Teacher Leaders: Advancing Mathematics Learning
ERIC Educational Resources Information Center
Kinzer, Cathy J.; Rincón, Mari; Ward, Jana; Rincón, Ricardo; Gomez, Lesli
2014-01-01
Four elementary school instructors offer insights into their classrooms, their unique professional roles, and their leadership approaches as they reflect on their journey to advance teacher and student mathematics learning. They note a "teacher leader" serves as an example to other educators and strives to impact student learning;…
Mathematical Language and Advanced Mathematics Learning
ERIC Educational Resources Information Center
Ferrari, Pier Luigi
2004-01-01
This paper is concerned with the role of language in mathematics learning at college level. Its main aim is to provide a perspective on mathematical language appropriate to effectively interpret students' linguistic behaviors in mathematics and to suggest new teaching ideas. Examples are given to show that the explanation of students' behaviors…
Mathematics Case Methods Project.
ERIC Educational Resources Information Center
Barnett, Carne S.
1998-01-01
Presents an overview and analysis of the Mathematics Case Methods Project, which uses cases in order to examine and reflect upon teaching. Focuses on a special kind of teacher knowledge, coined pedagogical-content knowledge. (ASK)
Cognitive Correlates of Performance in Advanced Mathematics
ERIC Educational Resources Information Center
Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin
2012-01-01
Background: Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic).Aims: To promote mathematical knowledge among college students, it is necessary to understand what factors…
Adding Structure to the Transition Process to Advanced Mathematical Activity
ERIC Educational Resources Information Center
Engelbrecht, Johann
2010-01-01
The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical…
Mathematical Proof as Formal Procept in Advanced Mathematical Thinking
ERIC Educational Resources Information Center
Chin, Erh-Tsung
2003-01-01
In this paper the notion of "procept" (in the sense of Gray & Tall, 1994) is extended to advanced mathematics by considering mathematical proof as "formal procept". The statement of a theorem as a symbol may theoretically evoke the proof deduction as a process that may contain sequential procedures and require the synthesis of distinct cognitive…
Student Produced Advanced Mathematical Software.
ERIC Educational Resources Information Center
Hogben, Leslie
The intent of this project was to develop a course for mathematics graduate students at Iowa State University. They would design and write computer programs for use by undergraduate mathematics students, and then offer the course and actually produce the software. Phase plane graphics for ordinary differential equations was selected as the topic.…
Gestures and Insight in Advanced Mathematical Thinking
ERIC Educational Resources Information Center
Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy
2011-01-01
What role do gestures play in advanced mathematical thinking? We argue that the role of gestures goes beyond merely communicating thought and supporting understanding--in some cases, gestures can help generate new mathematical insights. Gestures feature prominently in a case study of two participants working on a sequence of calculus activities.…
Advanced Mathematics from an Elementary Standpoint.
ERIC Educational Resources Information Center
Mosquera, Julio C.
1992-01-01
Presents four areas of advanced mathematical research (fuzzy set theory, subjective probability, search theory, and Voronoi diagrams) that are proposed for introduction into teacher education programs from an elementary, survey perspective without the intention of accomplishing formal mathematical research, thereby challenging teachers' beliefs…
Why Do Students Drop Advanced Mathematics?
ERIC Educational Resources Information Center
Horn, Ilana
2004-01-01
Students, especially black, Latino and Native American youth and students of low socio-economic status drop out of advanced mathematics. Teachers must coordinate their expectations, their knowledge of students and their teaching practices in order to stop struggling students from dropping out of advanced math classes.
ERIC Educational Resources Information Center
Sangpom, Wasukree; Suthisung, Nisara; Kongthip, Yanin; Inprasitha, Maitree
2016-01-01
Mathematical teaching in Thai tertiary education still employs traditional methods of explanation and the use of rules, formulae, and theories in order for students to memorize and apply to their mathematical learning. This results in students' inability to concretely learn, fully comprehend and understand mathematical concepts and practice. In…
"Influence Method". Detailed mathematical description
NASA Astrophysics Data System (ADS)
Rios, I. J.; Mayer, R. E.
2015-07-01
A new method for the absolute determination of nuclear particle flux in the absence of known detector efficiency, the "Influence Method", was recently published (I.J. Rios and R.E. Mayer, Nuclear Instruments & Methods in Physics Research A 775 (2015) 99-104). The method defines an estimator for the population and another estimator for the efficiency. In this article we present a detailed mathematical description which yields the conditions for its application, the probability distributions of the estimators and their characteristic parameters. An analysis of the different cases leads to expressions of the estimators and their uncertainties.
Advanced Mathematical Thinking in a Technological Workplace.
ERIC Educational Resources Information Center
Magajna, Zlatan; Monaghan, John
2003-01-01
Examines the use of mathematics in a computer-aided design and manufacturing setting, whether this mathematics is related to school mathematics, how technicians understand this mathematics, and the role of technology in the technicians' mathematics-related problem solving activities. Focuses on technician's calculations of the interval volume of…
Mathematical methods for protein science
Hart, W.; Istrail, S.; Atkins, J.
1997-12-31
Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focused on two aspects of protein science: mathematical structure prediction, and inverse protein folding.
Advanced Mathematics Course-Taking: A Focus on Gender Equifinality
ERIC Educational Resources Information Center
You, Sukkyung; Sharkey, Jill D.
2012-01-01
High school mathematics achievement predicts future success. Potentially different factors that lead to success for boys versus girls, termed equifinality, are not well understood. Such factors are needed to inform interventions to increase numbers of students taking advanced mathematics courses and going on into science and mathematics careers.…
Advanced Mathematical Thinking and the Way to Enhance It
ERIC Educational Resources Information Center
Herlina, Elda; Batusangkar, Stain
2015-01-01
This journal article discusses Advanced Mathematical Thinking (AMT) and how to enhance it. AMT is ability in representing, abstracting, creative thinking, and mathematical proving. The importance of AMT ability development in accord with government expectation who realize about the importance of mathematical competency mastery for student's life.…
ERIC Educational Resources Information Center
Koichu, Boris
2010-01-01
This article discusses an issue of inserting mathematical knowledge within the problem-solving processes. Relatively advanced mathematical knowledge is defined in terms of "three mathematical worlds"; relatively advanced problem-solving behaviours are defined in terms of taxonomies of "proof schemes" and "heuristic behaviours". The relationships…
All Students Need Advanced Mathematics. Math Works
ERIC Educational Resources Information Center
Achieve, Inc., 2013
2013-01-01
This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…
Reassessing the Economic Value of Advanced Level Mathematics
ERIC Educational Resources Information Center
Adkins, Michael; Noyes, Andrew
2016-01-01
In the late 1990s, the economic return to Advanced level (A-level) mathematics was examined. The analysis was based upon a series of log-linear models of earnings in the 1958 National Child Development Survey (NCDS) and the National Survey of 1980 Graduates and Diplomates. The core finding was that A-level mathematics had a unique earnings premium…
Use and Recall of Advance Organizers in Mathematics Instruction
ERIC Educational Resources Information Center
Bright, George W.
1976-01-01
Two studies are described which (a) determined whether the generality and inclusiveness of advance organizers (AOs) were the same as the mathematical generality or abstractness of concepts that might be used as AOs and (b) measured the effect of programmed recall of AOs in enhancing the learning of a mathematical concept. (DT)
Conditional Inference and Advanced Mathematical Study: Further Evidence
ERIC Educational Resources Information Center
Inglis, Matthew; Simpson, Adrian
2009-01-01
In this paper, we examine the support given for the "theory of formal discipline" by Inglis and Simpson (Educational Studies Mathematics 67:187-204, "2008"). This theory, which is widely accepted by mathematicians and curriculum bodies, suggests that the study of advanced mathematics develops general thinking skills and, in particular, conditional…
Authentic Teaching Experiences in Secondary Mathematics Methods
ERIC Educational Resources Information Center
Stickles, Paula R.
2015-01-01
Often secondary mathematics methods courses include classroom peer teaching, but many pre-service teachers find it challenging to teach their classmate peers as there are no discipline issues and little mathematical discourse as the "students" know the content. We will share a recent change in our methods course where pre-service…
ERIC Educational Resources Information Center
Ma, Xin
2010-01-01
Based on data from the Longitudinal Study of American Youth (LSAY), students were classified into high-, middle-, and low-ability students. The effects of early acceleration in mathematics on the most advanced mathematics coursework (precalculus and calculus) in high school were examined in each category. Results showed that although early…
Keystone Method: A Learning Paradigm in Mathematics
ERIC Educational Resources Information Center
Siadat, M. Vali; Musial, Paul M.; Sagher, Yoram
2008-01-01
This study reports the effects of an integrated instructional program (the Keystone Method) on the students' performance in mathematics and reading, and tracks students' persistence and retention. The subject of the study was a large group of students in remedial mathematics classes at the college, willing to learn but lacking basic educational…
ERIC Educational Resources Information Center
Akgün, Levent
2015-01-01
The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…
Who Succeeds in Advanced Mathematics and Science Courses?
ERIC Educational Resources Information Center
Korpershoek, Hanke; Kuyper, Hans; van der Werf, Greetje; Bosker, Roel
2011-01-01
Few students (particularly few girls) currently choose to take their Final School Examination (FSE) in advanced mathematics, chemistry and physics, a combination of subjects that is the best preparation for a science-oriented study in higher education. Are these subjects attainable by more students than is currently the case? This study examined…
Mathematical Methods for Geophysics and Space Physics
NASA Astrophysics Data System (ADS)
Newman, William I.
2016-05-01
Graduate students in the natural sciences - including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy - need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. * Provides an authoritative and accessible introduction to the subject * Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics * Features numerous exercises throughout * Ideal for students and researchers alike * An online illustration package is available to professors
Advanced Mathematical Knowledge in Teaching Practice: Perceptions of Secondary Mathematics Teachers
ERIC Educational Resources Information Center
Zazkis, Rina; Leikin, Roza
2010-01-01
For the purpose of our research we define Advanced Mathematical Knowledge (AMK) as knowledge of the subject matter acquired during undergraduate studies at colleges or universities. We examine the responses of secondary school teachers about their usage of AMK in teaching. We find that the majority of teachers focus on the purposes and advantages…
Advances in numerical and applied mathematics
NASA Technical Reports Server (NTRS)
South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)
1986-01-01
This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.
MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING
ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN
2013-01-01
In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963
Mathematical Methods for Diffusion MRI Processing
Lenglet, C.; Campbell, J.S.W.; Descoteaux, M.; Haro, G.; Savadjiev, P.; Wassermann, D.; Anwander, A.; Deriche, R.; Pike, G.B.; Sapiro, G.; Siddiqi, K.; Thompson, P.
2009-01-01
In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). PMID:19063977
Applied Mathematical Methods in Theoretical Physics
NASA Astrophysics Data System (ADS)
Masujima, Michio
2005-04-01
All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.
ERIC Educational Resources Information Center
Niess, Margaret; Gillow-Wiles, Henry
2013-01-01
This primarily online Master's degree program focused on advancing K-8 teachers' interdisciplinary mathematical and science content knowledge while integrating appropriate digital technologies as learning and teaching tools. The mixed-method, interpretive study examined in-service teachers' technological, pedagogical, and content knowledge (TPACK)…
ERIC Educational Resources Information Center
Githua, Bernard N.; Nyabwa, Rachel Angela
2008-01-01
Students have continued to perform poorly in KCSE examinations in certain mathematics topics taught in secondary schools in Kenya. One such topic is commercial arithmetic. Successful teaching of mathematics depends partly on correct use of teaching methods in classroom settings. This study sought to examine how the use of advance organisers during…
ERIC Educational Resources Information Center
Rule, Audrey C.; Harrell, Mary H.
2006-01-01
A new method of analyzing mathematics attitudes through symbolic drawings, situated within the field of Jungian-oriented analytical psychology, was applied to 52 preservice elementary teachers before and after a mathematics methods course. In this triangulation mixed methods design study, pretest images related to past mathematics experiences…
Mathematical methods of studying physical phenomena
NASA Astrophysics Data System (ADS)
Man'ko, Margarita A.
2013-03-01
In recent decades, substantial theoretical and experimental progress was achieved in understanding the quantum nature of physical phenomena that serves as the foundation of present and future quantum technologies. Quantum correlations like the entanglement of the states of composite systems, the phenomenon of quantum discord, which captures other aspects of quantum correlations, quantum contextuality and, connected with these phenomena, uncertainty relations for conjugate variables and entropies, like Shannon and Rényi entropies, and the inequalities for spin states, like Bell inequalities, reflect the recently understood quantum properties of micro and macro systems. The mathematical methods needed to describe all quantum phenomena mentioned above were also the subject of intense studies in the end of the last, and beginning of the new, century. In this section of CAMOP 'Mathematical Methods of Studying Physical Phenomena' new results and new trends in the rapidly developing domain of quantum (and classical) physics are presented. Among the particular topics under discussion there are some reviews on the problems of dynamical invariants and their relations with symmetries of the physical systems. In fact, this is a very old problem of both classical and quantum systems, e.g. the systems of parametric oscillators with time-dependent parameters, like Ermakov systems, which have specific constants of motion depending linearly or quadratically on the oscillator positions and momenta. Such dynamical invariants play an important role in studying the dynamical Casimir effect, the essence of the effect being the creation of photons from the vacuum in a cavity with moving boundaries due to the presence of purely quantum fluctuations of the electromagnetic field in the vacuum. It is remarkable that this effect was recently observed experimentally. The other new direction in developing the mathematical approach in physics is quantum tomography that provides a new vision of
ERIC Educational Resources Information Center
Koestler, Courtney
2010-01-01
In this dissertation, I present my attempts at designing an elementary mathematics methods course to support prospective teachers in developing an understanding of how to teach all students in learning powerful mathematics. To do this, I introduced them to teaching mathematics for equity and social justice by discussing ways to support students'…
ERIC Educational Resources Information Center
Ercikan, Kadriye; McCreith, Tanya; Lapointe, Vanessa
2005-01-01
This article reports results of an exploratory study examining factors that might be associated with achievement in mathematics and participation in advanced mathematics courses in Canada, Norway, and the United States of America (USA). These factors, which were not directly related to schooling accounted for large degrees of variability, 24% to…
[Mathematical kinematic methods in joint prosthetics].
Hoschek, J; Weber, U
1984-01-01
By the use of mathematical and cinematical methods a new understanding for the construction as well as for the implantation-techniques for endoprosthesis can be developed. With these methods the size of the natural motion and the process of the natural motion can be studied. So we get better informations about the natural motion and we can deduce criterions for the construction of endoprosthesis, for we can compare the motion of a model with the natural way of motion. So we can estimate preoperative the efficiency and the maximal load of the prosthesis as a result of incorrect motions. Such incorrect motions can be caused or can be avoid by the construction of the endoprosthesis as well as the implantation techniques. PMID:6475225
ERIC Educational Resources Information Center
Saran, Rupam; Gujarati, Joan
2013-01-01
This article explores how preservice elementary teachers change their negative beliefs toward mathematics into positive ones after taking a mathematics methods course that follows the Concrete-Pictorial-Abstract (CPA) instructional method. Also explored is the relationship between those beliefs and sociomathematical authority. By administering…
ERIC Educational Resources Information Center
Rasmussen, Chris; Kwon, Oh Nam; Allen, Karen; Marrongelle, Karen; Burtch, Mark
2006-01-01
This paper provides an overview of the Inquiry-Oriented Differential Equations (IO-DE) project and reports on the main results of a study that compared students' beliefs, skills, and understandings in IO-DE classes to more conventional approaches. The IO-DE project capitalizes on advances within mathematics and mathematics education, including the…
Secondary School Advanced Mathematics, Chapter 8, Systems of Equations. Student's Text.
ERIC Educational Resources Information Center
Stanford Univ., CA. School Mathematics Study Group.
This text is the last of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. In this volume the solution of systems of linear and quadratic equations and inequalities in…
ERIC Educational Resources Information Center
Weber, Keith
2009-01-01
This paper presents a case study of a highly successful student whose exploration of an advanced mathematical concept relies predominantly on syntactic reasoning, such as developing formal representations of mathematical ideas and making logical deductions. This student is observed as he learns a new mathematical concept and then completes…
7th International Conference on Mathematical Methods in Physics
NASA Astrophysics Data System (ADS)
Bonora, L.; Bytsenko, A. A.; Guimarães, M. E. X.; Helayël-Neto, J. A.
The 7th International Conference on Mathematical Methods in Physics took place in the Centro Brasileiro de Pesquisas Físicas (CBPF/MCT), Rio de Janeiro - RJ, Brazil, from 16 to 20 April 2012, and was jointly organized by the following Institutions: Centro Brasileiro de Pesquisas Físicas (CBPF/MCT), The Abdus Salam International Centre for Theoretical Physics (ICTP, Italy), Instituto Nacional de Matemática Pura e Aplicada (IMPA, Brazil), The Academy of Sciences for the Developing World (TWAS, Italy) and The Scuola Internazionale di Studi Avanzati (SISSA,Italy). The Organizing Committees were composed by: E. ABDALLA (USP, Brazil), L. BONORA (SISSA, Italy), H. BURSZTYN (IMPA, Brazil), A. A. BYTSENKO (UEL, Brazil), B. DUBROVIN (SISSA, Italy), M.E.X. GUIMARÃES (UFF, Brazil), J.A. HELAYËL-NETO (CBPF, Brazil). Advisory Committee: A. V. ASHTEKAR (Penn State University, U.S.A.), V. M. BUCHSTABER (Steklov Mathematical Institute, Russia), L. D. FADDEEV (St. Petersburg Dept. of Steklov Mathematical Institute, Russia), I. M. KRICHEVER (Columbia Univ., U.S.A./ Landau Institute of Theoretical Physics, Russia), S. P. NOVIKOV (Univ. of Maryland, U.S.A./Landau Institute of Theoretical Physics, Russia), J. PALIS (IMPA, Brazil), A. QADIR (National University of Sciences and Technology, Pakistan), F. QUEVEDO (ICTP, Italy), S. RANDJBAR-DAEMI (ICTP, Italy), G. THOMPSON (ICTP, Italy), C. VAFA (Harvard University, U.S.A.). The Main Goal: The aim of the Conference was to present the latest advances in Mathematical Methods of Physics to researchers, young scientists and students of Latin America in general, and Brazil in particular, in the areas of High Energy Physics, Cosmology, Mathematical Physics and Applied Mathematics. The main goal was to promote an updating of knowledge and to facilitate the interaction between mathematicians and theoretical physicists, through plenary sessions and seminars. This Conference can be considered as a part of a network activity in a special effort to
Cellulase assays: Methods from empirical mathematical models
Adney, W.S.; Baker, J.O.; Himmel, M.E.
1993-12-31
Recent advances in the assay of cellulose preparations by Sattler et al. [Biotech. Bioeng. 33, 1221-1234 (1989)] describe a relationship between extent of hydrolysis, reaction time, and enzyme concentration. This procedure permits the ranking of the effectiveness of different enyzmes and of different pretreatment methods. For this method, cellulose hydrolysis data collected from hyperbolic functions of substrate concentration versus cellulose enzyme concentration at various timed incubations are collected. A double reciprocal plot based on the relationship (Y/C{sub 6}){sup {minus}1}=(KC/{sub 0}/Y{sub max})[E]{sup {minus}1} + (Y{sub max}/C{sub 0}){sup {minus}1} where Y/C{sub 0} is the fraction of substrate hydrolyzed; [E] is given in FPU/g substrate initially added; and Y{sub max}/C{sub 0} is the where Y/C{sub 0} is the fraction of substrate hydrolyzed an an infinite enzyme concentration. The y-axis intercept in the double reciprocal plot, (Y{sub max}/C{sub 0}){sup {minus}1}, may be used to quantify the {open_quotes}quality{close_quotes} of the enzyme preparation. ideally, an enzyme should have a high Y{sub max} and a low value for KC{sub 0}/Y{sub max}. The application of these assay methods to the hydrolysis of both clean, microcrystallite cellulose (Sigmacell 50) and pretreated aspen wood metal will be presented.
Cards in the Classroom: Mathematics and Methods.
ERIC Educational Resources Information Center
Baker, Robert N.
This report researches the use of a standard deck of playing cards in entry-level college mathematics classrooms. The study looks at published research on the use of cards, and reviews pedagogic concerns directly related to the implementation of playing cards in the classroom--including the appropriateness of manipulatives, the link to cooperative…
Introduction to mathematical models and methods
Siddiqi, A. H.; Manchanda, P.
2012-07-17
Some well known mathematical models in the form of partial differential equations representing real world systems are introduced along with fundamental concepts of Image Processing. Notions such as seismic texture, seismic attributes, core data, well logging, seismic tomography and reservoirs simulation are discussed.
ERIC Educational Resources Information Center
Lew, Kristen; Fukawa-Connelly, Timothy Patrick; Mejía-Ramos , Juan Pablo; Weber, Keith
2016-01-01
We describe a case study in which we investigate the effectiveness of a lecture in advanced mathematics. We first videorecorded a lecture delivered by an experienced professor who had a reputation for being an outstanding instructor. Using video recall, we then interviewed the professor to determine the ideas that he intended to convey and how he…
Student Teachers' Views about Assessment and Evaluation Methods in Mathematics
ERIC Educational Resources Information Center
Dogan, Mustafa
2011-01-01
This study aimed to find out assessment and evaluation approaches in a Mathematics Teacher Training Department based on the views and experiences of student teachers. The study used a descriptive survey method, with the research sample consisting of 150 third- and fourth-year Primary Mathematics student teachers. Data were collected using a…
Research in Mathematics Education: Multiple Methods for Multiple Uses
ERIC Educational Resources Information Center
Battista, Michael; Smith, Margaret S.; Boerst, Timothy; Sutton, John; Confrey, Jere; White, Dorothy; Knuth, Eric; Quander, Judith
2009-01-01
Recent federal education policies and reports have generated considerable debate about the meaning, methods, and goals of "scientific research" in mathematics education. Concentrating on the critical problem of determining which educational programs and practices reliably improve students' mathematics achievement, these policies and reports focus…
Mathematical Methods for Optical Physics and Engineering
NASA Astrophysics Data System (ADS)
Gbur, Gregory J.
2011-01-01
1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.
ERIC Educational Resources Information Center
Ma, Xin
2006-01-01
Using data from the Longitudinal Study of American Youth, this analysis tested whether changes during middle and high school in mathematics-related cognitive and affective factors influence participation in the most advanced mathematics course work, with control over confounding factors associated with student background. No significant…
ERIC Educational Resources Information Center
Anderson, Rick
2006-01-01
The focus of this paper is a group of rural high school students and the factors that contributed to their participation in mathematics classes beyond those minimally required for high school graduation. The author follows Gutierrez (2002) in referring to participation as course taking, particularly in elective and advanced mathematics classes.…
A National Dilemma: African American Students Underrepresented in Advanced Mathematics Courses
ERIC Educational Resources Information Center
Johnson, Clarence; Kritsonis, William Allan
2006-01-01
A lack of access to educational opportunities has been a reality for African American students. As a result, America's schools are facing a national dilemma. African American students are significantly underrepresented in advanced mathematics courses. One of the most segregated places in American society is the mathematics classroom. African…
Gender Differences in the Use and Benefit of Advanced Learning Technologies for Mathematics
ERIC Educational Resources Information Center
Arroyo, Ivon; Burleson, Winslow; Tai, Minghui; Muldner, Kasia; Woolf, Beverly Park
2013-01-01
We provide evidence of persistent gender effects for students using advanced adaptive technology while learning mathematics. This technology improves each gender's learning and affective predispositions toward mathematics, but specific features in the software help either female or male students. Gender differences were seen in the students' style…
ERIC Educational Resources Information Center
Nabb, Keith A.
2013-01-01
The research literature has made calls for greater coherence and consistency with regard to the meaning and use of the term advanced mathematical thinking (AMT) in mathematics education (Artigue, Batanero, & Kent, 2007; Selden & Selden, 2005). Educators and researchers agree that students should be engaged in AMT but it is unclear…
Dropping Out of Advanced Mathematics: How Much Do Students and Schools Contribute to the Problem?
ERIC Educational Resources Information Center
Ma, Xin; Willms, J. Douglas
1999-01-01
Uses data from six waves of the Longitudinal Study of American Youth to discern when and why students drop out of advanced mathematics. Between grades 8 and 9, prior achievement plays a more important role than attitude or socioeconomic status, and between grades 11 and 12, student attitude toward mathematics is the most important factor. (SLD)
Origins of the brain networks for advanced mathematics in expert mathematicians.
Amalric, Marie; Dehaene, Stanislas
2016-05-01
The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit. PMID:27071124
NASA Astrophysics Data System (ADS)
Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin
2013-04-01
The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.
A Survey of Methods of Teaching Mathematics. Final Report.
ERIC Educational Resources Information Center
Kovach, L. D.
Several methods of teaching college-level mathematics sequences are examined for their advantages, disadvantages, and costs. Materials considered include textbooks, film sequences, videotaped lectures, and individualized teaching machines. (SD)
Advanced probabilistic method of development
NASA Technical Reports Server (NTRS)
Wirsching, P. H.
1987-01-01
Advanced structural reliability methods are utilized on the Probabilistic Structural Analysis Methods (PSAM) project to provide a tool for analysis and design of space propulsion system hardware. The role of the effort at the University of Arizona is to provide reliability technology support to this project. PSAM computer programs will provide a design tool for analyzing uncertainty associated with thermal and mechanical loading, material behavior, geometry, and the analysis methods used. Specifically, reliability methods are employed to perform sensitivity analyses, to establish the distribution of a critical response variable (e.g., stress, deflection), to perform reliability assessment, and ultimately to produce a design which will minimize cost and/or weight. Uncertainties in the design factors of space propulsion hardware are described by probability models constructed using statistical analysis of data. Statistical methods are employed to produce a probability model, i.e., a statistical synthesis or summary of each design variable in a format suitable for reliability analysis and ultimately, design decisions.
Social activity method (SAM): A fractal language for mathematics
NASA Astrophysics Data System (ADS)
Dowling, Paul
2013-09-01
In this paper I shall present and develop my organisational language, social activity method (SAM), and illustrate some of its applications. I shall introduce a new scheme for modes of recontextualisation that enables the analysis of the ways in which one activity - which might be school mathematics or social research or any empirically observed regularity of practice - recontextualises the practice of another and I shall also present, deploy, and develop an existing scheme - domains of action - in an analysis of school mathematics examination papers and in the structuring of what I refer to as the esoteric domain. This domain is here conceived as a hybrid domain of, first, linguistic and extralinguistic resources that are unambiguously mathematical in terms of both expression and content and, second, pedagogic theory - often tacit - that enables the mathematical gaze onto other practices and so recontextualises them. A second and more general theme that runs through the paper is the claim that there is nothing that is beyond semiosis, that there is nothing to which we have direct access, unmediated by interpretation. This state of affairs has implications for mathematics education. Specifically, insofar as an individual's mathematical semiotic system is under continuous development - the curriculum never being graspable all at once - understanding - as a stable semiotic moment - of any aspect or object of mathematics is always localised to the individual and is at best transient, and the sequencing of such moments may well also be more individualised than consistent in some correspondence with the sequencing of the curriculum. This being the case, a concentration on understanding as a goal may well serve to inhibit the pragmatic acquisition and deployment of mathematical technologies, which should be the principal aim of mathematics teaching and learning. The paper is primarily concerned with mathematics education. SAM, however, is a language that is available for
Advanced Mathematics. Training Module 1.303.3.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module prepared in objective form for use by an instructor familiar with mathematics as applied to water and wastewater treatment plant operation. Included are objectives, instructor guides and student handouts. This is the third level of a three module series and is concerned with statistics, total head, steady…
Block Scheduling and Advanced Placement Mathematics: When Tradition and Reform Collide.
ERIC Educational Resources Information Center
Howard, Elizabeth
1997-01-01
This case study reflects block scheduling's effects on advanced-placement mathematics courses of one veteran teacher tracking personal progress since 1989. Block scheduling began in 1994, creating problems for the teacher, whose resistance to the reform was based on declining advanced-placement scores. Teacher attitude and insufficient…
Innovations in Science and Mathematics Education: Advanced Designs for Technologies of Learning.
ERIC Educational Resources Information Center
Jacobson, Michael J., Ed.; Kozma, Robert B., Ed.
This collection of essays consists of current work that addresses the challenge not just to put the newest technologies in schools, but to identify advanced ways to design and use these new technologies to advance learning. These essays are intended for science and mathematics educators, educational and cognitive researchers, instructional…
The Influence of Applied STEM Coursetaking on Advanced Mathematics and Science Coursetaking
ERIC Educational Resources Information Center
Gottfried, Michael A.
2015-01-01
Advanced mathematics and science course taking is critical in building the foundation for students to advance through the STEM pathway-from high school to college to career. To invigorate students' persistence in STEM fields, high schools have been introducing applied STEM courses into the curriculum as a way to reinforce concepts learned in…
Using the Common Core State Standards for Mathematics with Gifted and Advanced Learners
ERIC Educational Resources Information Center
Johnsen, Susan K., Ed.; Sheffield, Linda J., Ed.
2012-01-01
"Using the Common Core State Standards for Mathematics With Gifted and Advanced Learners" provides teachers and administrators examples and strategies to implement the new Common Core State Standards (CCSS) with advanced learners at all stages of development in K-12 schools. The book describes--and demonstrates with specific examples from the…
The Monte Carlo Method. Popular Lectures in Mathematics.
ERIC Educational Resources Information Center
Sobol', I. M.
The Monte Carlo Method is a method of approximately solving mathematical and physical problems by the simulation of random quantities. The principal goal of this booklet is to suggest to specialists in all areas that they will encounter problems which can be solved by the Monte Carlo Method. Part I of the booklet discusses the simulation of random…
2016-01-01
Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. PMID:26913930
Essential Mathematical Methods for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-02-01
1. Matrices and vector spaces; 2. Vector calculus; 3. Line, surface and volume integrals; 4. Fourier series; 5. Integral transforms; 6. Higher-order ODEs; 7. Series solutions of ODEs; 8. Eigenfunction methods; 9. Special functions; 10. Partial differential equations; 11. Solution methods for PDEs; 12. Calculus of variations; 13. Integral equations; 14. Complex variables; 15. Applications of complex variables; 16. Probability; 17. Statistics; Appendices; Index.
Razalas' Grouping Method and Mathematics Achievement
ERIC Educational Resources Information Center
Salazar, Douglas A.
2015-01-01
This study aimed to raise the achievement level of students in Integral Calculus using Direct Instruction with Razalas' Method of Grouping. The study employed qualitative and quantitative analysis relative to data generated by the Achievement Test and Math journal with follow-up interview. Within the framework of the limitations of the study, the…
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model
Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V.
2016-01-01
Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods. PMID:27387139
Recall of Advance Organizers as Part of Mathematics Instruction.
ERIC Educational Resources Information Center
Bright, George W.
This study was performed in order to test the author's notion that advance organizers operate because (1) they provide stable anchorage for concepts to be learned and (2) in order to operate they must be relatable by the student to the new material. To test this hypothesis the author constructed materials for each of ten treatments as defined by…
Integrability: mathematical methods for studying solitary waves theory
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2014-03-01
In recent decades, substantial experimental research efforts have been devoted to linear and nonlinear physical phenomena. In particular, studies of integrable nonlinear equations in solitary waves theory have attracted intensive interest from mathematicians, with the principal goal of fostering the development of new methods, and physicists, who are seeking solutions that represent physical phenomena and to form a bridge between mathematical results and scientific structures. The aim for both groups is to build up our current understanding and facilitate future developments, develop more creative results and create new trends in the rapidly developing field of solitary waves. The notion of the integrability of certain partial differential equations occupies an important role in current and future trends, but a unified rigorous definition of the integrability of differential equations still does not exist. For example, an integrable model in the Painlevé sense may not be integrable in the Lax sense. The Painlevé sense indicates that the solution can be represented as a Laurent series in powers of some function that vanishes on an arbitrary surface with the possibility of truncating the Laurent series at finite powers of this function. The concept of Lax pairs introduces another meaning of the notion of integrability. The Lax pair formulates the integrability of nonlinear equation as the compatibility condition of two linear equations. However, it was shown by many researchers that the necessary integrability conditions are the existence of an infinite series of generalized symmetries or conservation laws for the given equation. The existence of multiple soliton solutions often indicates the integrability of the equation but other tests, such as the Painlevé test or the Lax pair, are necessary to confirm the integrability for any equation. In the context of completely integrable equations, studies are flourishing because these equations are able to describe the
Prevalence of Mixed Methods Research in Mathematics Education
ERIC Educational Resources Information Center
Ross, Amanda A.; Onwuegbuzie, Anthony J.
2012-01-01
In wake of federal legislation such as the No Child Left Behind Act of 2001 that have called for "scientifically based research in education," this study examined the possible trends in mixed methods research articles published in 2 peer-reviewed mathematics education journals (n = 87) from 2002 to 2006. The study also illustrates how the…
Social Activity Method (SAM): A Fractal Language for Mathematics
ERIC Educational Resources Information Center
Dowling, Paul
2013-01-01
In this paper I shall present and develop my organisational language, "social activity method" (SAM), and illustrate some of its applications. I shall introduce a new scheme for "modes of recontextualisation" that enables the analysis of the ways in which one activity--which might be school mathematics or social research or any…
Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis
Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; Sheng, Shuangwen
2014-12-18
Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issuemore » is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.« less
Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis
Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; Sheng, Shuangwen
2014-12-18
Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issue is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.
Current Mathematical Methods Used in QSAR/QSPR Studies
Liu, Peixun; Long, Wei
2009-01-01
This paper gives an overview of the mathematical methods currently used in quantitative structure-activity/property relationship (QASR/QSPR) studies. Recently, the mathematical methods applied to the regression of QASR/QSPR models are developing very fast, and new methods, such as Gene Expression Programming (GEP), Project Pursuit Regression (PPR) and Local Lazy Regression (LLR) have appeared on the QASR/QSPR stage. At the same time, the earlier methods, including Multiple Linear Regression (MLR), Partial Least Squares (PLS), Neural Networks (NN), Support Vector Machine (SVM) and so on, are being upgraded to improve their performance in QASR/QSPR studies. These new and upgraded methods and algorithms are described in detail, and their advantages and disadvantages are evaluated and discussed, to show their application potential in QASR/QSPR studies in the future. PMID:19564933
ERIC Educational Resources Information Center
Grinstead, Mary L.
2013-01-01
This study explores the relationship between specific advanced mathematics courses and college readiness (as determined by ACT score). The ACT organization has found a consistent relationship between taking a minimum core number of mathematics courses and higher ACT scores (mathematics and composite) (ACT, Inc., 2012c). However, the extent to…
Student Learning in Linear Algebra: The Gateways To Advance Mathematical Thinking Project.
ERIC Educational Resources Information Center
Manes, Michelle
This document provides a preliminary report of the study Gateways To Advance Mathematical Thinking (GAMT) run by Educational Development Center, Inc. (EDC). The study was designed to see what types of reasoning students who have recently completed a linear algebra course apply to problems in algebraic thinking. Student interviews were used as the…
ERIC Educational Resources Information Center
Davis, Cinda-Sue; And Others
This volume includes 10 reports that present findings and recommendations for advancing women in science, mathematics and engineering. Critical issues facing women in these disciplines are addressed, including demographic myths and realities at various educational levels; the educational pipeline for girls and women; involvement in education and…
ERIC Educational Resources Information Center
DePountis, Vicki M.; Pogrund, Rona L.; Griffin-Shirley, Nora; Lan, William Y.
2015-01-01
This research examined the perspectives of teachers of students with visual impairments (TVIs) regarding the use and effectiveness of electronic assistive technology (EAT) purported to assist students who are blind in advanced mathematics subjects. The data for this study were collected via an online survey distributed to a convenience sample of…
ERIC Educational Resources Information Center
Swars, Susan Lee
2015-01-01
This mixed methods study examined the mathematical preparation of elementary teachers in a Teach for America (TFA) program, focal participants for whom there is scant extant research. Data collection occurred before and after a university mathematics methods course, with a particular focus on the participants' (n = 22) mathematical beliefs,…
Advanced accelerator methods: The cyclotrino
Welch, J.J.; Bertsche, K.J.; Friedman, P.G.; Morris, D.E.; Muller, R.A.
1987-04-01
Several new and unusual, advanced techniques in the small cyclotron are described. The cyclotron is run at low energy, using negative ions and at high harmonics. Electrostatic focusing is used exclusively. The ion source and injection system is in the center, which unfortunately does not provide enough current, but the new system design should solve this problem. An electrostatic extractor that runs at low voltage, under 5 kV, and a microchannel plate detector which is able to discriminate low energy ions from the /sup 14/C are used. The resolution is sufficient for /sup 14/C dating and a higher intensity source should allow dating of a milligram size sample of 30,000 year old material with less than 10% uncertainty.
Proceedings: Workshop on advanced mathematics and computer science for power systems analysis
Esselman, W.H.; Iveson, R.H. )
1991-08-01
The Mathematics and Computer Workshop on Power System Analysis was held February 21--22, 1989, in Palo Alto, California. The workshop was the first in a series sponsored by EPRI's Office of Exploratory Research as part of its effort to develop ways in which recent advances in mathematics and computer science can be applied to the problems of the electric utility industry. The purpose of this workshop was to identify research objectives in the field of advanced computational algorithms needed for the application of advanced parallel processing architecture to problems of power system control and operation. Approximately 35 participants heard six presentations on power flow problems, transient stability, power system control, electromagnetic transients, user-machine interfaces, and database management. In the discussions that followed, participants identified five areas warranting further investigation: system load flow analysis, transient power and voltage analysis, structural instability and bifurcation, control systems design, and proximity to instability. 63 refs.
ERIC Educational Resources Information Center
Sloan, Tina Rye; Vinson, Beth; Haynes, Jonita; Gresham, Regina
This study examined the effectiveness of a methods course in the reduction of mathematics anxiety levels among three groups of preservice teachers majoring in elementary education. The sample included 61 novices enrolled in a course entitled Mathematics for the Young Child. This methods course utilized concrete manipulatives and active learning…
Symbolic Computation in a Constructive Approach to Methods of Mathematical Physics
NASA Astrophysics Data System (ADS)
Lopez, Robert
2001-10-01
Mastery of the discipline of physics requires not only expertise and intuition in science, but also a measure of competence in mathematical understanding and technique. In fact, courses in methods of mathematical physics are important stepping-stones to progress in physics education. In this talk, we shall illustrate the role that a computer algebra system can play in a more efficient and effective mastery of mathematical techniques needed in the physics curriculum. To do this, we will present a series of examples taken from the undergraduate math curriculum at RHIT where the author has just published Advanced Engineering Mathematics, a new applied math book based on the availability of a computer algebra system. We will discuss the solution of boundary value problems, including the wave equation on the finite string, the heat equation in a finite rod and cylinder, and the potential equation in rectangles, disks, and spheres. We will also discuss coupled oscillators and normal modes. Finally, we will discuss the calculus of variations and Hamilton's principle, setting up and solving the single and double plane pendulum problems, and the spherical pendulum problem. Throughout, we will show how the use of modern computer tools makes so much more mathematics available to the student, and makes it so much easier to obtain physical insights.
Mathematical methods to assist with hospital operation and planning.
Gallivan, Steve
2005-12-01
Within health Operational Research, the use of 'computer package' methods such as simulation and system dynamics is becoming so prevalent that it feels somewhat old hat to use analytical methods to develop explicit mathematical formulae or even to explore the mathematical structure of problems. This paper will discuss the use of such 'back of the envelope' analysis illustrating its usefulness. It will be shown that not only does this approach yield considerable insight, but also that it can give rise to powerful and practical solution methods. Examples of this will be discussed in relation to issues such as bed needs estimation, admissions and facilities planning. The author is Director of the Clinical Operational Research Unit (CORU) which was established in 1983, receiving core funding from the UK Department of Health. The concept of a full time university-based research unit dedicated to applying expertise in Operational Research (OR) to problems in health care provides a relatively rare research resource. Yet, the scope for such research, applied to an increasing range of health care activity, is enormous. Issues such as treatment evaluation, performance measures, clinical governance, evidence based medicine and health service delivery are all amenable to OR. Further, OR often provides an immensely cost effective alternative to traditional methods of clinical research based on randomised controlled trials or large scale epidemiological studies. The nature of OR, and one of its main strengths, is that it encompasses a wide range of analytical and scientific methods. Mathematical modeling, statistics, computer-based methods, trial design and analysis all contribute to health OR and, under both of its Directors since 1983, a conscious effort has been made within CORU to foster a diversity of research methodologies. Particular emphasis is put on developing new mathematical methods and computer software. This is somewhat at odds with what seems to be a growing trend
Problems of Mathematical Finance by Stochastic Control Methods
NASA Astrophysics Data System (ADS)
Stettner, Łukasz
The purpose of this paper is to present main ideas of mathematics of finance using the stochastic control methods. There is an interplay between stochastic control and mathematics of finance. On the one hand stochastic control is a powerful tool to study financial problems. On the other hand financial applications have stimulated development in several research subareas of stochastic control in the last two decades. We start with pricing of financial derivatives and modeling of asset prices, studying the conditions for the absence of arbitrage. Then we consider pricing of defaultable contingent claims. Investments in bonds lead us to the term structure modeling problems. Special attention is devoted to historical static portfolio analysis called Markowitz theory. We also briefly sketch dynamic portfolio problems using viscosity solutions to Hamilton-Jacobi-Bellman equation, martingale-convex analysis method or stochastic maximum principle together with backward stochastic differential equation. Finally, long time portfolio analysis for both risk neutral and risk sensitive functionals is introduced.
Mathematical aspects of finite element methods for incompressible viscous flows
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
NASA Astrophysics Data System (ADS)
Sen, K. K., Wilson, S. J.
The advancement of observational techniques over the years has led to the discovery of a large number of stars exhibiting complex spectral structures, thus necessitating the search for new techniques and methods to study radiative transfer in such stars with moving envelopes. This led to the introduction of the concept of "photon escape probability" and the wisdom of expressing the transfer equations in "comoving frames" (CMF). Radiative transfer problems in spherically moving media form a branch of mathematical physics which uses mathematics of a very distinctive kind. Radiative Transfer in Moving Media records the basic mathematical methodologies, both analytical and numerical, developed for solving radiation transfer problems in spherically symmetric moving media, in the consideration of macroscopic velocity fields only. Part I contains the basic notions of radiation-matter interaction in participating media and constructs the relevant transfer equations to be solved in the subsequent chapters. Part II considers the basic mathematical methods for solving the transfer problems in extensive moving atmospheres when it is observed in the lab frame. Part III introduces the analytical and numerical methods for solving radiative transfer problems in spherically symmetric moving atmospheres when expressed in the comoving frame. This book is addressed to graduate students and researchers in Astrophysics, in particular to those studying radiative transfer in stellar atmospheres.
Advanced reliability methods - A review
NASA Astrophysics Data System (ADS)
Forsyth, David S.
2016-02-01
There are a number of challenges to the current practices for Probability of Detection (POD) assessment. Some Nondestructive Testing (NDT) methods, especially those that are image-based, may not provide a simple relationship between a scalar NDT response and a damage size. Some damage types are not easily characterized by a single scalar metric. Other sensing paradigms, such as structural health monitoring, could theoretically replace NDT but require a POD estimate. And the cost of performing large empirical studies to estimate POD can be prohibitive. The response of the research community has been to develop new methods that can be used to generate the same information, POD, in a form that can be used by engineering designers. This paper will highlight approaches to image-based data and complex defects, Model Assisted POD estimation, and Bayesian methods for combining information. This paper will also review the relationship of the POD estimate, confidence bounds, tolerance bounds, and risk assessment.
Analysis of elastography methods using mathematical and ex vivo data
NASA Astrophysics Data System (ADS)
Byram, Brett C.; Wahl, Michael R.; Holmes, David R., III; Lerman, Amir; Robb, Richard A.
2003-05-01
Intravascular ultrasound (IVUS) currently has a limited ability to characterize endovascular anatomic properties. IVUS elastography enhances the ability to characterize the biomechanical properties of arterial walls. A mathematical phantom generator was developed based on the characteristics of 30MHz, 64 element IVUS catheter images from excised canine femoral arteries. The difference between high and low-pressure intra-arterial images was modeled using phase shifts. The increase in phase shift occurred randomly, generally at every three pixels in our images. Using mathematical phantoms, different methods for calculating elastograms were quantitatively analyzed. Specifically, the effect of standard cross correlation versus cross correlation of the integral of the inflection characteristics for a given set of data, and the effect of an algorithm utilizing a non-constant kernel, were assessed. The specific methods found to be most accurate on the mathematical phantom data were then applied to ex vivo canine data of a scarred and a healthy artery. The algorithm detected significant differences between these two sets of arterial data. It will be necessary to obtain and analyze several more sets of canine arterial data in order to determine the accuracy and reproducibility of the algorithm.
Advanced Fine Particulate Characterization Methods
Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman
2007-01-31
The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and
Integrability: mathematical methods for studying solitary waves theory
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2014-03-01
In recent decades, substantial experimental research efforts have been devoted to linear and nonlinear physical phenomena. In particular, studies of integrable nonlinear equations in solitary waves theory have attracted intensive interest from mathematicians, with the principal goal of fostering the development of new methods, and physicists, who are seeking solutions that represent physical phenomena and to form a bridge between mathematical results and scientific structures. The aim for both groups is to build up our current understanding and facilitate future developments, develop more creative results and create new trends in the rapidly developing field of solitary waves. The notion of the integrability of certain partial differential equations occupies an important role in current and future trends, but a unified rigorous definition of the integrability of differential equations still does not exist. For example, an integrable model in the Painlevé sense may not be integrable in the Lax sense. The Painlevé sense indicates that the solution can be represented as a Laurent series in powers of some function that vanishes on an arbitrary surface with the possibility of truncating the Laurent series at finite powers of this function. The concept of Lax pairs introduces another meaning of the notion of integrability. The Lax pair formulates the integrability of nonlinear equation as the compatibility condition of two linear equations. However, it was shown by many researchers that the necessary integrability conditions are the existence of an infinite series of generalized symmetries or conservation laws for the given equation. The existence of multiple soliton solutions often indicates the integrability of the equation but other tests, such as the Painlevé test or the Lax pair, are necessary to confirm the integrability for any equation. In the context of completely integrable equations, studies are flourishing because these equations are able to describe the
Recent advances in lattice Boltzmann methods
Chen, S.; Doolen, G.D.; He, X.; Nie, X.; Zhang, R.
1998-12-31
In this paper, the authors briefly present the basic principles of lattice Boltzmann method and summarize recent advances of the method, including the application of the lattice Boltzmann method for fluid flows in MEMS and simulation of the multiphase mixing and turbulence.
New method for calculating a mathematical expression for streamflow recession
Rutledge, Albert T.
1991-01-01
An empirical method has been devised to calculate the master recession curve, which is a mathematical expression for streamflow recession during times of negligible direct runoff. The method is based on the assumption that the storage-delay factor, which is the time per log cycle of streamflow recession, varies linearly with the logarithm of streamflow. The resulting master recession curve can be nonlinear. The method can be executed by a computer program that reads a data file of daily mean streamflow, then allows the user to select several near-linear segments of streamflow recession. The storage-delay factor for each segment is one of the coefficients of the equation that results from linear least-squares regression. Using results for each recession segment, a mathematical expression of the storage-delay factor as a function of the log of streamflow is determined by linear least-squares regression. The master recession curve, which is a second-order polynomial expression for time as a function of log of streamflow, is then derived using the coefficients of this function.
Schissel, D.P.
1996-08-01
This report discusses advancing precollege science and mathematics education in San Diego Count. Described in this report are: curriculum and teacher development; pre-tour material; facility tour; student workbook; evaluation and assessment; and internet access.
ERIC Educational Resources Information Center
Turner, Erin E.; Drake, Corey; McDuffie, Amy Roth; Aguirre, Julia; Bartell, Tonya Gau; Foote, Mary Q.
2012-01-01
Research repeatedly documents that teachers are underprepared to teach mathematics effectively in diverse classrooms. A critical aspect of learning to be an effective mathematics teacher for diverse learners is developing knowledge, dispositions, and practices that support building on children's mathematical thinking, as well as their cultural,…
Targeting displacements' monitoring of constructions through mathematical methods
NASA Astrophysics Data System (ADS)
Teşilǎ, Radu; Rusu, Georgiana; Vîlceanu, Beatrice; Alionescu, Adrian
2016-06-01
In the context of the urban congestion, soils withstand a major impact of mechanical transformations and consistency changes due to the pollution and chemicals present in the industrial emissions and household wastes. These changes lead to consequences that influence the stability and security of constructions, such as reduction of permeability, drainage and aeration. The development of geodetic measuring techniques based on mathematical methods has permitted and created the possibility of determining and emphasizing even the most subtle of movements regarding buildings and industrial structures. This paper aims to emphasize the importance of mathematical methods, namely high precision geometric levelling, for the study of a relatively new construction built in 2009, linked to existing old buildings. In exploitation, transverse cracks could be observed in the structure of the old buildings. Following these phenomena, special monitoring was imposed upon the ensemble of buildings that serve the Faculty of Medical Bioengineering of Iaşi, because Romanian norms at force impose an accurate and precise monitoring in time for a construction to be safely exploited. Topographic-geodetic measurements were made so that the resistance of the structure's pillars of the four buildings could be studied and observed.
Infusing Mathematics Content into a Methods Course: Impacting Content Knowledge for Teaching
ERIC Educational Resources Information Center
Burton, Megan; Daane, C. J.; Giesen, Judy
2008-01-01
This study compared content knowledge for teaching mathematics differences between elementary pre-service teachers in a traditional versus an experimental mathematics methods course. The experimental course replaced 20 minutes of traditional methods, each class, with an intervention of elementary mathematics content. The difference between groups…
Improving Student Engagement in Mathematics Using Simple but Effective Methods
ERIC Educational Resources Information Center
Shearman, Donald; Rylands, Leanne; Coady, Carmel
2012-01-01
A significant proportion of students enrolling in mathematical subjects designed for non-STEM majors in university courses have minimal mathematical skills and poor motivation. This combination of starting attributes often leads to failure in the first mathematical subject encountered. We have been implementing simple, alternative pedagogies in an…
Advanced analysis methods in particle physics
Bhat, Pushpalatha C.; /Fermilab
2010-10-01
Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.
ERIC Educational Resources Information Center
Luther, Kenneth H.
2012-01-01
Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…
Cost estimating methods for advanced space systems
NASA Technical Reports Server (NTRS)
Cyr, Kelley
1988-01-01
The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.
Clickers and Classroom Voting in a Transition to Advanced Mathematics Course
ERIC Educational Resources Information Center
Lockard, Shannon R.; Metcalf, Rebecca C.
2015-01-01
Clickers and classroom voting are used across a number of disciplines in a variety of institutions. There are several papers that describe the use of clickers in mathematics classrooms such as precalculus, calculus, statistics, and even differential equations. This paper describes a method of incorporating clickers and classroom voting in a…
Sphericity measurements by the radial method: I. Mathematical fundamentals
NASA Astrophysics Data System (ADS)
Janecki, D.; Stępień, K.; Adamczak, S.
2016-01-01
Traditionally, form errors of spherical components have been assessed on the basis of roundness profiles measured in several randomly selected cross-sections. However, such evaluation is superficial, especially if there are significant local irregularities. A new concept was thus developed at the Kielce University of Technology to enable measurement of spherical specimens along some predefined paths so that the surface is densely covered with a grid of points. This approach assumes that measurements can be performed using a typical radial roundness measuring instrument equipped with a special mechanism for controlled positioning of a measured element. This work discusses the assumptions of the new concept and describes a mathematical model of sphericity measurement by the radial method.
Number Theory. Mathematics-Methods Program Unit. Student Manual [and] Instructor's Manual.
ERIC Educational Resources Information Center
Thompson, Maynard; And Others
This unit is 1 of 12 developed for the university classroom portion of the Mathematics-Methods Program (MMP), created by the Indiana University Mathematics Education Development Center (MEDC) as an innovative program for the mathematics training of prospective elementary school teachers (PSTs). Each unit is written in an activity format that…
Change in Preservice Teachers' Beliefs: An Evaluation of a Mathematics Methods Course
ERIC Educational Resources Information Center
Wilkins, Jesse L. M.; Brand, Brenda R.
2004-01-01
This study investigated and evaluated the potential impact of an elementary mathematics methods course in promoting teacher beliefs and attitudes that are consistent with the underlying philosophy of current reform efforts in mathematics education. Using the Mathematics Beliefs Instrument (MBI," Hart, 2002), data from 89 preservice teachers were…
Not Available
1990-12-01
The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.
2013-07-01
The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.
Advanced Bayesian Method for Planetary Surface Navigation
NASA Technical Reports Server (NTRS)
Center, Julian
2015-01-01
Autonomous Exploration, Inc., has developed an advanced Bayesian statistical inference method that leverages current computing technology to produce a highly accurate surface navigation system. The method combines dense stereo vision and high-speed optical flow to implement visual odometry (VO) to track faster rover movements. The Bayesian VO technique improves performance by using all image information rather than corner features only. The method determines what can be learned from each image pixel and weighs the information accordingly. This capability improves performance in shadowed areas that yield only low-contrast images. The error characteristics of the visual processing are complementary to those of a low-cost inertial measurement unit (IMU), so the combination of the two capabilities provides highly accurate navigation. The method increases NASA mission productivity by enabling faster rover speed and accuracy. On Earth, the technology will permit operation of robots and autonomous vehicles in areas where the Global Positioning System (GPS) is degraded or unavailable.
Advanced Analysis Methods in High Energy Physics
Pushpalatha C. Bhat
2001-10-03
During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.
Mathematical Modeling of Food Supply for Long Term Space Missions Using Advanced Life Support
NASA Technical Reports Server (NTRS)
Cruthirds, John E.
2003-01-01
A habitat for long duration missions which utilizes Advanced Life Support (ALS), the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex), is currently being built at JSC. In this system all consumables will be recycled and reused. In support of this effort, a menu is being planned utilizing ALS crops that will meet nutritional and psychological requirements. The need exists in the food system to identify specific physical quantities that define life support systems from an analysis and modeling perspective. Once these quantities are defined, they need to be fed into a mathematical model that takes into consideration other systems in the BIO-Plex. This model, if successful, will be used to understand the impacts of changes in the food system on the other systems and vice versa. The Equivalent System Mass (ESM) metric has been used to describe systems and subsystems, including the food system options, in terms of the single parameter, mass. There is concern that this approach might not adequately address the important issues of food quality and psychological impact on crew morale of a supply of fiesh food items. In fact, the mass of food can also depend on the quality of the food. This summer faculty fellow project will involve creating an appropriate mathematical model for the food plan developed by the Food Processing System for BIO-Plex. The desired outcome of this work will be a quantitative model that can be applied to the various options of supplying food on long-term space missions.
ERIC Educational Resources Information Center
Capar, Gulfer; Tarim, Kamuran
2015-01-01
This research compiles experimental studies from 1988 to 2010 that examined the influence of the cooperative learning method, as compared with that of traditional methods, on mathematics achievement and on attitudes towards mathematics. The related field was searched using the following key words in Turkish "matematik ve isbirlikli ögrenme,…
Using the Scientific Method to Engage Mathematical Modeling: An Investigation of pi
ERIC Educational Resources Information Center
Archer, Lester A. C.; Ng, Karen E.
2016-01-01
The purpose of this paper is to explain how to use the scientific method as the framework to introduce mathematical model. Two interdisciplinary activities, targeted for students in grade 6 or grade 7, are explained to show the application of the scientific method while building a mathematical model to investigate the relationship between the…
Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)
ERIC Educational Resources Information Center
Leigh-Lancaster, David; Les, Magdalena; Evans, Michael
2010-01-01
2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…
In-Situ Assays Using a New Advanced Mathematical Algorithm - 12400
Oginni, B.M.; Bronson, F.L.; Field, M.B.; Lamontagne, J.; LeBlanc, P.J.; Morris, K.E.; Mueller, W.F.; Atrashkevich, V.
2012-07-01
Current mathematical efficiency modeling software for in-situ counting, such as the commercially available In-Situ Object Calibration Software (ISOCS), typically allows the description of measurement geometries via a list of well-defined templates which describe regular objects, such as boxes, cylinder, or spheres. While for many situations, these regular objects are sufficient to describe the measurement conditions, there are occasions in which a more detailed model is desired. We have developed a new all-purpose geometry template that can extend the flexibility of current ISOCS templates. This new template still utilizes the same advanced mathematical algorithms as current templates, but allows the extension to a multitude of shapes and objects that can be placed at any location and even combined. In addition, detectors can be placed anywhere and aimed at any location within the measurement scene. Several applications of this algorithm to in-situ waste assay measurements, as well as, validations of this template using Monte Carlo calculations and experimental measurements are studied. Presented in this paper is a new template of the mathematical algorithms for evaluating efficiencies. This new template combines all the advantages of the ISOCS and it allows the use of very complex geometries, it also allows stacking of geometries on one another in the same measurement scene and it allows the detector to be placed anywhere in the measurement scene and pointing in any direction. We have shown that the template compares well with the previous ISOCS software within the limit of convergence of the code, and also compare well with the MCNPX and measured data within the joint uncertainties for the code and the data. The new template agrees with ISOCS to within 1.5% at all energies. It agrees with the MCNPX to within 10% at all energies and it agrees with most geometries within 5%. It finally agrees with measured data to within 10%. This mathematical algorithm can now be
ERIC Educational Resources Information Center
Stanford Univ., CA. School Mathematics Study Group.
This text is the fourth of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. This text begins with a brief discussion of quadratic equations which motivates the…
Tailoring Modified Moore Method Techniques to Liberal Arts Mathematics Courses
ERIC Educational Resources Information Center
Hitchman, Theron J.; Shaw, Douglas
2015-01-01
Inquiry-based learning (IBL) techniques can be used in mathematics courses for non-majors, such as courses required for liberal arts majors to fulfill graduation requirements. Unique challenges are discussed, followed by adaptations of IBL techniques to overcome those challenges.
Interactive, Learner-Centered Methods of Teaching Mathematics
ERIC Educational Resources Information Center
Alsardary, Salar; Blumberg, Phyllis
2009-01-01
We describe a learner-centered upper-level mathematics course where the students present the material to the class instead of the instructor, and the students make presentations on applied topics at the regional MAA meeting. After take-home examinations the students can discuss their answers one-on-one with the instructor. The students liked the…
Improving Instruction in the Mathematics Methods Classroom through Action Research
ERIC Educational Resources Information Center
Mostofo, Jameel; Zambo, Ron
2015-01-01
There is a continuing emphasis in the United States on improving students' mathematical abilities, and one approach is to better prepare teachers. To investigate the potential usefulness of Lesson Study to better prepare teachers, one author set out to conduct action research on his classroom practice. Specifically, he sought to determine whether…
ERIC Educational Resources Information Center
Richardson, Sandra
2009-01-01
This article describes experiences from a professional development project designed to prepare in-service eighth-grade mathematics teachers to develop, explore, and advance technological pedagogical content knowledge (TPCK) in the teaching and learning of Algebra I. This article describes the process of the participating teachers' mathematical…
ERIC Educational Resources Information Center
Roschelle, Jeremy; Shechtman, Nicole; Tatar, Deborah; Hegedus, Stephen; Hopkins, Bill; Empson, Susan; Knudsen, Jennifer; Gallagher, Lawrence P.
2010-01-01
The authors present three studies (two randomized controlled experiments and one embedded quasi-experiment) designed to evaluate the impact of replacement units targeting student learning of advanced middle school mathematics. The studies evaluated the SimCalc approach, which integrates an interactive representational technology, paper curriculum,…
ERIC Educational Resources Information Center
Scarborough, Jule Dee
2004-01-01
This document (book) reports on the Strategic Alliance to Advance Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level, funded by National Science Foundation. It was a collaborative partnership involving the Rockford Public Schools, Rock Valley College, and Northern Illinois…
ERIC Educational Resources Information Center
Aneckstein, Laura; Baird, Andrea; Butler, Margaret; Chambers, David; Johnson, Wanda; Kraus, Rebecca; Mann, Eric; Trost, Tami; Zalokar, Nadja; Zieseniss, Mireille
This report focuses on the Office for Civil Rights' (OCR's) activities relating to Title IX and advanced mathematics, science, and technology education for girls. It examines some of the barriers and inequities that undermine girls' opportunities to choose college majors and enter careers in the advanced mathematics, science, and technology…
A Multi-Method Investigation of Mathematics Motivation for Elementary Age Students
ERIC Educational Resources Information Center
Linder, Sandra M.; Smart, Julie B.; Cribbs, Jennifer
2015-01-01
This paper presents the results of a multi-method study examining elementary students with high self-reported levels of mathematics motivation. Second- through fifth-grade students at a Title One school in the southeastern United States completed the Elementary Mathematics Motivation Instrument (EMMI), which examines levels of mathematics…
Structural and Conceptual Interweaving of Mathematics Methods Coursework and Field Practica
ERIC Educational Resources Information Center
Bahr, Damon L.; Monroe, Eula Ewing; Eggett, Dennis
2014-01-01
This paper describes a study of observed relationships between the design of a preservice elementary mathematics methods course with accompanying field practicum and changes in the extent to which participating prospective teachers identified themselves with the mathematics reform movement after becoming practicing teachers. The curriculum of the…
Using History of Mathematics to Teach Volume Formula of Frustum Pyramids: Dissection Method
ERIC Educational Resources Information Center
Butuner, Suphi Onder
2015-01-01
Within recent years, history of mathematics (HoM) has become an increasingly popular topic. Studies have shown that student reactions to it depend on the ways they use history of mathematics. The present action research study aimed to make students deduce volume rules of frustum pyramids using the dissection method. Participants were 24 grade…
A Mixed Method Analysis of the Ohio State University Mathematics Coaching Program Site Visits
ERIC Educational Resources Information Center
Graves, Kristi R.
2012-01-01
The purpose of this mixed-method case study was to uncover the common experiences of 69 first and second year mathematics coaches, bound by their participation in the Mathematics Coaching Program (MCP). Evidence supporting MCP implementation and the evolution of instructional practices were also investigated and reported. Interview, document, and…
Mathematics Achievement: Traditional Instruction and Technology-Assisted Course Delivery Methods
ERIC Educational Resources Information Center
Vilardi, Robert
2013-01-01
The purpose of this study was to analyze technology-assisted course delivery methods to determine their overall effectiveness as it pertains to mathematics courses. This study analyzed both current and historical data in mathematics classes in the areas of achievement, retention, and grade distribution. The goal of this study was to determine if…
Analyzing the Teaching of Advanced Mathematics Courses via the Enacted Example Space
ERIC Educational Resources Information Center
Fukawa-Connelly, Timothy Patrick; Newton, Charlene
2014-01-01
Examples are believed to be very important in developing conceptual understanding of mathematical ideas, useful both in mathematics research and instruction (Bills & Watson in "Educational Studies in Mathematics" 69:77-79, 2008; Mason & Watson, 2008; Bills & Tall, 1998; Tall & Vinner, 1981). In this study, we draw on the…
7 CFR 27.92 - Method of payment; advance deposit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Method of payment; advance deposit. 27.92 Section 27... Micronaire § 27.92 Method of payment; advance deposit. Any payment or advance deposit under this subpart...,” and may not be made in cash except in cases where the total payment or deposit does not exceed...
Advanced electromagnetic methods for aerospace vehicles
NASA Astrophysics Data System (ADS)
Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank
1993-06-01
The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.
Advanced continuous cultivation methods for systems microbiology.
Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo
2015-09-01
Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories. PMID:26220303
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank
1993-01-01
The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank
1993-01-01
The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.
Caries assessment: establishing mathematical link of clinical and benchtop method
NASA Astrophysics Data System (ADS)
Amaechi, Bennett T.
2009-02-01
It is well established that the development of new technologies for early detection and quantitative monitoring of dental caries at its early stage could provide health and economic benefits ranging from timely preventive interventions to reduction of the time required for clinical trials of anti-caries agents. However, the new technologies currently used in clinical setting cannot assess and monitor caries using the actual mineral concentration within the lesion, while a laboratory-based microcomputed tomography (MCT) has been shown to possess this capability. Thus we envision the establishment of mathematical equations relating the measurements of each of the clinical technologies to that of MCT will enable the mineral concentration of lesions detected and assessed in clinical practice to be extrapolated from the equation, and this will facilitate preventitive care in dentistry to lower treatment cost. We utilize MCT and the two prominent clinical caries assessment devices (Quantitative Light-induced Fluorescence [QLF] and Diagnodent) to longitudinally monitor the development of caries in a continuous flow mixed-organisms biofilm model (artificial mouth), and then used the collected data to establish mathematical equation relating the measurements of each of the clinical technologies to that of MCT. A linear correlation was observed between the measurements of MicroCT and that of QLF and Diagnodent. Thus mineral density in a carious lesion detected and measured using QLF or Diagnodent can be extrapolated using the developed equation. This highlights the usefulness of MCT for monitoring the progress of an early caries being treated with therapeutic agents in clinical practice or trials.
Method for counting motor units in mice and validation using a mathematical model.
Major, Lora A; Hegedus, Janka; Weber, Douglas J; Gordon, Tessa; Jones, Kelvin E
2007-02-01
Weakness and atrophy are clinical signs that accompany muscle denervation resulting from motor neuron disease, peripheral neuropathies, and injury. Advances in our understanding of the genetics and molecular biology of these disorders have led to the development of therapeutic alternatives designed to slow denervation and promote reinnervation. Preclinical in vitro research gave rise to the need of a method for measuring the effects in animal models. Our goal was to develop an efficient method to determine the number of motor neurons making functional connections to muscle in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). We developed a novel protocol for motor unit number estimation (MUNE) using incremental stimulation. The method involves analysis of twitch waveforms using a new software program, ITS-MUNE, designed for interactive calculation of motor unit number. The method was validated by testing simulated twitch data from a mathematical model of the neuromuscular system. Computer simulations followed the same stimulus-response protocol and produced waveform data that were indistinguishable from experiments. We show that our MUNE protocol is valid, with high precision and small bias across a wide range of motor unit numbers. The method is especially useful for large muscle groups where MUNE could not be done using manual methods. The results are reproducible across naïve and expert analysts, making it suitable for easy implementation. The ITS-MUNE analysis method has the potential to quantitatively measure the progression of motor neuron diseases and therefore the efficacy of treatments designed to alleviate pathologic processes of muscle denervation. PMID:17151224
Students in Rural Schools Have Limited Access to Advanced Mathematics Courses. Issue Brief No. 7
ERIC Educational Resources Information Center
Graham, Suzanne E.
2009-01-01
This Carsey brief reveals that students in rural areas and small towns have less access to higher-level mathematics courses than students in urban settings, which results in serious educational consequences, including lower scores on assessment tests and fewer qualified students entering science, technology, engineering, and mathematics (STEM) job…
Why Video? How Technology Advances Method
ERIC Educational Resources Information Center
Downing, Martin J., Jr.
2008-01-01
This paper reports on the use of video to enhance qualitative research. Advances in technology have improved our ability to capture lived experiences through visual means. I reflect on my previous work with individuals living with HIV/AIDS, the results of which are described in another paper, to evaluate the effectiveness of video as a medium that…
A review on mathematical methods of conventional and Islamic derivatives
NASA Astrophysics Data System (ADS)
Hisham, Azie Farhani Badrol; Jaffar, Maheran Mohd
2014-12-01
Despite the impressive growth of risk management tools in financial institutions, Islamic finance remains miles away behind the conventional institutions. Islamic finance products need to comply with the syariah law and prohibitions, therefore they can use fewer of the available risk management tools compared to conventional. Derivatives have proven to be the effective hedging technique and instrument that broadly being used in the conventional institutions to manage their risks. However, derivatives are not generally accepted as the legitimate products in Islamic finance and they remain controversial issues among the Islamic scholars. This paper reviews the evolution of derivatives such as forwards, futures and options and then explores the mathematical models that being used to solve derivatives such as random walk model, asset pricing model that follows Brownian motion and Black-Scholes model. Other than that, this paper also critically discuss the perspective of derivatives from Islamic point of view. In conclusion, this paper delivers the traditional Islamic products such as salam, urbun and istijrar that can be used to create building blocks of Islamic derivatives.
Modelling Of Flotation Processes By Classical Mathematical Methods - A Review
NASA Astrophysics Data System (ADS)
Jovanović, Ivana; Miljanović, Igor
2015-12-01
Flotation process modelling is not a simple task, mostly because of the process complexity, i.e. the presence of a large number of variables that (to a lesser or a greater extent) affect the final outcome of the mineral particles separation based on the differences in their surface properties. The attempts toward the development of the quantitative predictive model that would fully describe the operation of an industrial flotation plant started in the middle of past century and it lasts to this day. This paper gives a review of published research activities directed toward the development of flotation models based on the classical mathematical rules. The description and systematization of classical flotation models were performed according to the available references, with emphasize exclusively given to the flotation process modelling, regardless of the model application in a certain control system. In accordance with the contemporary considerations, models were classified as the empirical, probabilistic, kinetic and population balance types. Each model type is presented through the aspects of flotation modelling at the macro and micro process levels.
A mathematical analysis of the GW0 method for computing electronic excited energies of molecules
NASA Astrophysics Data System (ADS)
Cancés, Eric; Gontier, David; Stoltz, Gabriel
2016-06-01
This article is concerned with the GW method for finite electronic systems. In the first step, we provide a mathematical framework for the usual one-body operators that appear naturally in many-body perturbation theory. We then give a rigorous mathematical formulation of the GW0 equations, and study the well-posedness of these equations, proving the existence of a unique solution in a perturbative regime.
NASA Astrophysics Data System (ADS)
Maksimov, F. A.; Churakov, D. A.; Shevelev, Yu. D.
2011-02-01
Complex-geometry design and grid generation are addressed. The gasdynamic equations are solved, and the numerical results are compared with experimental data. For aerodynamic problems, a suite of mathematical and information technology tools is proposed for the support and management of geometric models of actual objects. Based on the mathematical modeling methods developed, numerical experiments can be performed for a wide class of geometric forms and the aerodynamic properties of aircraft can be predicted with allowance for the viscosity effects.
ERIC Educational Resources Information Center
Bahr, Damon; Monroe, Eula E.; Shaha, Steven H.
2013-01-01
The purpose of this study was to compare changes in beliefs of two groups of preservice teachers involved in two types of opportunities to immediately apply methods for teaching accompanying an elementary mathematics methods course. Students in one group applied the methods learned in class through weekly 30-minute peer-teaching sessions, while…
A method of building information extraction based on mathematical morphology and multiscale
NASA Astrophysics Data System (ADS)
Li, Jing-wen; Wang, Ke; Zhang, Zi-ping; Xue, Long-li; Yin, Shou-qiang; Zhou, Song
2015-12-01
In view of monitoring the changes of buildings on Earth's surface ,by analyzing the distribution characteristics of building in remote sensing image, combined with multi-scale in image segmentation and the advantages of mathematical morphology, this paper proposes a multi-scale combined with mathematical morphology of high resolution remote sensing image segmentation method, and uses the multiple fuzzy classification method and the shadow of auxiliary method to extract information building, With the comparison of k-means classification, and the traditional maximum likelihood classification method, the results of experiment object based on multi-scale combined with mathematical morphology of image segmentation and extraction method, can accurately extract the structure of the information is more clear classification data, provide the basis for the intelligent monitoring of earth data and theoretical support.
Method and apparatus for advancing tethers
Zollinger, W. Thor
1998-01-01
A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel.
Method and apparatus for advancing tethers
Zollinger, W.T.
1998-06-02
A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel. 9 figs.
Controlling template erosion with advanced cleaning methods
NASA Astrophysics Data System (ADS)
Singh, SherJang; Yu, Zhaoning; Wähler, Tobias; Kurataka, Nobuo; Gauzner, Gene; Wang, Hongying; Yang, Henry; Hsu, Yautzong; Lee, Kim; Kuo, David; Dress, Peter
2012-03-01
We studied the erosion and feature stability of fused silica patterns under different template cleaning conditions. The conventional SPM cleaning is compared with an advanced non-acid process. Spectroscopic ellipsometry optical critical dimension (SE-OCD) measurements were used to characterize the changes in pattern profile with good sensitivity. This study confirmed the erosion of the silica patterns in the traditional acid-based SPM cleaning mixture (H2SO4+H2O2) at a rate of ~0.1nm per cleaning cycle. The advanced non-acid clean process however only showed CD shift of ~0.01nm per clean. Contamination removal & pattern integrity of sensitive 20nm features under MegaSonic assisted cleaning is also demonstrated.
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.
1992-01-01
The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.
NATO PILOT STUDY ON ADVANCED CANCER RISK ASSESSMENT METHODS
NCEA scientists are participating in a study of advanced cancer risk assessment methods, conducted under the auspices of NATO's Committee on the Challenges of Modern Society. The product will be a book of case studies that illustrate advanced cancer risk assessment methods, avail...
Advanced methods of structural and trajectory analysis for transport aircraft
NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1995-01-01
This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.
ERIC Educational Resources Information Center
Hillman, Thomas
2014-01-01
This article examines mathematical activity with digital technology by tracing it from its development through its use in classrooms. Drawing on material-semiotic approaches from the field of Science and Technology Studies, it examines the visions of mathematical activity that developers had for an advanced graphing calculator. It then follows the…
METSAT: Advanced Microwave Sounding Unit-A2 (AMSU-A2) structural mathematical model
NASA Technical Reports Server (NTRS)
Ely, Wayne
1995-01-01
This plan describes the Structural Mathematical Model of the METSAT AMSU-A2 instrument. The model is used to verify the structural adequacy of the AMSU-A2 instrument for the specified loading environments.
ERIC Educational Resources Information Center
Wood, William B.
2002-01-01
A recently released National Research Council (NRC) report, "Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools", evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study,…
Comparison of mathematical methods of geochemical data processing
NASA Astrophysics Data System (ADS)
Marfin, A.; Lychagin, D. V.; Shapovalov, A.; Alfyorova, E. A.
2015-09-01
We have analyzed the data on concentration of geochemical elements within the 3- DV regional geochemical field. We have determined the fractal dimension index of spider diagrams and found the fractal nature of the distribution of chemical elements along the profile. We have compared these data with the results of the correlation analysis and hierarchical clustering methods. The agreement between the grouping of the elements according to the values of fractal dimension and the results of statistical analysis method was considered satisfactory.
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.
1991-01-01
The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.
Evaluate E-loyalty of sales website: a Fuzzy mathematics method
NASA Astrophysics Data System (ADS)
Yi, Ying; Liu, Zhen-Yu; Xiong, Ying-Zi
The study about online consumer loyalty is limited, but how to evaluate the customers' E-loyalty to a sales website is always a noticeable question. By using some methods of fuzzy mathematics, we provide a more accurate way to evaluate E-loyalty of sales website. Moreover, this method can differentiate level and degree of each factor that influences E-loyalty.
ERIC Educational Resources Information Center
Duxbury, Mark
2004-01-01
An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…
Method to Your Mathness. A Teacher Resource Manual for ABE/GED Mathematics Teachers.
ERIC Educational Resources Information Center
Daviau, Kathie; And Others
Based on research and teacher experience, this resource guide contains teaching methods and activities that teachers can use in teaching mathematics to adult basic education and General Educational Development students. The following eight sections are included: (1) an alternative method for teaching percents; (2) unit conversion or dimensional…
Using Mixed Methods to Analyze Video Data: A Mathematics Teacher Professional Development Example
ERIC Educational Resources Information Center
DeCuir-Gunby, Jessica T.; Marshall, Patricia L.; McCulloch, Allison W.
2012-01-01
This article uses data from 65 teachers participating in a K-2 mathematics professional development research project as an example of how to analyze video recordings of teachers' classroom lessons using mixed methods. Through their discussion, the authors demonstrate how using a mixed methods approach to classroom video analysis allows researchers…
ERIC Educational Resources Information Center
Große, Cornelia S.
2014-01-01
It is commonly suggested to mathematics teachers to present learners different methods in order to solve one problem. This so-called "learning with multiple solution methods" is also recommended from a psychological point of view. However, existing research leaves many questions unanswered, particularly concerning the effects of…
ERIC Educational Resources Information Center
Magee, Paula A.; Flessner, Ryan
2012-01-01
This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…
NASA Astrophysics Data System (ADS)
Blom, P. S.; Arrowsmith, S.; Marcillo, O. E.
2014-12-01
The Bayesian Infrasonic Source Localization (BISL) framework for estimating the location and time of an infrasonic event using distant observations was proposed in 2010 and expanded in 2013 to allow inclusion of propagation based priors. Recently, modifications to the mathematical framework have been made to remove redundancies in the parameter space and generalize the framework. Such modifications are aimed at improving the performance and efficiency of the method. This new mathematical formulation has been implemented using the Python scripting language and is planned to be included in the InfraPy software package alongside the existing detection and association methods. The details of the new mathematical framework and its implementation will be presented along with results of performance tests. IMS data has been used to evaluate the method at global distances and infrasound from the smaller scale explosions provides an opportunity to study regional performance.
Mathematical Methods for the Analysis of Polycrystal Phase Evolutions
NASA Astrophysics Data System (ADS)
Zlokazov, V. B.; Bobrikov, I. A.; Balagurov, A. M.
2016-02-01
Two methods for an automatic analysis of the temporal evolution of a multiphase polycrystalline sample are described:
The paper describes difficulties of an automatic analysis securing the convergence of a non-linear and at the same time non-stationary fitting. The evolution of the polycrystalline compound CuFe2O4 with the temperature T in the range from 300 to 500 degrees Celsius illustrates the performance of the methods.
Low-Threshold Active Teaching Methods for Mathematic Instruction
ERIC Educational Resources Information Center
Marotta, Sebastian M.; Hargis, Jace
2011-01-01
In this article, we present a large list of low-threshold active teaching methods categorized so the instructor can efficiently access and target the deployment of conceptually based lessons. The categories include teaching strategies for lecture on large and small class sizes; student action individually, in pairs, and groups; games; interaction…
Advanced particulate matter control apparatus and methods
Miller, Stanley J.; Zhuang, Ye; Almlie, Jay C.
2012-01-10
Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.
Advanced spectral methods for climatic time series
Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.
2002-01-01
The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.
Advanced verification methods for OVI security ink
NASA Astrophysics Data System (ADS)
Coombs, Paul G.; McCaffery, Shaun F.; Markantes, Tom
2006-02-01
OVI security ink +, incorporating OVP security pigment* microflakes, enjoys a history of effective document protection. This security feature provides not only first-line recognition by the person on the street, but also facilitates machine-readability. This paper explores the evolution of OVI reader technology from proof-of-concept to miniaturization. Three different instruments have been built to advance the technology of OVI machine verification. A bench-top unit has been constructed which allows users to automatically verify a multitude of different banknotes and OVI images. In addition, high speed modules were fabricated and tested in a state of the art banknote sorting machine. Both units demonstrate the ability of modern optical components to illuminate and collect light reflected from the interference platelets within OVI ink. Electronic hardware and software convert and process the optical information in milliseconds to accurately determine the authenticity of the security feature. Most recently, OVI ink verification hardware has been miniaturized and simplified providing yet another platform for counterfeit protection. These latest devices provide a tool for store clerks and bank tellers to unambiguously determine the validity of banknotes in the time period it takes the cash drawer to be opened.
Indentation Methods in Advanced Materials Research Introduction
Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.
2009-01-01
Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.
Advances in methods for deepwater TLP installations
Wybro, P.G.
1995-10-01
This paper describes a method suitable for installing deepwater TLP structures in water depths beyond 3,000 ft. An overview is presented of previous TLP installation, wherein an evaluation is made of the various methods and their suitability to deepwater applications. A novel method for installation of deepwater TLP`s is described. This method of installation is most suitable for deepwater and/or large TLP structures, but can also be used in moderate water depth as well. The tendon installation method utilizes the so-called Platform Arrestor Concept (PAC), wherein tendon sections are transported by barges to site, and assembled vertically using a dynamically position crane vessel. The tendons are transferred to the platform where they are hung off until there are a full complement of tendons. The hull lock off operation is performed on all tendons simultaneously, avoiding dangerous platform resonant behavior. The installation calls for relatively simple installation equipment, and also enables the use of simple tendon tie-off equipment, such as a single piece nut.
Advanced reliability method for fatigue analysis
NASA Technical Reports Server (NTRS)
Wu, Y.-T.; Wirsching, P. H.
1984-01-01
When design factors are considered as random variables and the failure condition cannot be expressed by a closed form algebraic inequality, computations of risk (or probability of failure) may become extremely difficult or very inefficient. This study suggests using a simple and easily constructed second degree polynomial to approximate the complicated limit state in the neighborhood of the design point; a computer analysis relates the design variables at selected points. Then a fast probability integration technique (i.e., the Rackwitz-Fiessler algorithm) can be used to estimate risk. The capability of the proposed method is demonstrated in an example of a low cycle fatigue problem for which a computer analysis is required to perform local strain analysis to relate the design variables. A comparison of the performance of this method is made with a far more costly Monte Carlo solution. Agreement of the proposed method with Monte Carlo is considered to be good.
Transonic wing analysis using advanced computational methods
NASA Technical Reports Server (NTRS)
Henne, P. A.; Hicks, R. M.
1978-01-01
This paper discusses the application of three-dimensional computational transonic flow methods to several different types of transport wing designs. The purpose of these applications is to evaluate the basic accuracy and limitations associated with such numerical methods. The use of such computational methods for practical engineering problems can only be justified after favorable evaluations are completed. The paper summarizes a study of both the small-disturbance and the full potential technique for computing three-dimensional transonic flows. Computed three-dimensional results are compared to both experimental measurements and theoretical results. Comparisons are made not only of pressure distributions but also of lift and drag forces. Transonic drag rise characteristics are compared. Three-dimensional pressure distributions and aerodynamic forces, computed from the full potential solution, compare reasonably well with experimental results for a wide range of configurations and flow conditions.
Advanced method for making vitreous waste forms
Pope, J.M.; Harrison, D.E.
1980-01-01
A process is described for making waste glass that circumvents the problems of dissolving nuclear waste in molten glass at high temperatures. Because the reactive mixing process is independent of the inherent viscosity of the melt, any glass composition can be prepared with equal facility. Separation of the mixing and melting operations permits novel glass fabrication methods to be employed.
Zeros and Ones in Advanced Mathematics: Transcending the Intimacy of Number.
ERIC Educational Resources Information Center
Nardi, Elena
2000-01-01
Examines how components of the concept of function (variable, domain, and range) and the process-object duality in its nature emerge as highly relevant to student learning in various mathematical contexts related to linear and abstract algebra. (Contains 22 references.) (ASK)
ERIC Educational Resources Information Center
Montiel, Mariana; Bhatti, Uzma
2010-01-01
This article presents an overview of some issues that were confronted when delivering an online second Linear Algebra course (assuming a previous Introductory Linear Algebra course) to graduate students enrolled in a Secondary Mathematics Education program. The focus is on performance in one particular aspect of the course: "change of basis" and…
ERIC Educational Resources Information Center
Leddy, Mark H.
2010-01-01
Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…
Learner-Centered Strategies and Advanced Mathematics: A Study of Students' Perspectives
ERIC Educational Resources Information Center
Ortiz-Robinson, Norma L.; Ellington, Aimee J.
2009-01-01
A number of learner-centered strategies were implemented during a two-semester course in real analysis that is traditionally taught in lecture format. We seek to understand the role that these strategies can have in this proof-intensive theoretical mathematics classroom and the perceived benefits by the students. Although learner-centered…
ERIC Educational Resources Information Center
Dunning, Farzin Khosroshahi
2013-01-01
For the past two decades, the mathematical achievement of American students has been a major concern. Students in traditionally marginalized communities often are affected more and perform less proficient in mathematics due to issues related to teacher effectiveness. One approach to increase teacher effectiveness has been through collaboration.…
Mathematic models for a ray tracing method and its applications in wireless optical communications.
Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan
2010-08-16
This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems. PMID:20721238
Advancing-layers method for generation of unstructured viscous grids
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar
1993-01-01
A novel approach for generating highly stretched grids which is based on a modified advancing-front technique and benefits from the generality, flexibility, and grid quality of the conventional advancing-front-based Euler grid generators is presented. The method is self-sufficient for the insertion of grid points in the boundary layer and beyond. Since it is based on a totally unstructured grid strategy, the method alleviates the difficulties stemming from the structural limitations of the prismatic techniques.
Advanced Electromagnetic Methods for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polycarpou, Anastasis; Birtcher, Craig R.; Georgakopoulos, Stavros; Han, Dong-Ho; Ballas, Gerasimos
1999-01-01
The imminent destructive threats of Lightning on helicopters and other airborne systems has always been a topic of great interest to this research grant. Previously, the lightning induced currents on the surface of the fuselage and its interior were predicted using the finite-difference time-domain (FDTD) method as well as the NEC code. The limitations of both methods, as applied to lightning, were identified and extensively discussed in the last meeting. After a thorough investigation of the capabilities of the FDTD, it was decided to incorporate into the numerical method a subcell model to accurately represent current diffusion through conducting materials of high conductivity and finite thickness. Because of the complexity of the model, its validity will be first tested for a one-dimensional FDTD problem. Although results are not available yet, the theory and formulation of the subcell model are presented and discussed here to a certain degree. Besides lightning induced currents in the interior of an aircraft, penetration of electromagnetic fields through apertures (e.g., windows and cracks) could also be devastating for the navigation equipment, electronics, and communications systems in general. The main focus of this study is understanding and quantifying field penetration through apertures. The simulation is done using the FDTD method and the predictions are compared with measurements and moment method solutions obtained from the NASA Langley Research Center. Cavity-backed slot (CBS) antennas or slot antennas in general have many applications in aircraft-satellite type of communications. These can be flushmounted on the surface of the fuselage and, therefore, they retain the aerodynamic shape of the aircraft. In the past, input impedance and radiation patterns of CBS antennas were computed using a hybrid FEM/MoM code. The analysis is now extended to coupling between two identical slot antennas mounted on the same structure. The predictions are performed
ERIC Educational Resources Information Center
Stevens, Olinger; Leigh, Erika
2012-01-01
Scope and Method of Study: The purpose of the study is to use an empirical approach to identify a simple, economical, efficient, and technically adequate performance measure that teachers can use to assess student growth in mathematics. The current study has been designed to expand the body of research for math CBM to further examine technical…
ERIC Educational Resources Information Center
Shorter, Nichole A.; Young, Cynthia Y.
2011-01-01
This experiment was designed to determine which assessment method: continuous assessment (in the form of daily in-class quizzes), cumulative assessment (in the form of online homework), or project-based learning, best predicted student learning (dependent upon post-test grades) in an undergraduate mathematics course. Participants included 117…
ERIC Educational Resources Information Center
Maarif, Samsul
2016-01-01
The aim of this study was to identify the influence of discovery learning method towards the mathematical analogical ability of junior high school's students. This is a research using factorial design 2x2 with ANOVA-Two ways. The population of this research included the entire students of SMPN 13 Jakarta (State Junior High School 13 of Jakarta)…
A method of generating scratched look calligraphy characters using mathematical morphology
NASA Astrophysics Data System (ADS)
Li, Wei; Hagiwara, Ichiro; Yasui, Takao; Chen, Hu-Awei
2003-10-01
We propose a method to generate scratched look calligraphy characters by mathematical morphology, and it can decide on the number of times of thinning computation and the structuring element and also can know whether the sizes of generated calligraphy characters are same as the original one in theory. By different changed structuring elements, we can get various scratched look calligraphy characters.
ERIC Educational Resources Information Center
Greenseid, Lija O.; Lawrenz, Frances
2011-01-01
This study explores the use of citation analysis methods to assess the influence of program evaluations conducted within the area of science, technology, engineering, and mathematics (STEM) education. Citation analysis is widely used within scientific research communities to measure the relative influence of scientific research enterprises and/or…
ERIC Educational Resources Information Center
Karsai, Istvan; Kampis, George
2010-01-01
Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single relationship between scientific knowledge and scientific method:…
Developing Mathematical Knowledge for Teaching in a Methods Course: The Case of Function
ERIC Educational Resources Information Center
Steele, Michael D.; Hillen, Amy F.; Smith, Margaret S.
2013-01-01
This study describes teacher learning in a teaching experiment consisting of a content-focused methods course involving the mathematical knowledge for teaching function. Prospective and practicing teachers in the course showed growth in their ability to define function, to provide examples of functions and link them to the definition, in the…
ERIC Educational Resources Information Center
Mitchell, Rebecca; Laski, Elida
2013-01-01
Instructors (N = 204) of elementary mathematics methods courses completed a survey assessing the extent to which they stay informed about research related to effective uses of educational technology and the kinds and numbers of educational technologies they include in their courses. Findings indicate that, while they view educational technology…
ERIC Educational Resources Information Center
Crawford, Caroline M.; Brown, Evelyn; Chilelli, Chris
Mathematics methods coursework can be an innovative environment through which to emphasize the integration of real-world data structures and opportunities. These opportunities can create instructionally informative opportunities for learners, as well as inform teacher candidates of innovative teaching tools at their fingertips. NASA offers…
ERIC Educational Resources Information Center
Bastürk, Savas; Tastepe, Mehtap
2015-01-01
The purpose of the study was to examine primary pre-service teachers' difficulties of the teaching of mathematics with micro-teaching method. The participants of the study were 15 third grade pre-service teachers from the department of primary education in the faculty of education. In this grade which includes four sections, there were…
ERIC Educational Resources Information Center
Goodson-Espy, Tracy; Cifarelli, Victor V.; Pugalee, David; Lynch-Davis, Kathleen; Morge, Shelby; Salinas, Tracie
2014-01-01
This study explored how mathematics content and methods courses for preservice elementary and middle school teachers could be improved through the integration of a set of instructional materials based on the National Assessment of Educational Progress (NAEP). A set of eight instructional modules was developed and tested. The study involved 7…
Discrete mathematics, formal methods, the Z schema and the software life cycle
NASA Technical Reports Server (NTRS)
Bown, Rodney L.
1991-01-01
The proper role and scope for the use of discrete mathematics and formal methods in support of engineering the security and integrity of components within deployed computer systems are discussed. It is proposed that the Z schema can be used as the specification language to capture the precise definition of system and component interfaces. This can be accomplished with an object oriented development paradigm.
ERIC Educational Resources Information Center
Crestani, Fabio; Dominich, Sandor; Lalmas, Mounia; van Rijsbergen, Cornelis Joost
2003-01-01
Discusses the importance of research on the use of mathematical, logical, and formal methods in information retrieval to help enhance retrieval effectiveness and clarify underlying concepts of information retrieval. Highlights include logic; probability; spaces; and future research needs. (Author/LRW)
Cost estimating methods for advanced space systems
NASA Technical Reports Server (NTRS)
Cyr, Kelley
1988-01-01
Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.
Advances in organometallic synthesis with mechanochemical methods.
Rightmire, Nicholas R; Hanusa, Timothy P
2016-02-14
Solvent-based syntheses have long been normative in all areas of chemistry, although mechanochemical methods (specifically grinding and milling) have been used to good effect for decades in organic, and to a lesser but growing extent, inorganic coordination chemistry. Organometallic synthesis, in contrast, represents a relatively underdeveloped area for mechanochemical research, and the potential benefits are considerable. From access to new classes of unsolvated complexes, to control over stoichiometries that have not been observed in solution routes, mechanochemical (or 'M-chem') approaches have much to offer the synthetic chemist. It has already become clear that removing the solvent from an organometallic reaction can change reaction pathways considerably, so that prediction of the outcome is not always straightforward. This Perspective reviews recent developments in the field, and describes equipment that can be used in organometallic synthesis. Synthetic chemists are encouraged to add mechanochemical methods to their repertoire in the search for new and highly reactive metal complexes and novel types of organometallic transformations. PMID:26763151
Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective
ERIC Educational Resources Information Center
Suri, Harsh; Clarke, David
2009-01-01
The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…
Advances in LC: bioanalytical method transfer.
Wright, Patricia; Wright, Adrian
2016-09-01
There are three main reasons for transferring from an existing bioanalytical assay to an alternative chromatographic method: speed, cost and sensitivity. These represent a challenge to the analyst in that there is an interplay between these three considerations and one factor is often improved at the expense of another. These three factors act as drivers to encourage technology development and support its uptake. The more recently introduced chromatographic technologies may show significant improvements against one of more of these factors relative to conventional 4.6-mm id reversed-phase HPLC. In this article, some of these new chromatographic approaches will be considered in terms of what they can offer the bioanalysts. PMID:27491842
Current methods and advances in bone densitometry
NASA Technical Reports Server (NTRS)
Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.
1995-01-01
Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.
Current methods and advances in bone densitometry.
Guglielmi, G; Gluer, C C; Majumdar, S; Blunt, B A; Genant, H K
1995-01-01
Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis. PMID:11539928
Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance
Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.
2016-01-01
An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001
Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.
Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W
2016-01-01
An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Choi, Jachoon; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Birtcher, Craig R.
1990-01-01
High- and low-frequency methods to analyze various radiation elements located on aerospace vehicles with combinations of conducting, nonconducting, and energy absorbing surfaces and interfaces. The focus was on developing fundamental concepts, techniques, and algorithms which would remove some of the present limitations in predicting radiation characteristics of antennas on complex aerospace vehicles. In order to accomplish this, the following subjects were examined: (1) the development of techniques for rigorous analysis of surface discontinuities of metallic and nonmetallic surfaces using the equivalent surface impedance concept and Green's function; (2) the effects of anisotropic material on antenna radiation patterns through the use of an equivalent surface impedance concept which is incorporated into the existing numerical electromagnetics computer codes; and (3) the fundamental concepts of precipitation static (P-Static), such as formulations and analytical models. A computer code was used to model the P-Static process on a simple structure. Measurement techniques were also developed to characterized the electrical properties at microwave frequencies. Samples of typical materials used in airframes were tested and the results are included.
Cost estimating methods for advanced space systems
NASA Technical Reports Server (NTRS)
Cyr, Kelley
1994-01-01
NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.
NASA Astrophysics Data System (ADS)
Perdigão, Rui A. P.
2016-04-01
The fundamental stochastic-dynamic coevolution laws governing complex coevolutionary systems are introduced in a mathematical physics framework formally unifying nonlinear stochastic physics with fundamental deterministic interaction laws among spatiotemporally distributed processes. The methodological developments are then used to shed light onto fundamental interactions underlying complex spatiotemporal behaviour and emergence in multiscale hydroclimate dynamics. For this purpose, a mathematical physics framework is presented predicting evolving distributions of hydrologic quantities under nonlinearly coevolving geophysical processes. The functional formulation is grounded on first principles regulating the dynamics of each system constituent and their interactions, therefore its applicability is general and data-independent, not requiring local calibrations. Moreover, it enables the dynamical estimation of hydroclimatic variations in space and time from knowledge at different spatiotemporal conditions, along with the associated uncertainties. This paves the way for a robust physically based prediction of hydroclimatic changes in unsupervised areas (e.g. ungauged basins). Validation is achieved by producing, with the mathematical physics framework, a comprehensive spatiotemporal legacy consistent with the observed distributions along with their statistic-dynamic relations. The similarity between simulated and observed distributions is further assessed with novel robust nonlinear information-theoretic diagnostics. The present study brings to light emerging signatures of structural change in hydroclimate dynamics arising from nonlinear synergies across multiple spatiotemporal scales, and contributes to a better dynamical understanding and prediction of spatiotemporal regimes, transitions, structural changes and extremes in complex coevolutionary systems. This study further sheds light onto a diversity of emerging properties from harmonic to hyper-chaotic in general
Ni, Bing-Jie; Yuan, Zhiguo
2015-12-15
Nitrous oxide (N2O) can be emitted from wastewater treatment contributing to its greenhouse gas footprint significantly. Mathematical modeling of N2O emissions is of great importance toward the understanding and reduction of the environmental impact of wastewater treatment systems. This article reviews the current status of the modeling of N2O emissions from wastewater treatment. The existing mathematical models describing all the known microbial pathways for N2O production are reviewed and discussed. These included N2O production by ammonia-oxidizing bacteria (AOB) through the hydroxylamine oxidation pathway and the AOB denitrification pathway, N2O production by heterotrophic denitrifiers through the denitrification pathway, and the integration of these pathways in single N2O models. The calibration and validation of these models using lab-scale and full-scale experimental data is also reviewed. We conclude that the mathematical modeling of N2O production, while is still being enhanced supported by new knowledge development, has reached a maturity that facilitates the estimation of site-specific N2O emissions and the development of mitigation strategies for a wastewater treatment plant taking into the specific design and operational conditions of the plant. PMID:26451976
Current Advances in Mathematical Modeling of Anti-Cancer Drug Penetration into Tumor Tissues
Kim, MunJu; Gillies, Robert J.; Rejniak, Katarzyna A.
2013-01-01
Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence. PMID:24303366
A mathematical method to estimate the thalamic input to the cerebral cortex
NASA Astrophysics Data System (ADS)
Jradeh, Mouhamad
2011-06-01
The aim of this paper is to develop a new mathematical method to predict the thalamic input to the cerebral cortex. The thalamus projects all over the cortex and receives projections from many brain regions. For that, the thalamic signals can be reasonably introduced in the neural field, as an input signal to the cortex, as already proposed by Robinson and colleagues [1]. By solving an ordinary differential equation, we provide a method to estimate this efferent signal in the brain.
A formal, mathematics oriented method for identifying security risks in information systems.
van Piggelen, H U
1997-01-01
IT security presently lacks the benefits of physics where certain unifying grand principles can be applied. The aim of the method is to provide a technology independent method of identifying components of a system in general, and of information systems in particular. The need for the proposed method is derived from ad hoc character of theories used in the present formal security textbooks. None of these can give the user any guarantee of completeness. The new method is scientifically derived as a method, presented, explained and applied to several interesting topics in the field of health care information systems. Some simple mathematical formulae can be introduced. PMID:10179535
Unstructured viscous grid generation by advancing-front method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar
1993-01-01
A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.
Chifor, Ioana; Mitrea, Alexandru I; Badea, Iulia Clara; Chifor, Radu; Badea, Mindra Eugenia; Mitrea, Paulina; Popa, Sever; Crisan, Maria; Avram, Ramona
2014-01-01
Based on some mathematical and statistical approaches, our study leads to some conclusions concerning the procedures related to the orodental prosthetics. Occlusal equilibration in orodental prosthetics is a major issue because besides motivating patients for a regular daily oral hygiene, it could significantly increase the longevity of FPR. More dental hygiene information should be given after prosthetic treatment and patients should be motivated to attend recalls on a regular basis for professional teeth-cleaning. Interdental cleaning aids should be explained and the patients have to be motivated to use them at least once a day and the using technique should be individualized. Regarding the application of the deformable models theory, implemented in the context of an expert type software environment, it is known that the fact that modelling by advanced methods and techniques based on the deformable surfaces theory increases the efficiency of the dentofacial prosthetics procedures is a domain of great interest in the actual medical research. PMID:25013455
Advanced Ablative Insulators and Methods of Making Them
NASA Technical Reports Server (NTRS)
Congdon, William M.
2005-01-01
Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.
Strategy to Promote Active Learning of an Advanced Research Method
ERIC Educational Resources Information Center
McDermott, Hilary J.; Dovey, Terence M.
2013-01-01
Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…
A Primer In Advanced Fatigue Life Prediction Methods
NASA Technical Reports Server (NTRS)
Halford, Gary R.
2000-01-01
Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.
A Multiple Intelligence Pedagogical Approach in Fifth Grade Mathematics: A Mixed Method Study
ERIC Educational Resources Information Center
Davis, Claudine Davillier
2012-01-01
The need for mathematics intervention has increased tremendously over the years, particularly after the No Child Left Behind Act of 2001.Students who lack basic mathematics skills and students who experience mathematics difficulties greatly benefit from mathematics interventions. This study examined mathematics intervention through the use of the…
Advanced surface paneling method for subsonic and supersonic flow
NASA Technical Reports Server (NTRS)
Erickson, L. L.; Johnson, F. T.; Ehlers, F. E.
1976-01-01
Numerical results illustrating the capabilities of an advanced aerodynamic surface paneling method are presented. The method is applicable to both subsonic and supersonic flow, as represented by linearized potential flow theory. The method is based on linearly varying sources and quadratically varying doublets which are distributed over flat or curved panels. These panels are applied to the true surface geometry of arbitrarily shaped three dimensional aerodynamic configurations.
Advanced stress analysis methods applicable to turbine engine structures
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1985-01-01
Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.
NASA Technical Reports Server (NTRS)
Aiken, E. W.
1980-01-01
A mathematical model of an advanced helicopter is described. The model is suitable for use in control/display research involving piloted simulation. The general design approach for the six degree of freedom equations of motion is to use the full set of nonlinear gravitational and inertial terms of the equations and to express the aerodynamic forces and moments as the reference values and first order terms of a Taylor series expansion about a reference trajectory defined as a function of longitudinal airspeed. Provisions for several different specific and generic flight control systems are included in the model. The logic required to drive various flight control and weapon delivery symbols on a pilot's electronic display is also provided. Finally, the model includes a simplified representation of low altitude wind and turbulence effects. This model was used in a piloted simulator investigation of the effects of control system and display variations for an attack helicopter mission.
Betin, A Yu; Bobrinev, V I; Evtikhiev, N N; Zherdev, A Yu; Zlokazov, E Yu; Lushnikov, D S; Markin, V V; Odinokov, S B; Starikov, S N; Starikov, R S
2013-01-31
A method of computer generation and projection recording of microholograms for holographic memory systems is presented; the results of mathematical modelling and experimental implementation of the method are demonstrated. (holographic memory)
Mathematical correlation of modal-parameter-identification methods via system-realization theory
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1987-01-01
A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.
Mathematical correlation of modal parameter identification methods via system realization theory
NASA Technical Reports Server (NTRS)
Juang, J. N.
1986-01-01
A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.
ERIC Educational Resources Information Center
Ruthven, Kenneth
2014-01-01
Reports from 13 Further Mathematics Knowledge Networks supported by the National Centre for Excellence in the Teaching of Mathematics [NCETM] are analysed. After summarizing basic characteristics of the networks regarding leadership, composition and pattern of activity, each of the following aspects is examined in greater depth: Developmental aims…
NASA Astrophysics Data System (ADS)
Campbell, D. Michael
The lack of preparation, participation, and equal access of students in mathematics and the science education continues to afflict America's high school system (Ratliff, 2001). Additionally, gender and ethnic status have become significant factors as females and minority subgroups such as African Americans and Hispanics continue to be underrepresented in these two subject fields. Recognizing and understanding these trends is extremely important for the future of this country. As fewer minorities and females become involved in advanced mathematics and science curriculum there will be a continued lack of minorities and females in mathematics and science careers. Additionally, this insufficient representation leads to fewer numbers of females and minorities in industry and educational leadership positions in mathematics and science to promote participation and equality in these fields. According to Brainard and Carlin (2003) as trends currently stand, these two groups will be under-represented in the fields of math and science and will continue to be denied economic and social power. Thus, a better understanding of these trends in participation in mathematics and science among these groups of students is warranted. This study is intended to accomplish four objectives. The first objective is to identify the extent to which opportunities are increasing or decreasing for students in high schools taking mathematics and science Advanced Placement exams by examining six years of student testing data from the College Board. A second objective is to identify features of high schools that relate to greater expansion in Advanced Placement test taking for females and minority groups in the areas of both math and science. A third objective is to explore whether, and to what extent, any social or educational features such as economic status, regional school and living locations, and ethnic backgrounds have enhanced or reduced Advanced Placement testing in these schools. Lastly
ERIC Educational Resources Information Center
Im, Seongah; Park, Hye Jin
2010-01-01
The purposes of the present study were (a) to compare US and Korean 8th graders' mastery of knowledge and skills in the mathematics test of the Trends in International Mathematics and Science Study (TIMSS) 2003 using a cognitive diagnostic testing method and (b) to find links between teachers' instruction and students' mastery of mathematics…
Becoming a Teacher Educator: A Self-Study of the Use of Inquiry in a Mathematics Methods Course
ERIC Educational Resources Information Center
Marin, Katherine Ariemma
2014-01-01
This article details the self-study of a beginning teacher educator in her first experience in teaching a mathematics methods course. The transition from teacher to teacher educator is explored through the experience of a course focused on inquiry. Inquiry is embedded within the course from two perspectives: mathematical inquiry and teaching as…
ERIC Educational Resources Information Center
Swars, Susan Lee; Chestnutt, Cliff
2016-01-01
This mixed methods study explored elementary teachers' (n = 73) experiences with and perspectives on the recently implemented Common Core State Standards for Mathematics (CCSS-Mathematics) at a high-needs, urban school. Analysis of the survey, questionnaire, and interview data reveals the findings cluster around: familiarity with and preparation…
METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY
The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...
Advanced boundary layer transition measurement methods for flight applications
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.
1986-01-01
In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.
Zhang, Li; Gan, John Q; Wang, Haixian
2015-10-01
Based on the neural efficiency hypothesis and task-induced EEG gamma-band response (GBR), this study investigated the brain regions where neural resource could be most efficiently recruited by the math-gifted adolescents in response to varying cognitive demands. In this experiment, various GBR-based mental states were generated with three factors (level of mathematical ability, task complexity, and short-term learning) modulating the level of neural activation. A feature subset selection method based on the sequential forward floating search algorithm was used to identify an "optimal" combination of EEG channel locations, where the corresponding GBR feature subset could obtain the highest accuracy in discriminating pairwise mental states influenced by each experiment factor. The integrative results from multi-factor selections suggest that the right-lateral fronto-parietal system is highly involved in neural efficiency of the math-gifted brain, primarily including the bilateral superior frontal, right inferior frontal, right-lateral central and right temporal regions. By means of the localization method based on single-trial classification of mental states, new GBR features and EEG channel-based brain regions related to mathematical giftedness were identified, which could be useful for the brain function improvement of children/adolescents in mathematical learning through brain-computer interface systems. PMID:26379800
Using Self-Efficacy as a Construct for Evaluating Science and Mathematics Methods Courses
NASA Astrophysics Data System (ADS)
Brand, Brenda R.; Wilkins, Jesse L. M.
2007-04-01
The focus of this study was elementary preservice teachers’ development as effective teachers of science and mathematics as influenced by their participation in elementary science and mathematics methods courses. Preservice teachers’ reports of factors that influenced their perception of their teaching abilities were analyzed according to Bandura’s (1994) 4 sources of efficacy: mastery experiences, vicarious experiences, social persuasion, and stress reduction. This investigation allowed the researchers to evaluate the courses based on these sources. The analysis indicated all 4 sources influenced preservice teachers’ teaching self-efficacy beliefs, with mastery experiences considered the most influential. Embedded within discussions of mastery experiences were references to the other sources of efficacy, which suggest an interrelationship between mastery experiences and the other sources.
Wagner, Gregory John; Collis, Samuel Scott; Templeton, Jeremy Alan; Lehoucq, Richard B.; Parks, Michael L.; Jones, Reese E.; Silling, Stewart Andrew; Scovazzi, Guglielmo; Bochev, Pavel B.
2007-10-01
This report is a collection of documents written as part of the Laboratory Directed Research and Development (LDRD) project A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators. We present developments in two categories of multiscale mathematics and analysis. The first, continuum-to-continuum (CtC) multiscale, includes problems that allow application of the same continuum model at all scales with the primary barrier to simulation being computing resources. The second, atomistic-to-continuum (AtC) multiscale, represents applications where detailed physics at the atomistic or molecular level must be simulated to resolve the small scales, but the effect on and coupling to the continuum level is frequently unclear.
Domain Decomposition By the Advancing-Partition Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2008-01-01
A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.
NASA Technical Reports Server (NTRS)
Stern, Martin O.
1992-01-01
This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.
Advances and future directions of research on spectral methods
NASA Technical Reports Server (NTRS)
Patera, A. T.
1986-01-01
Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.
The Myth of Objectivity in Mathematics Assessment.
ERIC Educational Resources Information Center
Romagnano, Lew
2001-01-01
Investigates meaningful assessment to give teachers information on students' understanding of mathematical ideas and how their understanding changes over time. Presents examples collected from a teacher-made quiz, the Advanced Placement calculus test, and the SAT-I Mathematics test. Illustrates both the inherent subjectivity of these methods and…
A mathematical model of microbial enhanced oil recovery (MEOR) method for mixed type rock
Sitnikov, A.A.; Eremin, N.A.; Ibattulin, R.R.
1994-12-31
This paper deals with the microbial enhanced oil recovery method. It covers: (1) Mechanism of microbial influence on the reservoir was analyzed; (2) The main groups of metabolites affected by the hydrodynamic characteristics of the reservoir were determined; (3) The criterions of use of microbial influence method on the reservoir are defined. The mathematical model of microbial influence on the reservoir was made on this basis. The injection of molasse water solution with Clostridium bacterias into the mixed type of rock was used in this model. And the results of calculations were compared with experimental data.
An Improved ((G'/G))-expansion Method for Solving Nonlinear PDEs in Mathematical Physics
Zayed, Elsayed M. E.; Al-Joudi, Shorog
2010-09-30
In the present article, we construct the traveling wave solutions of the (1+1)-dimensional coupled Hirota-Satsuma-KdV equations and the (1+1)-dimensional variant coupled Boussinesq system of equations by using an improved ((G'/G))-expansion method, where G satisfies the second order linear ordinary differential equation. As a result, hyperbolic, trigonometric and rational function solutions with parameters are obtained. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.
A mathematical method for XRD pattern interpretation in clay containing nano composites
NASA Astrophysics Data System (ADS)
Khederlou, Kh.; Bagheri, R.; Shojaei, A.
2014-11-01
X-ray diffraction and rheological measurements were used to characterize nanoparticle dispersion in LDPE/LLDPE/nanoclay hybrid nanocomposites. XRD patterns were interpreted with a novel distribution formula and rheological measurements were used to confirm the results. Results of these two methods indicated that increasing clay in all the prepared nanocomposites exhibited a significant improvement in filler-matrix interaction because of increasing the probability of polymer diffusion but further exfoliation need more compatibilizing situations. It seems that this mathematical method could be used for predicting the overall change in clay gallery d-spacing and the extent of intercalation-exfoliation of nanoclay in these systems.
Advances in subtyping methods of foodborne disease pathogens.
Boxrud, Dave
2010-04-01
Current subtyping methods for the detection of foodborne disease outbreaks have limitations that reduce their use by public health laboratories. Recent advances in subtyping of foodborne disease pathogens utilize techniques that identify nucleic acid polymorphisms. Recent methods of nucleic acid characterization such as microarrays and mass spectrometry (MS) may provide improvements such as increasing speed and data portability while decreasing labor compared to current methods. This article discusses multiple-locus variable-number tandem-repeat analysis, single-nucleotide polymorphisms, nucleic acid sequencing, whole genome sequencing, variable absent or present loci, microarrays and MS as potential subtyping methods to enhance our ability to detect foodborne disease outbreaks. PMID:20299203
An advanced probabilistic structural analysis method for implicit performance functions
NASA Technical Reports Server (NTRS)
Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.
1989-01-01
In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.
Fracture Toughness in Advanced Monolithic Ceramics - SEPB Versus SEVENB Methods
NASA Technical Reports Server (NTRS)
Choi, S. R.; Gyekenyesi, J. P.
2005-01-01
Fracture toughness of a total of 13 advanced monolithic ceramics including silicon nitrides, silicon carbide, aluminas, and glass ceramic was determined at ambient temperature by using both single edge precracked beam (SEPB) and single edge v-notched beam (SEVNB) methods. Relatively good agreement in fracture toughness between the two methods was observed for advanced ceramics with flat R-curves; whereas, poor agreement in fracture toughness was seen for materials with rising R-curves. The discrepancy in fracture toughness between the two methods was due to stable crack growth with crack closure forces acting in the wake region of cracks even in SEVNB test specimens. The effect of discrepancy in fracture toughness was analyzed in terms of microstructural feature (grain size and shape), toughening exponent, and stable crack growth determined using back-face strain gaging.
Comparison of two methods of mathematical modeling in hydrodynamic sealing gap
NASA Astrophysics Data System (ADS)
Krutil, Jaroslav; Fojtášek, Kamil; Dvořák, Lukáš
2015-05-01
The aim of work is to compare two possible methods of mathematical modeling of hydrodynamic instabilities. This comparison is performed by monitoring the formation and evolution of Taylor vortices in hydrodynamic sealing gap. Sealing gaps are a part of the hydraulic machines with the impeller, such as turbines and pumps, and they have an effect on the volumetric efficiency of these devices. This work presents two examples of sealing gaps. These examples are closed sealing gap and modified sealing gap with expansion chamber. On these two examples are applied procedures of solution contained in CFD software (ANSYS Fluent 14.5). In ANSYS Fluent is two possible basic approaches of solution this task: the moving wall method and the sliding mesh method. The result of work is monitoring the impact of the expansion chamber on the formation of hydrodynamic instabilities in the sealing gap. Another result is comparison of two used methods of mathematical modeling, which shows that both methods can be used for similar tasks.
ERIC Educational Resources Information Center
Buchheister, Kelley; Jackson, Christa; Taylor, Cynthia E.
2014-01-01
Traditionally, teacher education programs have placed little emphasis on preparing mathematics teachers to work with students who struggle in mathematics. Therefore, it is crucial that mathematics teacher educators explicitly prepare prospective teachers to instruct students who struggle with mathematics by providing strategies and practices that…
Shimayoshi, Takao; Cha, Chae Young; Amano, Akira
2015-01-01
Mathematical cell models are effective tools to understand cellular physiological functions precisely. For detailed analysis of model dynamics in order to investigate how much each component affects cellular behaviour, mathematical approaches are essential. This article presents a numerical analysis technique, which is applicable to any complicated cell model formulated as a system of ordinary differential equations, to quantitatively evaluate contributions of respective model components to the model dynamics in the intact situation. The present technique employs a novel mathematical index for decomposed dynamics with respect to each differential variable, along with a concept named instantaneous equilibrium point, which represents the trend of a model variable at some instant. This article also illustrates applications of the method to comprehensive myocardial cell models for analysing insights into the mechanisms of action potential generation and calcium transient. The analysis results exhibit quantitative contributions of individual channel gating mechanisms and ion exchanger activities to membrane repolarization and of calcium fluxes and buffers to raising and descending of the cytosolic calcium level. These analyses quantitatively explicate principle of the model, which leads to a better understanding of cellular dynamics. PMID:26091413
Advanced stress analysis methods applicable to turbine engine structures
NASA Technical Reports Server (NTRS)
Pian, Theodore H. H.
1991-01-01
The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.
The mathematical model of method for measuring the thermophysical properties of the bulk layer
NASA Astrophysics Data System (ADS)
Balabanov, Pavel; Liubimova, Daria; Savenkov, Alexander
2016-06-01
The mathematical model of method for measuring the thermophysical properties of the bulk layer is described. The method is based on two experiments with one sample of the investigated material. The sample is cooled in the environment at the constant temperature. Moreover, in the first experiment the intensity of the heat transfer is characterized by the value of Biot number Bi → ∞ and in the second experiment Bi =const. After determining from the experimental data the rate of cooling at the first regular mode stage, the thermal conductivity and the thermal diffusivity are determined from the equations of the proposed method. The proposed method is quite cheap and simple in realization and, in practice; it is quite accurate in using for bulk materials.
Advanced preservation methods and nutrient retention in fruits and vegetables.
Barrett, Diane M; Lloyd, Beate
2012-01-15
Despite the recommendations of international health organizations and scientific research carried out around the world, consumers do not take in sufficient quantities of healthy fruit and vegetable products. The use of new, 'advanced' preservation methods creates a unique opportunity for food manufacturers to retain nutrient content similar to that found in fresh fruits and vegetables. This review presents a summary of the published literature regarding the potential of high-pressure and microwave preservation, the most studied of the 'advanced' processes, to retain the natural vitamin A, B, C, phenolic, mineral and fiber content in fruits and vegetables at the time of harvest. Comparisons are made with more traditional preservation methods that utilize thermal processing. Case studies on specific commodities which have received the most attention are highlighted; these include apples, carrots, oranges, tomatoes and spinach. In addition to summarizing the literature, the review includes a discussion of postharvest losses in general and factors affecting nutrient losses in fruits and vegetables. Recommendations are made for future research required to evaluate these advanced process methods. PMID:22102258
Venkataraman, R.; Nakazawa, D.
2012-07-01
Mathematical methods are being increasingly employed in the efficiency calibration of gamma based systems for non-destructive assay (NDA) of radioactive waste and for the estimation of the Total Measurement Uncertainty (TMU). Recently, ASTM (American Society for Testing and Materials) released a standard guide for use of modeling passive gamma measurements. This is a testimony to the common use and increasing acceptance of mathematical techniques in the calibration and characterization of NDA systems. Mathematical methods offer flexibility and cost savings in terms of rapidly incorporating calibrations for multiple container types, geometries, and matrix types in a new waste assay system or a system that may already be operational. Mathematical methods are also useful in modeling heterogeneous matrices and non-uniform activity distributions. In compliance with good practice, if a computational method is used in waste assay (or in any other radiological application), it must be validated or benchmarked using representative measurements. In this paper, applications involving mathematical methods in gamma based NDA systems are discussed with several examples. The application examples are from NDA systems that were recently calibrated and performance tested. Measurement based verification results are presented. Mathematical methods play an important role in the efficiency calibration of gamma based NDA systems. This is especially true when the measurement program involves a wide variety of complex item geometries and matrix combinations for which the development of physical standards may be impractical. Mathematical methods offer a cost effective means to perform TMU campaigns. Good practice demands that all mathematical estimates be benchmarked and validated using representative sets of measurements. (authors)
Lacking a Formal Concept of Limit: Advanced Non-Mathematics Students' Personal Concept Definitions
ERIC Educational Resources Information Center
Beynon, Kenneth A.; Zollman, Alan
2015-01-01
This mixed-methods study examines the conceptual understanding of limit among 22 undergraduate engineering students from two different sections of the same introductory differential equations course. The participants' concepts of limit (concept images and personal concept definitions) were examined using written tasks followed by one-on-one…
Mathematical model of the shooter's position during shooting using Gordon's method
NASA Astrophysics Data System (ADS)
Zulkifli, Wan Nur Syazana Wan; Din, Wan Rozita Wan; Rambely, Azmin Sham
2014-10-01
The aim of this study was to develop a mathematical biomechanical modeling of a shooter's position while firing a rifle for accurate shooting. Gordon's method has been used to develop the model. This model comprises of six kinematic chains of the arms that represent the right shoulder joint, right elbow joint, right wrist joint, left shoulder joint, left elbow joint and left wrist joint. Gordon's method uses Kane's method to formulate the n dynamic equations of motion for n-link planar linkage to be written down without having to derive them. The findings should provide the correct angles of elbows, shoulders and wrist for left and right hands of soldiers while aiming at the target. Torque will be calculated from the model developed and the results obtained can assist the army or sportsman in order to obtain the correct posture while aiming.
NASA Astrophysics Data System (ADS)
Stöltzner, Michael
Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.
Satellite-rocket docking ring recognition method based on mathematical morphology
NASA Astrophysics Data System (ADS)
Xu, Zhiqiang; Shang, Yang; Ma, Xuan
2015-10-01
Satellite-rocket docking ring recognition method based on mathematical morphology is presented in this paper, according to the geometric and grayscale characteristics of the docking ring typical structure. The docking ring used in this paper is a circle with a cross in the middle. Most of spacecrafts are transported into orbit by rocket, and they retain the connection component with the rocket. The tracing spacecraft should capture the target spacecraft first before operating the target spacecraft. The docking ring is one of the typical parts of a spacecraft, and it can be recognized automatically. Thereby we can capture the spacecraft through the information of the docking ring. Firstly a multi-step mathematical morphology processing is applied to the image of the target spacecraft with different structure element, followed by edge detection and line detection, and finally docking ring typical structure is located in the image by relative geometry analysis. The images used in this paper are taken of real satellite in lab. The docking ring can be recognized when the distance between the two spacecraft is different. The results of physical simulation experiment show that the method in this paper can recognize docking ring typical structure accurately when the tracing spacecraft is approaching the target spacecraft.
Shadid, John Nicolas; Lehoucq, Richard B.; Christon, Mark Allen; Slepoy, Alexander; Bochev, Pavel Blagoveston; Collis, Samuel Scott; Wagner, Gregory John
2004-05-01
Existing approaches in multiscale science and engineering have evolved from a range of ideas and solutions that are reflective of their original problem domains. As a result, research in multiscale science has followed widely diverse and disjoint paths, which presents a barrier to cross pollination of ideas and application of methods outside their application domains. The status of the research environment calls for an abstract mathematical framework that can provide a common language to formulate and analyze multiscale problems across a range of scientific and engineering disciplines. In such a framework, critical common issues arising in multiscale problems can be identified, explored and characterized in an abstract setting. This type of overarching approach would allow categorization and clarification of existing models and approximations in a landscape of seemingly disjoint, mutually exclusive and ad hoc methods. More importantly, such an approach can provide context for both the development of new techniques and their critical examination. As with any new mathematical framework, it is necessary to demonstrate its viability on problems of practical importance. At Sandia, lab-centric, prototype application problems in fluid mechanics, reacting flows, magnetohydrodynamics (MHD), shock hydrodynamics and materials science span an important subset of DOE Office of Science applications and form an ideal proving ground for new approaches in multiscale science.
A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics
ERIC Educational Resources Information Center
Liang, Jiajuan; Pan, William S. Y.
2009-01-01
MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…
Safdari, Yaghoub; Farajnia, Safar; Asgharzadeh, Mohammad; Khalili, Masoumeh; Jaliani, Hossein Zarei
2014-02-01
Because they are monovalent for antigen, single chain antibodies display a different antibody-antigen interaction pattern from that of full-length antibodies. Using the law of mass action and considering the antibody-antigen binding pattern at OD-100% and OD-50% points, we introduced a formula for estimating single chain antibody affinity. Sigmoid curves of optical density values versus antibody concentrations were drawn and used to determine antibody concentrations at OD-50% points using statistical software SigmaPlot. The OD-50% points were then used to calculate the affinity via the mathematical formula. A software-adapted format of the equation is also presented for further facilitation of the calculation process. The accuracy of this method for affinity calculation was proved by surface plasma resonance. This method offers a precise evaluation of antibody affinity without requiring special material or apparatus, making it possible to be performed in any biological laboratory with minimum facilities. PMID:24555931
ERIC Educational Resources Information Center
Rogness, Jonathan
2011-01-01
Advances in computer graphics have provided mathematicians with the ability to create stunning visualizations, both to gain insight and to help demonstrate the beauty of mathematics to others. As educators these tools can be particularly important as we search for ways to work with students raised with constant visual stimulation, from video games…
Advanced reactor physics methods for heterogeneous reactor cores
NASA Astrophysics Data System (ADS)
Thompson, Steven A.
To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.
River basin soil-vegetation condition assessment applying mathematic simulation methods
NASA Astrophysics Data System (ADS)
Mishchenko, Natalia; Trifonova, Tatiana; Shirkin, Leonid
2013-04-01
Meticulous attention paid nowadays to the problem of vegetation cover productivity changes is connected also to climate global transformation. At the same time ecosystems anthropogenic transformation, basically connected to the changes of land use structure and human impact on soil fertility, is developing to a great extent independently from climatic processes and can seriously influence vegetation cover productivity not only at the local and regional levels but also globally. Analysis results of land use structure and soil cover condition influence on river basin ecosystems productive potential is presented in the research. The analysis is carried out applying integrated characteristics of ecosystems functioning, space images processing results and mathematic simulation methods. The possibility of making permanent functional simulator defining connection between macroparameters of "phytocenosis-soil" system condition on the basis of basin approach is shown. Ecosystems of river catchment basins of various degrees located in European part of Russia were chosen as research objects. For the integrated assessment of ecosystems soil and vegetation conditions the following characteristics have been applied: 1. Soil-productional potential, characterizing the ability of natural and natural-anthropogenic ecosystem in certain soil-bioclimatic conditions for long term reproduction. This indicator allows for specific phytomass characteristics and ecosystem produce, humus content in soil and bioclimatic parameters. 2. Normalized difference vegetation index (NDVI) has been applied as an efficient, remotely defined, monitoring indicator characterizing spatio-temporal unsteadiness of soil-productional potential. To design mathematic simulator functional simulation methods and principles on the basis of regression, correlation and factor analysis have been applied in the research. Coefficients values defining in the designed static model of phytoproductivity distribution has been
NASA Astrophysics Data System (ADS)
Castellano, M.; Ottaviani, D.; Fontana, A.; Merlin, E.; Pilo, S.; Falcone, M.
2015-09-01
In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.
Methods and Systems for Advanced Spaceport Information Management
NASA Technical Reports Server (NTRS)
Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)
2007-01-01
Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).
Methods and systems for advanced spaceport information management
NASA Technical Reports Server (NTRS)
Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)
2007-01-01
Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).
ERIC Educational Resources Information Center
Shores, Melanie L.; Shannon, David M.; Smith, Tommy G.
2010-01-01
A total of 761 students (58.1% female) from selected fifth- and sixth-grade mathematics classrooms in Alabama were examined to investigate the relationships between individual learner variables (gender, ethnicity, socioeconomic status [SES]) and mathematics performance. Specifically, this portion of the study examined individual learner variables…
Methods of Mathematical and Computational Physics for Industry, Science, and Technology
NASA Astrophysics Data System (ADS)
Melnik, Roderick V. N.; Voss, Frands
2006-11-01
the problem. Under both outlined scenarios, scientists and mathematicians are provided with an opportunity to challenge themselves with real-world problems and to work together in a team on important industrial issues. This issue is a result of selected contributions by participants of the meeting that took place in the Sønderborg area of Denmark, one of the most important centers for information technology, telecommunication and electronics in the country. The meeting was hosted by the University of Southern Denmark in a picturesque area of Southern Jutland. It brought together about 65 participants, among whom were professional mathematicians, engineers, physicists, and industrial participants. The meeting was a truly international one, with delegates from four major Danish Universities, the UK, Norway, Italy, Czech Republic, Turkey, China, Germany, Latvia, Canada, the United States, and Finland. Five challenging projects were presented by leading industrial companies, including Grundfos, Danfoss Industrial Control, Unisensor, and Danfoss Flow Division (now Siemens). The meeting featured also the Mathematics for Industry Workshop with several distinguished international speakers. This volume of Journal of Physics: Conference Series on `Methods of Mathematical and Computational Physics for Industry, Science, and Technology' contains contributions from some of the participants of the workshop as well as the papers produced as a result of collaborative efforts with the above mentioned industrial companies. We would like to thank all authors and participants for their contributions and for bearing with us during the review process and preparation of this issue. We thank also all our referees for their timely and detailed reports. The publication of the proceedings of this meeting in Denmark was delayed due to problems with a previous publisher. We are very grateful that Journal of Physics: Conference Series kindly agreed to publish the proceedings rapidly at this late
ERIC Educational Resources Information Center
Gardner, Martin
1978-01-01
Describes the life and work of Charles Peirce, U.S. mathematician and philosopher. His accomplishments include contributions to logic, the foundations of mathematics and scientific method, and decision theory and probability theory. (MA)
Recent advances in computational structural reliability analysis methods
NASA Technical Reports Server (NTRS)
Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.
1993-01-01
The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.
Advanced superposition methods for high speed turbopump vibration analysis
NASA Technical Reports Server (NTRS)
Nielson, C. E.; Campany, A. D.
1981-01-01
The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.
Exploration of Advanced Probabilistic and Stochastic Design Methods
NASA Technical Reports Server (NTRS)
Mavris, Dimitri N.
2003-01-01
The primary objective of the three year research effort was to explore advanced, non-deterministic aerospace system design methods that may have relevance to designers and analysts. The research pursued emerging areas in design methodology and leverage current fundamental research in the area of design decision-making, probabilistic modeling, and optimization. The specific focus of the three year investigation was oriented toward methods to identify and analyze emerging aircraft technologies in a consistent and complete manner, and to explore means to make optimal decisions based on this knowledge in a probabilistic environment. The research efforts were classified into two main areas. First, Task A of the grant has had the objective of conducting research into the relative merits of possible approaches that account for both multiple criteria and uncertainty in design decision-making. In particular, in the final year of research, the focus was on the comparison and contrasting between three methods researched. Specifically, these three are the Joint Probabilistic Decision-Making (JPDM) technique, Physical Programming, and Dempster-Shafer (D-S) theory. The next element of the research, as contained in Task B, was focused upon exploration of the Technology Identification, Evaluation, and Selection (TIES) methodology developed at ASDL, especially with regards to identification of research needs in the baseline method through implementation exercises. The end result of Task B was the documentation of the evolution of the method with time and a technology transfer to the sponsor regarding the method, such that an initial capability for execution could be obtained by the sponsor. Specifically, the results of year 3 efforts were the creation of a detailed tutorial for implementing the TIES method. Within the tutorial package, templates and detailed examples were created for learning and understanding the details of each step. For both research tasks, sample files and
Lee, Stephen R
2010-01-01
Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge
NASA Astrophysics Data System (ADS)
Kolchev, K. K.; Mezin, S. V.
2015-07-01
A technique for constructing mathematical models simulating the technological processes in thermal power equipment developed on the basis of the statistical approximation method is described. The considered method was used in the developed software module (plug-in) intended for calculating nonlinear mathematical models of gas turbine units and for diagnosing them. The mathematical models constructed using this module are used for describing the current state of a system. Deviations of the system's actual state from the estimate obtained using the mathematical model point to malfunctions in operation of this system. The multidimensional interpolation and approximation method and the theory of random functions serve as a theoretical basis of the developed technique. By using the developed technique it is possible to construct complex static models of plants that are subject to control and diagnostics. The module developed using the proposed technique makes it possible to carry out periodic diagnostics of the operating equipment for revealing deviations from the normal mode of its operation. The specific features relating to construction of mathematical models are considered, and examples of applying them with the use of observations obtained on the equipment of gas turbine units are given.
A method for optimizing waste collection using mathematical programming: a Buenos Aires case study.
Bonomo, Flavio; Durán, Guillermo; Larumbe, Frederico; Marenco, Javier
2012-03-01
A method is proposed that uses operations research techniques to optimize the routes of waste collection vehicles servicing dumpster or skip-type containers. The waste collection problem is reduced to the classic travelling salesman problem, which is then solved using the Concorde solver program. A case study applying the method to the collection system in the southern zone of Buenos Aires is also presented. In addition to the typical minimum distance criterion, the optimization problem incorporates the objective of reducing vehicle wear and tear as measured by the physics concept of mechanical work. The solution approach, employing graph theory and mathematical programming tools, is fully described and the data correction process is also discussed. The application of the proposed method minimized the distance travelled by each collection vehicle in the areas studied, with actual reductions ranging from 10 to 40% of the existing routes. The shortened distances led in turn to substantial decreases in work done and therefore in vehicle wear and tear. Extrapolation of the results to the entire southern zone of Buenos Aires indicates potential savings for the civic authorities of more than US $200,000 per year in addition to the qualitative impacts of less traffic disruption, less vehicle driver fatigue and less pollution. PMID:21460074
Methods of Mathematical and Computational Physics for Industry, Science, and Technology
NASA Astrophysics Data System (ADS)
Melnik, Roderick V. N.; Voss, Frands
2006-11-01
the problem. Under both outlined scenarios, scientists and mathematicians are provided with an opportunity to challenge themselves with real-world problems and to work together in a team on important industrial issues. This issue is a result of selected contributions by participants of the meeting that took place in the Sønderborg area of Denmark, one of the most important centers for information technology, telecommunication and electronics in the country. The meeting was hosted by the University of Southern Denmark in a picturesque area of Southern Jutland. It brought together about 65 participants, among whom were professional mathematicians, engineers, physicists, and industrial participants. The meeting was a truly international one, with delegates from four major Danish Universities, the UK, Norway, Italy, Czech Republic, Turkey, China, Germany, Latvia, Canada, the United States, and Finland. Five challenging projects were presented by leading industrial companies, including Grundfos, Danfoss Industrial Control, Unisensor, and Danfoss Flow Division (now Siemens). The meeting featured also the Mathematics for Industry Workshop with several distinguished international speakers. This volume of Journal of Physics: Conference Series on `Methods of Mathematical and Computational Physics for Industry, Science, and Technology' contains contributions from some of the participants of the workshop as well as the papers produced as a result of collaborative efforts with the above mentioned industrial companies. We would like to thank all authors and participants for their contributions and for bearing with us during the review process and preparation of this issue. We thank also all our referees for their timely and detailed reports. The publication of the proceedings of this meeting in Denmark was delayed due to problems with a previous publisher. We are very grateful that Journal of Physics: Conference Series kindly agreed to publish the proceedings rapidly at this late
Advanced Motion Compensation Methods for Intravital Optical Microscopy
Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph
2013-01-01
Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405
Advancing MODFLOW Applying the Derived Vector Space Method
NASA Astrophysics Data System (ADS)
Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.
2015-12-01
The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)
NASA Astrophysics Data System (ADS)
Li, Ning; Wang, Yan; Xu, Kexin
2006-09-01
Near infrared (NIR) diffuse reflection spectroscopy has been an effective way to perform quantitative analysis without the requirement of sample pretreatnient. In this paper, NIR Fourier transform infrared (FTIR) spectroscopy has been introduced to probe spectral features of traditional Chinese medicine Danshen. Infrared fingerprint spectra of Danshen can be established. Influence of differentiation of spectrum is also discussed. After pretreatment and derivation on the spectral data, methods of principal analysis (PCA), soft independent modeling of class analogy (SIMCA) and Artificial Neural Network (ANN) are combined to sort the geographical origins of 53 samples by local modeling. The result show that, as a basis of the other two methods, PCA is a more efficient one for identifying the geographical origins of Danshen. Combining SIMCA with PCA, an effective model is built to analyze the data after normalization and differentiation, the correct identification rate reaches above 90%. Then 36 samples are chosen as training set while other 17 samples being verifying set. Using ANN-based Back Propagation method, after proper training of BP network, the origins of Danshen are completely classified. Therefore, combined with advanced mathematical analysis, NIR diffuse spectroscopy can be a novel and rapid way to accurately evaluate the origin of Chinese medicine, and also to accelerate the modernization process of Chinese drugs.
ERIC Educational Resources Information Center
Patel, Rita Manubhai
2013-01-01
This dissertation examined understanding of slope and derivative concepts and mathematical dispositions of first-semester college calculus students, who are recent high school graduates, transitioning to university mathematics. The present investigation extends existing research in the following ways. First, based on this investigation, the…
The Impact of Using the Heuristic Teaching Method on Jordanian Mathematics Students
ERIC Educational Resources Information Center
Al-Fayez, Mona Qutefan; Jubran, Sereen Mousa
2012-01-01
This study investigates the impact of using the heuristic teaching approach for teaching mathematics to tenth grade students in Jordan. The researchers followed the equivalent pre/post T test two group designs. To achieve the goal of the study, a pre/post- test was constructed to measure student achievement in mathematics. The sample for this…
ERIC Educational Resources Information Center
Shi, Yixun
2009-01-01
Based on a sequence of points and a particular linear transformation generalized from this sequence, two recent papers (E. Mauch and Y. Shi, "Using a sequence of number pairs as an example in teaching mathematics". Math. Comput. Educ., 39 (2005), pp. 198-205; Y. Shi, "Case study projects for college mathematics courses based on a particular…
Mixed Methods Study Using Constructive Learning Team Model for Secondary Mathematics Teachers
ERIC Educational Resources Information Center
Ritter, Kristy L.
2010-01-01
The constructive learning team model for secondary mathematics teachers (CLTM) was created to provide students with learning opportunities and experiences that address deficiencies in oral and written communication, logical processes and analysis, mathematical operations, independent learning, teamwork, and technology utilization. This study…
The Effects of Gender and Teaching Method on Secondary Students' Mathematics Anxiety
ERIC Educational Resources Information Center
Stevens, Kellie C.
2010-01-01
The purpose of this quantitative action research project was to determine if cooperative learning impacted mathematics anxiety in secondary students compared to direct instruction. This study was based on the concept that mathematics anxiety is an emotional response to the subject and can be reversed. Gender differences were also analyzed. The…
An Excel-Aided Method for Teaching Calculus-Based Business Mathematics
ERIC Educational Resources Information Center
Liang, Jiajuan; Martin, Linda
2008-01-01
Calculus-based business mathematics is a required quantitative course for undergraduate business students in most AACSB accredited schools or colleges of business. Many business students, however, have relatively weak mathematical background or even display math-phobia when presented with calculus problems. Because of the popularity of Excel, its…
Fine Tuning the Teaching Methods Used for Second Year University Mathematics
ERIC Educational Resources Information Center
Lim, L. L.; Thiel, D. V.; Searles, Debra J.
2012-01-01
Second year mathematics is a compulsory course for all students enrolled in engineering and mathematics programmes at the university, and it is taken by approximately 120 students each year. The pass rate of the course had been below expectations in the past years. In order to improve the predicament, quizzes which provided a mark incentive were…
Using Predictor-Corrector Methods in Numerical Solutions to Mathematical Problems of Motion
ERIC Educational Resources Information Center
Lewis, Jerome
2005-01-01
In this paper, the author looks at some classic problems in mathematics that involve motion in the plane. Many case problems like these are difficult and beyond the mathematical skills of most undergraduates, but computational approaches often require less insight into the subtleties of the problems and can be used to obtain reliable solutions.…
ERIC Educational Resources Information Center
Livy, Sharyn; Vale, Colleen
2011-01-01
In this article, pre-service teachers' mathematics content knowledge is explored through the analysis of two items about ratio from a Mathematical Competency, Skills and Knowledge Test. Pre-service teachers' thinking strategies, common errors and misconceptions in their responses are presented and discussed. Of particular interest was the range…
2002-01-01
A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Panel for Biology were that AP courses in particular suffer from inadequate quality control as well as excessive pressure to fulfill their advanced placement function, which encourages teachers to attempt coverage of all areas of biology and emphasize memorization of facts rather than in-depth understanding. In this essay, the Panel's principal findings are discussed, with an emphasis on its recommendation that colleges and universities should be strongly discouraged from using performance on either the AP examination or the IB examination as the sole basis for automatic placement out of required introductory courses for biology majors and distribution requirements for nonmajors. PMID:12669097
A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
Naemi, Roozbeh; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan
2016-03-01
Mechanical behaviour of the heel pad, as a shock attenuating interface during a foot strike, determines the loading on the musculoskeletal system during walking. The mathematical models that describe the force deformation relationship of the heel pad structure can determine the mechanical behaviour of heel pad under load. Hence, the purpose of this study was to propose a method of quantifying the heel pad stress-strain relationship using force-deformation data from an indentation test. The energy input and energy returned densities were calculated by numerically integrating the area below the stress-strain curve during loading and unloading, respectively. Elastic energy and energy absorbed densities were calculated as the sum of and the difference between energy input and energy returned densities, respectively. By fitting the energy function, derived from a nonlinear viscoelastic model, to the energy density-strain data, the elastic and viscous model parameters were quantified. The viscous and elastic exponent model parameters were significantly correlated with maximum strain, indicating the need to perform indentation tests at realistic maximum strains relevant to walking. The proposed method showed to be able to differentiate between the elastic and viscous components of the heel pad response to loading and to allow quantifying the corresponding stress-strain model parameters. PMID:26044551
ERIC Educational Resources Information Center
Brown, Kenneth E.; Johnson, Philip G.
1953-01-01
The Cooperative Committee on the Teaching of Science and Mathematics of the American Association for the Advancement of Science that participated in planning for and publishing this bulletin is composed of representatives of seventeen national scientific and mathematical societies including representatives from the associated teaching…
New advanced control methods for doubly salient permanent magnet motor
Blaabjerg, F.; Christensen, L.; Rasmussen, P.O.; Oestergaard, L.; Pedersen, P.
1995-12-31
High performance and high efficiency in adjustable speed drives are needed and new motor constructions are world wide investigated and analyzed. This paper deals with advanced control of a recently developed Doubly Salient Permanent Magnet (DSPM) motor. The construction of the DSPM motor is shown and a dynamical model of the motor is used for simulations. As supply to the DSPM motor, a power converter with a split capacitor is used to reduce the number of devices, and a basic control method for this converter is explained. This control method will cause an unequal voltage distribution across the capacitors because the motor is asymmetrical and a decrease in efficiency and a poorer dynamic performance are the results. To minimize the problems with the unequal load of the capacitors in the converter, a new charge control strategy is developed. The efficiency of the motor can also be improved by using a power minimizing scheme based on changing the turn-on and turn-off angles of the current. The two different strategies are implemented in an adjustable-speed drive, and it is concluded that both control strategies improve the performance of the drive.
Strong Inference in Mathematical Modeling: A Method for Robust Science in the Twenty-First Century
Ganusov, Vitaly V.
2016-01-01
While there are many opinions on what mathematical modeling in biology is, in essence, modeling is a mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions. Only when this tool is applied appropriately, as microscope is used to look at small items, it may allow to understand importance of specific mechanisms/assumptions in biological processes. Mathematical modeling can be less useful or even misleading if used inappropriately, for example, when a microscope is used to study stars. According to some philosophers (Oreskes et al., 1994), the best use of mathematical models is not when a model is used to confirm a hypothesis but rather when a model shows inconsistency of the model (defined by a specific set of assumptions) and data. Following the principle of strong inference for experimental sciences proposed by Platt (1964), I suggest “strong inference in mathematical modeling” as an effective and robust way of using mathematical modeling to understand mechanisms driving dynamics of biological systems. The major steps of strong inference in mathematical modeling are (1) to develop multiple alternative models for the phenomenon in question; (2) to compare the models with available experimental data and to determine which of the models are not consistent with the data; (3) to determine reasons why rejected models failed to explain the data, and (4) to suggest experiments which would allow to discriminate between remaining alternative models. The use of strong inference is likely to provide better robustness of predictions of mathematical models and it should be strongly encouraged in mathematical modeling-based publications in the Twenty-First century. PMID:27499750
ERIC Educational Resources Information Center
Sackes, Mesut; Flevares, Lucia M.; Gonya, Jennifer; Trundle, Kathy Cabe
2012-01-01
The purpose of this study was to explore the impact of an integrated science and mathematics methods course on preservice early childhood teachers' efficacy beliefs for integrating these content areas. Thirty-four preservice teachers participated in this study, which utilized a quasi-experimental design with two treatment groups. Participants in…
ERIC Educational Resources Information Center
Swift, Elijah Raford, Jr.
2012-01-01
The purpose of this study was to address the gap in research regarding the use of cooperative learning instructional methods in college mathematics courses to prepare future teachers. Bruner's constructivist theory and social interdependence theory guided this study. The research questions focused on the effects of the use of cooperative…
ERIC Educational Resources Information Center
Isik, Dilek; Tarim, Kamuran
2009-01-01
In the present experimental study, the effects of the cooperative learning method supported by multiple intelligence theory (CLMI) on elementary school fourth grade students' academic achievement and retention towards the mathematics course were investigated. The participants of the study were 150 students who were divided into two experimental…
Édeleva, A N; Proĭdakova, E V
2014-01-01
The objective of the present study was to analyse the financial support of forensic medical research with the application of mathematical methods based at the Nizhni Novgorod Regional Bureau of Forensic Medical Expertise. The authors elaborated the prognosis of the expenses for the forensic medical expertise of the corpses of the elderly and senile subjects. PMID:25764903
ERIC Educational Resources Information Center
Kesianye, Sesutho; Garegae, Kgomotso; Chakalisa, Paul; Mogotsi, Salome
2014-01-01
This study, a survey of University of Botswana mathematics pre-service student-teachers taking introductory methods courses, was conducted to find aspects of the courses they perceived to be their priority learning desires. It aimed at evaluating whether student-teachers perceived ideas could be tapped into towards improvement of the teacher…
ERIC Educational Resources Information Center
Birgin, Osman
2011-01-01
The purpose of this study was to ascertain the views of pre-service mathematics (PSM) teachers on the use of portfolios as an alternative assessment method. This study was conducted with 146 Turkish PSM teachers participating in a semester-long portfolio assessment application. Data were collected with a questionnaire comprising 34 items on a…
ERIC Educational Resources Information Center
Khachatryan, George A.; Romashov, Andrey V.; Khachatryan, Alexander R.; Gaudino, Steven J.; Khachatryan, Julia M.; Guarian, Konstantin R.; Yufa, Nataliya V.
2014-01-01
Effective mathematics teachers have a large body of professional knowledge, which is largely undocumented and shared by teachers working in a given country's education system. The volume and cultural nature of this knowledge make it particularly challenging to share curricula and instructional methods between countries. Thus, approaches based…
ERIC Educational Resources Information Center
Tatar, Enver; Dikici, Ramazan
2009-01-01
The purpose of this study was to determine the efficiency of 4MAT method of instruction in which learning style and cerebral hemispheres are taken into account in teaching the binary operation and its properties in mathematics. The sample of this study comprised 58 ninth grade students in two separate classes in a high school. One of the classes…
NASA Astrophysics Data System (ADS)
Katsaounis, T. D.
2005-02-01
The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using
A computerized method for mathematical description of three-dimensional root canal axis.
Dobó-Nagy, C; Keszthelyi, G; Szabó, J; Sulyok, P; Ledeczky, G; Szabó, J
2000-11-01
Knowledge of the three-dimensional (3D) morphology of root canals is important for successful endodontic treatment. The objective of the present study was to determine the 3D root canal axis mathematically. Two views (mesiodistal and buccolingual) of digitized images were taken from extracted natural human teeth. Geometric reconstruction to standardize projection geometry was conducted on images. Because 90-degree turn-around image pairs are Monge images of a given root canal, these Monge images were positioned using photogrammetric methods. Each well-ordered axis pair of a given root canal was put into a common coordinate system resulting in 3D polynomial function of the actual root canal. On the basis of the results gained using 10 samples evaluated with the Friedman statistical test, this description seems to be reproducible. The 3D representation of the root canal may help the clinicians in choosing the optimal instruments and shaping techniques. The root canal axis that is described by the 3D function forms a basis for determination of curvature values and torsion values in each of the axis points. Evaluating these values may also yield a new type of classification. PMID:11469291
Kim, Hyung Chul; Wallington, Timothy J; Sullivan, John L; Keoleian, Gregory A
2015-08-18
Lightweighting is a key strategy to improve vehicle fuel economy. Assessing the life-cycle benefits of lightweighting requires a quantitative description of the use-phase fuel consumption reduction associated with mass reduction. We present novel methods of estimating mass-induced fuel consumption (MIF) and fuel reduction values (FRVs) from fuel economy and dynamometer test data in the U.S. Environmental Protection Agency (EPA) database. In the past, FRVs have been measured using experimental testing. We demonstrate that FRVs can be mathematically derived from coast down coefficients in the EPA vehicle test database avoiding additional testing. MIF and FRVs calculated for 83 different 2013 MY vehicles are in the ranges 0.22-0.43 and 0.15-0.26 L/(100 km 100 kg), respectively, and increase to 0.27-0.53 L/(100 km 100 kg) with powertrain resizing to retain equivalent vehicle performance. We show how use-phase fuel consumption can be estimated using MIF and FRVs in life cycle assessments (LCAs) of vehicle lightweighting from total vehicle and vehicle component perspectives with, and without, powertrain resizing. The mass-induced fuel consumption model is illustrated by estimating lifecycle greenhouse gas (GHG) emission benefits from lightweighting a grille opening reinforcement component using magnesium or carbon fiber composite for 83 different vehicle models. PMID:26168234
Glimm, J.
2009-10-14
Progress for the past decade or so has been extraordinary. The solution of Fermat's Last Theorem [11] and of the Poincare Conjecture [1] have resolved two of the most outstanding challenges to mathematics. For both cases, deep and advanced theories and whole subfields of mathematics came into play and were developed further as part of the solutions. And still the future is wide open. Six of the original seven problems from the Clay Foundation challenge remain open, the 23 DARPA challenge problems are open. Entire new branches of mathematics have been developed, including financial mathematics and the connection between geometry and string theory, proposed to solve the problems of quantized gravity. New solutions of the Einstein equations, inspired by shock wave theory, suggest a cosmology model which fits accelerating expansion of the universe possibly eliminating assumptions of 'dark matter'. Intellectual challenges and opportunities for mathematics are greater than ever. The role of mathematics in society continues to grow; with this growth comes new opportunities and some growing pains; each will be analyzed here. We see a broadening of the intellectual and professional opportunities and responsibilities for mathematicians. These trends are also occuring across all of science. The response can be at the level of the professional societies, which can work to deepen their interactions, not only within the mathematical sciences, but also with other scientific societies. At a deeper level, the choices to be made will come from individual mathematicians. Here, of course, the individual choices will be varied, and we argue for respect and support for this diversity of responses. In such a manner, we hope to preserve the best of the present while welcoming the best of the new.
Dahari, Harel; Layden-Almer, Jennifer E.; Kallwitz, Eric; Ribeiro, Ruy M.; Cotler, Scott J.; Layden, Thomas J.; Perelson, Alan S.
2010-01-01
Background & Aims Patients with baseline hepatitis C virus-RNA levels (bHCV-RNA) >6 log IU/ml or cirrhosis have a reduced probability of a sustained-virological response (SVR). We examined the relationship between bHCV-RNA, cirrhosis and SVR using a mathematical model that includes the critical-drug efficacy (εc; the efficacy required for a drug to clear HCV), the infection-rate constant (β) and the percentage of HCV-infected hepatocytes (π). Methods The relationship between baseline factors and SVR was evaluated in 1,000 in silico HCV-infected patients, generated by randomly assignment of realistic host and viral kinetic parameters. Model predictions were compared with clinical data from 170 non-cirrhotic and 75 cirrhotic patients. Results The ranges chosen for β and the viral production rate (p) resulted in bHCV-RNA levels that were in agreement with the distribution observed in US patients. Using these β and p values, higher bHCV-RNA levels led to higher εc, resulting in lower SVR rates. Alternatively, higher β values resulted in lower bHCV-RNA levels but higher π and εc, predicting lower rates of SVR. Cirrhotic patients had lower bHCV-RNA levels than non-cirrhotic patients (p=0.013) and more had bHCV-RNA levels <6 log IU/ml (p<0.001). Even cirrhotic patients with lower bHCV-RNA levels had lower SVR rates. An increase in β could explain the results observed in cirrhotic patients. Conclusions Our model predicts that higher bHCV-RNA levels lead to higher εc, reducing the chance of achieving SVR; cirrhotic patients have lower SVR rates because of large π values, caused by increased rates of hepatocyte infection. PMID:19208338
Mathematical Methods in Counterterrorism: Tools and Techniques for a New Challenge
NASA Astrophysics Data System (ADS)
Hicks, David L.; Memon, Nasrullah; Farley, Jonathan D.; Rosenørn, Torben
Throughout the years mathematics has served as the most basic and fundamental tool employed by scientists and researchers to study and describe a wide variety of fields and phenomena. One of the most important practical application areas of mathematics has been for national defense and security purposes. For example, during the Second World War, the mathematical principles underlying game theory and cryptography played a very important role in military planning. Since that time, it has become clear that mathematics has an important role to play in securing victory in any global conflict, including the struggle faced by national security and law enforcement officials in the fight against those engaged in terrorism and other illicit activities.
A Mathematics Software Database Update.
ERIC Educational Resources Information Center
Cunningham, R. S.; Smith, David A.
1987-01-01
Contains an update of an earlier listing of software for mathematics instruction at the college level. Topics are: advanced mathematics, algebra, calculus, differential equations, discrete mathematics, equation solving, general mathematics, geometry, linear and matrix algebra, logic, statistics and probability, and trigonometry. (PK)
Advances in the analysis of iminocyclitols: Methods, sources and bioavailability.
Amézqueta, Susana; Torres, Josep Lluís
2016-05-01
Iminocyclitols are chemically and metabolically stable, naturally occurring sugar mimetics. Their biological activities make them interesting and extremely promising as both drug leads and functional food ingredients. The first iminocyclitols were discovered using preparative isolation and purification methods followed by chemical characterization using nuclear magnetic resonance spectroscopy. In addition to this classical approach, gas and liquid chromatography coupled to mass spectrometry are increasingly used; they are highly sensitive techniques capable of detecting minute amounts of analytes in a broad spectrum of sources after only minimal sample preparation. These techniques have been applied to identify new iminocyclitols in plants, microorganisms and synthetic mixtures. The separation of iminocyclitol mixtures by chromatography is particularly difficult however, as the most commonly used matrices have very low selectivity for these highly hydrophilic structurally similar molecules. This review critically summarizes recent advances in the analysis of iminocyclitols from plant sources and findings regarding their quantification in dietary supplements and foodstuffs, as well as in biological fluids and organs, from bioavailability studies. PMID:26946023
Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods
Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj
2013-01-01
We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154
Methods for integrating optical fibers with advanced aerospace materials
NASA Astrophysics Data System (ADS)
Poland, Stephen H.; May, Russell G.; Murphy, Kent A.; Claus, Richard O.; Tran, Tuan A.; Miller, Mark S.
1993-07-01
Optical fibers are attractive candidates for sensing applications in near-term smart materials and structures, due to their inherent immunity to electromagnetic interference and ground loops, their capability for distributed and multiplexed operation, and their high sensitivity and dynamic range. These same attributes also render optical fibers attractive for avionics busses for fly-by-light systems in advanced aircraft. The integration of such optical fibers with metal and composite aircraft and aerospace materials, however, remains a limiting factor in their successful use in such applications. This paper first details methods for the practical integration of optical fiber waveguides and cable assemblies onto and into materials and structures. Physical properties of the optical fiber and coatings which affect the survivability of the fiber are then considered. Mechanisms for the transfer of the strain from matrix to fiber for sensor and data bus fibers integrated with composite structural elements are evaluated for their influence on fiber survivability, in applications where strain or impact is imparted to the assembly.
PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods
Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A; Popov, Emilian L
2012-01-01
At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM. To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.
Quantifying hydrate solidification front advancing using method of characteristics
NASA Astrophysics Data System (ADS)
You, Kehua; DiCarlo, David; Flemings, Peter B.
2015-10-01
We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation from gas injection into brine-saturated sediments within the hydrate stability zone. Our solution includes fully coupled multiphase and multicomponent flow and the associated advective transport in a homogeneous system. Our solution shows that hydrate saturation is controlled by the initial thermodynamic state of the system and changed by the gas fractional flow. Hydrate saturation in gas-rich systems can be estimated by 1-cl0/cle when Darcy flow dominates, where cl0 is the initial mass fraction of salt in brine, and cle is the mass fraction of salt in brine at three-phase (gas, liquid, and hydrate) equilibrium. Hydrate saturation is constant, gas saturation and gas flux decrease, and liquid saturation and liquid flux increase with the distance from the gas inlet to the hydrate solidification front. The total gas and liquid flux is constant from the gas inlet to the hydrate solidification front and decreases abruptly at the hydrate solidification front due to gas inclusion into the hydrate phase. The advancing velocity of the hydrate solidification front decreases with hydrate saturation at a fixed gas inflow rate. This analytical solution illuminates how hydrate is formed by gas injection (methane, CO2, ethane, propane) at both the laboratory and field scales.
NASA Astrophysics Data System (ADS)
Wahle, Chris W.; Ross, David S.; Thurston, George M.
2013-09-01
We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.
Yang, L.H.; Ding, Y.M.
2009-07-01
The aim of this article is to discuss the distribution law of the gasification agent concentration in a deep-going way during underground coal gasification and the new method of solving the problem for the convection diffusion of the gas. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. In order to curb such pseudo-physical effects as numerical oscillation and surfeit which frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm, the upstream weighted multi-cell balance method is advanced in this article, and its main derivation process is introduced.
Multiscale Design of Advanced Materials based on Hybrid Ab Initio and Quasicontinuum Methods
Luskin, Mitchell
2014-03-12
This project united researchers from mathematics, chemistry, computer science, and engineering for the development of new multiscale methods for the design of materials. Our approach was highly interdisciplinary, but it had two unifying themes: first, we utilized modern mathematical ideas about change-of-scale and state-of-the-art numerical analysis to develop computational methods and codes to solve real multiscale problems of DOE interest; and, second, we took very seriously the need for quantum mechanics-based atomistic forces, and based our methods on fast solvers of chemically accurate methods.
Electrochemical test methods for advanced battery and semiconductor technology
NASA Astrophysics Data System (ADS)
Hsu, Chao-Hung
This dissertation consists of two studies. The first study was the evaluation of metallic materials for advanced lithium ion batteries and the second study was the determination of the dielectric constant k for the low-k materials. The advanced lithium ion battery is miniature for implantable medical devices and capable of being recharged from outside of the body using magnetic induction without physical connections. The stability of metallic materials employed in the lithium ion battery is one of the major safety concerns. Three types of materials---Pt-Ir alloy, Ti alloys, and stainless steels---were evaluated extensively in this study. The electrochemical characteristics of Pt-Ir alloy, Ti alloys, and stainless steels were evaluated in several types of battery electrolytes in order to determine the candidate materials for long-term use in lithium ion batteries. The dissolution behavior of these materials and the decomposition behavior of the battery electrolyte were investigated using the anodic potentiodynamic polarization (APP) technique. Lifetime prediction for metal dissolution was conducted using constant potential polarization (CPP) technique. The electrochemical impedance spectroscopy (EIS) technique was employed to investigate the metal dissolution behavior or the battery electrolyte decomposition at the open circuit potential (OCP). The scanning electron microscope (SEM) was used to observe the morphology changes after these tests. The effects of experimental factors on the corrosion behaviors of the metallic materials and stabilities of the battery electrolytes were also investigated using the 23 factorial design approach. Integration of materials having low dielectric constant k as interlayer dielectrics and/or low-resistivity conductors will partially solve the RC delay problem for the limiting performance of high-speed logic chips. The samples of JSR LKD 5109 material capped by several materials were evaluated by using EIS. The feasibility of using
Development and Applications of Advanced Electronic Structure Methods
NASA Astrophysics Data System (ADS)
Bell, Franziska
This dissertation contributes to three different areas in electronic structure theory. The first part of this thesis advances the fundamentals of orbital active spaces. Orbital active spaces are not only essential in multi-reference approaches, but have also become of interest in single-reference methods as they allow otherwise intractably large systems to be studied. However, despite their great importance, the optimal choice and, more importantly, their physical significance are still not fully understood. In order to address this problem, we studied the higher-order singular value decomposition (HOSVD) in the context of electronic structure methods. We were able to gain a physical understanding of the resulting orbitals and proved a connection to unrelaxed natural orbitals in the case of Moller-Plesset perturbation theory to second order (MP2). In the quest to find the optimal choice of the active space, we proposed a HOSVD for energy-weighted integrals, which yielded the fastest convergence in MP2 correlation energy for small- to medium-sized active spaces to date, and is also potentially transferable to coupled-cluster theory. In the second part, we studied monomeric and dimeric glycerol radical cations and their photo-induced dissociation in collaboration with Prof. Leone and his group. Understanding the mechanistic details involved in these processes are essential for further studies on the combustion of glycerol and carbohydrates. To our surprise, we found that in most cases, the experimentally observed appearance energies arise from the separation of product fragments from one another rather than rearrangement to products. The final chapters of this work focus on the development, assessment, and application of the spin-flip method, which is a single-reference approach, but capable of describing multi-reference problems. Systems exhibiting multi-reference character, which arises from the (near-) degeneracy of orbital energies, are amongst the most
ERIC Educational Resources Information Center
Cohen, Jeremy A.
2012-01-01
This study concentrated on the characteristics of Grade 2 students' writing in mathematics class who used the Project M[superscript 2] units to learn geometry and measurement. Included in the study were students with high and low levels of content knowledge. Archived data from the Project M[superscript 2] study were analyzed to determine the…
ERIC Educational Resources Information Center
Rumsey, Chepina Witkowski
2012-01-01
The goals for this study were to investigate how fourth-grade students developed an understanding of the arithmetic properties when instruction promoted mathematical argumentation and to identify the characteristics of students' arguments. Using the emergent perspective as an overarching theoretical perspective helped distinguish between two…
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Polak, E.; Zadeh, L. A.
1974-01-01
A series of research projects is briefly summarized which includes investigations in the following areas: (1) mathematical programming problems for large system and infinite-dimensional spaces, (2) bounded-input bounded-output stability, (3) non-parametric approximations, and (4) differential games. A list of reports and papers which were published over the ten year period of research is included.
ERIC Educational Resources Information Center
National Science Foundation, 2006
2006-01-01
This booklet presents an overview of the Math Science Partnership program (MSP) at the National Science Foundation (NSF). This program responds to a growing national concern--the educational performance of U.S. children in mathematics and science. Through the MSP, NSF awards competitive, merit-based grants to teams composed of institutions of…
Bioinformatics Methods and Tools to Advance Clinical Care
Lecroq, T.
2015-01-01
Summary Objectives To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. Method We provide a synopsis of the articles selected for the IMIA Yearbook 2015, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,594 articles and the evaluation results were merged for retaining 15 articles for peer-review. Results The selection and evaluation process of this Yearbook’s section on Bioinformatics and Translational Informatics yielded four excellent articles regarding data management and genome medicine that are mainly tool-based papers. In the first article, the authors present PPISURV a tool for uncovering the role of specific genes in cancer survival outcome. The second article describes the classifier PredictSNP which combines six performing tools for predicting disease-related mutations. In the third article, by presenting a high-coverage map of the human proteome using high resolution mass spectrometry, the authors highlight the need for using mass spectrometry to complement genome annotation. The fourth article is also related to patient survival and decision support. The authors present datamining methods of large-scale datasets of past transplants. The objective is to identify chances of survival. Conclusions The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care. Indeed, there is a need for powerful tools for managing and interpreting complex, large-scale genomic and biological datasets, but also a need for user-friendly tools developed for the clinicians in their
ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS
E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson
2010-09-20
Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using
NASA Technical Reports Server (NTRS)
Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.
2005-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
NASA Technical Reports Server (NTRS)
Martin, Michael A.; Nguyen, Huy H.; Greene, William D.; Seymout, David C.
2003-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
Processing of alnico permanent magnets by advanced directional solidification methods
Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.
2016-07-05
Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yieldedmore » anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti
Processing of alnico permanent magnets by advanced directional solidification methods
NASA Astrophysics Data System (ADS)
Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.
2016-12-01
Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti
Advanced Methods of Observing Surface Plasmon Polaritons and Magnons
NASA Astrophysics Data System (ADS)
Moghaddam, Abolghasem Mobaraki
Available from UMI in association with The British Library. Requires signed TDF. The primary objectives of this thesis are the investigation of the theoretical and experimental aspects of the design and construction of advanced techniques for the excitation of surface plasmon-polaritons, surface magneto -plasmon-polaritons and surface magnons. They involve on -line observation of these phenomena and to accomplish these goals, analytical studies of the characteristic behaviour of these phenomena have been undertaken. For excitations of surface plasmon- and surface magneto-plasmon-polaritons the most robust and conventional configuration, namely Prism-Medium-Air, coupled to a novel angle scan (prism spinning) method was employed. The system to be described here can automatically measure the reflectivity of a multilayer system over a range of angles that includes the resonance angle in an Attenuated Total Reflection (ATR) experiment. The computer procedure that controls the system is quite versatile so that it allows any right-angle prism of different angle or refractive index to be utilised. It also provided probes to check for optical alignment within the system. Moreover, it performs the angular scan many times and then averages the results in order to reduce the environmental and other possible sources of noise within the system. The mechanical side of the system is unique and could eventually be adopted as a marketable piece of equipment. It consists of a turntable for holding the prism-sample assembly and a drive motor in conjunction with a servo-potentiometer whose output not only operates the turntable but also sends a signal to a computer to measure accurately its position. The interface unit enables a computer to control automatically an angular scan ATR experiment for measuring the resonance reflectivity spectrum of a multilayer system. The interface unit uses an H-bridge switch formed by four bipolar power transistor and two small signal MOSFETs to convert
ERIC Educational Resources Information Center
Ajai, John T.; Imoko, Benjamin I.
2015-01-01
This study was undertaken to assess gender differences in mathematics achievement and retention by using Problem-Based Learning (PBL). The design of the study was pre-posttest quasi-experimental. Four hundred and twenty eight senior secondary one (SS I) students using multistage sampling from ten grant-aided and government schools were involved in…
Identifying the Factors Affecting Science and Mathematics Achievement Using Data Mining Methods
ERIC Educational Resources Information Center
Kiray, S. Ahmet; Gok, Bilge; Bozkir, A. Selman
2015-01-01
The purpose of this article is to identify the order of significance of the variables that affect science and mathematics achievement in middle school students. For this aim, the study deals with the relationship between science and math in terms of different angles using the perspectives of multiple causes-single effect and of multiple…
Methods of Analysis and Overall Mathematics Teaching Quality in At-Risk Prekindergarten Classrooms
ERIC Educational Resources Information Center
McGuire, Patrick R.; Kinzie, Mable; Thunder, Kateri; Berry, Robert
2016-01-01
Research Findings: This study analyzed the quality of teacher-child interactions across 10 videotaped observations drawn from 5 different prekindergarten classrooms delivering the same mathematics curriculum: "MyTeachingPartner-Math." Interactions were coded using 2 observational measures: (a) a general measure, the Classroom Assessment…
Blyuss, Oleg; Koriashkina, Larysa; Kiseleva, Elena; Molchanov, Robert
2015-01-01
This paper proposes and analyses a mathematical model for the problem of distribution of a finite number of irradiation sources during radiotherapy in continuous environments to maximize the minimal cumulative effects. A new algorithm based on nondifferentiable optimization techniques has been developed to solve this problem. PMID:26543492
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Rassbach, M. E.
1979-01-01
Discussed in this report is the clustering algorithm CLASSY, including detailed descriptions of its general structure and mathematical background and of the various major subroutines. The report provides a development of the logic and equations used with specific reference to program variables. Some comments on timing and proposed optimization techniques are included.
NASA Astrophysics Data System (ADS)
Hsiao, G.; Chappellet-Volini, L.; Vu, D.
2012-12-01
Portable high precision isotope analyzers using CRDS technology have greatly increased the use of stable isotopes in hydrological, oceanographic, and ecological studies over the past five years. However studies of some water samples yielded incorrect isotopic values indicating some form of spectroscopic interference. Subsequent work has shown that waters derived from some plants containing interfering alcohols but meteoric waters are not affected. The initial approach to handling such samples was to use spectroscopic anomalies to identify and flag affected samples for later analysis by non-optical methods. This presentation will examine the approaches developed within the past year to allow for accurate analysis of such samples by optical methods. The first approach uses an advanced spectroscopic model to identify and quantify alcohols present in the sample. The alcohol signal is incorporated into the overall fit of the measure spectra to calculate the concentration of the individual isotopes. It was found that the δ18O value could be calculated with high accuracy, the result for the δ2H value was sufficient for many applications. The second approach uses physical treatment of the sample to break down the organic molecules into non-interfering species. The liquid sample is injected into a flash vaporizer then the vapor travels through a cartridge for physical treatment prior to analysis by CRDS. Inside the cartridge the organic molecules undergo oxidation at high temperature in the air carrier gas when exposed to the catalyst. This approach is highly effective for ethanol solutions as high as 5% as well as for the complex mixtures of alcohols found in plants. Comparison of the results of both of these methods will be compared with tertiary techniques such as IRMS where possible.
NASA Technical Reports Server (NTRS)
Rourke, K. H.; Jordan, J. F.
1972-01-01
This paper presents the results of the applications of advanced filtering methods to the determination of the interplanetary orbit of the Mariner '71 spacecraft. The advanced techniques are specific extensions of the Kalman filter. The special problems associated with applying these techniques are discussed and the particular algorithmic implementations are outlined. The advanced methods are compared against the weighted least squares filters of conventional application. The results reveal that relatively simple advanced filter configurations yield solutions superior to those of the conventional methods when applied to the Mariner '71 radio measurements.
Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Glushkov, Ye.S.; Kompaniets, G.V.; Nosov, V.I. )
1995-02-01
The hydrogen content of zirconium hydride blocks used as the moderator in Topaz-2-type space reactors is estimated according to correlation-regression analysis procedures of mathematical statistics and is based on the results of the definition of the reactivity of the blocks in a research critical assembly. A linear mathematical model for a variable response is formulated within the framework of the first-order perturbation theory applied to the estimation of reactivity effects in reactors. A PASPORT computer code is written based on the developed algorithm. The statistical analysis of the available data performed by using PASPORT shows that the developed approach allows determination of the insignificance of the contribution of the impurities to the reactivity of the blocks, verification of the manufacturer's data on the hydrogen content in zirconium hydride blocks, and estimation of the reactivity shift in a standard block.
Advanced materials and methods for next generation spintronics
NASA Astrophysics Data System (ADS)
Siegel, Gene Phillip
The modern age is filled with ever-advancing electronic devices. The contents of this dissertation continue the desire for faster, smaller, better electronics. Specifically, this dissertation addresses a field known as "spintronics", electronic devices based on an electron's spin, not just its charge. The field of spintronics originated in 1990 when Datta and Das first proposed a "spin transistor" that would function by passing a spin polarized current from a magnetic electrode into a semiconductor channel. The spins in the channel could then be manipulated by applying an electrical voltage across the gate of the device. However, it has since been found that a great amount of scattering occurs at the ferromagnet/semiconductor interface due to the large impedance mismatch that exists between the two materials. Because of this, there were three updated versions of the spintronic transistor that were proposed to improve spin injection: one that used a ferromagnetic semiconductor electrode, one that added a tunnel barrier between the ferromagnet and semiconductor, and one that utilized a ferromagnetic tunnel barrier which would act like a spin filter. It was next proposed that it may be possible to achieve a "pure spin current", or a spin current with no concurrent electric current (i.e., no net flow of electrons). One such method that was discovered is the spin Seebeck effect, which was discovered in 2008 by Uchida et al., in which a thermal gradient in a magnetic material generates a spin current which can be injected into adjacent material as a pure spin current. The first section of this dissertation addresses this spin Seebeck effect (SSE). The goal was to create such a device that both performs better than previously reported devices and is capable of operating without the aid of an external magnetic field. We were successful in this endeavor. The trick to achieving both of these goals was found to be in the roughness of the magnetic layer. A rougher magnetic
ERIC Educational Resources Information Center
Syed, Mahbubur Rahman, Ed.
2009-01-01
The emerging field of advanced distance education delivers academic courses across time and distance, allowing educators and students to participate in a convenient learning method. "Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions" demonstrates communication technologies, intelligent…
ERIC Educational Resources Information Center
Rowlett, Joel Everett
2013-01-01
This case study examined the beliefs of African American males on the psychosocial and pedagogical factors contributing to the underrepresentation of African American males in advanced high school math courses. Six 11th grade African American male juniors from a large, comprehensive, Southeastern high school served as individual cases. Within- and…
Advanced Computational Methods for Security Constrained Financial Transmission Rights
Kalsi, Karanjit; Elbert, Stephen T.; Vlachopoulou, Maria; Zhou, Ning; Huang, Zhenyu
2012-07-26
Financial Transmission Rights (FTRs) are financial insurance tools to help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, first an innovative mathematical reformulation of the FTR problem is presented which dramatically improves the computational efficiency of optimization problem. After having re-formulated the problem, a novel non-linear dynamic system (NDS) approach is proposed to solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on both standard IEEE test systems and large-scale systems using data from the Western Electricity Coordinating Council (WECC). The performance of the NDS is demonstrated to be comparable and in some cases is shown to outperform the widely used CPLEX algorithms. The proposed formulation and NDS based solver is also easily parallelizable enabling further computational improvement.
Advanced 3D inverse method for designing turbomachine blades
Dang, T.
1995-10-01
To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.
Advanced 3D inverse method for designing turbomachine blades
Dang, T.
1995-12-31
To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.
Advances in Probes and Methods for Clinical EPR Oximetry
Hou, Huagang; Khan, Nadeem; Jarvis, Lesley A.; Chen, Eunice Y.; Williams, Benjamin B.; Kuppusamy, Periannan
2015-01-01
EPR oximetry, which enables reliable, accurate, and repeated measurements of the partial pressure of oxygen in tissues, provides a unique opportunity to investigate the role of oxygen in the pathogenesis and treatment of several diseases including cancer, stroke, and heart failure. Building on significant advances in the in vivo application of EPR oximetry for small animal models of disease, we are developing suitable probes and instrumentation required for use in human subjects. Our laboratory has established the feasibility of clinical EPR oximetry in cancer patients using India ink, the only material presently approved for clinical use. We now are developing the next generation of probes, which are both superior in terms of oxygen sensitivity and biocompatibility including an excellent safety profile for use in humans. Further advances include the development of implantable oxygen sensors linked to an external coupling loop for measurements of deep-tissue oxygenations at any depth, overcoming the current limitation of 10 mm. This paper presents an overview of recent developments in our ability to make meaningful measurements of oxygen partial pressures in human subjects under clinical settings. PMID:24729217
NASA Technical Reports Server (NTRS)
Freudenthal, H.
1974-01-01
A language for cosmic contacts is envisioned that utilizes radio signals of different wavelengths as sounds to form words. These words are in most cases abbreviations of Latin words understood from their English and French cognates. The logistic syntax uses pauses for punctuation in a binary system; pairs of algebraic formulas are transmitted where in a such pair the second element is always derived from the first; between them is transmitted a word that is understood as -follows- by the listener. The concepts of difference in position, of motion, of space, and of mass can be mathematically described by this language.
Mathematics. [SITE 2001 Section].
ERIC Educational Resources Information Center
Connell, Michael L., Ed.; Lowery, Norene Vail, Ed.; Harnisch, Delwyn L., Ed.
This document contains the following papers on mathematics from the SITE (Society for Information Technology & Teacher Education) 2001 conference: "Secondary Mathematics Methods Course with Technology Units: Encouraging Pre-Service Teachers To Use Technology" (Rajee Amarasinghe); "Competency Exams in College Mathematics" (Kathy R. Autrey and Leigh…
Making Mathematics Culturally Relevant.
ERIC Educational Resources Information Center
Moyer, Patricia
2001-01-01
Examines three strands of elementary mathematics--numerals and counting, recording and calculating, and mathematics exploration and play--and provides ways to integrate culture and mathematics experiences in each area. Specific topics include Egyptian methods for multiplication, the abacus, and the words for the numbers 1-10 in seven different…
NASA Astrophysics Data System (ADS)
Gayathri, A.; Venugopal, T.; Venkatramanan, K.
The estimation of the speed of ultrasound is the fundamental requirement for investigating the transport properties of liquid and solid systems. Ultrasonic velocities of liquid mixtures containing polar and non-polar groups are of considerable importance in understanding inter-molecular interaction between component molecules and they find applications in several industrial and technological processes. There are many standard mathematical methods available to measure the ultrasonic velocity. In the present study, interferometric technique is planned for experimental measurement of ultrasound velocity. In this paper, the speed of ultrasound waves in Polypropylene Glycol (PPG 400, PPG 4000) in toluene has been estimated for different concentrations (2%, 4%, 6%, 8% & 10%) at 303K and these experimental values compared with theoretical values obtained by using various mathematical methods like Nomotto's Relation, Vandeal Vangeal Relation, Impedance Relation, and Rao's specific sound velocity. The most reliable method that matches with experimental method is identified using Average Percentage Error (APE) and analysed in the light of molecular interactions occurring in the binary liquid systems. Comparison of evaluated theoretical velocities with experimental values will reveal the nature of interaction between component molecules in the mixtures. Such theoretical study is useful in defining a comprehensive theoretical model for a specific liquid mixture. Also, various molecular interaction parameters like free volume, internal pressure, viscous relaxation time, inter atomic free length, etc are calculated and discussed in terms of polymer-solvent interactions.
An advanced deterministic method for spent fuel criticality safety analysis
DeHart, M.D.
1998-01-01
Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.
NASA Astrophysics Data System (ADS)
Ong, Hui-Yen; Lee, Boon-Beng; Zakaria, Zarina; Chan, Eng-Seng
2015-05-01
The aim of this work is to compare the applicability of particle diameter prediction mathematical models (i.e. Tate's Law equation, the modified Tate's Law equation, the modified Yildirim's model) to determine diameter of liquid core capsules. The capsules were produced by extruding xanthan gum-calcium chloride solution through a hypodermic needle into sodium alginate solution. The effects of two types of xanthan gum with different concentrations and needle diameters on capsule diameter were investigated in this work. The results showed that there was no significant difference in capsule diameter despite different types and concentrations of xanthan gum were used. However, the diameter of the capsules increased when the diameter of needles increased. As a whole, the produced capsules were in the range of 3.47 mm to 4.86 mm. Among the three studied prediction models, the modified Tate's Law mathematical equation was the most suitable model for the diameter prediction of the liquid core capsules with AAD of 2.74% and MAD of 6.55%.
Advanced methods of microscope control using μManager software
Edelstein, Arthur D.; Tsuchida, Mark A.; Amodaj, Nenad; Pinkard, Henry; Vale, Ronald D.; Stuurman, Nico
2014-01-01
μManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, μManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced μManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging. PMID:25606571
Comparison of Advanced Distillation Control Methods, Final Technical Report
Dr. James B. Riggs
2000-11-30
Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.
Adherence to Scientific Method while Advancing Exposure Science
Paul Lioy was simultaneously a staunch adherent to the scientific method and an innovator of new ways to conduct science, particularly related to human exposure. Current challenges to science and the application of the scientific method are presented as they relate the approaches...
NASA Technical Reports Server (NTRS)
Blum, P. W.; Harris, I.
1973-01-01
The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all the nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In part 1 the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analysed.
SEM-contour shape analysis method for advanced semiconductor devices
NASA Astrophysics Data System (ADS)
Toyoda, Yasutaka; Shindo, Hiroyuki; Ota, Yoshihiro; Matsuoka, Ryoichi; Hojo, Yutaka; Fuchimoto, Daisuke; Hibino, Daisuke; Sakai, Hideo
2013-04-01
The new measuring method that we developed executes a contour shape analysis that is based on the pattern edge information from a SEM image. This analysis helps to create a highly precise quantification of every circuit pattern shape by comparing the contour extracted from the SEM image using a CD measurement algorithm and the ideal circuit pattern. The developed method, in the next phase, can generate four shape indices by using the analysis mass measurement data. When the shape index measured using the developed method is compared the CD, the difference of the shape index and the CD is negligibly small for the quantification of the circuit pattern shape. In addition, when the 2D patterns on a FEM wafer are measured using the developed method, the tendency for shape deformations is precisely caught by the four shape indices. This new method and the evaluation results will be presented in detail in this paper.
Advances in spectroscopic methods for quantifying soil carbon
Liebig, Mark; Franzluebbers, Alan J.; Follett, Ronald F.; Hively, W. Dean; Reeves, James B., III; McCarty, Gregory W.; Calderon, Francisco
2012-01-01
The gold standard for soil C determination is combustion. However, this method requires expensive consumables, is limited to the determination of the total carbon and in the number of samples which can be processed (~100/d). With increased interest in soil C sequestration, faster methods are needed. Thus, interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared ranges using either proximal or remote sensing. These methods have the ability to analyze more samples (2 to 3X/d) or huge areas (imagery) and do multiple analytes simultaneously, but require calibrations relating spectral and reference data and have specific problems, i.e., remote sensing is capable of scanning entire watersheds, thus reducing the sampling needed, but is limiting to the surface layer of tilled soils and by difficulty in obtaining proper calibration reference values. The objective of this discussion is the present state of spectroscopic methods for soil C determination.
NASA Astrophysics Data System (ADS)
Clairambault, Jean
2016-06-01
This session investigates hot topics related to mathematical representations of cell and cell population dynamics in biology and medicine, in particular, but not only, with applications to cancer. Methods in mathematical modelling and analysis, and in statistical inference using single-cell and cell population data, should contribute to focus this session on heterogeneity in cell populations. Among other methods are proposed: a) Intracellular protein dynamics and gene regulatory networks using ordinary/partial/delay differential equations (ODEs, PDEs, DDEs); b) Representation of cell population dynamics using agent-based models (ABMs) and/or PDEs; c) Hybrid models and multiscale models to integrate single-cell dynamics into cell population behaviour; d) Structured cell population dynamics and asymptotic evolution w.r.t. relevant traits; e) Heterogeneity in cancer cell populations: origin, evolution, phylogeny and methods of reconstruction; f) Drug resistance as an evolutionary phenotype: predicting and overcoming it in therapeutics; g) Theoretical therapeutic optimisation of combined drug treatments in cancer cell populations and in populations of other organisms, such as bacteria.
Description and Application of a Mathematical Method for the Analysis of Harmony
Zuo, Qiting; Jin, Runfang; Ma, Junxia; Cui, Guotao
2015-01-01
Harmony issues are widespread in human society and nature. To analyze these issues, harmony theory has been proposed as the main theoretical approach for the study of interpersonal relationships and relationships between humans and nature. Therefore, it is of great importance to study harmony theory. After briefly introducing the basic concepts of harmony theory, this paper expounds the five elements that are essential for the quantitative description of harmony issues in water resources management: harmony participant, harmony objective, harmony regulation, harmony factor, and harmony action. A basic mathematical equation for the harmony degree, that is, a quantitative expression of harmony issues, is introduced in the paper: HD = ai − bj, where a is the uniform degree, b is the difference degree, i is the harmony coefficient, and j is the disharmony coefficient. This paper also discusses harmony assessment and harmony regulation and introduces some application examples. PMID:26167535
School structure and its relationship to instructional methods and student outcomes in mathematics
NASA Astrophysics Data System (ADS)
Raphael, Dennis; Wahlstrom, Merlin W.; McLean, Les D.
1988-03-01
Details of teachers' instructional approaches, and students' achievement and attitudes from a probability sample of 102 Ontario schools with grade 8 classes were examined as a function of school structure (public vs. separate, the number of pupils, the teachers' qualifications). Students in separate (Roman Catholic) schools, while not differing from their public schools peers in socio-economic background and plans for further education, reported less use of English in the home and less family help with mathematics. Except in a few details, the teachers at the schools in question do not differ in their educational approaches. The conclusions suggested by the research literature, of the better achievement and attitudes of pupils in separate schools, were supported in the case of attitudes, but contrary to expectations, student achievement differences, when they occurred, favoured students enrolled in public schools. On the whole, the differences which were observed amongst pupils were neither a function of student background characteristics nor of differences in teachers' experience.
Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces
Michaelides, Angelos; Martinez, Todd J.; Alavi, Ali; Kresse, Georg
2015-09-14
This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.
ERIC Educational Resources Information Center
Kennedy, Brian J.
2008-01-01
This paper describes and discusses the unique chemistry course opportunities beyond the advanced placement-level available at a science and technology magnet high school. Students may select entry-level courses such as honors and advanced placement chemistry; they may also take electives in organic chemistry with instrumental methods of analysis;…
The Saccharomyces Genome Database: Advanced Searching Methods and Data Mining.
Cherry, J Michael
2015-12-01
At the core of the Saccharomyces Genome Database (SGD) are chromosomal features that encode a product. These include protein-coding genes and major noncoding RNA genes, such as tRNA and rRNA genes. The basic entry point into SGD is a gene or open-reading frame name that leads directly to the locus summary information page. A keyword describing function, phenotype, selective condition, or text from abstracts will also provide a door into the SGD. A DNA or protein sequence can be used to identify a gene or a chromosomal region using BLAST. Protein and DNA sequence identifiers, PubMed and NCBI IDs, author names, and function terms are also valid entry points. The information in SGD has been gathered and is maintained by a group of scientific biocurators and software developers who are devoted to providing researchers with up-to-date information from the published literature, connections to all the major research resources, and tools that allow the data to be explored. All the collected information cannot be represented or summarized for every possible question; therefore, it is necessary to be able to search the structured data in the database. This protocol describes the YeastMine tool, which provides an advanced search capability via an interactive tool. The SGD also archives results from microarray expression experiments, and a strategy designed to explore these data using the SPELL (Serial Pattern of Expression Levels Locator) tool is provided. PMID:26631124
Health, wealth, and air pollution: advancing theory and methods.
O'Neill, Marie S; Jerrett, Michael; Kawachi, Ichiro; Levy, Jonathan I; Cohen, Aaron J; Gouveia, Nelson; Wilkinson, Paul; Fletcher, Tony; Cifuentes, Luis; Schwartz, Joel
2003-01-01
The effects of both ambient air pollution and socioeconomic position (SEP) on health are well documented. A limited number of recent studies suggest that SEP may itself play a role in the epidemiology of disease and death associated with exposure to air pollution. Together with evidence that poor and working-class communities are often more exposed to air pollution, these studies have stimulated discussion among scientists, policy makers, and the public about the differential distribution of the health impacts from air pollution. Science and public policy would benefit from additional research that integrates the theory and practice from both air pollution and social epidemiologies to gain a better understanding of this issue. In this article we aim to promote such research by introducing readers to methodologic and conceptual approaches in the fields of air pollution and social epidemiology; by proposing theories and hypotheses about how air pollution and socioeconomic factors may interact to influence health, drawing on studies conducted worldwide; by discussing methodologic issues in the design and analysis of studies to determine whether health effects of exposure to ambient air pollution are modified by SEP; and by proposing specific steps that will advance knowledge in this field, fill information gaps, and apply research results to improve public health in collaboration with affected communities. PMID:14644658
Advanced scanning methods with tracking optical coherence tomography
Ferguson, R. Daniel; Iftimia, Nicusor V.; Ustun, Teoman; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Dilworth, William D.; Kagemann, Larry; Schuman, Joel S.
2013-01-01
An upgraded optical coherence tomography system with integrated retinal tracker (TOCT) was developed. The upgraded system uses improved components to extend the tracking bandwidth, fully integrates the tracking hardware into the optical head of the clinical OCT system, and operates from a single software platform. The system was able to achieve transverse scan registration with sub-pixel accuracy (~10 μm). We demonstrate several advanced scan sequences with the TOCT, including composite scans averaged (co-added) from multiple B-scans taken consecutively and several hours apart, en face images collected by summing the A-scans of circular, line, and raster scans, and three-dimensional (3D) retinal maps of the fovea and optic disc. The new system achieves highly accurate OCT scan registration yielding composite images with significantly improved spatial resolution, increased signal-to-noise ratio, and reduced speckle while maintaining well-defined boundaries and sharp fine structure compared to single scans. Precise re-registration of multiple scans over separate imaging sessions demonstrates TOCT utility for longitudinal studies. En face images and 3D data cubes generated from these data reveal high fidelity image registration with tracking, despite scan durations of more than one minute. PMID:19498823
Review: Advances in delta-subsidence research using satellite methods
NASA Astrophysics Data System (ADS)
Higgins, Stephanie A.
2016-05-01
Most of the world's major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.
Advances in spectroscopic methods for quantifying soil carbon
Reeves, James B., III; McCarty, Gregory W.; Calderon, Francisco; Hively, W. Dean
2012-01-01
The current gold standard for soil carbon (C) determination is elemental C analysis using dry combustion. However, this method requires expensive consumables, is limited by the number of samples that can be processed (~100/d), and is restricted to the determination of total carbon. With increased interest in soil C sequestration, faster methods of analysis are needed, and there is growing interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared spectral ranges. These spectral methods can decrease analytical requirements and speed sample processing, be applied to large landscape areas using remote sensing imagery, and be used to predict multiple analytes simultaneously. However, the methods require localized calibrations to establish the relationship between spectral data and reference analytical data, and also have additional, specific problems. For example, remote sensing is capable of scanning entire watersheds for soil carbon content but is limited to the surface layer of tilled soils and may require difficult and extensive field sampling to obtain proper localized calibration reference values. The objective of this chapter is to discuss the present state of spectroscopic methods for determination of soil carbon.
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
ERIC Educational Resources Information Center
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
Stratton, Thomas R; García, R Edwin; Applegate, Bruce M; Youngblood, Jeffrey P
2009-05-11
Quaternized poly(4-vinyl pyridine)-based copolymers are known to be effective against a wide range of bacteria and possess biocompatible properties. Extensive testing of a wide range of copolymers is necessary to further explore and enhance the biocidal properties. However, testing is hampered by labor-intensive bacteria testing techniques. The present paper presents a new testing method, based on bioluminescent reporter strains to enable fast evaluation of bactericidal properties. The reported method enables us to create real-time characterization of bacteria behavior with far less labor than required through traditional testing methods. A mathematical model was also developed to characterize the change in bacteria populations exposed to biocides and to enable the quantitative comparison of minimum bactericidal concentrations. PMID:19338347
The advance of non-invasive detection methods in osteoarthritis
NASA Astrophysics Data System (ADS)
Dai, Jiao; Chen, Yanping
2011-06-01
Osteoarthritis (OA) is one of the most prevalent chronic diseases which badly affected the patients' living quality and economy. Detection and evaluation technology can provide basic information for early treatment. A variety of imaging methods in OA were reviewed, such as conventional X-ray, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI) and near-infrared spectroscopy (NIRS). Among the existing imaging modalities, the spatial resolution of X-ray is extremely high; CT is a three-dimensional method, which has high density resolution; US as an evaluation method of knee OA discriminates lesions sensitively between normal cartilage and degenerative one; as a sensitive and nonionizing method, MRI is suitable for the detection of early OA, but the cost is too expensive for routine use; NIRS is a safe, low cost modality, and is also good at detecting early stage OA. In a word, each method has its own advantages, but NIRS is provided with broader application prospect, and it is likely to be used in clinical daily routine and become the golden standard for diagnostic detection.
Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment
NASA Technical Reports Server (NTRS)
Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.
1979-01-01
The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.
Application of advanced reliability methods to local strain fatigue analysis
NASA Technical Reports Server (NTRS)
Wu, T. T.; Wirsching, P. H.
1983-01-01
When design factors are considered as random variables and the failure condition cannot be expressed by a closed form algebraic inequality, computations of risk (or probability of failure) might become extremely difficult or very inefficient. This study suggests using a simple, and easily constructed, second degree polynomial to approximate the complicated limit state in the neighborhood of the design point; a computer analysis relates the design variables at selected points. Then a fast probability integration technique (i.e., the Rackwitz-Fiessler algorithm) can be used to estimate risk. The capability of the proposed method is demonstrated in an example of a low cycle fatigue problem for which a computer analysis is required to perform local strain analysis to relate the design variables. A comparison of the performance of this method is made with a far more costly Monte Carlo solution. Agreement of the proposed method with Monte Carlo is considered to be good.
Protein Microarrays with Novel Microfluidic Methods: Current Advances
Dixit, Chandra K.; Aguirre, Gerson R.
2014-01-01
Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation.
Statistical Methods Handbook for Advanced Gas Reactor Fuel Materials
J. J. Einerson
2005-05-01
Fuel materials such as kernels, coated particles, and compacts are being manufactured for experiments simulating service in the next generation of high temperature gas reactors. These must meet predefined acceptance specifications. Many tests are performed for quality assurance, and many of these correspond to criteria that must be met with specified confidence, based on random samples. This report describes the statistical methods to be used. The properties of the tests are discussed, including the risk of false acceptance, the risk of false rejection, and the assumption of normality. Methods for calculating sample sizes are also described.
Theoretical Explanations in Mathematical Physics
NASA Astrophysics Data System (ADS)
Rivadulla, Andrés
Many physicists wonder at the usefulness of mathematics in physics. According Madrid to Einstein mathematics is admirably appropriate to the objects of reality. Wigner asserts that mathematics plays an unreasonable important role in physics. James Jeans affirms that God is a mathematician, and that the first aim of physics is to discover the laws of nature, which are written in mathematical language. Dirac suggests that God may have used very advanced mathematics in constructing the universe. And Barrow adheres himself to Wigner's claim about the unreasonable effectiveness of mathematics for the workings of the physical world.
Origins, Methods and Advances in Qualitative Meta-Synthesis
ERIC Educational Resources Information Center
Nye, Elizabeth; Melendez-Torres, G. J.; Bonell, Chris
2016-01-01
Qualitative research is a broad term encompassing many methods. Critiques of the field of qualitative research argue that while individual studies provide rich descriptions and insights, the absence of connections drawn between studies limits their usefulness. In response, qualitative meta-synthesis serves as a design to interpret and synthesise…
ERIC Educational Resources Information Center
Leushina, A. M.
This is volume 4 of the series of translations of books from the Soviet literature on research in the psychology of mathematics instruction and on teaching methods influenced by the research. The introduction to this English language translation highlights the fact that significant advances have been made in the understanding of both the…
Advanced discretizations and multigrid methods for liquid crystal configurations
NASA Astrophysics Data System (ADS)
Emerson, David B.
Liquid crystals are substances that possess mesophases with properties intermediate between liquids and crystals. Here, we consider nematic liquid crystals, which consist of rod-like molecules whose average pointwise orientation is represented by a unit-length vector, n( x, y, z) = (n1, n 2, n3)T. In addition to their self-structuring properties, nematics are dielectrically active and birefringent. These traits continue to lead to many important applications and discoveries. Numerical simulations of liquid crystal configurations are used to suggest the presence of new physical phenomena, analyze experiments, and optimize devices. This thesis develops a constrained energy-minimization finite-element method for the efficient computation of nematic liquid crystal equilibrium configurations based on a Lagrange multiplier formulation and the Frank-Oseen free-elastic energy model. First-order optimality conditions are derived and linearized via a Newton approach, yielding a linear system of equations. Due to the nonlinear unit-length constraint, novel well-posedness theory for the variational systems, as well as error analysis, is conducted. The approach is shown to constitute a convergent and well-posed approach, absent typical simplifying assumptions. Moreover, the energy-minimization method and well-posedness theory developed for the free-elastic case are extended to include the effects of applied electric fields and flexoelectricity. In the computational algorithm, nested iteration is applied and proves highly effective at reducing computational costs. Additionally, an alternative technique is studied, where the unit-length constraint is imposed by a penalty method. The performance of the penalty and Lagrange multiplier methods is compared. Furthermore, tailored trust-region strategies are introduced to improve robustness and efficiency. While both approaches yield effective algorithms, the Lagrange multiplier method demonstrates superior accuracy per unit cost. In
Advanced hydraulic fracturing methods to create in situ reactive barriers
Murdoch, L. |; Siegrist, B.; Meiggs, T.
1997-12-31
This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.
Advanced finite element method for nano-resonators
NASA Astrophysics Data System (ADS)
Zschiedrich, Lin; Burger, Sven; Kettner, Benjamin; Schmidt, Frank
2006-02-01
Miniaturized optical resonators with spatial dimensions of the order of the wavelength of the trapped light offer prospects for a variety of new applications like quantum processing or construction of meta-materials. Light propagation in these structures is modelled by Maxwell's equations. For a deeper numerical analysis one may compute the scattered field when the structure is illuminated or one may compute the resonances of the structure. We therefore address in this paper the electromagnetic scattering problem as well as the computation of resonances in an open system. For the simulation effcient and reliable numerical methods are required which cope with the infinite domain. We use transparent boundary conditions based on the Perfectly Matched Layer Method (PML) combined with a novel adaptive strategy to determine optimal discretization parameters like the thickness of the sponge layer or the mesh width. Further a novel iterative solver for time-harmonic Maxwell's equations is presented.
Numerical modeling of spray combustion with an advanced VOF method
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul
1995-01-01
This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.
Advanced hybrid particulate collector and method of operation
Miller, Stanley J.
2003-04-08
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.
Advanced and In Situ Analytical Methods for Solar Fuel Materials.
Chan, Candace K; Tüysüz, Harun; Braun, Artur; Ranjan, Chinmoy; La Mantia, Fabio; Miller, Benjamin K; Zhang, Liuxian; Crozier, Peter A; Haber, Joel A; Gregoire, John M; Park, Hyun S; Batchellor, Adam S; Trotochaud, Lena; Boettcher, Shannon W
2016-01-01
In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials. PMID:26267386
Advancements of the Hybrid Method UF6 Container Inspection System
Mace, Emily K.; Orton, Christopher R.; Jordan, David V.; McDonald, Benjamin S.; Smith, Leon E.
2011-07-17
Safeguards inspectors currently visit uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution detectors on a limited number of cylinders taken to be representative of the plant’s cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute. Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter data (186 keV photons from 235U) and non-traditional, neutron-induced, high-energy gamma-ray signatures (3-8 MeV) with an array of collimated, medium-resolution scintillators. Previous work at PNNL (2010) demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term, unattended operations. This system aims to increase the number of inspected cylinders at higher accuracy and with lower cost than when compared to inspectors with hand-held instruments. Several measurement campaigns of 30B cylinder populations and a refined MCNP model will be reported. The MCNP model consists of per-gram basis vectors for the different uranium isotopes and several fill geometries, enabling fast generation of any UF6 enrichment level and multiple configurations. The refined model was used to optimize collimator design and detector configuration for the hybrid method. In addition, a new field prototype based on model results was utilized in a set of field measurements.
Advances in multifocal methods for imaging human brain activity
NASA Astrophysics Data System (ADS)
Carney, Thom; Ales, Justin; Klein, Stanley A.
2006-02-01
The typical multifocal stimulus used in visual evoked potential (VEP) studies consists of about 60 checkerboard stimulus patches each independently contrast reversed according to an m-sequence. Cross correlation of the response (EEG, MEG, ERG, or fMRI) with the m-sequence results in a series of response kernels for each response channel and each stimulus patch. In the past the number and complexity of stimulus patches has been constrained by graphics hardware, namely the use of look-up-table (LUT) animation methods. To avoid such limitations we replaced the LUTs with true color graphic sprites to present arbitrary spatial patterns. To demonstrate the utility of the method we have recorded simultaneously from 192 cortically scaled stimulus patches each of which activate about 12mm2 of cortex in area V1. Because of the sparseness of cortical folding, very small stimulus patches and robust estimation of dipole source orientation, the method opens a new window on precise spatio-temporal mapping of early visual areas. The use of sprites also enables multiplexing stimuli such that at each patch location multiple stimuli can be presented. We have presented patterns with different orientations (or spatial frequencies) at the same patch locations but independently temporally modulated, effectively doubling the number of stimulus patches, to explore cell population interactions at the same cortical locus. We have also measured nonlinear responses to adjacent pairs of patches, thereby getting an edge response that doubles the spatial sampling density to about 1.8 mm on cortex.
Recent advances in sample preparation techniques for effective bioanalytical methods.
Kole, Prashant Laxman; Venkatesh, Gantala; Kotecha, Jignesh; Sheshala, Ravi
2011-01-01
This paper reviews the recent developments in bioanalysis sample preparation techniques and gives an update on basic principles, theory, applications and possibilities for automation, and a comparative discussion on the advantages and limitation of each technique. Conventional liquid-liquid extraction (LLE), protein precipitation (PP) and solid-phase extraction (SPE) techniques are now been considered as methods of the past. The last decade has witnessed a rapid development of novel sample preparation techniques in bioanalysis. Developments in SPE techniques such as selective sorbents and in the overall approach to SPE, such as hybrid SPE and molecularly imprinted polymer SPE, have been addressed. Considerable literature has been published in the area of solid-phase micro-extraction and its different versions, e.g. stir bar sorptive extraction, and their application in the development of selective and sensitive bioanalytical methods. Techniques such as dispersive solid-phase extraction, disposable pipette extraction and micro-extraction by packed sorbent offer a variety of extraction phases and provide unique advantages to bioanalytical methods. On-line SPE utilizing column-switching techniques is rapidly gaining acceptance in bioanalytical applications. PP sample preparation techniques such as PP filter plates/tubes offer many advantages like removal of phospholipids and proteins in plasma/serum. Newer approaches to conventional LLE techniques (salting-out LLE) are also covered in this review article. PMID:21154887
Advanced numerical methods and software approaches for semiconductor device simulation
CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.
2000-03-23
In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.
Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods.
Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Graf, Adam; Krzak, Joseph J; Reiners, Kathryn; Vogel, Lawrence C; Harris, Gerald F
2015-01-01
There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training. PMID:25802860
Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation
Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.
2000-01-01
In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less
ERIC Educational Resources Information Center
Olivares, Vidal Elizabeth
2012-01-01
Cold sweats, head shakes, and memories of hardship are the common reactions when adults are introduced to a high school mathematics teacher. Observations show that few adults enjoyed mathematics in their youth. This study aimed to investigate the ways in which students internalize the mathematics attitudes of their parents. Additionally it…
Advanced Signal Processing Methods Applied to Digital Mammography
NASA Technical Reports Server (NTRS)
Stauduhar, Richard P.
1997-01-01
The work reported here is on the extension of the earlier proposal of the same title, August 1994-June 1996. The report for that work is also being submitted. The work reported there forms the foundation for this work from January 1997 to September 1997. After the earlier work was completed there were a few items that needed to be completed prior to submission of a new and more comprehensive proposal for further research. Those tasks have been completed and two new proposals have been submitted, one to NASA, and one to Health & Human Services WS). The main purpose of this extension was to refine some of the techniques that lead to automatic large scale evaluation of full mammograms. Progress on each of the proposed tasks follows. Task 1: A multiresolution segmentation of background from breast has been developed and tested. The method is based on the different noise characteristics of the two different fields. The breast field has more power in the lower octaves and the off-breast field behaves similar to a wideband process, where more power is in the high frequency octaves. After the two fields are separated by lowpass filtering, a region labeling routine is used to find the largest contiguous region, the breast. Task 2: A wavelet expansion that can decompose the image without zero padding has been developed. The method preserves all properties of the power-of-two wavelet transform and does not add appreciably to computation time or storage. This work is essential for analysis of the full mammogram, as opposed to selecting sections from the full mammogram. Task 3: A clustering method has been developed based on a simple counting mechanism. No ROC analysis has been performed (and was not proposed), so we cannot finally evaluate this work without further support. Task 4: Further testing of the filter reveals that different wavelet bases do yield slightly different qualitative results. We cannot provide quantitative conclusions about this for all possible bases
Advanced hybrid particulate collector and method of operation
Miller, Stanley J.
1999-01-01
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.
Advanced hybrid particulate collector and method of operation
Miller, S.J.
1999-08-17
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.
Advanced Computational Aeroacoustics Methods for Fan Noise Prediction
NASA Technical Reports Server (NTRS)
Envia, Edmane (Technical Monitor); Tam, Christopher
2003-01-01
Direct computation of fan noise is presently not possible. One of the major difficulties is the geometrical complexity of the problem. In the case of fan noise, the blade geometry is critical to the loading on the blade and hence the intensity of the radiated noise. The precise geometry must be incorporated into the computation. In computational fluid dynamics (CFD), there are two general ways to handle problems with complex geometry. One way is to use unstructured grids. The other is to use body fitted overset grids. In the overset grid method, accurate data transfer is of utmost importance. For acoustic computation, it is not clear that the currently used data transfer methods are sufficiently accurate as not to contaminate the very small amplitude acoustic disturbances. In CFD, low order schemes are, invariably, used in conjunction with unstructured grids. However, low order schemes are known to be numerically dispersive and dissipative. dissipative errors are extremely undesirable for acoustic wave problems. The objective of this project is to develop a high order unstructured grid Dispersion-Relation-Preserving (DRP) scheme. would minimize numerical dispersion and dissipation errors. contains the results of the funded portion of the project. scheme on an unstructured grid has been developed. constructed in the wave number space. The characteristics of the scheme can be improved by the inclusion of additional constraints. Stability of the scheme has been investigated. Stability can be improved by adopting the upwinding strategy.
Advanced criticality assessment method for sewer pipeline assets.
Syachrani, S; Jeong, H D; Chung, C S
2013-01-01
For effective management of water and wastewater infrastructure, the United States Environmental Protection Agency (US-EPA) has long emphasized the significant role of risk in prioritizing and optimizing asset management decisions. High risk assets are defined as assets with a high probability of failure (e.g. soon to fail, old, poor condition) and high consequences of failure (e.g. environmental impact, high expense, safety concerns, social disruption). In practice, the consequences of failure are often estimated by experts through a Delphi method. However, the estimation of the probability of failure has been challenging as it requires the thorough analysis of the historical condition assessment data, repair and replacement records, and other factors influencing the deterioration of the asset. The most common predictor in estimating the probability of failure is calendar age. However, a simple reliance on calendar age as a basis for estimating the asset's deterioration pattern completely ignores the different aging characteristics influenced by various operational and environmental conditions. This paper introduces a new approach of using 'real age' in estimating the probability of failure. Unlike the traditional calendar age method, the real age represents the adjusted age based on the unique operational and environmental conditions of the asset. Depending on the individual deterioration pattern, the real age could be higher or lower than its calendar age. Using the concept of real age, the probability of failure of an asset can be more accurately estimated. PMID:23508155
Recent advances in computer camera methods for machine vision
NASA Astrophysics Data System (ADS)
Olson, Gaylord G.; Walker, Jo N.
1998-10-01
During the past year, several new computer camera methods (hardware and software) have been developed which have applications in machine vision. These are described below, along with some test results. The improvements are generally in the direction of higher speed and greater parallelism. A PCI interface card has been designed which is adaptable to multiple CCD types, both color and monochrome. A newly designed A/D converter allows for a choice of 8 or 10-bit conversion resolution and a choice of two different analog inputs. Thus, by using four of these converters feeding the 32-bit PCI data bus, up to 8 camera heads can be used with a single PCI card, and four camera heads can be operated in parallel. The card has been designed so that any of 8 different CCD types can be used with it (6 monochrome and 2 color CCDs) ranging in resolution from 192 by 165 pixels up to 1134 by 972 pixels. In the area of software, a method has been developed to better utilize the decision-making capability of the computer along with the sub-array scan capabilities of many CCDs. Specifically, it is shown below how to achieve a dual scan mode camera system wherein one scan mode is a low density, high speed scan of a complete image area, and a higher density sub-array scan is used in those areas where changes have been observed. The name given to this technique is adaptive sub-array scanning.
Comparative Assessment of Advanced Gay Hydrate Production Methods
M. D. White; B. P. McGrail; S. K. Wurstner
2009-06-30
Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.
Method of Suppressing Sublimation in Advanced Thermoelectric Devices
NASA Technical Reports Server (NTRS)
Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)
2009-01-01
A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.
Advancing Methods in Research on Asian American Children and Youth.
Yoshikawa, Hirokazu; Mistry, Rashmita; Wang, Yijie
2016-07-01
Asian American children and youth constitute at the same time an immigrant group, a set of ethnic groups, and a set of cultural groups. Research on these populations can therefore take on one or more of these perspectives. This article provides guidance for research methods in three areas: (a) conceptualizing and assessing migration-related factors, (b) assessing ethnicity and national origin, and (c) using culturally and contextually relevant measures. Methodological recommendations are made for each area, with attention to small-scale studies with community samples as well as large-scale data sets. In addition, this article recommends researchers attend to within-group variations (i.e., intersections of ethnicity, generational status, gender, class, sexuality), the embeddedness of individual development in context, and specificity of developmental periods. PMID:27392797
Advanced view factor analysis method for radiation exchange
NASA Astrophysics Data System (ADS)
Park, Sookuk; Tuller, Stanton E.
2014-03-01
A raster-based method for determining complex view factor patterns is presented (HURES model). The model uses Johnson and Watson's view factor analysis method for fisheye lens photographs. The entire sphere is divided into 13 different view factors: open sky; sunny and shaded building walls, vegetation (trees) and ground surfaces above and below 1.2 m from the ground surface. The HURES model gave reasonable view factor results in tests at two urban study sites on summer days: downtown Nanaimo, B.C., Canada and Changwon, Republic of Korea. HURES gave better estimates of open sky view factors determined from fisheye lens photographs than did ENVI-met 3.1 and RayMan Pro. However, all three models underestimated sky view factor. For view factor analysis in outdoor urban areas, the 10° interval of rotation angle at 100 m distance of annuli will be suitable settings for three-dimensional computer simulations. The HURES model can be used for the rapid determination of complex view factor patterns which facilitates the analysis of their effects. Examples of how differing view factor patterns can affect human thermal sensation indices are given. The greater proportion of sunny view factors increased the computed predicted mean vote (PMV) by 1.3 on the sunny side of the street compared with the shady side during mid-morning in downtown Nanaimo. In another example, effects of differing amounts of open sky, sunny ground, sunny buildings and vegetation combined to produce only slight differences in PMV and two other human thermal sensation indices, PET and UTCI.
Advanced hydraulic fracturing methods to create in situ reactive barriers
Murdoch, L. |; Siegrist, B.; Vesper, S.
1997-12-31
Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.
A Mathematical Analysis of Atomistic-to-Continuum (AtC) Multiscale Coupling Methods
Gunzburger, Max
2013-11-13
We have worked on several projects aimed at improving the efficiency and understanding of multiscale methods, especially those applicable to problems involving atomistic-to-continuum coupling. Activities include blending methods for AtC coupling and efficient quasi-continuum methods for problems with long-range interactions.
Waltman, Ludo; van Raan, Anthony F. J.; Smart, Sue
2014-01-01
We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the ‘EPS-HLS interface’ is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade. PMID:25360616
An evolutionary method for synthesizing technological planning and architectural advance
NASA Astrophysics Data System (ADS)
Cole, Bjorn Forstrom
In the development of systems with ever-increasing performance and/or decreasing drawbacks, there inevitably comes a point where more progress is available by shifting to a new set of principles of use. This shift marks a change in architecture, such as between the piston-driven propeller and the jet engine. The shift also often involves an abandonment of previous competencies that have been developed with great effort, and so a foreknowledge of these shifts can be advantageous. A further motivation for this work is the consideration of the Micro Autonomous Systems and Technology (MAST) project, which aims to develop very small (<5 cm) robots for a variety of uses. This is primarily a technology research project, and there is no baseline morphology for a robot to be considered. This then motivates an interest in the ability to automatically compose physical architectures from a series of components and quantitatively analyze them for a basic, conceptual analysis. The ability to do this would enable researchers to turn attention to the most promising forms. This work presents a method for using technology forecasts of components that enable future architectural shifts in order to forecast those shifts. The method consists of the use of multidimensional S-curves, genetic algorithms, and a graph-based formulation of architecture that is more flexible than other morphological techniques. Potential genetic operators are explored in depth to draft a final graph-based genetic algorithm. This algorithm is then implemented in a design code called Sindri, which leverages a commercial design tool named Pacelab. The first chapters of this thesis provide context and a philosophical background to the studies and research that was conducted. In particular, the idea that technology progresses in a fundamentally gradual way is developed and supported with previous historical research. The import of this is that the future can to some degree be predicted by the past, provided that
Advances in calibration methods for micro- and nanoscale surfaces
NASA Astrophysics Data System (ADS)
Leach, R. K.; Giusca, C. L.; Coupland, J. M.
2012-04-01
Optical surface topography measuring instrument manufacturers often quote accuracies of the order of nanometres and claim that the instruments can reliably measure a range of surfaces with structures on the micro- to nanoscale. However, for many years there has been debate about the interpretation of the data from optical surface topography measuring instruments. Optical artefacts in the output data and a lack of a calibration infrastructure mean that it can be difficult to get optical instruments to agree with contact stylus instruments. In this paper, the current situation with areal surface topography measurements is discussed along with the ISO specification standards that are in draft form. An infrastructure is discussed whereby the ISO-defined metrological characteristics of optical instruments can be determined, but these characteristics do not allow the instrument to measure complex surfaces. Current research into methods for determining the transfer function of optical instruments is reviewed, which will allow the calibration of optical instruments to measure complex surfaces, at least in the case of weak scattering. The ability of some optical instruments to measure outside the spatial bandwidth limitation of the numerical aperture is presented and some general outlook for future work given.
Advanced methods for electromagnetic investigation of PCB/PWB layouts
NASA Astrophysics Data System (ADS)
Codreanu, N. D.; Ionescu, C.; Svasta, P.; Golumbeanu, V.
2007-05-01
High Density Interconnect (HDI) technology is a way to condense electronic circuits for ruggedness, radiation hardening, and high performance. HDI minimizes the size and weight of electronic products while maximizing their performances. HDI circuits offer new solutions to signal integrity (SI) and electromagnetic compatibility (EMC) concerns, concerns which are expected to grow more and more as rise/fall times continue to drop. Because PCB manufacturers have developed new materials and technological solutions, indispensable at this moment is to perform a deep virtual characterization of structures directly related to HDI. This paper presents investigations and results focused on the main areas of SI and EMC, as noise at PCB level (reflections, and crosstalk), electromagnetic interference (EMI) and on-board interconnection delay. The authors have evaluated various HDI-PCB items and structures using the MoM full-wave electromagnetic simulation method. After modeling and simulation a link to classical circuit simulators was created by extracting RLCG elements and various parameters, which are directly related to the total current along the HDI structures. The paper offers a new way to find the solutions for keeping the integrity of signals and electromagnetic compliance.
Investigation of advanced fault insertion and simulator methods
NASA Technical Reports Server (NTRS)
Dunn, W. R.; Cottrell, D.
1986-01-01
The cooperative agreement partly supported research leading to the open-literature publication cited. Additional efforts under the agreement included research into fault modeling of semiconductor devices. Results of this research are presented in this report which is summarized in the following paragraphs. As a result of the cited research, it appears that semiconductor failure mechanism data is abundant but of little use in developing pin-level device models. Failure mode data on the other hand does exist but is too sparse to be of any statistical use in developing fault models. What is significant in the failure mode data is that, unlike classical logic, MSI and LSI devices do exhibit more than 'stuck-at' and open/short failure modes. Specifically they are dominated by parametric failures and functional anomalies that can include intermittent faults and multiple-pin failures. The report discusses methods of developing composite pin-level models based on extrapolation of semiconductor device failure mechanisms, failure modes, results of temperature stress testing and functional modeling. Limitations of this model particularly with regard to determination of fault detection coverage and latency time measurement are discussed. Indicated research directions are presented.
Advanced methods for preparation and characterization of infrared detector materials
NASA Technical Reports Server (NTRS)
Broerman, J. G.; Morris, B. J.; Meschter, P. J.
1983-01-01
Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.
Profiling Student Use of Calculators in the Learning of High School Mathematics
ERIC Educational Resources Information Center
Crowe, Cheryll E.; Ma, Xin
2010-01-01
Using data from the 2005 National Assessment of Educational Progress, students' use of calculators in the learning of high school mathematics was profiled based on their family background, curriculum background, and advanced mathematics coursework. A statistical method new to educational research--classification and regression trees--was applied…
Advanced Extraction Methods for Actinide/Lanthanide Separations
Scott, M.J.
2005-12-01
The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form
Conceptual Design Method Developed for Advanced Propulsion Nozzles
NASA Technical Reports Server (NTRS)
Nadell, Shari-Beth; Barnhart, Paul J.
1998-01-01
As part of a contract with the NASA Lewis Research Center, a simple, accurate method of predicting the performance characteristics of a nozzle design has been developed for use in conceptual design studies. The Nozzle Performance Analysis Code (NPAC) can predict the on- and off-design performance of axisymmetric or two-dimensional convergent and convergent-divergent nozzle geometries. NPAC accounts for the effects of overexpansion or underexpansion, flow divergence, wall friction, heat transfer, and small mass addition or loss across surfaces when the nozzle gross thrust and gross thrust coefficient are being computed. NPAC can be used to predict the performance of a given nozzle design or to develop a preliminary nozzle system design for subsequent analysis. The input required by NPAC consists of a simple geometry definition of the nozzle surfaces, the location of key nozzle stations (entrance, throat, exit), and the nozzle entrance flow properties. NPAC performs three analysis "passes" on the nozzle geometry. First, an isentropic control volume analysis is performed to determine the gross thrust and gross thrust coefficient of the nozzle. During the second analysis pass, the skin friction and heat transfer losses are computed. The third analysis pass couples the effects of wall shear and heat transfer with the initial internal nozzle flow solutions to produce a system of equations that is solved at steps along the nozzle geometry. Small mass additions or losses, such as those resulting from leakage or bleed flow, can be included in the model at specified geometric sections. A final correction is made to account for divergence losses that are incurred if the nozzle exit flow is not purely axial.
Eulerian methods for the description of soot: mathematical modeling and numerical scheme
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Wick, A.; Laurent, F.; Fox, R.; Pitsch, H.
2014-11-01
A development and comparison between numerical methods for soot modeling derived from the population balance equations (PBE) is presented. The soot mechanism includes nucleation, surface growth, oxidation, aggregation and breakage (Mueller et al., Proceed. Combust. Inst., 2009, 2011). For comparison, data from the ethylene premixed flame of Xu et al. (Combust. Flame 108, 1997) over a range of equivalence ratios are used. Two types of methods are introduced. The first is a moment method in which the closure is obtained through a reconstruction of the number density function (NDF). In particular, the NDF can be approximated by a sum of Gamma distribution functions (Yuan et al., J. Aero. Sci. 51, 2012). The second is Eulerian multi-fluid (MF), which is a size discretization method (Laurent et al., Combust. Theory Modelling 5, 2001) considering one or two moments per section. The case of one moment per section is also known as a sectional method. The accuracy of MF methods depends on the number of sections. Eventually, an extension of these two methods considering the surface area as a function of volume is taken into account to describe more precisely the geometry of soot particles. The solutions from these methods are compared with solutions from Monte Carlo method.
Driven by History: Mathematics Education Reform
ERIC Educational Resources Information Center
Permuth, Steve; Dalzell, Nicole
2013-01-01
The advancement of modern societies is fueled by mathematics, and mathematics education provides the foundation upon which future scientists and engineers will build. Society dictates how mathematics will be taught through the development and implementation of mathematics standards. When examining the progression of these standards, it is…
Students' Interpretations of Mathematical Statements Involving Quantification
ERIC Educational Resources Information Center
Piatek-Jimenez, Katrina
2010-01-01
Mathematical statements involving both universal and existential quantifiers occur frequently in advanced mathematics. Despite their prevalence, mathematics students often have difficulties interpreting and proving quantified statements. Through task-based interviews, this study took a qualitative look at undergraduate mathematics students'…
ERIC Educational Resources Information Center
Reys, Robert; Reys, Rustin
2011-01-01
In their dual roles as mathematics teachers and tennis coaches, the authors have worked with tennis players who have never thought about how a knowledge of mathematics might help them become "better" tennis players. They have also worked with many mathematics students who have never considered how much mathematics is associated with tennis. This…
ERIC Educational Resources Information Center
Gunthorpe, Sydney
2006-01-01
From the assumption that matching a student's learning style with the learning method best suited for the student, it follows that developing courses that correlate learning method with learning style would be more successful for students. Albuquerque Technical Vocational Institute (TVI) in New Mexico has attempted to provide students with more…
University Student Perceptions of Self-Efficacy in Foundation-Level Mathematics Teaching Methods
ERIC Educational Resources Information Center
Bingen, Charles W.
2012-01-01
The purpose of this study was to examine college algebra students' perceptions of self-efficacy relating to method of instruction in a large-lecture seminar and self-paced mastery outcomes course. This study was prompted by a lack of information currently available regarding students' perceptions of specific methods of instruction regarding…
Hayes, R.B.; Haskell, E.H.; Kenner, G.H.
1996-01-01
Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.
Buryakovsky, L.A. )
1992-07-01
This paper reports that the systems approach to geology is both a sophisticated ideology and a scientific method for investigation of very complicated geological systems. As applied to petroleum geology, it includes the methodological base and technology of mathematical simulation used for modeling geological systems: the systems that have been previously investigated and estimated by experimental data and/or field studies. Because geological systems develop in time, it is very important to simulate them as dynamic systems. The main tasks in the systems approach to petroleum geology are the numerical simulation of physical and reservoir properties of rocks, pore (geofluid) pressure in reservoir beds, and hydrocarbon resources. The results of numerical simulation are used for prediction of geological system structure and behavior in both studies and noninvestigated areas.
NASA Astrophysics Data System (ADS)
Solovyova, N. V.; Lobkovsky, L. I.
2015-09-01
This paper proposes a method of mathematical modelling of ecological risk based on a synthesis of dynamic and probabilistic risk assessment techniques. The probability of assessment of an acceptable probability of an anthropogenic impact to minimize economic costs is proposed. The dependence of an acceptable probability of an anthropogenic impact on the ecological risk is demonstrated with an example calculation. The results of the modelling of the state of a shelf ecosystem based on the dynamic model are used for the calculation as source information. Based on this synthesis, the calculation results bring about the opportunity to balance ecological-economic goals of achieving safe development of the shelf and to satisfy the involuntary necessity to reduce the costs on environmental protection measures, while maintaining the priority of environmental requirements.
A new mathematical formulation of the line-by-line method in case of weak line overlapping
NASA Technical Reports Server (NTRS)
Ishov, Alexander G.; Krymova, Natalie V.
1994-01-01
A rigorous mathematical proof is presented for multiline representation on the equivalent width of a molecular band which consists in the general case of n overlapping spectral lines. The multiline representation includes a principal term and terms of minor significance. The principal term is the equivalent width of the molecular band consisting of the same n nonoverlapping spectral lines. The terms of minor significance take into consideration the overlapping of two, three and more spectral lines. They are small in case of the weak overlapping of spectral lines in the molecular band. The multiline representation can be easily generalized for optically inhomogeneous gas media and holds true for combinations of molecular bands. If the band lines overlap weakly the standard formulation of line-by-line method becomes too labor-consuming. In this case the multiline representation permits line-by-line calculations to be performed more effectively. Other useful properties of the multiline representation are pointed out.
Silbar, R.R.
1998-09-28
WhistleSoft, Inc., proposed to convert a successful pedagogical experiment into multimedia software, making it accessible to a much broader audience. A colleague, Richard J. Jacob, has been teaching a workshop course in mathematical methods at Arizona State University (ASU) for lower undergraduate science majors. Students work at their own pace through paper-based tutorials containing many exercises, either with pencil and paper or with computer tools such as spreadsheets. These tutorial modules cry out for conversion into an interactive computer-based tutorial course that is suitable both for the classroom and for self-paced, independent learning. WhistleSoft has made a prototype of one such module, Legendre Polynomials, under Subcontract (No F97440018-35) with the Los Alamos Laboratory`s Technology Commercialization Office for demonstration and marketing purposes.
NASA Astrophysics Data System (ADS)
Bezruchko, K. V.; Davidov, A. O.; Katorgina, J. G.; Logvin, V. M.; Kharchenko, A. A.
2013-11-01
The review and analysis of several mathematical methods for prediction of electrochemical accumulator parameters are provided in the article: according to the mathematical expectation, the latest entry, a statistical prediction, Box-Jenkins model, decomposition Volta, ARMA, ARIMA and Kalman filter. The results of these methods for prediction of the electrochemical battery 22НКГ-4CK characteristics which is a part of spacecraft power plant of the “Mikrosputnik” type are given. Possible usage of these methods for long prediction of electrochemical accumulator characteristics on space-rocket objects power plants is showed.
Handwritten mathematical symbols dataset
Chajri, Yassine; Bouikhalene, Belaid
2016-01-01
Due to the technological advances in recent years, paper scientific documents are used less and less. Thus, the trend in the scientific community to use digital documents has increased considerably. Among these documents, there are scientific documents and more specifically mathematics documents. In this context, we present our own dataset of handwritten mathematical symbols composed of 10,379 images. This dataset gathers Arabic characters, Latin characters, Arabic numerals, Latin numerals, arithmetic operators, set-symbols, comparison symbols, delimiters, etc. PMID:27006975
Handwritten mathematical symbols dataset.
Chajri, Yassine; Bouikhalene, Belaid
2016-06-01
Due to the technological advances in recent years, paper scientific documents are used less and less. Thus, the trend in the scientific community to use digital documents has increased considerably. Among these documents, there are scientific documents and more specifically mathematics documents. In this context, we present our own dataset of handwritten mathematical symbols composed of 10,379 images. This dataset gathers Arabic characters, Latin characters, Arabic numerals, Latin numerals, arithmetic operators, set-symbols, comparison symbols, delimiters, etc. PMID:27006975
NASA Astrophysics Data System (ADS)
Šilhán, Karel
2016-01-01
Knowledge of past landslide activity is crucial for understanding landslide behaviour and for modelling potential future landslide occurrence. Dendrogeomorphic approaches represent the most precise methods of landslide dating (where trees annually create tree-rings in the timescale of up to several hundred years). Despite the advantages of these methods, many open questions remain. One of the less researched uncertainties, and the focus of this study, is the impact of two common methods of geomorphic signal extraction on the spatial and temporal results of landslide reconstruction. In total, 93 Norway spruce (Picea abies (L.) Karst.) trees were sampled at one landslide location dominated by block-type movements in the forefield of the Orlické hory Mts., Bohemian Massif. Landslide signals were examined by the classical subjective method based on reaction (compression) wood analysis and by a numerical method based on eccentric growth analysis. The chronology of landslide movements obtained by the mathematical method resulted in twice the number of events detected compared to the subjective method. This finding indicates that eccentric growth is a more accurate indicator for landslide movements than the classical analysis of reaction wood. The reconstructed spatial activity of landslide movements shows a similar distribution of recurrence intervals (Ri) for both methods. The differences (maximally 30% of the total Ri ranges) in results obtained by both methods may be caused by differences in the ability of trees to react to tilting of their stems by a specific growth response (reaction wood formation or eccentric growth). Finally, the ability of trees to record tilting events (by both growth responses) in their tree-ring series was analysed for different decades of tree life. The highest sensitivity to external tilting events occurred at tree ages from 70 to 80 years for reaction wood formation and from 80 to 90 years for eccentric growth response. This means that
Method and system for advancement of a borehole using a high power laser
Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.
2014-09-09
There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.
Mathematical justification of Kelvin-Voigt beam models by asymptotic methods
NASA Astrophysics Data System (ADS)
Rodríguez-Arós, Á. D.; Viaño, J. M.
2012-06-01
The authors derive and justify two models for the bending-stretching of a viscoelastic rod by using the asymptotic expansion method. The material behaviour is modelled by using a general Kelvin-Voigt constitutive law.
Recent advances in methods for numerical solution of O.D.E. initial value problems
NASA Technical Reports Server (NTRS)
Bui, T. D.; Oppenheim, A. K.; Pratt, D. T.
1984-01-01
In the mathematical modeling of physical systems, it is often necessary to solve an initial value problem (IVP), consisting of a system of ordinary differential equations (ODE). A typical program produces approximate solutions at certain mesh points. Almost all existing codes try to control the local truncation error, while the user is really interested in controlling the true or global error. The present investigation provides a review of recent advances regarding the solution of the IVP, giving particular attention to stiff systems. Stiff phenomena are customarily defined in terms of the eigenvalues of the Jacobian. There are, however, some difficulties connected with this approach. It is pointed out that an estimate of the Lipschitz constant proves to be a very practical way to determine the stiffness of a problem.
ERIC Educational Resources Information Center
Jarvelin, Kalervo
1986-01-01
Describes a method for advance estimation of user charges for queries in relational data model-based numeric databases when charges are based on data retrieved. Use of this approach is demonstrated by sample queries to an imaginary marketing database. The principles and methods of this approach and its relevance are discussed. (MBR)
ERIC Educational Resources Information Center
Gierl, Mark J.; Alves, Cecilia; Majeau, Renate Taylor
2010-01-01
The purpose of this study is to apply the attribute hierarchy method in an operational diagnostic mathematics program at Grades 3 and 6 to promote cognitive inferences about students' problem-solving skills. The attribute hierarchy method is a psychometric procedure for classifying examinees' test item responses into a set of structured attribute…
ERIC Educational Resources Information Center
Bonface, Kamau; Thinguri, Ruth W.; Koech, Peter K.; Ngaruiya, B. N.
2015-01-01
The obstacles and difficulties hindering good performance in mathematics by Lower Primary school children seem to originate from inconsistence of instructional methods applied by teachers at the level. These methods don't agree with the ones initially applied by the children's teachers at preschool level. The effect of that could result in denying…
A new mathematical evaluation of smoking problem based of algebraic statistical method.
Mohammed, Maysaa J; Rakhimov, Isamiddin S; Shitan, Mahendran; Ibrahim, Rabha W; Mohammed, Nadia F
2016-01-01
Smoking problem is considered as one of the hot topics for many years. In spite of overpowering facts about the dangers, smoking is still a bad habit widely spread and socially accepted. Many people start smoking during their gymnasium period. The discovery of the dangers of smoking gave a warning sign of danger for individuals. There are different statistical methods used to analyze the dangers of smoking. In this study, we apply an algebraic statistical method to analyze and classify real data using Markov basis for the independent model on the contingency table. Results show that the Markov basis based classification is able to distinguish different date elements. Moreover, we check our proposed method via information theory by utilizing the Shannon formula to illustrate which one of these alternative tables is the best in term of independent. PMID:26858555
Mathematical method for the study and teaching of stellar and protostellar structure
NASA Astrophysics Data System (ADS)
Doorish, John Francis
The purpose of this thesis is to develop a relatively simple yet effective method of teaching stellar and protostellar structure. There are four differential equations describing the structure of a star. They are: These equations are linearly approximated in the following form: W = Wo (1 plus or minus wx). Here, W represents the pressure (P), temperature (T), mass (M), and/or luminosity (L) gradients within the star; W represents some initial value of these parameters expanded inwardly or outwardly from an initial point, ro; and w represents what is called the Motz Dimensionless Variables (MDV) which are directly derivable from the above set of equations. They are dimensionless, so, in the expansion, W has the same units as wo. The MDV appear below: As yet, there is no MDV for luminosity owing to the complicating energy generation factor, epsilon. In the above sets of equations, the mean molecular weight is micro; the opacity is kappa; the ratio of gas pressure to total pressure is beta; and the other symbols have their usual meanings. In the above set of equations describing the MDV, if the surface of the star is expanded to larger values, representing earlier, and therefore, protostellar stages of the star, by theoretically halting accretion, no dynamical factors need to be considered. The above set of equations describing a stellar structure in static equilibrium may then be used. This method was designed for college and early graduate students who have never before encountered the topic of stellar structure. This method was taught to a class of college physics majors in a local New York City college. The students had never before seen these equations. After the presentation, they were asked to attempt construction of sample stellar model using this method and also to complete a questionnaire concerning their general academic history and their opinions of the method. According to the questionnaire, most subjects felt that it was effective, yet simple enough, as
Bogomolov, A V; Dragan, S P
2015-01-01
A new method for measuring a complex frequency-dependent acoustic impedance of the respiratory tract based on two-microphone method was developed. The measuring device consists of a waveguide connected through a mouthpiece to the patient's mouth. A sound field with a frequency range from 5 to 100 Hz is created in the waveguide. The impedance of the respiratory tract is determined at free respiration of the patient in the set frequency range; the duration of examination does not exceed 15 s. The criteria for the recognition of respiratory tract pathologies are proposed. PMID:26518558
An efficient wavelet analysis method to film-pore diffusion model arising in mathematical chemistry.
Hariharan, G
2014-04-01
In this paper, we have established an efficient Legendre wavelet based approximation method to solve film-pore diffusion model arising in engineering. Film-pore diffusion model is widely used to determine study the kinetics of adsorption systems. The use of Legendre wavelet based approximation method is found to be accurate, simple, fast, flexible, convenient, and computationally attractive. It is shown that film-pore diffusion model satisfactorily describe kinetics of methylene blue adsorption onto the three low-cost adsorbents, Guava, teak and gulmohar plant leaf powders, used in this study. PMID:24562792
Factor Label Method of Units Analysis: A Learning Package for Secondary Mathematics Students.
ERIC Educational Resources Information Center
Hoile, Margaret Ann
In an attempt to prepare students for units analysis in the solution of problems in high school chemistry and physics, the author developed learning packets on the factor label method. Thirty-three students used these packets individually during a regular tenth-grade geometry class. There were two packets, each to be used for two days. Prior to…
Experimental and mathematical modeling methods for the investigation of toxicological interactions
El-Masri, Hisham A.
2007-09-01
While procedures have been developed and used for many years to assess risk and determine acceptable exposure levels to individual chemicals, most cases of environmental contamination can result in concurrent or sequential exposure to more than one chemical. Toxicological predictions of such combinations must be based on an understanding of the mechanisms of action and interaction of the components of the mixtures. Statistical and experimental methods test the existence of toxicological interactions in a mixture. However, these methods are limited to experimental data ranges for which they are derived, in addition to limitations caused by response differences from experimental animals to humans. Empirical methods such as isobolograms, median-effect principle and response surface methodology (RSM) are based on statistical experimental design and regression of data. For that reason, the predicted response surfaces can be used for extrapolation across dose regions where interaction mechanisms are not anticipated to change. In general, using these methods for predictions can be problematic without including biologically based mechanistic descriptions that can account for dose and species differences. Mechanistically based models, such as physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models, include explicit descriptions of interaction mechanisms which are related to target tissues levels. These models include dose-dependent mechanistic hypotheses of toxicological interactions which can be tested by model-directed experimental design and used to identify dose regions where interactions are not significant.
Experimental and mathematical modeling methods for the investigation of toxicological interactions.
El-Masri, Hisham A
2007-09-01
While procedures have been developed and used for many years to assess risk and determine acceptable exposure levels to individual chemicals, most cases of environmental contamination can result in concurrent or sequential exposure to more than one chemical. Toxicological predictions of such combinations must be based on an understanding of the mechanisms of action and interaction of the components of the mixtures. Statistical and experimental methods test the existence of toxicological interactions in a mixture. However, these methods are limited to experimental data ranges for which they are derived, in addition to limitations caused by response differences from experimental animals to humans. Empirical methods such as isobolograms, median-effect principle and response surface methodology (RSM) are based on statistical experimental design and regression of data. For that reason, the predicted response surfaces can be used for extrapolation across dose regions where interaction mechanisms are not anticipated to change. In general, using these methods for predictions can be problematic without including biologically based mechanistic descriptions that can account for dose and species differences. Mechanistically based models, such as physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models, include explicit descriptions of interaction mechanisms which are related to target tissues levels. These models include dose-dependent mechanistic hypotheses of toxicological interactions which can be tested by model-directed experimental design and used to identify dose regions where interactions are not significant. PMID:16996550
Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications
NASA Technical Reports Server (NTRS)
Giere, A. C.
1977-01-01
An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.
Carter, Emily A
2013-02-02
Kohn-Sham density functional theory (DFT) is a powerful, well-established tool for the study of condensed phase electronic structure. However, there are still a number of situations where its applicability is limited. The basic theme of our research is the development of first principles electronic structure approaches for condensed matter that goes beyond what can currently be done with standard implementations ofKohn-Sham DFT. Our efforts to this end have focused on two classes or' methods. The first addresses the well-lmown inability of DFT to handle strong, many-body electron correlation effects. Our approach is a DFT -based embedding theory, to treat localized features (e.g. impurity, adsorbate, vacancy, etc.) embedded in a periodic, metallic crystal. A description for the embedded region is provided by explicitly correlated, ab initio wave function methods. DFT, as a fo1n1ally ground state theory, does not give a good description of excited states; an additional feature of our approach is the ability to obtain excitations localized in this region. We apply our method to a first-principles study of the adsorption of a single magnetic Co ada tom on non-magnetic Cu( 111 ), a known Kondo system whose behavior is governed by strong electron correlation. The second class of methods that we are developing is an orbital-free density functional theory (OFDFT), which addresses the speed limitations ofKohn-Sham DFT. OFDFT is a powerful, O(N) scaling method for electronic structure calculations. Unlike Kohn-Sham DFT, OFDFT goes back to the original Hohenberg-Kohn idea of directly optimizing an energy functional which is an explicit functional of the density, without invoking an orbital description. This eliminates the need to manipulate orbitals, which leads to O(N{sup 3}) scaling in the Kahn-Sham approach. The speed of OFDFT allows direct electronic structure calculations on large systems on the order of thousands to tens of thousands of atoms, an expensive feat within
Mathematical Method for the Study and Teaching of Stellar and Protostellar Structure.
NASA Astrophysics Data System (ADS)
Doorish, John Francis
The purpose of this thesis is to develop a relatively simple yet effective method of teaching stellar and protostellar structure. There are four differential equations describing the structure of a star. They are:. These equations are linearly approximated in the following form: W = W_{rm o} (1+/-wx). Here, W represents the pressure (P), temperature (T), mass (M), and/or luminosity (L) gradients within the star; W represents some initial value of these parameters expanded inwardly or outwardly from an initial point, r_{rm o}; and w represents what is called the Motz Dimensionless Variables (MDV) which are directly derivable from the above set of equations. They are dimensionless, so, in the expansion, W has the same units as w _{rm o}. The MDV appear below:. As yet, there is no MDV for luminosity owing to the complicating energy generation factor, varepsilon . In the above sets of equations, the mean molecular weight is mu; the opacity is kappa; the ratio of gas pressure to total pressure is beta; and the other symbols have their usual meanings. In the above set of equations describing the MDV, if the surface of the star is expanded to larger values, representing earlier, and therefore, protostellar stages of the star, by theoretically halting accretion, no dynamical factors need to be considered. The above set of equations describing a stellar structure in static equilibrium may then be used. This method was designed for college and early graduate students who have never before encountered the topic of stellar structure. This method was taught to a class of college physics majors in a local New York City college. The students had never before seen these equations. After the presentation, they were asked to attempt construction of a sample stellar model using this method and also to complete a questionnaire concerning their general academic history and their opinions of the method. According to the questionnaire, most subjects felt that it was effective, yet simple
Mathematical and computational modeling of the diffraction problems by discrete singularities method
Nesvit, K. V.
2014-11-12
The main objective of this study is reduced the boundary-value problems of scattering and diffraction waves on plane-parallel structures to the singular or hypersingular integral equations. For these cases we use a method of the parametric representations of the integral and pseudo-differential operators. Numerical results of the model scattering problems on periodic and boundary gratings and also on the gratings above a flat screen reflector are presented in this paper.
Low-order mathematical modelling of electric double layer supercapacitors using spectral methods
NASA Astrophysics Data System (ADS)
Drummond, Ross; Howey, David A.; Duncan, Stephen R.
2015-03-01
This work investigates two physics-based models that simulate the non-linear partial differential algebraic equations describing an electric double layer supercapacitor. In one model the linear dependence between electrolyte concentration and conductivity is accounted for, while in the other model it is not. A spectral element method is used to discretise the model equations and it is found that the error convergence rate with respect to the number of elements is faster compared to a finite difference method. The increased accuracy of the spectral element approach means that, for a similar level of solution accuracy, the model simulation computing time is approximately 50% of that of the finite difference method. This suggests that the spectral element model could be used for control and state estimation purposes. For a typical supercapacitor charging profile, the numerical solutions from both models closely match experimental voltage and current data. However, when the electrolyte is dilute or where there is a long charging time, a noticeable difference between the numerical solutions of the two models is observed. Electrical impedance spectroscopy simulations show that the capacitance of the two models rapidly decreases when the frequency of the perturbation current exceeds an upper threshold.
Arcos González, Pedro; Castro Delgado, Rafael; Cuartas Alvarez, Tatiana; Garijo Gonzalo, Gracia; Martinez Monzon, Carlos; Pelaez Corres, Nieves; Rodriguez Soler, Alberto; Turegano Fuentes, Fernando
2016-01-01
This text describes the process of development of the new Spanish Prehospital Advanced Triage Method (META) and explain its main features and contribution to prehospital triage systems in mass casualty incidents. The triage META is based in the Advanced Trauma Life Support (ATLS) protocols, patient's anatomical injuries and mechanism of injury. It is a triage method with four stages including early identification of patients with severe trauma that would benefit from a rapid evacuation to a surgical facility and introduces a new patient flow by-passing the advanced medical post to improve evacuation. The stages of triage META are: I) Stabilization triage that classifies patients according to severity to set priorities for initial emergency treatment; II) Identifying patients requiring urgent surgical treatment, this is done at the same time than stage I and creates a new flow of patients with high priority for evacuation; III) Implementation of Advanced Trauma Life Support protocols to patients previously classified according to stablished priority; and IV) Evacuation triage, stablishing evacuation priorities in case of lacks of appropriate transport resources. The triage META is to be applied only by prehospital providers with advanced knowledge and training in advanced trauma life support care and has been designed to be implemented as prehospital procedure in mass casualty incidents (MCI). PMID:27130042
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1994-01-01
International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.
This is Part 2 of "Diagnostic Evaluation of Air Quality Models Using Advanced Methods with Specialized Observations of Selected Ambient Species". A limited field campaign to make specialized observations of selected ambient species using advanced and innovative instrumentation f...
James R. Chelikowsky
2009-03-31
The work reported here took place at the University of Minnesota from September 15, 2003 to November 14, 2005. This funding resulted in 10 invited articles or book chapters, 37 articles in refereed journals and 13 invited talks. The funding helped train 5 PhD students. The research supported by this grant focused on developing theoretical methods for predicting and understanding the properties of matter at the nanoscale. Within this regime, new phenomena occur that are characteristic of neither the atomic limit, nor the crystalline limit. Moreover, this regime is crucial for understanding the emergence of macroscopic properties such as ferromagnetism. For example, elemental Fe clusters possess magnetic moments that reside between the atomic and crystalline limits, but the transition from the atomic to the crystalline limit is not a simple interpolation between the two size regimes. To capitalize properly on predicting such phenomena in this transition regime, a deeper understanding of the electronic, magnetic and structural properties of matter is required, e.g., electron correlation effects are enhanced within this size regime and the surface of a confined system must be explicitly included. A key element of our research involved the construction of new algorithms to address problems peculiar to the nanoscale. Typically, one would like to consider systems with thousands of atoms or more, e.g., a silicon nanocrystal that is 7 nm in diameter would contain over 10,000 atoms. Previous ab initio methods could address systems with hundreds of atoms whereas empirical methods can routinely handle hundreds of thousands of atoms (or more). However, these empirical methods often rely on ad hoc assumptions and lack incorporation of structural and electronic degrees of freedom. The key theoretical ingredients in our work involved the use of ab initio pseudopotentials and density functional approaches. The key numerical ingredients involved the implementation of algorithms for
Outlier detection using some methods of mathematical statistic in meteorological time-series
NASA Astrophysics Data System (ADS)
Elias, Michal; Dousa, Jan
2016-06-01
In many applications of Global Navigate Satellite Systems the meteorological time-series play a very important role, especially when representing source of input data for other calculations such as corrections for very precise positioning. We are interested in those corrections which are related to the troposphere delay modelling. Time-series might contain some non-homogeneities, depending on the type of the data source. In this paper the outlier detection is discussed. For investigation we used method based on the autoregressive model and the results of its application were compared with the regression model.
NASA Astrophysics Data System (ADS)
Blokhin, A. M.; Tkachev, D. L.
2011-08-01
An initial boundary value problem for a quasilinear system of equations is studied and effectively applied to numerically determine, by the stabilization method, stationary solutions of a hydrodynamic model describing the motion of electrons in the silicon transistor MESFET (metal semiconductor field effect transistor). An initial boundary value problem has a number of special features; namely, the system of differential equations is not a system of Cauchy-Kovalevskaya type; the boundary of the domain is a nonsmooth curve, it contains corner points; the quasilinearity of the system is related, in particular, to the presence in the equations of squared component of the gradients of unknowns functions. The problem under consideration can be reduced to an equivalent system of integrodifferential equations by using a representation of solutions of a model problem, which makes it possible to prove the local-in-time existence and uniqueness of a weakened solution. Under additional assumptions on the problem data, the global solvability of the mixed problem is proved and the stabilization method is justified by using an energy integral constructed for this purpose and Schauder's fixed point theorem.
ERIC Educational Resources Information Center
Akst, Geoffrey; Ryzewic, Susan Remmer
In April 1983, a questionnaire on the evaluation of remedial mathematics programs wax distributed to all mathematics chairpersons of American institutions of higher education. About 650 (25%) of the institutions responded, yielding information on more than 500 remedial programs and 250 evaluations. The survey dealt with four general areas of…
ERIC Educational Resources Information Center
Nenthien, Sansanee; Loima, Jyrki
2016-01-01
The aims of this qualitative research were to investigate the level of motivation and learning of ninth grade students in mathematics classrooms in Thailand and to reveal how the teachers supported students' levels of motivation and learning. The participants were 333 students and 12 teachers in 12 mathematics classrooms from four regions of…
NASA Astrophysics Data System (ADS)
Jeng, Jin-Jhy
2005-06-01
Remote-field eddy current (RFEC) testing is a nondestructive testing method. It has been comprehensively applied to detect wall loss in ferromagnetic tubes. According to our experience, the problem of variations in a material’s electromagnetic characteristics often occurred in practice in carbon steel tubes. Therefore, if we fail to compensate for changes in electromagnetic characteristics during inspection, an error of evaluation will be generated. This study applied the skin-depth theory of RFEC and geometric relationships on the voltage plane to derive a compensatory model using a mathematical methodology. The new evaluation curve established on the basis of this mathematical methodology compensates for the error contributed by changing electromagnetic characteristics in the tube. The method offered by this study has proved to be reasonable, feasible and acceptable in terms of its mathematical derivation and in comparison with experimental result.
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Banerjee, P. K.
1987-01-01
This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components.
Oh, S.H.; Bissett, E.J.; Battiston, P.A. )
1993-08-01
It has been widely recognized that a large fraction of CO and HC emissions occurs during the cold-start portion of the Federal Test Procedure (FTP) driving schedule. The previously-developed transient monolith model has been extended to describe the thermal response and conversion performance of an electrically heated monolith converter during warmup. This paper documents the necessary modifications in the model formulation and in the numerical solution methods to accommodate the more severe operating conditions encountered in heated converters. The validity of the heated converter model was tested by comparing model predictions with vehicle emission test data. Model predictions of converter-bed temperatures and converter-out mass emissions agree well with those measured during the cold-start portion of the vehicle emission tests, thus demonstrating the validity of the heated converter model developed here.
NASA Technical Reports Server (NTRS)
Vonroos, O. H.
1982-01-01
When the diffusion length of minority carriers becomes comparable with or larger than the thickness of a p-n junction solar cell, the characteristic decay of the photon-generated voltage results from a mixture of contributions with different time constants. The minority carrier recombination lifetime tau and the time constant l(2)/D, where l is essentially the thickness of the cell and D the minority carrier diffusion length, determine the signal as a function of time. It is shown that for ordinary solar cells (n(+)-p junctions), particularly when the diffusion length L of the minority carriers is larger than the cell thickness l, the excess carrier density decays according to exp (-t/tau-pi(2)Dt/4l(2)), tau being the lifetime. Therefore, tau can be readily determined by the photovoltage decay method once D and L are known.
Voigt, Kristina; Scherb, Hagen; Bruggemann, Rainer; Schramm, Karl-Werner
2013-06-01
Sustainable/Green Chemistry is a chemical philosophy encouraging the design of products and processes that reduce or eliminate the use and generation of hazardous substances. In this respect, metrical scientific disciplines like Chemometrics are important, because they indicate criteria for chemicals being hazardous or not. We demonstrated that sustainable principles in the disciplines Green Chemistry, Green Engineering, and Sustainability in Information Technology have main aspects in common. The use of non-hazardous chemicals or the more efficient use of chemical substances is one of these aspects. We take a closer look on the topic of the hazards of chemical substances. Our research focuses on data analyses concerning environmental chemicals named Persistent Organic Pollutants (POPs), which are found all over the world and pose a large risk to environment as well as to humans. The evaluation of the data is a major step in the elucidation of the danger of these chemicals. The data analysis method demonstrated here, is based on the theory of partially ordered sets and provides a generalized ranking. In our approach we investigate data sets of breast milk samples of women in Denmark, Finland, and Turkey which contained measurable levels of 20 POPs. The goal is twofold: On the one side the hazardous chemicals are to be identified and on the other side possible differences among the three nations should be detected, because in that case possible different uptake mechanisms may be supposed. The data analysis is performed by the free available software package PyHasse, written by the third author. We conclude that the data analysis method can well be applied for distinguishing between more or less dangerous existing chemicals. Furthermore, it should be used in sustainable chemistry in the same manner for detecting more and less sustainable chemicals. PMID:23542488
Human-System Safety Methods for Development of Advanced Air Traffic Management Systems
Nelson, W.R.
1999-05-24
The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems.
ERIC Educational Resources Information Center
Jones, Thomas A.
1983-01-01
Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)
ERIC Educational Resources Information Center
Hanh, Vu Duc, Ed.
This document gives a listing of mathematical terminology in both the English and Vietnamese languages. Vocabulary used in algebra and geometry is included along with a translation of mathematical symbols. (DT)
... this page: //medlineplus.gov/ency/article/001534.htm Mathematics disorder To use the sharing features on this page, please enable JavaScript. Mathematics disorder is a condition in which a child's ...
NASA Astrophysics Data System (ADS)
Alfieri, Luisa
2015-12-01
Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.
Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft
NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1996-01-01
In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.
Philosophy and mathematics: interactions.
Rashed, Roshdi
From Plato to the beginnings of the last century, mathematics provided philosophers with methods of exposition, procedures of demonstration, and instruments of analysis. The unprecedented development of mathematics on the one hand, and the mathematicians' appropriation of Logic from the philosophers on the other hand, have given rise to two problems with which the philosophers have to contend: (1) Is there still a place for the philosophy of mathematics? and (2) To what extent is a philosophy of mathematics still possible? This article offers some reflections on these questions, which have preoccupied a good many philosophers and continue to do so. PMID:25029825
NASA Astrophysics Data System (ADS)
Salman, Ahmad; Lapidot, Itshak; Pomerantz, Ami; Tsror, Leah; Shufan, Elad; Moreh, Raymond; Mordechai, Shaul; Huleihel, Mahmoud
2012-01-01
The early diagnosis of phytopathogens is of a great importance; it could save large economical losses due to crops damaged by fungal diseases, and prevent unnecessary soil fumigation or the use of fungicides and bactericides and thus prevent considerable environmental pollution. In this study, 18 isolates of three different fungi genera were investigated; six isolates of Colletotrichum coccodes, six isolates of Verticillium dahliae and six isolates of Fusarium oxysporum. Our main goal was to differentiate these fungi samples on the level of isolates, based on their infrared absorption spectra obtained using the Fourier transform infrared-attenuated total reflection (FTIR-ATR) sampling technique. Advanced statistical and mathematical methods: principal component analysis (PCA), linear discriminant analysis (LDA), and k-means were applied to the spectra after manipulation. Our results showed significant spectral differences between the various fungi genera examined. The use of k-means enabled classification between the genera with a 94.5% accuracy, whereas the use of PCA [3 principal components (PCs)] and LDA has achieved a 99.7% success rate. However, on the level of isolates, the best differentiation results were obtained using PCA (9 PCs) and LDA for the lower wavenumber region (800-1775 cm-1), with identification success rates of 87%, 85.5%, and 94.5% for Colletotrichum, Fusarium, and Verticillium strains, respectively.
Fogelson, A.L.
1984-10-01
The repair of small blood vessels and the pathological growth of internal blood clots involve the formation of platelet aggregates adhering to portions of the vessel wall. Our microscopic model represents blood by a suspension of discrete massless platelets in a viscous incompressible fluid. Platelets are initially noncohesive; however, if stimulated by an above-threshold concentration of the chemical ADP or by contact with the adhesive injured region of the vessel wall, they become cohesive and secrete more ADP into the fluid. Cohesion between platelets and adhesion of a platelet to the injured wall are modeled by creating elastic links. Repulsive forces prevent a platelet from coming too close to another platelet or to the wall. The forces affect the fluid motion in the neighborhood of an aggregate. The platelets and secreted ADP both move by fluid advection and diffusion. The equations of the model are studied numerically in two dimensions. The platelet forces are calculated implicitly by minimizing a nonlinear energy function. Our minimization scheme merges Gill and Murray's (Math. Programming 7 (1974), 311) modified Newton's method with elements of the Yale sparse matix package. The stream-function formulation of the Stokes' equations for the fluid motion under the influence of platelet forces is solved using Bjorstad's biharmonic solver (''Numerical Solution of the Biharmonic Equation,'' Ph.D. Thesis, Stanford University, 1980). The ADP transport equation is solved with an alternating-direction implicit scheme. A linked-list data structure is introduced to keep track of changing platelet states and changing configurations of interplatelet links.
NASA Astrophysics Data System (ADS)
Fogelson, Aaron L.
1984-10-01
The repair of small blood vessels and the pathological growth of internal blood clots involve the formation of platelet aggregates adhering to portions of the vessel wall. Our microscopic model represents blood by a suspension of discrete massless platelets in a viscous incompressible fluid. Platelets are initially noncohesive; however, if stimulated by an above-threshold concentration of the chemical ADP or by contact with the adhesive injured region of the vessel wall, they become cohesive and secrete more ADP into the fluid. Cohesion between platelets and adhesion of a platelet to the injured wall are modeled by creating elastic links. Repulsive forces prevent a platelet from coming too close to another platelet or to the wall. The forces affect the fluid motion in the neighborhood of an aggregate. The platelets and secreted ADP both move by fluid advection and diffusion. The equations of the model are studied numerically in two dimensions. The platelet forces are calculated implicitly by minimizing a nonlinear energy function. Our minimization scheme merges Gill and Murray's ( Math. Programming7 (1974) , 311) modified Newton's method with elements of the Yale sparse matrix package. The stream-function' formulation' of the Stokes' equations for the fluid motion under the influence of platelet forces is solved using Bjorstad's biharmonic solver ("Numerical Solution of the Biharmonic Equation," Ph. D. Thesis, Stanford University, 1980). The ADP transport equation is solved with an alternating-direction implicit scheme. A linked-list data structure is introduced to keep track of changing platelet states and changing configurations of interplatelet links. Results of calculations with healthy platelets and with diseased platelets are presented.
ERIC Educational Resources Information Center
Kilpatrick, Jeremy
2014-01-01
This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…
Computational mathematics and physics of fusion reactors.
Garabedian, Paul R
2003-11-25
Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129
Computational mathematics and physics of fusion reactors
Garabedian, Paul R.
2003-01-01
Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129
Encouraging Young Women to Stay in the Mathematics Pipeline: Mathematics Camps for Young Women
ERIC Educational Resources Information Center
Chacon, Paul; Soto-Johnson, Hortensia
2003-01-01
For two summers, week-long residential mathematics programs were held for high school women, with the primary goal of encouraging them to continue their study of mathematics. The activities were designed to rekindle their excitement about mathematics and to support the idea that women should learn advanced mathematics. This paper reports the…
TIMSS Advanced 2008 Assessment Frameworks
ERIC Educational Resources Information Center
Garden, Robert A.; Lie, Svein; Robitaille, David F.; Angell, Carl; Martin, Michael O.; Mullis, Ina V.S.; Foy, Pierre; Arora, Alka
2006-01-01
Developing the Trends in International Mathematics and Science Study (TIMSS) Advanced 2008 Assessment Frameworks was a collaborative venture involving mathematics and physics experts from around the world. The document contains two frameworks for implementing TIMSS Advanced 2008--one for advanced mathematics and one for physics. It also contains…
Mathematical E-Learning Using Interactive Mathematics on the Web.
ERIC Educational Resources Information Center
Bringslid, Odd
2002-01-01
Explains the use of the Web as an advanced calculator using numeric, graphic, and symbolic mathematics interactively with the development of XML-standard MathML. Suggests that the problem of decreasing achievement in mathematics courses can be solved using interactive and personalized documents on the Web and improve the understanding of…
Strengthen Your Mathematical Muscles
ERIC Educational Resources Information Center
Wohlhuter, Kay A.; Breyfogle, M. Lynn; McDuffie, Amy Roth
2010-01-01
Developing deep knowledge and understanding of mathematics is a lifelong process, and building the foundation for teachers' development must begin in preservice preparation and continue throughout one's professional life. While teaching mathematics content courses and methods courses, the authors have found that preservice elementary school…
Advanced methods for 3-D inelastic structural analysis for hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1989-01-01
Three-dimensional Inelastic Analysis Methods are described. These methods were incorporated into a series of new computer codes embodying a progression of mathematical models (mechanics of materials, specialty finite element, boundary element) for streamlined analysis of hot engine structures such as: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (displacements, frequencies, amplitudes, buckling) structural behavior of the three respective components. The methods and the three computer codes, referred to as MOMM (Mechanics Of Materials Model), MHOST (MARC-Hot Section Technology), and BEST3D (Boundary Element Stress Technology), have been developed and are briefly described.
NOVEL CONCEPTS, METHODS AND ADVANCED TECHNOLOGY IN PARTICULATE/GAS SEPARATION
This paper discusses presentations made during a symposium on novel concepts, methods, and advanced technology in particulate/gas separation. The symposium, held at the University of Notre Dame and sponsored by the National Science Foundation and the Environmental Protection Agen...
ERIC Educational Resources Information Center
Docimo, Chelsey L.
2013-01-01
The purpose of this eleventh grade Advanced Placement (AP) program study was to determine factors associated with AP placement and subsequent student performance. This research was considered to be a mixed methods case study with elements of arrested action research. One hundred and twenty-four students, four guidance counselors, three AP…
Advances in methods and algorithms in a modern quantum chemistry program package.
Shao, Yihan; Molnar, Laszlo Fusti; Jung, Yousung; Kussmann, Jörg; Ochsenfeld, Christian; Brown, Shawn T; Gilbert, Andrew T B; Slipchenko, Lyudmila V; Levchenko, Sergey V; O'Neill, Darragh P; DiStasio, Robert A; Lochan, Rohini C; Wang, Tao; Beran, Gregory J O; Besley, Nicholas A; Herbert, John M; Lin, Ching Yeh; Van Voorhis, Troy; Chien, Siu Hung; Sodt, Alex; Steele, Ryan P; Rassolov, Vitaly A; Maslen, Paul E; Korambath, Prakashan P; Adamson, Ross D; Austin, Brian; Baker, Jon; Byrd, Edward F C; Dachsel, Holger; Doerksen, Robert J; Dreuw, Andreas; Dunietz, Barry D; Dutoi, Anthony D; Furlani, Thomas R; Gwaltney, Steven R; Heyden, Andreas; Hirata, So; Hsu, Chao-Ping; Kedziora, Gary; Khalliulin, Rustam Z; Klunzinger, Phil; Lee, Aaron M; Lee, Michael S; Liang, Wanzhen; Lotan, Itay; Nair, Nikhil; Peters, Baron; Proynov, Emil I; Pieniazek, Piotr A; Rhee, Young Min; Ritchie, Jim; Rosta, Edina; Sherrill, C David; Simmonett, Andrew C; Subotnik, Joseph E; Woodcock, H Lee; Zhang, Weimin; Bell, Alexis T; Chakraborty, Arup K; Chipman, Daniel M; Keil, Frerich J; Warshel, Arieh; Hehre, Warren J; Schaefer, Henry F; Kong, Jing; Krylov, Anna I; Gill, Peter M W; Head-Gordon, Martin
2006-07-21
Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces. PMID:16902710
Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods
Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.
2015-10-13
The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less
Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods
Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.
2015-10-13
The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.
Advances in explosives analysis—part II: photon and neutron methods
Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.
2015-10-07
The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. Our review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. In Part II, we review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less
Advances in explosives analysis--part I: animal, chemical, ion, and mechanical methods.
Brown, Kathryn E; Greenfield, Margo T; McGrane, Shawn D; Moore, David S
2016-01-01
The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245-246, 2009). Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. This part, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons. PMID:26462922
Advances in explosives analysis--part II: photon and neutron methods.
Brown, Kathryn E; Greenfield, Margo T; McGrane, Shawn D; Moore, David S
2016-01-01
The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245-246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. This part, Part II, will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons. PMID:26446898
Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.; Zagaris, George
2009-01-01
A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.
Advances in explosives analysis—part II: photon and neutron methods
Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; Moore, David S.
2015-10-07
The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. Our review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. In Part II, we review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.
Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Korte, John J.
2003-01-01
NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.
ERIC Educational Resources Information Center
Grimaldi, Ralph P.
This material was developed to provide an application of matrix mathematics in chemistry, and to show the concepts of linear independence and dependence in vector spaces of dimensions greater than three in a concrete setting. The techniques presented are not intended to be considered as replacements for such chemical methods as oxidation-reduction…
Advances in the theory and practice of DNA-hybridization as a systematic method.
Sheldon, F H
1994-01-01
DNA hybridization continues in the 1990s to provide insight into phylogeny and evolution. The resilience of this 30-year-old distance technique may be attributed to its fundamental power as a comparative method, as well as to advances in our understanding of its operation and improvements in experimental design and data analysis. These attributes and advances, along with the assumptions and limitations of DNA hybridization, are discussed in this paper. Examples are provided of recent DNA hybridization studies of molecular, morphological, and behavioral systematics and evolution. PMID:7994110
NASA Technical Reports Server (NTRS)
Buckey, J. C.; Beattie, J. M.; Gaffney, F. A.; Nixon, J. V.; Blomqvist, C. G.
1984-01-01
Accurate, reproducible, and non-invasive means for ventricular volume determination are needed for evaluating cardiovascular function zero-gravity. Current echocardiographic methods, particularly for the right ventricle, suffer from a large standard error. A new mathematical approach, recently described by Watanabe et al., was tested on 1 normal formalin-fixed human hearts suspended in a mineral oil bath. Volumes are estimated from multiple two-dimensional echocardiographic views recorded from a single point at sequential angles. The product of sectional cavity area and center of mass for each view summed over the range of angles (using a trapezoidal rule) gives volume. Multiple (8-14) short axis right ventricle and left ventricle views at 5.0 deg intervals were videotaped. The images were digitized by two independent observers (leading-edge to leading-edge technique) and analyzed using a graphics tablet and microcomputer. Actual volumes were determined by filling the chambers with water. These data were compared to the mean of the two echo measurements.
New Technologies in Mathematics.
ERIC Educational Resources Information Center
Sarmiento, Jorge
An understanding of past technological advancements can help educators understand the influence of new technologies in education. Inventions such as the abacus, logarithms, the slide rule, the calculating machine, computers, and electronic calculators have all found their place in mathematics education. While new technologies can be very useful,…
Audiovisual Materials in Mathematics.
ERIC Educational Resources Information Center
Raab, Joseph A.
This pamphlet lists five thousand current, readily available audiovisual materials in mathematics. These are grouped under eighteen subject areas: Advanced Calculus, Algebra, Arithmetic, Business, Calculus, Charts, Computers, Geometry, Limits, Logarithms, Logic, Number Theory, Probability, Soild Geometry, Slide Rule, Statistics, Topology, and…
Mathematical Modeling and Pure Mathematics
ERIC Educational Resources Information Center
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
NASA Astrophysics Data System (ADS)
Stecca, Guglielmo; Siviglia, Annunziato; Blom, Astrid
2014-05-01
synchronous approach, by which all the variables are updated simultaneously. The non-conservative problem which stems from the developed matrix-vector formulation is solved using path-conservative methods. We perform numerical applications by comparison with the above linearised solutions and with the data from laboratory experiments. Results show that our solution approach is robust, general and accurate. References - Hirano, M. (1971), River bed degradation with armoring, Trans. Jpn. Soc. Civ. Eng., (3), 194-195. - Hirano, M. (1972), Studies on variation and equilibrium state of a river bed composed of nonuniform material, Trans. Jpn. Soc. Civ. Eng., (4), 128-129. - Stecca, G., A. Siviglia, and A. Blom, Mathematical analysis of the Saint-Venant-Hirano model for mixed-sediment morphodynamics, Submitted to Water Resources Research
Advanced methods for light trapping in optically thin silicon solar cells
NASA Astrophysics Data System (ADS)
Nagel, James Richard
2011-12-01
The field of light trapping is the study of how best to absorb light in a thin film of material when most light either reflects away at the surface or transmits straight through to the other side. This has tremendous application to the field of photovoltaics where thin silicon films can be manufactured cheaply, but also fail to capture all of the available photons in the solar spectrum. Advancements in light trapping therefore bring us closer to the day when photovoltaic devices may reach grid parity with traditional fossil fuels on the electrical energy market. This dissertation advances our understanding of light trapping by first modeling the effects of loss in planar dielectric waveguides. The mathematical framework developed here can be used to model any arbitrary three-layer structure with mixed gain or loss and then extract the total field solution for the guided modes. It is found that lossy waveguides possess a greater number of eigenmodes than their lossless counterparts, and that these "loss guided" modes attenuate much more rapidly than conventional modes. Another contribution from this dissertation is the exploration of light trapping through the use of dielectric nanospheres embedded directly within the active layer of a thin silicon film. The primary benefit to this approach is that the device can utilize a surface nitride layer serving as an antireflective coating while still retaining the benefits of light trapping within the film. The end result is that light trapping and light injection are effectively decoupled from each other and may be independently optimized within a single photovoltaic device. The final contribution from this work is a direct numerical comparison between multiple light trapping schemes. This allows us to quantify the relative performances of various design techniques against one another and objectively determine which ideas tend to capture the most light. Using numerical simulation, this work directly compares the absorption
Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.
1998-01-01
Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.
Growth in Mathematics Achievement: Analysis with Classification and Regression Trees
ERIC Educational Resources Information Center
Ma, Xin
2005-01-01
A recently developed statistical technique, often referred to as classification and regression trees (CART), holds great potential for researchers to discover how student-level (and school-level) characteristics interactively affect growth in mathematics achievement. CART is a host of advanced statistical methods that statistically cluster…
Sharing the Treats of Mathematics in a Senior Capstone Course
ERIC Educational Resources Information Center
Shifflet, Daniel R.
2013-01-01
In this paper we discuss why a senior capstone course is the perfect setting to reward graduating seniors with some of the more fun and interesting aspects of advanced mathematics. We provide a beginner's list of topics to consider as well as a method of implementing these tidbits outside of the classroom if time is an issue.
NASA Technical Reports Server (NTRS)
Funaro, Gregory V.; Alexander, Reginald A.
2015-01-01
The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of
Xiong, Yongliang; Wang, Yifeng
2016-04-19
A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.
NASA Astrophysics Data System (ADS)
Zhou, L.; Xiao, G.
2014-12-01
The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper
Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results
NASA Technical Reports Server (NTRS)
Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)
2002-01-01
There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.
Experimental Mathematics and Computational Statistics
Bailey, David H.; Borwein, Jonathan M.
2009-04-30
The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.