CdS/CdTe solar cells. Nichrome and Kanthal A1 were primarily selected for this application at temperature of 720 °C in vacuum with oxygen partial pressure. Research on oxidation effects and life due to oxidation as well as creep deformation was done, and Nichrome was found more suitable for this application. A study of the life of the Nichrome heating elements in this application was conducted and the estimate of life is approximately 1900 years for repeated on-off application. This is many orders of magnitude higher than the life of infrared heat lamps. Ceramic cement based on aluminum oxide (Resbond 920) is used for bonding the elements to the graphite. Thermodynamic calculations showed that this cement is inert to the heating element. An earlier design of the advanced source encountered failure of the element. The failed element was studies by scanning electron microscopy and the failure was attributed to loss of adhesion between the graphite and the ceramic element. The design has been modified and the advanced vapor source is currently in operation.

  18. Remediation System Evaluation, Hellertown Manufacturing Superfund Site

    EPA Pesticide Factsheets

    The Hellertown Manufacturing Superfund Site, located in Hellertown, Pennsylvania 1.5 miles south of Bethlehem, Pennsylvania, is approximately 8.6 acres and addresses trichloroethylene (TCE) contamination of the groundwater resulting from operations of a fo

  19. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    PubMed

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network.

  20. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; M.A. Alvin; G.J. Bruck; T.E. Lippert; E.E. Smeltzer; M.E. Stampahar

    2002-06-30

    Two advanced, hot gas, barrier filter system concepts have been proposed by the Siemens Westinghouse Power Corporation to improve the reliability and availability of barrier filter systems in applications such as PFBC and IGCC power generation. The two hot gas, barrier filter system concepts, the inverted candle filter system and the sheet filter system, were the focus of bench-scale testing, data evaluations, and commercial cost evaluations to assess their feasibility as viable barrier filter systems. The program results show that the inverted candle filter system has high potential to be a highly reliable, commercially successful, hot gas, barrier filter system. Some types of thin-walled, standard candle filter elements can be used directly as inverted candle filter elements, and the development of a new type of filter element is not a requirement of this technology. Six types of inverted candle filter elements were procured and assessed in the program in cold flow and high-temperature test campaigns. The thin-walled McDermott 610 CFCC inverted candle filter elements, and the thin-walled Pall iron aluminide inverted candle filter elements are the best candidates for demonstration of the technology. Although the capital cost of the inverted candle filter system is estimated to range from about 0 to 15% greater than the capital cost of the standard candle filter system, the operating cost and life-cycle cost of the inverted candle filter system is expected to be superior to that of the standard candle filter system. Improved hot gas, barrier filter system availability will result in improved overall power plant economics. The inverted candle filter system is recommended for continued development through larger-scale testing in a coal-fueled test facility, and inverted candle containment equipment has been fabricated and shipped to a gasifier development site for potential future testing. Two types of sheet filter elements were procured and assessed in the program

  1. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  2. Enhanced bio-manufacturing through advanced multivariate statistical technologies.

    PubMed

    Martin, E B; Morris, A J

    2002-11-13

    The paper describes the interrogation of data, from a reaction vessel producing an active pharmaceutical ingredient (API), using advanced multivariate statistical techniques. Due to the limited number of batches available, data augmentation was used to increase the number of batches thereby enabling the extraction of more subtle process behaviour from the data. A second methodology investigated was that of multi-group modelling. This allowed between cluster variability to be removed, thus allowing attention to focus on within process variability. The paper describes how the different approaches enabled the realisation of a better understanding of the factors causing the onset of an impurity formation to be obtained as well demonstrating the power of multivariate statistical data analysis techniques to provide an enhanced understanding of the process.

  3. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries

    NASA Astrophysics Data System (ADS)

    Ferrari, Stefania; Loveridge, Melanie; Beattie, Shane D.; Jahn, Marcus; Dashwood, Richard J.; Bhagat, Rohit

    2015-07-01

    Recent advances in micro- and nano-electromechanical systems (MEMS/NEMS) technology have led to a niche industry of diverse small-scale devices that include microsensors, micromachines and drug-delivery systems. For these devices, there is an urgent need to develop Micro Lithium Ion Batteries (MLIBs) with dimensions on the scale 1-10 mm3 enabling on-board power delivery. Unfortunately, power limitations are inherent in planar 2D cells and only the advent of 3D designs and microarchitectures will lead to a real breakthrough in the microbattery technology. During the last few years, many efforts to optimise MLIBs were discussed in literature, both in the planar and 3D configurations. This review highlights the importance of 3D microarchitectured electrodes to fabricate batteries that can be device-integrated with exceptionally high specific power density coupled with exquisite miniaturisation. A wide literature overview is provided and recent advances in manufacturing routes to 3D-MLIBs comprising materials synthesis, device formulation, device testing are herein discussed. The advent of simple, economic and easily scalable fabrication processes such as 3D printing will have a decisive role in the growing field of micropower sources and microdevices.

  4. Advanced Microturbine Systems

    SciTech Connect

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology

  5. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  6. Computer Integrated Manufacturing: Physical Modelling Systems Design. A Personal View.

    ERIC Educational Resources Information Center

    Baker, Richard

    A computer-integrated manufacturing (CIM) Physical Modeling Systems Design project was undertaken in a time of rapid change in the industrial, business, technological, training, and educational areas in Australia. A specification of a manufacturing physical modeling system was drawn up. Physical modeling provides a flexibility and configurability…

  7. Advanced turbine blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.

    1981-01-01

    An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

  8. Hollow fiber membrane systems for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Lysaght, M. J.

    1976-01-01

    The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.

  9. Advanced Teleprocessing Systems

    DTIC Science & Technology

    1979-09-30

    Research in Distributed Communications. Advanced studies in --n-ternetting, flow ontrol, distribted access , fundamental capacity dafin- itions and contours...OCUENTTIO PAE BEFORE COMPLETING FORM I.REP0R NUNpp N . GOVT ACCESSION 010 3. NECIP111IS CATALOG NUMMER 4. TIYLIE (and IUwiIDCI.) .yK _ C"I"" 40VANCED...ADcRNSS Defense Advanced Research Projects Agency jel ON OM 1400 Wilson Boulevard_______________ Arlington, VA 22209 10______________ r t’ ONITORtIN8

  10. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    NASA Astrophysics Data System (ADS)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  11. Advanced program weight control system

    NASA Technical Reports Server (NTRS)

    Derwa, G. T.

    1978-01-01

    The design and implementation of the Advanced Program Weight Control System (APWCS) are reported. The APWCS system allows the coordination of vehicle weight reduction programs well in advance so as to meet mandated requirements of fuel economy imposed by government and to achieve corporate targets of vehicle weights. The system is being used by multiple engineering offices to track weight reduction from inception to eventual production. The projected annualized savings due to the APWCS system is over $2.5 million.

  12. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    NASA Astrophysics Data System (ADS)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  13. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    SciTech Connect

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-04

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current 'metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  14. Opportunities for the Advancement of Home Economists in the Food Manufacturing Industry.

    ERIC Educational Resources Information Center

    Michael, Carol M.

    1999-01-01

    Responses from 133 home economists employed by food manufacturers showed that many have high aspirations but few have advanced to upper-level management. Factors influencing business success included years with company and in career and mentor/sponsor relationships. Many felt limited by lack of business background and the service orientation of…

  15. Advanced Manufacturing as an Online Case Study for Global Geography Education

    ERIC Educational Resources Information Center

    Glass, Michael R.; Kalafsky, Ronald V.; Drake, Dawn M.

    2013-01-01

    Advanced manufacturing continues to be an important sector for emerging and industrialized economies, therefore, remaining an important topic for economic geography education. This article describes a case study created for the Association of American Geographer's Center for Global Geography Education and its implementation. The international…

  16. Opportunities for the Advancement of Home Economists in the Food Manufacturing Industry.

    ERIC Educational Resources Information Center

    Michael, Carol M.

    1999-01-01

    Responses from 133 home economists employed by food manufacturers showed that many have high aspirations but few have advanced to upper-level management. Factors influencing business success included years with company and in career and mentor/sponsor relationships. Many felt limited by lack of business background and the service orientation of…

  17. National Skill Standards for Advanced High Performance Manufacturing. Version 2.1.

    ERIC Educational Resources Information Center

    National Coalition for Advanced Manufacturing, Washington, DC.

    This document presents and discusses the national skill standards for advanced high-performance manufacturing that were developed during a project that was commissioned by the U.S. Department of Education. The introduction explains the need for national skill standards. Discussed in the next three sections are the following: benefits of national…

  18. Advanced Manufacturing as an Online Case Study for Global Geography Education

    ERIC Educational Resources Information Center

    Glass, Michael R.; Kalafsky, Ronald V.; Drake, Dawn M.

    2013-01-01

    Advanced manufacturing continues to be an important sector for emerging and industrialized economies, therefore, remaining an important topic for economic geography education. This article describes a case study created for the Association of American Geographer's Center for Global Geography Education and its implementation. The international…

  19. Advanced Material Intelligent Processing Center: Next Generation Scalable Lean Manufacturing

    DTIC Science & Technology

    2012-09-04

    media in less time. Future work is focused on the study of viscous bubble migration through porous media applied to OOA prepreg composites ...Analytical Model The analytical model describes the flow as a linear How through a series of two blocks of porous media (or channels ). First one of these...developed at the University of Delaware Center for Composite Materials [5]. The system assumes flow in porous media and a non-compressible fluid. The

  20. Environmental assessment of advanced thin film manufacturing process. Final report

    SciTech Connect

    Cunningham, D.W.; Mopas, E.; Skinner, D.; McGuire, L.; Strehlow, M.

    1998-09-01

    This report describes work performed by BP Solar, Inc., to provide an extensive preproduction analysis of waste-stream abatement at its plant in Fairfield, California. During the study, numerous technologies were thoroughly evaluated, which allowed BP Solar to select systems that outperformed the stringent federal and state regulations. The main issues were originally perceived to be controlling cadmium compound releases to both air and wastewater to acceptable levels and adopting technologies for air and water waste streams in an efficient, cost-effective manner. BP Solar proposed high-efficiency, reliable control equipment that would reduce air-contaminant emission levels below levels of concern. Cadmium telluride dust is successfully controlled with high-efficiency (>99.9%) bag-in/bag-out filters. For air abatement, carbon canisters provide efficient VOC reduction, and wastewater pretreatment is required per federal pretreatment standards. BP Solar installed a cadmium-scavenging ion exchange system and electrowinning system capable of removing cadmium to <10 ppb (local publicly-owned-treatment-works limits for cadmium is 30 ppb). BP Solar plans to maximize potential reuse of rinse waters by phasing in additional wastewater treatment technologies. Finally, the work to date has identified the areas that need to be revisited as production scales up to ensure that all health, safety, and environmental goals are met.

  1. Fate of manufactured nanoparticles in environmental systems

    NASA Astrophysics Data System (ADS)

    Gelabert, A.; Sivry, Y.; Siron, V.; Akrout, A.; Ferrari, R.; Juillot, F.; Menguy, N.; Benedetti, M. F.

    2009-12-01

    approximatively 3 months of interaction. Moreover, to assess the influence of external parameters to NPs dissolution kinetics, two different pH (7.8 and 8.3) were tested. The obtained results demonstrate a strong dependence on pH, with the slower dissolution rates associated to the higher pH. XPS measurements performed on native uncoated ZnO NPs evidenced the presence of a layer of Zn(OH)2 which accounts for almost 20% of the total Zn in the NPs. This Zn(OH)2 phase, which is more soluble than ZnO, may control the early dissolution steps of the NPs in our systems. This study constitutes an important step for the understanding of the manufactured NPs fate in natural systems. [1] E. J. M. Temminghoff, A. C. C. Plette, R. Van Eck, W. H. Van Riemsdijk, (2000), Anal. Chim. Acta., 417, 149-157

  2. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  3. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  4. A novel precision face grinder for advanced optic manufacture

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Peng, Y.; Wang, Z.; Yang, W.; Bi, G.; Ke, X.; Lin, X.

    2010-10-01

    In this paper, a large-scale NC precision face grinding machine is developed. This grinding machine can be used to the precision machining of brittle materials. The base and the machine body are independent and the whole structure is configured as a "T" type. The vertical column is seat onto the machine body at the middle center part through a double of precision lead rails. The grinding wheel is driven with a hydraulic dynamic and static spindle. The worktable is supported with a novel split thin film throttle hydrostatic lead rails. Each of motion-axis of the grinding machine is equipped with a Heidenhain absolute linear encoder, and then a closed feedback control system is formed with the adopted Fanuc 0i-MD NC system. The machine is capable of machining extremely flat surfaces on workpiece up to 800mmx600mm. The maximums load bearing of the work table is 620Kg. Furthermore, the roughness of the machined surfaces should be smooth (Ra<50nm-100nm), and the form accuracy less than 2μm (+/-1μm)/200x200mm. After the assembly and debugging of the surface grinding machine, the worktable surface has been self-ground with 60# grinding wheel and the form accuracy is 3μm/600mm×800mm. Then the grinding experiment was conduct on a BK7 flat optic glass element (400mmx250mm) and a ceramic disc (Φ100mm) with 60# grinding wheel, and the measuring results show the surface roughness and the form accuracy of the optic glass device are 0.07μm and 1.56μm/200x200mm, and these of the ceramic disc are 0.52μm and 1.28μm respectively.

  5. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1978-01-01

    An attempt is made to provide pertinent and readily usable information on the extraterrestrial processing of materials and manufacturing of components and elements of these planned large space systems from preprocessed lunar materials which are made available at a processing and manufacturing site in space. Required facilities, equipment, machinery, energy and manpower are defined.

  6. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  7. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  8. Effectiveness of dynamic rescheduling in agent-based flexible manufacturing systems

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf; Biswas, Gautam; Kawamura, Kazuhiko; Johnson, Eric M.

    1997-12-01

    This work has been developed within the framework of agent- based decentralized scheduling for flexible manufacturing systems. In this framework, all workcells comprising the manufacturing system, and the products to be generated, are modeled via intelligent software agents. These agents interact dynamically using a bidding production reservation (BPRS) scheme, based on the Contract Net Protocol, to devise the production schedule for each product unit. Simulation studies of a job shop have demonstrated the gains in performance achieved by this approach over heuristic dispatching rules commonly used in industry. Manufacturing environments are also prone to operational uncertainties such as variations in processing times and machine breakdowns. In order to cope with these uncertainties, the BPRS algorithm has been extended for dynamic rescheduling to also occur in a fully decentralized manner. The resulting multi-agent rescheduling scheme results in decentralized control of flexible manufacturing systems that are capable of responding dynamically to such operational uncertainties, thereby enhancing the robustness and fault tolerance of the proposed scheduling approach. This paper also presents the effects of the proposed agent-based decentralized scheduling approach on the performance of the underlying flexible manufacturing system under a variety of production and scheduling scenarios, including forward and backward scheduling. Future directions for this work include applying the proposed scheduling approach to other advanced manufacturing areas such as agile and holonic manufacturing.

  9. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  10. Advanced satellite communication system

    NASA Astrophysics Data System (ADS)

    Staples, Edward J.; Lie, Sen

    1992-05-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  11. Advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Disher, J. H.; Hethcoat, J. P.; Page, M. A.

    1981-01-01

    Projected growth in space transportation capabilities beyond the initial Space Shuttle is discussed in terms of earth-to-low-orbit launch vehicles as well as transportation beyond low orbit (orbit transfer vehicles). Growth versions of the Shuttle and heavy-lift derivatives of the Shuttle are shown conceptually. More advanced launch vehicle concepts are also shown, based on rocket propulsion or combinations of rocket and air-breathing propulsion. Orbit transfer vehicle concepts for personnel transport and for cargo transport are discussed, including chemical rocket as well as electric propulsion. Finally, target levels of capability and efficiencies for later time periods are discussed and compared with the prospective vehicle concepts mentioned earlier.

  12. An advanced manned launch system concept

    NASA Astrophysics Data System (ADS)

    Stone, H. W.; Piland, W. M.

    1992-08-01

    A two-stage fully reusable rocked powered concept is defined and analyzed in detail for the Advanced Manned Launch System missions. The concept elements include a Mach 3 staging unmanned glideback booster and a 149-ft long winged orbiter with an external payload canister with a 15-ft diameter and 30-ft long payload bay. The booster and orbiter main propulsion system is a lightweight derivative of the current Space Shuttle Main Engine. The primary mission is the Space Station Freedom logistics mission, 40,000-lb payload with two crew members and eight passengers. The structural design and material selection, the thermal protection system, the integral cryogenic tanks and insulation, the propulsion system, and the modular payload canister system are described. The ground and flight operations approach analysis, the manufacturing and certification plan, and the technology development requirements are also discussed.

  13. Planning an MIS (manufacturing information system) for a job shop environment. [Manufacturing Information System

    SciTech Connect

    Cover, L.E.

    1987-01-01

    Several years ago the decision was made to computerize the information needed for management of the Mechanical and Electronics Support Division of Los Alamos National Laboratory and to centralize the resulting manufacturing information system (MIS) in one computer located at the main facility. The effort was contracted out to a software development company in July of 1981. After over five years, and in spite of tremendous investments of time and money in the existing system, the decision was made to phase out the existing system, start over, and try again to develop an information system that would meet the needs of the division. In January 1987, a study was initiated to formulate a long-range plan, which would effectively guide and direct MEC Division's information system development. Recent significant additions to the organization, changes in management staffing, and concerns for the adequacy and appropriateness of the hardware and software of the division's current MIS, led to the decision to perform the study. The study consisted of identifying the current and long-term information needs, consistent with the division's mission and goals, and recommending a plan to effectively implement information systems to fulfill these needs. Business Systems Planning (BSP), a methodology developed by IBM, was used in the study. 2 refs., 3 figs.

  14. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  15. Evaluation of Additively Manufactured Metals for Use in Oxygen Systems Project

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan; Cooper, Ken; Peralta, Stephen; Wilcutt, Terrence; Hughitt, Brian; Generazio, Edward

    2016-01-01

    Space Launch System, Commercial Resupply, and Commercial Crew programs have published intent to use additively manufactured (AM) components in propulsion systems and are likely to include various life support systems in the future. Parts produced by these types of additive manufacturing techniques have not been fully evaluated for use in oxygen systems and the inherent risks have not been fully identified. Some areas of primary concern in the SLS process with respect to oxygen compatibility may be the porosity of the printed parts, fundamental differences in microstructure of an AM part as compared to traditional materials, or increased risk of shed metal particulate into an oxygen system. If an ignition were to occur the printed material could be more flammable than components manufactured from a traditional billet of raw material and/or present a significant hazards if not identified and rigorously studied in advance of implementation into an oxygen system.

  16. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  17. Innovative and Efficient Manufacturing Technologies for Highly Advanced Composite Pressure Vessels

    NASA Astrophysics Data System (ADS)

    Hock, Birte; Regnet, Martin; Bickelaier, Stefan; Henne, Florian; Sause, Markus G. R.; Schmidt, Thomas; Geiss, Gunter

    2014-06-01

    The currently ongoing development project at MT Aerospace (MTA) deals with a cost efficient manufacturing process for space structures. Thermoplastic fibre placement, which was identified as one of the most forward-looking technologies, promises advantages such as shorter cycle times and a high level of automation. In addition to the manufacturing method, research activities on non-destructive inspection methods and on acoustic emission analysis are performed. The analysis of the components will also be improved using advanced modelling approaches. The capability of the processes and methods will be shown on the basis of a scaled solid rocket motor casing.

  18. Present Status and Future Growth of Advanced Maintenance Technology and Strategy in US Manufacturing

    PubMed Central

    Jin, Xiaoning; Weiss, Brian A.; Siegel, David; Lee, Jay

    2016-01-01

    The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality targets and 2) to understand the present level of maintenance technologies and strategies that are being incorporated into these practices. A study is performed to contrast the impact of various industry-specific factors on the effectiveness and profitability of the implementation of prognostics and health management technologies, and maintenance strategies using both surveys and case studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises (SMEs) to large-sized manufacturing enterprises in various industries. The results obtained provide important insights on the different impacts of specific factors on the successful adoption of these technologies between SMEs and large manufacturing enterprises. The varying degrees of success with respect to current maintenance programs highlight the opportunity for larger manufacturers to improve maintenance practices and consider the use of advanced prognostics and health management (PHM) technology. This paper also provides the existing gaps, barriers, future trends, and roadmaps for manufacturing PHM technology and maintenance strategy. PMID:28058173

  19. Present Status and Future Growth of Advanced Maintenance Technology and Strategy in US Manufacturing.

    PubMed

    Jin, Xiaoning; Weiss, Brian A; Siegel, David; Lee, Jay

    2016-01-01

    The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality targets and 2) to understand the present level of maintenance technologies and strategies that are being incorporated into these practices. A study is performed to contrast the impact of various industry-specific factors on the effectiveness and profitability of the implementation of prognostics and health management technologies, and maintenance strategies using both surveys and case studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises (SMEs) to large-sized manufacturing enterprises in various industries. The results obtained provide important insights on the different impacts of specific factors on the successful adoption of these technologies between SMEs and large manufacturing enterprises. The varying degrees of success with respect to current maintenance programs highlight the opportunity for larger manufacturers to improve maintenance practices and consider the use of advanced prognostics and health management (PHM) technology. This paper also provides the existing gaps, barriers, future trends, and roadmaps for manufacturing PHM technology and maintenance strategy.

  20. Advanced Microdisplays for Portable Systems

    DTIC Science & Technology

    1999-08-01

    THROUGH SCIENCE mm WE DEFEND TECHNICAL REPORT NATICK/TR-99/037 AD ADVANCED MICRODISPLAYS FOR PORTABLE SYSTEMS by Phillip Alvelda Michael...1996 - 19 October 1998 4. TITLE AND SUBTITLE ADVANCED MICRODISPLAYS FOR PORTABLE SYSTEMS 6. AUTHOR(S) Phillip Alvelda , Michael Bolotski, Ramon...MIT’s Artificial Intelligence Laboratory which forms the basis for this proposal. Under DARPA funding, Mr. Alvelda and Mr. Knight developed the highest

  1. Advanced training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.; Loftin, R. Bowen

    1990-01-01

    Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.

  2. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  3. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  4. Advanced Thermoplastic Polymers and Additive Manufacturing Applied to ISS Columbus Toolbox: Lessons Learnt and Results

    NASA Astrophysics Data System (ADS)

    Ferrino, Marinella; Secondo, Ottaviano; Sabbagh, Amir; Della Sala, Emilio

    2014-06-01

    In the frame of the International Space Station (ISS) Exploitation Program a new toolbox has been realized by TAS-I to accommodate the tools currently in use on the ISS Columbus Module utilizing full-scale prototypes obtained with 3D rapid prototyping. The manufacturing of the flight hardware by means of advanced thermoplastic polymer UL TEM 9085 and additive manufacturing Fused Deposition Modelling (FDM) technology represent innovative elements. In this paper, the results achieved and the lessons learned are analyzed to promote future technology know-how. The acquired experience confirmed that the additive manufacturing process allows to save time/cost and to realize new shapes/features to introduce innovation in products and future design processes for space applications.

  5. Advanced Operating System Technologies

    NASA Astrophysics Data System (ADS)

    Cittolin, Sergio; Riccardi, Fabio; Vascotto, Sandro

    In this paper we describe an R&D effort to define an OS architecture suitable for the requirements of the Data Acquisition and Control of an LHC experiment. Large distributed computing systems are foreseen to be the core part of the DAQ and Control system of the future LHC experiments. Neworks of thousands of processors, handling dataflows of several gigaBytes per second, with very strict timing constraints (microseconds), will become a common experience in the following years. Problems like distributyed scheduling, real-time communication protocols, failure-tolerance, distributed monitoring and debugging will have to be faced. A solid software infrastructure will be required to manage this very complicared environment, and at this moment neither CERN has the necessary expertise to build it, nor any similar commercial implementation exists. Fortunately these problems are not unique to the particle and high energy physics experiments, and the current research work in the distributed systems field, especially in the distributed operating systems area, is trying to address many of the above mentioned issues. The world that we are going to face in the next ten years will be quite different and surely much more interconnected than the one we see now. Very ambitious projects exist, planning to link towns, nations and the world in a single "Data Highway". Teleconferencing, Video on Demend, Distributed Multimedia Applications are just a few examples of the very demanding tasks to which the computer industry is committing itself. This projects are triggering a great research effort in the distributed, real-time micro-kernel based operating systems field and in the software enginering areas. The purpose of our group is to collect the outcame of these different research efforts, and to establish a working environment where the different ideas and techniques can be tested, evaluated and possibly extended, to address the requirements of a DAQ and Control System suitable for LHC

  6. Advanced Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6

  7. Power Systems Advanced Research

    SciTech Connect

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  8. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  9. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  10. Advanced extravehicular protective systems

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    New technologies are identified and recommended for developing a regenerative portable life support system that provides protection for extravehicular human activities during long duration missions on orbiting space stations, potential lunar bases, and possible Mars landings. Parametric subsystems analyses consider: thermal control, carbon dioxide control, oxygen supply, power supply, contaminant control, humidity control, prime movers, and automatic temperature control.

  11. Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for

  12. Control Systems Engineering in Continuous Pharmaceutical Manufacturing May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for

  13. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  14. Advanced Algal Systems Fact Sheet

    SciTech Connect

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  15. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  16. Safety Discrete Event Models for Holonic Cyclic Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Ciufudean, Calin; Filote, Constantin

    In this paper the expression “holonic cyclic manufacturing systems” refers to complex assembly/disassembly systems or fork/join systems, kanban systems, and in general, to any discrete event system that transforms raw material and/or components into products. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. This paper considers the scheduling of holonic cyclic manufacturing systems and describes a new approach using Petri nets formalism. We propose an approach to frame the optimum schedule of holonic cyclic manufacturing systems in order to maximize the throughput while minimize the work in process. We also propose an algorithm to verify the optimum schedule.

  17. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  18. Software development for the evaluation of the ergonomic compatibility on the selection of advanced manufacturing technology.

    PubMed

    Maldonado-Macías, A; Reyes, R; Guillen, L; García, J

    2012-01-01

    Advanced Manufacturing Technology (AMT) is one of the most relevant resources that companies have to achieve competitiveness and best performance. The selection of AMT is a complex problem which involves significant amount of information and uncertainty when multiple aspects must be taken into consideration. Actual models for the selection of AMT are found scarce of the Human Factors and Ergonomics perspective which can lead to a more complete and reliable decision. This paper presents the development of software that enhances the application of an Ergonomic Compatibility Evaluation Model that supports decision making processes taking into consideration ergonomic attributes of designs. Ergonomic Compatibility is a construct used in this model and it is mainly based in the concept of human-artifact compatibility on human compatible systems. Also, an Axiomatic Design approach by the use of the Information Axiom was evolved under a fuzzy environment to obtain the Ergonomic Incompatibility Content. The extension of this axiom for the evaluation of ergonomic compatibility requirements was the theoretical framework of this research. An incremental methodology of four stages was used to design and develop the software that enables to compare AMT alternatives by the evaluation of Ergonomic Compatibility Attributes.

  19. Advances in the Manufacture of Omega-scale Double-shell Targets

    NASA Astrophysics Data System (ADS)

    Bono, M.

    2005-10-01

    The double-shell ignition target design consists of a low-Z outer shell that absorbs hohlraum-generated x-rays, implodes, and collides with a high-Z inner shell containing DT fuel. Efforts are continuing to field scaled ignition-like double shells on the Omega laser facility over a range of inner-shell Z. Previous ignition-like double-shell implosions on Omega used a low-Z CH inner shell [1]. The current target contains a higher-Z glass inner shell of diameter 216 microns, which is supported by SiO2 aerogel inside a Br-doped CH ablator shell of diameter 550 microns. Fielding double-shell targets has historically been limited by the ability to successfully fabricate them, but several technological advances have recently been made in the manufacturing process. The inner capsule will be cast in SiO2 aerogel of density 50 mg/cc, whose outer contour will be machined concentric to the inner capsule. This piece will then be assembled between two hemispherical ablator shells that mate at a step-joint with an adhesive-filled gap of thickness 100 nm. Three-dimensional tomographs made of each target using an x-ray micro-tomography system will allow precise characterization of the targets. [1] P. Amendt et al., Phys. Rev. Lett. 94, 065004 (2005).

  20. Session: CSP Advanced Systems -- Advanced Overview (Presentation)

    SciTech Connect

    Mehos, M.

    2008-04-01

    The project description is: (1) it supports crosscutting activities, e.g. advanced optical materials, that aren't tied to a single CSP technology and (2) it supports the 'incubation' of new concepts in preliminary stages of investigation.

  1. A methodology for Manufacturing Execution Systems (MES) implementation

    NASA Astrophysics Data System (ADS)

    Govindaraju, Rajesri; Putra, Krisna

    2016-02-01

    Manufacturing execution system is information systems (IS) application that bridges the gap between IS at the top level, namely enterprise resource planning (ERP), and IS at the lower levels, namely the automation systems. MES provides a media for optimizing the manufacturing process as a whole in a real time basis. By the use of MES in combination with the implementation of ERP and other automation systems, a manufacturing company is expected to have high competitiveness. In implementing MES, functional integration -making all the components of the manufacturing system able to work well together, is the most difficult challenge. For this, there has been an industry standard that specifies the sub-systems of a manufacturing execution systems and defines the boundaries between ERP systems, MES, and other automation systems. The standard is known as ISA-95. Although the advantages from the use of MES have been stated in some studies, not much research being done on how to implement MES effectively. The purpose of this study is to develop a methodology describing how MES implementation project should be managed, utilising the support of ISA- 95 reference model in the system development process. A proposed methodology was developed based on a general IS development methodology. The developed methodology were then revisited based on the understanding about the specific charateristics of MES implementation project found in an Indonesian steel manufacturing company implementation case. The case study highlighted the importance of applying an effective requirement elicitation method during innitial system assessment process, managing system interfaces and labor division in the design process, and performing a pilot deployment before putting the whole system into operation.

  2. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    SciTech Connect

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  3. Advanced Dewatering Systems Development

    SciTech Connect

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  4. Advanced quantum communication systems

    NASA Astrophysics Data System (ADS)

    Jeffrey, Evan Robert

    Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.

  5. Investment opportunity : the FPL EGAR lumber manufacturing system

    Treesearch

    George B. Harpole; Ed Williston; Hiram H. Hallock

    1979-01-01

    A model of present-day computer-controlled sawmilling technology is modified for the manufacture of any desired width of EGAR dimension lumber from small logs. EGAR lumber is manufactured via headrig production of 2-inch-thick flitches which are in turn dried, edged full width, edge-glued, and gang-novelty-ripped to wide widths (EGAR). The EGAR system is compared to...

  6. Description of CE Technology for the Manufacturing Optimization (MO) system

    DTIC Science & Technology

    1992-03-19

    engineering technology by applying existing DICE Tools to other technology areas, in this case design for manufacturing and assembly ( DFMA ). The DICE tools and...methods are evolving so evaluation of the existing DICE tools must be performed, and the tools that support the DFMA environment will be considered...case Design for Manufacturing and Assembly ( DFMA ). The DICE tools proposed for use under the MO program included ROSE Database Management System (DBMS

  7. The advanced manufacturing science and technology program. FY 95 Annual Report

    SciTech Connect

    Hill, J.

    1996-03-01

    This is the Fiscal Year 1995 Annual Report for the Advanced Manufacturing Science and Technology (AMST) sector of Los Alamos Tactical Goal 6, Industrial Partnering. During this past fiscal year, the AMST project leader formed a committee whose members represented the divisions and program offices with a manufacturing interest to examine the Laboratory`s expertise and needs in manufacturing. From a list of about two hundred interest areas, the committee selected nineteen of the most pressing needs for weapon manufacturing. Based upon Los Alamos mission requirements and the needs of the weapon manufacturing (Advanced Design and Production Technologies (ADaPT)) program plan and the other tactical goals, the committee selected four of the nineteen areas for strategic planning and possible industrial partnering. The areas selected were Casting Technology, Constitutive Modeling, Non-Destructive Testing and Evaluation, and Polymer Aging and Lifetime Prediction. For each area, the AMST committee formed a team to write a roadmap and serve as a partnering technical consultant. To date, the roadmaps have been completed for each of the four areas. The Casting Technology and Polymer Aging teams are negotiating with specific potential partners now, at the close of the fiscal year. For each focus area we have created a list of existing collaborations and other ongoing partnering activities. In early Fiscal Year 1996, we will continue to develop partnerships in these four areas. Los Alamos National Laboratory instituted the tactical goals for industrial partnering to focus our institutional resources on partnerships that enhance core competencies and capabilities required to meet our national security mission of reducing the nuclear danger. The second industry sector targeted by Tactical Goal 6 was the chemical industry. Tactical Goal 6 is championed by the Industrial Partnership Office.

  8. Inspection system qualification and integration into the mask manufacturing environment

    NASA Astrophysics Data System (ADS)

    LaVoy, Rosanne; Fujioka, Ron

    1995-12-01

    Integration of a mask inspection system into a manufacturing environment poses new challenges to both the inspection engineer and the equipment supplier. Traditional specifications (limited primarily to sensitivity and uptime) are no longer sufficient to successfully integrate a system into a 7 by 24 manufacturing area with multiple systems. Issues such as system sensitivity matching, sensitivity characterization by defect type, operator training and certification standards, and real-time SPC control of the systems must be addressed. This paper outlines some of the techniques Intel Mask Operation uses for integration of a new inspection system into the manufacturing line. Specifically moving a beta- site type tool out of the beta-site mode and into volume production. Examples are presented, including installation for manufacturing (including ergonomic modifications), techniques for system-to-system matching, use of SPC charts to monitor system performance, and operator training/certifications. Relationships between system PMs, or other environmental changes, and the system sensitivity SPC control charts also are discussed.

  9. Technology planning for flexible manufacturing systems

    NASA Astrophysics Data System (ADS)

    Chudakov, A. D.; Falevich, B. Y.

    1984-12-01

    The machine building industry features a new type of equipment, the flexible technological systems for machining. These systems are based on the use of machine tools with CNC, linked to a central controlling computer and an automated transport and stockpiling system. To improve the effectiveness of integrated operation of the system's equipment, the software of the central computer includes an applied program package directed toward the performance of automated planning functions, which, together with the operating documentation, makes up a system of operational calendar planning.

  10. Data management system advanced development

    NASA Technical Reports Server (NTRS)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  11. The application of manufacturing systems engineering for aero engine gears

    NASA Astrophysics Data System (ADS)

    Pewsey, Stephen M. S.

    1991-10-01

    The adoption of manufacturing systems engineering principles in order to improve cost effectiveness of manufacturing operations is considered. The introduction of cells where families of parts are made from raw material to finished product using a team approach has been initiated. The benefits to date are significant in terms of lead time reductions, inventory, and nonconformance savings as well as improvements in work force motivation and morale. The overall corporate manufacturing strategy of gears is explained. Some of the problems encountered with the transfer of gear production from one site to another with minimum disruption are described. Some of the radical changes being made in the manufacture of gears in line with the strategy of making Rolls-Royce a total quality organization are also described.

  12. Petri net modelling of buffers in automated manufacturing systems.

    PubMed

    Zhou, M; Dicesare, F

    1996-01-01

    This paper presents Petri net models of buffers and a methodology by which buffers can be included in a system without introducing deadlocks or overflows. The context is automated manufacturing. The buffers and models are classified as random order or order preserved (first-in-first-out or last-in-first-out), single-input-single-output or multiple-input-multiple-output, part type and/or space distinguishable or indistinguishable, and bounded or safe. Theoretical results for the development of Petri net models which include buffer modules are developed. This theory provides the conditions under which the system properties of boundedness, liveness, and reversibility are preserved. The results are illustrated through two manufacturing system examples: a multiple machine and multiple buffer production line and an automatic storage and retrieval system in the context of flexible manufacturing.

  13. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  14. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  15. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  16. Advanced Integrated Power Systems (AIPS)

    DTIC Science & Technology

    2012-10-08

    These devices were super-capacitor banks, flywheels, superconducting magnetic energy storage, and advanced batteries (such as Li- ion ). Their test system...Xantrex XW Hybrid Inverter/ Charger is a true sine-wave, 120/240 VAC, initial split-phase inverter/ charger incorporating a DC to AC inverter, battery ...9 Figure 6. Xantrex XW Hybrid Inverter/ Charger

  17. DARPA DICE Manufacturing Optimization

    DTIC Science & Technology

    1992-01-01

    Design for Manufacturing and Assembly ( DFMA ) with a set of tools to model the manufacturing processes, and manage tradeoffs across multiple processes. The...multiple manufacturing engineers, and the product/process changes are traded concurrently in the product and process domains. The system will support DFMA ...Contract Data Requirements List CM Communications Manager DARPA Defense Advanced Research Projects Agency DFMA Design for Manufacturing and Assembly

  18. Advanced manufacturing rules check (MRC) for fully automated assessment of complex reticle designs: Part II

    NASA Astrophysics Data System (ADS)

    Straub, J. A.; Aguilar, D.; Buck, P. D.; Dawkins, D.; Gladhill, R.; Nolke, S.; Riddick, J.

    2006-10-01

    Advanced electronic design automation (EDA) tools, with their simulation, modeling, design rule checking, and optical proximity correction capabilities, have facilitated the improvement of first pass wafer yields. While the data produced by these tools may have been processed for optimal wafer manufacturing, it is possible for the same data to be far from ideal for photomask manufacturing, particularly at lithography and inspection stages, resulting in production delays and increased costs. The same EDA tools used to produce the data can be used to detect potential problems for photomask manufacturing in the data. In the previous paper, it was shown how photomask MRC is used to uncover data related problems prior to automated defect inspection. It was demonstrated how jobs which are likely to have problems at inspection could be identified and separated from those which are not. The use of photomask MRC in production was shown to reduce time lost to aborted runs and troubleshooting due to data issues. In this paper, the effectiveness of this photomask MRC program in a high volume photomask factory over the course of a year as applied to more than ten thousand jobs will be shown. Statistics on the results of the MRC runs will be presented along with the associated impact to the automated defect inspection process. Common design problems will be shown as well as their impact to mask manufacturing throughput and productivity. Finally, solutions to the most common and most severe problems will be offered and discussed.

  19. New Paradigms in International University/Industry/Government Cooperation. Canada-China Collaboration in Advanced Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Bulgak, Akif Asil; Liquan, He

    1996-01-01

    A Chinese university and a Canadian university collaborated on an advanced manufacturing technologies project designed to address human resource development needs in China. The project featured university/industry/government partnership and attention to environmental issues. (SK)

  20. New Paradigms in International University/Industry/Government Cooperation. Canada-China Collaboration in Advanced Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Bulgak, Akif Asil; Liquan, He

    1996-01-01

    A Chinese university and a Canadian university collaborated on an advanced manufacturing technologies project designed to address human resource development needs in China. The project featured university/industry/government partnership and attention to environmental issues. (SK)

  1. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  2. System level analysis and control of manufacturing process variation

    DOEpatents

    Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.

    2005-05-31

    A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.

  3. Monitoring system for the quality assessment in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Carl, Volker

    2015-03-01

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality

  4. Monitoring system for the quality assessment in additive manufacturing

    SciTech Connect

    Carl, Volker

    2015-03-31

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality

  5. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  6. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  7. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  8. Advanced manufacturing technology effectiveness: A review of literature and some issues

    NASA Astrophysics Data System (ADS)

    Goyal, Sanjeev; Grover, Sandeep

    2012-09-01

    Advanced manufacturing technology (AMT) provides advantages to manufacturing managers in terms of flexibility, quality, reduced delivery times, and global competitiveness. Although a large number of publications had presented the importance of this technology, only a few had delved into related literature review. Considering the importance of this technology and the recent contributions by various authors, the present paper conducts a more comprehensive review. Literature was reviewed in a way that will help researchers, academicians, and practitioners to take a closer look at the implementation, evaluation, and justification of the AMT. The authors reviewed various papers, proposed a different classification scheme, and identified certain gaps that will provide hints for further research in AMT management.

  9. An experiment in remote manufacturing using the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Tsatsoulis, Costas; Frost, Victor

    1991-01-01

    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic.

  10. Manufacturing Management Systems--User Training.

    ERIC Educational Resources Information Center

    Hunt, C. L.

    The Production Control Training Program is a competency-based management training program currently in operation at the Defense Systems Division of Honeywell, Incorporated. Designed with the needs of the adult learner in mind, the program involves pretests and meetings between supervisors and individual staff members to identify individualized…

  11. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  12. Advances in Chemical Amplification Resist Systems

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi

    1992-12-01

    The chemical amplification concept proposed in 1982 to boost resist sensitivities is now well accepted by the lithography community, which stems not only from high sensitivities that chemical amplification resist systems can offer but also from additional benefits of high contrasts and unexpectedly high resolution capabilities. The design flexibility and versatility that the use of acid as a catalytic species offers are another attractive feature of chemical amplification, giving rise to a birth of an entire family of advanced resist systems. Manufacture and prototype fabrication of DRAM’s by deep UV lithography have been accomplished with use of chemical amplification resists. However, some process problems uniquely associated with chemical amplification resists have surfaced recently, which include their latent image instability due to their sensitivity toward minute amounts of air-borne contaminants. This paper reviews recent advances made in our laboratory in the field of chemical amplification resist systems and discusses 1) influence of residual casting solvent on absorption of NMP by polymer films, 2) effects of polymer end groups on resist sensitivity, and 3) new imaging mechanisms based on acid-catalyzed dehydration.

  13. Recent advance on design and manufacturing of composite anisogrid structures for space launchers

    NASA Astrophysics Data System (ADS)

    Totaro, G.; De Nicola, F.

    2012-12-01

    Anisogrid composite shells have been developed and applied since the eighties by the Russian technology aiming at critical weight structures for space launchers, as interstages and cone adapters. The manufacturing process commonly applied is based on the wet filament winding. The paper concerns with some developments of design and manufacturing recently performed at the Italian Aerospace Research Center on a cylindrical structural model representative of this kind of structures. The framework of preliminary design is improved by introducing the concept of suboptimal configuration in order to match the stiffness requirement of the shell and minimise the mass, in conjunction with the typical strength constraints. The undertaken manufacturing process is based on dry robotic winding for the lattice structure and for the outer skin, with the aid of usual rubber tooling and new devices for the automated deposition strategy. Resin infusion under vacuum bag and co-cure of the system of ribs and skin is finally applied out-of-autoclave, with the aid of a heated mandrel. With such approach an interstage structural model (scale factor 1:1.5) has been designed, manufactured and tested. Design requirements and loads refer to a typical space launcher whose baseline configuration is made in aluminium. The global mechanical test of the manufactured structure has confirmed the expected high structural performance. The possibility to reach substantial weight savings in comparison with the aluminium benchmark has been fully demonstrated.

  14. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  15. Advanced gas turbine systems program

    SciTech Connect

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  16. Family System of Advanced Charring Ablators for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.

    2005-01-01

    Advanced Ablators Program Objectives: 1) Flight-ready(TRL-6) ablative heat shields for deep-space missions; 2) Diversity of selection from family-system approach; 3) Minimum weight systems with high reliability; 4) Optimized formulations and processing; 5) Fully characterized properties; and 6) Low-cost manufacturing. Definition and integration of candidate lightweight structures. Test and analysis database to support flight-vehicle engineering. Results from production scale-up studies and production-cost analyses.

  17. Materials Requirements for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  18. Design for Manufacturing for Energy Absorption Systems

    NASA Astrophysics Data System (ADS)

    Del Prete, A.; Primo, T.; Papadia, G.; Manisi, B.

    2011-05-01

    In the typical scenario of a helicopter crash, impact with the ground is preceded by a substantially vertical drop, with the result that a seated occupant of a helicopter experiences high spinal loads and pelvic deceleration during such crash due to the sudden arresting of vertical downward motion. It has long been recognized that spinal injuries to occupants of helicopters in such crash scenario can be minimized by seat arrangements which limit the deceleration to which the seated occupant is subjected, relative to the helicopter, to a predetermined maximum, by allowing downward movement of the seated occupant relative to the helicopter, at the time of impact with the ground, under a restraining force which, over a limited range of such movement, is limited to a predetermined maximum. In practice, significant benefits, in the way of reduced injuries and reduced seriousness of injuries, can be afforded in this way in such crash situations even where the extent of such controlled vertical movement permitted by the crashworthy seat arrangement is quite limited. Important increase of accident safety is reached with the installation of crashworthy shock absorbers on the main landing gear, but this solution is mostly feasible on military helicopters with long fixed landing gear. Seats can then give high contribution to survivability. Commonly, an energy absorber is a constant load device, if one excludes an initial elastic part of the load-stroke curve. On helicopter seats, this behavior is obtained by plastic deformation of a metal component or scraping of material. In the present work the authors have studied three absorption systems, which differ in relation to their shape, their working conditions and their constructive materials. All the combinations have been analyzed for applications in VIP helicopter seats.

  19. Design for Manufacturing for Energy Absorption Systems

    SciTech Connect

    Del Prete, A.; Primo, T.; Papadia, G.; Manisi, B.

    2011-05-04

    In the typical scenario of a helicopter crash, impact with the ground is preceded by a substantially vertical drop, with the result that a seated occupant of a helicopter experiences high spinal loads and pelvic deceleration during such crash due to the sudden arresting of vertical downward motion. It has long been recognized that spinal injuries to occupants of helicopters in such crash scenario can be minimized by seat arrangements which limit the deceleration to which the seated occupant is subjected, relative to the helicopter, to a predetermined maximum, by allowing downward movement of the seated occupant relative to the helicopter, at the time of impact with the ground, under a restraining force which, over a limited range of such movement, is limited to a predetermined maximum. In practice, significant benefits, in the way of reduced injuries and reduced seriousness of injuries, can be afforded in this way in such crash situations even where the extent of such controlled vertical movement permitted by the crashworthy seat arrangement is quite limited. Important increase of accident safety is reached with the installation of crashworthy shock absorbers on the main landing gear, but this solution is mostly feasible on military helicopters with long fixed landing gear. Seats can then give high contribution to survivability. Commonly, an energy absorber is a constant load device, if one excludes an initial elastic part of the load-stroke curve. On helicopter seats, this behavior is obtained by plastic deformation of a metal component or scraping of material. In the present work the authors have studied three absorption systems, which differ in relation to their shape, their working conditions and their constructive materials. All the combinations have been analyzed for applications in VIP helicopter seats.

  20. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  1. Systems analysis of a potential space manufacturing facility

    NASA Technical Reports Server (NTRS)

    Driggers, G. W.

    1977-01-01

    Results of a preliminary design study of the system elements comprising a manufacturing facility in earth orbit are presented. The elements discussed include cis-Lunar transportation, Lunar base, materials transport, factory, living facilities, construction support and energy supply. An evolutionary path of development, production and deployment is presented and step-wise interrelationships discussed.

  2. Social and Labour Implications of Flexible Manufacturing Systems.

    ERIC Educational Resources Information Center

    Ebel, Karl-H.

    1985-01-01

    The flexible manufacturing system (FMS), a new way of organizing the production process by means of numerical control machines, robots, and computerized workstations, is described. The author examines some of the implications of FMS and the challenges it poses. (Author/CT)

  3. Energy efficiency quantitative analysis method of discrete manufacturing system

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Ji, Zhicheng

    2017-07-01

    The difficulty in the energy efficiency analysis of discrete manufacturing system is the lack of evaluation index system. In this paper, a novel evaluation index system with three layers and 10 indexes was presented to analyze the overall energy consumption level of the discrete manufacturing system. Then, with the consideration of the difficulties in directly obtaining machine energy efficiency, a prediction method based on recursive variable forgetting factor identification was put forward to calculate it. Furthermore, a comprehensive quantitative evaluation method of rough set and attribute hierarchical model was designed based on the index structure to evaluate the energy efficiency level. Finally, an experiment was used to illustrate the effectiveness of our evaluation index system and method.

  4. Manufacture of the ALS storage ring vacuum system

    NASA Astrophysics Data System (ADS)

    Kennedy, Kurt

    1991-08-01

    The Advanced Light Source (ALS) storage ring has a 4.9 meter magnetic radius and an antechamber type vacuum chamber. These two requirements makes conventional bent tube manufacturing techniques difficult. The ALS sector vacuum chambers have been made by machining two halves out of aluminum plate and welding at the mid plane. Each of these chambers have over 50 penetrations with metal sealed flanges and seven metal sealed poppet valves which use the chamber wall as the valve seat. The sector chambers are 10 meters long and some features in the chambers must be located to .25 mm. This paper describes how and how successfully these features have been achieved.

  5. Advanced uncooled infrared system electronics

    NASA Astrophysics Data System (ADS)

    Neal, Henry W.

    1998-07-01

    Over the past two decades, Raytheon Systems Company (RSC), formerly Texas Instruments Defense Systems & Electronics Group, developed a robust family of products based on a low- cost, hybrid ferroelectric (FE) uncooled focal-plane array (FPA) aimed at meeting the needs for thermal imaging products across both military and commercial markets. Over the years, RSC supplied uncooled infrared (IR) sensors for applications such as in combat vehicles, man-portable weaponry, personnel helmets, and installation security. Also, various commercial IR systems for use in automobiles, boats, law enforcement, hand-held applications, building/site security, and fire fighting have been developed. These products resulted in a high degree of success where cooled IR platforms are too bulky and costly, and other uncooled implementations are less reliable or lack significant cost advantage. Proof of this great success is found in the large price reductions, the unprecedented monthly production rates, and the wide diversity of products and customers realized in recent years. The ever- changing needs of these existing and potential customers continue to fuel the advancement of both the primary technologies and the production capabilities of uncooled IR systems at RSC. This paper will describe a development project intended to further advance the system electronics capabilities of future uncooled IR products.

  6. Expert computer systems and their applicability to automated manufacturing

    NASA Astrophysics Data System (ADS)

    Nau, D. S.

    1982-02-01

    A tutorial on techniques used in expert systems and some recommendations for an automated process planning system for the Automated Manufacturing Research Facility at the National Bureau of Standards (NBS) are presented. The tutorial portion of the paper discusses problem solving and knowledge representation techniques. Also discussed are ways in which these techniques have been used to build computer systems which achieve a high level of performance on problems which normally require significant human expertise for their solution. A summary of the activities required for process planning in the Automated Manufacturing Research Facility at NBS are presented, and recommendations for how to accomplish these along with recommendations for how to accomplish these activities. Recommendations for how an expert system could be designed to perform a process planning activity called process selection are also given.

  7. Multilayer electronic component systems and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)

    2010-01-01

    Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.

  8. Production of general purpose heat source (GPHS) using advanced manufacturing methods

    NASA Astrophysics Data System (ADS)

    Miller, Roger G.

    1996-03-01

    Mankind will continue to explore the stars through the use of unmanned space craft until the technology and costs are compatible with sending travelers to the outer planets of our solar system and beyond. Unmanned probes of the present and future will be necessary to develop the necessary technologies and obtain information that will make this travel possible. Because of the significant costs incurred, the use of modern manufacturing technologies must be used to lower the investment needed even when shared by international partnerships. For over the last 30 years, radioisotopes have provided the heat from which electrical power is extracted. Electric power for future spacecraft will be provided by either Radioisotope Thermoelectric Generators (RTG), Radioisotopic Thermophotovoltaic systems (RTPV), radioisotope Stirling systems, or a combination of these. All of these systems will be thermally driven by General Purpose Heat Source (GPHS) fueled clad in some configuration. The GPHS clad contains a 238PuO2 pellet encapsulated in an iridium alloy container. Historically, the fabrication of the iridium alloy shells has been performed at EG&G Mound and Oak Ridge National Laboratory (ORNL), and girth welding at Westinghouse Savannah River Corporation (WSRC) and Los Alamos National Laboratory (LANL). This paper will describe the use of laser processing for welding, drilling, cutting, and machining with other manufacturing methods to reduce the costs of producing GPHS fueled clad components and compléted assemblies. Incorporation of new quality technologies will compliment these manufacturing methods to reduce cost.

  9. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  10. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  11. Development of an advanced uncooled 10-Gb DFB laser for volume manufacture

    NASA Astrophysics Data System (ADS)

    Burns, Gordon; Charles, Paul M.

    2003-03-01

    Optical communication systems operating at 10Gbit/s such as 10Gigabit Ethernet are becoming more and more important in Local Area Networks (LAN) and Metropolitan Area Networks (MAN). This market requires optical transceivers of low cost, size and power consumption. This drives a need for uncooled DFB lasers directly modulated at 10Gbit/s. This paper describes the development of a state of the art uncooled high speed DFB laser which is capable of being manufactured in high volume at the low cost demanded by the GbE market. A DFB laser was designed by developing technological building blocks within the 'conventional" InGaAsP materials system, using existing well proven manufacturing processes modules wherever possible, limiting the design risk to a few key areas where innovation was required. The temperature and speed performance of the InGaAsP SMQW active layer system was carefully optimized and then coupled with a low parasitic lateral confinement system. Using concurrent engineering, new processes were demonstrated to have acceptable process capability within a manufacturing fabrication environment, proving their ability to support high volume manufacturing requirements. The DFB laser fabricated was shown to operate at 100C chip temperature with an open eye at 10Gbit/s operation (with an extinction ratio >5dB). Up to 90C operation this DFB shows threshold current as low as 29mA, optical power as high as 13mW and it meets the 10Gb scaled Ethernet mask with extinction ratio >6dB. It was found that the high temperature dynamic behavior of these lasers could not be fully predicted from static test data. A production test strategy was therefore followed where equipment was designed to fully test devices/subassemblies at 100C and up to 20Gbit/s at key points in the product build. This facilitated the rapid optimisation of product yields upon manufacturing ramp up and minimization of product costs. This state of the art laser is now transferred into volume manufacture.

  12. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  13. Advanced System for Process Engineering

    SciTech Connect

    Williams, K. E.; Saus, L. S.; Regenhardt, P. A.

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.

  14. NASA Advances Technologies for Additive Manufacturing of GRCop-84 Copper Alloy

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Protz, Chris

    2017-01-01

    The Low Cost Upper Stage Propulsion project has successfully developed and matured Selective Laser Melting (SLM) Fabrication of the NASA developed GRCop-84 copper alloy. Several parts have been printed in house and at a commercial vendor, and these parts have been successfully machined and have undergone further fabrication steps to allow hot-fire testing. Hot-fire testing has demonstrated parts manufactured with this technique can survive and perform well in the relevant environments for liquid rocket propulsion systems.

  15. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  16. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  17. Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems: Key Findings from a Roadmapping Workshop.

    PubMed

    Weiss, Brian A; Vogl, Gregory; Helu, Moneer; Qiao, Guixiu; Pellegrino, Joan; Justiniano, Mauricio; Raghunathan, Anand

    2015-01-01

    The National Institute of Standards and Technology (NIST) hosted the Roadmapping Workshop - Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) in Fall 2014 to discuss the needs and priorities of stakeholders in the PHM4SMS technology area. The workshop brought together over 70 members of the PHM community. The attendees included representatives from small, medium, and large manufacturers; technology developers and integrators; academic researchers; government organizations; trade associations; and standards bodies. The attendees discussed the current and anticipated measurement science challenges to advance PHM methods and techniques for smart manufacturing systems; the associated research and development needed to implement condition monitoring, diagnostic, and prognostic technologies within manufacturing environments; and the priorities to meet the needs of PHM in manufacturing. This paper will summarize the key findings of this workshop, and present some of the critical measurement science challenges and corresponding roadmaps, i.e., suggested courses of action, to advance PHM for manufacturing. Milestones and targeted capabilities will be presented for each roadmap across three areas: PHM Manufacturing Process Techniques; PHM Performance Assessment; and PHM Infrastructure - Hardware, Software, and Integration. An analysis of these roadmaps and crosscutting themes seen across the breakout sessions is also discussed.

  18. Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems: Key Findings from a Roadmapping Workshop

    PubMed Central

    Weiss, Brian A.; Vogl, Gregory; Helu, Moneer; Qiao, Guixiu; Pellegrino, Joan; Justiniano, Mauricio; Raghunathan, Anand

    2017-01-01

    The National Institute of Standards and Technology (NIST) hosted the Roadmapping Workshop – Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) in Fall 2014 to discuss the needs and priorities of stakeholders in the PHM4SMS technology area. The workshop brought together over 70 members of the PHM community. The attendees included representatives from small, medium, and large manufacturers; technology developers and integrators; academic researchers; government organizations; trade associations; and standards bodies. The attendees discussed the current and anticipated measurement science challenges to advance PHM methods and techniques for smart manufacturing systems; the associated research and development needed to implement condition monitoring, diagnostic, and prognostic technologies within manufacturing environments; and the priorities to meet the needs of PHM in manufacturing. This paper will summarize the key findings of this workshop, and present some of the critical measurement science challenges and corresponding roadmaps, i.e., suggested courses of action, to advance PHM for manufacturing. Milestones and targeted capabilities will be presented for each roadmap across three areas: PHM Manufacturing Process Techniques; PHM Performance Assessment; and PHM Infrastructure – Hardware, Software, and Integration. An analysis of these roadmaps and crosscutting themes seen across the breakout sessions is also discussed. PMID:28664163

  19. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  20. Advanced Docking Berthing System Update

    NASA Technical Reports Server (NTRS)

    Lewis, James

    2006-01-01

    In FY05 the Exploration Systems Technology Maturation Program selected the JSC advanced mating systems development to continue as an in-house project. In FY06, as a result of ESAS Study (60 Day Study) the CEV Project (within the Constellation Program) has chosen to continue the project as a GFE Flight Hardware development effort. New requirement for CEV to travel and dock with the ISS in 2011/12 in support of retiring the Shuttle and reducing the gap of time where US does not have any US based crew launch capability. As before, long-duration compatible seal-on-seal technology (seal-on-seal to support androgynous interface) has been identified as a risk mitigation item.

  1. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 15: Administrative Information, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…

  2. "Cut-and-Paste" Manufacture of Multiparametric Epidermal Sensor Systems.

    PubMed

    Yang, Shixuan; Chen, Ying-Chen; Nicolini, Luke; Pasupathy, Praveenkumar; Sacks, Jacob; Su, Becky; Yang, Russell; Sanchez, Daniel; Chang, Yao-Feng; Wang, Pulin; Schnyer, David; Neikirk, Dean; Lu, Nanshu

    2015-11-04

    Multifunctional epidermal sensor systems (ESS) are manufactured with a highly cost and time effective, benchtop, and large-area "cut-and-paste" method. The ESS made out of thin and stretchable metal and conductive polymer ribbons can be noninvasively laminated onto the skin surface to sense electrophysiological signals, skin temperature, skin hydration, and respiratory rate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Isotope Separation and Advanced Manufacturing Technology. ISAM semiannual report, Volume 3, Number 1, October 1993--March 1994

    SciTech Connect

    Carpenter, J.; Kan, T.

    1994-10-01

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (I) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (II) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  4. Manufactured Residential Utility Wall System (ResCore),

    SciTech Connect

    Wendt, Robert; Lundell, Clark; Lau, Tin Man

    1997-12-31

    This paper describes the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty, students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the U.S. Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a layered manufacturing technique that allows each major component group: structural, cold water, hot water, drain, gas, electric, etc. to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.

  5. A system approach for reducing the environmental impact of manufacturing and sustainability improvement of nano-scale manufacturing

    NASA Astrophysics Data System (ADS)

    Yuan, Yingchun

    This dissertation develops an effective and economical system approach to reduce the environmental impact of manufacturing. The system approach is developed by using a process-based holistic method for upstream analysis and source reduction of the environmental impact of manufacturing. The system approach developed consists of three components of a manufacturing system: technology, energy and material, and is useful for sustainable manufacturing as it establishes a clear link between manufacturing system components and its overall sustainability performance, and provides a framework for environmental impact reductions. In this dissertation, the system approach developed is applied for environmental impact reduction of a semiconductor nano-scale manufacturing system, with three case scenarios analyzed in depth on manufacturing process improvement, clean energy supply, and toxic chemical material selection. The analysis on manufacturing process improvement is conducted on Atomic Layer Deposition of Al2O3 dielectric gate on semiconductor microelectronics devices. Sustainability performance and scale-up impact of the ALD technology in terms of environmental emissions, energy consumption, nano-waste generation and manufacturing productivity are systematically investigated and the ways to improve the sustainability of the ALD technology are successfully developed. The clean energy supply is studied using solar photovoltaic, wind, and fuel cells systems for electricity generation. Environmental savings from each clean energy supply over grid power are quantitatively analyzed, and costs for greenhouse gas reductions on each clean energy supply are comparatively studied. For toxic chemical material selection, an innovative schematic method is developed as a visual decision tool for characterizing and benchmarking the human health impact of toxic chemicals, with a case study conducted on six chemicals commonly used as solvents in semiconductor manufacturing. Reliability of

  6. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  7. Manufacturing technology development of the Powergrid{trademark} linear focus photovoltaic concentrator system

    SciTech Connect

    Kaminar, N.; Alexander, T.; Amaya, J.; Bottenberg, W.; Carrie, P.; Chen, K.; Gilbert, D.; Guzman, P.; Hobden, P.; Ross, J.; Sahagian, J.; Rodrigues, D.; Zimmermann, J.

    1999-03-01

    This article reports manufacturing technology improvements developed for the production of the PVI Powergrid{trademark} linear focus photovoltaic concentrator as part of a PVMaT project. The improvements include the development of an advanced, acrylic plastic extrusion system for Fresnel lenses, an automated receiver station, an EVA encapsulation process, an improved collector fabrication method and a lower cost panel frame. These project improvements have prepared PVI for entrance into large-scale production of PV power generation systems. {copyright} {ital 1999 American Institute of Physics.}

  8. Additive Manufacturing of Advanced High Temperature Masking Fixtures for EBPVD TBC Coating

    SciTech Connect

    List, III, Frederick Alyious; Feuerstein, Albert; Dehoff, Ryan; Kirka, Michael; Carver, Keith

    2016-03-30

    The purpose of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Praxair Surface Technologies, Inc. (PST) and Oak Ridge National Laboratory (ORNL) was to develop an additive manufacturing process to fabricate next generation high temperature masking fixtures for coating of turbine airfoils with ceramic Thermal Barrier Coatings (TBC) by the Electron Beam Physical Vapor Deposition (EBPVD) process. Typical masking fixtures are sophisticated designs and require complex part manipulation in order to achieve the desired coating distribution. Fixtures are typically fabricated from high temperature nickel (Ni) based superalloys. The fixtures are fabricated from conventional processes by welding of thin sheet material into a complex geometry, to decrease the weight load for the manipulator and to reduce the thermal mass of the fixture. Recent attempts have been made in order to fabricate the fixtures through casting, but thin walled sections are difficult to cast and have high scrap rates. This project focused on understanding the potential for fabricating high temperature Ni based superalloy fixtures through additive manufacturing. Two different deposition processes; electron beam melting (EBM) and laser powder bed fusion were evaluated to determine the ideal processing route of these materials. Two different high temperature materials were evaluated. The high temperature materials evaluated were Inconel 718 and another Ni base alloy, designated throughout the remainder of this document as Alloy X, as the alloy composition is sensitive. Inconel 718 is a more widely utilized material for additive manufacturing although it is not currently the material utilized for current fixtures. Alloy X is the alloy currently used for the fixtures, but is not a commercially available alloy for additive manufacturing. Praxair determined it was possible to build the fixture using laser powder bed technology from Inconel 718. ORNL fabricated the fixture

  9. Surface Modeling, Solid Modeling and Finite Element Modeling. Analysis Capabilities of Computer-Assisted Design and Manufacturing Systems.

    ERIC Educational Resources Information Center

    Nee, John G.; Kare, Audhut P.

    1987-01-01

    Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)

  10. Surface Modeling, Solid Modeling and Finite Element Modeling. Analysis Capabilities of Computer-Assisted Design and Manufacturing Systems.

    ERIC Educational Resources Information Center

    Nee, John G.; Kare, Audhut P.

    1987-01-01

    Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)

  11. Advanced Hybrid Computer Systems. Software Technology.

    DTIC Science & Technology

    This software technology final report evaluates advances made in Advanced Hybrid Computer System software technology . The report describes what...automatic patching software is available as well as which analog/hybrid programming languages would be most feasible for the Advanced Hybrid Computer...compiler software . The problem of how software would interface with the hybrid system is also presented.

  12. Design and Manufacturing of Extremely Low Mass Flight Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    2002-01-01

    Extremely small flight systems pose some unusual design and manufacturing challenges. The small size of the components that make up the system generally must be built with extremely tight tolerances to maintain the functionality of the assembled item. Additionally, the total mass of the system is extremely sensitive to what would be considered small perturbations in a larger flight system. The MUSES C mission, designed, built, and operated by Japan, has a small rover provided by NASA that falls into this small flight system category. This NASA-provided rover is used as a case study of an extremely small flight system design. The issues that were encountered with the rover portion of the MUSES C program are discussed and conclusions about the recommended mass margins at different stages of a small flight system project are presented.

  13. Advanced microelectronics technologies for future small satellite systems

    NASA Astrophysics Data System (ADS)

    Alkalai, Leon

    2000-03-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjoint markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  14. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  15. Aircrew helmet design and manufacturing enhancements through the use of advanced technologies

    NASA Astrophysics Data System (ADS)

    Cadogan, David P.; George, Alan E.; Winkler, Edward R.

    1993-12-01

    With the development of helmet mounted displays (HMD) and night vision systems (NVS) for use in military and civil aviation roles, new methods of helmet development need to be explored. The helmet must be designed to provide the user with the most lightweight, form fitting system, while meeting other system performance requirements. This can be achieved through a complete analysis of the system requirements. One such technique for systems analysis, a quality function deployment (QFD) matrix, is explored for this purpose. The advanced helmet development process for developing aircrew helmets includes the utilization of several emerging technologies such as laser scanning, computer aided design (CAD), computer generated patterns from 3-D surfaces, laser cutting of patterns and components, and rapid prototyping (stereolithography). Advanced anthropometry methods for helmet development are also available for use. Besides the application of advanced technologies to be used in the development of helmet assemblies, methods of mass reduction are also discussed. The use of these advanced technologies will minimize errors in the development cycle of the helmet and molds, and should enhance system performance while reducing development time and cost.

  16. Using a simulation assistant in modeling manufacturing systems

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, S. X.; Wolfsberger, John W.

    1988-01-01

    Numerous simulation languages exist for modeling discrete event processes, and are now ported to microcomputers. Graphic and animation capabilities were added to many of these languages to assist the users build models and evaluate the simulation results. With all these languages and added features, the user is still plagued with learning the simulation language. Futhermore, the time to construct and then to validate the simulation model is always greater than originally anticipated. One approach to minimize the time requirement is to use pre-defined macros that describe various common processes or operations in a system. The development of a simulation assistant for modeling discrete event manufacturing processes is presented. A simulation assistant is defined as an interactive intelligent software tool that assists the modeler in writing a simulation program by translating the modeler's symbolic description of the problem and then automatically generating the corresponding simulation code. The simulation assistant is discussed with emphasis on an overview of the simulation assistant, the elements of the assistant, and the five manufacturing simulation generators. A typical manufacturing system will be modeled using the simulation assistant and the advantages and disadvantages discussed.

  17. Modular Exhaust Design and Manufacturing Techniques for Low Cost Mid Volume Rapid Buidl to Order Systems

    DTIC Science & Technology

    2014-08-06

    technical data package will contain the following pieces of information: • Manufacturing Drawings • Code for running CNC machinery • Documentation...MODULAR EXHAUST DESIGN AND MANUFACTURING TECHNIQUES FOR LOW COST MID VOLUME RAPID BUILD TO ORDER SYSTEMS Kevin Nelson Project Engineer...customizable mufflers, as well as modular manufacturing techniques targeted at mid volume manufacturing quantities. A successful solution would reduce

  18. DARPA DICE Manufacturing Optimization

    DTIC Science & Technology

    1993-01-01

    Assembly ( DFMA ) with a set of tools to model manufacturing processes, and manage tradeoffs across multiple processes. The subject of this report is the...manufacturing engineers, and product/process changes are traded concurrently in the product and process domains. The system will support DFMA with a...Requirements List DARPA Defense Advanced Research Projects Agency DFMA Design for Manufacturing and Assembly DICE DARPA Initiative In Concurrent Engineering

  19. "Cut-and-paste" manufacture of multiparametric epidermal electronic systems

    NASA Astrophysics Data System (ADS)

    Lu, Nanshu; Yang, Shixuan; Wang, Pulin

    2016-05-01

    Epidermal electronics is a class of noninvasive and unobstructive skin-mounted, tattoo-like sensors and electronics capable of vital sign monitoring and establishing human-machine interface. The high cost of manpower, materials, vacuum equipment, and photolithographic facilities associated with its manufacture greatly hinders the widespread use of disposable epidermal electronics. Here we report a cost and time effective, completely dry, benchtop "cut-and-paste" method for the freeform and portable manufacture of multiparametric epidermal sensor systems (ESS) within minutes. This versatile method works for all types of thin metal and polymeric sheets and is compatible with any tattoo adhesives or medical tapes. The resulting ESS are multimaterial and multifunctional and have been demonstrated to noninvasively but accurately measure electrophysiological signals, skin temperature, skin hydration, as well as respiratory rate. In addition, planar stretchable coils exploiting double-stranded serpentine design have been successfully applied as wireless, passive epidermal strain sensors.

  20. Designing the accident and emergency system: lessons from manufacturing.

    PubMed

    Walley, P

    2003-03-01

    To review the literature on manufacturing process design and demonstrate applicability in health care. Literature review and application of theory using two years activity data from two healthcare communities and extensive observation of activities over a six week period by seven researchers. It was possible to identify patient flows that could be used to design treatment processes around the needs of the patient. Some queues are built into existing treatment processes and can be removed by better process design. Capacity imbalance, not capacity shortage, causes some unnecessary waiting in accident and emergency departments. Clinicians would find that modern manufacturing theories produce more acceptable designs of systems. In particular, good quality is seen as a necessary pre-requisite of fast, efficient services.

  1. Designing the accident and emergency system: lessons from manufacturing

    PubMed Central

    Walley, P

    2003-01-01

    Objectives: To review the literature on manufacturing process design and demonstrate applicability in health care. Methods: Literature review and application of theory using two years activity data from two healthcare communities and extensive observation of activities over a six week period by seven researchers. Results: It was possible to identify patient flows that could be used to design treatment processes around the needs of the patient. Some queues are built into existing treatment processes and can be removed by better process design. Capacity imbalance, not capacity shortage, causes some unnecessary waiting in accident and emergency departments. Conclusions: Clinicians would find that modern manufacturing theories produce more acceptable designs of systems. In particular, good quality is seen as a necessary pre-requisite of fast, efficient services. PMID:12642523

  2. Advanced integrated solvent extraction systems

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  3. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    SciTech Connect

    Levy, E.; Dentz, J.; Ansanelli, E.; Barker, G.; Rath, P.; Dadia, D.

    2016-03-01

    Three side-by-side lab houses were built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The lab houses in Russellville, Alabama compared the performance of three homes built to varying levels of thermal integrity and HVAC equipment: a baseline HUD-code home equipped with an electric furnace and a split system air conditioner; an ENERGY STAR manufactured home with an enhanced thermal envelope and traditional split system heat pump; and a house designed to qualify for Zero Energy Ready Home designation with a ductless mini-split heat pump with transfer fan distribution system in place of the traditional duct system for distribution. Experiments were conducted in the lab houses to evaluate impact on energy and comfort of interior door position, window blind position and transfer fan operation. The report describes results of tracer gas and co-heating tests and presents calculation of the heat pump coefficient of performance for both the traditional heat pump and the ductless mini-split. A series of calibrated energy models was developed based on measured data and run in three locations in the Southeast to compare annual energy usage of the three homes.

  4. Advanced integrated enhanced vision systems

    NASA Astrophysics Data System (ADS)

    Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha

    2003-09-01

    In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.

  5. Westinghouse Advanced Particle Filter System

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.; Bachovchin, D.M.

    1996-12-31

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: W-APF integrated operation with the American Electric Power, 70 MW PFBC clean coal facility--approximately 6000 test hours completed; approximately 2500 hours of testing at the Hans Ahlstrom 10 MW PCFB facility located in Karhula, Finland; over 700 hours of operation at the Foster Wheeler 2 MW 2nd generation PFBC facility located in Livingston, New Jersey; status of Westinghouse HGF supply for the DOE Southern Company Services Power System Development Facility (PSDF) located in Wilsonville, Alabama; the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation; and the status of the design and supply of the HGF unit for the 95 MW Pinon Pine IGCC Clean Coal Demonstration.

  6. System and method for high power diode based additive manufacturing

    DOEpatents

    El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.

    2016-04-12

    A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.

  7. Soft ionization device with characterization systems and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2004-01-01

    Various configurations of characterization systems such as ion mobility spectrometers and mass spectrometers are disclosed that are coupled to an ionization device. The ionization device is formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. Small voltages across the electrodes generate large electric fields which act to ionize substantially all molecules passing therethrough without fracture. Methods to manufacture the mass spectrometer and ion mobility spectrometer systems are also described.

  8. Towards Human Centred Manufacturing Systems in the Next Generation

    NASA Astrophysics Data System (ADS)

    Anezaki, Takashi; Hata, Seiji

    Nowadays agile market is in common, and the fundamental technology supporting next-generation production system requires further development of machine and information technologies to establish “human friendly technology" and a bridging of these technologies together. IMS-HUTOP project proposes a new product life cycle that respects the human nature of individuals, and establishes the elemental technologies necessary for acquiring, modelling and evaluating various human factors in an effort to achieve the HUTOP cycle. In this paper we propose a human centred and human friendly manufacturing system, which has been proposed in the IMS-HUTOP project.

  9. Space manufacturing systems and the Space Operations Center

    NASA Technical Reports Server (NTRS)

    Louviere, A. J.

    1982-01-01

    For the planned Space Operations Center (SOC) and envisioned space manufacturing and processes systems, the concepts of phased programs, development and operations, station-keeping orbit envelopes, propulsive harbor tugs, and aspects of servicing are discussed. The SOC three-phased program concept includes the servicing of satellites in compatible orbits and in transition to higher energy orbits. Two concepts of a free-flyer satellite are assessed, including the fuel system, and the placement of such a satellite into orbit is discussed. Finally, some services that will be provided by SOC are mentioned.

  10. Towards Manufacturing/Distribution Systems in the Next Generation

    NASA Astrophysics Data System (ADS)

    Koshimizu, Hiroyasu; Kaihara, Toshiya; Sawada, Hiroyuki

    Nowadays agile market is in common, and the fundamental technology supporting next-generation production system requires further development of machine and information technologies to establish “human technology” and a bridging of these technologies together. IMS-HUTOP project proposes a new product life cycle that respects the human nature of individuals, and establishes the elemental technologies necessary for acquiring, modelling and evaluating various human factors in an effort to achieve the HUTOP cycle. In this paper we propose a human centred KANSEI manufacturing system, which has been proposed in the IMS-HUTOP project with 5 work packages.

  11. Design of waste deactivation systems for biopharmaceutical manufacturing facilities

    SciTech Connect

    Nghiem, N.P.

    1995-12-01

    Waste deactivation system is an essential part of any biopharmaceutical manufacturing facility. Regulations require that all genetically engineered bacteria or cells be killed before the waste can be discharged from the facility. This is typically accomplished by heat or chemicals. In a small facility, a batch heat kill system normally is used. In larger facilities, continuous systems are preferred. In both systems, the most critical parameters are capacity and cycle time. These parameters must be carefully determined when designing a heat kill system. Heat-deactivated wastes sometimes cause odor problems, especially in the case of a facility located near a residential area. These problems can be alleviated by using chemicals. Among these, ozone is the most promising one because it can be generated on-site when needed, is easy to handle, and leaves no residual in the deactivated wastes. Design of heat kill and ozone deactivation systems will be discussed.

  12. Intelligent system of coordination and control for manufacturing

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2016-08-01

    This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.

  13. Input-output identification of controlled discrete manufacturing systems

    NASA Astrophysics Data System (ADS)

    Estrada-Vargas, Ana Paula; López-Mellado, Ernesto; Lesage, Jean-Jacques

    2014-03-01

    The automated construction of discrete event models from observations of external system's behaviour is addressed. This problem, often referred to as system identification, allows obtaining models of ill-known (or even unknown) systems. In this article, an identification method for discrete event systems (DESs) controlled by a programmable logic controller is presented. The method allows processing a large quantity of observed long sequences of input/output signals generated by the controller and yields an interpreted Petri net model describing the closed-loop behaviour of the automated DESs. The proposed technique allows the identification of actual complex systems because it is sufficiently efficient and well adapted to cope with both the technological characteristics of industrial controllers and data collection requirements. Based on polynomial-time algorithms, the method is implemented as an efficient software tool which constructs and draws the model automatically; an overview of this tool is given through a case study dealing with an automated manufacturing system.

  14. Improvement of process control using wafer geometry for enhanced manufacturability of advanced semiconductor devices

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Lee, Jongsu; Kim, Sang Min; Lee, Changhwan; Han, Sangjun; Kim, Myoungsoo; Kwon, Wontaik; Park, Sung-Ki; Vukkadala, Pradeep; Awasthi, Amartya; Kim, J. H.; Veeraraghavan, Sathish; Choi, DongSub; Huang, Kevin; Dighe, Prasanna; Lee, Cheouljung; Byeon, Jungho; Dey, Soham; Sinha, Jaydeep

    2015-03-01

    Aggressive advancements in semiconductor technology have resulted in integrated chip (IC) manufacturing capability at sub-20nm half-pitch nodes. With this, lithography overlay error budgets are becoming increasingly stringent. The delay in EUV lithography readiness for high volume manufacturing (HVM) and the need for multiple-patterning lithography with 193i technology has further amplified the overlay issue. Thus there exists a need for technologies that can improve overlay errors in HVM. The traditional method for reducing overlay errors predominantly focused on improving lithography scanner printability performance. However, processes outside of the lithography sector known as processinduced overlay errors can contribute significantly to the total overlay at the current requirements. Monitoring and characterizing process-induced overlay has become critical for advanced node patterning. Recently a relatively new technique for overlay control that uses high-resolution wafer geometry measurements has gained significance. In this work we present the implementation of this technique in an IC fabrication environment to monitor wafer geometry changes induced across several points in the process flow, of multiple product layers with critical overlay performance requirement. Several production wafer lots were measured and analyzed on a patterned wafer geometry tool. Changes induced in wafer geometry as a result of wafer processing were related to down-stream overlay error contribution using the analytical in-plane distortion (IPD) calculation model. Through this segmentation, process steps that are major contributors to down-stream overlay were identified. Subsequent process optimization was then isolated to those process steps where maximum benefit might be realized. Root-cause for the within-wafer, wafer-to-wafer, tool-to-tool, and station-to-station variations observed were further investigated using local shape curvature changes - which is directly related to

  15. A survey of advanced battery systems for space applications

    NASA Astrophysics Data System (ADS)

    Attia, Alan I.

    1989-12-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  16. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  17. Synthetic biology: advancing the design of diverse genetic systems

    PubMed Central

    Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

    2013-01-01

    A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

  18. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  19. Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs.

  20. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  1. Materials for advanced turbine engines. Volume 1: Advanced blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.; Fairbanks, N. P.

    1982-01-01

    Project 3, the subject of this technical report, was structured toward the successful engine demonstration of an improved-efficiency, long-life, tip-seal system for turbine blades. The advanced tip-seal system was designed to maintain close operating clearances between turbine blade tips and turbine shrouds and, at the same time, be resistant to environmental effects including high-temperature oxidation, hot corrosion, and thermal cycling. The turbine blade tip comprised an environmentally resistant, activated-diffussion-bonded, monocrystal superalloy combined with a thin layer of aluminium oxide abrasive particles entrapped in an electroplated NiCr matrix. The project established the tip design and joint location, characterized the single-crystal tip alloy and abrasive tip treatment, and established the manufacturing and quality-control plans required to fully process the blades. A total of 171 blades were fully manufactured, and 100 were endurance and performance engine-tested.

  2. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  3. The application of virtual reality systems as a support of digital manufacturing and logistics

    NASA Astrophysics Data System (ADS)

    Golda, G.; Kampa, A.; Paprocka, I.

    2016-08-01

    Modern trends in development of computer aided techniques are heading toward the integration of design competitive products and so-called "digital manufacturing and logistics", supported by computer simulation software. All phases of product lifecycle: starting from design of a new product, through planning and control of manufacturing, assembly, internal logistics and repairs, quality control, distribution to customers and after-sale service, up to its recycling or utilization should be aided and managed by advanced packages of product lifecycle management software. Important problems for providing the efficient flow of materials in supply chain management of whole product lifecycle, using computer simulation will be described on that paper. Authors will pay attention to the processes of acquiring relevant information and correct data, necessary for virtual modeling and computer simulation of integrated manufacturing and logistics systems. The article describes possibilities of use an applications of virtual reality software for modeling and simulation the production and logistics processes in enterprise in different aspects of product lifecycle management. The authors demonstrate effective method of creating computer simulations for digital manufacturing and logistics and show modeled and programmed examples and solutions. They pay attention to development trends and show options of the applications that go beyond enterprise.

  4. Operational Concept Document for the Manufacturing Optimization (MO) system

    DTIC Science & Technology

    1992-03-01

    estimator, guidelines, and manufacturing advisor, as well as, the integration of current DICE tools. 3 14. SUBJECT TERMS 15. NUMBER OF PAGES MO, DFMA ...Design for3 Manufacturing and Assembly ( DFMA ). The purpose of design for manufacture and assembly is to get early insight into the manufacturing...developing a "generalized" DFMA environment capable of modelling diverse manufacturing processes. The technology may also be applicable to other

  5. 76 FR 67017 - Notice to Manufacturers of Airport Avian Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Federal Aviation Administration Notice to Manufacturers of Airport Avian Radar Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of Airport Avian Radar Systems... waivers to foreign manufacturers of airport avian radar systems that meet the requirements of FAA Advisory...

  6. 77 FR 23618 - Authority To Manufacture and Distribute Postage Evidencing Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... 501 Authority To Manufacture and Distribute Postage Evidencing Systems AGENCY: Postal Service TM...--AUTHORIZATION TO MANUFACTURE AND DISTRIBUTE POSTAGE EVIDENCING SYSTEMS 1. The authority citation for 39 CFR part... Postage Evidencing Systems that it manufactures or distributes, except those purchased by the...

  7. Automation in optics manufacturing

    NASA Astrophysics Data System (ADS)

    Pollicove, Harvey M.; Moore, Duncan T.

    1991-01-01

    The optics industry has not followed the lead of the machining and electronics industries in applying advances in computer aided engineering (CAE), computer assisted manufacturing (CAM), automation or quality management techniques. Automation based on computer integrated manufacturing (CIM) and flexible machining systems (FMS) has been widely implemented in these industries. Optics continues to rely on standalone equipment that preserves the highly skilled, labor intensive optical fabrication systems developed in the 1940's. This paper describes development initiatives at the Center for Optics Manufacturing that will create computer integrated manufacturing technology and support processes for the optical industry.

  8. Automation for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Pollicove, Harvey M.; Moore, Duncan T.

    1990-11-01

    The optics industry has not followed the lead of the machining and electronics industries in applying advances In computer aided engineering (CAE), computer assisted manufacturing (CAM), automation or quality management techniques. Automationbased on computer integrated manufacturing (CIM) and flexible machining systems (FMS) has been widely implemented In these industries. Optics continues to rely on standalone equipment that preserves the highly skilled, labor intensive optical fabrication systems developed in the 1940's. This paper describes development initiatives at the Center for Optics Manufacturing that will create computer integrated manufacturing technology and support processes for the optical industry.

  9. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    SciTech Connect

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  10. The operation of large computer-controlled manufacturing systems

    SciTech Connect

    Upton, D.M.

    1988-01-01

    This work examines methods for operation of large computer-controlled manufacturing systems, with more than 50 or so disparate CNC machines in congregation. The central theme is the development of a distributed control system, which requires minimal central supervision, and allows manufacturing system re-configuration without extensive control software re-writes. Provision is made for machines to learn from their experience and provide estimates of the time necessary to effect various tasks. Routing is opportunistic, with varying degrees of myopia depending on the prevailing situation. Necessary curtailments of opportunism are built in to the system, in order to provide a society of machines that operate in unison rather than in chaos. Negotiation and contention resolution are carried out using a UHF radio communications network, along with processing capability on both pallets and tools. Graceful and robust error recovery is facilitated by ensuring adequate pessimistic consideration of failure modes at each stage in the scheme. Theoretical models are developed and an examination is made of fundamental characteristics of auction-based scheduling methods.

  11. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  12. Chrysler Partners with North Lake High School in an Advanced Manufacturing Technology Program for Special Needs Students.

    ERIC Educational Resources Information Center

    Karbon, Patrick J.; Kuhn, Cynthia

    1996-01-01

    Chrysler Corporation and North Lake High School cooperated to develop and deploy Advanced Manufacturing Technology for high school students identified as at risk or hard to serve. Chrysler provided curriculum that was delivered by training center instructors; teachers ensured student competence in academic areas. (JOW)

  13. Chrysler Partners with North Lake High School in an Advanced Manufacturing Technology Program for Special Needs Students.

    ERIC Educational Resources Information Center

    Karbon, Patrick J.; Kuhn, Cynthia

    1996-01-01

    Chrysler Corporation and North Lake High School cooperated to develop and deploy Advanced Manufacturing Technology for high school students identified as at risk or hard to serve. Chrysler provided curriculum that was delivered by training center instructors; teachers ensured student competence in academic areas. (JOW)

  14. Sikorsky interactive graphics surface design/manufacturing system

    NASA Technical Reports Server (NTRS)

    Robbins, R.

    1975-01-01

    An interactive graphics system conceived to be used in the design, analysis, and manufacturing of aircraft components with free form surfaces was described. In addition to the basic surface definition and viewing capabilities inherent in such a system, numerous other features are present: surface editing, automated smoothing of control curves, variable milling patch boundary definitions, surface intersection definition and viewing, automatic creation of true offset surfaces, digitizer and drafting machine interfaces, and cutter path optimization. Documented costs and time savings of better than six to one are being realized with this system. The system was written in FORTRAN and GSP for use on IBM 2250 CRT's in conjunction with an IBM 370/158 computer.

  15. Communication and control in an integrated manufacturing system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Throne, Robert D.; Muthuswamy, Yogesh K.

    1987-01-01

    Typically, components in a manufacturing system are all centrally controlled. Due to possible communication bottlenecking, unreliability, and inflexibility caused by using a centralized controller, a new concept of system integration called an Integrated Multi-Robot System (IMRS) was developed. The IMRS can be viewed as a distributed real time system. Some of the current research issues being examined to extend the framework of the IMRS to meet its performance goals are presented. These issues include the use of communication coprocessors to enhance performance, the distribution of tasks and the methods of providing fault tolerance in the IMRS. An application example of real time collision detection, as it relates to the IMRS concept, is also presented and discussed.

  16. A clock for the manufacturing systems integration testbed

    NASA Astrophysics Data System (ADS)

    Libes, Don

    1991-09-01

    Described here is a software module that provides timing services to the Manufacturing Systems Integration (MSI) testbed in the automated factory. The software 'alarm clock' provides services to other MSI software, including synchrony; real time, or non-real time adjusted in a variety of ways; and alarms at relative or absolute intervals. By providing a central time service, these services are provided more reliably, efficiently, and flexibly than any client could provide on his own. Described are the implementation, the interfaces, and how to design and write programs that use MSI.

  17. Image change detection systems, methods, and articles of manufacture

    DOEpatents

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  18. Advances in compact manufacturing for shape and performance controllability of large-scale components-a review

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li

    2017-01-01

    Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.

  19. Joint conference of iMEC 2015 (2nd International Manufacturing Engineering Conference & APCOMS 2015 (3rd Asia-Pacific Conference on Manufacturing Systems)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    The iMEC 2015 is the second International Manufacturing Engineering Conference organized by the Faculty of Manufacturing, Universiti Malaysia Pahang (UMP), held from 12-14th November 2015 in Kuala Lumpur, Malaysia, with a theme "Materials, Manufacturing and Systems for Tomorrow". For the first time, iMEC is organized together with 3rd Asia- Pacific Conference on Manufacturing System (APCOMS 2015) which owned by Fakulti Teknologi Industri, Institut Teknologi Bandung (ITB), Indonesia. This is an extended collaboration between UMP and ITB to intensify knowledge sharing and experiences between higher learning institutions. This conference (iMEC & APCOMS 2015) is a platform for knowledge exchange and the growth of ideas, particularly in manufacturing engineering. The conference aims to bring researchers, academics, scientists, students, engineers and practitioners from around the world together to present their latest findings, ideas, developments and applications related to manufacturing engineering and other related research areas. With rapid advancements in manufacturing engineering, iMEC is an appropriate medium for the associated community to keep pace with the changes. In 2015, the conference theme is “Materials, Manufacturing and Systems for Tomorrow” which reflects the acceleration of knowledge and technology in global manufacturing. The papers in these proceedings are examples of the work presented at the conference. They represent the tip of the iceberg, as the conference attracted over 200 abstracts from Malaysia, Indonesia, Japan, United Kingdom, Australia, India, Bangladesh, South Africa, Turkey and Morocco and 151 full papers were accepted in these proceedings. The conference was run in four parallel sessions with 160 presenters sharing their latest finding in the areas of manufacturing process, systems, advanced materials and automation. The first keynote presentation was given by Prof. B. S. Murthy (IIT, Madras) on "Nanomaterials with Exceptional

  20. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  1. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  2. Report to the President on Ensuring American Leadership in Advanced Manufacturing

    ERIC Educational Resources Information Center

    Anderson, Alan

    2011-01-01

    The United States has long thrived as a result of its ability to manufacture goods and sell them to global markets. Manufacturing activity has supported its economic growth, leading the Nation's exports and employing millions of Americans. The manufacturing sector has also driven knowledge production and innovation in the United States, by…

  3. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  4. Apparel Manufacture

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  5. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 4: Manufacturing Engineering Technology, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  6. Workshop Report on Additive Manufacturing for Large-Scale Metal Components - Development and Deployment of Metal Big-Area-Additive-Manufacturing (Large-Scale Metals AM) System

    SciTech Connect

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Peter, William H.; Dehoff, Ryan

    2016-05-01

    Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact of the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii

  7. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of

  8. Advances in directed self assembly integration and manufacturability at 300 mm

    NASA Astrophysics Data System (ADS)

    Rathsack, Benjamen; Somervell, Mark; Muramatsu, Makato; Tanouchi, Keiji; Kitano, Takahiro; Nishimura, Eiichi; Yatsuda, Koichi; Nagahara, Seiji; Iwaki, Hiroyuki; Akai, Keiji; Ozawa, Mariko; Romo Negreira, Ainhoa; Tahara, Shigeru; Nafus, Kathleen

    2013-03-01

    Directed self-assembly (DSA) has the potential to extend scaling for both line/space and hole patterns. DSA has shown the capability for pitch reduction (multiplication), hole shrinks, CD self-healing as well as a pathway towards LWR and pattern collapse improvement [1-10]. TEL has developed a DSA development ecosystem (collaboration with customers, consortia, inspection vendors and material suppliers) to successfully demonstrate directed PS-PMMA DSA patterns using chemo-epitaxy (lift-off and etch guide) and grapho-epitaxy integrations on 300 mm wafers. New processes are being developed to simplify process integration, to reduce defects and to address design integration challenges with the long term goal of robust manufacturability. For hole DSA applications, a wet development process has been developed that enables traditional post-develop metrology through the high selectivity removal of PMMA cylindrical cores. For line/ space DSA applications, new track, cleans and etch processes have been developed to improve manufacturability. In collaboration with universities and consortia, fundamental process studies and simulations are used to drive process improvement and defect investigation. To extend DSA resolution beyond a PS-PMMA system, high chi materials and processes are also explored. In this paper, TEL's latest process solutions for both hole and line/space DSA process integrations are presented.

  9. Using advanced manufacturing to produce unmanned aerial vehicles: a feasibility study

    NASA Astrophysics Data System (ADS)

    Easter, Steven; Turman, Jonathan; Sheffler, David; Balazs, Michael; Rotner, Jonathan

    2013-05-01

    This paper reports on a feasibility study to explore the impact of advanced manufacturing on the production and maintenance of a 3D printed, unmanned aerial vehicle (UAV) in theatre. Specifically, this report focuses on fused deposition modeling (FDM), the selective deposition of a molten thermoplastic. FDM is already a forward deployed technology, primarily used for printing custom tools and replacement parts. The authors ask if it is feasible to expand the printers' capacity to produce aerial platforms; the reduction in logistics and labor could significantly decrease costs per unit and enable far more platform customization and specialized deployment scenarios than are available in existing aircraft. The University of Virginia and The MITRE Corporation designed and built a prototype, 3D printed UAV for use as an aerial sensor platform. This report • Discusses the printed aerial platform, summarizes the design process, and compares printing methods • Describes the benefits and limitations to selecting FDM printers as the technology both for deployment as well as UAV design • Concludes with the current state and future expectations for FDM printing technologies relevant to UAV production. Our findings suggest that although 3D printing is not yet entirely field-ready, many of its advantages can already be realized.

  10. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is

  11. Advanced Chemical Propulsion System Study

    NASA Technical Reports Server (NTRS)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  12. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  13. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  14. Initiate Instruction in Manufacturing Systems Engineering by Industrial and Government Experts over NTU Satellite Network.

    ERIC Educational Resources Information Center

    Baldwin, Lionel V.

    Based on the assumption that there is a need for advanced education among both new graduates of programs for manufacturing engineers and currently practicing engineers, a National Technological University (NTU) project produced instructional modules on manufacturing engineering topics developed by industrial, government, consulting, and academic…

  15. Space system production cost benefits from contemporary philosophies in management and manufacturing

    NASA Technical Reports Server (NTRS)

    Rosmait, Russell L.

    1991-01-01

    The cost of manufacturing space system hardware has always been expensive. The Engineering Cost Group of the Program Planning office at Marshall is attempting to account for cost savings that result from new technologies in manufacturing and management. The objective is to identify and define contemporary philosophies in manufacturing and management. The seven broad categories that make up the areas where technological advances can assist in reducing space system costs are illustrated. Included within these broad categories is a list of the processes or techniques that specifically provide the cost savings within todays design, test, production and operations environments. The processes and techniques listed achieve savings in the following manner: increased productivity; reduced down time; reduced scrap; reduced rework; reduced man hours; and reduced material costs. In addition, it should be noted that cost savings from production and processing improvements effect 20 to 40 pct. of production costs whereas savings from management improvements effects 60 to 80 of production cost. This is important because most efforts in reducing costs are spent trying to reduce cost in the production.

  16. System and method for manufacture of airfoil components

    SciTech Connect

    Moors, Thomas Michael

    2016-11-29

    Embodiments of the present disclosure relate generally to systems and methods for manufacturing an airfoil component. The system can include: a geometrical mold; an elongated flexible sleeve having a closed-off interior and positioned within the geometrical mold, wherein the elongated flexible sleeve is further positioned to have a desired geometry; an infusing channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to communicate a resinous material thereto; a vacuum channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to vacuum seal the closed-off interior of the elongated flexible sleeve; and a glass fiber layer positioned within the closed-off interior of the elongated flexible sleeve.

  17. Sustainable Manufacturing System Focusing on the Natural Growth of Bamboo

    NASA Astrophysics Data System (ADS)

    Ogawa, Keiji; Hirogaki, Toshiki; Aoyama, Eiichi; Taniguchi, Mitsuaki; Ogawa, Sachiko

    Recently, sustainable materials have attracted attention because of the need to alleviate environmental problems. Bamboo, in particular, has attracted attention as a sustainable material because it has the fastest natural growth rate among various natural materials. A self-bonding fiberboard using high quality bamboo fiber extracted with a machining center has been enabled to be fabricated by hot press forming. Therefore, we propose a sustainable manufacturing system that focuses on bamboo. An environmental impact of our system was evaluated by life cycle assessment (LCA), comparing with a glass fiber reinforced plastic production. Additionally, based on the LCA result, higher efficient fiber extraction process was proposed by an application of in-situ measurement of uninformed bamboo shape with irregularity.

  18. Advances in computer-aided design and computer-aided manufacture technology.

    PubMed

    Calamia, J R

    1994-01-01

    Although the development of computer-aided design (CAD) and computer-aided manufacture (CAM) technology and the benefits of increased productivity became obvious in the automobile and aerospace industries in the 1970s, investigations of this technology's application in the field of dentistry did not begin until the 1980s. Only now are we beginning to see the fruits of this work with the commercial availability of some systems; the potential for this technology seems boundless. This article reviews the recent literature with emphasis on the period from June 1992 to May 1993. This review should familiarize the reader with some of the latest developments in this technology, including a brief description of some systems currently available and the clinical and economical rationale for their acceptance into the dental mainstream. This article concentrates on a particular system, the Cerec (Siemens/Pelton and Crane, Charlotte, NC) system, for three reasons: first, this system has been available since 1985 and, as a result, has a track record of almost 7 years of data. Most of the data have just recently been released and consequently, much of this year's literature on CAD-CAM is monopolized by studies using this system. Second, this system was developed as a mobile, affordable, direct chairside CAD-CAM restorative method. As such, it is of special interest to the dentist who will offer this new technology directly to the patient, providing a one-visit restoration. Third, the author is currently engaged in research using this particular system and has a working knowledge of this system's capabilities.

  19. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  20. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is

  1. Atmospheric Pressure Low Temperature Plasma System for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Burnette, Matthew; Staack, David

    2016-09-01

    There is growing interest in using plasmas for additive manufacturing, however these methods use high temperature plasmas to melt the material. We have developed a novel technique of additive manufacturing using a low temperature dielectric barrier discharge (DBD) jet. The jet is attached to the head of a 3D printer to allow for precise control of the plasma's location. Various methods are employed to deposit the material, including using a vaporized precursor or depositing a liquid precursor directly onto the substrate or into the plasma via a nebulizer. Various materials can be deposited including metals (copper using copper (II) acetylacetonate), polymers (PMMA using the liquid monomer), and various hydrocarbon compounds (using alcohols or a 100% methane DBD jet). The rastering pattern for the 3D printer was modified for plasma deposition, since it was originally designed for thermoplastic extrusion. The design constraints for fill pattern selection for the plasma printer are influenced by substrate heating, deposition area, and precursor consumption. Depositions onto pressure and/or temperature sensitive substrates can be easily achieved. Deposition rates range up to 0.08 cm3/hr using tris(2-methoxyethoxy)(vinyl)silane, however optimization can still be done on the system to improve the deposition rate. For example higher concentration of precursor can be combined with faster motion and higher discharge powers to increase the deposition rate without overheating the substrate.

  2. Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems

    SciTech Connect

    Escola, George

    2007-01-17

    Recuperators have been identified as key components of advanced gas turbines systems that achieve a measure of improvement in operating efficiency and lead the field in achieving very low emissions. Every gas turbine manufacturer that is studying, developing, or commercializing advanced recuperated gas turbine cycles requests that recuperators operate at higher temperature without a reduction in design life and must cost less. The Solar Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems Program is directed towards meeting the future requirements of advanced gas turbine systems by the following: (1) The development of advanced alloys that will allow recuperator inlet exhaust gas temperatures to increase without significant cost increase. (2) Further characterization of the creep and oxidation (dry and humid air) properties of nickel alloy foils (less than 0.13 mm thick) to allow the economical use of these materials. (3) Increasing the use of advanced robotic systems and advanced in-process statistical measurement systems.

  3. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  4. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    SciTech Connect

    Settens, Charles M.

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  5. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    NASA Astrophysics Data System (ADS)

    Settens, Charles M.

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H 2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CD-SEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  6. Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation.

    PubMed

    Zheng, Tianlong; Wang, Qunhui; Shi, Zhining; Fang, Yue; Shi, Shanshan; Wang, Juan; Wu, Chuanfu

    2016-12-01

    A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was applied for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500A/m(2), circulation rate of 5mL/min, AC dosage of 50g, and chloride concentration of 1.0g/L), the average removal efficiencies of chemical oxygen demand (CODcr), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254nm (UV254) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV254 were 76.6, 20.1, and 42.5mg/L, and 0.08Abs/cm, respectively. The effluent concentration of CODcr was less than 100mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODcr, NH3-N, TOC, and UV254 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electrochemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine.

  7. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  8. Advanced Seismic While Drilling System

    SciTech Connect

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  9. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  10. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect

    Xiaodi Huang; Richard Gertsch

    2005-02-04

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  11. Optimization and Reconfiguration of Advanced Manufacturing Mode Based on Object-Based Knowledge Mesh and Improved Immune Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Xue, Chaogai; Cao, Haiwang

    This paper deals with an approach to the optimization and reconfiguration of advanced manufacturing mode based on the object-based knowledge mesh (OKM) and improved immune genetic algorithm (IGA). To explore the optimization and reconfiguration of the new OKM by the user's function requirements, an optimization procedure of an OKM aiming at the user's maximum function-satisfaction is proposed. Firstly, based on the definitions of the fuzzy function-satisfaction degree relationships of the users' requirements for the OKM functions and the multiple fuzzy function-satisfaction degrees of the relationships, the optimization model of the OKM multiple set operation expression is constructed. And the OKM multiple set operation expression is optimized by the immune genetic algorithm, with the steps of the OKM optimization presented in detail as well. Based upon the above, the optimization and reconfiguration of an advanced manufacturing mode are illustrated by an actual OKM example. The proposed approach proves to be very effective.

  12. Ultrahigh head pump/turbine development program: Volume 4, Advanced design: Strength manufacturability, controls, and reliability: Final report

    SciTech Connect

    Yokoyama, T.

    1987-01-01

    The commercial availability of an ultrahigh head pump/turbine whose output can be regulated makes underground and ultrahigh head-pumped storage creditable options for utility use by reducing construction costs and plant complexity. This new turbine operates at double the head of existing equipment yet uses commercial materials, proven design concepts, and manageable manufacturing techniques. This volume discusses the stress analysis and fatigue evaluation, manufacturability, control system, and reliability and maintainability analyses.

  13. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  14. Linear Temporal Logic (LTL) Based Monitoring of Smart Manufacturing Systems.

    PubMed

    Heddy, Gerald; Huzaifa, Umer; Beling, Peter; Haimes, Yacov; Marvel, Jeremy; Weiss, Brian; LaViers, Amy

    2015-01-01

    The vision of Smart Manufacturing Systems (SMS) includes collaborative robots that can adapt to a range of scenarios. This vision requires a classification of multiple system behaviors, or sequences of movement, that can achieve the same high-level tasks. Likewise, this vision presents unique challenges regarding the management of environmental variables in concert with discrete, logic-based programming. Overcoming these challenges requires targeted performance and health monitoring of both the logical controller and the physical components of the robotic system. Prognostics and health management (PHM) defines a field of techniques and methods that enable condition-monitoring, diagnostics, and prognostics of physical elements, functional processes, overall systems, etc. PHM is warranted in this effort given that the controller is vulnerable to program changes, which propagate in unexpected ways, logical runtime exceptions, sensor failure, and even bit rot. The physical component's health is affected by the wear and tear experienced by machines constantly in motion. The controller's source of faults is inherently discrete, while the latter occurs in a manner that builds up continuously over time. Such a disconnect poses unique challenges for PHM. This paper presents a robotic monitoring system that captures and resolves this disconnect. This effort leverages supervisory robotic control and model checking with linear temporal logic (LTL), presenting them as a novel monitoring system for PHM. This methodology has been demonstrated in a MATLAB-based simulator for an industry inspired use-case in the context of PHM. Future work will use the methodology to develop adaptive, intelligent control strategies to evenly distribute wear on the joints of the robotic arms, maximizing the life of the system.

  15. Linear Temporal Logic (LTL) Based Monitoring of Smart Manufacturing Systems

    PubMed Central

    Heddy, Gerald; Huzaifa, Umer; Beling, Peter; Haimes, Yacov; Marvel, Jeremy; Weiss, Brian; LaViers, Amy

    2017-01-01

    The vision of Smart Manufacturing Systems (SMS) includes collaborative robots that can adapt to a range of scenarios. This vision requires a classification of multiple system behaviors, or sequences of movement, that can achieve the same high-level tasks. Likewise, this vision presents unique challenges regarding the management of environmental variables in concert with discrete, logic-based programming. Overcoming these challenges requires targeted performance and health monitoring of both the logical controller and the physical components of the robotic system. Prognostics and health management (PHM) defines a field of techniques and methods that enable condition-monitoring, diagnostics, and prognostics of physical elements, functional processes, overall systems, etc. PHM is warranted in this effort given that the controller is vulnerable to program changes, which propagate in unexpected ways, logical runtime exceptions, sensor failure, and even bit rot. The physical component’s health is affected by the wear and tear experienced by machines constantly in motion. The controller’s source of faults is inherently discrete, while the latter occurs in a manner that builds up continuously over time. Such a disconnect poses unique challenges for PHM. This paper presents a robotic monitoring system that captures and resolves this disconnect. This effort leverages supervisory robotic control and model checking with linear temporal logic (LTL), presenting them as a novel monitoring system for PHM. This methodology has been demonstrated in a MATLAB-based simulator for an industry inspired use-case in the context of PHM. Future work will use the methodology to develop adaptive, intelligent control strategies to evenly distribute wear on the joints of the robotic arms, maximizing the life of the system. PMID:28730154

  16. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  17. Using an Agent-Supported Simulation Environment for Intelligent Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Ruiz, Nancy; Giret, Adriana; Botti, Vicente

    The manufacturing field is an area where the application of simulation is an essential tool for validating methods and architectures before applying them on the factory floor. Multiagent System technology has demonstrated its utility in manufacturing system modeling and implementation. Agenthood features such as proactivity, reactivity, and sociability may also be useful for associating them with the specific simulation needs of the new manufacturing requirements. In this paper, we present an Agent-supported Simulation Tool (tool uses both events and discrete time to control agent tasks) for Intelligent Manufacturing Systems applied to a real manufacturing enterprise case study. The main goal is to provide a flexible simulation tool that can be adapted to solve the new manufacturing requirements that appear in a real environment allowing the experts of manufacturing domains to optimize the resource usage and to have enough data to make decisions.

  18. Undergraduate Quality Management Project: Motorcycle Manufacturer Vendor Rating System

    ERIC Educational Resources Information Center

    Baker, James; McHaney, Roger

    2009-01-01

    A major motorcycle vendor, based in the U.S. Midwest, is the world's largest custom V-Twin motorcycle manufacturer and domestically the second largest motorcycle manufacturer behind Harley-Davidson. This project describes the process used used by a K-State undergraduate distance learning student to design and develop the initial version of a…

  19. Undergraduate Quality Management Project: Motorcycle Manufacturer Vendor Rating System

    ERIC Educational Resources Information Center

    Baker, James; McHaney, Roger

    2009-01-01

    A major motorcycle vendor, based in the U.S. Midwest, is the world's largest custom V-Twin motorcycle manufacturer and domestically the second largest motorcycle manufacturer behind Harley-Davidson. This project describes the process used used by a K-State undergraduate distance learning student to design and develop the initial version of a…

  20. Advanced, Energy Efficient Shelter Systems

    DTIC Science & Technology

    2012-03-02

    Development Analysis, M&S Thermal Barriers Large Shelter Efficiency System Integration Follow-On Demonstrations Lessons Learned from Initial...UNCLASSIFIED 13 Technology Development: Thermal Barriers Objective: Address the enduring challenge of developing a thermal insulation for shelter systems

  1. Micromachining technology for advanced weapon systems

    SciTech Connect

    Sniegowski, J.J.

    1996-12-31

    An overview of planned uses for polysilicon surface-micromachining technology in advanced weapon systems is presented. Specifically, this technology may allow consideration of fundamentally new architectures for realization of surety component functions.

  2. Advanced space system for geostationary orbit surveillance

    NASA Astrophysics Data System (ADS)

    Klimenko, N. N.; Nazarov, A. E.

    2016-12-01

    The structure and orbital configuration of the advanced space system for geostationary orbit surveillance, as well as possible approaches to the development of the satellite bus and payload for the geostationary orbit surveillance, are considered.

  3. Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests

    NASA Technical Reports Server (NTRS)

    Lehman, G. M.; Purdy, D. M.; Cominsky, A.; Hawley, A. V.; Amason, M. P.; Kung, J. T.; Palmer, R. J.; Purves, N. B.; Marra, P. J.; Hancock, G. R.

    1976-01-01

    Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder.

  4. NDE of additively manufactured components with embedded defects (reference standards) using conventional and advanced ultrasonic methods

    NASA Astrophysics Data System (ADS)

    Koester, L.; Roberts, R. A.; Barnard, D. J.; Chakrapani, S.; Singh, S.; Hogan, R.; Bond, L. J.

    2017-02-01

    Additive manufacturing provides a unique opportunity to embed defects of known size and shape to produce reference samples for inspection and quality control purposes. This paper reports defect detectability studies with cylindrical additively manufactured cobalt-chromium alloy specimens which contain defects of known sizes and distributions. The specimens were characterized using immersion, synthetic aperture focusing (SAFT), phased array, and nonlinear ultrasonic techniques. Results include detectability, signal to noise ratios, and comparison of results between the methods and what is believed to be the first determination of a non-linearity (beta) parameter for an additively manufactured material. The results indicate that additive manufacturing provides a valuable method to produce reference samples, though additional work is required to validate the shape and morphology of the defects specified.

  5. Particle dispersing system and method for testing semiconductor manufacturing equipment

    DOEpatents

    Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.

    1998-01-01

    The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

  6. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  7. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    SciTech Connect

    E. Levy; Dentz, J.; Ansanelli, E.; Barker, G.; Rath, P.; Dadia, D.

    2016-03-01

    Through field-testing and analysis, this project evaluated whole-building approaches and estimated the relative contributions of select technologies toward reducing energy use related to space conditioning in new manufactured homes. Three lab houses of varying designs were built and tested side-by-side under controlled conditions in Russellville, Alabama. The tests provided a valuable indicator of how changes in the construction of manufactured homes can contribute to significant reductions in energy use.

  8. Nonelastomeric Rod Seals for Advanced Hydraulic Systems

    NASA Technical Reports Server (NTRS)

    Hady, W. F.; Waterman, A. W.

    1976-01-01

    Advanced high temperature hydraulic system rod sealing requirements can be met by using seals made of nonelastomeric (plastic) materials in applications where elastomers do not have adequate life. Exploratory seal designs were optimized for advanced applications using machinable polyimide materials. These seals demonstrated equivalent flight hour lives of 12,500 at 350 F and 9,875 at 400 F in advanced hydraulic system simulation. Successful operation was also attained under simulated space shuttle applications; 96 reentry thermal cycles and 1,438 hours of vacuum storage. Tests of less expensive molded plastic seals indicated a need for improved materials to provide equivalent performance to the machined seals.

  9. Advancing pharmacometrics and systems pharmacology.

    PubMed

    Waldman, S A; Terzic, A

    2012-11-01

    Pharmacometrics and systems pharmacology are emerging as principal quantitative sciences within drug development and experimental therapeutics. In recognition of the importance of pharmacometrics and systems pharmacology to the discipline of clinical pharmacology, the American Society for Clinical Pharmacology and Therapeutics (ASCPT), in collaboration with Nature Publishing Group and Clinical Pharmacology & Therapeutics, has established CPT: Pharmacometrics & Systems Pharmacology to inform the field and shape the discipline.

  10. Advancing Pharmacometrics and Systems Pharmacology

    PubMed Central

    Waldman, SA; Terzic, A

    2017-01-01

    Pharmacometrics and systems pharmacology are emerging as principal quantitative sciences within drug development and experimental therapeutics. In recognition of the importance of pharmacometrics and systems pharmacology to the discipline of clinical pharmacology, the American Society for Clinical Pharmacology and Therapeutics (ASCPT), in collaboration with Nature Publishing Group and Clinical Pharmacology & Therapeutics, has established CPT: Pharmacometrics & Systems Pharmacology to inform the field and shape the discipline. PMID:23085873

  11. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  12. Design and Evaluation of Log-To-Dimension Manufacturing Systems Using System Simulation

    Treesearch

    Wenjie Lin; D. Earl Kline; Philip A. Araman; Janice K. Wiedenbeck

    1995-01-01

    In a recent study of alternative dimension manufacturing systems that produce green hardwood dimension directly fromlogs, it was observed that for Grade 2 and 3 red oak logs, up to 78 and 76 percent of the log scale volume could be converted into clear dimension parts. The potential high yields suggest that this processing system can be a promising technique for...

  13. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristic parameters of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, argon MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. Overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  14. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristic parameters of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, argon MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. Overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  15. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  16. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  17. Development of advanced turbine systems: Meeting tomorrow's needs

    NASA Astrophysics Data System (ADS)

    Webb, H. A.; Bajura, R. A.

    The National Energy Strategy calls for increased efficiency in all sectors of energy use. It also projects a significant increase in natural gas consumption by the year 2000, due in part to increased use of natural gas for electric power generation. Consistent with the NES, a Department of Energy program is being formulated to develop Advanced Turbine Systems (ATS) which will be: ultra-high efficiency, environmentally superior, and cost competitive. The ATS program is to be a comprehensive effort involving DOE Fossil Energy, DOE Conservation and Renewable Energy, turbine manufacturers, the Gas Research Institute, the Electric Power Research Institute and others. A ten-year plan is being formulated to develop natural-gas-fired baseload power systems for commercial offering by 2002. Systems will be developed to serve both central power (utility and independent power producer) and industrial applications. The central power systems will be suitable for future adaptation to coal firing.

  18. Nanoemulsion: an advanced mode of drug delivery system.

    PubMed

    Jaiswal, Manjit; Dudhe, Rupesh; Sharma, P K

    2015-04-01

    An advanced mode of drug delivery system has been developed to overcome the major drawbacks associated with conventional drug delivery systems. This review gives a detailed idea about a nanoemulsion system. Nanoemulsions are nano-sized emulsions, which are manufactured for improving the delivery of active pharmaceutical ingredients. These are the thermodynamically stable isotropic system in which two immiscible liquids are mixed to form a single phase by means of an emulsifying agent, i.e., surfactant and co-surfactant. The droplet size of nanoemulsion falls typically in the range 20-200 nm. The main difference between emulsion and nanoemulsion lies in the size and shape of particles dispersed in the continuous phase. In this review, the attention is focused to give a basic idea about its formulation, method of preparation, characterization techniques, evaluation parameters, and various applications of nanoemulsion.

  19. Demonstration Advanced Avionics System (DAAS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.

  20. Managing Coil Epoxy Vacuum Impregnation Systems at the Manufacturing Floor Level To Achieve Ultimate Properties in State-of-the-Art Magnet Assemblies

    SciTech Connect

    J.G. Hubrig; G.H. Biallas

    2005-05-01

    Liquid epoxy resin impregnation systems remain a state-of-the-art polymer material for vacuum and vacuum/pressure impregnation applications in the manufacture of both advanced and conventional coil winding configurations. Epoxy resins inherent latitude in processing parameters accounts for their continued popularity in engineering applications, but also for the tendency to overlook or misinterpret the requisite processing parameters on the manufacturing floor. Resin system impregnation must be managed in detail in order to achieve device life cycle reliability. This closer look reveals how manufacturing floor level management of material acceptance, handling and storage, pre- and post- impregnation processing and cure can be built into a manufacturing plan to increase manufacturing yield, lower unit cost and ensure optimum life cycle performance of the coil.

  1. US Advanced Freight and Passenger MAGLEV System

    NASA Technical Reports Server (NTRS)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  2. Scaling of advanced power systems

    NASA Astrophysics Data System (ADS)

    Wiley, Robert L.

    1991-12-01

    Parts of a study conducted to examine state-of-the-art power systems applicable to future military spacecraft are summarized. The study focused on burst-mode megawatt-class CW power, such as might be applied to SDIO directed energy systems, but lower-power, continuous-duty subsystems were included in less detail. A set of simple mass and volume algorithms has been developed to approximate several prime systems, and these were incorporated into a Lotus 1-2-3 spreadsheet. Among the power subsystems included in that study were primary batteries, alkaline primary fuel cells, and combustion turbogenerators. These systems, which are the most likely candidates for mobile battlefield power, are described in this paper.

  3. United States of America Department of Health and Human Services support for advancing influenza vaccine manufacturing in the developing world.

    PubMed

    Perdue, Michael L; Bright, Rick A

    2011-07-01

    Since 2005, the Government of the United States of America has provided more than US$ 50 million to advance influenza vaccine development in low-resourced countries. This programme has provided a unique opportunity for the US Government to develop a comprehensive view of, and to understand better the challenges and future needs for influenza vaccines in the developing world. The funding for this programme has been primarily through a cooperative agreement with the World Health Organization (WHO) to support directly its capacity-building grants to government-owned or -supported vaccine manufacturers in developing countries. A second cooperative agreement with the Program for Appropriate Technologies in Health (PATH) was initiated to accelerate the completion of a current Good Manufacturing Practice cGMP production facility, along with supporting facilities to obtain a reliable source of eggs, and to conduct clinical trials of influenza vaccine manufactured in Vietnam. This mechanism of utilizing cooperative agreements to support capacity-building for vaccine development in low-resourced settings has been novel and unique and has yielded fruitful returns on minimal investment. The information derived from this programme helps to clarify not only the development challenges for influenza vaccines and how the United States may assist in meeting those challenges, but also other vaccine development issues common to manufacturers in developing countries. While building the initial capacity to produce influenza vaccines can be a straightforward exercise, the sustainability of the enterprise and expansion of subsequent markets will be the key to future usefulness. There is hope for expansion of the global influenza vaccine market. Ongoing burden of disease studies are elucidating the impact of influenza infections, particularly in children, and more countries will take note and respond accordingly, since respiratory diseases are now the number one killer of children under

  4. Advanced Studies of Integrable Systems.

    DTIC Science & Technology

    1986-12-18

    Fluctuations in Magnetized Plasmas (Phys. Fluids 27, 1169-75 (1984)] (coauthored with S.N. Antani) The nonlinear interactions of whistler waves with density... Dynamica Problems in Soliton Systems, pp 12-22. ed. S. Takeno, Springer-Verlag, NY (1985)]. S 11. Forced Integrable Systems - An Overview, D. J. Kaup...Kaup, P.J. Hansen, S. Roy Choudhury and Gary E. Thomas (accepted for publication in Phys. Fluids ). A singular perturbation method is used to solve this

  5. Hybrid additive manufacturing of 3D electronic systems

    NASA Astrophysics Data System (ADS)

    Li, J.; Wasley, T.; Nguyen, T. T.; Ta, V. D.; Shephard, J. D.; Stringer, J.; Smith, P.; Esenturk, E.; Connaughton, C.; Kay, R.

    2016-10-01

    A novel hybrid additive manufacturing (AM) technology combining digital light projection (DLP) stereolithography (SL) with 3D micro-dispensing alongside conventional surface mount packaging is presented in this work. This technology overcomes the inherent limitations of individual AM processes and integrates seamlessly with conventional packaging processes to enable the deposition of multiple materials. This facilitates the creation of bespoke end-use products with complex 3D geometry and multi-layer embedded electronic systems. Through a combination of four-point probe measurement and non-contact focus variation microscopy, it was identified that there was no obvious adverse effect of DLP SL embedding process on the electrical conductivity of printed conductors. The resistivity maintained to be less than 4  ×  10-4 Ω · cm before and after DLP SL embedding when cured at 100 °C for 1 h. The mechanical strength of SL specimens with thick polymerized layers was also identified through tensile testing. It was found that the polymerization thickness should be minimised (less than 2 mm) to maximise the bonding strength. As a demonstrator a polymer pyramid with embedded triple-layer 555 LED blinking circuitry was successfully fabricated to prove the technical viability.

  6. Advanced Sensor Systems for Biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 microW, which yields a lifetime of approximately 6 - 9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38 x 28 mm to 22 x 8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  7. A framework for development of an intelligent system for design and manufacturing of stamping dies

    NASA Astrophysics Data System (ADS)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  8. Advanced Optical Fiber Communications Systems

    DTIC Science & Technology

    1994-08-31

    oscillator saser 0 !4Iiga B f Figure 1-2. Block diagram of the homodyne AM-WIRNA link. 1.3.2 System EvaluationI Table 1-1 contains the definitions of the...1.6). However, as a result of the spectral broadening due to the phase noise, the selection of the IF bandwidth is critical to the system...node’s intermediate frequency (IF) using a portion of the transmitter light for the laser LO. The desired channel (in this case, node 1) is then selected

  9. Advanced technology and manufacturing practices for machining and inspecting metal matrix composites. Final CRADA report for CRADA number Y-1292-0092

    SciTech Connect

    Fell, H.A.; Shelton, J.E.; LaMance, G.M.; Kennedy, C.R.

    1995-02-26

    Lockheed Martin Energy Systems, Inc. (Energy Systems) and the Lanxide Corporation (Lanxide) negotiated a Cooperative Research and Development Agreement (CRADA) to develop advanced technology and manufacturing practices for machining and inspecting metal matrix composites (MMC). The objective of this CRADA was to develop machining parameters to allow manufacturing of automotive components from MMCs. These parts exhibit a range of shapes and dimensional tolerances and require a large number of machining operations. The common characteristic of the components is the use of the light weight MMC materials to replace heavier materials. This allows smaller and lighter moving parts and supporting structural components thereby increasing fuel mileage. The CRADA was divided into three areas: basic investigation of cutting parameters, establishment of a mock production line for components, and optimization of parameters in the mock facility. This report covers the manufacturing of MMCs and preliminary Phase I testing for silicon carbide having various loading percentages and extensive Phase I testing of cutting parameters on 30% alumina loaded aluminum. On January 26, 1995, a letter from the vice president, technology at Lanxide was issued terminating the CRADA due to changes in business. 9 refs., 18 figs., 3 tabs.

  10. Roll-to-Roll Advanced Materials Manufacturing DOE Lab Consortium - FY16 Annual Report

    SciTech Connect

    Daniel, Claus; Wood, III, David L.; Krumdick, Gregory; Ulsh, Michael; Srinivasan, Venkat

    2016-12-01

    A DOE laboratory consortium comprised of ORNL, ANL, NREL and LBNL, coordinating with Kodak’s Eastman Business Park (Kodak) and other selected industry partners, was formed to address enhancing battery electrode performance and R2R manufacturing challenges. The objective of the FY 2016 seed project was to develop a materials genome synthesis process amenable to R2R manufacturing and to provide modeling, simulation, processing, and manufacturing techniques that demonstrate the feasibility of process controls and scale-up potential for improved battery electrodes. The research efforts were to predict and measure changes and results in electrode morphology and performance based on process condition changes; to evaluate mixed, active, particle size deposition and drying for novel electrode materials; and to model various process condition changes and the resulting morphology and electrode performance.

  11. Advanced thermal barrier coating systems

    NASA Technical Reports Server (NTRS)

    Dorfman, M. R.; Reardon, J. D.

    1985-01-01

    Current state-of-the-art thermal barrier coating (TBC) systems consist of partially stabilized zirconia coatings plasma sprayed over a MCrAlY bond coat. Although these systems have excellent thermal shock properties, they have shown themselves to be deficient for a number of diesel and aircraft applications. Two ternary ceramic plasma coatings are discussed with respect to their possible use in TBC systems. Zirconia-ceria-yttria (ZCY) coatings were developed with low thermal conductivities, good thermal shock resistance and improved resistance to vanadium containing environments, when compared to the baseline yttria stabilized zirconia (YSZ) coatings. In addition, dense zirconia-titania-yttria (ZTY) coatings were developed with particle erosion resistance exceeding conventional stabilized zirconia coatings. Both coatings were evaluated in conjunction with a NiCr-Al-Co-Y2O3 bond coat. Also, multilayer or hybrid coatings consisting of the bond coat with subsequent coatings of zirconia-ceria-yttria and zirconia-titania-yttria were evaluated. These coatings combine the enhanced performance characteristics of ZCY with the improved erosion resistance of ZTY coatings. Improvement in the erosion resistance of the TBC system should result in a more consistent delta T gradient during service. Economically, this may also translate into increased component life simply because the coating lasts longer.

  12. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  13. Advanced Languages for Systems Software

    DTIC Science & Technology

    1994-01-01

    these are too numerous to list here. Edoardo Biagioni . Post-doctoral researcher. System networking and kernel design and imple- mentation. Kenneth Cline...John Backus, John H. Williams, and Edward L. Wimmers. The programming language FL. In Turner [131], pages 219-247. [12] Edoardo Biagioni , Nicholas

  14. Advanced sensor systems for biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 .mu.W., which yields a lifetime of approximately 6-9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38.times.28 mm to 22.times.8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  15. Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-04-01

    Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres' shells were characterized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The microscopic evaluations revealed that the shells consist of sintered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various parameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper content results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness.

  16. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control.

    PubMed

    Koehl, U; Kalberer, C; Spanholtz, J; Lee, D A; Miller, J S; Cooley, S; Lowdell, M; Uharek, L; Klingemann, H; Curti, A; Leung, W; Alici, E

    2016-04-01

    Natural killer (NK) cells are increasingly used in clinical studies in order to treat patients with various malignancies. The following review summarizes platform lectures and 2013-2015 consortium meetings on manufacturing and clinical use of NK cells in Europe and United States. A broad overview of recent pre-clinical and clinical results in NK cell therapies is provided based on unstimulated, cytokine-activated, as well as genetically engineered NK cells using chimeric antigen receptors (CAR). Differences in donor selection, manufacturing and quality control of NK cells for cancer immunotherapies are described and basic recommendations are outlined for harmonization in future NK cell studies.

  17. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control

    PubMed Central

    Koehl, U.; Kalberer, C.; Spanholtz, J.; Lee, D. A.; Miller, J. S.; Cooley, S.; Lowdell, M.; Uharek, L.; Klingemann, H.; Curti, A.; Leung, W.; Alici, E.

    2016-01-01

    ABSTRACT Natural killer (NK) cells are increasingly used in clinical studies in order to treat patients with various malignancies. The following review summarizes platform lectures and 2013–2015 consortium meetings on manufacturing and clinical use of NK cells in Europe and United States. A broad overview of recent pre-clinical and clinical results in NK cell therapies is provided based on unstimulated, cytokine-activated, as well as genetically engineered NK cells using chimeric antigen receptors (CAR). Differences in donor selection, manufacturing and quality control of NK cells for cancer immunotherapies are described and basic recommendations are outlined for harmonization in future NK cell studies. PMID:27141397

  18. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  19. Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka

    Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.

  20. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1994-10-01

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper updates the assessment of the Westinghouse hot gas filter design based on ongoing testing and analysis. Results are summarized from recent computational fluid dynamics modeling of the plenum flow during back pulse, analysis of candle stressing under cleaning and process transient conditions and testing and analysis to evaluate potential flow induced candle vibration.

  1. Development of Advanced Alarm System for SMART

    SciTech Connect

    Jang, Gwi-sook; Seoung, Duk-hyun; Suh, Sang-moon; Lee, Jong-bok; Park, Geun-ok; Koo, In-soo

    2004-07-01

    A SMART-Alarm System (SMART-AS) is a new system being developed as part of the SMART (System-integrated Modular Advanced Reactor) project. The SMART-AS employs modern digital technology to implement the alarm functions of the SMART. The use of modern digital technology can provide advanced alarm processing in which new algorithms such as a signal validation, advanced alarm processing logic and other features are applied to improve the control room man-machine interfaces. This paper will describe the design process of the SMART-AS, improving the system reliability and availability using the reliability prediction tool, design strategies regarding the human performance topics associated with a computer-based SMART-AS and the results of the performance analysis using a prototype of the SMART-AS. (authors)

  2. Coastal Modeling System Advanced Topics

    DTIC Science & Technology

    2012-06-18

    is the CMS? Integrated wave, current, and morphology change model in the Surface-water Modeling System (SMS). Why CMS? Operational at 10...Coupled with spectral wave model (CMS-Wave)  Wave-current interactions  Inline sediment transport and morphology change  Non-equilibrium...Easy to setup  Telescoping grid: Efficient and flexible  Solver options  Implicit: Tidal flow, long-term morphology change. ~10 min

  3. Advances in Microsphere Insulation Systems

    NASA Astrophysics Data System (ADS)

    Allen, M. S.; Baumgartner, R. G.; Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    Microsphere insulation, typically consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. Microspheres provide robust, low-maintenance insulation systems for cryogenic transfer lines and dewars. They also do not suffer from compaction problems typical of perlite that result in the necessity to reinsulate dewars because of degraded thermal performance and potential damage to its support system. Since microspheres are load bearing, autonomous insulation panels enveloped with lightweight vacuum-barrier materials can be created. Comprehensive testing performed at the Cryogenics Test Laboratory located at the NASA Kennedy Space Center demonstrated competitive thermal performance with other bulk materials. Test conditions were representative of actual-use conditions and included cold vacuum pressure ranging from high vacuum to no vacuum and compression loads from 0 to 20 psi. While microspheres have been recognized as a legitimate insulation material for decades, actual implementation has not been pursued. Innovative microsphere insulation system configurations and applications are evaluated.

  4. System Interdependency Modeling in the Design of Prognostic and Health Management Systems in Smart Manufacturing

    PubMed Central

    Malinowski, M.L.; Beling, P.A.; Haimes, Y.Y.; LaViers, A.; Marvel, J.A.; Weiss, B.A.

    2017-01-01

    The fields of risk analysis and prognostics and health management (PHM) have developed in a largely independent fashion. However, both fields share a common core goal. They aspire to manage future adverse consequences associated with prospective dysfunctions of the systems under consideration due to internal or external forces. This paper describes how two prominent risk analysis theories and methodologies – Hierarchical Holographic Modeling (HHM) and Risk Filtering, Ranking, and Management (RFRM) – can be adapted to support the design of PHM systems in the context of smart manufacturing processes. Specifically, the proposed methodologies will be used to identify targets – components, subsystems, or systems – that would most benefit from a PHM system in regards to achieving the following objectives: minimizing cost, minimizing production/maintenance time, maximizing system remaining usable life (RUL), maximizing product quality, and maximizing product output. HHM is a comprehensive modeling theory and methodology that is grounded on the premise that no system can be modeled effectively from a single perspective. It can also be used as an inductive method for scenario structuring to identify emergent forced changes (EFCs) in a system. EFCs connote trends in external or internal sources of risk to a system that may adversely affect specific states of the system. An important aspect of proactive risk management includes bolstering the resilience of the system for specific EFCs by appropriately controlling the states. Risk scenarios for specific EFCs can be the basis for the design of prognostic and diagnostic systems that provide real-time predictions and recognition of scenario changes. The HHM methodology includes visual modeling techniques that can enhance stakeholders’ understanding of shared states, resources, objectives and constraints among the interdependent and interconnected subsystems of smart manufacturing systems. In risk analysis, HHM is often

  5. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  6. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  7. Evaluation of SHM System Produced by Additive Manufacturing via Acoustic Emission and Other NDT Methods

    PubMed Central

    Strantza, Maria; Aggelis, Dimitrios G.; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-01-01

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called “effective structural health monitoring” (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals. PMID:26506349

  8. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods.

    PubMed

    Strantza, Maria; Aggelis, Dimitrios G; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-10-21

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  9. 21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Device tracking system and content requirements... Requirements § 821.25 Device tracking system and content requirements: manufacturer requirements. (a) A... distributes that enables a manufacturer to provide FDA with the following information in writing for...

  10. Advanced Control System Increases Helicopter Safety

    NASA Technical Reports Server (NTRS)

    2008-01-01

    With support and funding from a Phase II NASA SBIR project from Ames Research Center, Hoh Aeronautics Inc. (HAI), of Lomita, California, produced HeliSAS, a low-cost, lightweight, attitude-command-attitude-hold stability augmentation system (SAS) for civil helicopters and unmanned aerial vehicles. HeliSAS proved itself in over 160 hours of flight testing and demonstrations in a Robinson R44 Raven helicopter, a commercial helicopter popular with news broadcasting and police operations. Chelton Flight Systems, of Boise, Idaho, negotiated with HAI to develop, market, and manufacture HeliSAS, now available as the Chelton HeliSAS Digital Helicopter Autopilot.

  11. Principals' Perceptions on the Necessity to Prepare Students for Careers in Advanced Manufacturing

    ERIC Educational Resources Information Center

    Lee, Matthew

    2015-01-01

    The United States (U.S.) is undergoing a paradigm shift in manufacturing as it progresses from an era of low skill employees who stood in one place controlling machines that drilled, stamped, cut, and milled products that passed through the effective and efficient assembly line, to one that is derived from scientific inquiry and technological…

  12. Principals' Perceptions on the Necessity to Prepare Students for Careers in Advanced Manufacturing

    ERIC Educational Resources Information Center

    Lee, Matthew

    2015-01-01

    The United States (U.S.) is undergoing a paradigm shift in manufacturing as it progresses from an era of low skill employees who stood in one place controlling machines that drilled, stamped, cut, and milled products that passed through the effective and efficient assembly line, to one that is derived from scientific inquiry and technological…

  13. Technical Considerations for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    1999-01-01

    This presentation reviews concerns involving advanced propulsion systems. The problems involved with the use of Am-242m, is that it has a high "eta" plus an order of magnitude larger fission cross section than other fissionable materials, and that it is extremely rare. However other americium isotopes are much more common, but extremely effective isotopic separation is required. Deuterium-Tritium fusion is also not attractive for space propulsion applications. Because the pulsed systems cannot breed adequate amounts of tritium and it is difficult and expensive to bring tritium from Earth. The systems that do breed tritium have severely limited performance. However, other fusion processes should still be evaluated. Another problem with advanced propellants is that inefficiencies in converting the total energy generated into propellant energy can lead to tremendous heat rejection requirements. Therefore Many. advanced propulsion concepts benefit greatly from low-mass radiators.

  14. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  15. Lead making for improved continuous-flow manufacturing systems

    NASA Astrophysics Data System (ADS)

    Heintzman, P.

    The importance of the latest in connector technology, chip carriers, surface mounted devices, and high density interconnects not withstanding, the foreseeable future of most durable goods includes designs in which discrete wires play a significant role. As long as user operated electro-mechanical controls exist for widely spaced functional components such as motors, relays, and safety switches, discrete wiring harnesses will continue to be a major concern of original equipment manufacturers. Economy and productivity must be maintained in spite of competitive pressures which demand expanded product lines and carefully controlled component inventories, manufacturing schedules, and deliveries. This paper explores some of the options available to answer these needs as they relate to discrete wiring and harnessing. Not only is available manufacturing hardware analyzed in terms of production capabilities but also in-house and vendor supply source alternatives are considered.

  16. Technological Education for the Rural Community (TERC) Project: Technical Mathematics for the Advanced Manufacturing Technician

    ERIC Educational Resources Information Center

    McCormack, Sherry L.; Zieman, Stuart

    2017-01-01

    Hopkinsville Community College's Technological Education for the Rural Community (TERC) project is funded through the National Science Foundation Advanced Technological Education (NSF ATE) division. It is advancing innovative educational pathways for technological education promoted at the community college level serving rural communities to fill…

  17. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  18. Best Manufacturing Practices Survey Conducted at Texas Instruments, Defense Systems and Electronics Group, Lewisville, Texas

    DTIC Science & Technology

    1986-05-01

    government non-acceptance of digitized data as "master" drawings, government furnished equipment impact on just - in - time manufacturing , and insufficient...of this concept were observed. TI personnel indicated that the systems were accurate and reliable. JUST - IN - TIME MANUFACTURING One of the most... in - time manufacturing have been imple- mented in several areas. TI has removed the human error factor and instituted complete automation of operations

  19. Advanced Microgravity Acceleration Measurement Systems Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2002-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project at the NASA Glenn Research Center is part of the Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical (MEMS) acceleration sensor systems to replace existing electromechanical-sensor-based systems presently used to assess relative gravity levels aboard spacecraft. These systems are used in characterizing both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data has cross-disciplinary utility to the microgravity life and physical sciences and the structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, while providing enhanced stability.

  20. Advanced Turbine Systems Program. Topical report

    SciTech Connect

    1993-03-01

    The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.