Sample records for advanced mathematical techniques

  1. Improving operating room efficiency by applying bin-packing and portfolio techniques to surgical case scheduling.

    PubMed

    Van Houdenhoven, Mark; van Oostrum, Jeroen M; Hans, Erwin W; Wullink, Gerhard; Kazemier, Geert

    2007-09-01

    An operating room (OR) department has adopted an efficient business model and subsequently investigated how efficiency could be further improved. The aim of this study is to show the efficiency improvement of lowering organizational barriers and applying advanced mathematical techniques. We applied advanced mathematical algorithms in combination with scenarios that model relaxation of various organizational barriers using prospectively collected data. The setting is the main inpatient OR department of a university hospital, which sets its surgical case schedules 2 wk in advance using a block planning method. The main outcome measures are the number of freed OR blocks and OR utilization. Lowering organizational barriers and applying mathematical algorithms can yield a 4.5% point increase in OR utilization (95% confidence interval 4.0%-5.0%). This is obtained by reducing the total required OR time. Efficient OR departments can further improve their efficiency. The paper shows that a radical cultural change that comprises the use of mathematical algorithms and lowering organizational barriers improves OR utilization.

  2. Near-earth orbital guidance and remote sensing

    NASA Technical Reports Server (NTRS)

    Powers, W. F.

    1972-01-01

    The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.

  3. Mathematics and the surgeon.

    PubMed Central

    Crank, J.

    1976-01-01

    The surgeon uses elementary mathematics just as much as any other educated layman. In his professional life, however, much of the knowledge and skill on which he relies has had a mathematical strand in its development, possibly woven into the supporting disciplines such as physics, chemistry, biology, and bioengineering. The valves and limitations of mathematical models are examined briefly in the general medical field and particularly in relation to the surgeon. Arithmetic and statistics are usually regarded as the most immediately useful parts of mathematics. Examples are cited, however, of medical postgraduate work which uses other highly advanced mathematical techniques. The place of mathematics in postgraduate and postexperience teaching courses is touched on. The role of a mathematical consultant in the medical team is discussed. PMID:942167

  4. Teaching Guide and Problem Supplement. A Publication of the Exemplary Project Problem Solving Computer Style 1969-1970.

    ERIC Educational Resources Information Center

    New Orleans Public Schools, LA.

    Secondary school teachers incorporating the use of a computer in algebra, trigonometry, advanced mathematics, chemistry, or physics classes are the individuals for whom this book is intended. The content included in it is designed to aid the learning of programing techniques and basic scientific or mathematical principles, and to offer some…

  5. Higher Mathematics Education at a Distance: The Use of Computers at the Open University of the Netherlands.

    ERIC Educational Resources Information Center

    Hummel, Hans G. K.; Smit, Herjan

    1996-01-01

    Describes mathematics courses developed for guided self-study at a distance. The courses incorporate new educational media and special didactic techniques. Provides details about how a computer can be used in such a setting, and focuses on a computer practical examination used for an advanced course in Fourier transforms. (27 references) (DDR)

  6. Polynomial Calculus: Rethinking the Role of Calculus in High Schools

    ERIC Educational Resources Information Center

    Grant, Melva R.; Crombie, William; Enderson, Mary; Cobb, Nell

    2016-01-01

    Access to advanced study in mathematics, in general, and to calculus, in particular, depends in part on the conceptual architecture of these knowledge domains. In this paper, we outline an alternative conceptual architecture for elementary calculus. Our general strategy is to separate basic concepts from the particular advanced techniques used in…

  7. Mathematical Methods for Optical Physics and Engineering

    NASA Astrophysics Data System (ADS)

    Gbur, Gregory J.

    2011-01-01

    1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.

  8. Spectrophotometric Determination of the Dissociation Constant of an Acid-Base Indicator Using a Mathematical Deconvolution Technique

    ERIC Educational Resources Information Center

    Alter, Krystyn P.; Molloy, John L.; Niemeyer, Emily D.

    2005-01-01

    A laboratory experiment reinforces the concept of acid-base equilibria while introducing a common application of spectrophotometry and can easily be completed within a standard four-hour laboratory period. It provides students with an opportunity to use advanced data analysis techniques like data smoothing and spectral deconvolution to…

  9. Challenges for Complex Microbial Ecosystems: Combination of Experimental Approaches with Mathematical Modeling

    PubMed Central

    Haruta, Shin; Yoshida, Takehito; Aoi, Yoshiteru; Kaneko, Kunihiko; Futamata, Hiroyuki

    2013-01-01

    In the past couple of decades, molecular ecological techniques have been developed to elucidate microbial diversity and distribution in microbial ecosystems. Currently, modern techniques, represented by meta-omics and single cell observations, are revealing the incredible complexity of microbial ecosystems and the large degree of phenotypic variation. These studies propound that microbiological techniques are insufficient to untangle the complex microbial network. This minireview introduces the application of advanced mathematical approaches in combination with microbiological experiments to microbial ecological studies. These combinational approaches have successfully elucidated novel microbial behaviors that had not been recognized previously. Furthermore, the theoretical perspective also provides an understanding of the plasticity, robustness and stability of complex microbial ecosystems in nature. PMID:23995424

  10. New techniques for the analysis of manual control systems. [mathematical models of human operator behavior

    NASA Technical Reports Server (NTRS)

    Bekey, G. A.

    1971-01-01

    Studies are summarized on the application of advanced analytical and computational methods to the development of mathematical models of human controllers in multiaxis manual control systems. Specific accomplishments include the following: (1) The development of analytical and computer methods for the measurement of random parameters in linear models of human operators. (2) Discrete models of human operator behavior in a multiple display situation were developed. (3) Sensitivity techniques were developed which make possible the identification of unknown sampling intervals in linear systems. (4) The adaptive behavior of human operators following particular classes of vehicle failures was studied and a model structure proposed.

  11. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process.

    PubMed

    Flegg, Jennifer A; Menon, Shakti N; Maini, Philip K; McElwain, D L Sean

    2015-01-01

    Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

  12. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process

    PubMed Central

    Flegg, Jennifer A.; Menon, Shakti N.; Maini, Philip K.; McElwain, D. L. Sean

    2015-01-01

    Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration. PMID:26483695

  13. Racial Differences in Mathematics Test Scores for Advanced Mathematics Students

    ERIC Educational Resources Information Center

    Minor, Elizabeth Covay

    2016-01-01

    Research on achievement gaps has found that achievement gaps are larger for students who take advanced mathematics courses compared to students who do not. Focusing on the advanced mathematics student achievement gap, this study found that African American advanced mathematics students have significantly lower test scores and are less likely to be…

  14. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    PubMed

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Evaluation of a Constrained Facet Analysis Efficiency Model for Identifying the Efficiency of Medical Treatment Facilities in the Army Medical Department

    DTIC Science & Technology

    1990-07-31

    examples on their use is available with the PASS User Documentation Manual. 2 The data structure of PASS requires a three- lvel organizational...files, and missing control variables. A specific problem noted involved the absence of 8087 mathematical co-processor on the target IBM-XT 21 machine...System, required an operational understanding of the advanced mathematical technique used in the model. Problems with the original release of the PASS

  16. Modeling and simulation of the flow field in the electrolysis of magnesium

    NASA Astrophysics Data System (ADS)

    Sun, Ze; Zhang, He-Nan; Li, Ping; Li, Bing; Lu, Gui-Min; Yu, Jian-Guo

    2009-05-01

    A three-dimensional mathematical model was developed to describe the flow field in the electrolysis cell of the molten magnesium salt, where the model of the three-phase flow was coupled with the electric field force. The mathematical model was validated against the experimental data of the cold model in the electrolysis cell of zinc sulfate with 2 mol/L concentration. The flow field of the cold model was measured by particle image velocimetry, a non-intrusive visualization experimental technique. The flow field in the advanced diaphragmless electrolytic cell of the molten magnesium salt was investigated by the simulations with the mathematical model.

  17. Methodology of Spread-Spectrum Image Steganography

    DTIC Science & Technology

    1998-06-01

    the message was literally uncovered. Modern times have yielded more advanced techniques, such as the use of invisible inks, where certain chemical ...MILITARY ACADEMY MATH SCI CTR OF EXCELLENCE DEPT OF MATHEMATICAL SCI MDN A MAJ DON ENGEN THAYERHALL WEST POINT NY 10996-1786 1 DIRECTOR

  18. Cognitive correlates of performance in advanced mathematics.

    PubMed

    Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin

    2012-03-01

    Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.

  19. Introducing Seismic Tomography with Computational Modeling

    NASA Astrophysics Data System (ADS)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  20. On the Relationships between (Relatively) Advanced Mathematical Knowledge and (Relatively) Advanced Problem-Solving Behaviours

    ERIC Educational Resources Information Center

    Koichu, Boris

    2010-01-01

    This article discusses an issue of inserting mathematical knowledge within the problem-solving processes. Relatively advanced mathematical knowledge is defined in terms of "three mathematical worlds"; relatively advanced problem-solving behaviours are defined in terms of taxonomies of "proof schemes" and "heuristic behaviours". The relationships…

  1. Space Weather in the Machine Learning Era: A Multidisciplinary Approach

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Wing, S.; Johnson, J.; Jackman, C. M.; McGranaghan, R.

    2018-01-01

    The workshop entitled Space Weather: A Multidisciplinary Approach took place at the Lorentz Center, University of Leiden, Netherlands, on 25-29 September 2017. The aim of this workshop was to bring together members of the Space Weather, Mathematics, Statistics, and Computer Science communities to address the use of advanced techniques such as Machine Learning, Information Theory, and Deep Learning, to better understand the Sun-Earth system and to improve space weather forecasting. Although individual efforts have been made toward this goal, the community consensus is that establishing interdisciplinary collaborations is the most promising strategy for fully utilizing the potential of these advanced techniques in solving Space Weather-related problems.

  2. Class and Home Problems: Optimization Problems

    ERIC Educational Resources Information Center

    Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard

    2011-01-01

    Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…

  3. Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…

  4. Connecting Advanced and Secondary Mathematics

    ERIC Educational Resources Information Center

    Murray, Eileen; Baldinger, Erin; Wasserman, Nicholas; Broderick, Shawn; White, Diana

    2017-01-01

    There is an ongoing debate among scholars in understanding what mathematical knowledge secondary teachers should have in order to provide effective instruction. We explore connections between advanced and secondary mathematics as an entry point into this debate. In many cases, advanced mathematics is considered relevant for secondary teachers…

  5. Teko: A block preconditioning capability with concrete example applications in Navier--Stokes and MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cyr, Eric C.; Shadid, John N.; Tuminaro, Raymond S.

    This study describes the design of Teko, an object-oriented C++ library for implementing advanced block preconditioners. Mathematical design criteria that elucidate the needs of block preconditioning libraries and techniques are explained and shown to motivate the structure of Teko. For instance, a principal design choice was for Teko to strongly reflect the mathematical statement of the preconditioners to reduce development burden and permit focus on the numerics. Additional mechanisms are explained that provide a pathway to developing an optimized production capable block preconditioning capability with Teko. Finally, Teko is demonstrated on fluid flow and magnetohydrodynamics applications. In addition to highlightingmore » the features of the Teko library, these new results illustrate the effectiveness of recent preconditioning developments applied to advanced discretization approaches.« less

  6. Teko: A block preconditioning capability with concrete example applications in Navier--Stokes and MHD

    DOE PAGES

    Cyr, Eric C.; Shadid, John N.; Tuminaro, Raymond S.

    2016-10-27

    This study describes the design of Teko, an object-oriented C++ library for implementing advanced block preconditioners. Mathematical design criteria that elucidate the needs of block preconditioning libraries and techniques are explained and shown to motivate the structure of Teko. For instance, a principal design choice was for Teko to strongly reflect the mathematical statement of the preconditioners to reduce development burden and permit focus on the numerics. Additional mechanisms are explained that provide a pathway to developing an optimized production capable block preconditioning capability with Teko. Finally, Teko is demonstrated on fluid flow and magnetohydrodynamics applications. In addition to highlightingmore » the features of the Teko library, these new results illustrate the effectiveness of recent preconditioning developments applied to advanced discretization approaches.« less

  7. TIMSS Advanced 2008 Assessment Frameworks

    ERIC Educational Resources Information Center

    Garden, Robert A.; Lie, Svein; Robitaille, David F.; Angell, Carl; Martin, Michael O.; Mullis, Ina V.S.; Foy, Pierre; Arora, Alka

    2006-01-01

    Developing the Trends in International Mathematics and Science Study (TIMSS) Advanced 2008 Assessment Frameworks was a collaborative venture involving mathematics and physics experts from around the world. The document contains two frameworks for implementing TIMSS Advanced 2008--one for advanced mathematics and one for physics. It also contains…

  8. Recent Advances in Registration, Integration and Fusion of Remotely Sensed Data: Redundant Representations and Frames

    NASA Technical Reports Server (NTRS)

    Czaja, Wojciech; Le Moigne-Stewart, Jacqueline

    2014-01-01

    In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.

  9. Cognitive Correlates of Performance in Advanced Mathematics

    ERIC Educational Resources Information Center

    Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin

    2012-01-01

    Background: Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic).Aims: To promote mathematical knowledge among college students, it is necessary to understand what factors…

  10. Advanced statistics: linear regression, part II: multiple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  11. Mathematical Modeling in the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Toews, Carl

    2012-01-01

    Mathematical modeling occupies an unusual space in the undergraduate mathematics curriculum: typically an "advanced" course, it nonetheless has little to do with formal proof, the usual hallmark of advanced mathematics. Mathematics departments are thus forced to decide what role they want the modeling course to play, both as a component of the…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Young-Sun; Yoon, Wang-Jung

    The purpose of this study is to map pyprophyllite distribution at surface of the Nohwa deposit, Korea by using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. For this, combined Spectral Angle Mapper (SAM), and Matched Filtering (MF) technique based on mathematical algorithm was applied. The regional distribution of high-grade and low-grade pyrophyllite in the Nohwa deposit area could be differentiated by this method. The results of this study show that ASTER data analysis using combination of SAM and MF techniques will assist in exploration of pyrophyllite at the exposed surface.

  13. The Impact of Advanced Curriculum on the Achievement of Mathematically Promising Elementary Students

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Casa, Tutita M.; Adelson, Jill L.; Carroll, Susan R.; Sheffield, Linda Jensen

    2009-01-01

    The primary aim of Project M[superscript 3]: Mentoring Mathematical Minds was to develop and field test advanced units for mathematically promising elementary students based on exemplary practices in gifted and mathematics education. This article describes the development of the units and reports on mathematics achievement results for students in…

  14. Current advancements and challenges in soil-root interactions modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Huber, Katrin; Abesha, Betiglu; Meunier, Felicien; Leitner, Daniel; Roose, Tiina; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry

    2015-04-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  15. Current Advancements and Challenges in Soil-Root Interactions Modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, A.; Huber, K.; Abesha, B.; Meunier, F.; Leitner, D.; Roose, T.; Javaux, M.; Vanderborght, J.; Vereecken, H.

    2014-12-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  16. What is the purpose of emission computed tomography in nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, M.E.

    1977-01-01

    ECT is a mathematical and physical concept, an instrument, a radionuclide tracer technique, a research procedure and it is certainly both an old (Kuhl began his work in the late fifties) and a new concept. It also has great and unique potential as a diagnostic technique. It is interesting that the basic principles of medical CT were exemplified and developed in Nuclear Medicine by Kuhl and coworkers and the concept of ''physiologic or function tomography'' provides a technique to advance the original charter of Nuclear Medicine in the use of radionuclides for the measure of metabolism and physiologic function.

  17. Advanced techniques for the storage and use of very large, heterogeneous spatial databases. The representation of geographic knowledge: Toward a universal framework. [relations (mathematics)

    NASA Technical Reports Server (NTRS)

    Peuquet, Donna J.

    1987-01-01

    A new approach to building geographic data models that is based on the fundamental characteristics of the data is presented. An overall theoretical framework for representing geographic data is proposed. An example of utilizing this framework in a Geographic Information System (GIS) context by combining artificial intelligence techniques with recent developments in spatial data processing techniques is given. Elements of data representation discussed include hierarchical structure, separation of locational and conceptual views, and the ability to store knowledge at variable levels of completeness and precision.

  18. Vistas in applied mathematics: Numerical analysis, atmospheric sciences, immunology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishnan, A.V.; Dorodnitsyn, A.A.; Lions, J.L.

    1986-01-01

    Advances in the theory and application of numerical modeling techniques are discussed in papers contributed, primarily by Soviet scientists, on the occasion of the 60th birthday of Gurii I. Marchuk. Topics examined include splitting techniques for computations of industrial flows, the mathematical foundations of the k-epsilon turbulence model, splitting methods for the solution of the incompressible Navier-Stokes equations, the approximation of inhomogeneous hyperbolic boundary-value problems, multigrid methods, and the finite-element approximation of minimal surfaces. Consideration is given to dynamic modeling of moist atmospheres, satellite observations of the earth radiation budget and the problem of energy-active ocean regions, a numerical modelmore » of the biosphere for use with GCMs, and large-scale modeling of ocean circulation. Also included are several papers on modeling problems in immunology.« less

  19. Aircraft geometry verification with enhanced computer generated displays

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1982-01-01

    A method for visual verification of aerodynamic geometries using computer generated, color shaded images is described. The mathematical models representing aircraft geometries are created for use in theoretical aerodynamic analyses and in computer aided manufacturing. The aerodynamic shapes are defined using parametric bi-cubic splined patches. This mathematical representation is then used as input to an algorithm that generates a color shaded image of the geometry. A discussion of the techniques used in the mathematical representation of the geometry and in the rendering of the color shaded display is presented. The results include examples of color shaded displays, which are contrasted with wire frame type displays. The examples also show the use of mapped surface pressures in terms of color shaded images of V/STOL fighter/attack aircraft and advanced turboprop aircraft.

  20. System identification of propagating wave segments in excitable media and its application to advanced control

    NASA Astrophysics Data System (ADS)

    Katsumata, Hisatoshi; Konishi, Keiji; Hara, Naoyuki

    2018-04-01

    The present paper proposes a scheme for controlling wave segments in excitable media. This scheme consists of two phases: in the first phase, a simple mathematical model for wave segments is derived using only the time series data of input and output signals for the media; in the second phase, the model derived in the first phase is used in an advanced control technique. We demonstrate with numerical simulations of the Oregonator model that this scheme performs better than a conventional control scheme.

  1. Celestial mechanics during the last two decades

    NASA Technical Reports Server (NTRS)

    Szebehely, V.

    1978-01-01

    The unprecedented progress in celestial mechanics (orbital mechanics, astrodynamics, space dynamics) is reviewed from 1957 to date. The engineering, astronomical and mathematical aspects are synthesized. The measuring and computational techniques developed parallel with the theoretical advances are outlined. Major unsolved problem areas are listed with proposed approaches for their solutions. Extrapolations and predictions of the progress for the future conclude the paper.

  2. Adding structure to the transition process to advanced mathematical activity

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann

    2010-03-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical deductive reasoning, required in advanced mathematics. It is necessary to assist students in this transition process, in moving from general to mathematical thinking. In this article some structure is suggested for this transition period. This essay is an argumentative exposition supported by personal experience and international literature. This makes this study theoretical rather than empirical.

  3. Preparing and Supporting Black Students to Enroll and Achieve in Advanced Mathematics Classes in Middle School: A Case Study

    ERIC Educational Resources Information Center

    Cobbs, Joyce Bernice

    2014-01-01

    The literature on minority student achievement indicates that Black students are underrepresented in advanced mathematics courses. Advanced mathematics courses offer students the opportunity to engage with challenging curricula, experience rigorous instruction, and interact with quality teachers. The middle school years are particularly…

  4. Teacher Questioning and Invitations to Participate in Advanced Mathematics Lectures

    ERIC Educational Resources Information Center

    Paoletti, Teo; Krupnik, Victoria; Papadopoulos, Dimitrios; Olsen, Joseph; Fukawa-Connelly, Tim; Weber, Keith

    2018-01-01

    We were interested in exploring the extent to which advanced mathematics lecturers provide students with opportunities to play a role in considering or generating course content. To do this, we examined the questioning practices of 11 lecturers who taught advanced mathematics courses at the university level. Because we are unaware of other studies…

  5. The link between middle school mathematics course placement and achievement.

    PubMed

    Domina, Thurston

    2014-01-01

    The proportion of eighth graders in United States public schools enrolled in algebra or a more advanced mathematics course doubled between 1990 and 2011. This article uses Early Childhood Longitudinal Study's Kindergarten Cohort data to consider the selection process into advanced middle school mathematics courses and estimate the effects of advanced courses on students' mathematics achievement (n = 6,425; mean age at eighth grade = 13.7). Eighth-grade algebra and geometry course placements are academically selective, but considerable between-school variation exists in students' odds of taking these advanced courses. While analyses indicate that advanced middle school mathematics courses boost student achievement, these effects are most pronounced in content areas closely related to class content and may be contingent on student academic readiness. © 2014 The Author. Child Development © 2014 Society for Research in Child Development, Inc.

  6. Analysis of intracranial pressure: past, present, and future.

    PubMed

    Di Ieva, Antonio; Schmitz, Erika M; Cusimano, Michael D

    2013-12-01

    The monitoring of intracranial pressure (ICP) is an important tool in medicine for its ability to portray the brain's compliance status. The bedside monitor displays the ICP waveform and intermittent mean values to guide physicians in the management of patients, particularly those having sustained a traumatic brain injury. Researchers in the fields of engineering and physics have investigated various mathematical analysis techniques applicable to the waveform in order to extract additional diagnostic and prognostic information, although they largely remain limited to research applications. The purpose of this review is to present the current techniques used to monitor and interpret ICP and explore the potential of using advanced mathematical techniques to provide information about system perturbations from states of homeostasis. We discuss the limits of each proposed technique and we propose that nonlinear analysis could be a reliable approach to describe ICP signals over time, with the fractal dimension as a potential predictive clinically meaningful biomarker. Our goal is to stimulate translational research that can move modern analysis of ICP using these techniques into widespread practical use, and to investigate to the clinical utility of a tool capable of simplifying multiple variables obtained from various sensors.

  7. Use of CAS in Secondary School: A Factor Influencing the Transition to University-Level Mathematics?

    ERIC Educational Resources Information Center

    Varsavsky, Cristina

    2012-01-01

    Australian secondary school systems offer three levels of senior (year 12) mathematics studies, none of them compulsory: elementary, intermediate and advanced. The intermediate and advanced studies prepare students for further mathematics studies at university level. In the state of Victoria, there are two versions of intermediate mathematics: one…

  8. How Syntactic Reasoners Can Develop Understanding, Evaluate Conjectures, and Generate Counterexamples in Advanced Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith

    2009-01-01

    This paper presents a case study of a highly successful student whose exploration of an advanced mathematical concept relies predominantly on syntactic reasoning, such as developing formal representations of mathematical ideas and making logical deductions. This student is observed as he learns a new mathematical concept and then completes…

  9. Adding Structure to the Transition Process to Advanced Mathematical Activity

    ERIC Educational Resources Information Center

    Engelbrecht, Johann

    2010-01-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical…

  10. Selected Bibliography on Optimizing Techniques in Statistics

    DTIC Science & Technology

    1981-08-01

    problems in business, industry and .ogovern nt ae f rmulated as optimization problem. Topics in optimization constitute an essential area of study in...numerical, iii) mathematical programming, and (iv) variational. We provide pertinent references with statistical applications Sin the above areas in Part I...TMS Advanced Studies in Managentnt Sciences, North-Holland PIIENli iiiany, Amsterdam. (To appear.) Spang, H. A. (1962). A review of minimization

  11. Basic and Advanced Numerical Performances Relate to Mathematical Expertise but Are Fully Mediated by Visuospatial Skills

    PubMed Central

    2016-01-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. PMID:26913930

  12. Molecular modeling: An open invitation for applied mathematics

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  13. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    PubMed Central

    Bucksch, Alexander; Atta-Boateng, Acheampong; Azihou, Akomian F.; Battogtokh, Dorjsuren; Baumgartner, Aly; Binder, Brad M.; Braybrook, Siobhan A.; Chang, Cynthia; Coneva, Viktoirya; DeWitt, Thomas J.; Fletcher, Alexander G.; Gehan, Malia A.; Diaz-Martinez, Diego Hernan; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Klein, Laura L.; Leiboff, Samuel; Li, Mao; Lynch, Jonathan P.; Maizel, Alexis; Maloof, Julin N.; Markelz, R. J. Cody; Martinez, Ciera C.; Miller, Laura A.; Mio, Washington; Palubicki, Wojtek; Poorter, Hendrik; Pradal, Christophe; Price, Charles A.; Puttonen, Eetu; Reese, John B.; Rellán-Álvarez, Rubén; Spalding, Edgar P.; Sparks, Erin E.; Topp, Christopher N.; Williams, Joseph H.; Chitwood, Daniel H.

    2017-01-01

    The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics. PMID:28659934

  14. Statistics for wildlifers: how much and what kind?

    USGS Publications Warehouse

    Johnson, D.H.; Shaffer, T.L.; Newton, W.E.

    2001-01-01

    Quantitative methods are playing increasingly important roles in wildlife ecology and, ultimately, management. This change poses a challenge for wildlife practitioners and students who are not well-educated in mathematics and statistics. Here we give our opinions on what wildlife biologists should know about statistics, while recognizing that not everyone is inclined mathematically. For those who are, we recommend that they take mathematics coursework at least through calculus and linear algebra. They should take statistics courses that are focused conceptually , stressing the Why rather than the How of doing statistics. For less mathematically oriented wildlifers, introductory classes in statistical techniques will furnish some useful background in basic methods but may provide little appreciation of when the methods are appropriate. These wildlifers will have to rely much more on advice from statisticians. Far more important than knowing how to analyze data is an understanding of how to obtain and recognize good data. Regardless of the statistical education they receive, all wildlife biologists should appreciate the importance of controls, replication, and randomization in studies they conduct. Understanding these concepts requires little mathematical sophistication, but is critical to advancing the science of wildlife ecology.

  15. TIMSS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    The "TIMSS Advanced 2015 Assessment Frameworks" provides the foundation for the two international assessments to take place as part of the International Association for the Evaluation of Educational Achievement's TIMSS (Trends in International Mathematics and Science Study) Advanced 2015--Advanced Mathematics and Physics. Chapter 1 (Liv…

  16. Using Computational and Mechanical Models to Study Animal Locomotion

    PubMed Central

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  17. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology

    PubMed Central

    Di Ruberto, Cecilia; Kocher, Michel

    2018-01-01

    Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images. PMID:29419781

  18. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.

    PubMed

    Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel

    2018-02-08

    Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.

  19. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    PubMed

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  20. Advanced computer techniques for inverse modeling of electric current in cardiac tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.

    1996-08-01

    For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.

  1. Mathematical modeling of physiological systems: an essential tool for discovery.

    PubMed

    Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J

    2014-08-28

    Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Secondary School Advanced Mathematics, Chapter 8, Systems of Equations. Teacher's Commentary.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This manual was designed for use with the last of five texts in the Secondary School Advanced Mathematics (SSAM) series. Developed for students who have completed the Secondary School Mathematics (SSM) program and wish to continue their studies in mathematics, this series is designed to review, strengthen, and fill gaps in the material covered in…

  3. Secondary School Advanced Mathematics, Chapter 3, Formal Geometry. Teacher's Commentary.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This manual was designed for use with the second of five texts in the Secondary School Advanced Mathematics (SSAM) series. Developed for students who have completed the Secondary School Mathematics (SSM) program and wish to continue their studies in mathematics, this series is designed to review, strengthen, and fill gaps in the material covered…

  4. Secondary School Advanced Mathematics, Chapter 3, Formal Geometry. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the second of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. This volume is devoted to a rigorous development of theorems in plane geometry from 22…

  5. Secondary School Advanced Mathematics, Chapter 8, Systems of Equations. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the last of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. In this volume the solution of systems of linear and quadratic equations and inequalities in…

  6. Which Advanced Mathematics Courses Influence ACT Score? A State Level Analysis of the Iowa Class of 2012

    ERIC Educational Resources Information Center

    Grinstead, Mary L.

    2013-01-01

    This study explores the relationship between specific advanced mathematics courses and college readiness (as determined by ACT score). The ACT organization has found a consistent relationship between taking a minimum core number of mathematics courses and higher ACT scores (mathematics and composite) (ACT, Inc., 2012c). However, the extent to…

  7. Use of CAS in secondary school: a factor influencing the transition to university-level mathematics?

    NASA Astrophysics Data System (ADS)

    Varsavsky, Cristina

    2012-01-01

    Australian secondary school systems offer three levels of senior (year 12) mathematics studies, none of them compulsory: elementary, intermediate and advanced. The intermediate and advanced studies prepare students for further mathematics studies at university level. In the state of Victoria, there are two versions of intermediate mathematics: one where students learn and are examined with a computer algebra system (CAS) and another where students can only use scientific calculators. This study compares the performance of 1240 students as they transitioned to traditional university-level mathematics and according to whether they learned intermediate mathematics with or without the assistance of a CAS. This study concludes that students without CAS show a slight advantage, but the most important factor affecting student performance is the uptake of advanced-level mathematics studies in secondary school.

  8. Secondary School Advanced Mathematics, Chapter 1, Organizing Geometric Knowledge, Chapter 2, Concepts and Skills in Algebra. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the first of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. The first chapter, devoted to organizing geometric knowledge, deals with the distinction…

  9. Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills.

    PubMed

    Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi

    2016-09-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Dynamic Analysis of Sounding Rocket Pneumatic System Revision

    NASA Technical Reports Server (NTRS)

    Armen, Jerald

    2010-01-01

    The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.

  11. OPERATIONS RESEARCH IN THE DESIGN OF MANAGEMENT INFORMATION SYSTEMS

    DTIC Science & Technology

    management information systems is concerned with the identification and detailed specification of the information and data processing...of advanced data processing techniques in management information systems today, the close coordination of operations research and data systems activities has become a practical necessity for the modern business firm.... information systems in which mathematical models are employed as the basis for analysis and systems design. Operations research provides a

  12. Integrated Formulation of Beacon-Based Exception Analysis for Multimissions

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; James, Mark; Park, Han; Zak, Mickail

    2003-01-01

    Further work on beacon-based exception analysis for multimissions (BEAM), a method of real-time, automated diagnosis of a complex electromechanical systems, has greatly expanded its capability and suitability of application. This expanded formulation, which fully integrates physical models and symbolic analysis, is described. The new formulation of BEAM expands upon previous advanced techniques for analysis of signal data, utilizing mathematical modeling of the system physics, and expert-system reasoning,

  13. Bedside cardiac examination: constancy in a sea of change.

    PubMed

    Richardson, T R; Moody, J M

    2000-11-01

    The general trend in the recent literature has been to highlight the difficulties and shortcomings of the physical examination and to attribute these difficulties to deficiencies in training rather than to intrinsic weaknesses in auscultation itself. The call is for better training. Given the advice of the authors mentioned above, individual training may be warranted at the postgraduate level and in the large community of practicing internists and cardiologists. Although not proven, it is likely that individual training with computer technology, audiotape instruction, or simulator technology such as described in the following paragraphs would be effective at improving bedside clinical diagnosis and cost-effective patient care in the postgraduate, continuing medical education setting. The advances in auscultation during the last few years have been more incremental than fundamental. There is ongoing research into the mechanism of production of S3 and S4, and mathematical modeling techniques have recently been used with some success in evaluating the vibrations of S3 and S4 as forced, damped oscillations of a viscoelastic system. Analysis of sound energy with the technique of spectral waveform analysis, which investigates the frequency content of sound signals, has been used for many years in the study of cardiovascular sound. By the use of various methods of mathematical analysis, investigators have found potentially useful information in spectral sound patterns of prosthetic valves, murmur characteristics, and even potentially hemodynamic information from heart sounds. Despite the mathematical advances, there are still disturbing drawbacks to some of the analytic techniques, such as the production of mathematical terms containing "negative energy." Although the potential of obtaining significant clinical information from spectral analysis of heart sound recordings is attractive, the clinical usefulness of such techniques remains virtually nonexistent. Similar to the recent advances in auscultation, the technical advances in the design of the stethoscope have also been more incremental than fundamental. There are at least 3 recently introduced electronic stethoscopes that have the capability of amplification and filtration and that claim noise reduction. Because their introduction is recent, no information is available in the peer-review literature regarding their clinical performance; therefore their place in the clinical arena remains to be elucidated--perhaps a boon for patient care providers with specific hearing defects and perhaps useful in noisy clinical environments. Peer-review literature has not shown clear superiority of one type of acoustic stethoscope over another. The teaching of auscultation has been an area of recognized importance in patient care since the inception of auscultation as a medical art. Attempts to facilitate practitioner learning in the performance and interpretation of auscultation have advanced through the decades limited only by the technical infrastructure of the day. The availability of recorded heart sounds and murmurs appeared shortly after the availability of recording and playback devices, with first vinyl and later tape recordings. In 1974, technology was employed to create a virtual patient named "Harvey," an engineered cardiology patient simulator that reproduces many of the physical findings of the cardiology examination. Later, with the advent of commercially available CD-ROM devices, newer, better-integrated teaching devices have been developed, some of them outstanding in their clarity and quality. Despite the obvious value of such instructional aids that are best used in the individual setting, there is evidence that the classroom is still of significant value in teaching auscultation. However, nowhere else in the practice of medicine is a mentor approach more valuable than in learning auscultation. (ABSTRACT TRUNCATED)

  14. Mathematical and Numerical Techniques in Energy and Environmental Modeling

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Ewing, R. E.

    Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms

  15. Advanced Mathematical Thinking

    ERIC Educational Resources Information Center

    Dubinsky, Ed; McDonald, Michael A.; Edwards, Barbara S.

    2005-01-01

    In this article we propose the following definition for advanced mathematical thinking: Thinking that requires deductive and rigorous reasoning about mathematical notions that are not entirely accessible to us through our five senses. We argue that this definition is not necessarily tied to a particular kind of educational experience; nor is it…

  16. Secondary School Advanced Mathematics, Chapter 4, Equations, Inequalities, and Radicals, Chapter 5, Circles and Spheres. Teacher's Commentary.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This manual was designed for use with the third of five texts in the Secondary School Advanced Mathematics (SSAM) series. Developed for students who have completed the Secondary School Mathematics (SSM) program and wish to continue their studies in mathematics, this series is designed to review, strengthen, and fill gaps in the material covered in…

  17. Secondary School Advanced Mathematics, Chapter 1, Organizing Geometric Knowledge, Chapter 2, Concepts and Skills in Algebra. Teacher's Commentary.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This manual was designed for use with the first of five texts in the Secondary School Advanced Mathematics (SSAM) series. Developed for students who have completed the Secondary School Mathematics (SSM) program and wish to continue their studies in mathematics, this series is designed to review, strengthen, and fill gaps in the material covered in…

  18. Secondary School Advanced Mathematics, Chapter 4, Equations, Inequalities, and Radicals, Chapter 5, Circles and Spheres. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the third of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. The first of the two chapters in this text deals with equations, inequalities and radicals.…

  19. A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics

    NASA Astrophysics Data System (ADS)

    Ochi, Nobuaki

    A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.

  20. Mathematics Content Coverage and Student Learning in Kindergarten

    PubMed Central

    Engel, Mimi; Claessens, Amy; Watts, Tyler; Farkas, George

    2017-01-01

    Analyzing data from two nationally representative kindergarten cohorts, we examine the mathematics content teachers cover in kindergarten. We expand upon prior research, finding that kindergarten teachers report emphasizing basic mathematics content. Although teachers reported increased coverage of advanced content between the 1998–99 and 2010–11 school years, they continued to place more emphasis on basic content. We find that time on advanced content is positively associated with student learning, whereas time on basic content has a negative association with learning. We argue that increased exposure to more advanced mathematics content could benefit the vast majority of kindergartners. PMID:29353913

  1. [Advancements of computer chemistry in separation of Chinese medicine].

    PubMed

    Li, Lingjuan; Hong, Hong; Xu, Xuesong; Guo, Liwei

    2011-12-01

    Separating technique of Chinese medicine is not only a key technique in the field of Chinese medicine' s research and development, but also a significant step in the modernization of Chinese medicinal preparation. Computer chemistry can build model and look for the regulations from Chinese medicine system which is full of complicated data. This paper analyzed the applicability, key technology, basic mode and common algorithm of computer chemistry applied in the separation of Chinese medicine, introduced the mathematic mode and the setting methods of Extraction kinetics, investigated several problems which based on traditional Chinese medicine membrane procession, and forecasted the application prospect.

  2. Conditional Inference and Advanced Mathematical Study: Further Evidence

    ERIC Educational Resources Information Center

    Inglis, Matthew; Simpson, Adrian

    2009-01-01

    In this paper, we examine the support given for the "theory of formal discipline" by Inglis and Simpson (Educational Studies Mathematics 67:187-204, "2008"). This theory, which is widely accepted by mathematicians and curriculum bodies, suggests that the study of advanced mathematics develops general thinking skills and, in particular, conditional…

  3. Gestures and Insight in Advanced Mathematical Thinking

    ERIC Educational Resources Information Center

    Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy

    2011-01-01

    What role do gestures play in advanced mathematical thinking? We argue that the role of gestures goes beyond merely communicating thought and supporting understanding--in some cases, gestures can help generate new mathematical insights. Gestures feature prominently in a case study of two participants working on a sequence of calculus activities.…

  4. Secondary School Advanced Mathematics, Chapter 6, The Complex Number System, Chapter 7, Equations of the First and Second Degree in Two Variables. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the fourth of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. This text begins with a brief discussion of quadratic equations which motivates the…

  5. Secondary School Advanced Mathematics, Chapter 6, The Complex Number System, Chapter 7, Equations of the First and Second Degree in Two Variables. Teacher's Commentary.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This manual was designed for use with the fourth of five texts in the Secondary School Advanced Mathematics (SSAM) series. Developed for students who have completed the Secondary School Mathematics (SSM) program and wish to continue their studies in mathematics, this series is designed to review, strengthen, and fill gaps in the material covered…

  6. Why Do Students Drop Advanced Mathematics?

    ERIC Educational Resources Information Center

    Horn, Ilana

    2004-01-01

    Students, especially black, Latino and Native American youth and students of low socio-economic status drop out of advanced mathematics. Teachers must coordinate their expectations, their knowledge of students and their teaching practices in order to stop struggling students from dropping out of advanced math classes.

  7. Advances in the Techniques and Technology of the Application of Nonlinear Filters and Kalman Filters

    DTIC Science & Technology

    1982-03-01

    which ate composed of experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications Studies ...back to the begirning of the twentieth century and the study and mathematical description of diffusion processes (Einstein /19/). This is because the...similarly tne equat in for the covariance matrix P, taking into allount that P(tit) does not depend immed.ately on the observations (the factor

  8. Elementary and Advanced Computer Projects for the Physics Classroom and Laboratory

    DTIC Science & Technology

    1992-12-01

    are SPF/PC, MS Word, n3, Symphony, Mathematics, and FORTRAN. The authors’ programs assist data analysis in particular laboratory experiments and make...assist data analysis in particular laboratory experiments and make use of the Monte Carlo and other numerical techniques in computer simulation and...the language of science and engineering in industry and government laboratories (alth..4h C is becoming a powerful competitor ). RM/FORTRAN (cost $400

  9. Informal Content and Student Note-Taking in Advanced Mathematics Classes

    ERIC Educational Resources Information Center

    Fukawa-Connelly, Timothy; Weber, Keith; Mejía-Ramos, Juan Pablo

    2017-01-01

    This study investigates 3 hypotheses about proof-based mathematics instruction: (a) that lectures include informal content (ways of thinking and reasoning about advanced mathematics that are not captured by formal symbolic statements), (b) that informal content is usually presented orally but not written on the board, and (c) that students do not…

  10. Gender Differences in the Use and Benefit of Advanced Learning Technologies for Mathematics

    ERIC Educational Resources Information Center

    Arroyo, Ivon; Burleson, Winslow; Tai, Minghui; Muldner, Kasia; Woolf, Beverly Park

    2013-01-01

    We provide evidence of persistent gender effects for students using advanced adaptive technology while learning mathematics. This technology improves each gender's learning and affective predispositions toward mathematics, but specific features in the software help either female or male students. Gender differences were seen in the students' style…

  11. Contradictions between and within School and University Activity Systems Helping to Explain Students' Difficulty with Advanced Mathematics

    ERIC Educational Resources Information Center

    Jooganah, Kamila; Williams, Julian S.

    2016-01-01

    This article explores how contradictions, as framed by activity theory (Engeström, 1987), can explain first-year undergraduate students' experiences of learning advanced mathematics. Analysing qualitative interview and observational data of students and lecturers based in one university mathematics department, we argue that contradictions between…

  12. Advances in electrophoretic separations

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.; Rhodes, P. H.

    1984-01-01

    Free fluid electrophoresis is described using laboratory and space experiments combined with extensive mathematical modeling. Buoyancy driven convective flows due to thermal and concentration gradients are absent in the reduced gravity environment of space. The elimination of convection in weightlessness offers possible improvements in electrophoresis and other separation methods which occur in fluid media. The mathematical modeling suggests new ways of doing electrophoresis in space and explains various phenomena observed during past experiments. The extent to which ground based separation techniques are limited by gravity induced convection is investigated and space experiments are designed to evaluate specific characteristics of the fluid/particle environment. A series of experiments are proposed that require weightlessness and apparatus is developed that can be used to carry out these experiments in the near future.

  13. [Some similarities between the work of M.C. Escher and plastic surgery].

    PubMed

    Marck, K W

    2002-12-21

    At first sight there would appear to be no similarities between the work of the Dutch graphic artist M.C. Escher and plastic surgery. M.C. Escher was a gifted graphic artist who produced a large collection of work. Most of his fame is due to the works that play with symmetry, space and infinity and leave the viewer astounded. However, how Escher came to produce these works is less well known. A theory which he developed himself formed the basis of the regular plane division. It later became apparent that this theory almost completely agreed with the mathematics of plane division. Two movements (isometries) defined in mathematics, translation and rotation, are equivalent to two techniques for transferring local skin in plastic surgery, namely, advancement and transposition. Escher's performance on the plane of a sheet of paper and a plastic surgeon's performance on the plane of the skin, therefore have a similar mathematical background. Escher has visualised these mathematical rules in an unusual and artistic manner, whereas plastic surgeons apply these rules in the grace of an elastic and healing nature.

  14. Advanced analysis technique for the evaluation of linear alternators and linear motors

    NASA Technical Reports Server (NTRS)

    Holliday, Jeffrey C.

    1995-01-01

    A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.

  15. What's Working: Program Factors Influencing California Community College Basic Skills Mathematics Students' Advancement to Transfer Level

    ERIC Educational Resources Information Center

    Fiero, Diane M.

    2013-01-01

    Purpose: The purpose of this study was to determine which basic skills program factors were exhibited by successful basic skills programs that helped students advance to transfer-level mathematics. This study specifically examined California community college basic skills programs that assist students who place in mathematics courses 2 levels…

  16. Reassessing the Economic Value of Advanced Level Mathematics

    ERIC Educational Resources Information Center

    Adkins, Michael; Noyes, Andrew

    2016-01-01

    In the late 1990s, the economic return to Advanced level (A-level) mathematics was examined. The analysis was based upon a series of log-linear models of earnings in the 1958 National Child Development Survey (NCDS) and the National Survey of 1980 Graduates and Diplomates. The core finding was that A-level mathematics had a unique earnings premium…

  17. Incentivizing Advanced Mathematics Study at Upper Secondary Level: The Case of Bonus Points in Ireland

    ERIC Educational Resources Information Center

    Treacy, Páraic Thomas

    2018-01-01

    Secondary level mathematics education in Ireland has recently experienced a period of significant change with the introduction of new curricula and the addition of an incentive to study upper secondary mathematics at the most advanced level (Higher Level). This incentive, typically referred to as 'bonus points', appears to have aided a significant…

  18. Mathematics Underground

    ERIC Educational Resources Information Center

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  19. Advanced High School Biology in an Era of Rapid Change: A Summary of the Biology Panel Report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools

    ERIC Educational Resources Information Center

    Wood, William B.

    2002-01-01

    A recently released National Research Council (NRC) report, "Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools", evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study,…

  20. Ordinary differential equations with applications in molecular biology.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances. Ordinary differential equations are used to model biological processes on various levels ranging from DNA molecules or biosynthesis phospholipids on the cellular level.

  1. Some observations on the interdigitation of advances in medical science and mathematics.

    PubMed

    Glamore, Michael James; West, James L; O'leary, James Patrick

    2013-12-01

    The immense advancement of our understanding of disease processes has not been a uniform progression related to the passage of time. Advances have been made in "lurches" and "catches" since the advent of the written word. There has been a remarkable interdependency between such advances in medicine and advances in mathematics that has proved beneficial to both. This work explores some of these critical relationships and documents how the individuals involved contributed to advances in each.

  2. New tools for investigating student learning in upper-division electrostatics

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.

    Student learning in upper-division physics courses is a growing area of research in the field of Physics Education. Developing effective new curricular materials and pedagogical techniques to improve student learning in upper-division courses requires knowledge of both what material students struggle with and what curricular approaches help to overcome these struggles. To facilitate the course transformation process for one specific content area --- upper-division electrostatics --- this thesis presents two new methodological tools: (1) an analytical framework designed to investigate students' struggles with the advanced physics content and mathematically sophisticated tools/techniques required at the junior and senior level, and (2) a new multiple-response conceptual assessment designed to measure student learning and assess the effectiveness of different curricular approaches. We first describe the development and theoretical grounding of a new analytical framework designed to characterize how students use mathematical tools and techniques during physics problem solving. We apply this framework to investigate student difficulties with three specific mathematical tools used in upper-division electrostatics: multivariable integration in the context of Coulomb's law, the Dirac delta function in the context of expressing volume charge densities, and separation of variables as a technique to solve Laplace's equation. We find a number of common themes in students' difficulties around these mathematical tools including: recognizing when a particular mathematical tool is appropriate for a given physics problem, mapping between the specific physical context and the formal mathematical structures, and reflecting spontaneously on the solution to a physics problem to gain physical insight or ensure consistency with expected results. We then describe the development of a novel, multiple-response version of an existing conceptual assessment in upper-division electrostatics courses. The goal of this new version is to provide an easily-graded electrostatics assessment that can potentially be implemented to investigate student learning on a large scale. We show that student performance on the new multiple-response version exhibits a significant degree of consistency with performance on the free-response version, and that it continues to provide significant insight into student reasoning and student difficulties. Moreover, we demonstrate that the new assessment is both valid and reliable using data from upper-division physics students at multiple institutions. Overall, the work described in this thesis represents a significant contribution to the methodological tools available to researchers and instructors interested in improving student learning at the upper-division level.

  3. Evaluating the Acoustic Effect of Over-the-Rotor Foam-Metal Liner Installed on a Low Speed Fan Using Virtual Rotating Microphone Imaging

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.

    2010-01-01

    An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.

  4. The 1981 NASA/ASEE Summer Faculty Fellowship Program: Research reports

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Dozier, J. B.; Kent, M. I.; Barfield, B. F.

    1982-01-01

    Research reports related to spacecraft industry technological advances, requirements, and applications were considered. Some of the topic areas addressed were: (1) Fabrication, evaluation, and use of high performance composites and ceramics, (2) antenna designs, (3) electronics and microcomputer applications and mathematical modeling and programming techniques, (4) design, fabrication, and failure detection methods for structural materials, components, and total systems, and (5) chemical studies of bindary organic mixtures and polymer synthesis. Space environment parameters were also discussed.

  5. Advances in numerical and applied mathematics

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)

    1986-01-01

    This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.

  6. Finite elements: Theory and application

    NASA Technical Reports Server (NTRS)

    Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)

    1988-01-01

    Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.

  7. A Mathematics Software Database Update.

    ERIC Educational Resources Information Center

    Cunningham, R. S.; Smith, David A.

    1987-01-01

    Contains an update of an earlier listing of software for mathematics instruction at the college level. Topics are: advanced mathematics, algebra, calculus, differential equations, discrete mathematics, equation solving, general mathematics, geometry, linear and matrix algebra, logic, statistics and probability, and trigonometry. (PK)

  8. Innovations in Science and Mathematics Education: Advanced Designs for Technologies of Learning.

    ERIC Educational Resources Information Center

    Jacobson, Michael J., Ed.; Kozma, Robert B., Ed.

    This collection of essays consists of current work that addresses the challenge not just to put the newest technologies in schools, but to identify advanced ways to design and use these new technologies to advance learning. These essays are intended for science and mathematics educators, educational and cognitive researchers, instructional…

  9. Highlights from TIMSS and TIMSS Advanced 2015: Mathematics and Science Achievement of U.S. Students in Grades 4 and 8 and in Advanced Courses at the End of High School in an International Context. NCES 2017-002

    ERIC Educational Resources Information Center

    Stephens, Maria; Landeros, Katherine; Perkins, Robert; Tang, Judy H.

    2016-01-01

    The Trends in International Mathematics and Science Study (TIMSS) 2015 is the sixth administration of this international comparative study since 1995 when first administered. TIMSS is used to compare over time the mathematics and science knowledge and skills of fourth- and eighth-graders. TIMSS is designed to align broadly with mathematics and…

  10. Effects of Advance Organiser Strategy during Instruction on Secondary School Students' Mathematics Achievement in Kenya's Nakuru District

    ERIC Educational Resources Information Center

    Githua, Bernard N.; Nyabwa, Rachel Angela

    2008-01-01

    Students have continued to perform poorly in KCSE examinations in certain mathematics topics taught in secondary schools in Kenya. One such topic is commercial arithmetic. Successful teaching of mathematics depends partly on correct use of teaching methods in classroom settings. This study sought to examine how the use of advance organisers during…

  11. Factors Contributing to Rural High School Students' Participation in Advanced Mathematics Courses. Working Paper No. 34

    ERIC Educational Resources Information Center

    Anderson, Rick

    2006-01-01

    The focus of this paper is a group of rural high school students and the factors that contributed to their participation in mathematics classes beyond those minimally required for high school graduation. The author follows Gutierrez (2002) in referring to participation as course taking, particularly in elective and advanced mathematics classes.…

  12. Gender Differences in the Effects of a Utility-Value Intervention to Help Parents Motivate Adolescents in Mathematics and Science

    ERIC Educational Resources Information Center

    Rozek, Christopher S.; Hyde, Janet S.; Svoboda, Ryan C.; Hulleman, Chris S.; Harackiewicz, Judith M.

    2015-01-01

    A foundation in science, technology, engineering, and mathematics (STEM) education is critical for students' college and career advancement, but many U.S. students fail to take advanced mathematics and science classes in high school. Research has neglected the potential role of parents in enhancing students' motivation for pursuing STEM courses.…

  13. Advanced Math? Write!

    ERIC Educational Resources Information Center

    Brandenburg, Sister M. Luka

    2002-01-01

    High-school mathematics teacher in Rock Island, Illinois, describes plan for using writing assignment to improve student understanding of advanced mathematics. Plan includes the following elements: Start small, be firm with students, make writing assignments count, and inform colleagues. (PKP)

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, George J.; Maggs, James E.

    The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events,more » i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.« less

  15. Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets.

    PubMed

    Timmins, Peter; Desai, Divyakant; Chen, Wei; Wray, Patrick; Brown, Jonathan; Hanley, Sarah

    2016-08-01

    Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed.

  16. EMERGING APPLICATIONS OF NANOMEDICINE FOR THERAPY AND DIAGNOSIS OF CARDIOVASCULAR DISEASES

    PubMed Central

    Godin, Biana; Sakamoto, Jason H.; Serda, Rita E.; Grattoni, Alessandro; Bouamrani, Ali; Ferrari, Mauro

    2010-01-01

    Nanomedicine is an emerging field of medicine which utilizes nanotechnology concepts for advanced therapy and diagnostics. This convergent discipline, which merges research areas such as chemistry, biology, physics, mathematics and engineering thus bridging the gap between molecular and cellular interactions, has a potential to revolutionize current medical practice. This review presents recent developments in nanomedicine research, which are poised to have an important impact on cardiovascular disease and treatment by improving therapy and diagnosis of such cardiovascular disorders as atherosclerosis, restenosis and myocardial infarction. Specifically, we discuss the use of nanoparticles for molecular imaging and advanced therapeutics, specially designed drug eluting stents and in vivo/ex vivo early detection techniques. PMID:20172613

  17. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    ERIC Educational Resources Information Center

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  18. Earth Sciences Push Radiative Transfer Theory

    NASA Astrophysics Data System (ADS)

    Davis, Anthony; Mishchenko, Michael

    2009-12-01

    2009 International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics; Saratoga Springs, New York, 4-7 May 2009; The theories of radiative transfer and particle—particularly neutron—transport are grounded in distinctive microscale physics that deals with either optics or particle dynamics. However, it is not practical to track every wave or particle in macroscopic systems, nor do all of these details matter. That is why Newton's laws, which describe individual particles, are replaced by those of Euler, Navier-Stokes, Maxwell, Boltzmann, Gibbs, and others, which describe the collective behavior of vast numbers of particles. And that is why the radiative transfer (RT) equation is used to describe the flow of radiation through geophysical-scale systems, leaving to Maxwell's wave equations only the task of providing the optical properties of the medium, be it air, water, snow, ice, or biomass. Interestingly, particle transport is determined by the linear transport equation, which is mathematically identical to the RT equation, so geophysicists and nuclear scientists are interested in the same mathematics and computational techniques.

  19. An Empirical Investigation of Differences between Mathematics Specialists and Non-Specialists at the High School Level in Cyprus: A Logistic Regression Approach

    ERIC Educational Resources Information Center

    Papanastasiou, Elena C.; Zembylas, Michalinos

    2006-01-01

    The data obtained from high-school seniors for the Third International Mathematics and Science Study (TIMSS) for the country of Cyprus appear to be contradictory. Although Cypriot students did not perform well in mathematics in elementary school, middle school, and in the non-advanced sectors of high school, students in advanced mathematics…

  20. Tracing the Construction of Mathematical Activity with an Advanced Graphing Calculator to Understand the Roles of Technology Developers, Teachers and Students

    ERIC Educational Resources Information Center

    Hillman, Thomas

    2014-01-01

    This article examines mathematical activity with digital technology by tracing it from its development through its use in classrooms. Drawing on material-semiotic approaches from the field of Science and Technology Studies, it examines the visions of mathematical activity that developers had for an advanced graphing calculator. It then follows the…

  1. Lectures in Advanced Mathematics: Why Students Might Not Understand What the Mathematics Professor Is Trying to Convey

    ERIC Educational Resources Information Center

    Lew, Kristen; Fukawa-Connelly, Timothy Patrick; Mejía-Ramos , Juan Pablo; Weber, Keith

    2016-01-01

    We describe a case study in which we investigate the effectiveness of a lecture in advanced mathematics. We first videorecorded a lecture delivered by an experienced professor who had a reputation for being an outstanding instructor. Using video recall, we then interviewed the professor to determine the ideas that he intended to convey and how he…

  2. Mathematical models of cell motility.

    PubMed

    Flaherty, Brendan; McGarry, J P; McHugh, P E

    2007-01-01

    Cell motility is an essential biological action in the creation, operation and maintenance of our bodies. Developing mathematical models elucidating cell motility will greatly advance our understanding of this fundamental biological process. With accurate models it is possible to explore many permutations of the same event and concisely investigate their outcome. While great advancements have been made in experimental studies of cell motility, it now has somewhat fallen on mathematical models to taking a leading role in future developments. The obvious reason for this is the complexity of cell motility. Employing the processing power of today's computers will give researches the ability to run complex biophysical and biochemical scenarios, without the inherent difficulty and time associated with in vitro investigations. Before any great advancement can be made, the basics of cell motility will have to be well-defined. Without this, complicated mathematical models will be hindered by their inherent conjecture. This review will look at current mathematical investigations of cell motility, explore the reasoning behind such work and conclude with how best to advance this interesting and challenging research area.

  3. Driven by History: Mathematics Education Reform

    ERIC Educational Resources Information Center

    Permuth, Steve; Dalzell, Nicole

    2013-01-01

    The advancement of modern societies is fueled by mathematics, and mathematics education provides the foundation upon which future scientists and engineers will build. Society dictates how mathematics will be taught through the development and implementation of mathematics standards. When examining the progression of these standards, it is…

  4. Terminology, concepts, and models in genetic epidemiology.

    PubMed

    Teare, M Dawn; Koref, Mauro F Santibàñez

    2011-01-01

    Genetic epidemiology brings together approaches and techniques developed in mathematical genetics and statistics, medical genetics, quantitative genetics, and epidemiology. In the 1980s, the focus was on the mapping and identification of genes where defects had large effects at the individual level. More recently, statistical and experimental advances have made possible to identify and characterise genes associated with small effects at the individual level. In this chapter, we provide a brief outline of the models, concepts, and terminology used in genetic epidemiology.

  5. Shuttle cryogenics supply system optimization study. Volume 5, B-3, part 2: Appendix to programmers manual for math model

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A computer programmer's manual for a digital computer which will permit rapid and accurate parametric analysis of current and advanced attitude control propulsion systems is presented. The concept is for a cold helium pressurized, subcritical cryogen fluid supplied, bipropellant gas-fed attitude control propulsion system. The cryogen fluids are stored as liquids under low pressure and temperature conditions. The mathematical model provides a generalized form for the procedural technique employed in setting up the analysis program.

  6. Origins of the brain networks for advanced mathematics in expert mathematicians

    PubMed Central

    Amalric, Marie; Dehaene, Stanislas

    2016-01-01

    The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit. PMID:27071124

  7. Origins of the brain networks for advanced mathematics in expert mathematicians.

    PubMed

    Amalric, Marie; Dehaene, Stanislas

    2016-05-03

    The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit.

  8. Which Preschool Mathematics Competencies Are Most Predictive of Fifth Grade Achievement?

    PubMed

    Nguyen, Tutrang; Watts, Tyler W; Duncan, Greg J; Clements, Douglas H; Sarama, Julie S; Wolfe, Christopher; Spitler, Mary Elaine

    In an effort to promote best practices regarding mathematics teaching and learning at the preschool level, national advisory panels and organizations have emphasized the importance of children's emergent counting and related competencies, such as the ability to verbally count, maintain one-to-one correspondence, count with cardinality, subitize, and count forward or backward from a given number. However, little research has investigated whether the kind of mathematical knowledge promoted by the various standards documents actually predict later mathematics achievement. The present study uses longitudinal data from a primarily low-income and minority sample of children to examine the extent to which preschool mathematical competencies, specifically basic and advanced counting, predict fifth grade mathematics achievement. Using regression analyses, we find early numeracy abilities to be the strongest predictors of later mathematics achievement, with advanced counting competencies more predictive than basic counting competencies. Our results highlight the significance of preschool mathematics knowledge for future academic achievement.

  9. Encouraging Young Women to Stay in the Mathematics Pipeline: Mathematics Camps for Young Women

    ERIC Educational Resources Information Center

    Chacon, Paul; Soto-Johnson, Hortensia

    2003-01-01

    For two summers, week-long residential mathematics programs were held for high school women, with the primary goal of encouraging them to continue their study of mathematics. The activities were designed to rekindle their excitement about mathematics and to support the idea that women should learn advanced mathematics. This paper reports the…

  10. Advanced Mathematical Thinking and Students' Mathematical Learning: Reflection from Students' Problem-Solving in Mathematics Classroom

    ERIC Educational Resources Information Center

    Sangpom, Wasukree; Suthisung, Nisara; Kongthip, Yanin; Inprasitha, Maitree

    2016-01-01

    Mathematical teaching in Thai tertiary education still employs traditional methods of explanation and the use of rules, formulae, and theories in order for students to memorize and apply to their mathematical learning. This results in students' inability to concretely learn, fully comprehend and understand mathematical concepts and practice. In…

  11. TIMSS Advanced 2015 and Advanced Placement Calculus & Physics. A Framework Analysis. Research in Review 2016-1

    ERIC Educational Resources Information Center

    Lazzaro, Christopher; Jones, Lee; Webb, David C.; Grover, Ryan; Di Giacomo, F. Tony; Marino, Katherine Adele

    2016-01-01

    This report will determine to what degree the AP Physics 1 and 2 and AP Calculus AB and BC frameworks are aligned with the Trends in International Mathematics and Science Study (TIMSS) Advanced Physics and Mathematics frameworks. This will enable an exploration of any differences in content coverage and levels of complexity, and will set the stage…

  12. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  13. Incentivizing advanced mathematics study at upper secondary level: the case of bonus points in Ireland

    NASA Astrophysics Data System (ADS)

    Treacy, Páraic Thomas

    2018-04-01

    Secondary level mathematics education in Ireland has recently experienced a period of significant change with the introduction of new curricula and the addition of an incentive to study upper secondary mathematics at the most advanced level (Higher Level). This incentive, typically referred to as 'bonus points', appears to have aided a significant increase in the number of students studying upper secondary mathematics at Higher Level. However, thematic analysis of interviews with experienced upper secondary mathematics examiners and exploration of mathematics diagnostic test data outlined in this paper suggest that the difficulty of the Higher Level upper secondary mathematics final examination in Ireland has reduced since the introduction of the bonus points initiative. The sharp increase in students attempting this examination coupled with a policy of maintaining a consistent proportion of students achieving passing grades was identified as a key reason for this possible reduction in standards.

  14. 32 CFR 901.5 - Academic examination requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Level 1 (Standard) Mathematics or Level II (Intensive) Mathematics. (Level 1 recommended for candidates without advanced high school mathematics.) (b) ACT. Candidates who elect to use the ACT tests must take the complete battery of tests: English, mathematics, social studies, and natural sciences. ...

  15. Teacher Leaders: Advancing Mathematics Learning

    ERIC Educational Resources Information Center

    Kinzer, Cathy J.; Rincón, Mari; Ward, Jana; Rincón, Ricardo; Gomez, Lesli

    2014-01-01

    Four elementary school instructors offer insights into their classrooms, their unique professional roles, and their leadership approaches as they reflect on their journey to advance teacher and student mathematics learning. They note a "teacher leader" serves as an example to other educators and strives to impact student learning;…

  16. Indicators of Multiplicative Reasoning among Fourth Grade Students

    ERIC Educational Resources Information Center

    Carrier, James A.

    2010-01-01

    Many students encounter difficulty in their transition to advanced mathematical thinking. Such difficulty may be explained by a lack of understanding of many concepts taught in early school years, especially multiplicative reasoning. Advanced mathematical thinking depends on the development of multiplicative reasoning. The purpose of this study…

  17. Clinical Assessment in Mathematics: Learning the Craft.

    ERIC Educational Resources Information Center

    Hunting, Robert P.; Doig, Brian A.

    1997-01-01

    Discusses a professional development program called Clinical Approaches to Mathematics Assessment. Argues for the advanced training of mathematics teachers who understand knowledge construction processes of students; can use clinical tools for evaluating a student's unique mathematical "fingerprint"; and can create or adapt problems, tasks, or…

  18. Which Preschool Mathematics Competencies Are Most Predictive of Fifth Grade Achievement?

    PubMed Central

    Nguyen, Tutrang; Watts, Tyler W.; Duncan, Greg J.; Clements, Douglas H.; Sarama, Julie S.; Wolfe, Christopher; Spitler, Mary Elaine

    2016-01-01

    In an effort to promote best practices regarding mathematics teaching and learning at the preschool level, national advisory panels and organizations have emphasized the importance of children’s emergent counting and related competencies, such as the ability to verbally count, maintain one-to-one correspondence, count with cardinality, subitize, and count forward or backward from a given number. However, little research has investigated whether the kind of mathematical knowledge promoted by the various standards documents actually predict later mathematics achievement. The present study uses longitudinal data from a primarily low-income and minority sample of children to examine the extent to which preschool mathematical competencies, specifically basic and advanced counting, predict fifth grade mathematics achievement. Using regression analyses, we find early numeracy abilities to be the strongest predictors of later mathematics achievement, with advanced counting competencies more predictive than basic counting competencies. Our results highlight the significance of preschool mathematics knowledge for future academic achievement. PMID:27057084

  19. Advanced Algebra and Calculus. High School Mathematics Curricula. Instructor's Guide.

    ERIC Educational Resources Information Center

    Natour, Denise M.

    This manual is an instructor's guide for the utilization of the "CCA High School Mathematics Curricula: Advanced Algebra and Calculus" courseware developed by the Computer-based Education Research Laboratory (CERL). The curriculum comprises 34 algebra lessons within 12 units and 15 calculus lessons that are computer-based and require…

  20. TIMMS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    It is critical for countries to ensure that capable secondary school students receive further preparation in advanced mathematics and science, so that they are ready to enter challenging university-level studies that prepare them for careers in science, technology, engineering, and mathematics (STEM) fields. This group of students will become the…

  1. Advancing K-8 Teachers' STEM Education for Teaching Interdisciplinary Science and Mathematics with Technologies

    ERIC Educational Resources Information Center

    Niess, Margaret; Gillow-Wiles, Henry

    2013-01-01

    This primarily online Master's degree program focused on advancing K-8 teachers' interdisciplinary mathematical and science content knowledge while integrating appropriate digital technologies as learning and teaching tools. The mixed-method, interpretive study examined in-service teachers' technological, pedagogical, and content knowledge (TPACK)…

  2. Explorations with 142857: Connecting the Elementary with the Advanced

    ERIC Educational Resources Information Center

    Flores, Alfinio

    2008-01-01

    University mathematics education courses do not always provide the opportunity to make connections between advanced topics and the mathematics taught in middle school or high school. Activities like the ones described in this article invite such connections. Analyzing concrete or particular examples provides a better grasp of abstract concepts.…

  3. Cookies and Pi

    ERIC Educational Resources Information Center

    Dempsey, Michael

    2009-01-01

    If students are in an advanced mathematics class, then at some point they enjoyed mathematics and looked forward to learning and practicing it. There is no reason that this passion and enjoyment should ever be lost because the subject becomes more difficult or rigorous. This author, who teaches advanced precalculus to high school juniors,…

  4. Experimental Mathematics and Mathematical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.; Borwein, Jonathan M.; Broadhurst, David

    2009-06-26

    One of the most effective techniques of experimental mathematics is to compute mathematical entities such as integrals, series or limits to high precision, then attempt to recognize the resulting numerical values. Recently these techniques have been applied with great success to problems in mathematical physics. Notable among these applications are the identification of some key multi-dimensional integrals that arise in Ising theory, quantum field theory and in magnetic spin theory.

  5. Mathematical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Articles on theoretical and applied mathematics are introduced. The articles cover information that might be of interest to workers in statistics and information theory, computational aids that could be used by scientists and engineers, and mathematical techniques for design and control.

  6. Teaching Undergraduate Mathematics in Interactive Groups: How Does It Fit with Students' Learning?

    ERIC Educational Resources Information Center

    Sheryn, Louise; Ell, Fiona

    2014-01-01

    Debates about how undergraduate mathematics should be taught are informed by different views of what it is to learn and to do mathematics. In this qualitative study 10 students enrolled in an advanced undergraduate course in mathematics shared their views about how they best learn mathematics. After participating in a semester-long course in…

  7. Application of holographic interferometry for analysis of the dynamic and modal characteristics of an advanced exotic metal airfoil structure

    NASA Astrophysics Data System (ADS)

    Fein, Howard

    1999-03-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.

  8. A mathematical model for simulating noise suppression of lined ejectors

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.

    1994-01-01

    A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.

  9. Selecting practice management information systems.

    PubMed

    Worley, R; Ciotti, V

    1997-01-01

    Despite enormous advances in information systems, the process by which most medical practices select them has remained virtually unchanged for decades: the request for proposal (RFP). Unfortunately, vendors have learned ways to minimize the value of RFP checklists to where purchasers now learn little about the system functionality. The authors describe a selection methodology that replaces the RFP with scored demos, reviews of vendor user manuals and mathematically structured reference checking. In a recent selection process at a major medical center, these techniques yielded greater user buy-in and favorable contract terms as well.

  10. Engineering Design Handbook: Development Guide for Reliability. Part Three. Reliability Prediction

    DTIC Science & Technology

    1976-01-01

    Populations 4-3 4-7 IFR and DFR Distributions 4-3 CHAPTER 5. SOME ADVANCED MATHEMATICAL TECHNIQUES 5-0 List of Symbols 5-1 5-1 Introduction...Aß,CJE= sets AFyAGSFJBc ~ events that units UA and -\\AAA E{] EB £H T $£ T UB are Failed or Good subsets "of A£,CJ),E s-expected value of...i.e., the sample space is all possible values that can arise. Each value is called a sample point. There are six sample points in the sample space

  11. The Effectiveness of Technology Integration in a Metropolitan Elementary Mathematics Program: Mad Dog Math

    ERIC Educational Resources Information Center

    Cohen, Miriam

    2012-01-01

    The outcome of American students' performances during international comparisons consistently scoring inadequately in mathematics exposes the crisis of deficient mathematics achievement thus causing deep concerns. Learners who acquire a strong theoretical foundation in mathematics at the primary level thrived later in more advanced level…

  12. Lessons from the Past Look to the Future.

    ERIC Educational Resources Information Center

    Howden, Hilde

    2000-01-01

    Technological advances and many other changes in society change how and what students learn. Indicates the need to learn lessons from the past in order to be more mathematically literate and broaden the mathematics curriculum to a mathematical sciences curriculum that incorporates 21st century mathematics. (Contains 14 references.) (ASK)

  13. Enhancing Mathematical Problem Solving for Secondary Students with or at Risk of Learning Disabilities: A Literature Review

    ERIC Educational Resources Information Center

    Hwang, Jiwon; Riccomini, Paul J.

    2016-01-01

    Requirements for reasoning, explaining, and generalizing mathematical concepts increase as students advance through the educational system; hence, improving overall mathematical proficiency is critical. Mathematical proficiency requires students to interpret quantities and their corresponding relationships during problem-solving tasks as well as…

  14. Mathematics in Literature and Cinema: An Interdisciplinary Course

    ERIC Educational Resources Information Center

    Chabrán, H. Rafael; Kozek, Mark

    2016-01-01

    We describe our team-taught, interdisciplinary course "Numb3rs in Lett3rs & Fi1ms: Mathematics in Literature and Cinema," which explores mathematics in the context of modern literature and cinema. Our goal with this course is to advance collaborations between mathematics and the written/theatre-based creative arts.

  15. Evidence of the Need to Prepare Prospective Teachers to Engage in Mathematics Consultations

    ERIC Educational Resources Information Center

    van Ingen, Sarah; Eskelson, Samuel L.; Allsopp, David

    2016-01-01

    The mathematics consultation represents a powerful opportunity for mathematics teachers to leverage the knowledge base of special education professionals to advance equity for students with special education needs. Yet, most teacher preparation programs do not specifically prepare prospective teachers to engage in mathematics-specific…

  16. Advancement via Individual Determination: A Model for Equity in Secondary Mathematics

    ERIC Educational Resources Information Center

    Hodges, Cynthia D.

    2013-01-01

    This study examined the impact of Advancement Via Individual Determination (AVID) methodologies on the mathematics achievement of African American, European American, and Hispanic students as measured by the State of Texas Assessment of Academic Readiness (STAAR) End of Course (EOC) for Algebra I. This quantitative nonexperimental ex post facto…

  17. Career Advancement Outcomes in Academic Science, Technology, Engineering and Mathematics (STEM): Gender, Mentoring Resources, and Homophily

    ERIC Educational Resources Information Center

    Lee, Sang Eun

    2017-01-01

    This dissertation examines gender differences in career advancement outcomes among academic science, technology, engineering and mathematics (STEM) scientists. In particular, this research examines effects of gender, PhD advisors and postdoctoral supervisors mentoring resources and gender homophily in the mentoring dyads on the career advancement…

  18. Integration of Technology, Curriculum, and Professional Development for Advancing Middle School Mathematics: Three Large-Scale Studies

    ERIC Educational Resources Information Center

    Roschelle, Jeremy; Shechtman, Nicole; Tatar, Deborah; Hegedus, Stephen; Hopkins, Bill; Empson, Susan; Knudsen, Jennifer; Gallagher, Lawrence P.

    2010-01-01

    The authors present three studies (two randomized controlled experiments and one embedded quasi-experiment) designed to evaluate the impact of replacement units targeting student learning of advanced middle school mathematics. The studies evaluated the SimCalc approach, which integrates an interactive representational technology, paper curriculum,…

  19. Strategic Alliance to Advanced Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level

    ERIC Educational Resources Information Center

    Scarborough, Jule Dee

    2004-01-01

    This document (book) reports on the Strategic Alliance to Advance Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level, funded by National Science Foundation. It was a collaborative partnership involving the Rockford Public Schools, Rock Valley College, and Northern Illinois…

  20. Advanced Mathematics 305--Optional Half Credit. Interim Guide.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    This manual outlines an advanced mathematics course for secondary school students in Manitoba (Canada). Included are eight different topics for a total of ten modules, with each module accounting for 18 40-minute periods. Teachers, or teachers and students cooperatively, should select the equivalent of five modules from the eight topics covered.…

  1. Science and Mathematics Advanced Placement Exams: Growth and Achievement over Time

    ERIC Educational Resources Information Center

    Judson, Eugene

    2017-01-01

    Rapid growth of Advanced Placement (AP) exams in the last 2 decades has been paralleled by national enthusiasm to promote availability and rigor of science, technology, engineering, and mathematics (STEM). Trends were examined in STEM AP to evaluate and compare growth and achievement. Analysis included individual STEM subjects and disaggregation…

  2. The Equity Education. Fostering the Advancement of Women in the Sciences, Mathematics, and Engineering.

    ERIC Educational Resources Information Center

    Davis, Cinda-Sue; And Others

    This volume includes 10 reports that present findings and recommendations for advancing women in science, mathematics and engineering. Critical issues facing women in these disciplines are addressed, including demographic myths and realities at various educational levels; the educational pipeline for girls and women; involvement in education and…

  3. Mathematical Models for Immunology: Current State of the Art and Future Research Directions.

    PubMed

    Eftimie, Raluca; Gillard, Joseph J; Cantrell, Doreen A

    2016-10-01

    The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years.

  4. Optimal pacing for running 400- and 800-m track races

    NASA Astrophysics Data System (ADS)

    Reardon, James

    2013-06-01

    We present a toy model of anaerobic glycolysis that utilizes appropriate physiological and mathematical consideration while remaining useful to the athlete. The toy model produces an optimal pacing strategy for 400-m and 800-m races that is analytically calculated via the Euler-Lagrange equation. The calculation of the optimum v(t) is presented in detail, with an emphasis on intuitive arguments in order to serve as a bridge between the basic techniques presented in undergraduate physics textbooks and the more advanced techniques of control theory. Observed pacing strategies in 400-m and 800-m world-record races are found to be well-fit by the toy model, which allows us to draw a new physiological interpretation for the advantages of common weight-training practices.

  5. Mathematically precocious and female: Self-efficacy and STEM course choices among high achieving middle grade students

    NASA Astrophysics Data System (ADS)

    Burt, Stacey M.

    The problem addressed in this project is the lack of mathematically gifted females choosing to pursue advanced science, technology, engineering, and mathematics (STEM) courses in secondary education due to deficiencies in self-efficacy. The purpose of this project was to study the effects of a child-guided robotics program as it relates to the self-efficacy of mathematically gifted 6th grade female students and their future course choices in the advanced STEM content areas. This mixed-model study utilized a STEM attitude survey, artifacts, interviews, field notes, and standardized tests as measurement tools. Significance was found between genders in the treatment group for the standardized science scores, indicating closure in the achievement gap. Research suggests that STEM enrichment is beneficial for mathematically gifted females.

  6. Advanced mathematics communication beyond modality of\\xA0sight

    NASA Astrophysics Data System (ADS)

    Sedaghatjou, Mina

    2018-01-01

    This study illustrates how mathematical communication and learning are inherently multimodal and embodied; hence, sight-disabled students are also able to conceptualize visuospatial information and mathematical concepts through tactile and auditory activities. Adapting a perceptuomotor integration approach, the study shows that the lack of access to visual fields in an advanced mathematics course does not obstruct a blind student's ability to visualize, but transforms it. The goal of this study is not to compare the visually impaired student with non-visually impaired students to address the 'differences' in understanding; instead, I discuss the challenges that a blind student, named Anthony, has encountered and the ways that we tackled those problems. I also demonstrate how the proper and precisely crafted tactile materials empowered Anthony to learn mathematical functions.

  7. Math in Motion: Origami in the Classroom. A Hands-On Creative Approach to Teaching Mathematics. K-8.

    ERIC Educational Resources Information Center

    Pearl, Barbara

    This perfect bound teacher's guide presents techniques and activities to teach mathematics using origami paper folding. Part 1 includes a history of origami, mathematics and origami, and careers using mathematics. Parts 2 and 3 introduce paper-folding concepts and teaching techniques and include suggestions for low-budget paper resources. Part 4…

  8. Total Quality Management in the Classroom: Applications to University-Level Mathematics.

    ERIC Educational Resources Information Center

    Williams, Frank

    1995-01-01

    Describes a Total Quality Management-based system of instruction that is used in a variety of undergraduate mathematics courses. The courses that incorporate this approach include mathematics appreciation, introductory calculus, and advanced applied linear algebra. (DDR)

  9. Sparse QSAR modelling methods for therapeutic and regenerative medicine

    NASA Astrophysics Data System (ADS)

    Winkler, David A.

    2018-02-01

    The quantitative structure-activity relationships method was popularized by Hansch and Fujita over 50 years ago. The usefulness of the method for drug design and development has been shown in the intervening years. As it was developed initially to elucidate which molecular properties modulated the relative potency of putative agrochemicals, and at a time when computing resources were scarce, there is much scope for applying modern mathematical methods to improve the QSAR method and to extending the general concept to the discovery and optimization of bioactive molecules and materials more broadly. I describe research over the past two decades where we have rebuilt the unit operations of the QSAR method using improved mathematical techniques, and have applied this valuable platform technology to new important areas of research and industry such as nanoscience, omics technologies, advanced materials, and regenerative medicine. This paper was presented as the 2017 ACS Herman Skolnik lecture.

  10. Uncertainty Management in Remote Sensing of Climate Data. Summary of A Workshop

    NASA Technical Reports Server (NTRS)

    McConnell, M.; Weidman, S.

    2009-01-01

    Great advances have been made in our understanding of the climate system over the past few decades, and remotely sensed data have played a key role in supporting many of these advances. Improvements in satellites and in computational and data-handling techniques have yielded high quality, readily accessible data. However, rapid increases in data volume have also led to large and complex datasets that pose significant challenges in data analysis (NRC, 2007). Uncertainty characterization is needed for every satellite mission and scientists continue to be challenged by the need to reduce the uncertainty in remotely sensed climate records and projections. The approaches currently used to quantify the uncertainty in remotely sensed data, including statistical methods used to calibrate and validate satellite instruments, lack an overall mathematically based framework.

  11. Analyzing the Teaching of Advanced Mathematics Courses via the Enacted Example Space

    ERIC Educational Resources Information Center

    Fukawa-Connelly, Timothy Patrick; Newton, Charlene

    2014-01-01

    Examples are believed to be very important in developing conceptual understanding of mathematical ideas, useful both in mathematics research and instruction (Bills & Watson in "Educational Studies in Mathematics" 69:77-79, 2008; Mason & Watson, 2008; Bills & Tall, 1998; Tall & Vinner, 1981). In this study, we draw on the…

  12. For the Technologically Challenged: Four Free Online Tools to Liven up a Mathematics Classroom

    ERIC Educational Resources Information Center

    Northcote, Maria

    2015-01-01

    Use of technology in the mathematics classroom has the potential to advance children's learning of mathematics and enhance their attitudes about mathematics. When used in conjunction with purposeful planning, teachers can use technological tools to reinforce their pedagogical intentions and to facilitate relevant learning activities for students.…

  13. University of Chicago School Mathematics Project 6-12 Curriculum. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2011

    2011-01-01

    The "University of Chicago School Mathematics Project ("UCSMP") 6-12 Curriculum" is a series of yearlong courses--(1) Transition Mathematics; (2) Algebra; (3) Geometry; (4) Advanced Algebra; (5) Functions, Statistics, and Trigonometry; and (6) Precalculus and Discrete Mathematics--emphasizing problem solving, real-world applications, and the use…

  14. Pedagogical Applications from Real Analysis for Secondary Mathematics Teachers

    ERIC Educational Resources Information Center

    Wasserman, Nicholas; Weber, Keith

    2017-01-01

    In this article, we consider the potential influences of the study of proofs in advanced mathematics on secondary mathematics teaching. Thus far, the literature has highlighted the benefits of applying the conclusions of particular proofs to secondary content and of developing a more general sense of disciplinary practices in mathematics in…

  15. Learning Mathematics in English at Basic Schools in Ghana: A Benefit or Hindrance?

    ERIC Educational Resources Information Center

    Fredua-Kwarteng, Eric; Ahia, Francis

    2015-01-01

    Facilitating effective mathematics learning and higher mathematics achievement have long been recognized as a key to the scientific and technological advancement of the African continent. While the central role that language proficiency plays in mathematics teaching and learning has received an overwhelming research attention in the literature…

  16. Technologies That Facilitate the Study of Advanced Mathematics by Students Who Are Blind: Teachers' Perspectives

    ERIC Educational Resources Information Center

    DePountis, Vicki M.; Pogrund, Rona L.; Griffin-Shirley, Nora; Lan, William Y.

    2015-01-01

    This research examined the perspectives of teachers of students with visual impairments (TVIs) regarding the use and effectiveness of electronic assistive technology (EAT) purported to assist students who are blind in advanced mathematics subjects. The data for this study were collected via an online survey distributed to a convenience sample of…

  17. Technologies Used in the Study of Advanced Mathematics by Students Who Are Visually Impaired in Classrooms: Teachers' Perspectives

    ERIC Educational Resources Information Center

    DePountis, Vicki M.; Pogrund, Rona L.; Griffin-Shirley, Nora; Lan, William Y.

    2015-01-01

    Introduction: This research examined the perspectives of teachers of students who are visually impaired regarding the use and effectiveness of high-tech assistive technology purported to assist visually impaired students in advanced mathematics. Methods: The data for this study were collected via a mixed-methods online survey distributed through…

  18. Advanced high school biology in an era of rapid change: a summary of the biology panel report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools.

    PubMed

    Wood, William B

    2002-01-01

    A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Panel for Biology were that AP courses in particular suffer from inadequate quality control as well as excessive pressure to fulfill their advanced placement function, which encourages teachers to attempt coverage of all areas of biology and emphasize memorization of facts rather than in-depth understanding. In this essay, the Panel's principal findings are discussed, with an emphasis on its recommendation that colleges and universities should be strongly discouraged from using performance on either the AP examination or the IB examination as the sole basis for automatic placement out of required introductory courses for biology majors and distribution requirements for nonmajors.

  19. Advanced High School Biology in an Era of Rapid Change: A Summary of the Biology Panel Report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools

    PubMed Central

    2002-01-01

    A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Panel for Biology were that AP courses in particular suffer from inadequate quality control as well as excessive pressure to fulfill their advanced placement function, which encourages teachers to attempt coverage of all areas of biology and emphasize memorization of facts rather than in-depth understanding. In this essay, the Panel's principal findings are discussed, with an emphasis on its recommendation that colleges and universities should be strongly discouraged from using performance on either the AP examination or the IB examination as the sole basis for automatic placement out of required introductory courses for biology majors and distribution requirements for nonmajors. PMID:12669097

  20. Mathematical Discovery and "Affect": The "Effect" of Aha! Experiences on Undergraduate Mathematics Students

    ERIC Educational Resources Information Center

    Liljedahl, Peter G.

    2005-01-01

    The AHA! experience-the moment of illumination on the heels of lengthy, and seemingly fruitless, intentional effort-has long been the basis for lore in mathematics. Unfortunately, such lore is often restricted to the discussion of these phenomena in the context of great mathematicians and great mathematical advancement. But are such experiences…

  1. Influence of a Mathematics Teachers' Circle on Elementary Teachers' Use of Problem Solving

    ERIC Educational Resources Information Center

    Garner, Mary L.; Watson, Virginia; Rogers, Beth; Head, Catherine

    2017-01-01

    Math teachers' circles are a form of professional development that is recommended by the Conference Board of the Mathematical Sciences in their publication Mathematical Education of Teachers II (2012). However, little research has been published on how effective math teachers' circles are in advancing the mathematical knowledge of teachers and…

  2. Advancements in Research on Creativity and Giftedness in Mathematics Education: Introduction to the Special Issue

    ERIC Educational Resources Information Center

    Singer, Florence Mihaela; Sheffield, Linda Jensen; Leikin, Roza

    2017-01-01

    Creativity and giftedness in mathematics education research are topics of an increased interest in the education community during recent years. This introductory paper to the special issue on Mathematical Creativity and Giftedness in Mathematics Education has a twofold purpose: to offer a brief historical perspective on the study of creativity and…

  3. Using the Computer Algebra System "Maple" to Generate Research Questions for Pre-Service Teachers in a Capstone Course

    ERIC Educational Resources Information Center

    Farley, Rosemary Carroll

    2013-01-01

    At Manhattan College, secondary mathematics education students take a capstone course designed specifically for them. In this course, students revisit important topics in the high school curriculum from a mathematically advanced perspective; incorporating the mathematical knowledge they have attained in their college mathematics classes to an…

  4. Mathematical Creativity: Psychology, Progress and Caveats

    ERIC Educational Resources Information Center

    Sriraman, Bharath

    2017-01-01

    The aim of this paper is to provide a concise survey of advances in the study of the psychology of creativity, with an emphasis on literature that is typically not cited in mathematics education. In spite of claims that mathematical creativity is an ill-defined area of inquiry in mathematics education, the literature from psychology can serve as…

  5. Middle School Mathematics: 2006-07 to 2008-09. Impact Evaluation. E&R Report No. 10.11

    ERIC Educational Resources Information Center

    Paeplow, Colleen

    2010-01-01

    In 2006-07, seven Wake County Public School System (WCPSS) middle schools piloted Algebraic Thinking as an alternate approach to teaching middle school mathematics. Algebraic Thinking was developed to help students in grade 6 reach higher mathematics courses by combining the regular and advanced middle school mathematics courses into one…

  6. Engineering Undergraduates' Views of A-Level Mathematics and Further Mathematics as Preparation for Their Degree

    ERIC Educational Resources Information Center

    Darlington, Ellie; Bowyer, Jessica

    2017-01-01

    An ongoing reform programme of the post-16 Advanced "A"-level qualifications in England and Wales means that pre-university mathematics content and assessment will change from 2017. Undergraduate engineering is a subject that relies heavily on mathematics, and applicants to engineering degree programmes in the UK are required to have…

  7. Mathematics in Finance and Economics: Importance of Teaching Higher Order Mathematical Thinking Skills in Finance

    ERIC Educational Resources Information Center

    Tularam, Gurudeo Anand

    2013-01-01

    This paper addresses the importance of teaching mathematics in business and finance schools of tertiary institutions of Australia. The paper explores the nature of thinking and reasoning required for advancement financial or economic studies involves the use of higher order thinking and creativity skills (HOTS) for teaching in mathematics classes.…

  8. Low order H∞ optimal control for ACFA blended wing body aircraft

    NASA Astrophysics Data System (ADS)

    Haniš, T.; Kucera, V.; Hromčík, M.

    2013-12-01

    Advanced nonconvex nonsmooth optimization techniques for fixed-order H∞ robust control are proposed in this paper for design of flight control systems (FCS) with prescribed structure. Compared to classical techniques - tuning of and successive closures of particular single-input single-output (SISO) loops like dampers, attitude stabilizers, etc. - all loops are designed simultaneously by means of quite intuitive weighting filters selection. In contrast to standard optimization techniques, though (H2, H∞ optimization), the resulting controller respects the prescribed structure in terms of engaged channels and orders (e. g., proportional (P), proportional-integral (PI), and proportional-integralderivative (PID) controllers). In addition, robustness with regard to multimodel uncertainty is also addressed which is of most importance for aerospace applications as well. Such a way, robust controllers for various Mach numbers, altitudes, or mass cases can be obtained directly, based only on particular mathematical models for respective combinations of the §ight parameters.

  9. New efficient optimizing techniques for Kalman filters and numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis

    2016-06-01

    The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.

  10. Design Features of Pedagogically-Sound Software in Mathematics.

    ERIC Educational Resources Information Center

    Haase, Howard; And Others

    Weaknesses in educational software currently available in the domain of mathematics are discussed. A technique that was used for the design and production of mathematics software aimed at improving problem-solving skills which combines sound pedagogy and innovative programming is presented. To illustrate the design portion of this technique, a…

  11. Mathematical Techniques for Nonlinear System Theory.

    DTIC Science & Technology

    1978-01-01

    4. TITLE (and Subtitle) 5. TYPE OF REPORT 6 PERIOD COVERED MATHEMATICAL TECHNIQUES FOR NONLINEAR SYSTEM THEORY Interim 6...ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASK AREA & WORK UNIT NUMBERS Unlvers].ty of Flori.da Center for Mathematical System Theory ~~~~ Gainesville , FL...rings”, Mathematical System Theory , 9: 327—344. E. D. SONTAG (1976b1 “Linear systems over commutative rings: a survey”, Richerche di Automatica, 7: 1-34

  12. A qualitative study of motivation in Alaska Native Science and Engineering Program (ANSEP) precollege students

    NASA Astrophysics Data System (ADS)

    Yatchmeneff, Michele

    The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to successfully complete advanced high school and college-level mathematics and science courses prior to high school graduation. This study was designed to examine the motivations of Alaska Native high school students who participated in the ANSEP Precollege components to take advanced mathematics and science courses in high school or before college. Participants were 30 high school or college students, 25 of whom were Alaska Native, who were currently attending or had attended Alaska Native Science & Engineering Program (ANSEP) Precollege components in high school. Self-determination theory was used as this study's theoretical framework to develop the semi-structured interview questions and also analyze the interviews. A thematic approach was used to analyze the interviews. The results of this study indicated that ANSEP helped the Alaska Native high school students gain a sense of autonomy, competence, and relatedness in order to be motivated to take advanced mathematics and science courses in high school or before college. In particular, Alaska Native high school students described that relatedness was an important element to them being motivated to take advanced mathematics and science courses. More specifically, participants reported that the Alaska Native community developed at the ANSEP Building and the relationships they developed with their Alaska Native high school peers and staff played an influential role in the motivation of these students. These findings are important because research suggests that autonomy and competence are more important elements than relatedness because they generate or maintain intrinsic motivation. Alaska Native high school students reported that ANSEP was more successful in helping them gain a sense of competence and relatedness than at helping them gain a sense of autonomy. More specifically, the reason the participants did not feel ANSEP developed their sense of autonomy was because ANSEP restricted their actions during the ANSEP Precollege study sessions. My study implies that Alaska Native students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. Educators and STEM program leaders should incorporate elements of belonging into the educational environments they develop for their Alaska Native students. Future research should be conducted to determine if other racial minority students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. My study also indicated that Alaska Native students were motivated to take advanced mathematics and science courses by knowing ANSEP would support them in future programming because of its longitudinal approach. Funding agencies of STEM programs should consider funding programs that provide a longitudinal approach to help Alaska Native students' sense of competence grow. Future research should include studying other STEM programs to determine if they are motivating their students to take and succeed in advanced mathematics and science courses.

  13. The Role of Teachers' Knowledge of Functions in Their Teaching: A Conceptual Approach with Illustrations from Two Cases

    ERIC Educational Resources Information Center

    Watson, Anne; Harel, Guershon

    2013-01-01

    We investigate whether and how personal mathematical knowledge at an advanced level impacts on teaching at a lower school level. We study this in the context of functions because understanding them permeates secondary and advanced mathematics. Textbook treatment of these can be patchy, implying a need for knowledgeable teachers to rectify…

  14. Smooth Transition for Advancement to Graduate Education (STAGE) for Underrepresented Groups in the Mathematical Sciences Pilot Project: Broadening Participation through Mentoring

    ERIC Educational Resources Information Center

    Eubanks-Turner, Christina; Beaulieu, Patricia; Pal, Nabendu

    2018-01-01

    The Smooth Transition for Advancement to Graduate Education (STAGE) project was a three-year pilot project designed to mentor undergraduate students primarily from under-represented groups in the mathematical sciences. The STAGE pilot project focused on mentoring students as they transitioned from undergraduate education to either graduate school…

  15. Design and Simulation of Control Technique for Permanent Magnet Synchronous Motor Using Space Vector Pulse Width Modulation

    NASA Astrophysics Data System (ADS)

    Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham

    2017-07-01

    After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.

  16. Theoretical Explanations in Mathematical Physics

    NASA Astrophysics Data System (ADS)

    Rivadulla, Andrés

    Many physicists wonder at the usefulness of mathematics in physics. According Madrid to Einstein mathematics is admirably appropriate to the objects of reality. Wigner asserts that mathematics plays an unreasonable important role in physics. James Jeans affirms that God is a mathematician, and that the first aim of physics is to discover the laws of nature, which are written in mathematical language. Dirac suggests that God may have used very advanced mathematics in constructing the universe. And Barrow adheres himself to Wigner's claim about the unreasonable effectiveness of mathematics for the workings of the physical world.

  17. Emerging Engineers Design a Paper Table

    ERIC Educational Resources Information Center

    Enderson, Mary C.; Grant, Melva R.

    2013-01-01

    With the advancement of specialized middle schools and high schools focusing on the arts, communication, engineering, mathematics, and science, many students who attend traditional schools miss out on valuable learning opportunities--in particular, when it comes to learning mathematics. Mathematics classrooms can be filled with real-world…

  18. Predicting Mathematical Aptitude for Higher Education

    ERIC Educational Resources Information Center

    McDonald, Betty

    2008-01-01

    This present study seeks to predict mathematical aptitude for higher education by examining the relationship between mathematics results from the Caribbean Examinations Council (CXC) general proficiency examination and the results from the General Certificate of Education (GCE) advanced level examination. This present study arose from a more…

  19. A Case against Computer Symbolic Manipulation in School Mathematics Today.

    ERIC Educational Resources Information Center

    Waits, Bert K.; Demana, Franklin

    1992-01-01

    Presented are two reasons discouraging computer symbol manipulation systems use in school mathematics at present: cost for computer laboratories or expensive pocket computers; and impracticality of exact solution representations. Although development with this technology in mathematics education advances, graphing calculators are recommended to…

  20. Enhancing School Mathematics Culturally: A Path of Reconciliation

    ERIC Educational Resources Information Center

    Aikenhead, Glen S.

    2017-01-01

    Culturally responsive or place-based school mathematics that focuses on Indigenous students has an established presence in the research literature. This culture-based innovation represents a historical shift from conventional approaches to mathematics education. Moreover, it has demonstratively advanced the academic achievement for both Indigenous…

  1. Mathematics Content Coverage and Student Learning in Kindergarten

    ERIC Educational Resources Information Center

    Engel, Mimi; Claessens, Amy; Watts, Tyler; Farkas, George

    2016-01-01

    Analyzing data from two nationally representative kindergarten cohorts, we examine the mathematics content teachers cover in kindergarten. We expand upon prior research, finding that kindergarten teachers report emphasizing basic mathematics content. Although teachers reported increased coverage of advanced content between the 1998-1999 and…

  2. Advanced Mathematics Communication beyond Modality of Sight

    ERIC Educational Resources Information Center

    Sedaghatjou, Mina

    2018-01-01

    This study illustrates how mathematical communication and learning are inherently multimodal and embodied; hence, sight-disabled students are also able to conceptualize visuospatial information and mathematical concepts through tactile and auditory activities. Adapting a perceptuomotor integration approach, the study shows that the lack of access…

  3. An empirical investigation of differences between mathematics specialists and non-specialists at the high school level in Cyprus: A Logistic regression Approach

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Elena C.; Zembylas, Michalinos

    2006-12-01

    AN EMPIRICAL INVESTIGATION OF DIFFERENCES BETWEEN MATHEMATICS SPECIALISTS AND NON-SPECIALISTS AT THE HIGH-SCHOOL LEVEL in Cyprus - The data obtained from high-school seniors for the Third International Mathematics and Science Study (TIMSS) for the country of Cyprus appear to be contradictory. Although Cypriot students did not perform well in mathematics in elementary school, middle school, and in the non-advanced sectors of high school, students in advanced mathematics courses in high school managed to perform exceptionally well. In seeking to account for this apparent disparity, the present study examines the differences between mathematics specialists and non-specialists at the high-school level and discusses the implications that these have for teaching practice. It shows how students educated in an environment that might not be optimal for producing high-achieving students in mathematics and science in elementary and middle school (according to the TIMSS) might nonetheless manage to excel in these fields at the end of their schooling. In conclusion, the authors address the implications of their study for similar educational systems in other developing countries.

  4. Problem based learning with scaffolding technique on geometry

    NASA Astrophysics Data System (ADS)

    Bayuningsih, A. S.; Usodo, B.; Subanti, S.

    2018-05-01

    Geometry as one of the branches of mathematics has an important role in the study of mathematics. This research aims to explore the effectiveness of Problem Based Learning (PBL) with scaffolding technique viewed from self-regulation learning toward students’ achievement learning in mathematics. The research data obtained through mathematics learning achievement test and self-regulated learning (SRL) questionnaire. This research employed quasi-experimental research. The subjects of this research are students of the junior high school in Banyumas Central Java. The result of the research showed that problem-based learning model with scaffolding technique is more effective to generate students’ mathematics learning achievement than direct learning (DL). This is because in PBL model students are more able to think actively and creatively. The high SRL category student has better mathematic learning achievement than middle and low SRL categories, and then the middle SRL category has better than low SRL category. So, there are interactions between learning model with self-regulated learning in increasing mathematic learning achievement.

  5. Parallel computing in genomic research: advances and applications

    PubMed Central

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today’s genomic experiments have to process the so-called “biological big data” that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. PMID:26604801

  6. Description and detection of burst events in turbulent flows

    NASA Astrophysics Data System (ADS)

    Schmid, P. J.; García-Gutierrez, A.; Jiménez, J.

    2018-04-01

    A mathematical and computational framework is developed for the detection and identification of coherent structures in turbulent wall-bounded shear flows. In a first step, this data-based technique will use an embedding methodology to formulate the fluid motion as a phase-space trajectory, from which state-transition probabilities can be computed. Within this formalism, a second step then applies repeated clustering and graph-community techniques to determine a hierarchy of coherent structures ranked by their persistencies. This latter information will be used to detect highly transitory states that act as precursors to violent and intermittent events in turbulent fluid motion (e.g., bursts). Used as an analysis tool, this technique allows the objective identification of intermittent (but important) events in turbulent fluid motion; however, it also lays the foundation for advanced control strategies for their manipulation. The techniques are applied to low-dimensional model equations for turbulent transport, such as the self-sustaining process (SSP), for varying levels of complexity.

  7. Parallel computing in genomic research: advances and applications.

    PubMed

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.

  8. When Traditional Won't Do: Experiences from a "Lower-Level" Mathematics Classroom

    ERIC Educational Resources Information Center

    Hill, Crystal

    2010-01-01

    As the last bell rings, students scurry to their respective classrooms, doors begin to close, and the class period begins. Imagine that you are in the hallway of the school and you look into an advanced mathematics class, into an Algebra I, Part I, mathematics class (a course designed for students who have not found success in mathematics). What…

  9. Characteristics and Impact of the Further Mathematics Knowledge Networks: Analysis of an English Professional Development Initiative on the Teaching of Advanced Mathematics

    ERIC Educational Resources Information Center

    Ruthven, Kenneth

    2014-01-01

    Reports from 13 Further Mathematics Knowledge Networks supported by the National Centre for Excellence in the Teaching of Mathematics [NCETM] are analysed. After summarizing basic characteristics of the networks regarding leadership, composition and pattern of activity, each of the following aspects is examined in greater depth: Developmental aims…

  10. Hua Loo-Keng and the Movement of Popularizing Mathematics in the People's Republic of China

    ERIC Educational Resources Information Center

    Richard, Jean W.

    2010-01-01

    This paper examines the mathematical and teaching practices of the renowned self-taught Chinese mathematician Hua Loo-keng in the movement of popularizing mathematics in the People's Republic of China. In this movement, Hua Loo-keng taught industrial workers and peasants with a low level of education how to use fairly advanced mathematical methods…

  11. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  12. Locating and Quantifying Broadband Fan Sources Using In-Duct Microphones

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Walker, Bruce E.; Sutliff, Daniel L.

    2010-01-01

    In-duct beamforming techniques have been developed for locating broadband noise sources on a low-speed fan and quantifying the acoustic power in the inlet and aft fan ducts. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a test bed. Several of the blades were modified to provide a broadband source to evaluate the efficacy of the in-duct beamforming technique. Phased arrays consisting of rings and line arrays of microphones were employed. For the imaging, the data were mathematically resampled in the frame of reference of the rotating fan. For both the imaging and power measurement steps, array steering vectors were computed using annular duct modal expansions, selected subsets of the cross spectral matrix elements were used, and the DAMAS and CLEAN-SC deconvolution algorithms were applied.

  13. Advanced statistics: linear regression, part I: simple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  14. Test Platforms for Model-Based Flight Research

    NASA Astrophysics Data System (ADS)

    Dorobantu, Andrei

    Demonstrating the reliability of flight control algorithms is critical to integrating unmanned aircraft systems into the civilian airspace. For many potential applications, design and certification of these algorithms will rely heavily on mathematical models of the aircraft dynamics. Therefore, the aerospace community must develop flight test platforms to support the advancement of model-based techniques. The University of Minnesota has developed a test platform dedicated to model-based flight research for unmanned aircraft systems. This thesis provides an overview of the test platform and its research activities in the areas of system identification, model validation, and closed-loop control for small unmanned aircraft.

  15. Development and application of a time-history analysis for rotorcraft dynamics based on a component approach

    NASA Technical Reports Server (NTRS)

    Sopher, R.; Hallock, D. W.

    1985-01-01

    A time history analysis for rotorcraft dynamics based on dynamical substructures, and nonstructural mathematical and aerodynamic components is described. The analysis is applied to predict helicopter ground resonance and response to rotor damage. Other applications illustrate the stability and steady vibratory response of stopped and gimballed rotors, representative of new technology. Desirable attributes expected from modern codes are realized, although the analysis does not employ a complete set of techniques identified for advanced software. The analysis is able to handle a comprehensive set of steady state and stability problems with a small library of components.

  16. Connecting the Dots: Rediscovering Continuity

    ERIC Educational Resources Information Center

    Camenga, Kristin A.; Yates, Rebekah B. Johnson

    2014-01-01

    The topic of continuity is typically not introduced until calculus and then reexamined in real analysis. Recognizing the connections between secondary school mathematics and the advanced mathematics studied at the college level allows teachers to better identify mathematical concepts in student ideas, motivate students by piquing their curiosity,…

  17. Computerized proof techniques for undergraduates

    NASA Astrophysics Data System (ADS)

    Smith, Christopher J.; Tefera, Akalu; Zeleke, Aklilu

    2012-12-01

    The use of computer algebra systems such as Maple and Mathematica is becoming increasingly important and widespread in mathematics learning, teaching and research. In this article, we present computerized proof techniques of Gosper, Wilf-Zeilberger and Zeilberger that can be used for enhancing the teaching and learning of topics in discrete mathematics. We demonstrate by examples how one can use these computerized proof techniques to raise students' interests in the discovery and proof of mathematical identities and enhance their problem-solving skills.

  18. Tailoring Modified Moore Method Techniques to Liberal Arts Mathematics Courses

    ERIC Educational Resources Information Center

    Hitchman, Theron J.; Shaw, Douglas

    2015-01-01

    Inquiry-based learning (IBL) techniques can be used in mathematics courses for non-majors, such as courses required for liberal arts majors to fulfill graduation requirements. Unique challenges are discussed, followed by adaptations of IBL techniques to overcome those challenges.

  19. Big data to smart data in Alzheimer's disease: Real-world examples of advanced modeling and simulation.

    PubMed

    Haas, Magali; Stephenson, Diane; Romero, Klaus; Gordon, Mark Forrest; Zach, Neta; Geerts, Hugo

    2016-09-01

    Many disease-modifying clinical development programs in Alzheimer's disease (AD) have failed to date, and development of new and advanced preclinical models that generate actionable knowledge is desperately needed. This review reports on computer-based modeling and simulation approach as a powerful tool in AD research. Statistical data-analysis techniques can identify associations between certain data and phenotypes, such as diagnosis or disease progression. Other approaches integrate domain expertise in a formalized mathematical way to understand how specific components of pathology integrate into complex brain networks. Private-public partnerships focused on data sharing, causal inference and pathway-based analysis, crowdsourcing, and mechanism-based quantitative systems modeling represent successful real-world modeling examples with substantial impact on CNS diseases. Similar to other disease indications, successful real-world examples of advanced simulation can generate actionable support of drug discovery and development in AD, illustrating the value that can be generated for different stakeholders. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The relation between learning mathematics and students' competencies in undesrtanding texts

    NASA Astrophysics Data System (ADS)

    Hapipi, Azmi, Syahrul; Sripatmi, Amrullah

    2017-08-01

    This study was a descriptive study that aimed to gain an overview on the relation between learning mathematics and students' competencies in understanding texts. This research was classified as an ex post facto study due in part to the variable studied is the variable that was already happening. While the technique of taking the sample using stratified proportional sampling techniques. These techniques have been selected for the condition of the population, in the context of learning mathematics, diverse and also tiered. The results of this study indicate that there is a relationship between learning mathematics and students' competencies in understanding texts.

  1. Kinematic reconstruction in cardiovascular imaging.

    PubMed

    Bastarrika, G; Huebra Rodríguez, I J González de la; Calvo-Imirizaldu, M; Suárez Vega, V M; Alonso-Burgos, A

    2018-05-17

    Advances in clinical applications of computed tomography have been accompanied by improvements in advanced post-processing tools. In addition to multiplanar reconstructions, curved planar reconstructions, maximum intensity projections, and volumetric reconstructions, very recently kinematic reconstruction has been developed. This new technique, based on mathematical models that simulate the propagation of light beams through a volume of data, makes it possible to obtain very realistic three dimensional images. This article illustrates examples of kinematic reconstructions and compares them with classical volumetric reconstructions in patients with cardiovascular disease in a way that makes it easy to establish the differences between the two types of reconstruction. Kinematic reconstruction is a new method for representing three dimensional images that facilitates the explanation and comprehension of the findings. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. The Chess and Mathematics Connection: More than Just a Game

    ERIC Educational Resources Information Center

    Berkman, Robert M.

    2004-01-01

    This article describes connections between chess and mathematics, including examples of activities that connect chess with set theory, patterns, algebra, geometry, combinatorics, and Pascal's triangle. The author observes that competitive games play a dual purpose in advancing the work of mathematics educators: to reinforce a specific skill and to…

  3. 34 CFR 200.13 - Adequate yearly progress in general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Measures progress separately for reading/language arts and for mathematics; (6) Is the same for all public... mathematics; and (ii) The proficient and advanced scores of students with disabilities based on the modified... assessed in reading/language arts and in mathematics. (3) A State's or LEA's number of proficient and...

  4. 34 CFR 200.13 - Adequate yearly progress in general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Measures progress separately for reading/language arts and for mathematics; (6) Is the same for all public... mathematics; and (ii) The proficient and advanced scores of students with disabilities based on the modified... assessed in reading/language arts and in mathematics. (3) A State's or LEA's number of proficient and...

  5. 34 CFR 200.13 - Adequate yearly progress in general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Measures progress separately for reading/language arts and for mathematics; (6) Is the same for all public... mathematics; and (ii) The proficient and advanced scores of students with disabilities based on the modified... assessed in reading/language arts and in mathematics. (3) A State's or LEA's number of proficient and...

  6. 34 CFR 200.13 - Adequate yearly progress in general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Measures progress separately for reading/language arts and for mathematics; (6) Is the same for all public... mathematics; and (ii) The proficient and advanced scores of students with disabilities based on the modified... assessed in reading/language arts and in mathematics. (3) A State's or LEA's number of proficient and...

  7. Math Problem

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2012-01-01

    Many experts give the nation's schools a poor grade for their approach to teaching mathematics and for their preparation of mathematics teachers. While many policymakers make much of data that suggest children in the United States lag behind many other advanced countries in math, many experts call for a change in mathematics education,…

  8. Chaos and insect ecology

    Treesearch

    Jesse A. Logan; Fred P. Hain

    1990-01-01

    Recent advances in applied mathematical analysis have uncovered a fascinating and unexpected dynamical richness that underlies behavior of even the simplest non-linear mathematical models. Due to the complexity of solutions to these non-linear equations, a new mathematical term, chaos, has been coined to describe the resulting dynamics. This term captures the notion...

  9. Profiling Student Use of Calculators in the Learning of High School Mathematics

    ERIC Educational Resources Information Center

    Crowe, Cheryll E.; Ma, Xin

    2010-01-01

    Using data from the 2005 National Assessment of Educational Progress, students' use of calculators in the learning of high school mathematics was profiled based on their family background, curriculum background, and advanced mathematics coursework. A statistical method new to educational research--classification and regression trees--was applied…

  10. Effects of Virtual Manipulatives with Different Approaches on Students' Knowledge of Slope

    ERIC Educational Resources Information Center

    Demir, Mustafa

    2018-01-01

    Virtual Manipulatives (VMs) are computer-based, dynamic, and visual representations of mathematical concepts, provide interactive learning environments to advance mathematics instruction (Moyer et al., 2002). Despite their broad use, few research explored the integration of VMs into mathematics instruction (Moyer-Packenham & Westenskow, 2013).…

  11. 34 CFR 200.13 - Adequate yearly progress in general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Measures progress separately for reading/language arts and for mathematics; (6) Is the same for all public... mathematics; and (ii) The proficient and advanced scores of students with disabilities based on the modified... assessed in reading/language arts and in mathematics. (3) A State's or LEA's number of proficient and...

  12. Developing Culturally Responsive Mathematics Teachers: Secondary Teachers' Evolving Conceptions of Knowing Students

    ERIC Educational Resources Information Center

    Parker, Frieda; Bartell, Tonya Gau; Novak, Jodie D.

    2017-01-01

    Research advances in teaching, learning, curriculum, and assessment have not changed the continued underperformance of marginalized students in mathematics education. Culturally responsive teaching is a means of addressing the needs of these students. It is sometimes challenging, however, to convince secondary mathematics teachers about the…

  13. Technology in K-12 Mathematics Classrooms

    ERIC Educational Resources Information Center

    Ozel, Serkan; Yetkiner, Zeynep Ebrar; Capraro, Robert M.

    2008-01-01

    Technology integration in mathematics classrooms is important to the field of education, not only because today's society is becoming more and more advanced and reliant upon technology but also because schools are beginning to embrace technology as an essential part of their curricula. The Principles and Standards for School Mathematics (National…

  14. Students' Exploratory Thinking about a Nonroutine Calculus Task

    ERIC Educational Resources Information Center

    Nabb, Keith

    2013-01-01

    In this article on introductory calculus, intriguing questions are generated that can ignite an appreciation for the subject of mathematics. These questions open doors to advanced mathematical thinking and harness many elements of research-oriented mathematics. Such questions also offer greater incentives for students to think and reflect.…

  15. Mathematical Intelligence and Mathematical Creativity: A Causal Relationship

    ERIC Educational Resources Information Center

    Tyagi, Tarun Kumar

    2017-01-01

    This study investigated the causal relationship between mathematical creativity and mathematical intelligence. Four hundred thirty-nine 8th-grade students, age ranged from 11 to 14 years, were included in the sample of this study by random cluster technique on which mathematical creativity and Hindi adaptation of mathematical intelligence test…

  16. Desegregating undergraduate mathematics and biology--interdisciplinary instruction with emphasis on ongoing biomedical research.

    PubMed

    Robeva, Raina

    2009-01-01

    The remarkable advances in the field of biology in the last decade, specifically in the areas of biochemistry, genetics, genomics, proteomics, and systems biology, have demonstrated how critically important mathematical models and methods are in addressing questions of vital importance for these disciplines. There is little doubt that the need for utilizing and developing mathematical methods for biology research will only grow in the future. The rapidly increasing demand for scientists with appropriate interdisciplinary skills and knowledge, however, is not being reflected in the way undergraduate mathematics and biology courses are structured and taught in most colleges and universities nationwide. While a number of institutions have stepped forward and addressed this need by creating and offering interdisciplinary courses at the juncture of mathematics and biology, there are still many others at which there is little, if any, interdisciplinary interaction between the curricula. This chapter describes an interdisciplinary course and a textbook in mathematical biology developed collaboratively by faculty from Sweet Briar College and the University of Virginia School of Medicine. The course and textbook are designed to provide a bridge between the mathematical and biological sciences at the lower undergraduate level. The course is developed for and is being taught in a liberal arts setting at Sweet Briar College, Virginia, but some of the advanced modules are used in a course at the University of Virginia for advanced undergraduate and beginning graduate students. The individual modules are relatively independent and can be used as stand-alone projects in conventional mathematics and biology courses. Except for the introductory material, the course and textbook topics are based on current biomedical research.

  17. The Dependence on Mathematical Theory in TIMSS, PISA and TIMSS Advanced Test Items and Its Relation to Student Achievement

    ERIC Educational Resources Information Center

    Hole, Arne; Grønmo, Liv Sissel; Onstad, Torgeir

    2018-01-01

    Background: This paper discusses a framework for analyzing the dependence on mathematical theory in test items, that is, a framework for discussing to what extent knowledge of mathematical theory is helpful for the student in solving the item. The framework can be applied to any test in which some knowledge of mathematical theory may be useful,…

  18. Do Advanced Mathematics Skills Predict Success in Biology and Chemistry Degrees?

    ERIC Educational Resources Information Center

    Adkins, Michael; Noyes, Andrew

    2018-01-01

    The mathematical preparedness of science undergraduates has been a subject of debate for some time. This paper investigates the relationship between school mathematics attainment and degree outcomes in biology and chemistry across England, a much larger scale of analysis than has hitherto been reported in the literature. A unique dataset which…

  19. How Young Children View Mathematical Representations: A Study Using Eye-Tracking Technology

    ERIC Educational Resources Information Center

    Bolden, David; Barmby, Patrick; Raine, Stephanie; Gardner, Matthew

    2015-01-01

    Background: It has been shown that mathematical representations can aid children's understanding of mathematical concepts but that children can sometimes have difficulty in interpreting them correctly. New advances in eye-tracking technology can help in this respect because it allows data to be gathered concerning children's focus of attention and…

  20. Widening and Increasing Post-16 Mathematics Participation: Pathways, Pedagogies and Politics

    ERIC Educational Resources Information Center

    Noyes, Andrew; Wake, Geoff; Drake, Pat

    2011-01-01

    This paper explores the potential impact of a national pilot initiative in England aimed at increasing and widening participation in advanced mathematical study through the creation of a new qualification for 16- to 18-year-olds. This proposed qualification pathway--"Use of Mathematics"--sits in parallel with long-established,…

  1. Undergraduate Mathematics Majors' Writing Performance Producing Proofs and Counterexamples about Continuous Functions

    ERIC Educational Resources Information Center

    Ko, Yi-Yin; Knuth, Eric

    2009-01-01

    In advanced mathematical thinking, proving and refuting are crucial abilities to demonstrate whether and why a proposition is true or false. Learning proofs and counterexamples within the domain of continuous functions is important because students encounter continuous functions in many mathematics courses. Recently, a growing number of studies…

  2. Blended Learning, E-Learning and Mobile Learning in Mathematics Education

    ERIC Educational Resources Information Center

    Borba, Marcelo C.; Askar, Petek; Engelbrecht, Johann; Gadanidis, George; Llinares, Salvador; Aguilar, Mario Sánchez

    2016-01-01

    In this literature survey we focus on identifying recent advances in research on digital technology in the field of mathematics education. To conduct the survey we have used internet search engines with keywords related to mathematics education and digital technology and have reviewed some of the main international journals, including the ones in…

  3. Demonstration Lessons in Mathematics Education: Teachers' Observation Foci and Intended Changes in Practice

    ERIC Educational Resources Information Center

    Clarke, Doug; Roche, Anne; Wilkie, Karina; Wright, Vince; Brown, Jill; Downton, Ann; Horne, Marj; Knight, Rose; McDonough, Andrea; Sexton, Matthew; Worrall, Chris

    2013-01-01

    As part of a teacher professional learning project in mathematics education, university mathematics educators taught demonstration lessons in project primary schools. These lessons were part of a "pre-brief, teaching, and debrief" process, in which up to eight teachers observed each lesson. Using brief questionnaires completed in advance of the…

  4. A Phenomenological Exploration of Mathematical Engagement: Approaching an Old Metaphor Anew.

    ERIC Educational Resources Information Center

    Handa, Yuichi

    2003-01-01

    Investigates the heart of the experience of mathematical engagement and the meaning derived from such activities. Analyzes dialogue between five people, two of whom are professional mathematicians, another two who are graduate students in either engineering or education, and one who lacks advanced mathematical training but maintains a positive…

  5. Basic and Advanced Numerical Performances Relate to Mathematical Expertise but Are Fully Mediated by Visuospatial Skills

    ERIC Educational Resources Information Center

    Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi

    2016-01-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic…

  6. A Framework for Mathematical Thinking: The Case of Linear Algebra

    ERIC Educational Resources Information Center

    Stewart, Sepideh; Thomas, Michael O. J.

    2009-01-01

    Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter at university level. The research reported here was part of the first author's recent PhD study, where she created and applied a theoretical framework combining the strengths of two major mathematics education theories in order to investigate the…

  7. Fifty Years of A-Level Mathematics: Have Standards Changed?

    ERIC Educational Resources Information Center

    Jones, Ian; Wheadon, Chris; Humphries, Sara; Inglis, Matthew

    2016-01-01

    Advanced-level (A-level) mathematics is a high-profile qualification taken by many school leavers in England, Wales, Northern Ireland and around the world as preparation for university study. Concern has been expressed in these countries that standards in A-level mathematics have declined over time, and that school leavers enter university or the…

  8. Zimbabwean Female Participation in Physics: The Influence of Identity Formation on Perception and Participation

    ERIC Educational Resources Information Center

    Gudyanga, Anna; Kurup, Raj

    2017-01-01

    The study investigated the influence of identity formation on the perceptions and participation of Zimbabwean Advanced Level (A' Level) female adolescent students in physics. Nine female adolescent students eighteen years and above: three doing mathematics and physics, one doing physics without mathematics and five doing mathematics without…

  9. Fostering Teacher Learning of Conjecturing, Generalising and Justifying through Mathematics Studio

    ERIC Educational Resources Information Center

    Lesseig, Kristin

    2016-01-01

    Calls to advance students' ability to engage in mathematical reasoning practices including conjecturing, generalising and justifying (CGJ) place significant new demands on teachers. This case study examines how Mathematics Studio provided opportunities for a team of U.S. middle school teachers to learn about these practices and ways to promote…

  10. "Can You Tell Me More?" Student Journaling and Reasoning

    ERIC Educational Resources Information Center

    Yow, Jan A.

    2015-01-01

    Journals provide a history of each student's thinking over time and allow this history to be easy to review. Journaling in mathematics has been found to be a valuable tool both for students and for teachers. Students benefit from journaling because it advances their mathematical understanding and ability to communicate in mathematics; teachers…

  11. Mathematical Rigor in the Common Core

    ERIC Educational Resources Information Center

    Hull, Ted H.; Balka, Don S.; Miles, Ruth Harbin

    2013-01-01

    A whirlwind of activity surrounds the topic of teaching and learning mathematics. The driving forces are a combination of changes in assessment and advances in technology that are being spurred on by the introduction of content in the Common Core State Standards for Mathematical Practice. Although the issues are certainly complex, the same forces…

  12. Optimization of numerical weather/wave prediction models based on information geometry and computational techniques

    NASA Astrophysics Data System (ADS)

    Galanis, George; Famelis, Ioannis; Kalogeri, Christina

    2014-10-01

    The last years a new highly demanding framework has been set for environmental sciences and applied mathematics as a result of the needs posed by issues that are of interest not only of the scientific community but of today's society in general: global warming, renewable resources of energy, natural hazards can be listed among them. Two are the main directions that the research community follows today in order to address the above problems: The utilization of environmental observations obtained from in situ or remote sensing sources and the meteorological-oceanographic simulations based on physical-mathematical models. In particular, trying to reach credible local forecasts the two previous data sources are combined by algorithms that are essentially based on optimization processes. The conventional approaches in this framework usually neglect the topological-geometrical properties of the space of the data under study by adopting least square methods based on classical Euclidean geometry tools. In the present work new optimization techniques are discussed making use of methodologies from a rapidly advancing branch of applied Mathematics, the Information Geometry. The latter prove that the distributions of data sets are elements of non-Euclidean structures in which the underlying geometry may differ significantly from the classical one. Geometrical entities like Riemannian metrics, distances, curvature and affine connections are utilized in order to define the optimum distributions fitting to the environmental data at specific areas and to form differential systems that describes the optimization procedures. The methodology proposed is clarified by an application for wind speed forecasts in the Kefaloniaisland, Greece.

  13. Advanced Mathematical Study and the Development of Conditional Reasoning Skills

    PubMed Central

    Attridge, Nina; Inglis, Matthew

    2013-01-01

    Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general ‘thinking skills’. Today, this argument, known as the ‘Theory of Formal Discipline’ is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought. PMID:23869241

  14. Mathematics Competency for Beginning Chemistry Students Through Dimensional Analysis.

    PubMed

    Pursell, David P; Forlemu, Neville Y; Anagho, Leonard E

    2017-01-01

    Mathematics competency in nursing education and practice may be addressed by an instructional variation of the traditional dimensional analysis technique typically presented in beginning chemistry courses. The authors studied 73 beginning chemistry students using the typical dimensional analysis technique and the variation technique. Student quantitative problem-solving performance was evaluated. Students using the variation technique scored significantly better (18.3 of 20 points, p < .0001) on the final examination quantitative titration problem than those who used the typical technique (10.9 of 20 points). American Chemical Society examination scores and in-house assessment indicate that better performing beginning chemistry students were more likely to use the variation technique rather than the typical technique. The variation technique may be useful as an alternative instructional approach to enhance beginning chemistry students' mathematics competency and problem-solving ability in both education and practice. [J Nurs Educ. 2017;56(1):22-26.]. Copyright 2017, SLACK Incorporated.

  15. PREFACE: International Conference on Advancement in Science and Technology 2012 (iCAST): Contemporary Mathematics, Mathematical Physics and their Applications

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin

    2013-04-01

    The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.

  16. Mathematical Geology.

    ERIC Educational Resources Information Center

    Jones, Thomas A.

    1983-01-01

    Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)

  17. An application of holographic interferometry for dynamic vibration analysis of a jet engine turbine compressor rotor

    NASA Astrophysics Data System (ADS)

    Fein, Howard

    2003-09-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as critical operational parameters of turbine structural components or unit turbine components fabricated from advanced and exotic new materials or using new fabrication methods. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects.

  18. Promise of new imaging technologies for assessing ovarian function.

    PubMed

    Singh, Jaswant; Adams, Gregg P; Pierson, Roger A

    2003-10-15

    Advancements in imaging technologies over the last two decades have ushered a quiet revolution in research approaches to the study of ovarian structure and function. The most significant changes in our understanding of the ovary have resulted from the use of ultrasonography which has enabled sequential analyses in live animals. Computer-assisted image analysis and mathematical modeling of the dynamic changes within the ovary has permitted exciting new avenues of research with readily quantifiable endpoints. Spectral, color-flow and power Doppler imaging now facilitate physiologic interpretations of vascular dynamics over time. Similarly, magnetic resonance imaging (MRI) is emerging as a research tool in ovarian imaging. New technologies, such as three-dimensional ultrasonography and MRI, ultrasound-based biomicroscopy and synchrotron-based techniques each have the potential to enhance our real-time picture of ovarian function to the near-cellular level. Collectively, information available in ultrasonography, MRI, computer-assisted image analysis and mathematical modeling heralds a new era in our understanding of the basic processes of female and male reproduction.

  19. Modified Fully Utilized Design (MFUD) Method for Stress and Displacement Constraints

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya; Gendy, Atef; Berke, Laszlo; Hopkins, Dale

    1997-01-01

    The traditional fully stressed method performs satisfactorily for stress-limited structural design. When this method is extended to include displacement limitations in addition to stress constraints, it is known as the fully utilized design (FUD). Typically, the FUD produces an overdesign, which is the primary limitation of this otherwise elegant method. We have modified FUD in an attempt to alleviate the limitation. This new method, called the modified fully utilized design (MFUD) method, has been tested successfully on a number of designs that were subjected to multiple loads and had both stress and displacement constraints. The solutions obtained with MFUD compare favorably with the optimum results that can be generated by using nonlinear mathematical programming techniques. The MFUD method appears to have alleviated the overdesign condition and offers the simplicity of a direct, fully stressed type of design method that is distinctly different from optimization and optimality criteria formulations. The MFUD method is being developed for practicing engineers who favor traditional design methods rather than methods based on advanced calculus and nonlinear mathematical programming techniques. The Integrated Force Method (IFM) was found to be the appropriate analysis tool in the development of the MFUD method. In this paper, the MFUD method and its optimality are presented along with a number of illustrative examples.

  20. Current application of chemometrics in traditional Chinese herbal medicine research.

    PubMed

    Huang, Yipeng; Wu, Zhenwei; Su, Rihui; Ruan, Guihua; Du, Fuyou; Li, Gongke

    2016-07-15

    Traditional Chinese herbal medicines (TCHMs) are promising approach for the treatment of various diseases which have attracted increasing attention all over the world. Chemometrics in quality control of TCHMs are great useful tools that harnessing mathematics, statistics and other methods to acquire information maximally from the data obtained from various analytical approaches. This feature article focuses on the recent studies which evaluating the pharmacological efficacy and quality of TCHMs by determining, identifying and discriminating the bioactive or marker components in different samples with the help of chemometric techniques. In this work, the application of chemometric techniques in the classification of TCHMs based on their efficacy and usage was introduced. The recent advances of chemometrics applied in the chemical analysis of TCHMs were reviewed in detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Conceptual metaphors and mathematical practice: on cognitive studies of historical developments in mathematics.

    PubMed

    Schlimm, Dirk

    2013-04-01

    This article looks at recent work in cognitive science on mathematical cognition from the perspective of history and philosophy of mathematical practice. The discussion is focused on the work of Lakoff and Núñez, because this is the first comprehensive account of mathematical cognition that also addresses advanced mathematics and its history. Building on a distinction between mathematics as it is presented in textbooks and as it presents itself to the researcher, it is argued that the focus of cognitive analyses of historical developments of mathematics has been primarily on the former, even if they claim to be about the latter. Copyright © 2013 Cognitive Science Society, Inc.

  2. Engaging with the Art & Science of Statistics

    ERIC Educational Resources Information Center

    Peters, Susan A.

    2010-01-01

    How can statistics clearly be mathematical and yet distinct from mathematics? The answer lies in the reality that statistics is both an art and a science, and both aspects are important for teaching and learning statistics. Statistics is a mathematical science in that it applies mathematical theories and techniques. Mathematics provides the…

  3. Mathematical Creativity and Mathematical Aptitude: A Cross-Lagged Panel Analysis

    ERIC Educational Resources Information Center

    Tyagi, Tarun Kumar

    2016-01-01

    Cross-lagged panel correlation (CLPC) analysis has been used to identify causal relationships between mathematical creativity and mathematical aptitude. For this study, 480 8th standard students were selected through a random cluster technique from 9 intermediate and high schools of Varanasi, India. Mathematical creativity and mathematical…

  4. Rival approaches to mathematical modelling in immunology

    NASA Astrophysics Data System (ADS)

    Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.

    2007-08-01

    In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.

  5. Economic analysis of ALK testing and crizotinib therapy for advanced non-small-cell lung cancer.

    PubMed

    Lu, Shun; Zhang, Jie; Ye, Ming; Wang, Baoai; Wu, Bin

    2016-06-01

    The economic outcome of crizotinib in advanced non-small-cell lung cancer harboring anaplastic lymphoma kinase rearrangement would be investigated. Based on a mathematical model, the economic outcome of three techniques for testing ALK gene rearrangement combing with crizotinib would be evaluated and compared with traditional regimen. The impact of the crizotinib patient assistance program (PAP) was assessed. Ventana immunohistochemistry, quantitative real-time reverse transcription-polymerase chain reaction and IHC testing plus fluorescent in situ hybridization confirmation for anaplastic lymphoma kinase testing following crizotinib treatment leaded to the incremental cost-effectiveness ratios of US$16,820 and US$223,242, US$24,424 and US$223,271, and US$16,850 and US$254,668 per quality-adjusted life-year gained with and without PAP, respectively. Gene-guided crizotinib therapy might be a cost-effective alternative comparing with the traditional regimen in the PAP setting.

  6. Analysis of dynamic brain oscillations: methodological advances.

    PubMed

    Le Van Quyen, Michel; Bragin, Anatol

    2007-07-01

    In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, oscillations of neuronal networks can be identified from simultaneous, multisite recordings. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings also depends on the development of new mathematical methods that can extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of network oscillations and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals and potentially productive future directions. This review is part of the INMED and TINS special issue, Physiogenic and pathogenic oscillations: the beauty and the beast, derived from presentations at the annual INMED and TINS symposium (http://inmednet.com).

  7. Identifying potential disaster zones around the Verkhnekamskoye potash deposit (Russia) using advanced information technology (IT)

    NASA Astrophysics Data System (ADS)

    Royer, J. J.; Filippov, L. O.

    2017-07-01

    This work aims at improving the exploitation of the K, Mg, salts ore of the Verkhnekamskoye deposit using advanced information technology (IT) such as 3D geostatistical modeling techniques together with high performance flotation. It is expected to provide a more profitable exploitation of the actual deposit avoiding the formation of dramatic sinkholes by a better knowledge of the deposit. The GeoChron modelling method for sedimentary formations (Mallet, 2014) was used to improve the knowledge of the Verkhnekamskoye potash deposit, Perm region, Russia. After a short introduction on the modern theory of mathematical modelling applied to mineral resources exploitation and geology, new results are presented on the sedimentary architecture of the ore deposit. They enlighten the structural geology and the fault orientations, a key point for avoiding catastrophic water inflows recharging zone during exploitation. These results are important for avoiding catastrophic sinkholes during exploitation.

  8. Implications of Eighth Grade Algebra I on High School Mathematics Achievement

    ERIC Educational Resources Information Center

    Bayard, Robert

    2012-01-01

    As of 2008, approximately 40% of eighth grade students in the United States enroll in Algebra I (National Council of Teachers of Mathematics, 2008). Although research has shown that students have more opportunities to take advanced mathematics courses by taking eighth grade Algebra I, in the United States, approximately only one-third to one-half…

  9. TEACHING OF ADVANCED MATHEMATICAL CONCEPTS TO CULTURALLY DISADVANTAGED ELEMENTARY SCHOOL CHILDREN.

    ERIC Educational Resources Information Center

    RUPLEY, WILLIAM H.

    THE SUCCESS OF DISCOVERY MATHEMATICS TEACHING IN THE ELEMENTARY SCHOOL WAS TESTED OVER A 1-YEAR PERIOD. THE PROJECT WAS INTENDED TO SEE IF A TRAINED MATHEMATICIAN WORKING AT AN ELEMENTARY SCHOOL WITH DISADVANTAGED CHILDREN COULD (1) MOTIVATE THE CHILDREN TO BE INTERESTED IN SCHOOL WORK BY INTERESTING THEM IN MATHEMATICS AND (2) COMMUNICATE WITH…

  10. Mathematical Literacy Teachers' Engagement with Contextual Tasks Based on Personal Finance

    ERIC Educational Resources Information Center

    Bansilal, Sarah; Mkhwanazi, Thokozani; Mahlabela, Patisizwe

    2012-01-01

    This article reports on a study carried out with a group of 108 practising Mathematical Literacy (ML) teachers who participated in an Advanced Certificate in Education (ACE) programme. The purpose of the qualitative study was to identify and describe the teachers' varying levels of engagement with mathematics tools and resources. The teachers were…

  11. Does Knowing More Advanced Mathematics Ensure Effectiveness of Working towards Demonstrating Specialised Mathematical Content Knowledge of Second-Year Pre-Service Teachers?

    ERIC Educational Resources Information Center

    Livy, Sharyn

    2012-01-01

    The theoretical understanding that underpins a teacher's foundation knowledge draws on their common content knowledge (CCK) and influences their mathematics' teaching (Rowland, Turner, Thwaites, & Huckstep, 2009). Teachers who have specialised content knowledge (SCK) demonstrate a unique kind of content knowledge which is more than knowing the…

  12. The Challenge of Learning Physics before Mathematics: A Case Study of Curriculum Change in Taiwan

    ERIC Educational Resources Information Center

    Chiu, Mei-Shiu

    2016-01-01

    The aim of this study was to identify challenges in implementing a physics-before- 10 mathematics curriculum. Obviously, students need to learn necessary mathematics skills in order to develop advanced physics knowledge. In the 2010 high school curriculum in Taiwan, however, grade 11 science students study two-dimensional motion in physics without…

  13. Students in Rural Schools Have Limited Access to Advanced Mathematics Courses. Issue Brief No. 7

    ERIC Educational Resources Information Center

    Graham, Suzanne E.

    2009-01-01

    This Carsey brief reveals that students in rural areas and small towns have less access to higher-level mathematics courses than students in urban settings, which results in serious educational consequences, including lower scores on assessment tests and fewer qualified students entering science, technology, engineering, and mathematics (STEM) job…

  14. Mathematics: Report of the Project 2061 Phase I Mathematics Panel.

    ERIC Educational Resources Information Center

    Blackwell, David; Henkin, Leon

    This is one of five panel reports that have been prepared as part of the first phase of Project 2061, a long-term multipurpose undertaking of the American Association for the Advancement of Science designed to help reform science, mathematics, and technology education in the United States. Major sections included are: (1) "Introduction";…

  15. The Association between Secondary Mathematics and First Year University Performance in Health Sciences

    ERIC Educational Resources Information Center

    Joyce, Christopher; Hine, Gregory; Anderton, Ryan

    2017-01-01

    In recent years, there has been a significant decline in the rate of participation in secondary school mathematics courses within Australia, particularly in advanced or higher level mathematics. The aim of this study was to investigate how grade point average (GPA) differed between five health science degrees at an Australian university. The…

  16. A Comparison Study of Student Performance and Study Habits in College Algebra at a Hispanic Serving College

    ERIC Educational Resources Information Center

    Salinas, Lelia

    2011-01-01

    Large numbers of students arrive at colleges and universities unprepared, specifically in the area of mathematics. In Texas, approximately 47% of entering freshman students enroll in developmental mathematics. Mathematics is cited in the literature as cornerstone for success in science, and advanced technology. In this study, the extent to which…

  17. Do Screencasts Help to Revise Prerequisite Mathematics? An Investigation of Student Performance and Perception

    ERIC Educational Resources Information Center

    Loch, Birgit; Jordan, Camilla R.; Lowe, Tim W.; Mestel, Ben D.

    2014-01-01

    Basic calculus skills that are prerequisites for advanced mathematical studies continue to be a problem for a significant proportion of higher education students. While there are many types of revision material that could be offered to students, in this paper we investigate whether short, narrated video recordings of mathematical explanations…

  18. The Use of Software in Academic Stream High School Mathematics Teaching

    ERIC Educational Resources Information Center

    Clay, Simon; Fotou, Nikolaos; Monaghan, John

    2017-01-01

    This paper reports on classroom observations of senior high school mathematics lessons with a focus on the use of digital technology. The observations were of teachers enrolled in an in-service course, Teaching Advanced Mathematics. The paper reports selected results and comments on: software that was observed to have been used; the use (or not)…

  19. Cardiovascular imaging and image processing: Theory and practice - 1975; Proceedings of the Conference, Stanford University, Stanford, Calif., July 10-12, 1975

    NASA Technical Reports Server (NTRS)

    Harrison, D. C.; Sandler, H.; Miller, H. A.

    1975-01-01

    The present collection of papers outlines advances in ultrasonography, scintigraphy, and commercialization of medical technology as applied to cardiovascular diagnosis in research and clinical practice. Particular attention is given to instrumentation, image processing and display. As necessary concomitants to mathematical analysis, recently improved magnetic recording methods using tape or disks and high-speed computers of large capacity are coming into use. Major topics include Doppler ultrasonic techniques, high-speed cineradiography, three-dimensional imaging of the myocardium with isotopes, sector-scanning echocardiography, and commercialization of the echocardioscope. Individual items are announced in this issue.

  20. Scaling up to address data science challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, Joanne R.

    Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less

  1. Scaling up to address data science challenges

    DOE PAGES

    Wendelberger, Joanne R.

    2017-04-27

    Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less

  2. All Students Need Advanced Mathematics. Math Works

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  3. Group investigation with scientific approach in mathematics learning

    NASA Astrophysics Data System (ADS)

    Indarti, D.; Mardiyana; Pramudya, I.

    2018-03-01

    The aim of this research is to find out the effect of learning model toward mathematics achievement. This research is quasi-experimental research. The population of research is all VII grade students of Karanganyar regency in the academic year of 2016/2017. The sample of this research was taken using stratified cluster random sampling technique. Data collection was done based on mathematics achievement test. The data analysis technique used one-way ANOVA following the normality test with liliefors method and homogeneity test with Bartlett method. The results of this research is the mathematics learning using Group Investigation learning model with scientific approach produces the better mathematics learning achievement than learning with conventional model on material of quadrilateral. Group Investigation learning model with scientific approach can be used by the teachers in mathematics learning, especially in the material of quadrilateral, which is can improve the mathematics achievement.

  4. Mathematics learning on geometry for children with autism

    NASA Astrophysics Data System (ADS)

    Widayati, F. E.; Usodo, B.; Pamudya, I.

    2017-12-01

    The purpose of this research is to describe: (1) the mathematics learning process in an inclusion class and (2) the obstacle during the process of mathematics learning in the inclusion class. This research is a descriptive qualitative research. The subjects were a mathematics teacher, children with autism, and a teacher assistant. Method of collecting data was observation and interview. Data validation technique is triangulation technique. The results of this research are : (1) There is a modification of lesson plan for children with autism. This modification such as the indicator of success, material, time, and assessment. Lesson plan for children with autism is arranged by mathematics teacher and teacher assistant. There is no special media for children with autism used by mathematics teacher. (2) The obstacle of children with autism is that they are difficult to understand mathematics concept. Besides, children with autism are easy to lose their focus.

  5. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  6. Biological Physics major as a means to stimulate an undergraduate physics program

    NASA Astrophysics Data System (ADS)

    Jaeger, Herbert; Eid, Khalid; Yarrison-Rice, Jan

    2013-03-01

    In an effort to stress the cross-disciplinary nature of modern physics we added a Biological Physics major. Drawing from coursework in physics, biology, chemistry, mathematics, and related disciplines, it combines a broad curriculum with physical and mathematical rigor in preparation for careers in biophysics, medical physics, and biomedical engineering. Biological Physics offers a new path of studies to a large pool of life science students. We hope to grow our physics majors from 70-80 to more than 100 students and boost our graduation rate from the mid-teens to the mid-twenties. The new major brought about a revision of our sophomore curriculum to make room for modern topics without sidelining fundamentals. As a result, we split our 1-semester long Contemporary Physics course (4 cr hrs) into a year-long sequence Contemporary Physics Foundations and Contemporary Physics Frontiers (both 3 cr hrs). Foundations starts with relativity, then focuses on 4 quantum mechanics topics: wells, spin 1/2, oscillators, and hydrogen. Throughout the course applications are woven in whenever the opportunity arises, e.g. magnetism and NMR with spin 1/2. The following semester Frontiers explores scientific principles and technological advances that make quantum science and resulting technologies different from the large scale. Frontiers covers enabling techniques from atomic, molecular, condensed matter, and particle physics, as well as advances in nanotechnology, quantum optics, and biophysics.

  7. Physically based modeling in catchment hydrology at 50: Survey and outlook

    NASA Astrophysics Data System (ADS)

    Paniconi, Claudio; Putti, Mario

    2015-09-01

    Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by novel theories in mathematical physics, advances in computational methods, insights from laboratory and field experiments, and the need to better understand and predict the potential impacts of population, land use, and climate change on our water resources. At the catchment scale, these simulation models are commonly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain physical and numerical consistency in the description of multiple processes that interact over a range of scales and across different compartments of an overall system. This paper first gives an historical overview (past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing how the interplay between theory, experiments, and modeling has contributed to advancing the state of the art. The second part of the paper examines some outstanding problems in integrated catchment modeling from the perspective of recent developments in mathematical and computational science.

  8. Advances in the microrheology of complex fluids

    NASA Astrophysics Data System (ADS)

    Waigh, Thomas Andrew

    2016-07-01

    New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.

  9. Laser Metrology In Biomechanics

    NASA Astrophysics Data System (ADS)

    Pryputniewicz, Ryszard J.

    1983-12-01

    Modern treatment of sceletal disharmonies and malocclusions utilizes application of external forces. In order to effectively use these therapeutic forces, knowledge of three-dimensional displacements of bones with correlation to biological changes is required. In the past, this problem has been studied in a number of ways using, for example, strain gauges, brittle coatings, photoelasticity, as well as clinical observations and mathematical modeling. Becouse of their inherent limitations, these techniques did not always provide all the information necessary for development of meaningful relationships between the applied force system and the resulting biological remodeling. However, recent advances in the field of la-ser metrology allowed to overcome some of the dificulties found in the earlier methods and permitted development of new techniques for non-invasive measurements of bone motions in three-dimensional space. These laser techniques are particularly useful in biomechanics because they provide for rapid and accurate determination of displacements over the entire surface of the investigate object. In this paper, application of laser techniques for quantitative in-vivo and in-vitro measurements in biomechanics will be discussed and illustrated with representative examples.

  10. Mathematical modeling provides kinetic details of the human immune response to vaccination

    PubMed Central

    Le, Dustin; Miller, Joseph D.; Ganusov, Vitaly V.

    2015-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data. PMID:25621280

  11. Mathematical modeling provides kinetic details of the human immune response to vaccination.

    PubMed

    Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V

    2014-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  12. The Impact of Motivation on Student's Academic Achievement and Learning Outcomes in Mathematics among Secondary School Students in Nigeria

    ERIC Educational Resources Information Center

    Tella, Adedeji

    2007-01-01

    In our match towards scientific and technological advancement, we need nothing short of good performance in mathematics at all levels of schooling. In an effort to achieve this, this study investigated the impact of motivation on students' school academic achievement in mathematics in secondary schools using motivation for academic preference…

  13. Comparing Differences in Math Achievement and Attitudes toward Math in a Sixth Grade Mathematics Enrichment Pilot Program

    ERIC Educational Resources Information Center

    Tow, Tamara

    2011-01-01

    High-stakes assessments have encouraged educators to ignore the needs of the top performers. Therefore, the Oakwood School District decided to implement a mathematics pilot enrichment program in order to meet the needs of the advanced mathematics students. As a result, this study used quantitative data to determine if there was a significant…

  14. Teacher Knowledge That Supports Student Processes in Learning Mathematics: A Study at All-Female Middle Schools in Saudi Arabia

    ERIC Educational Resources Information Center

    Alsaeed, Maha Saad

    2012-01-01

    Teachers in Saudi Arabia are attempting to advance their teaching in mathematics to address specific reforms by the Ministry of Education. Saudi teachers must improve their students' thinking through engagement in problem solving. This qualitative study investigated how teachers use knowledge of student mathematical learning and how they promote…

  15. Avoiding Misinterpretations of Piaget and Vygotsky: Mathematical Teaching without Learning, Learning without Teaching, or Helpful Learning-Path Teaching?

    ERIC Educational Resources Information Center

    Fuson, Karen C.

    2009-01-01

    This article provides an overview of some perspectives about special issues in classroom mathematical teaching and learning that have stemmed from the huge explosion of research in children's mathematical thinking stimulated by Piaget. It concentrates on issues that are particularly important for less-advanced learners and for those who might be…

  16. What Is Happening in the Use of ICT Mathematics to Support Young Adolescent Learners? A New Zealand Experience

    ERIC Educational Resources Information Center

    Nicholas, Karen; Fletcher, Jo

    2017-01-01

    Advances in learning approaches can enhance deeper levels of mathematical thinking and engagement through the use of new digital environments and technologies. The growing utilisation of portable digital devices in schools has meant there are enhanced tools to support mathematical learning and understandings. This article focused on those who work…

  17. Using Virtual Manipulative Instruction to Teach the Concepts of Area and Perimeter to Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Satsangi, Rajiv; Bouck, Emily C.

    2015-01-01

    Secondary students with a learning disability in mathematics often struggle with the academic demands presented in advanced mathematics courses, such as algebra and geometry. With greater emphasis placed on problem solving and higher level thinking skills in these subject areas, students with a learning disability in mathematics often fail to keep…

  18. Just do it: flipped lecture, determinants and debate

    NASA Astrophysics Data System (ADS)

    Kensington-Miller, Barbara; Novak, Julia; Evans, Tanya

    2016-08-01

    This paper describes a case study of two pure mathematicians who flipped their lecture to teach matrix determinants in two large mathematics service courses (one at Stage I and the other at Stage II). The purpose of the study was to transform the passive lecture into an active learning opportunity and to introduce valuable mathematical skills, such as debate, argument and disagreement. The students were told in advance to use the online material to prepare, which had a short handout on matrix determinants posted, as the lesson would be interactive and would rely on them having studied this. At the beginning of the lesson, the two mathematicians worked together to model the skill of professional disagreement, one arguing for the cofactor expansion method and the other for the row reduction method. After voting for their preferred method, the students worked in small groups on examples to defend their choice. Each group elected a spokesperson and a political style debate followed as the students argued the pros and cons of each technique. Although one lecture does not establish whether the flipped lecture model is preferable for student instruction, the paper presents a case study for pursuing this approach and for further research on incorporating this style of teaching in Science, Technology, Engineering and Mathematics subjects.

  19. Mathematical Idea Analysis: What Embodied Cognitive Science Can Say about the Human Nature of Mathematics.

    ERIC Educational Resources Information Center

    Nunez, Rafael E.

    This paper gives a brief introduction to a discipline called the cognitive science of mathematics. The theoretical background of the arguments is based on embodied cognition and findings in cognitive linguistics. It discusses Mathematical Idea Analysis, a set of techniques for studying implicit structures in mathematics. Particular attention is…

  20. METSAT: Advanced Microwave Sounding Unit-A2 (AMSU-A2) structural mathematical model

    NASA Technical Reports Server (NTRS)

    Ely, Wayne

    1995-01-01

    This plan describes the Structural Mathematical Model of the METSAT AMSU-A2 instrument. The model is used to verify the structural adequacy of the AMSU-A2 instrument for the specified loading environments.

  1. Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D L; Bell, J; Estep, D

    2008-02-15

    Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as themore » high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand the mathematical developments required to meet the future science and engineering needs of the DOE. It is important to emphasize that the panelists were not asked to speculate only on advances that might be made in their own research specialties. Instead, the guidance this panel was given was to consider the broad science and engineering challenges that the DOE faces and identify the corresponding advances that must occur across the field of mathematics for these challenges to be successfully addressed. As preparation for the meeting, each panelist was asked to review strategic planning and other informational documents available for one or more of the DOE Program Offices, including the Offices of Science, Nuclear Energy, Fossil Energy, Environmental Management, Legacy Management, Energy Efficiency & Renewable Energy, Electricity Delivery & Energy Reliability and Civilian Radioactive Waste Management as well as the National Nuclear Security Administration. The panelists reported on science and engineering needs for each of these offices, and then discussed and identified mathematical advances that will be required if these challenges are to be met. A review of DOE challenges in energy, the environment and national security brings to light a broad and varied array of questions that the DOE must answer in the coming years. A representative subset of such questions includes: (1) Can we predict the operating characteristics of a clean coal power plant? (2) How stable is the plasma containment in a tokamak? (3) How quickly is climate change occurring and what are the uncertainties in the predicted time scales? (4) How quickly can an introduced bio-weapon contaminate the agricultural environment in the US? (5) How do we modify models of the atmosphere and clouds to incorporate newly collected data of possibly of new types? (6) How quickly can the United States recover if part of the power grid became inoperable? (7) What are optimal locations and communication protocols for sensing devices in a remote-sensing network? (8) How can new materials be designed with a specified desirable set of properties? In comparing and contrasting these and other questions of importance to DOE, the panel found that while the scientific breadth of the requirements is enormous, a central theme emerges: Scientists are being asked to identify or provide technology, or to give expert analysis to inform policy-makers that requires the scientific understanding of increasingly complex physical and engineered systems. In addition, as the complexity of the systems of interest increases, neither experimental observation nor mathematical and computational modeling alone can access all components of the system over the entire range of scales or conditions needed to provide the required scientific understanding.« less

  2. Mathematical modelling in developmental biology.

    PubMed

    Vasieva, Olga; Rasolonjanahary, Manan'Iarivo; Vasiev, Bakhtier

    2013-06-01

    In recent decades, molecular and cellular biology has benefited from numerous fascinating developments in experimental technique, generating an overwhelming amount of data on various biological objects and processes. This, in turn, has led biologists to look for appropriate tools to facilitate systematic analysis of data. Thus, the need for mathematical techniques, which can be used to aid the classification and understanding of this ever-growing body of experimental data, is more profound now than ever before. Mathematical modelling is becoming increasingly integrated into biological studies in general and into developmental biology particularly. This review outlines some achievements of mathematics as applied to developmental biology and demonstrates the mathematical formulation of basic principles driving morphogenesis. We begin by describing a mathematical formalism used to analyse the formation and scaling of morphogen gradients. Then we address a problem of interplay between the dynamics of morphogen gradients and movement of cells, referring to mathematical models of gastrulation in the chick embryo. In the last section, we give an overview of various mathematical models used in the study of the developmental cycle of Dictyostelium discoideum, which is probably the best example of successful mathematical modelling in developmental biology.

  3. Mathematical models used in segmentation and fractal methods of 2-D ultrasound images

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Moraru, Luminita; Bibicu, Dorin

    2012-11-01

    Mathematical models are widely used in biomedical computing. The extracted data from images using the mathematical techniques are the "pillar" achieving scientific progress in experimental, clinical, biomedical, and behavioural researches. This article deals with the representation of 2-D images and highlights the mathematical support for the segmentation operation and fractal analysis in ultrasound images. A large number of mathematical techniques are suitable to be applied during the image processing stage. The addressed topics cover the edge-based segmentation, more precisely the gradient-based edge detection and active contour model, and the region-based segmentation namely Otsu method. Another interesting mathematical approach consists of analyzing the images using the Box Counting Method (BCM) to compute the fractal dimension. The results of the paper provide explicit samples performed by various combination of methods.

  4. On the role of visual experience in mathematical development: Evidence from blind mathematicians.

    PubMed

    Amalric, Marie; Denghien, Isabelle; Dehaene, Stanislas

    2018-04-01

    Advanced mathematical reasoning, regardless of domain or difficulty, activates a reproducible set of bilateral brain areas including intraparietal, inferior temporal and dorsal prefrontal cortex. The respective roles of genetics, experience and education in the development of this math-responsive network, however, remain unresolved. Here, we investigate the role of visual experience by studying the exceptional case of three professional mathematicians who were blind from birth (n=1) or became blind during childhood (n=2). Subjects were scanned with fMRI while they judged the truth value of spoken mathematical and nonmathematical statements. Blind mathematicians activated the classical network of math-related areas during mathematical reflection, similar to that found in a group of sighted professional mathematicians. Thus, brain networks for advanced mathematical reasoning can develop in the absence of visual experience. Additional activations were found in occipital cortex, even in individuals who became blind during childhood, suggesting that either mental imagery or a more radical repurposing of visual cortex may occur in blind mathematicians. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation

    NASA Astrophysics Data System (ADS)

    Maddah, Hisham; Chogle, Aman

    2017-10-01

    This paper is a comprehensive review of biofouling in reverse osmosis modules where we have discussed the mechanism of biofouling. Water crisis is an issue of pandemic concern because of the steady rise in demand of drinking water. Overcoming biofouling is vital since we need to optimize expenses and quality of potable water production. Various kinds of microorganisms responsible for biofouling have been identified to develop better understanding of their attacking behavior enabling us to encounter the problem. Both primitive and advanced detection techniques have been studied for the monitoring of biofilm development on reverse osmosis membranes. Biofouling has a negative impact on membrane life as well as permeate flux and quality. Thus, a mathematical model has been presented for the calculation of normalized permeate flux for evaluating the extent of biofouling. It is concluded that biofouling can be controlled by the application of several physical and chemical remediation techniques.

  6. 39 CFR 3050.1 - Definitions applicable to this part.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., mathematical, or statistical theory, precept, or assumption applied by the Postal Service in producing a... manipulation technique whose validity does not require the acceptance of a particular economic, mathematical, or statistical theory, precept, or assumption. A change in quantification technique should not change...

  7. Experimental Mathematics and Computational Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.; Borwein, Jonathan M.

    2009-04-30

    The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

  8. Automatic Semantic Generation and Arabic Translation of Mathematical Expressions on the Web

    ERIC Educational Resources Information Center

    Doush, Iyad Abu; Al-Bdarneh, Sondos

    2013-01-01

    Automatic processing of mathematical information on the web imposes some difficulties. This paper presents a novel technique for automatic generation of mathematical equations semantic and Arabic translation on the web. The proposed system facilitates unambiguous representation of mathematical equations by correlating equations to their known…

  9. CSP - The 19th European Conference on Mathematics for Industry (ECMI 2016)

    DTIC Science & Technology

    2017-03-02

    Quality physics in game cinematics. Conclusions Most significant advance reported The ECMI 2016 exceeded by far the expectations of the Organizing... games . 15. SUBJECT TERMS Industrial mathematics; numerical simulation ; optimization; modelling; innovation. 16. SECURITY CLASSIFICATION OF: 17

  10. Geometry and Integrability

    NASA Astrophysics Data System (ADS)

    Mason, Lionel; Nutku, Yavuz

    2003-12-01

    Based on courses held at the Feza GÜrsey Institute, this collection of survey articles introduces advanced graduate students to an exciting area on the border of mathematics and mathematical physics. Including articles by key names such as Calogero, Donagi and Mason, it features the algebro-geometric material from Donagi as well as the twistor space methods in Woodhouse's contribution, forming a bridge between the pure mathematics and the more physical approaches.

  11. Trends in Mathematics and Science Performance in 18 Countries: Multiple Regression Analysis of the Cohort Effects of TIMSS 1995-2007

    ERIC Educational Resources Information Center

    Hong, Hee Kyung

    2012-01-01

    The purpose of this study was to simultaneously examine relationships between teacher quality and instructional time and mathematics and science achievement of 8th grade cohorts in 18 advanced and developing economies. In addition, the study examined changes in mathematics and science performance across the two groups of economies over time using…

  12. Accomplishment in Science, Technology, Engineering, and Mathematics (STEM) and Its Relation to STEM Educational Dose: A 25-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Wai, Jonathan; Lubinski, David; Benbow, Camilla P.; Steiger, James H.

    2010-01-01

    Two studies examined the relationship between precollegiate advanced/enriched educational experiences and adult accomplishments in science, technology, engineering, and mathematics (STEM). In Study 1, 1,467 13-year-olds were identified as mathematically talented on the basis of scores [greater than or equal to] 500 (top 0.5%) on the math section…

  13. Gesellschaft fuer angewandte Mathematik und Mechanik, Scientific Annual Meeting, Universitaet Stuttgart, Federal Republic of Germany, Apr. 13-17, 1987, Reports

    NASA Astrophysics Data System (ADS)

    Recent advances in the analytical and numerical treatment of physical and engineering problems are discussed in reviews and reports. Topics addressed include fluid mechanics, numerical methods for differential equations, FEM approaches, and boundary-element methods. Consideration is given to optimization, decision theory, stochastics, actuarial mathematics, applied mathematics and mathematical physics, and numerical analysis.

  14. RT-18: Value of Flexibility. Phase 1

    DTIC Science & Technology

    2010-09-25

    an analytical framework based on sound mathematical constructs. A review of the current state-of-the-art showed that there is little unifying theory...framework that is mathematically consistent, domain independent and applicable under varying information levels. This report presents our advances in...During this period, we also explored the development of an analytical framework based on sound mathematical constructs. A review of the current state

  15. Support with Caveats: Advocates' Views of the Theory of Formal Discipline as a Reason for the Study of Advanced Mathematics

    ERIC Educational Resources Information Center

    Wainwright, Elaine; Attridge, Nina; Wainwright, David; Alcock, Lara; Inglis, Matthew

    2017-01-01

    The Theory of Formal Discipline (TFD) suggests that studying mathematics improves general thinking skills. Empirical evidence for the TFD is sparse, yet it is cited in policy reports as a justification for the importance of mathematics in school curricula. The study reported in this article investigated the extent to which influential UK advocates…

  16. Goddard trajectory determination subsystem: Mathematical specifications

    NASA Technical Reports Server (NTRS)

    Wagner, W. E. (Editor); Velez, C. E. (Editor)

    1972-01-01

    The mathematical specifications of the Goddard trajectory determination subsystem of the flight dynamics system are presented. These specifications include the mathematical description of the coordinate systems, dynamic and measurement model, numerical integration techniques, and statistical estimation concepts.

  17. Chances of success in and engagement with mathematics for students who enter university with a weak mathematics background

    NASA Astrophysics Data System (ADS)

    Varsavsky, Cristina

    2010-12-01

    An increasing number of Australian students elect not to undertake studies in mathematical methods in the final years of their secondary schooling. Some higher education providers now offer pathways for these students to pursue mathematics studies up to a major specialization within the bachelor of science programme. This article analyses the performance in and engagement with mathematics of the students who elect to take up this option. Findings indicate that these are not very different when compared to students who enter university with an intermediate mathematics preparation. The biggest contrast in performance and engagement is with those students who have studied mathematics in senior secondary school to an advanced level.

  18. Research on Mathematical Techniques in Psychology. Final Report.

    ERIC Educational Resources Information Center

    Gulliksen, Harold

    Mathematical techniques are developed for studying psychological problems in three fields: (1) psychological scaling, (2) learning and concept formation, and (3) mental measurement. Psychological scaling procedures are demonstrated to be useful in many areas, ranging from sensory discrimination of physical stimuli, such as colors, sounds, etc.,…

  19. Learning from the Unknown Student

    ERIC Educational Resources Information Center

    Barlow, Angela T.; Gerstenschlager, Natasha E.; Harmon, Shannon E.

    2016-01-01

    In this article, three instructional situations demonstrate the value of using an "unknown" student's work to allow the advancement of students' mathematical thinking as well as their engagement in the mathematical practice of critiquing the reasoning of others: (1) introducing alternative solution strategies; (2) critiquing inaccuracies…

  20. Undergraduate Training for Industrial Careers.

    ERIC Educational Resources Information Center

    Stehney, Ann K.

    1983-01-01

    Forty-eight mathematicians in industry, business, and government replied to a questionnaire on the relative merits of the traditional undergraduate curriculum, advanced topics in pure mathematics, computer programing, additional computer science, and specialized or applied topics. They favored programing and applied mathematics, along with a…

  1. Mathematics Readiness of First-Year University Students

    ERIC Educational Resources Information Center

    Atuahene, Francis; Russell, Tammy A.

    2016-01-01

    The majority of high school students, particularly underrepresented minorities (URMs) from low socioeconomic backgrounds are graduating from high school less prepared academically for advanced-level college mathematics. Using 2009 and 2010 course enrollment data, several statistical analyses (multiple linear regression, Cochran Mantel Haenszel…

  2. Mathematical Techniques for Nonlinear System Theory.

    DTIC Science & Technology

    1979-05-01

    7 7 AD—A078 715 FLORIDA UNIV GAINESVILLE CENTER FOR MATHEMATICAL SYS——ETC FIG 12/1 MATHEMATICAL TECHNIQUES FOR NONLINEAR SYSTEM THEORY . (U) MAY 79... System Theory / 61102F ~~~~~ ~ ~~~~~~~~ Gainesville , FL 32601 L ~~~ CONTROLLING OFFI C E NAME A N D ADDRES S . Air Force Office of Scientific... System Theory During the past year, the major effort under this grant was work by the Principal Investigator (R. E. Kalman) and by E. Emre

  3. An Analysis of Final Course Grades in Two Different Entry Level Mathematics Courses between and among First Year College Students with Different Levels of High School Mathematics Preparation

    ERIC Educational Resources Information Center

    Muir, Carrie

    2012-01-01

    The purpose of this study was to compare the performance of first year college students with similar high school mathematics backgrounds in two introductory level college mathematics courses, "Fundamentals and Techniques of College Algebra and Quantitative Reasoning and Mathematical Skills," and to compare the performance of students…

  4. McDonald's vs Father Christmas

    ERIC Educational Resources Information Center

    Pratt, Dave; Simpson, Amanda

    2004-01-01

    Mathematics in textbooks and indeed in conventional classrooms is often presented as exercises or worksheets in which the mathematics itself has been processed into a form that is easily digested. This McDonald's version of mathematics ensures that the mathematical skill or technique is laid bare and typically the sole focus of attention. In this…

  5. Provocative Mathematics Questions: Drawing Attention to a Lack of Attention

    ERIC Educational Resources Information Center

    Klymchuk, Sergiy

    2015-01-01

    The article investigates the role of attention in the reflective thinking of school mathematics teachers. It analyses teachers' ability to pay attention to detail and "use" their mathematical knowledge. The vast majority of teachers can be expected to have an excellent knowledge of mathematical techniques. The question examined here is…

  6. Preferences of Teaching Methods and Techniques in Mathematics with Reasons

    ERIC Educational Resources Information Center

    Ünal, Menderes

    2017-01-01

    In this descriptive study, the goal was to determine teachers' preferred pedagogical methods and techniques in mathematics. Qualitative research methods were employed, primarily case studies. 40 teachers were randomly chosen from various secondary schools in Kirsehir during the 2015-2016 educational terms, and data were gathered via…

  7. The Triangle Technique: a new evidence-based educational tool for pediatric medication calculations.

    PubMed

    Sredl, Darlene

    2006-01-01

    Many nursing student verbalize an aversion to mathematical concepts and experience math anxiety whenever a mathematical problem is confronted. Since nurses confront mathematical problems on a daily basis, they must learn to feel comfortable with their ability to perform these calculations correctly. The Triangle Technique, a new educational tool available to nurse educators, incorporates evidence-based concepts within a graphic model using visual, auditory, and kinesthetic learning styles to demonstrate pediatric medication calculations of normal therapeutic ranges. The theoretical framework for the technique is presented, as is a pilot study examining the efficacy of the educational tool. Statistically significant results obtained by Pearson's product-moment correlation indicate that students are better able to calculate accurate pediatric therapeutic dosage ranges after participation in the educational intervention of learning the Triangle Technique.

  8. CFD studies on biomass thermochemical conversion.

    PubMed

    Wang, Yiqun; Yan, Lifeng

    2008-06-01

    Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  9. CFD Studies on Biomass Thermochemical Conversion

    PubMed Central

    Wang, Yiqun; Yan, Lifeng

    2008-01-01

    Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848

  10. The Role of STEM High Schools in Reducing Gaps in Science and Mathematics Coursetaking: Evidence from North Carolina. Research Report. RTI Press Publication RR-0025-1603

    ERIC Educational Resources Information Center

    Glennie, Elizabeth; Mason, Marcinda; Dalton, Ben

    2016-01-01

    Some states have created science, technology, engineering, and mathematics (STEM) schools to encourage student interest and enhance student proficiency in STEM subjects. We examined a set of STEM schools serving disadvantaged students to see whether these students were more likely to take and pass advanced science and mathematics classes than…

  11. Teaching undergraduate mathematics in interactive groups: how does it fit with students' learning?

    NASA Astrophysics Data System (ADS)

    Sheryn, Louise; Ell, Fiona

    2014-08-01

    Debates about how undergraduate mathematics should be taught are informed by different views of what it is to learn and to do mathematics. In this qualitative study 10 students enrolled in an advanced undergraduate course in mathematics shared their views about how they best learn mathematics. After participating in a semester-long course in combinatorics, taught using a non-traditional, formal group work approach, the 10 students shared their views about how such an approach fitted in with their experience of learning mathematics. A descriptive thematic analysis of the students' responses revealed that despite being very comfortable with the traditional approach to learning new mathematics, most students were open to a formal group work approach and could see benefits from it after their participation. The students' prior conceptions of the goal of undergraduate mathematics learning and their view of themselves as 'mathematicians' framed their experience of learning mathematics in a non-traditional class.

  12. Research on an augmented Lagrangian penalty function algorithm for nonlinear programming

    NASA Technical Reports Server (NTRS)

    Frair, L.

    1978-01-01

    The augmented Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear mathematical models is discussed. The mathematical models of interest are deterministic in nature and finite dimensional optimization is assumed. A detailed review of penalty function techniques in general and the ALAG technique in particular is presented. Numerical experiments are conducted utilizing a number of nonlinear optimization problems to identify an efficient ALAG Penalty Function Technique for computer implementation.

  13. Mathematical Heroes--No Longer Unsung

    ERIC Educational Resources Information Center

    Chin, Cynthia E.

    2007-01-01

    The history of Fermat's Last Theorem, recounted in the theatrical piece "Fermat's Last Tango," is a useful vehicle for introducing students to the variety of personalities, processes, and products involved in advanced mathematical investigation. The musical's accessible, informative, and positive portrayal of mathematicians and their work is…

  14. A Worked Example for Creating Worked Examples

    ERIC Educational Resources Information Center

    McGinn, Kelly M.; Lange, Karin E.; Booth, Julie L.

    2015-01-01

    Researchers have extensively documented, and math teachers know from experience, that algebra is a "gatekeeper" to more advanced mathematical topics. Students must have a strong understanding of fundamental algebraic concepts to be successful in later mathematics courses. Unfortunately, algebraic misconceptions that students may form or…

  15. Increasing Interest of Young Women in Engineering

    ERIC Educational Resources Information Center

    Hinterlong, Diane; Lawrence, Branson; DeVol, Purva

    2014-01-01

    The internationally recognized Illinois Mathematics and Science Academy (IMSA) develops creative, ethical leaders in science, technology, engineering and mathematics. As a teaching and learning laboratory created by the State of Illinois, IMSA enrolls academically talented Illinois students in grades 10 through 12 in its advanced, residential…

  16. New Technologies in Mathematics.

    ERIC Educational Resources Information Center

    Sarmiento, Jorge

    An understanding of past technological advancements can help educators understand the influence of new technologies in education. Inventions such as the abacus, logarithms, the slide rule, the calculating machine, computers, and electronic calculators have all found their place in mathematics education. While new technologies can be very useful,…

  17. This Rock 'n' Roll Video Teaches Math

    ERIC Educational Resources Information Center

    Niess, Margaret L.; Walker, Janet M.

    2009-01-01

    Mathematics is a discipline that has significantly advanced through the use of digital technologies with improved computational, graphical, and symbolic capabilities. Digital videos can be used to present challenging mathematical questions for students. Video clips offer instructional possibilities for moving students from a passive mode of…

  18. Nurturing Young Student Mathematicians

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Casa, Tutita M.

    2013-01-01

    Developing mathematical talent in our students should be of primary consideration in education today as nations respond to the challenges of economic crises and ever-changing technological advances. This paper describes two U.S. federally funded curriculum projects, Project M[superscript 3], Mentoring Mathematical Minds, and Project M[superscript…

  19. Recreating History with Archimedes and Pi

    ERIC Educational Resources Information Center

    Santucci, Lora C.

    2011-01-01

    Using modern technology to examine classical mathematics problems at the high school level can reduce difficult computations and encourage generalizations. When teachers combine historical context with access to technology, they challenge advanced students to think deeply, spark interest in students whose primary interest is not mathematics, and…

  20. Throw Away Your Mathematical Handbook! Undergraduate Physics with Wolfram|Alpha, a FREE(!) Internet-Based Mathematical Engine

    NASA Astrophysics Data System (ADS)

    Looney, Craig W.

    2009-10-01

    Wolfram|Alpha (http://www.wolframalpha.com/), a free internet-based mathematical engine released earlier this year, represents an orders-of magnitude advance in mathematical power freely available - without money, passwords, or downloads - on the web. Wolfram|Alpha is based on Mathematica, so it can plot functions, take derivatives, solve systems of equations, perform symbolic and numerical integration, and more. These capabilities (especially plotting and integration) will be explored in the context of topics covered in upper level undergraduate physics courses.

  1. Taking the mystery out of mathematical model applications to karst aquifers—A primer

    USGS Publications Warehouse

    Kuniansky, Eve L.

    2014-01-01

    Advances in mathematical model applications toward the understanding of the complex flow, characterization, and water-supply management issues for karst aquifers have occurred in recent years. Different types of mathematical models can be applied successfully if appropriate information is available and the problems are adequately identified. The mathematical approaches discussed in this paper are divided into three major categories: 1) distributed parameter models, 2) lumped parameter models, and 3) fitting models. The modeling approaches are described conceptually with examples (but without equations) to help non-mathematicians understand the applications.

  2. An interdisciplinary collaboration between computer engineering and mathematics/bilingual education to develop a curriculum for underrepresented middle school students

    NASA Astrophysics Data System (ADS)

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-12-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to address this need. We describe our work through the Advancing Out-of-School Learning in Mathematics and Engineering project by illustrating how an integrated curriculum that is based on mathematics with applications in image and video processing can be designed and how it can be implemented with middle school students from underrepresented groups.

  3. Multiple element isotope probes, NanoSIMS, and the functional genomics of microbial carbon cycling in soils in response to chronic climatic change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hungate, Bruce; Pett-Ridge, Jennifer; Blazewicz, Steven

    In this project, we developed an innovative and ground-breaking technique, quantitative stable isotope probing, a technique that uses density separation of nucleic acids as a quantitative measurement technique. This work is substantial because it advances SIP beyond the qualitative technique that has dominate the field for years. The first methods paper was published in Applied and Environmental Microbiology (Hungate et al. 2015), and this paper describes the mathematical model underlying the quantitative interpretation. A second methods paper (Schwartz et al. 2015) provides a conceptual overview of the method and its application to research problems. A third methods paper was justmore » published (Koch et al. 2018), in which we develop the quantitative model combining sequencing and isotope data to estimate actual rates of microbial growth and death in natural populations. This work has met much enthusiasm in scientific presentations around the world. It has met with equally enthusiastic resistance in the peer-review process, though our record of publication to date argues that people are accepting the merits of the approach. The skepticism and resistance are also potentially signs that this technique is pushing the field forward, albeit with some of the discomfort that accompanies extrapolation. Part of this is a cultural element in the field – the field of microbiology is not accustomed to the assumptions of ecosystem science. Research conducted in this project has pushed the philosophical perspective that major advances can occur when we advocate a sound merger between the traditions of strong inference in microbiology with those of grounded scaling in ecosystem science.« less

  4. Multiple element isotope probes, NanoSIMS, and the functional genomics of microbial carbon cycling in soils in response to chronic climatic change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hungate, Bruce; PettRidge, Jennifer; Blazewicz, St

    In this project, we developed an innovative and groundbreaking technique, quantitative stable isotope probing, a technique that uses density separation of nucleic acids as a quantitative measurement technique. This work is substantial because it advances SIP beyond the qualitative technique that has dominate the field for years. The first methods paper was published in Applied and Environmental Microbiology (Hungate et al. 2015), and this paper describes the mathematical model underlying the quantitative interpretation. A second methods paper (Schwartz et al. 2015) provides a conceptual overview of the method and its application to research problems. A third methods paper was justmore » published (Koch et al. 2018), in which we develop the quantitative model combining sequencing and isotope data to estimate actual rates of microbial growth and death in natural populations. This work has met much enthusiasm in scientific presentations around the world. It has met with equally enthusiastic resistance in the peerreview process, though our record of publication to date argues that people are accepting the merits of the approach. The skepticism and resistance are also potentially signs that this technique is pushing the field forward, albeit with some of the discomfort that accompanies extrapolation. Part of this is a cultural element in the field – the field of microbiology is not accustomed to the assumptions of ecosystem science. Research conducted in this project has pushed the philosophical perspective that major advances can occur when we advocate a sound merger between the traditions of strong inference in microbiology with those of grounded scaling in ecosystem science.« less

  5. Developing technologies for bioacoustic vocal profiling as a viable component of integrative medical diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Edwards, Sharry K.

    2005-04-01

    Over the past 20+ years the pioneering field of Human Bioacoustics, which includes voice spectral analysis, has begun to model the frequencies and architecture of human vocalizations to identify the innate mathematical templates found within the various system of the human body. Using the idea that the voice is a holographic representation of health and wellness, these non-invasive techniques are being advanced to the extent that a computerized Vocal Profile, using a system of Frequency Equivalents, can be used to accurately quantify, organize, interpret, define, and extrapolate biometric information from the human voice. This information, in turn, provides the opportunity to predict, direct, and maintain intrinsic form and function. This novel approach has provided an accumulation of significant data but until recently has been without an efficient biological framework of reference. The emerging Mathematical Model being assembled through Human Bioacoustic research likely has the potential to allow Vocal Profiling to be used to predict and monitor health issues from the very first cries of a newborn through the frequency foundations of disease and aging.

  6. Avian Influenza spread and transmission dynamics

    USGS Publications Warehouse

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  7. Recent developments of axial flow compressors under transonic flow conditions

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2017-05-01

    The objective of this paper is to give a holistic view of the most advanced technology and procedures that are practiced in the field of turbomachinery design. Compressor flow solver is the turbulence model used in the CFD to solve viscous problems. The popular techniques like Jameson’s rotated difference scheme was used to solve potential flow equation in transonic condition for two dimensional aero foils and later three dimensional wings. The gradient base method is also a popular method especially for compressor blade shape optimization. Various other types of optimization techniques available are Evolutionary algorithms (EAs) and Response surface methodology (RSM). It is observed that in order to improve compressor flow solver and to get agreeable results careful attention need to be paid towards viscous relations, grid resolution, turbulent modeling and artificial viscosity, in CFD. The advanced techniques like Jameson’s rotated difference had most substantial impact on wing design and aero foil. For compressor blade shape optimization, Evolutionary algorithm is quite simple than gradient based technique because it can solve the parameters simultaneously by searching from multiple points in the given design space. Response surface methodology (RSM) is a method basically used to design empirical models of the response that were observed and to study systematically the experimental data. This methodology analyses the correct relationship between expected responses (output) and design variables (input). RSM solves the function systematically in a series of mathematical and statistical processes. For turbomachinery blade optimization recently RSM has been implemented successfully. The well-designed high performance axial flow compressors finds its application in any air-breathing jet engines.

  8. Technological Education for the Rural Community (TERC) Project: Technical Mathematics for the Advanced Manufacturing Technician

    ERIC Educational Resources Information Center

    McCormack, Sherry L.; Zieman, Stuart

    2017-01-01

    Hopkinsville Community College's Technological Education for the Rural Community (TERC) project is funded through the National Science Foundation Advanced Technological Education (NSF ATE) division. It is advancing innovative educational pathways for technological education promoted at the community college level serving rural communities to fill…

  9. Engaging Future Teachers in Problem-Based Learning with the Park City Mathematics Institute Problems

    ERIC Educational Resources Information Center

    Pilgrim, Mary E.

    2014-01-01

    Problem-based learning (PBL) is a pedagogical technique recommended for K-12 mathematics classrooms. However, the mathematics courses in future teachers' degree programs are often lecture based. Students typically learn about problem-based learning in theory, but rarely get to experience it first-hand in their mathematics courses. The premise…

  10. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    ERIC Educational Resources Information Center

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  11. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  12. Mathematical Visualization

    ERIC Educational Resources Information Center

    Rogness, Jonathan

    2011-01-01

    Advances in computer graphics have provided mathematicians with the ability to create stunning visualizations, both to gain insight and to help demonstrate the beauty of mathematics to others. As educators these tools can be particularly important as we search for ways to work with students raised with constant visual stimulation, from video games…

  13. Accelerating Mathematics Achievement Using Heterogeneous Grouping

    ERIC Educational Resources Information Center

    Burris, Carol Corbett; Heubert, Jay P.; Levin, Henry M.

    2006-01-01

    This longitudinal study examined the effects of providing an accelerated mathematics curriculum in heterogeneously grouped middle school classes in a diverse suburban school district. A quasi-experimental cohort design was used to evaluate subsequent completion of advanced high school math courses as well as academic achievement. Results showed…

  14. Workplace Math. EPIC Workplace Learning Project, 1996.

    ERIC Educational Resources Information Center

    King, Catherine; Cyr, Anne Reis; Gross, Mary; Armstrong, Ray

    Designed as a reference for teaching mathematics in the workplace, this manual presents teaching strategies and activities for beginning, intermediate, and advanced learners in four mathematics-related topics. Following an overview of the manual's purpose, definitions are provided of the three skill levels targeted by the activities. Strategies…

  15. Collegiate Mathematics Teaching: An Unexamined Practice

    ERIC Educational Resources Information Center

    Speer, Natasha M.; Smith, John P., III; Horvath, Aladar

    2010-01-01

    Though written accounts of collegiate mathematics teaching exist (e.g., mathematicians' reflections and analyses of learning and teaching in innovative courses), research on collegiate teachers' actual classroom teaching practice is virtually non-existent. We advance this claim based on a thorough review of peer-reviewed journals where scholarship…

  16. Theorizing the Nexus of STEAM Practice

    ERIC Educational Resources Information Center

    Peppler, Kylie; Wohlwend, Karen

    2018-01-01

    Recent advances in arts education policy, as outlined in the latest National Core Arts Standards, advocate for bringing digital media into the arts education classroom. The promise of such Science, Technology, Engineering, Arts, and Mathematics (STEAM)-based approaches is that, by coupling Science, Technology, Engineering, and Mathematics (STEM)…

  17. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, Christiane

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less

  18. Handwritten mathematical symbols dataset.

    PubMed

    Chajri, Yassine; Bouikhalene, Belaid

    2016-06-01

    Due to the technological advances in recent years, paper scientific documents are used less and less. Thus, the trend in the scientific community to use digital documents has increased considerably. Among these documents, there are scientific documents and more specifically mathematics documents. In this context, we present our own dataset of handwritten mathematical symbols composed of 10,379 images. This dataset gathers Arabic characters, Latin characters, Arabic numerals, Latin numerals, arithmetic operators, set-symbols, comparison symbols, delimiters, etc.

  19. 3-D Numerical Simulations of Biofilm Dynamics with Quorum Sensing in a Flow Cell

    DTIC Science & Technology

    2014-01-01

    resistant mutants [?]. Inspired by experimental findings, researchers have come up with some mathematical models to study biofilm formation and function...develop a full 3D mathematical model to study how quorum sensing regulates biofilm formation and development as well as the pros and cons of quorum...have given an overview of current advances in mathematical modeling of biofilms. Concerning coupling biofilm growth with quorum sensing features

  20. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?

    PubMed Central

    Pan, Xiaochuan; Sidky, Emil Y; Vannier, Michael

    2010-01-01

    Despite major advances in x-ray sources, detector arrays, gantry mechanical design and especially computer performance, one component of computed tomography (CT) scanners has remained virtually constant for the past 25 years—the reconstruction algorithm. Fundamental advances have been made in the solution of inverse problems, especially tomographic reconstruction, but these works have not been translated into clinical and related practice. The reasons are not obvious and seldom discussed. This review seeks to examine the reasons for this discrepancy and provides recommendations on how it can be resolved. We take the example of field of compressive sensing (CS), summarizing this new area of research from the eyes of practical medical physicists and explaining the disconnection between theoretical and application-oriented research. Using a few issues specific to CT, which engineers have addressed in very specific ways, we try to distill the mathematical problem underlying each of these issues with the hope of demonstrating that there are interesting mathematical problems of general importance that can result from in depth analysis of specific issues. We then sketch some unconventional CT-imaging designs that have the potential to impact on CT applications, if the link between applied mathematicians and engineers/physicists were stronger. Finally, we close with some observations on how the link could be strengthened. There is, we believe, an important opportunity to rapidly improve the performance of CT and related tomographic imaging techniques by addressing these issues. PMID:20376330

  1. TOPICAL REVIEW: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?

    NASA Astrophysics Data System (ADS)

    Pan, Xiaochuan; Sidky, Emil Y.; Vannier, Michael

    2009-12-01

    Despite major advances in x-ray sources, detector arrays, gantry mechanical design and especially computer performance, one component of computed tomography (CT) scanners has remained virtually constant for the past 25 years—the reconstruction algorithm. Fundamental advances have been made in the solution of inverse problems, especially tomographic reconstruction, but these works have not been translated into clinical and related practice. The reasons are not obvious and seldom discussed. This review seeks to examine the reasons for this discrepancy and provides recommendations on how it can be resolved. We take the example of field of compressive sensing (CS), summarizing this new area of research from the eyes of practical medical physicists and explaining the disconnection between theoretical and application-oriented research. Using a few issues specific to CT, which engineers have addressed in very specific ways, we try to distill the mathematical problem underlying each of these issues with the hope of demonstrating that there are interesting mathematical problems of general importance that can result from in depth analysis of specific issues. We then sketch some unconventional CT-imaging designs that have the potential to impact on CT applications, if the link between applied mathematicians and engineers/physicists were stronger. Finally, we close with some observations on how the link could be strengthened. There is, we believe, an important opportunity to rapidly improve the performance of CT and related tomographic imaging techniques by addressing these issues.

  2. Undergraduate Mathematics Students' Pronumeral Misconceptions

    ERIC Educational Resources Information Center

    Bardini, Caroline; Vincent, Jill; Pierce, Robyn; King, Deborah

    2014-01-01

    Despite an emphasis on manipulative algebraic techniques in secondary school algebra, many tertiary mathematics students have mastered these skills without conceptual understanding. A significant number of students with high tertiary entrance ranks enrolled in first semester university mathematics were found to have misconceptions relating to…

  3. Mathematical Education for Geographers

    ERIC Educational Resources Information Center

    Wilson, Alan

    1978-01-01

    Outlines mathematical topics of use to college geography students identifies teaching methods for mathematical techniques in geography at the University of Leeds; and discusses problem of providing students with a framework for synthesizing all content of geography education. For journal availability, see SO 506 593. (Author/AV)

  4. General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies

    NASA Technical Reports Server (NTRS)

    Kopeikin, Sergei

    2003-01-01

    The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.

  5. Proceedings of the Advanced Seminar on one-dimensional, open-channel Flow and transport modeling

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    1989-01-01

    In view of the increased use of mathematical/numerical simulation models, of the diversity of both model investigations and informational project objectives, and of the technical demands of complex model applications by U.S. Geological Survey personnel, an advanced seminar on one-dimensional open-channel flow and transport modeling was organized and held on June 15-18, 1987, at the National Space Technology Laboratory, Bay St. Louis, Mississippi. Principal emphasis in the Seminar was on one-dimensional flow and transport model-implementation techniques, operational practices, and application considerations. The purposes of the Seminar were to provide a forum for the exchange of information, knowledge, and experience among model users, as well as to identify immediate and future needs with respect to model development and enhancement, user support, training requirements, and technology transfer. The Seminar program consisted of a mix of topical and project presentations by Geological Survey personnel. This report is a compilation of short papers that summarize the presentations made at the Seminar.

  6. Evidence-based pain management: is the concept of integrative medicine applicable?

    PubMed Central

    2012-01-01

    This article is dedicated to the concept of predictive, preventive, and personalized (integrative) medicine beneficial and applicable to advance pain management, overviews recent insights, and discusses novel minimally invasive tools, performed under ultrasound guidance, enhanced by model-guided approach in the field of musculoskeletal pain and neuromuscular diseases. The complexity of pain emergence and regression demands intellectual-, image-guided techniques personally specified to the patient. For personalized approach, the combination of the modalities of ultrasound, EMG, MRI, PET, and SPECT gives new opportunities to experimental and clinical studies. Neuromuscular imaging should be crucial for emergence of studies concerning advanced neuroimaging technologies to predict movement disorders, postural imbalance with integrated application of imaging, and functional modalities for rehabilitation and pain management. Scientific results should initiate evidence-based preventive movement programs in sport medicine rehabilitation. Traditional medicine and mathematical analytical approaches and education challenges are discussed in this review. The physiological management of exactly assessed pathological condition, particularly in movement disorders, requires participative medical approach to gain harmonized and sustainable effect. PMID:23088743

  7. The analysis of mathematics literacy on PMRI learning with media schoology of junior high school students

    NASA Astrophysics Data System (ADS)

    Wardono; Mariani, S.

    2018-03-01

    Indonesia as a developing country in the future will have high competitiveness if its students have high mathematics literacy ability. The current reality from year to year rankings of PISA mathematics literacy Indonesian students are still not good. This research is motivated by the importance and low ability of the mathematics literacy. The purpose of this study is to: (1) analyze the effectiveness of PMRI learning with media Schoology, (2) describe the ability of students' mathematics literacy on PMRI learning with media Schoology which is reviewed based on seven components of mathematics literacy, namely communication, mathematizing, representation, reasoning, devising strategies, using symbols, and using mathematics tool. The method used in this research is the method of sequential design method mix. Techniques of data collection using observation, interviews, tests, and documentation. Data analysis techniques use proportion test, appellate test, and use descriptive analysis. Based on the data analysis, it can be concluded; (1) PMRI learning with media Schoology effectively improve the ability of mathematics literacy because of the achievement of classical completeness, students' mathematics literacy ability in PMRI learning with media Schoology is higher than expository learning, and there is increasing ability of mathematics literacy in PMRI learning with media Schoology of 30%. (2) Highly capable students attain excellent mathematics literacy skills, can work using broad thinking with appropriate resolution strategies. Students who are capable of achieving good mathematics literacy skills can summarize information, present problem-solving processes, and interpret solutions. low-ability students have reached the level of ability of mathematics literacy good enough that can solve the problem in a simple way.

  8. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral–spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  9. Perceptual learning modules in mathematics: enhancing students' pattern recognition, structure extraction, and fluency.

    PubMed

    Kellman, Philip J; Massey, Christine M; Son, Ji Y

    2010-04-01

    Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.

  10. Micro-magnetic Structures for Biological Applications

    NASA Astrophysics Data System (ADS)

    Howdyshell, Marci L.

    Developments in single-molecule and single-cell experiments over the past century have provided researchers with many tools to probe the responses of cells to stresses such as physical force or to the injection of foreign genes. Often these techniques target the cell membrane, although many are now advancing to probe within the cell. As these techniques are improved upon and the investigations advance toward clinical applications, it has become more critical to achieve high-throughput outcomes which in turn lead to statistically significant results. The technologies developed in this thesis are targeted at transfecting large populations of cells with controlled doses of specific exogenic material without adversely affecting cell viability. Underlying this effort is a platform of lithographically patterned ferromagnetic thin films capable of remotely manipulating and localizing magnetic microbeads attached to biological entities. A novel feature of this approach, as demonstrated here with both DNA and cells, is the opportunity for multiplexed operations on targeted biological specimens. This thesis includes two main thrusts: (1) the advancement of the trapping platforms through experimental verification of mathematical models providing the energy landscapes associated with the traps and (2) implementation of the platform as a basis for rapid and effective high-throughput microchannel and nanochannel cell electroporation devices. The electroporation devices have, in our studies, not only been demonstrated to sustain cell viability with extremely low cell mortality rates, but are also found to be effective for various types of cells. The advances over current electroporation technologies that are achieved in these efforts demonstrate the potential for detection of mRNA expression in heterogeneous cell populations and probing intracellular responses to the introduction of foreign genes into cells.

  11. Data-driven Applications for the Sun-Earth System

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.

    2016-12-01

    Advances in observational and data mining techniques allow extracting information from the large volume of Sun-Earth observational data that can be assimilated into first principles physical models. However, equations governing Sun-Earth phenomena are typically nonlinear, complex, and high-dimensional. The high computational demand of solving the full governing equations over a large range of scales precludes the use of a variety of useful assimilative tools that rely on applied mathematical and statistical techniques for quantifying uncertainty and predictability. Effective use of such tools requires the development of computationally efficient methods to facilitate fusion of data with models. This presentation will provide an overview of various existing as well as newly developed data-driven techniques adopted from atmospheric and oceanic sciences that proved to be useful for space physics applications, such as computationally efficient implementation of Kalman Filter in radiation belts modeling, solar wind gap-filling by Singular Spectrum Analysis, and low-rank procedure for assimilation of low-altitude ionospheric magnetic perturbations into the Lyon-Fedder-Mobarry (LFM) global magnetospheric model. Reduced-order non-Markovian inverse modeling and novel data-adaptive decompositions of Sun-Earth datasets will be also demonstrated.

  12. Global solutions to the electrodynamic two-body problem on a straight line

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Deckert, D.-A.; Dürr, D.; Hinrichs, G.

    2017-06-01

    The classical electrodynamic two-body problem has been a long standing open problem in mathematics. For motion constrained to the straight line, the interaction is similar to that of the two-body problem of classical gravitation. The additional complication is the presence of unbounded state-dependent delays in the Coulomb forces due to the finiteness of the speed of light. This circumstance renders the notion of local solutions meaningless, and therefore, straightforward ODE techniques cannot be applied. Here, we study the time-symmetric case, i.e., the Fokker-Schwarzschild-Tetrode (FST) equations, comprising both advanced and retarded delays. We extend the technique developed in Deckert and Hinrichs (J Differ Equ 260:6900-6929, 2016), where existence of FST solutions was proven on the half line, to ensure global existence—a result that had been obtained by Bauer (Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik, Herbert Utz Verlag, München, 1997). Due to the novel technique, the presented proof is shorter and more transparent but also relies on the idea to employ asymptotic data to characterize solutions.

  13. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

    PubMed

    Yoo, Dongjin

    2012-07-01

    Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. The role of optimization in the next generation of computer-based design tools

    NASA Technical Reports Server (NTRS)

    Rogan, J. Edward

    1989-01-01

    There is a close relationship between design optimization and the emerging new generation of computer-based tools for engineering design. With some notable exceptions, the development of these new tools has not taken full advantage of recent advances in numerical design optimization theory and practice. Recent work in the field of design process architecture has included an assessment of the impact of next-generation computer-based design tools on the design process. These results are summarized, and insights into the role of optimization in a design process based on these next-generation tools are presented. An example problem has been worked out to illustrate the application of this technique. The example problem - layout of an aircraft main landing gear - is one that is simple enough to be solved by many other techniques. Although the mathematical relationships describing the objective function and constraints for the landing gear layout problem can be written explicitly and are quite straightforward, an approximation technique has been used in the solution of this problem that can just as easily be applied to integrate supportability or producibility assessments using theory of measurement techniques into the design decision-making process.

  15. Listening to and Learning from Student Thinking

    ERIC Educational Resources Information Center

    Kazemi, Elham; Gibbons, Lynsey K.; Lomax, Kendra; Franke, Megan L.

    2016-01-01

    Eliciting, responding to, and advancing students' mathematical thinking all lie at the heart of great teaching. In this article, the authors describe a formative assessment approach that teachers can use to learn more about their students' mathematical thinking and inform their instructional decisions. This assessment approach draws on a widely…

  16. Cognitive Technologies for Mathematics Education. Technical Report No. 37.

    ERIC Educational Resources Information Center

    Pea, Roy D.

    This paper provides an historical perspective on the possible roles of cognitive technologies in thinking as "reorganizers" of the mind. It suggests that by understanding the transformational roles of advanced technologies for mathematical thinking, positive contributions can be made to research and practice on the use of computers in…

  17. Math Interventions for Students with Autism Spectrum Disorder: A Best-Evidence Synthesis

    ERIC Educational Resources Information Center

    King, Seth A.; Lemons, Christopher J.; Davidson, Kimberly A.

    2016-01-01

    Educators need evidence-based practices to assist students with disabilities in meeting increasingly rigorous standards in mathematics. Students with autism spectrum disorder (ASD) are increasingly expected to demonstrate learning of basic and advanced mathematical concepts. This review identifies math intervention studies involving children and…

  18. Proceedings, Conference on the Computing Environment for Mathematical Software

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Recent advances in software and hardware technology which make it economical to create computing environments appropriate for specialized applications are addressed. Topics included software tools, FORTRAN standards activity, and features of languages, operating systems, and hardware that are important for the development, testing, and maintenance of mathematical software.

  19. Heuristic Biases in Mathematical Reasoning

    ERIC Educational Resources Information Center

    Inglis, Matthew; Simpson, Adrian

    2005-01-01

    In this paper we briefly describe the dual process account of reasoning, and explain the role of heuristic biases in human thought. Concentrating on the so-called matching bias effect, we describe a piece of research that indicates a correlation between success at advanced level mathematics and an ability to override innate and misleading…

  20. A Contract for Excellence in Scientific Education: May I Have Your Signature Please?

    ERIC Educational Resources Information Center

    Tate, William F.; Malancharuvil-Berkes, Elizabeth

    2006-01-01

    Recent advances in biology and digital technology represent unique opportunities for teacher educators to rethink the programmatic experiences of prospective secondary science and mathematics teachers. This article discusses the importance of teacher education programs that connect mathematics and science where appropriate, recognize the…

  1. Consumer Economics and Consumer Mathematics Textbooks.

    ERIC Educational Resources Information Center

    Eastern Michigan Univ., Ypsilanti. National Inst. for Consumer Education.

    This publication lists a selection of consumer economics and consumer mathematics textbooks available for review from the National Institute for Consumer Education. Twenty-six textbooks for the secondary level are cited. Nine advanced level texts are also listed. These texts are generally considered college level texts but could be adapted for…

  2. Precalculus Teachers' Perspectives on Using Graphing Calculators: An Example from One Curriculum

    ERIC Educational Resources Information Center

    Karadeniz, Ilyas; Thompson, Denisse R.

    2018-01-01

    Graphing calculators are hand-held technological tools currently used in mathematics classrooms. Teachers' perspectives on using graphing calculators are important in terms of exploring what teachers think about using such technology in advanced mathematics courses, particularly precalculus courses. A descriptive intrinsic case study was conducted…

  3. Implementing Mathematics Teaching That Promotes Students' Understanding through Theory-Driven Lesson Study

    ERIC Educational Resources Information Center

    Huang, Rongjin; Gong, Zikun; Han, Xue

    2016-01-01

    Lesson study (LS) has been practiced in China as an effective way to advance teachers' professional development for decades. This study explores how LS improves teaching that promotes students' understanding. A LS group including didacticians (practice-based teaching research specialist and University-based mathematics educators) and mathematics…

  4. Chaos: A Mathematical Introduction

    NASA Astrophysics Data System (ADS)

    Banks, John; Dragan, Valentina; Jones, Arthur

    2003-06-01

    This text presents concepts on chaos in discrete time dynamics that are accessible to anyone who has taken a first course in undergraduate calculus. Retaining its commitment to mathematical integrity, the book, originating in a popular one-semester middle level undergraduate course, constitutes the first elementary presentation of a traditionally advanced subject.

  5. Not Just for Computation: Basic Calculators Can Advance the Process Standards

    ERIC Educational Resources Information Center

    Moss, Laura J.; Grover, Barbara W.

    2007-01-01

    Simple nongraphing calculators can be powerful tools to enhance students' conceptual understanding of mathematics concepts. Students have opportunities to develop (1) a broad repertoire of problem-solving strategies by observing multiple solution strategies; (2) respect for other students' abilities and ways of thinking about mathematics; (3) the…

  6. Advancing Inclusive Mathematics Education: Strategies and Resources for Effective IEP Practices

    ERIC Educational Resources Information Center

    Tan, Paulo

    2017-01-01

    Personal experiences promoting inclusive mathematics education for my own child have mostly been met with staunch resistance on the part of educators, and a resulting breakdown in collaborative efforts during individualized education program (IEP) meetings. However, I found that utilizing certain strategies and introducing innovative mathematics…

  7. Effectiveness of Pearson's SuccessMaker Mathematics for Students with Disabilities

    ERIC Educational Resources Information Center

    McKissick, Steven K.

    2017-01-01

    SuccessMaker mathematics is an instructional learning system rooted in behaviorist instructional theory. Previous research efforts have left much to be desired and have produced inconsistent results. Recent research for this program appears to be tapering off, despite advances in technology signaling integration of concepts from other theoretical…

  8. Designing Personalized Learning Products for Middle School Mathematics: The Case for Networked Learning Games

    ERIC Educational Resources Information Center

    Evans, Michael A.; Pruett, Jordan; Chang, Mido; Nino, Miguel

    2014-01-01

    Middle school mathematics education is subject to ongoing reform based on advances in digital instructional technologies, especially learning games, leading to recent calls for investment in "personalized learning." Through an extensive literature review, this investigation identified three priority areas that should be taken into…

  9. Rational Number and Proportional Reasoning in Early Secondary School: Towards Principled Improvement in Mathematics

    ERIC Educational Resources Information Center

    Howe, Christine; Luthman, Stefanie; Ruthven, Kenneth; Mercer, Neil; Hofmann, Riikka; Ilie, Sonia; Guardia, Paula

    2015-01-01

    Reflecting concerns about student attainment and participation in mathematics and science, the Effecting Principled Improvement in STEM Education ("epiSTEMe") project attempted to support pedagogical advancement in these two disciplines. Using principles identified as effective in the research literature (and combining these in a novel…

  10. Gender Gap Linked to Differential Socialization for High-Achieving Senior Mathematics Students.

    ERIC Educational Resources Information Center

    Campbell, James R.; Beaudry, Jeffrey S.

    1998-01-01

    Examined whether 11th-grade girls and boys enrolled in advanced mathematics courses nationwide were socialized in similar ways, using Campbell's differential socialization paradigm. Results uncovered a gender gap favoring boys. Self-imposed pressure and persistence had important direct effects on achievement. Self-concept had important direct…

  11. Hungry for Early Spatial and Algebraic Reasoning

    ERIC Educational Resources Information Center

    Cross, Dionne I.; Adefope, Olufunke; Lee, Mi Yeon; Perez, Arnulfo

    2012-01-01

    Tasks that develop spatial and algebraic reasoning are crucial for learning and applying advanced mathematical ideas. In this article, the authors describe how two early childhood teachers used stories as the basis for a unit that supports spatial reasoning in kindergartners and first graders. Having mathematical experiences that go beyond…

  12. The Technological Enframing of Mathematics Education

    ERIC Educational Resources Information Center

    Thornton, Steve

    2014-01-01

    In this paper I seek to critique pervasive notions of what counts in mathematics education using Heidegger's notion of the technological enframing. I suggest that early childhood and schooling have become technologies in themselves, casting students and teachers as part of the standing reserve within the inexorable drive for economic advancement.…

  13. Identifiability Of Systems With Modeling Errors

    NASA Technical Reports Server (NTRS)

    Hadaegh, Yadolah " fred" ; Bekey, George A.

    1988-01-01

    Advances in theory of modeling errors reported. Recent paper on errors in mathematical models of deterministic linear or weakly nonlinear systems. Extends theoretical work described in NPO-16661 and NPO-16785. Presents concrete way of accounting for difference in structure between mathematical model and physical process or system that it represents.

  14. A Graphical Approach to Teaching Amplifier Design at the Undergraduate Level

    ERIC Educational Resources Information Center

    Assaad, R. S.; Silva-Martinez, J.

    2009-01-01

    Current methods of teaching basic amplifier design at the undergraduate level need further development to match today's technological advances. The general class approach to amplifier design is analytical and heavily based on mathematical manipulations. However, the students mathematical abilities are generally modest, creating a void in which…

  15. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    ERIC Educational Resources Information Center

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  16. Access to Mathematics: "A Possessive Investment in Whiteness"

    ERIC Educational Resources Information Center

    Battey, Dan

    2013-01-01

    While mathematics education gives access to elite universities, higher-paying jobs, and the accumulation of wealth, it continues to be framed as a neutral curricular domain. However, data continually show differential access provided to students of color and their White peers through tracking, the availability of Advance Placement courses, and…

  17. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  18. What Would the Mathematics Curriculum Look Like if Values Were the Focus?

    ERIC Educational Resources Information Center

    Seah, Wee Tiong; Andersson, Annica; Bishop, Alan; Clarkson, Philip

    2016-01-01

    The crucial reason for the common dislike, fear, and even hatred of mathematics by students and others is probably not the nature of mathematics itself, but the way the subject is portrayed and taught. We propose that instead of a mathematics curriculum that focuses on concepts and techniques (which is often seen), it might be more productive if…

  19. To Know and to Teach: Mathematical Pedagogy from a Historical Context.

    ERIC Educational Resources Information Center

    Swetz, Frank

    1995-01-01

    Investigated historical works for pedagogical techniques. Found the use of instructional discourse, logical sequencing of mathematical problems and exercises, and employment of visual aids. Concludes that much of present day mathematical pedagogy evolved from distant historical antecedents. (30 references) (Author/MKR)

  20. Experimenting with Mathematical Biology

    ERIC Educational Resources Information Center

    Sanft, Rebecca; Walter, Anne

    2016-01-01

    St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…

  1. Mathematically Gifted Third Graders--A Challenge in the Classroom.

    ERIC Educational Resources Information Center

    Wolfle, Jane A.

    1988-01-01

    The third-grade classroom teacher can identify mathematically gifted students and can provide them with opportunities for extending their understanding and enjoyment of mathematics through use of such techniques as content sophistication, enrichment, peer tutoring, curriculum compacting, puzzles, and math centers. (Author/JDD)

  2. Theory and applications survey of decentralized control methods

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1975-01-01

    A nonmathematical overview is presented of trends in the general area of decentralized control strategies which are suitable for hierarchical systems. Advances in decentralized system theory are closely related to advances in the so-called stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools pertaining to the classical stochastic control problem are outlined. Particular attention is devoted to pitfalls in the mathematical problem formulation for decentralized control. Major conclusions are that any purely deterministic approach to multilevel hierarchical dynamic systems is unlikely to lead to realistic theories or designs, that the flow of measurements and decisions in a decentralized system should not be instantaneous and error-free, and that delays in information exchange in a decentralized system lead to reasonable approaches to decentralized control. A mathematically precise notion of aggregating information is not yet available.

  3. The Role of Advanced High School Coursework in Increasing STEM Career Interest

    ERIC Educational Resources Information Center

    Sadler, Philip M.; Sonnert, Gerhard; Hazari, Zahra; Tai, Robert

    2014-01-01

    Several avenues are open to students who wish to study advanced science or mathematics in high school, which include Advanced Placement courses and teacher-designed courses unaffiliated with organized programs. We employ a retrospective cohort study of 4,691 nationally representative college students at 34 randomly selected, colleges and…

  4. Mathematical études: embedding opportunities for developing procedural fluency within rich mathematical contexts

    NASA Astrophysics Data System (ADS)

    Foster, Colin

    2013-07-01

    In a high-stakes assessment culture, it is clearly important that learners of mathematics develop the necessary fluency and confidence to perform well on the specific, narrowly defined techniques that will be tested. However, an overemphasis on the training of piecemeal mathematical skills at the expense of more independent engagement with richer, multifaceted tasks risks devaluing the subject and failing to give learners an authentic and enjoyable experience of being a mathematician. Thus, there is a pressing need for mathematical tasks which embed the practice of essential techniques within a richer, exploratory and investigative context. Such tasks can be justified to school management or to more traditional mathematics teachers as vital practice of important skills; at the same time, they give scope to progressive teachers who wish to work in more exploratory ways. This paper draws on the notion of a musical étude to develop a powerful and versatile approach in which these apparently contradictory aspects of teaching mathematics can be harmoniously combined. I illustrate the tactic in three central areas of the high-school mathematics curriculum: plotting Cartesian coordinates, solving linear equations and performing enlargements. In each case, extensive practice of important procedures takes place alongside more thoughtful and mathematically creative activity.

  5. Techniques Use by Science, Technology and Mathematics (STM) Teachers for Controlling Undesirable Classroom Behaviours in Anambra State Secondary Schools

    ERIC Educational Resources Information Center

    Chinelo, Okigbo Ebele; Nwanneka, Okoli Josephine

    2016-01-01

    This study investigated the techniques used by secondary school Science Technology and Mathematics (STM) teachers in controlling undesirable behaviours in their classrooms. It adopted descriptive survey design in which 178 Anambra State teachers teaching STM subjects in senior secondary were involved in the research. Two sections of questionnaire…

  6. Examining the Changes in Novice and Experienced Mathematics Teachers' Questioning Techniques through the Lesson Study Process

    ERIC Educational Resources Information Center

    Ong, Ewe Gnoh; Lim, Chap Sam; Ghazali, Munirah

    2010-01-01

    The purpose of this study was to examine the changes in novice and experienced mathematics teachers' questioning techniques. This study was conducted in Sarawak where ten (experienced and novice) teachers from two schools underwent the lesson study process for fifteen months. Four data collection methods namely, observation, interview, lesson…

  7. Handwritten mathematical symbols dataset

    PubMed Central

    Chajri, Yassine; Bouikhalene, Belaid

    2016-01-01

    Due to the technological advances in recent years, paper scientific documents are used less and less. Thus, the trend in the scientific community to use digital documents has increased considerably. Among these documents, there are scientific documents and more specifically mathematics documents. In this context, we present our own dataset of handwritten mathematical symbols composed of 10,379 images. This dataset gathers Arabic characters, Latin characters, Arabic numerals, Latin numerals, arithmetic operators, set-symbols, comparison symbols, delimiters, etc. PMID:27006975

  8. The Role of the Mathematics Supervisor in K-12 Education

    ERIC Educational Resources Information Center

    Greenes, Carole

    2013-01-01

    The implementation of "the Common Core Standards for Mathematics" and the assessments of those concepts, skills, reasoning methods, and mathematical practices that are in development necessitate the updating of teachers' knowledge of content, pedagogical techniques to enhance engagement and persistence, and strategies for responding to…

  9. Learn from the Masters.

    ERIC Educational Resources Information Center

    Swetz, Frank, Ed.; And Others

    This book contains papers that identify and clarify techniques and pedagogical approaches for using the history of mathematics in teaching. The chapters are separated into two sections, one containing 8 chapters about secondary school mathematics and the other containing 15 chapters on higher mathematics. The first section discusses topics such as…

  10. Bandwidth efficient coding: Theoretical limits and real achievements. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Courturier, Servanne; Levy, Yannick; Mills, Diane G.; Perez, Lance C.; Wang, Fu-Quan

    1993-01-01

    In his seminal 1948 paper 'The Mathematical Theory of Communication,' Claude E. Shannon derived the 'channel coding theorem' which has an explicit upper bound, called the channel capacity, on the rate at which 'information' could be transmitted reliably on a given communication channel. Shannon's result was an existence theorem and did not give specific codes to achieve the bound. Some skeptics have claimed that the dramatic performance improvements predicted by Shannon are not achievable in practice. The advances made in the area of coded modulation in the past decade have made communications engineers optimistic about the possibility of achieving or at least coming close to channel capacity. Here we consider the possibility in the light of current research results.

  11. Hot-bench simulation of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.

  12. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  13. What Have Metabolomics Approaches Taught Us About Type 2 Diabetes?

    PubMed

    Gonzalez-Franquesa, Alba; Burkart, Alison M; Isganaitis, Elvira; Patti, Mary-Elizabeth

    2016-08-01

    Type 2 diabetes (T2D) is increasing worldwide, making identification of biomarkers for detection, staging, and effective prevention strategies an especially critical scientific and medical goal. Fortunately, advances in metabolomics techniques, together with improvements in bioinformatics and mathematical modeling approaches, have provided the scientific community with new tools to describe the T2D metabolome. The metabolomics signatures associated with T2D and obesity include increased levels of lactate, glycolytic intermediates, branched-chain and aromatic amino acids, and long-chain fatty acids. Conversely, tricarboxylic acid cycle intermediates, betaine, and other metabolites decrease. Future studies will be required to fully integrate these and other findings into our understanding of diabetes pathophysiology and to identify biomarkers of disease risk, stage, and responsiveness to specific treatments.

  14. The Role of Graphing Calculators in Mathematics Reform.

    ERIC Educational Resources Information Center

    Waits, Bert K.; Demana, Franklin

    This essay describes the role of graphing calculators in mathematics reform. Among the topics discussed are the history of graphing calculators in mathematics education, recent technological innovations, and professional development opportunities. The case is made for a balanced approach between calculator use and paper-and-pencil techniques.…

  15. Application of Mathematical Signal Processing Techniques to Mission Systems. (l’Application des techniques mathematiques du traitement du signal aux systemes de conduite des missions)

    DTIC Science & Technology

    1999-11-01

    represents the linear time invariant (LTI) response of the combined analysis /synthesis system while the second repre- sents the aliasing introduced into...effectively to implement voice scrambling systems based on time - frequency permutation . The most general form of such a system is shown in Fig. 22 where...92201 NEUILLY-SUR-SEINE CEDEX, FRANCE RTO LECTURE SERIES 216 Application of Mathematical Signal Processing Techniques to Mission Systems (1

  16. Development of a nonlinear switching function and its application to static lift characteristics of straight wings

    NASA Technical Reports Server (NTRS)

    Hewes, D. E.

    1978-01-01

    A mathematical modeling technique was developed for the lift characteristics of straight wings throughout a very wide angle of attack range. The technique employs a mathematical switching function that facilitates the representation of the nonlinear aerodynamic characteristics in the partially and fully stalled regions and permits matching empirical data within + or - 4 percent of maximum values. Although specifically developed for use in modeling the lift characteristics, the technique appears to have other applications in both aerodynamic and nonaerodynamic fields.

  17. Mathematics in Mind, Brain, and Education: A Neo-Piagetian Approach

    ERIC Educational Resources Information Center

    Norton, Anderson; Deater-Deckard, Kirby

    2014-01-01

    Because of their focus on psychological structures and operations, neo-Piagetian approaches to learning lend themselves to neurological hypotheses. Recent advances in neural imaging and educational technology now make it possible to test some of these claims. Here, we take a neo-Piagetian approach to mathematical learning in order to frame two…

  18. Clickers and Classroom Voting in a Transition to Advanced Mathematics Course

    ERIC Educational Resources Information Center

    Lockard, Shannon R.; Metcalf, Rebecca C.

    2015-01-01

    Clickers and classroom voting are used across a number of disciplines in a variety of institutions. There are several papers that describe the use of clickers in mathematics classrooms such as precalculus, calculus, statistics, and even differential equations. This paper describes a method of incorporating clickers and classroom voting in a…

  19. Object-Spatial Visualization and Verbal Cognitive Styles, and Their Relation to Cognitive Abilities and Mathematical Performance

    ERIC Educational Resources Information Center

    Haciomeroglu, Erhan Selcuk

    2016-01-01

    The present study investigated the object-spatial visualization and verbal cognitive styles among high school students and related differences in spatial ability, verbal-logical reasoning ability, and mathematical performance of those students. Data were collected from 348 students enrolled in Advanced Placement calculus courses at six high…

  20. Pythagoras, Measurement, and the Geoboard

    ERIC Educational Resources Information Center

    Watson, Elaine

    2007-01-01

    This article tells the story of an elementary school principal, a former high school mathematics teacher, who uses the geoboard in her work with a group of fifth-grade students. As the investigation of polygons progresses from symmetry to area to perimeter, hands-on applications of advanced mathematics topics such as the Pythagorean theorem and…

  1. Why Go Modular? A Review of Modular A-Level Mathematics.

    ERIC Educational Resources Information Center

    Taverner, Sally; Wright, Martin

    1997-01-01

    Attitudes, academic intentions, and attainment of students gaining a grade in A-level (Advanced level) mathematics were compared for those who followed a modular course and those assessed at the end of two years of study. Overall, the final grades of those assessed modularly were half a grade higher. (JOW)

  2. Growing-Making Mathematics: A Dynamic Perspective on People, Materials, and Movement in Classrooms

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2016-01-01

    Recent theoretical advances on learning (mathematics) emphasize the fact that what results from engagement with curriculum materials is not entirely in the control of the students in the way classical theories of knowing and learning suggest. These new theories distinguish themselves by either invoking distributed agency, some of which is…

  3. A Study of Pre-Service Teachers Use of Representations in Their Proportional Reasoning

    ERIC Educational Resources Information Center

    Johnson, Kim

    2017-01-01

    Proportional reasoning is important to the field of mathematics education because it lies at the crossroads of additive reasoning in the elementary school and multiplicative reasoning needed for more advanced mathematics. This research reports on the representations used by pre-service teachers (PSTs) as they responded to tasks involving…

  4. Racial Discourse in Mathematics and Its Impact on Student Learning, Identity, and Participation

    ERIC Educational Resources Information Center

    Shah, Niral

    2013-01-01

    Discussions of race in educational research have focused primarily on performance gaps and differential access to advanced coursework. Thus, very little is known about how race mediates the learning process, particularly with respect to classroom participation and student identity formation. This dissertation examines mathematics learning as a…

  5. Learning in Lectures: Multiple Representations

    ERIC Educational Resources Information Center

    Wood, Leigh N.; Joyce, Sadhbh; Petocz, Peter; Rodd, Melissa

    2007-01-01

    Lectures remain the lynchpin of mathematics teaching at university even with advances in information technology and access to the internet. This paper examines the requirements for learning mathematics and shows how important it is for lecturers to be aware of the different modes of presentation they are using. Ways to assist students to make the…

  6. Technology to Advance High School and Undergraduate Students with Disabilities in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Leddy, Mark H.

    2010-01-01

    Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…

  7. Mathematics Teachers' Self-Captured Video and Opportunities for Learning

    ERIC Educational Resources Information Center

    Sherin, Miriam Gamoran; Dyer, Elizabeth B.

    2017-01-01

    Numerous video-based programs have been developed to support mathematics teachers in reflecting on and examining classrooms interactions without the immediate demands of instruction. An important premise of such work is that teacher learning occurs at the time that the video is viewed and discussed with teachers. Recent advances in technology,…

  8. Insights from the MAA National Study of College Calculus

    ERIC Educational Resources Information Center

    Bressoud, David

    2015-01-01

    Over the past five years, the Mathematical Association of America, with support from the National Science Foundation, has explored the teaching of mainstream Calculus 1 at the postsecondary level, where by "mainstream" we mean those courses that can be used as part of the prerequisite stream to more advanced postsecondary mathematics. We…

  9. Advancing Fourth-Grade Students' Understanding of Arithmetic Properties with Instruction That Promotes Mathematical Argumentation

    ERIC Educational Resources Information Center

    Rumsey, Chepina Witkowski

    2012-01-01

    The goals for this study were to investigate how fourth-grade students developed an understanding of the arithmetic properties when instruction promoted mathematical argumentation and to identify the characteristics of students' arguments. Using the emergent perspective as an overarching theoretical perspective helped distinguish between two…

  10. Designing STEM Pathways through Early College: Ohio's Metro Early College High School

    ERIC Educational Resources Information Center

    North, Charlotte

    2011-01-01

    Calls for improved outcomes in U.S. science, technology, engineering, and mathematics education are frequent and insistent. In 2009, the Commission on Mathematics and Science Education, convened by the Institute for Advanced Study and Carnegie Corporation of New York, concluded that: "Knowledge and skills from science, technology, engineering…

  11. Participation in Science and Technology: Young People's Achievement-Related Choices in Late-Modern Societies

    ERIC Educational Resources Information Center

    Boe, Maria Vetleseter; Henriksen, Ellen Karoline; Lyons, Terry; Schreiner, Camilla

    2011-01-01

    Young people's participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under-represented in many STEM fields. This article views international research about…

  12. Mathematics in Chemistry: Indeterminate Forms and Their Meaning

    ERIC Educational Resources Information Center

    Segurado, Manuel A. P.; Silva, Margarida F. B.; Castro, Rita

    2011-01-01

    The mathematical language and its tools are complementary to the formalism in chemistry, in particular at an advanced level. It is thus crucial, for its understanding, that students acquire a solid knowledge in Calculus and that they know how to apply it. The frequent occurrence of indeterminate forms in multiple areas, particularly in Physical…

  13. Middle School Mathematics Teachers' Experiences with School-Based and District-Based Support and Its Relationship to Integrating Technology

    ERIC Educational Resources Information Center

    Hampshire, Onequa N.

    2014-01-01

    Technological advances play a major role in educating students' in mathematics. Research indicates that technology could create learning environments that support innovativeness and assist teachers in developing a positive attitude toward integrating technology. Unfortunately, teachers are not utilizing technology on a regular basis in mathematics…

  14. Rate of Change: AP Calculus Students' Understandings and Misconceptions after Completing Different Curricular Paths

    ERIC Educational Resources Information Center

    Teuscher, Dawn; Reys, Robert E.

    2012-01-01

    This study examined Advanced Placement Calculus students' mathematical understanding of rate of change, after studying four years of college preparatory (integrated or single-subject) mathematics. Students completed the Precalculus Concept Assessment (PCA) and two open-ended tasks with questions about rates of change. After adjusting for prior…

  15. On the Axiomatization of Mathematical Understanding: Continuous Functions in the Transition to Topology

    ERIC Educational Resources Information Center

    Cheshire, Daniel C.

    2017-01-01

    The introduction to general topology represents a challenging transition for students of advanced mathematics. It requires the generalization of their previous understanding of ideas from fields like geometry, linear algebra, and real or complex analysis to fit within a more abstract conceptual system. Students must adopt a new lexicon of…

  16. Linking TIMSS and NAEP Assessments to Evaluate International Trends in Achievement

    ERIC Educational Resources Information Center

    Lim, Hwanggyu; Sireci, Stephen G.

    2017-01-01

    The Trends in International Mathematics and Science Study (TIMSS) makes it possible to compare the performance of students in the US in Mathematics and Science to the performance of students in other countries. TIMSS uses four international benchmarks for describing student achievement: Low, Intermediate, High, and Advanced. In this study, we…

  17. Advanced Mathematics. Training Module 1.303.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module prepared in objective form for use by an instructor familiar with mathematics as applied to water and wastewater treatment plant operation. Included are objectives, instructor guides and student handouts. This is the third level of a three module series and is concerned with statistics, total head, steady…

  18. How Might the Use of Technology in Formative Assessment Support Changes in Mathematics Teaching?

    ERIC Educational Resources Information Center

    Olsher, Shai; Yerushalmy, Michal; Chazan, Daniel

    2016-01-01

    Technological developments make it feasible to assess students' mathematics work automatically when students are working in rich digital environments and thus offer important affordances for assessment in the service of instruction. In this article, we illustrate how these technological advances might be harnessed to support the work of teachers…

  19. Exemplarity in Mathematics Education: From a Romanticist Viewpoint to a Modern Hermeneutical One

    ERIC Educational Resources Information Center

    Patronis, Tasos; Spanos, Dimitris

    2013-01-01

    This paper proposes a setting of "exemplarity" different from the already known one, which is basically a Romanticist philosophical setting. Our general aim is to describe and explore the nature of some "exemplary themes" and "interpretive models" in advanced mathematics teaching and learning. In order to do so, we…

  20. Methods for Improving Information from ’Undesigned’ Human Factors Experiments.

    DTIC Science & Technology

    Human factors engineering, Information processing, Regression analysis , Experimental design, Least squares method, Analysis of variance, Correlation techniques, Matrices(Mathematics), Multiple disciplines, Mathematical prediction

  1. Instructional Techniques for Increasing the Mathematics Competencies of Young Children: Teacher/Assistant Teacher Staff Development Materials.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Bureau of School Improvement.

    These training materials are designed to stress the importance of a close relationship between concepts and skills when teaching mathematics to young children, to present material on the important area of problem-solving, and to encourage adults to use a wide range of appropriate techniques in evaluating their work and children's work in…

  2. Teams Games Tournaments (TGT). Cooperative Technique for Learning Mathematics in Secondary Schools in Bangladesh

    ERIC Educational Resources Information Center

    Salam, Abdus; Hossain, Anwar; Rahman, Shahidur

    2015-01-01

    This study investigates the effects of game playing on performance and attitudes of students towards mathematics of Grade VIII. The study was undergone by implementing TGT technique for the experimental group and typical lecture-based approach for the control group. A same achievement test was employed as in both pre-test and post-test, an…

  3. Mathematical enhancement of data from scientific measuring instruments

    NASA Technical Reports Server (NTRS)

    Ioup, J. W.

    1982-01-01

    The accuracy of any physical measurement is limited by the instruments performing it. The proposed activities of this grant are related to the study of and application of mathematical techniques of deconvolution. Two techniques are being investigated: an iterative method and a function continuation Fourier method. This final status report describes the work performed during the period July 1 to December 31, 1982.

  4. Problem Based Learning Technique and Its Effect on Acquisition of Linear Programming Skills by Secondary School Students in Kenya

    ERIC Educational Resources Information Center

    Nakhanu, Shikuku Beatrice; Musasia, Amadalo Maurice

    2015-01-01

    The topic Linear Programming is included in the compulsory Kenyan secondary school mathematics curriculum at form four. The topic provides skills for determining best outcomes in a given mathematical model involving some linear relationship. This technique has found application in business, economics as well as various engineering fields. Yet many…

  5. Predicting Academic Success of Junior Secondary School Students in Mathematics through Cognitive Style and Problem Solving Technique

    ERIC Educational Resources Information Center

    Badru, Ademola K.

    2015-01-01

    This study examined the prediction of academic success of Junior secondary school mathematics students using their cognitive style and problem solving technique. A descriptive survey of correlation type was adopted for this study. A purposive sampling procedure was used to select five Public Junior secondary schools in Ijebu-Ode local government…

  6. Guidelines for the use of mathematics in operational area-wide integrated pest management programs using the sterile insect technique with a special focus on Tephritid Fruit Flies

    USDA-ARS?s Scientific Manuscript database

    Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...

  7. Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields.

    PubMed

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge-in particular in mathematics domains-influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees.

  8. Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields

    PubMed Central

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge—in particular in mathematics domains—influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees. PMID:26113823

  9. Socioeconomic variation, number competence, and mathematics learning difficulties in young children.

    PubMed

    Jordan, Nancy C; Levine, Susan C

    2009-01-01

    As a group, children from disadvantaged, low-income families perform substantially worse in mathematics than their counterparts from higher-income families. Minority children are disproportionately represented in low-income populations, resulting in significant racial and social-class disparities in mathematics learning linked to diminished learning opportunities. The consequences of poor mathematics achievement are serious for daily functioning and for career advancement. This article provides an overview of children's mathematics difficulties in relation to socioeconomic status (SES). We review foundations for early mathematics learning and key characteristics of mathematics learning difficulties. A particular focus is the delays or deficiencies in number competencies exhibited by low-income children entering school. Weaknesses in number competence can be reliably identified in early childhood, and there is good evidence that most children have the capacity to develop number competence that lays the foundation for later learning.

  10. The semantic system is involved in mathematical problem solving.

    PubMed

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Developing a Theoretical Framework to Inform the Design of a Teacher Professional Development Program to Enable Foundation to Year 2 Teachers of Mathematics to Build on Indigenous and Low-SES Students' Cultural Capital

    ERIC Educational Resources Information Center

    Anderson, Robyn; Stütz, Alexander; Cooper, Tom; Nason, Rod

    2017-01-01

    This paper reports on the early stages of the conceptualisation and implementation of the Accelerated Inclusive Mathematics-Early Understandings (AIM EU) project, a project whose major goals are to advance theory and practice in the improvement of Foundation to Year 2 (F-2) teachers' capacity to teach mathematics and through this to enhance F-2…

  12. The influence of mathematics learning using SAVI approach on junior high school students’ mathematical modelling ability

    NASA Astrophysics Data System (ADS)

    Khusna, H.; Heryaningsih, N. Y.

    2018-01-01

    The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.

  13. Role of linguistic skills in fifth-grade mathematics.

    PubMed

    Kleemans, Tijs; Segers, Eliane; Verhoeven, Ludo

    2018-03-01

    The current study investigated the direct and indirect relations between basic linguistic skills (i.e., phonological skills and grammatical ability) and advanced linguistic skills (i.e., academic vocabulary and verbal reasoning), on the one hand, and fifth-grade mathematics (i.e., arithmetic, geometry, and fractions), on the other, taking working memory and general intelligence into account and controlling for socioeconomic status, age, and gender. The results showed the basic linguistic representations of 167 fifth graders to be indirectly related to their geometric and fraction skills via arithmetic. Furthermore, advanced linguistic skills were found to be directly related to geometry and fractions after controlling for arithmetic. It can be concluded that linguistic skills directly and indirectly relate to mathematical ability in the upper grades of primary education, which highlights the importance of paying attention to such skills in the school curriculum. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Automation process for morphometric analysis of volumetric CT data from pulmonary vasculature in rats.

    PubMed

    Shingrani, Rahul; Krenz, Gary; Molthen, Robert

    2010-01-01

    With advances in medical imaging scanners, it has become commonplace to generate large multidimensional datasets. These datasets require tools for a rapid, thorough analysis. To address this need, we have developed an automated algorithm for morphometric analysis incorporating A Visualization Workshop computational and image processing libraries for three-dimensional segmentation, vascular tree generation and structural hierarchical ordering with a two-stage numeric optimization procedure for estimating vessel diameters. We combine this new technique with our mathematical models of pulmonary vascular morphology to quantify structural and functional attributes of lung arterial trees. Our physiological studies require repeated measurements of vascular structure to determine differences in vessel biomechanical properties between animal models of pulmonary disease. Automation provides many advantages including significantly improved speed and minimized operator interaction and biasing. The results are validated by comparison with previously published rat pulmonary arterial micro-CT data analysis techniques, in which vessels were manually mapped and measured using intense operator intervention. Published by Elsevier Ireland Ltd.

  15. Theory and applications of structured light single pixel imaging

    NASA Astrophysics Data System (ADS)

    Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.

    2018-02-01

    Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.

  16. What can comparative effectiveness research, propensity score and registry study bring to Chinese medicine?

    PubMed

    Liao, Xing; Xie, Yan-ming

    2014-10-01

    The impact of evidence-based medicine and clinical epidemiology on clinical research has contributed to the development of Chinese medicine in modern times over the past two decades. Many concepts and methods of modern science and technology are emerging in Chinese medicine research, resulting in constant progress. Systematic reviews, randomized controlled trials and other advanced mathematic approaches and statistical analysis methods have brought reform to Chinese medicine. In this new era, Chinese medicine researchers have many opportunities and challenges. On the one hand, Chinese medicine researchers need to dedicate themselves to providing enough evidence to the world through rigorous studies, whilst on the other hand, they also need to keep up with the speed of modern medicine research. For example, recently, real world study, comparative effectiveness research, propensity score techniques and registry study have emerged. This article aims to inspire Chinese medicine researchers to explore new areas by introducing these new ideas and new techniques.

  17. Mathematical modeling for Phase I cancer trials: A study of metronomic vinorelbine for advanced non-small cell lung cancer (NSCLC) and mesothelioma patients.

    PubMed

    Barlesi, Fabrice; Imbs, Diane-Charlotte; Tomasini, Pascale; Greillier, Laurent; Galloux, Melissa; Testot-Ferry, Albane; Garcia, Mélanie; Elharrar, Xavier; Pelletier, Annick; André, Nicolas; Mascaux, Céline; Lacarelle, Bruno; Cheikh, Raouf El; Serre, Raphaël; Ciccolini, Joseph; Barbolosi, Dominique

    2017-07-18

    Using mathematical modelling allows to select a treatment's regimen across infinite possibilities. Here, we report the phase I assessment of a new schedule for metronomic vinorelbine in treating refractory advanced NSCLC and mesothelioma patients. Overall, 13 patients were screened and 12 were treated (50% male, median age: 68yrs), including 9 NSCLC patients. All patients received at least one week (3 doses) of treatment. At data cut-off, the median length of treatment was 6.5 weeks (1-32+). All the patients presented with at least one adverse event (AE) and six patients with a severe AE (SAE). One partial response and 5 stable diseases were observed. The median OS was 6.4 months (95% CI, 4.8 to 12 months). The median and mean vinorelbine's AUC were 122 ng/ml*h and 159 ng/ml*h, respectively, with the higher plasmatic vinorelbine exposure associated with the best ORR (difference of AUC comparison between responders and non-responders, p-value 0.017). The mathematical modelling determined the administration of vinorelbine, 60 mg on Day 1, 30 mg on Day 2 and 60 mg on Day 4 weekly until progression, as the best schedule. Advanced NSCLC or mesothelioma patients progressing after standard treatment were eligible for the trial. NCT02555007. Responses with acceptable safety profile were observed in heavily pretreated NSCLC and mesothelioma patients using oral vinorelbine at this metronomic dosage based on a mathematic modeling. This study demonstrates the feasibility of this new type of approach, as mathematical modeling may help to rationally decide the better regimen to be clinically tested across infinite possibilities.

  18. Validating an Air Traffic Management Concept of Operation Using Statistical Modeling

    NASA Technical Reports Server (NTRS)

    He, Yuning; Davies, Misty Dawn

    2013-01-01

    Validating a concept of operation for a complex, safety-critical system (like the National Airspace System) is challenging because of the high dimensionality of the controllable parameters and the infinite number of states of the system. In this paper, we use statistical modeling techniques to explore the behavior of a conflict detection and resolution algorithm designed for the terminal airspace. These techniques predict the robustness of the system simulation to both nominal and off-nominal behaviors within the overall airspace. They also can be used to evaluate the output of the simulation against recorded airspace data. Additionally, the techniques carry with them a mathematical value of the worth of each prediction-a statistical uncertainty for any robustness estimate. Uncertainty Quantification (UQ) is the process of quantitative characterization and ultimately a reduction of uncertainties in complex systems. UQ is important for understanding the influence of uncertainties on the behavior of a system and therefore is valuable for design, analysis, and verification and validation. In this paper, we apply advanced statistical modeling methodologies and techniques on an advanced air traffic management system, namely the Terminal Tactical Separation Assured Flight Environment (T-TSAFE). We show initial results for a parameter analysis and safety boundary (envelope) detection in the high-dimensional parameter space. For our boundary analysis, we developed a new sequential approach based upon the design of computer experiments, allowing us to incorporate knowledge from domain experts into our modeling and to determine the most likely boundary shapes and its parameters. We carried out the analysis on system parameters and describe an initial approach that will allow us to include time-series inputs, such as the radar track data, into the analysis

  19. Multiscale Mathematical Modeling in Dental Tissue Engineering: Toward Computer-Aided Design of a Regenerative System Based on Hydroxyapatite Granules, Focussing on Early and Mid-Term Stiffness Recovery

    PubMed Central

    Scheiner, Stefan; Komlev, Vladimir S.; Gurin, Alexey N.; Hellmich, Christian

    2016-01-01

    We here explore for the very first time how an advanced multiscale mathematical modeling approach may support the design of a provenly successful tissue engineering concept for mandibular bone. The latter employs double-porous, potentially cracked, single millimeter-sized granules packed into an overall conglomerate-type scaffold material, which is then gradually penetrated and partially replaced by newly grown bone tissue. During this process, the newly developing scaffold-bone compound needs to attain the stiffness of mandibular bone under normal physiological conditions. In this context, the question arises how the compound stiffness is driven by the key design parameters of the tissue engineering system: macroporosity, crack density, as well as scaffold resorption/bone formation rates. We here tackle this question by combining the latest state-of-the-art mathematical modeling techniques in the field of multiscale micromechanics, into an unprecedented suite of highly efficient, semi-analytically defined computation steps resolving several levels of hierarchical organization, from the millimeter- down to the nanometer-scale. This includes several types of homogenization schemes, namely such for porous polycrystals with elongated solid elements, for cracked matrix-inclusion composites, as well as for assemblies of coated spherical compounds. Together with the experimentally known stiffnesses of hydroxyapatite crystals and mandibular bone tissue, the new mathematical model suggests that early stiffness recovery (i.e., within several weeks) requires total avoidance of microcracks in the hydroxyapatite scaffolds, while mid-term stiffness recovery (i.e., within several months) is additionally promoted by provision of small granule sizes, in combination with high bone formation and low scaffold resorption rates. PMID:27708584

  20. Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Mathematical Modeling.

    PubMed

    Barnes, Sean L; Kasaie, Parastu; Anderson, Deverick J; Rubin, Michael

    2016-11-01

    Mathematical modeling is a valuable methodology used to study healthcare epidemiology and antimicrobial stewardship, particularly when more traditional study approaches are infeasible, unethical, costly, or time consuming. We focus on 2 of the most common types of mathematical modeling, namely compartmental modeling and agent-based modeling, which provide important advantages-such as shorter developmental timelines and opportunities for extensive experimentation-over observational and experimental approaches. We summarize these advantages and disadvantages via specific examples and highlight recent advances in the methodology. A checklist is provided to serve as a guideline in the development of mathematical models in healthcare epidemiology and antimicrobial stewardship. Infect Control Hosp Epidemiol 2016;1-7.

  1. The Mathematics Syllabus and Adult Learners in Community Colleges: Integrating Technique with Content.

    ERIC Educational Resources Information Center

    Baker, Robert N.

    2001-01-01

    Presents a brief discussion of the challenges presented to mathematics education by changes in social dependence on mathematics, in professional response to the needs of students, in institutional expectations of students and teachers, and in student demographics and expectations. Provides an extended outline for a syllabus used to clearly…

  2. How High Is the Tramping Track? Mathematising and Applying in a Calculus Model-Eliciting Activity

    ERIC Educational Resources Information Center

    Yoon, Caroline; Dreyfus, Tommy; Thomas, Michael O. J.

    2010-01-01

    Two complementary processes involved in mathematical modelling are mathematising a realistic situation and applying a mathematical technique to a given realistic situation. We present and analyse work from two undergraduate students and two secondary school teachers who engaged in both processes during a mathematical modelling task that required…

  3. Using Construct Validity Techniques To Evaluate an Automated Cognitive Model of Geometric Proof Writing.

    ERIC Educational Resources Information Center

    Shotsberger, Paul G.

    The National Council of Teachers of Mathematics (1991) has identified the use of computers as a necessary teaching tool for enhancing mathematical discourse in schools. One possible vehicle of technological change in mathematics classrooms is the Intelligent Tutoring System (ITS), an artificially intelligent computer-based tutor. This paper…

  4. Learning to Calculate and Learning Mathematics.

    ERIC Educational Resources Information Center

    Fearnley-Sander, Desmond

    1980-01-01

    A calculator solution of a simple computational problem is discussed with emphasis on its ramifications for the understanding of some fundamental theorems of pure mathematics and techniques of computing. (Author/MK)

  5. RF multicoupler design techniques to minimize problems of corona, multipaction, and stability

    NASA Technical Reports Server (NTRS)

    Hurley, H. S.; Kozakoff, D. J.

    1971-01-01

    A mathematical expression was derived describing multipacting and corona effects in a coaxial cavity. Both mechanical and electrical design techniques were investigated to minimize the susceptibility of coaxial cavity to corona and multipacting-type breakdown. To assist in the design of a multicoupler free from corona and multipactor breakdown, a flow chart obtained from the derived mathematical expression is included.

  6. Fostering Middle School Students' Relational Thinking of the Equal Sign Using GeoGebra

    ERIC Educational Resources Information Center

    Ko, Yi-Yin; Karadag, Zekeriya

    2013-01-01

    Current reforms in mathematics education have called for a stronger emphasis on the teaching and learning of algebra for all students at all grade levels. Succeeding in algebra can prepare students to learn and understand more advanced mathematics in the future. One topic in algebra--the equal sign--has received considerable attention in middle…

  7. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

    ERIC Educational Resources Information Center

    National Academies Press, 2012

    2012-01-01

    The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM…

  8. Benefits for Women and Men of Inquiry-Based Learning in College Mathematics: A Multi-Institution Study

    ERIC Educational Resources Information Center

    Laursen, Sandra L.; Hassi, Marja-Liisa; Kogan, Marina; Weston, Timothy J.

    2014-01-01

    Slow faculty uptake of research-based, student-centered teaching and learning approaches limits the advancement of U.S. undergraduate mathematics education. A study of inquiry-based learning (IBL) as implemented in over 100 course sections at 4 universities provides an example of such multicourse, multi-institution uptake. Despite variation in how…

  9. Making Numbers Come to Life: Two Scoring Methods for Creativity in Aurora's Cartoon Numbers

    ERIC Educational Resources Information Center

    Tan, Mei; Mourgues, Catalina; Bolden, David S.; Grigorenko, Elena L.

    2014-01-01

    Although creativity has long been recognized as an important aspect of mathematical thinking, both for the advancement of the field and in students' developing expertise in mathematics, assessments of student creativity in that domain have been limited in number and focus. This article presents an assessment developed for creativity that…

  10. Developing a Learning Progression for Curriculum, Instruction, and Student Learning: An Example from Mathematics Education

    ERIC Educational Resources Information Center

    Fonger, Nicole L.; Stephens, Ana; Blanton, Maria; Isler, Isil; Knuth, Eric; Gardiner, Angela Murphy

    2018-01-01

    Learning progressions have been demarcated by some for science education, or only concerned with levels of sophistication in student thinking as determined by logical analyses of the discipline. We take the stance that learning progressions can be leveraged in mathematics education as a form of curriculum research that advances a linked…

  11. Using Confirmatory Factor Analysis to Validate the Chamberlin Affective Instrument for Mathematical Problem Solving with Academically Advanced Students

    ERIC Educational Resources Information Center

    Chamberlin, Scott A.; Moore, Alan D.; Parks, Kelly

    2017-01-01

    Background: Student affect plays a considerable role in mathematical problem solving performance, yet is rarely formally assessed. In this manuscript, an instrument and its properties are discussed to enable educational psychologists the opportunity to assess student affect. Aims: The study was conducted to norm the CAIMPS (instrument) with gifted…

  12. Learning Results from the Viewpoint of Equity: Boys, Girls and Mathematics.

    ERIC Educational Resources Information Center

    Pehkonen, Erkki

    1997-01-01

    Explores why girls successful in mathematics choose advanced courses in upper secondary school less than did boys. Analyzes the results of tests and a student questionnaire (N=739) in Finland. Findings indicate that in the case of word problems and calculation without calculators, boys are significantly better than girls. Reports that the boys…

  13. Students' Conceptual Understanding of a Function and Its Derivative in an Experimental Calculus Course

    ERIC Educational Resources Information Center

    Habre, Samer; Abboud, May

    2006-01-01

    Calculus has been witnessing fundamental changes in its curriculum, with an increased emphasis on visualization. This mode for representing mathematical concepts is gaining more strength due to the advances in computer technology and the development of dynamical mathematical software. This paper focuses on the understanding of the function and its…

  14. Completing Algebra II in High School: Does It Increase College Access and Success?

    ERIC Educational Resources Information Center

    Kim, Jeongeun; Kim, Jiyun; DesJardins, Stephen L.; McCall, Brian P.

    2015-01-01

    Noting the benefits of mathematics in students' future educational attainment and labor market success, there is considerable interest in high school requirements in terms of course-taking in mathematics at the national, state, and school district level. Previous research indicates that taking advanced math courses in high school leads to positive…

  15. Addressing Continuing Mathematical Deficiencies with Advanced Mathematical Diagnostic Testing

    ERIC Educational Resources Information Center

    Carr, Michael; Murphy, Eoin; Bowe, Brian; Ni Fhloinn, Eabhnat

    2013-01-01

    Dublin Institute of Technology offers students a number of different routes into engineering, allowing many non-standard entrants the opportunity to study the discipline provided they fulfil certain criteria. The final aim of many of these students is to achieve an Honours Degree in Engineering, which takes a minimum of 4 years. Apart from the…

  16. Angle Concept: A High School and Tertiary Longitudinal Perspective to Minimize Obstacles

    ERIC Educational Resources Information Center

    Barabash, Marita

    2017-01-01

    The concept of angle emerges in numerous forms as the learning of mathematics and its applications advances through the high school and tertiary curriculum. Many difficulties and misconceptions in the usage of this multifaceted concept might be avoided or at least minimized should the lecturers in different areas of pure and applied mathematics be…

  17. Life on the Number Line: Routes to Understanding Fraction Magnitude for Students with Difficulties Learning Mathematics

    ERIC Educational Resources Information Center

    Gersten, Russell; Schumacher, Robin F.; Jordan, Nancy C.

    2017-01-01

    Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number…

  18. Advanced Mathematics Online: Assessing Particularities in the Online Delivery of a Second Linear Algebra Course

    ERIC Educational Resources Information Center

    Montiel, Mariana; Bhatti, Uzma

    2010-01-01

    This article presents an overview of some issues that were confronted when delivering an online second Linear Algebra course (assuming a previous Introductory Linear Algebra course) to graduate students enrolled in a Secondary Mathematics Education program. The focus is on performance in one particular aspect of the course: "change of basis" and…

  19. Elementary School Preservice Teachers' Competencies in the Field of Patterns under the Process of Scientific Skills Development

    ERIC Educational Resources Information Center

    Inan, Cemil

    2015-01-01

    Probably the simplest and most comprehensive definition to be made regarding the question of "what is mathematics?" will be that "mathematics is a science of patterns and relationships". It is possible to examine patterns in different levels of difficulty and importance from preschool period to advanced levels. In fact, the…

  20. How to Present It? On the Rhetoric of an Outstanding Lecturer

    ERIC Educational Resources Information Center

    Movshovitz-Hadar, Nitsa; Hazzan, Orit

    2004-01-01

    This paper analyses a lecture by an excellent teaching award winner professor of mathematics, given to high school mathematics teachers. The analysis is based upon two sources: (i) the lecture plan, as expressed in a series of 29 transparencies, prepared by the lecturer in advance; (ii) the actual implementation of the lecture, as transcribed from…

  1. Success in Mathematics within a Challenged Minority: The Case of Students of Ethiopian Origin in Israel (SEO)

    ERIC Educational Resources Information Center

    Mulat, Tiruwork; Arcavi, Abraham

    2009-01-01

    Many studies have reported on the economical, social, and educational difficulties encountered by Ethiopian Jews since their immigration to Israel. Furthermore, the overall academic underachievement and poor representation of students of Ethiopian origin (SEO) in the advanced mathematics and science classes were highlighted and described. Yet,…

  2. Implementing "Big Ideas" to Advance the Teaching and Learning of Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Chalmers, Christina; Carter, Merilyn; Cooper, Tom; Nason, Rod

    2017-01-01

    Although education experts are increasingly advocating the incorporation of integrated Science, Technology, Engineering, and Mathematics (STEM) curriculum units to address limitations in much current STEM teaching and learning, a review of the literature reveals that more often than not such curriculum units are not mediating the construction of…

  3. Cooperative Learning in the Advanced Algebra and Trigonometry Mathematics High School Classroom

    ERIC Educational Resources Information Center

    Jozsa, Alison

    2017-01-01

    Over the past three decades, researchers have found cooperative learning to have positive effects on student achievement in various subject areas and levels in education. However, there are limited studies on the impact of cooperative learning on student achievement in the area of high school mathematics. This study examined the impact of…

  4. How Do Adults Perceive, Analyse and Measure Slope?

    ERIC Educational Resources Information Center

    Duncan, Bruce; Chick, Helen

    2013-01-01

    Slope is a mathematical concept that is both fundamental to the study of advanced calculus and commonly perceived in everyday life. The measurement of steepness of terrain as a ratio is an example of an everyday application the concept of slope. In this study, a group of pre-service teachers were tested for their capacity to mathematize the…

  5. Using Games to Engage Students in Inquiry

    ERIC Educational Resources Information Center

    Byrne, Martha

    2017-01-01

    This paper discusses the author's experiences of getting advanced undergraduate math students to engage in mathematical inquiry by using games as a vehicle for exploration. The students explored the mathematics behind SET®1, Spot it!®2, Blokus®3, and Six®4. Specifically, we present the experience of the instructor and students and how the games…

  6. Investigating Participation in Advanced Level Mathematics: A Study of Student Drop-Out

    ERIC Educational Resources Information Center

    Noyes, Andrew; Sealey, Paula

    2012-01-01

    There has, for some years, been a growing concern about participation in university-entrance level mathematics in England and across the developed world. Extensive statistical analyses present the decline but offer little to help us understand the causes. In this paper we explore a concern which cannot be explored through national data-sets,…

  7. Productive and Ineffective Efforts: How Student Effort in High School Mathematics Relates to College Calculus Success

    ERIC Educational Resources Information Center

    Barnett, M.D.; Sonnert, G.; Sadler, P.M.

    2014-01-01

    Relativizing the popular belief that student effort is the key to success, this article finds that effort in the most advanced mathematics course in US high schools is not consistently associated with college calculus performance. We distinguish two types of student effort: productive and ineffective efforts. Whereas the former carries the…

  8. Inside the UTeach Program: Implications for Research in Mathematics Teacher Education

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2010-01-01

    As the national impetus to advance education continues to look toward improving the teachers sent into the classroom, more research needs to be done to in the area of mathematics teacher education. A number of recent studies have summarized, synthesized, and developed useful information about what should be viewed as important in mathematics…

  9. Mathemaphobia and Teaching Learning Materials as Correlates of Pupils Achievement in Mathematics

    ERIC Educational Resources Information Center

    Oyegoke, D. A.; Oyelabi, O.; Nnaji, C. C.

    2016-01-01

    The importance of mathematics to the effective daily living and contributions to the scientific and technological advancement of the society cannot be over-emphasized. As important as this subject is, there seems to be a lot variable that promote or inhibit the pupils' performance in it as various level of Nigerian educational system. The study…

  10. Going beyond the Syllabus: A Study of a Level Mathematics Teachers and Students

    ERIC Educational Resources Information Center

    Suto, Irenka; Elliott, Gill; Rushton, Nicky; Mehta, Sanjana

    2012-01-01

    We explored teachers' views and students' experiences of going beyond the syllabus in Advanced (A) level Mathematics. Questionnaires were sent to teachers and students in a sample of 200 schools and colleges. Teachers were asked about the necessity, importance and benefits of additional teaching. Students were asked about the extra activities they…

  11. A Study Assessing the Potential of Negative Effects in Interdisciplinary Math–Biology Instruction

    PubMed Central

    Madlung, Andreas; Bremer, Martina; Himelblau, Edward; Tullis, Alexa

    2011-01-01

    There is increasing enthusiasm for teaching approaches that combine mathematics and biology. The call for integrating more quantitative work in biology education has led to new teaching tools that improve quantitative skills. Little is known, however, about whether increasing interdisciplinary work can lead to adverse effects, such as the development of broader but shallower skills or the possibility that math anxiety causes some students to disengage in the classroom, or, paradoxically, to focus so much on the mathematics that they lose sight of its application for the biological concepts in the center of the unit at hand. We have developed and assessed an integrative learning module and found disciplinary learning gains to be equally strong in first-year students who actively engaged in embedded quantitative calculations as in those students who were merely presented with quantitative data in the context of interpreting biological and biostatistical results. When presented to advanced biology students, our quantitative learning tool increased test performance significantly. We conclude from our study that the addition of mathematical calculations to the first year and advanced biology curricula did not hinder overall student learning, and may increase disciplinary learning and data interpretation skills in advanced students. PMID:21364099

  12. Using Multi-Robot Systems for Engineering Education: Teaching and Outreach with Large Numbers of an Advanced, Low-Cost Robot

    ERIC Educational Resources Information Center

    McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.

    2013-01-01

    This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…

  13. Turbine Engine Mathematical Model Validation

    DTIC Science & Technology

    1976-12-01

    AEDC-TR-76-90 ~Ec i ? Z985 TURBINE ENGINE MATHEMATICAL MODEL VALIDATION ENGINE TEST FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE...i f n e c e s e a ~ ~ d i den t i f y by b l ock number) YJI01-GE-100 engine turbine engines mathematical models computations mathematical...report presents and discusses the results of an investigation to develop a rationale and technique for the validation of turbine engine steady-state

  14. A Mathematical Theory of System Information Flow

    DTIC Science & Technology

    2016-06-27

    AFRL-AFOSR-VA-TR-2016-0232 A Mathematical Theory of System Information Flow Michael Mislove ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND THE 6823...MM-YYYY) 17-06-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 27MAR2013 - 31MAR2016 4. TITLE AND SUBTITLE A Mathematical Theory of System...systems using techniques from information theory , domain theory and other areas of mathematics and computer science. Over time, the focus shifted

  15. Redundancy management of electrohydraulic servoactuators by mathematical model referencing

    NASA Technical Reports Server (NTRS)

    Campbell, R. A.

    1971-01-01

    A description of a mathematical model reference system is presented which provides redundancy management for an electrohydraulic servoactuator. The mathematical model includes a compensation network that calculates reference parameter perturbations induced by external disturbance forces. This is accomplished by using the measured pressure differential data taken from the physical system. This technique was experimentally verified by tests performed using the H-1 engine thrust vector control system for Saturn IB. The results of these tests are included in this report. It was concluded that this technique improves the tracking accuracy of the model reference system to the extent that redundancy management of electrohydraulic servosystems may be performed using this method.

  16. Computational oncology.

    PubMed

    Lefor, Alan T

    2011-08-01

    Oncology research has traditionally been conducted using techniques from the biological sciences. The new field of computational oncology has forged a new relationship between the physical sciences and oncology to further advance research. By applying physics and mathematics to oncologic problems, new insights will emerge into the pathogenesis and treatment of malignancies. One major area of investigation in computational oncology centers around the acquisition and analysis of data, using improved computing hardware and software. Large databases of cellular pathways are being analyzed to understand the interrelationship among complex biological processes. Computer-aided detection is being applied to the analysis of routine imaging data including mammography and chest imaging to improve the accuracy and detection rate for population screening. The second major area of investigation uses computers to construct sophisticated mathematical models of individual cancer cells as well as larger systems using partial differential equations. These models are further refined with clinically available information to more accurately reflect living systems. One of the major obstacles in the partnership between physical scientists and the oncology community is communications. Standard ways to convey information must be developed. Future progress in computational oncology will depend on close collaboration between clinicians and investigators to further the understanding of cancer using these new approaches.

  17. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number

    NASA Astrophysics Data System (ADS)

    Klewicki, J. C.; Chini, G. P.; Gibson, J. F.

    2017-03-01

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.

  18. Increasing mathematical problem-solving performance through relaxation training

    NASA Astrophysics Data System (ADS)

    Sharp, Conni; Coltharp, Hazel; Hurford, David; Cole, Amykay

    2000-04-01

    Two intact classes of 30 undergraduate students enrolled in the same general education mathematics course were each administered the IPSP Mathematics Problem Solving Test and the Mathematics Anxiety Rating Scale at the beginning and end of the semester. Both groups experienced the same syllabus, lectures, course requirements, and assessment techniques; however, one group received relaxation training during an initial class meeting and during the first 5 to 7 minutes of each subsequent class. The group which had received relaxation training had significantly lower mathematics anxiety and significantly higher mathematics performance at the end of the course. The results suggest that relaxation training may be a useful tool for treating anxiety in undergraduate general education mathematics students.

  19. Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Rahman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.

    1980-01-01

    Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems.

  20. A Diverse Community To Study Communities: Integration of Experiments and Mathematical Models To Study Microbial Consortia.

    PubMed

    Succurro, Antonella; Moejes, Fiona Wanjiku; Ebenhöh, Oliver

    2017-08-01

    The last few years have seen the advancement of high-throughput experimental techniques that have produced an extraordinary amount of data. Bioinformatics and statistical analyses have become instrumental to interpreting the information coming from, e.g., sequencing data and often motivate further targeted experiments. The broad discipline of "computational biology" extends far beyond the well-established field of bioinformatics, but it is our impression that more theoretical methods such as the use of mathematical models are not yet as well integrated into the research studying microbial interactions. The empirical complexity of microbial communities presents challenges that are difficult to address with in vivo / in vitro approaches alone, and with microbiology developing from a qualitative to a quantitative science, we see stronger opportunities arising for interdisciplinary projects integrating theoretical approaches with experiments. Indeed, the addition of in silico experiments, i.e., computational simulations, has a discovery potential that is, unfortunately, still largely underutilized and unrecognized by the scientific community. This minireview provides an overview of mathematical models of natural ecosystems and emphasizes that one critical point in the development of a theoretical description of a microbial community is the choice of problem scale. Since this choice is mostly dictated by the biological question to be addressed, in order to employ theoretical models fully and successfully it is vital to implement an interdisciplinary view at the conceptual stages of the experimental design. Copyright © 2017 Succurro et al.

Top