Science.gov

Sample records for advanced medical imaging

  1. Establishing advanced practice for medical imaging in New Zealand

    PubMed Central

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-01-01

    IntroductionThis article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). MethodsThe study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. ResultsFindings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. ConclusionsThe authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ. PMID:26229631

  2. Establishing advanced practice for medical imaging in New Zealand

    SciTech Connect

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-02-15

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.

  3. Recent advances in radiology and medical imaging

    SciTech Connect

    Steiner, R.E.; Sherwood, T.

    1986-01-01

    The first chapter, on the radiology of arthritis, is an overview. The second and seventh chapters are on the chest the former, on adult respiratory distress syndrome, is a brief summary, and the latter, on digital radiography of the chest with the prototype slit-scanning technique. The third chapter reviews computed tomography of the lumbar spine. The following two chapters are on MR imaging, one on the central nervous system (covering demyelinating diseases, cardiovascular disease, infections, and tumors), with excellent illustrations; and one on MR imaging of the body. The illustrations are good. The following chapter is on extracardiac digital subtraction angiography (DSA), with an interesting table comparing and contrasting conventional angiography with both intraveneous and intraarterial DSA. The eighth chapter on pediatric imaging fits a world of experience. Chapter 9 is an update on contrast media, while the next chapter is on barium infusion examination of the small intestine. The final three chapters are concerned with the present state of angioplasty, interventional radiology in the urinary tract.

  4. Medical imaging

    SciTech Connect

    Chapman, D.

    1996-09-01

    There are a number of medically related imaging programs at synchrotron facilities around the world. The most advanced of these are the dual energy transvenous coronary angiography imaging programs, which have progressed to human imaging for some years. The NSLS facility will be discussed and patient images from recent sessions from the NSLS and HASYLAB will be presented. The effort at the Photon Factory and Accumulator Ring will also be briefly covered, as well as future plans for the new facilities. Emphasis will be on the new aspects of these imaging programs; this includes imaging with a peripheral venous injection of the iodine contrast agent, imaging at three photon energies, and the potential of a hospital-based compact source. Other medical programs to be discussed, are the multiple energy computed tomography (MECT) project at the NSLS and plans for a MECT program at the ESRF. Recently, experiments performed at the NSLS to image mammography phantoms using monochromatic beam have produced very promising results. This program will be discussed as well as some new results from imaging a phantom using a thin Laue crystal analyzer after the object to eliminate scatter onto the detector. {copyright} {ital 1996 American Institute of Physics.}

  5. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOEpatents

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  6. Medical Imaging.

    ERIC Educational Resources Information Center

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  7. Medical Imaging System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  8. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    NASA Technical Reports Server (NTRS)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1993-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES (Geostationary Operational Environmental Satellite), AVHRR (Advanced Very High Resolution Radiometer), and SSM/I (Special Sensor Microwave Imager) sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS (Earth Observation SystemData/Information System) prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  9. Imaging medical imaging

    NASA Astrophysics Data System (ADS)

    Journeau, P.

    2015-03-01

    This paper presents progress on imaging the research field of Imaging Informatics, mapped as the clustering of its communities together with their main results by applying a process to produce a dynamical image of the interactions between their results and their common object(s) of research. The basic side draws from a fundamental research on the concept of dimensions and projective space spanning several streams of research about three-dimensional perceptivity and re-cognition and on their relation and reduction to spatial dimensionality. The application results in an N-dimensional mapping in Bio-Medical Imaging, with dimensions such as inflammatory activity, MRI acquisition sequencing, spatial resolution (voxel size), spatiotemporal dimension inferred, toxicity, depth penetration, sensitivity, temporal resolution, wave length, imaging duration, etc. Each field is represented through the projection of papers' and projects' `discriminating' quantitative results onto the specific N-dimensional hypercube of relevant measurement axes, such as listed above and before reduction. Past published differentiating results are represented as red stars, achieved unpublished results as purple spots and projects at diverse progress advancement levels as blue pie slices. The goal of the mapping is to show the dynamics of the trajectories of the field in its own experimental frame and their direction, speed and other characteristics. We conclude with an invitation to participate and show a sample mapping of the dynamics of the community and a tentative predictive model from community contribution.

  10. Medical imaging.

    PubMed Central

    Kreel, L.

    1991-01-01

    There is now a wide choice of medical imaging to show both focal and diffuse pathologies in various organs. Conventional radiology with plain films, fluoroscopy and contrast medium have many advantages, being readily available with low-cost apparatus and a familiarity that almost leads to contempt. The use of plain films in chest disease and in trauma does not need emphasizing, yet there are still too many occasions when the answer obtainable from a plain radiograph has not been available. The film may have been mislaid, or the examination was not requested, or the radiograph had been misinterpreted. The converse is also quite common. Examinations are performed that add nothing to patient management, such as skull films when CT will in any case be requested or views of the internal auditory meatus and heal pad thickness in acromegaly, to quote some examples. Other issues are more complicated. Should the patient who clinically has gall-bladder disease have more than a plain film that shows gall-stones? If the answer is yes, then why request a plain film if sonography will in any case be required to 'exclude' other pathologies especially of the liver or pancreas? But then should cholecystography, CT or scintigraphy be added for confirmation? Quite clearly there will be individual circumstances to indicate further imaging after sonography but in the vast majority of patients little or no extra information will be added. Statistics on accuracy and specificity will, in the case of gall-bladder pathology, vary widely if adenomyomatosis is considered by some to be a cause of symptoms or if sonographic examinations 'after fatty meals' are performed. The arguments for or against routine contrast urography rather than sonography are similar but the possibility of contrast reactions and the need to limit ionizing radiation must be borne in mind. These diagnostic strategies are also being influenced by their cost and availability; purely pragmatic considerations are not

  11. Medical Imaging.

    ERIC Educational Resources Information Center

    Jaffe, C. Carl

    1982-01-01

    Describes principle imaging techniques, their applications, and their limitations in terms of diagnostic capability and possible adverse biological effects. Techniques include film radiography, computed tomography, nuclear medicine, positron emission tomography (PET), ultrasonography, nuclear magnetic resonance, and digital radiography. PET has…

  12. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    NASA Technical Reports Server (NTRS)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1992-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES, AVHRR, and SSM/I sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  13. Final Report for The University of Texas at Arlington Optical Medical Imaging Section of Advanced Imaging Research Center

    SciTech Connect

    Khosrow Behbehani

    2013-02-26

    The goal of this project was to create state-of-the-art optical medical imaging laboratories for the Biomedical Engineering faculty and student researchers of the University of Texas at Arlington (UTA) on the campus of the University of Texas Southwestern Medical Center (UTSW). This has been successfully achieved. These laboratories provide an unprecedented opportunity for the bioengineers (from UTA) to bring about new breakthroughs in medical imaging using optics. Specifically, three major laboratories have been successfully established and state-of-the-art scientific instruments have been placed in the labs. As a result of this grant, numerous journal and conference publications have been generated, patents for new inventions have been filed and received, and many additional grants for the continuation of the research has been received.

  14. High dynamic range pixel architecture for advanced diagnostic medical x-ray imaging applications

    SciTech Connect

    Izadi, Mohammad Hadi; Karim, Karim S.

    2006-05-15

    The most widely used architecture in large-area amorphous silicon (a-Si) flat panel imagers is a passive pixel sensor (PPS), which consists of a detector and a readout switch. While the PPS has the advantage of being compact and amenable toward high-resolution imaging, small PPS output signals are swamped by external column charge amplifier and data line thermal noise, which reduce the minimum readable sensor input signal. In contrast to PPS circuits, on-pixel amplifiers in a-Si technology reduce readout noise to levels that can meet even the stringent requirements for low noise digital x-ray fluoroscopy (<1000 noise electrons). However, larger voltages at the pixel input cause the output of the amplified pixel to become nonlinear thus reducing the dynamic range. We reported a hybrid amplified pixel architecture based on a combination of PPS and amplified pixel designs that, in addition to low noise performance, also resulted in large-signal linearity and consequently higher dynamic range [K. S. Karim et al., Proc. SPIE 5368, 657 (2004)]. The additional benefit in large-signal linearity, however, came at the cost of an additional pixel transistor. We present an amplified pixel design that achieves the goals of low noise performance and large-signal linearity without the need for an additional pixel transistor. Theoretical calculations and simulation results for noise indicate the applicability of the amplified a-Si pixel architecture for high dynamic range, medical x-ray imaging applications that require switching between low exposure, real-time fluoroscopy and high-exposure radiography.

  15. Intelligent distributed medical image management

    NASA Astrophysics Data System (ADS)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  16. [Advance medical directives].

    PubMed

    Sonnenblick, Moshe

    2002-02-01

    A patient's rights to autonomy and to participate in the decision making process is a fundamental ethical principle. However, for the non-competent patient, participation in decision-making is more problematic. A survey carried out in Israel found that less than half of the offspring of terminally ill elderly patients knew the request of their parents regarding life-supporting measures. A solution to this problem is the use of medical advance directives (MADs). In the U.S.A (in 1991) it was required by a federal law to inform every hospitalized patient of his right to use MADs. The experience from the use of MADs in the USA during the last 10 years show that: 1) Most lay persons as well as medical staff support the use of MADs 2) The rate of the use of MADs is about 20%, and among long term care hospitalized patients it is even higher. 3) Sex, age, level of education, morbidity and income were found to be significant factors. 4) Education on the use of the MADs raised the rate of use. 5) Most of the patients who had MADs did not discuss the issue of life supporting treatment with their physicians. 6) Patients who had MADs received less aggressive treatment with reduced medical cost. 7) There is a preference to write generic MADs. Arguments supporting the use of MADs state that they: extend patient autonomy; relieve patient anxiety regarding unwanted treatment; relieve physicians' anxiety concerning legal liability; reduce interfamily conflicts, and they also lower health care costs. Arguments opposing the use claim that they: violate sanctity of life; promote an adversarial physician-patient relationship; may lead to euthanasia; fail to express the patient's current wishes and may even counteract physicians' values. On the basis of experience in the USA and the positive attitude regarding MADs, it appears that MADs can also be applicable in Israel. PMID:11905092

  17. Medical image file formats.

    PubMed

    Larobina, Michele; Murino, Loredana

    2014-04-01

    Image file format is often a confusing aspect for someone wishing to process medical images. This article presents a demystifying overview of the major file formats currently used in medical imaging: Analyze, Neuroimaging Informatics Technology Initiative (Nifti), Minc, and Digital Imaging and Communications in Medicine (Dicom). Concepts common to all file formats, such as pixel depth, photometric interpretation, metadata, and pixel data, are first presented. Then, the characteristics and strengths of the various formats are discussed. The review concludes with some predictive considerations about the future trends in medical image file formats. PMID:24338090

  18. [Medical image enhancement: Sharpening].

    PubMed

    Kats, L; Vered, M

    2015-04-01

    Most digital imaging systems provide opportunities for image enhancement operations. These are applied to improve the original image and to make the image more appealing visually. One possible means of enhancing digital radiographic image is sharpening. The purpose of sharpening filters is to improve image quality by removing noise or edge enhancement. Sharpening filters may make the radiographic images subjectively more appealing. But during this process, important radiographic features may disappear while artifacts that simulate pathological process might be generated. Therefore, it is of utmost importance for dentists to be familiar with and aware of the use of image enhancement operations, provided by medical digital imaging programs. PMID:26255429

  19. Medical ultrasound imaging.

    PubMed

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy are shown. Systems using both linear and non-linear propagation of ultrasound are described. The blood velocity can also be non-invasively visualized using ultrasound and the basic signal processing for doing this is introduced. Examples for spectral velocity estimation, color flow imaging and the new vector velocity images are presented. PMID:17092547

  20. Medical imaging systems

    DOEpatents

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  1. Imaging and Analytics: The changing face of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Foo, Thomas

    There have been significant technological advances in imaging capability over the past 40 years. Medical imaging capabilities have developed rapidly, along with technology development in computational processing speed and miniaturization. Moving to all-digital, the number of images that are acquired in a routine clinical examination has increased dramatically from under 50 images in the early days of CT and MRI to more than 500-1000 images today. The staggering number of images that are routinely acquired poses significant challenges for clinicians to interpret the data and to correctly identify the clinical problem. Although the time provided to render a clinical finding has not substantially changed, the amount of data available for interpretation has grown exponentially. In addition, the image quality (spatial resolution) and information content (physiologically-dependent image contrast) has also increased significantly with advances in medical imaging technology. On its current trajectory, medical imaging in the traditional sense is unsustainable. To assist in filtering and extracting the most relevant data elements from medical imaging, image analytics will have a much larger role. Automated image segmentation, generation of parametric image maps, and clinical decision support tools will be needed and developed apace to allow the clinician to manage, extract and utilize only the information that will help improve diagnostic accuracy and sensitivity. As medical imaging devices continue to improve in spatial resolution, functional and anatomical information content, image/data analytics will be more ubiquitous and integral to medical imaging capability.

  2. Medical Image Retrieval: A Multimodal Approach

    PubMed Central

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389

  3. Medical Image Retrieval: A Multimodal Approach.

    PubMed

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389

  4. Medical Images Remote Consultation

    NASA Astrophysics Data System (ADS)

    Ferraris, Maurizio; Frixione, Paolo; Squarcia, Sandro

    Teleconsultation of digital images among different medical centers is now a reality. The problem to be solved is how to interconnect all the clinical diagnostic devices in a hospital in order to allow physicians and health physicists, working in different places, to discuss on interesting clinical cases visualizing the same diagnostic images at the same time. Applying World Wide Web technologies, the proposed system can be easily used by people with no specific computer knowledge providing a verbose help to guide the user through the right steps of execution. Diagnostic images are retrieved from a relational database or from a standard DICOM-PACS through the DICOM-WWW gateway allowing connection of the usual Web browsers to DICOM applications via the HTTP protocol. The system, which is proposed for radiotherapy implementation, where radiographies play a fundamental role, can be easily converted to different field of medical applications where a remote access to secure data are compulsory.

  5. Mobile medical image retrieval

    NASA Astrophysics Data System (ADS)

    Duc, Samuel; Depeursinge, Adrien; Eggel, Ivan; Müller, Henning

    2011-03-01

    Images are an integral part of medical practice for diagnosis, treatment planning and teaching. Image retrieval has gained in importance mainly as a research domain over the past 20 years. Both textual and visual retrieval of images are essential. In the process of mobile devices becoming reliable and having a functionality equaling that of formerly desktop clients, mobile computing has gained ground and many applications have been explored. This creates a new field of mobile information search & access and in this context images can play an important role as they often allow understanding complex scenarios much quicker and easier than free text. Mobile information retrieval in general has skyrocketed over the past year with many new applications and tools being developed and all sorts of interfaces being adapted to mobile clients. This article describes constraints of an information retrieval system including visual and textual information retrieval from the medical literature of BioMedCentral and of the RSNA journals Radiology and Radiographics. Solutions for mobile data access with an example on an iPhone in a web-based environment are presented as iPhones are frequently used and the operating system is bound to become the most frequent smartphone operating system in 2011. A web-based scenario was chosen to allow for a use by other smart phone platforms such as Android as well. Constraints of small screens and navigation with touch screens are taken into account in the development of the application. A hybrid choice had to be taken to allow for taking pictures with the cell phone camera and upload them for visual similarity search as most producers of smart phones block this functionality to web applications. Mobile information access and in particular access to images can be surprisingly efficient and effective on smaller screens. Images can be read on screen much faster and relevance of documents can be identified quickly through the use of images contained in

  6. Medical imaging systems

    SciTech Connect

    Frangioni, John V.

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  7. Advanced radiographic imaging techniques.

    NASA Technical Reports Server (NTRS)

    Beal, J. B.; Brown, R. L.

    1973-01-01

    Examination of the nature and operational constraints of conventional X-radiographic and neutron imaging methods, providing a foundation for a discussion of advanced radiographic imaging systems. Two types of solid-state image amplifiers designed to image X rays are described. Operational theory, panel construction, and performance characteristics are discussed. A closed-circuit television system for imaging neutrons is then described and the system design, operational theory, and performance characteristics are outlined. Emphasis is placed on a description of the advantages of these imaging systems over conventional methods.

  8. Wavelets in medical imaging

    SciTech Connect

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  9. Wavelets in medical imaging

    NASA Astrophysics Data System (ADS)

    Zahra, Noor e.; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  10. [Advance in imaging spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Zhou, Jin-song; Jing, Juan-juan

    2011-07-01

    Imaging spectropolarimeter (ISP) is a type of novel photoelectric sensor which integrated the functions of imaging, spectrometry and polarimetry. In the present paper, the concept of the ISP is introduced, and the advances in ISP at home and abroad in recent years is reviewed. The principles of ISPs based on novel devices, such as acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF), are illustrated. In addition, the principles of ISPs developed by adding polarized components to the dispersing-type imaging spectrometer, spatially modulated Fourier transform imaging spectrometer, and computer tomography imaging spectrometer are introduced. Moreover, the trends of ISP are discussed too. PMID:21942063

  11. Medical Image Analysis Facility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  12. Cloud computing in medical imaging.

    PubMed

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing. PMID:23822402

  13. A survey of medical diagnostic imaging technologies

    SciTech Connect

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  14. A survey of medical diagnostic imaging technologies

    SciTech Connect

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  15. Medical alert bracelet (image)

    MedlinePlus

    People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will ... People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will ...

  16. Advanced Geosynchronous Imager

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis

    1999-01-01

    For improved understanding of chaotic processes and the diurnal cycle, an advanced GOES imager must also have the multi-spectral spectral bands used by low earth orbit (LEO) imagers, with on-orbit calibration for all bands. A synergy between GEO and LEO radiometry would enable earth system scientists to fuse the remote sensing data from all the spaceborne platforms. These additional radiometric capabilities are designed to observe important physical processes that vary rapidly and unpredicably: smoke, fires, precipitation, ozone, volcanic ash, cloud phase and height, and surface temperature. We believe the technology now exists to develop an imaging system that can meet future weather reporting and earth system science needs. To meet this need, we propose a design for a comprehensive geosynchronous atmospheric imager. This imager is envisioned to fly on a GOES-N class spacecraft, within the volume, weight and power constraints of a platform similar to GOES-N while delivering 100 times more data and radiometric quality than the GOES-N imager. The higher data rate probably requires its own ground station, which could serve as a systems prototype for NOAA's next generation of operational satellites. For operational compatibility, our proposed advanced GOES imaging system contains the GOES-R requirements as a subset, and the GOES-N imager capabilities (and the sounder's imaging channels) as a further subset.

  17. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  18. Medical alert bracelet (image)

    MedlinePlus

    People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will be able to find. Medical identification products can help ensure proper treatment in an ...

  19. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  20. Advanced medical interventions in pleural disease.

    PubMed

    Bhatnagar, Rahul; Corcoran, John P; Maldonado, Fabien; Feller-Kopman, David; Janssen, Julius; Astoul, Philippe; Rahman, Najib M

    2016-06-01

    The burden of a number of pleural diseases continues to increase internationally. Although many pleural procedures have historically been the domain of interventional radiologists or thoracic surgeons, in recent years, there has been a marked expansion in the techniques available to the pulmonologist. This has been due in part to both technological advancements and a greater recognition that pleural disease is an important subspecialty of respiratory medicine. This article summarises the important literature relating to a number of advanced pleural interventions, including medical thoracoscopy, the insertion and use of indwelling pleural catheters, pleural manometry, point-of-care thoracic ultrasound, and image-guided closed pleural biopsy. We also aim to inform the reader regarding the latest updates to more established procedures such as chemical pleurodesis, thoracentesis and the management of chest drains, drawing on contemporary data from recent randomised trials. Finally, we shall look to explore the challenges faced by those practicing pleural medicine, especially relating to training, as well as possible future directions for the use and expansion of advanced medical interventions in pleural disease. PMID:27246597

  1. Advanced medical imaging protocol workflow-a flexible electronic solution to optimize process efficiency, care quality and patient safety in the National VA Enterprise.

    PubMed

    Medverd, Jonathan R; Cross, Nathan M; Font, Frank; Casertano, Andrew

    2013-08-01

    Radiologists routinely make decisions with only limited information when assigning protocol instructions for the performance of advanced medical imaging examinations. Opportunity exists to simultaneously improve the safety, quality and efficiency of this workflow through the application of an electronic solution leveraging health system resources to provide concise, tailored information and decision support in real-time. Such a system has been developed using an open source, open standards design for use within the Veterans Health Administration. The Radiology Protocol Tool Recorder (RAPTOR) project identified key process attributes as well as inherent weaknesses of paper processes and electronic emulators of paper processes to guide the development of its optimized electronic solution. The design provides a kernel that can be expanded to create an integrated radiology environment. RAPTOR has implications relevant to the greater health care community, and serves as a case model for modernization of legacy government health information systems. PMID:23288437

  2. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  3. Medical hyperspectral imaging: a review

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application.

  4. Medical hyperspectral imaging: a review

    PubMed Central

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  5. Automated medical image segmentation techniques

    PubMed Central

    Sharma, Neeraj; Aggarwal, Lalit M.

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images. PMID:20177565

  6. Anniversary paper: evaluation of medical imaging systems.

    PubMed

    Krupinski, Elizabeth A; Jiang, Yulei

    2008-02-01

    Medical imaging used to be primarily within the domain of radiology, but with the advent of virtual pathology slides and telemedicine, imaging technology is expanding in the healthcare enterprise. As new imaging technologies are developed, they must be evaluated to assess the impact and benefit on patient care. The authors review the hierarchical model of the efficacy of diagnostic imaging systems by Fryback and Thornbury [Med. Decis. Making 11, 88-94 (1991)] as a guiding principle for system evaluation. Evaluation of medical imaging systems encompasses everything from the hardware and software used to acquire, store, and transmit images to the presentation of images to the interpreting clinician. Evaluation of medical imaging systems can take many forms, from the purely technical (e.g., patient dose measurement) to the increasingly complex (e.g., determining whether a new imaging method saves lives and benefits society). Evaluation methodologies cover a broad range, from receiver operating characteristic (ROC) techniques that measure diagnostic accuracy to timing studies that measure image-interpretation workflow efficiency. The authors review briefly the history of the development of evaluation methodologies and review ROC methodology as well as other types of evaluation methods. They discuss unique challenges in system evaluation that face the imaging community today and opportunities for future advances. PMID:18383686

  7. Tooling Techniques Enhance Medical Imaging

    NASA Technical Reports Server (NTRS)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  8. [Medical image compression: a review].

    PubMed

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings. PMID:23715317

  9. A cloud-based medical image repository

    NASA Astrophysics Data System (ADS)

    Maeder, Anthony J.; Planitz, Birgit M.; El Rifai, Diaa

    2012-02-01

    Many widely used digital medical image collections have been established but these are generally used as raw data sources without related image analysis toolsets. Providing associated functionality to allow specific types of operations to be performed on these images has proved beneficial in some cases (e.g. brain image registration and atlases). However, toolset development to provide generic image analysis functions on medical images has tended to be ad hoc, with Open Source options proliferating (e.g. ITK). Our Automated Medical Image Collection Annotation (AMICA) system is both an image repository, to which the research community can contribute image datasets, and a search/retrieval system that uses automated image annotation. AMICA was designed for the Windows Azure platform to leverage the flexibility and scalability of the cloud. It is intended that AMICA will expand beyond its initial pilot implementation (for brain CT, MR images) to accommodate a wide range of modalities and anatomical regions. This initiative aims to contribute to advances in clinical research by permitting a broader use and reuse of medical image data than is currently attainable. For example, cohort studies for cases with particular physiological or phenotypical profiles will be able to source and include enough cases to provide high statistical power, allowing more individualised risk factors to be assessed and thus allowing screening and staging processes to be optimised. Also, education, training and credentialing of clinicians in image interpretation, will be more effective because it will be possible to select instances of images with specific visual aspects, or correspond to types of cases where reading performance improvement is desirable.

  10. Deformable Medical Image Registration: A Survey

    PubMed Central

    Sotiras, Aristeidis; Davatzikos, Christos; Paragios, Nikos

    2013-01-01

    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner. PMID:23739795

  11. Compressive sensing in medical imaging

    PubMed Central

    Graff, Christian G.; Sidky, Emil Y.

    2015-01-01

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed. PMID:25968400

  12. Evolution of Medical Imaging and Computational Demands

    NASA Astrophysics Data System (ADS)

    Deans, Stanley R.

    2000-11-01

    The first medical images produced using x-rays appeared less than a year after the discovery of x-rays by Wilhelm Roentgen in 1895. For over a century x-ray projection radiography has been and continues to be the most widely used diagnostic imaging modality. For over seventy years mathematics and computational methods were used in a general way for image processing and analysis. The really challenging mathematical and computational problems did not emerge until the 1970s with the beginning of computed tomography (CT) to produce images popularly known as CAT (computer-assisted tomography) scans. This was followed rapidly by positron-emission tomography (PET) and single photon emission computed tomography (SPECT). Magnetic resonance imaging (MRI) emerged in the 1980s and is in many ways the most informative medical imaging methodology. Computer-based mathematical methods are fundamental to the success of these imaging modalities, and are increasingly important in several other novel imaging techniques. The technologies involved in each modality are competely different, have varying diagnostic value, and are described by different fundamental equations. The common underlying theme is that of the reconstruction of important characteristics of medical interest from indirect measurements. Several of these methodologies for visualizing internal body anatomy and function will be discussed and related to the evolution of computational capabilities. This brings out aspects of these biomedical imaging technologies where a deeper understanding is needed, and to frontiers where future advances are likely to come from continued research in physics jointly with the mathematical sciences.

  13. Stereoscopic medical imaging collaboration system

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  14. Medical gamma ray imaging

    DOEpatents

    Osborne, Louis S.; Lanza, Richard C.

    1984-01-01

    A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.

  15. Advanced medical video services through context-aware medical networks.

    PubMed

    Doukas, Charalampos N; Maglogiannis, Ilias; Pliakas, Thomas

    2007-01-01

    The aim of this paper is to present a framework for advanced medical video delivery services, through network and patient-state awareness. Under this scope a context-aware medical networking platform is described. The developed platform enables proper medical video data coding and transmission according to both a) network availability and/or quality and b) patient status, optimizing thus network performance and telediagnosis. An evaluation platform has been developed based on scalable H.264 coding of medical videos. Corresponding results of video transmission over a WiMax network have proved the effectiveness and efficiency of the platform providing proper video content delivery. PMID:18002643

  16. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  17. Medical technology advances from space research.

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1971-01-01

    NASA-sponsored medical R & D programs for space applications are reviewed with particular attention to the benefits of these programs to earthbound medical services and to the general public. Notable among the results of these NASA programs is an integrated medical laboratory equipped with numerous advanced systems such as digital biotelemetry and automatic visual field mapping systems, sponge electrode caps for electroencephalograms, and sophisticated respiratory analysis equipment.

  18. Neural networks: Application to medical imaging

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  19. An online interactive simulation system for medical imaging education.

    PubMed

    Dikshit, Aditya; Wu, Dawei; Wu, Chunyan; Zhao, Weizhao

    2005-09-01

    This report presents a recently developed web-based medical imaging simulation system for teaching students or other trainees who plan to work in the medical imaging field. The increased importance of computer and information technology widely applied to different imaging techniques in clinics and medical research necessitates a comprehensive medical imaging education program. A complete tutorial of simulations introducing popular imaging modalities, such as X-ray, MRI, CT, ultrasound and PET, forms an essential component of such an education. Internet technologies provide a vehicle to carry medical imaging education online. There exist a number of internet-based medical imaging hyper-books or online documentations. However, there are few providing interactive computational simulations. We focus on delivering knowledge of the physical principles and engineering implementation of medical imaging techniques through an interactive website environment. The online medical imaging simulation system presented in this report outlines basic principles underlying different imaging techniques and image processing algorithms and offers trainees an interactive virtual laboratory. For education purposes, this system aims to provide general understanding of each imaging modality with comprehensive explanations, ample illustrations and copious references as its thrust, rather than complex physics or detailed math. This report specifically describes the development of the tutorial for commonly used medical imaging modalities. An internet-accessible interface is used to simulate various imaging algorithms with user-adjustable parameters. The tutorial is under the MATLAB Web Server environment. Macromedia Director MX is used to develop interactive animations integrating theory with graphic-oriented simulations. HTML and JavaScript are used to enable a user to explore these modules online in a web browser. Numerous multiple choice questions, links and references for advanced study are

  20. Recent advances in medical ultrasound

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence

    2014-03-01

    Ultrasound has become one of the most widely used imaging modalities in medicine; yet, before ultrasound-imaging systems became available, high intensity ultrasound was used as early as the 1950s to ablate regions in the brains of human patients. Recently, a variety of novel applications of ultrasound have been developed that include site-specific and ultrasound-mediated drug delivery, acoustocautery, lipoplasty, histotripsy, tissue regeneration, and bloodless surgery, among many others. This lecture will review several new applications of therapeutic ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors.

  1. Contextual medical-image viewer

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Furuie, Sergio S.

    2004-04-01

    One of the greatest difficulties of dealing with medical images is their distinct characteristics, in terms of generation process and noise that requires different forms of treatment for visualization and processing. Besides that, medical images are only a compounding part of the patient"s history, which should be accessible for the user in an understandable way. Other factors that can be used to enhance the user capability and experience are: the computational power of the client machine; available knowledge about the case; if the access is local or remote and what kind of user is accessing the system (physician, nurse, administrator, etc...). These information compose the context of an application and should define its behavior during execution time. In this article, we present the architecture of a viewer that takes into account the contextual information that is present at the moment of execution. We also present a viewer of X-Ray Angiographic images that uses contextual information about the client's hardware and the kind of user to, if necessary, reduce the image size and hide demographic information of the patient. The proposed architecture is extensible, allowing the inclusion of new tools and viewers, being adaptive along time to the evolution of the medical systems.

  2. Advancing biomedical imaging

    PubMed Central

    Weissleder, Ralph; Nahrendorf, Matthias

    2015-01-01

    Imaging reveals complex structures and dynamic interactive processes, located deep inside the body, that are otherwise difficult to decipher. Numerous imaging modalities harness every last inch of the energy spectrum. Clinical modalities include magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, and light-based methods [endoscopy and optical coherence tomography (OCT)]. Research modalities include various light microscopy techniques (confocal, multiphoton, total internal reflection, superresolution fluorescence microscopy), electron microscopy, mass spectrometry imaging, fluorescence tomography, bioluminescence, variations of OCT, and optoacoustic imaging, among a few others. Although clinical imaging and research microscopy are often isolated from one another, we argue that their combination and integration is not only informative but also essential to discovering new biology and interpreting clinical datasets in which signals invariably originate from hundreds to thousands of cells per voxel. PMID:26598657

  3. Advanced image memory architecture

    NASA Astrophysics Data System (ADS)

    Vercillo, Richard; McNeill, Kevin M.

    1994-05-01

    A workstation for radiographic images, known as the Arizona Viewing Console (AVC), was developed at the University of Arizona Health Sciences Center in the Department of Radiology. This workstation has been in use as a research tool to aid us in investigating how a radiologist interacts with a workstation, to determine which image processing features are required to aid the radiologist, to develop user interfaces and to support psychophysical and clinical studies. Results from these studies have show a need to increase the current image memory's available storage in order to accommodate high resolution images. The current triple-ported image memory can be allocated to store any number of images up to a combined total of 4 million pixels. Over the past couple of years, higher resolution images have become easier to generate with the advent of laser digitizers and computed radiology systems. As part of our research, a larger 32 million pixel image memory for AVC has been designed to replace the existing image memory.

  4. Digital diagnosis of medical images

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Kuismin, Raimo; Jormalainen, Raimo; Dastidar, Prasun; Frey, Harry; Eskola, Hannu

    2001-08-01

    The popularity of digital imaging devices and PACS installations has increased during the last years. Still, images are analyzed and diagnosed using conventional techniques. Our research group begun to study the requirements for digital image diagnostic methods to be applied together with PACS systems. The research was focused on various image analysis procedures (e.g., segmentation, volumetry, 3D visualization, image fusion, anatomic atlas, etc.) that could be useful in medical diagnosis. We have developed Image Analysis software (www.medimag.net) to enable several image-processing applications in medical diagnosis, such as volumetry, multimodal visualization, and 3D visualizations. We have also developed a commercial scalable image archive system (ActaServer, supports DICOM) based on component technology (www.acta.fi), and several telemedicine applications. All the software and systems operate in NT environment and are in clinical use in several hospitals. The analysis software have been applied in clinical work and utilized in numerous patient cases (500 patients). This method has been used in the diagnosis, therapy and follow-up in various diseases of the central nervous system (CNS), respiratory system (RS) and human reproductive system (HRS). In many of these diseases e.g. Systemic Lupus Erythematosus (CNS), nasal airways diseases (RS) and ovarian tumors (HRS), these methods have been used for the first time in clinical work. According to our results, digital diagnosis improves diagnostic capabilities, and together with PACS installations it will become standard tool during the next decade by enabling more accurate diagnosis and patient follow-up.

  5. Medical Imaging of Hyperpolarized Gases

    NASA Astrophysics Data System (ADS)

    Miller, G. Wilson

    2009-08-01

    Since the introduction of hyperpolarized 3He and 129Xe as gaseous MRI contrast agents more than a decade ago, a rich variety of imaging techniques and medical applications have been developed. Magnetic resonance imaging of the inhaled gas depicts ventilated lung airspaces with unprecedented detail, and allows one to track airflow and pulmonary mechanics during respiration. Information about lung structure and function can also be obtained using the physical properties of the gas, including spin relaxation in the presence of oxygen, restricted diffusion inside the alveolar airspaces, and the NMR frequency shift of xenon dissolved in blood and tissue.

  6. Archimedes, an archive of medical images.

    PubMed

    Tahmoush, Dave; Samet, Hanan

    2006-01-01

    We present a medical image and medical record database for the storage, research, transmission, and evaluation of medical images. Medical images from any source that supports the DICOM standard can be stored and accessed, as well as associated analysis and annotations. Retrieval is based on patient info, date, doctor's annotations, features in the images, or a spatial combination. This database supports the secure transmission of sensitive data for tele-medicine and follows all HIPPA regulations. PMID:17238733

  7. Modern Imaging Technology: Recent Advances

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  8. Despeckling of Medical Ultrasound Images

    PubMed Central

    Michailovich, Oleg V.; Tannenbaum, Allen

    2013-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters—wavelet denoising, total variation filtering, and anisotropic diffusion—and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments. PMID:16471433

  9. Despeckling of medical ultrasound images.

    PubMed

    Michailovich, Oleg V; Tannenbaum, Allen

    2006-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters--wavelet denoising, total variation filtering, and anisotropic diffusion--and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments. PMID:16471433

  10. Novel Algorithm for Classification of Medical Images

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Juneja, Monika

    2010-11-01

    Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.

  11. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  12. Calibrated parametric medical ultrasound imaging.

    PubMed

    Valckx, F M; Thijsse, J M; van Geemen, A J; Rotteveel, J J; Mullaart, R

    2000-01-01

    The goal of this study was to develop a calibrated on-line technique to extract as much diagnostically-relevant information as possible from conventional video-format echograms. The final aim is to improve the diagnostic potentials of medical ultrasound. Video-output images were acquired by a frame grabber board incorporated in a multiprocessor workstation. Calibration images were obtained from a stable tissue-mimicking phantom with known acoustic characteristics. Using these images as reference, depth dependence of the gray level could fairly be corrected for the transducer performance characteristics, for the observer-dependent equipment settings and for attenuation in the examined tissues. Second-order statistical parameters still displayed some nonconsistent depth dependencies. The results obtained with two echoscanners for the same phantom were different; hence, an a posteriori normalization of clinical data with the phantom data is indicated. Prior to processing of clinical echograms,. the anatomical reflections and echoless voids were removed automatically. The final step in the preprocessing concerned the compensation of the overall attenuation in the tissue. A 'sliding window' processing was then applied to a region of interest (ROI) in the 'back-scan converted' images. A number of first and second order statistical texture parameters and acoustical parameters were estimated in each window and assigned to the central pixel. This procedure results in a set of new 'parametric' images of the ROI, which can be inserted in the original echogram (gray value, color) or presented as a color overlay. A clinical example is presented for illustrating the potentials of the developed technique. Depending on the choice of the parameters, four full resolution calibrated parametric images can be calculated and simultaneously displayed within 5 to 20 seconds. In conclusion, an on-line technique has been developed to estimate acoustic and texture parameters with a reduced

  13. Advanced imaging and visualization in gastrointestinal disorders

    PubMed Central

    Gilja, Odd Helge; Hatlebakk, Jan G; Ødegaard, Svein; Berstad, Arnold; Viola, Ivan; Giertsen, Christopher; Hausken, Trygve; Gregersen, Hans

    2007-01-01

    Advanced medical imaging and visualization has a strong impact on research and clinical decision making in gastroenterology. The aim of this paper is to show how imaging and visualization can disclose structural and functional abnormalities of the gastrointestinal (GI) tract. Imaging methods such as ultrasonography, magnetic resonance imaging (MRI), endoscopy, endosonography, and elastography will be outlined and visualization with Virtual Reality and haptic methods. Ultrasonography is a versatile method that can be used to evaluate antral contractility, gastric emptying, transpyloric flow, gastric configuration, intragastric distribution of meals, gastric accommodation and strain measurement of the gastric wall. Advanced methods for endoscopic ultrasound, three-dimensional (3D) ultrasound, and tissue Doppler (Strain Rate Imaging) provide detailed information of the GI tract. Food hypersensitivity reactions including gastrointestinal reactions due to food allergy can be visualized by ultrasonography and MRI. Development of multi-parametric and multi-modal imaging may increase diagnostic benefits and facilitate fusion of diagnostic and therapeutic imaging in the future. PMID:17457973

  14. Medical Imaging Physics, 4th Edition

    NASA Astrophysics Data System (ADS)

    Hendee, William R.; Ritenour, E. Russell

    2002-05-01

    This comprehensive publication covers all aspects of image formation in modern medical imaging modalities, from radiography, fluoroscopy, and computed tomography, to magnetic resonance imaging and ultrasound. It addresses the techniques and instrumentation used in the rapidly changing field of medical imaging. Now in its fourth edition, this text provides the reader with the tools necessary to be comfortable with the physical principles, equipment, and procedures used in diagnostic imaging, as well as appreciate the capabilities and limitations of the technologies.

  15. NASA Technology Finds Uses in Medical Imaging

    NASA Video Gallery

    NASA software has been incorporated into a new medical imaging device that could one day aid in the interpretation of mammograms, ultrasounds, and other medical imagery. The new MED-SEG system, dev...

  16. Medical advances during the Civil War.

    PubMed

    Blaisdell, F W

    1988-09-01

    The contributions to medical care that developed during the Civil War have not been fully appreciated, probably because the quality of care administered was compared against modern standards rather than the standards of the time. The specific accomplishments that constituted major advances were as follows. 1. Accumulation of adequate records and detailed reports for the first time permitted a complete military medical history. This led to the publication of the Medical and Surgical History of the War of the Rebellion, which was identified in Europe as the first major academic accomplishment by US medicine. 2. Development of a system of managing mass casualties, including aid stations, field hospitals, and general hospitals, set the pattern for management of the wounded in World War I, World War II, and the Korean War. 3. The pavilion-style general hospitals, which were well ventilated and clean, were copied in the design of large civilian hospitals over the next 75 years. 4. The importance of immediate, definitive treatment of wounds and fractures was demonstrated and it was shown that major operative procedures, such as amputation, were optimally carried out in the first 24 hours after wounding. 5. The importance of sanitation and hygiene in preventing infection, disease, and death among the troops in the field was demonstrated. 6. Female nurses were introduced to hospital care and Catholic orders entered the hospital business. 7. The experience and training of thousands of physicians were upgraded and they were introduced to new ideas and standards of care. These included familiarity with prevention and treatment of infectious disease, with anesthetic agents, and with surgical principles that rapidly advanced the overall quality of American medical practice. 8. The Sanitary Commission was formed, a civilian-organized soldier's relief society that set the pattern for the development of the American Red Cross. PMID:3046560

  17. A survey of GPU-based medical image computing techniques.

    PubMed

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming; Wang, Defeng

    2012-09-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  18. A survey of GPU-based medical image computing techniques

    PubMed Central

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming

    2012-01-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  19. Synergistic advances in diagnostic and therapeutic medical ultrasound

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    2003-04-01

    Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.

  20. A web service for enabling medical image retrieval integrated into a social medical image sharing platform.

    PubMed

    Niinimäki, Marko; Zhou, Xin; de la Vega, Enrique; Cabrer, Miguel; Müller, Henning

    2010-01-01

    Content-based visual image access is in the process from a research domain towards real applications. So far, most image retrieval applications have been in one specialized domain such as lung CTs as diagnosis aid or for classification of general images based on anatomic region, modality, and view. This article describes the use of a content-based image retrieval system in connection with the medical image sharing platform MEDTING, so a data set with a very large variety. Similarity retrieval is possible for all cases of the social image sharing platform, so cases can be linked by either visual similarity or similarity in keywords. The visual retrieval search is based on the GIFT (GNU Image Finding Tool). The technology for updating the index with new images added by users employs RSS (Really Simple Syndication) feeds. The ARC (Advanced Resource Connector) middleware is used for the implementation of a web service for similarity retrieval, simplifying the integration of this service. Novelty of this article is the application/integration and image updating strategy. Retrieval methods themselves employ existing techniques that are all open source and can easily be reproduced. PMID:20841889

  1. Recent imaging advances in neurology.

    PubMed

    Rocchi, Lorenzo; Niccolini, Flavia; Politis, Marios

    2015-09-01

    Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients. PMID:25808503

  2. Advances in multimodality molecular imaging

    PubMed Central

    Zaidi, Habib; Prasad, Rameshwar

    2009-01-01

    Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a “one-stop shop” and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed. PMID:20098557

  3. [Medical imaging: its medical economics and recent situation in Japan.].

    PubMed

    Imai, Keiko

    2006-01-01

    Two fields of radiology, medical imaging and radiation therapy, are coded separately in medical fee system, and the health care statistics of 2003 shows that expenditure on the former was 5.2% of the whole medical cost and the latter 0.28%. Introduction of DPC, an abbreviation of Diagnostic Procedure Combination, was carried out in 2003, which was an essential reform of medical fee payment system that have been managed on fee-for-service base throughout, and 22% of beds for acute patients care are under the control of DPC payment in 2006. As medical imaging procedures are basically classified in inclusive payment in DPC system, their accurate statistics cannot be figured out because of the lack of description of individual procedures in DPC bills. Policy-making of medical economics will suffer a great loss from the deficiency of detailed data in published statistics. Important role in clinical diagnoses of CT and MR results an increase of fee paid for them up to more than half of total expenditure on medical imaging. So, dominant reduction of examination fee has been done for MR imaging, especially in 2002, to reduce the total cost of medical imaging. Follows could be featured as major topics of medical imaging in health insurance system, (a) fee is newly assigned for electronic handling of CT-and-MR images, and nuclear medicine, and (b) there is still a mismatch between actual payment and quality of medical facilities. As matters related to medical imaging, the followings should be stressed; (a) numbers of CT and MR units per population are dominantly high among OECD countries, but, those controlled by qualified radiologists are at the average level of those countries, (b) there is a big difference of MR examination quality among medical facilities, and (c) 76% of newly-installed high-end MR units are supplied by foreign industries. Hopefully, there will be an increase in the concern to medical fee payment system and health care cost because they possibly

  4. A survey of medical image registration - under review.

    PubMed

    Viergever, Max A; Maintz, J B Antoine; Klein, Stefan; Murphy, Keelin; Staring, Marius; Pluim, Josien P W

    2016-10-01

    A retrospective view on the past two decades of the field of medical image registration is presented, guided by the article "A survey of medical image registration" (Maintz and Viergever, 1998). It shows that the classification of the field introduced in that article is still usable, although some modifications to do justice to advances in the field would be due. The main changes over the last twenty years are the shift from extrinsic to intrinsic registration, the primacy of intensity-based registration, the breakthrough of nonlinear registration, the progress of inter-subject registration, and the availability of generic image registration software packages. Two problems that were called urgent already 20 years ago, are even more urgent nowadays: Validation of registration methods, and translation of results of image registration research to clinical practice. It may be concluded that the field of medical image registration has evolved, but still is in need of further development in various aspects. PMID:27427472

  5. Developing a medical image content repository for e-learning.

    PubMed

    Hsiao, Chia-Hung; Hsu, Tien-Cheng; Chang, Jing Ning; Yang, Stephen J H; Young, Shuenn-Tsong; Chu, Woei Chyn

    2006-09-01

    The integration of medical informatics and e-learning systems could provide many advanced applications including training, knowledge management, telemedicine, etc. Currently, both the domains of e-learning and medical image have sophisticated specifications and standards. It is a great challenge to bring about integration. In this paper, we describe the development of a Web interface for searching and viewing medical images that are stored in standard medical image servers. With the creation of a Web solution, we have reduced the overheads of integration. We have packaged Digital Imaging and Communications in Medicine (DICOM) network services as a component that can be used via a Web server. The Web server constitutes a content repository for searching, editing, and storing Web-based medical image content. This is a simple method by which the use of Picture Archiving and Communication System (PACS) can be extended. We show that the content repository can easily interact and integrate with a learning system. With the integration, the user can easily generate and assign medical image content for e-learning. A Web solution might be the simplest way for system integration. The demonstration in this paper should be useful as a method of expanding the usage of medical information. The construction of a Web-based repository and integrated with a learning system may be also applicable to other domains. PMID:16710797

  6. Medical imaging V: Image capture, formatting, and display

    SciTech Connect

    Kim, Y.

    1991-01-01

    This book is covered under the following topics: Digital image display I-V; Quality assurance I-V; Clinical image presentation I-V; Imaging systems; Image compression; Workstations; and Medical diagnostic imaging support system for military medicine and other federal agencies.

  7. Medical Imaging Field of Magnetic Resonance Imaging: Identification of Specialties within the Field

    ERIC Educational Resources Information Center

    Grey, Michael L.

    2009-01-01

    This study was conducted to determine if specialty areas are emerging in the magnetic resonance imaging (MRI) profession due to advancements made in the medical sciences, imaging technology, and clinical applications used in MRI that would require new developments in education/training programs and national registry examinations. In this…

  8. Four challenges in medical image analysis from an industrial perspective.

    PubMed

    Weese, Jürgen; Lorenz, Cristian

    2016-10-01

    Today's medical imaging systems produce a huge amount of images containing a wealth of information. However, the information is hidden in the data and image analysis algorithms are needed to extract it, to make it readily available for medical decisions and to enable an efficient work flow. Advances in medical image analysis over the past 20 years mean there are now many algorithms and ideas available that allow to address medical image analysis tasks in commercial solutions with sufficient performance in terms of accuracy, reliability and speed. At the same time new challenges have arisen. Firstly, there is a need for more generic image analysis technologies that can be efficiently adapted for a specific clinical task. Secondly, efficient approaches for ground truth generation are needed to match the increasing demands regarding validation and machine learning. Thirdly, algorithms for analyzing heterogeneous image data are needed. Finally, anatomical and organ models play a crucial role in many applications, and algorithms to construct patient-specific models from medical images with a minimum of user interaction are needed. These challenges are complementary to the on-going need for more accurate, more reliable and faster algorithms, and dedicated algorithmic solutions for specific applications. PMID:27344939

  9. Content-Based Medical Image Retrieval

    NASA Astrophysics Data System (ADS)

    Müller, Henning; Deserno, Thomas M.

    This chapter details the necessity for alternative access concepts to the currently mainly text-based methods in medical information retrieval. This need is partly due to the large amount of visual data produced, the increasing variety of medical imaging data and changing user patterns. The stored visual data contain large amounts of unused information that, if well exploited, can help diagnosis, teaching and research. The chapter briefly reviews the history of image retrieval and its general methods before technologies that have been developed in the medical domain are focussed. We also discuss evaluation of medical content-based image retrieval (CBIR) systems and conclude with pointing out their strengths, gaps, and further developments. As examples, the MedGIFT project and the Image Retrieval in Medical Applications (IRMA) framework are presented.

  10. Wavelet compression efficiency investigation for medical images

    NASA Astrophysics Data System (ADS)

    Moryc, Marcin; Dziech, Wiera

    2006-03-01

    Medical images are acquired or stored digitally. These images can be very large in size and number, and compression can increase the speed of transmission and reduce the cost of storage. In the paper analysis of medical images' approximation using the transform method based on wavelet functions is investigated. The tested clinical images are taken from multiple anatomical regions and modalities (Computer Tomography CT, Magnetic Resonance MR, Ultrasound, Mammography and X-Ray images). To compress medical images, the threshold criterion has been applied. The mean square error (MSE) is used as a measure of approximation quality. Plots of the MSE versus compression percentage and approximated images are included for comparison of approximation efficiency.

  11. Denoising Medical Images using Calculus of Variations

    PubMed Central

    Kohan, Mahdi Nakhaie; Behnam, Hamid

    2011-01-01

    We propose a method for medical image denoising using calculus of variations and local variance estimation by shaped windows. This method reduces any additive noise and preserves small patterns and edges of images. A pyramid structure-texture decomposition of images is used to separate noise and texture components based on local variance measures. The experimental results show that the proposed method has visual improvement as well as a better SNR, RMSE and PSNR than common medical image denoising methods. Experimental results in denoising a sample Magnetic Resonance image show that SNR, PSNR and RMSE have been improved by 19, 9 and 21 percents respectively. PMID:22606674

  12. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. PMID:20713305

  13. Autoradiographic image intensification - Applications in medical radiography

    NASA Technical Reports Server (NTRS)

    Askins, B. S.

    1978-01-01

    The image of an 80 to 90 percent underexposed medical radiograph can be increased to readable density and contrast by autoradiographic image intensification. The technique consists of combining the image silver of the radiograph with a radioactive compound, thiourea labeled with sulfur-35, and then making an autoradiograph from the activated negative.

  14. Parallel Digital Watermarking Process on Ultrasound Medical Images in Multicores Environment

    PubMed Central

    Khor, Hui Liang; Liew, Siau-Chuin; Zain, Jasni Mohd.

    2016-01-01

    With the advancement of technology in communication network, it facilitated digital medical images transmitted to healthcare professionals via internal network or public network (e.g., Internet), but it also exposes the transmitted digital medical images to the security threats, such as images tampering or inserting false data in the images, which may cause an inaccurate diagnosis and treatment. Medical image distortion is not to be tolerated for diagnosis purposes; thus a digital watermarking on medical image is introduced. So far most of the watermarking research has been done on single frame medical image which is impractical in the real environment. In this paper, a digital watermarking on multiframes medical images is proposed. In order to speed up multiframes watermarking processing time, a parallel watermarking processing on medical images processing by utilizing multicores technology is introduced. An experiment result has shown that elapsed time on parallel watermarking processing is much shorter than sequential watermarking processing. PMID:26981111

  15. Parallel Digital Watermarking Process on Ultrasound Medical Images in Multicores Environment.

    PubMed

    Khor, Hui Liang; Liew, Siau-Chuin; Zain, Jasni Mohd

    2016-01-01

    With the advancement of technology in communication network, it facilitated digital medical images transmitted to healthcare professionals via internal network or public network (e.g., Internet), but it also exposes the transmitted digital medical images to the security threats, such as images tampering or inserting false data in the images, which may cause an inaccurate diagnosis and treatment. Medical image distortion is not to be tolerated for diagnosis purposes; thus a digital watermarking on medical image is introduced. So far most of the watermarking research has been done on single frame medical image which is impractical in the real environment. In this paper, a digital watermarking on multiframes medical images is proposed. In order to speed up multiframes watermarking processing time, a parallel watermarking processing on medical images processing by utilizing multicores technology is introduced. An experiment result has shown that elapsed time on parallel watermarking processing is much shorter than sequential watermarking processing. PMID:26981111

  16. An efficient medical image compression scheme.

    PubMed

    Li, Xiaofeng; Shen, Yi; Ma, Jiachen

    2005-01-01

    In this paper, a fast lossless compression scheme is presented for the medical image. This scheme consists of two stages. In the first stage, a Differential Pulse Code Modulation (DPCM) is used to decorrelate the raw image data, therefore increasing the compressibility of the medical image. In the second stage, an effective scheme based on the Huffman coding method is developed to encode the residual image. This newly proposed scheme could reduce the cost for the Huffman coding table while achieving high compression ratio. With this algorithm, a compression ratio higher than that of the lossless JPEG method for image can be obtained. At the same time, this method is quicker than the lossless JPEG2000. In other words, the newly proposed algorithm provides a good means for lossless medical image compression. PMID:17280962

  17. THz Medical Imaging: in vivo Hydration Sensing

    PubMed Central

    Taylor, Zachary D.; Singh, Rahul S.; Bennett, David B.; Tewari, Priyamvada; Kealey, Colin P.; Bajwa, Neha; Culjat, Martin O.; Stojadinovic, Alexander; Lee, Hua; Hubschman, Jean-Pierre; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    The application of THz to medical imaging is experiencing a surge in both interest and federal funding. A brief overview of the field is provided along with promising and emerging applications and ongoing research. THz imaging phenomenology is discussed and tradeoffs are identified. A THz medical imaging system, operating at ~525 GHz center frequency with ~125 GHz of response normalized bandwidth is introduced and details regarding principles of operation are provided. Two promising medical applications of THz imaging are presented: skin burns and cornea. For burns, images of second degree, partial thickness burns were obtained in rat models in vivo over an 8 hour period. These images clearly show the formation and progression of edema in and around the burn wound area. For cornea, experimental data measuring the hydration of ex vivo porcine cornea under drying is presented demonstrating utility in ophthalmologic applications. PMID:26085958

  18. Recent advances in liver imaging.

    PubMed

    Mutter, D; Soler, L; Marescaux, J

    2010-10-01

    Liver surgery remains a difficult challenge in which preoperative data analysis and strategy definition may play a significant role in the success of the procedure. Medical image processing led to a major improvement of patient care by guiding the surgical gesture. From this initial data, new technologies of virtual reality and augmented reality can increase the potential of such images. The 3D modeling of the liver of patients from their CT scan or MRI thus allows an improved surgical planning. Simulation allows the procedure to be simulated preoperatively and offers the opportunity to train the surgical gesture before carrying it out. These three preoperative steps can be used intraoperatively thanks to the development of augmented reality, which consists of superimposing the preoperative 3D modeling of the patient onto the real intraoperative view of the patient and his/her organs. Augmented reality provides surgeons with a transparent view of the patient. This facilitated the intraoperative identification of the vascular anatomy and the control of the segmental arteries and veins in liver surgery, thus preventing intraoperative bleeding. It can also offer guidance due to the virtual improvement of their real surgical tools, which are tracked in real-time during the procedure. During the surgical procedure, augmented reality, therefore, offers surgeons a transparent view of their patient, which will lead to the automation of the most complex maneuvers. The new ways of processing and analyzing liver images have dramatically changed the approach to liver surgery. PMID:20932146

  19. From radio-astronomy to medical imaging.

    PubMed

    Peters, T M

    1991-12-01

    A common thread in much of the medical imaging that has developed over the past 20 years has been the Fourier transform. It was Richard Bates' interest in radio-interferometry, as well as his fascination with problems of medical imaging that prompted an initial interest in applying Fourier techniques to medical imaging in general and to Computed Tomography in particular. This resulted 20 years ago in one of the earliest technical papers advocating Fourier techniques for reconstructing cross-sections from radiographic projections (Bates and Peters, NZ J Science 14:883-896, 1971). Since those early days, medical imaging has explored into a multi-billion dollar industry. The CT scanner has become the workhorse imaging modality in the radiology department, while its more recent relative, the MR scanner, is rapidly gaining ground as a technique of even greater importance. Richard Bates, with his team of "Medical Imagers" was a very significant force in the development of the field of Medical Imaging as we know it today. This paper attempts to chronicle the genesis of this process from the personal perspective of the author. PMID:1789769

  20. Image registration method for medical image sequences

    DOEpatents

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  1. Allergic reactions to medication (image)

    MedlinePlus

    A true allergy to a medication is different than a simple adverse reaction to the drug. The allergic reaction occurs when the immune system, having been exposed to the drug before, creates antibodies to ...

  2. Web-based medical image archive system

    NASA Astrophysics Data System (ADS)

    Suh, Edward B.; Warach, Steven; Cheung, Huey; Wang, Shaohua A.; Tangiral, Phanidral; Luby, Marie; Martino, Robert L.

    2002-05-01

    This paper presents a Web-based medical image archive system in three-tier, client-server architecture for the storage and retrieval of medical image data, as well as patient information and clinical data. The Web-based medical image archive system was designed to meet the need of the National Institute of Neurological Disorders and Stroke for a central image repository to address questions of stroke pathophysiology and imaging biomarkers in stroke clinical trials by analyzing images obtained from a large number of clinical trials conducted by government, academic and pharmaceutical industry researchers. In the database management-tier, we designed the image storage hierarchy to accommodate large binary image data files that the database software can access in parallel. In the middle-tier, a commercial Enterprise Java Bean server and secure Web server manages user access to the image database system. User-friendly Web-interfaces and applet tools are provided in the client-tier for easy access to the image archive system over the Internet. Benchmark test results show that our three-tier image archive system yields fast system response time for uploading, downloading, and querying the image database.

  3. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  4. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  5. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  6. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  7. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  8. Astronomy helps advance medical diagnosis techniques

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Effective treatment of cancer relies on the early detection and removal of cancerous cells. Unfortunately, this is when they are hardest to spot. In the case of breast cancer, now the most prevalent form of cancer in the United Kingdom, cancer cells tend to congregate in the lymph nodes, from where they can rapidly spread throughout the rest of the body. Current medical equipment can give doctors only limited information on tissue health. A surgeon must then perform an exploratory operation to try to identify the diseased tissue. If that is possible, the diseased tissue will be removed. If identification is not possible, the doctor may be forced to take away the whole of the lymphatic system. Such drastic treatment can then cause side effects, such as excessive weight gain, because it throws the patient's hormones out of balance. Now, members of the Science Payloads Technology Division of the Research and Science Support Department, at ESA's science, technology and engineering research centre (ESTEC) in the Netherlands, have developed a new X-ray camera that could make on-the-spot diagnoses and pinpoint cancerous areas to guide surgeons. Importantly, it would be a small device that could be used continuously during operations. "There is no photography involved in the camera we envisage. It will be completely digital, so the surgeon will study the whole lymphatic system and the potentially cancerous parts on his monitor. He then decides which parts he removes," says Dr. Tone Peacock, Head of the Science Payloads Technology Division. The ESA team were trying to find a way to make images using high-energy X-rays because some celestial objects give out large quantities of X-rays but little visible light. To see these, astronomers need to use X-ray cameras. Traditionally, this has been a bit of a blind spot for astronomers. ESA's current X-ray telescope, XMM-Newton, is in orbit now, observing low energy, so-called 'soft' X-rays. European scientists have always wanted to

  9. Current perspectives in medical image perception

    PubMed Central

    Krupinski, Elizabeth A.

    2013-01-01

    Medical images constitute a core portion of the information a physician utilizes to render diagnostic and treatment decisions. At a fundamental level, this diagnostic process involves two basic processes: visually inspecting the image (visual perception) and rendering an interpretation (cognition). The likelihood of error in the interpretation of medical images is, unfortunately, not negligible. Errors do occur, and patients’ lives are impacted, underscoring our need to understand how physicians interact with the information in an image during the interpretation process. With improved understanding, we can develop ways to further improve decision making and, thus, to improve patient care. The science of medical image perception is dedicated to understanding and improving the clinical interpretation process. PMID:20601701

  10. Advance directive decision making among medical inpatients.

    PubMed

    Rein, A J; Harshman, D L; Frick, T; Phillips, J M; Lewis, S; Nolan, M T

    1996-01-01

    Per the Patient Self-Determination Act of 1991, hospitals are required to ascertain whether patients have an advance directive (AD). At this point, factors prompting patients to issue ADs have not been studied. The purpose of this study was to describe patients' understanding of ADs as well as the process patients used to arrive at their decisions to implement an AD. A stratified random sample of 26 patients from two intensive care units, one general medical unit, one general cardiac unit, and one acquired immunodeficiency unit were selected for participation. Patients were asked a series of open-ended questions to determine their knowledge and understanding of ADs. The constant comparative method was used to review the transcripts. It was found that only 31 per cent of patients had issued an AD, and 20% had learned of ADs for the first time during their hospitalization. Response analysis showed four phases of AD decision making: evaluation of illness, establishment of priorities, consideration of implications of the directives, and selection or rejection of directives. In conclusion, patients continue to have limited understanding of ADs and their implications. Continued investigation will elucidate the best strategies to educate patients about this topic. PMID:8583031

  11. Shaping the future through innovations: From medical imaging to precision medicine.

    PubMed

    Comaniciu, Dorin; Engel, Klaus; Georgescu, Bogdan; Mansi, Tommaso

    2016-10-01

    Medical images constitute a source of information essential for disease diagnosis, treatment and follow-up. In addition, due to its patient-specific nature, imaging information represents a critical component required for advancing precision medicine into clinical practice. This manuscript describes recently developed technologies for better handling of image information: photorealistic visualization of medical images with Cinematic Rendering, artificial agents for in-depth image understanding, support for minimally invasive procedures, and patient-specific computational models with enhanced predictive power. Throughout the manuscript we will analyze the capabilities of such technologies and extrapolate on their potential impact to advance the quality of medical care, while reducing its cost. PMID:27349829

  12. Astronomy helps advance medical diagnosis techniques

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Effective treatment of cancer relies on the early detection and removal of cancerous cells. Unfortunately, this is when they are hardest to spot. In the case of breast cancer, now the most prevalent form of cancer in the United Kingdom, cancer cells tend to congregate in the lymph nodes, from where they can rapidly spread throughout the rest of the body. Current medical equipment can give doctors only limited information on tissue health. A surgeon must then perform an exploratory operation to try to identify the diseased tissue. If that is possible, the diseased tissue will be removed. If identification is not possible, the doctor may be forced to take away the whole of the lymphatic system. Such drastic treatment can then cause side effects, such as excessive weight gain, because it throws the patient's hormones out of balance. Now, members of the Science Payloads Technology Division of the Research and Science Support Department, at ESA's science, technology and engineering research centre (ESTEC) in the Netherlands, have developed a new X-ray camera that could make on-the-spot diagnoses and pinpoint cancerous areas to guide surgeons. Importantly, it would be a small device that could be used continuously during operations. "There is no photography involved in the camera we envisage. It will be completely digital, so the surgeon will study the whole lymphatic system and the potentially cancerous parts on his monitor. He then decides which parts he removes," says Dr. Tone Peacock, Head of the Science Payloads Technology Division. The ESA team were trying to find a way to make images using high-energy X-rays because some celestial objects give out large quantities of X-rays but little visible light. To see these, astronomers need to use X-ray cameras. Traditionally, this has been a bit of a blind spot for astronomers. ESA's current X-ray telescope, XMM-Newton, is in orbit now, observing low energy, so-called 'soft' X-rays. European scientists have always wanted to

  13. Multispectral imaging for medical diagnosis

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.

    1977-01-01

    Photography technique determines amount of morbidity present in tissue. Imaging apparatus incorporates numerical filtering. Overall system operates in near-real time. Information gained from this system enables physician to understand extent of injury and leads to accelerated treatment.

  14. Digital Pathology: Data-Intensive Frontier in Medical Imaging

    PubMed Central

    Cooper, Lee A. D.; Carter, Alexis B.; Farris, Alton B.; Wang, Fusheng; Kong, Jun; Gutman, David A.; Widener, Patrick; Pan, Tony C.; Cholleti, Sharath R.; Sharma, Ashish; Kurc, Tahsin M.; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Pathology is a medical subspecialty that practices the diagnosis of disease. Microscopic examination of tissue reveals information enabling the pathologist to render accurate diagnoses and to guide therapy. The basic process by which anatomic pathologists render diagnoses has remained relatively unchanged over the last century, yet advances in information technology now offer significant opportunities in image-based diagnostic and research applications. Pathology has lagged behind other healthcare practices such as radiology where digital adoption is widespread. As devices that generate whole slide images become more practical and affordable, practices will increasingly adopt this technology and eventually produce an explosion of data that will quickly eclipse the already vast quantities of radiology imaging data. These advances are accompanied by significant challenges for data management and storage, but they also introduce new opportunities to improve patient care by streamlining and standardizing diagnostic approaches and uncovering disease mechanisms. Computer-based image analysis is already available in commercial diagnostic systems, but further advances in image analysis algorithms are warranted in order to fully realize the benefits of digital pathology in medical discovery and patient care. In coming decades, pathology image analysis will extend beyond the streamlining of diagnostic workflows and minimizing interobserver variability and will begin to provide diagnostic assistance, identify therapeutic targets, and predict patient outcomes and therapeutic responses. PMID:25328166

  15. Multi-channel medical imaging system

    DOEpatents

    Frangioni, John V.

    2016-05-03

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  16. Multi-channel medical imaging system

    DOEpatents

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  17. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  18. Pake Prize Talk: The Future of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Edelheit, Lonnie

    2001-03-01

    Discussed will be a brief history and status of the major medical imaging modalities, including X-ray Radiography and Fluoroscopy, Computerized Tomography, Magnetic Resonance Imaging, Ultrasound and Nuclear Medicine (including Positron Emission Tomography). Also covered will be potential new modalities such as Optical, Magnetic and Electric Field Imaging. In addition, the presentation will include a projection of future advances of each modality along with a discussion of some of the major challenges and more speculative projections of a few game-changing possibilities.

  19. Teaching about the Physics of Medical Imaging

    NASA Astrophysics Data System (ADS)

    Zollman, Dean; McBride, Dyan; Murphy, Sytil; Aryal, Bijaya; Kalita, Spartak; Wirjawan, Johannes v. d.

    2010-07-01

    Even before the discovery of X-rays, attempts at non-invasive medical imaging required an understanding of fundamental principles of physics. Students frequently do not see these connections because they are not taught in beginning physics courses. To help students understand that physics and medical imaging are closely connected, we have developed a series of active learning units. For each unit we begin by studying how students transfer their knowledge from traditional physics classes and everyday experiences to medical applications. Then, we build instructional materials to take advantage of the students' ability to use their existing learning and knowledge resources. Each of the learning units involves a combination of hands-on activities, which present analogies, and interactive computer simulations. Our learning units introduce students to the contemporary imaging techniques of CT scans, magnetic resonance imaging (MRI), positron emission tomography (PET), and wavefront aberrometry. The project's web site is http://web.phys.ksu.edu/mmmm/.

  20. Medical image segmentation using genetic algorithms.

    PubMed

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation. PMID:19272859

  1. Monte Carlo simulations of medical imaging modalities

    SciTech Connect

    Estes, G.P.

    1998-09-01

    Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computer power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.

  2. DICOM: a standard for medical imaging

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Bidgood, W. Dean

    1993-01-01

    Since 1983, the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) have been engaged in developing standards related to medical imaging. This alliance of users and manufacturers was formed to meet the needs of the medical imaging community as its use of digital imaging technology increased. The development of electronic picture archiving and communications systems (PACS), which could connect a number of medical imaging devices together in a network, led to the need for a standard interface and data structure for use on imaging equipment. Since medical image files tend to be very large and include much text information along with the image, the need for a fast, flexible, and extensible standard was quickly established. The ACR-NEMA Digital Imaging and Communications Standards Committee developed a standard which met these needs. The standard (ACR-NEMA 300-1988) was first published in 1985 and revised in 1988. It is increasingly available from equipment manufacturers. The current work of the ACR- NEMA Committee has been to extend the standard to incorporate direct network connection features, and build on standards work done by the International Standards Organization in its Open Systems Interconnection series. This new standard, called Digital Imaging and Communication in Medicine (DICOM), follows an object-oriented design methodology and makes use of as many existing internationally accepted standards as possible. This paper gives a brief overview of the requirements for communications standards in medical imaging, a history of the ACR-NEMA effort and what it has produced, and a description of the DICOM standard.

  3. Medical Image Retrieval: Past and Present

    PubMed Central

    Hwang, Kyung Hoon; Lee, Haejun

    2012-01-01

    With the widespread dissemination of picture archiving and communication systems (PACSs) in hospitals, the amount of imaging data is rapidly increasing. Effective image retrieval systems are required to manage these complex and large image databases. The authors reviewed the past development and the present state of medical image retrieval systems including text-based and content-based systems. In order to provide a more effective image retrieval service, the intelligent content-based retrieval systems combined with semantic systems are required. PMID:22509468

  4. Improved Interactive Medical-Imaging System

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  5. Use of mobile devices for medical imaging.

    PubMed

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin

    2014-12-01

    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. PMID:25467905

  6. Medical Applications of Microwave Imaging

    PubMed Central

    Wang, Zhao; Lim, Eng Gee; Tang, Yujun

    2014-01-01

    Ultrawide band (UWB) microwave imaging is a promising method for the detection of early stage breast cancer, based on the large contrast in electrical parameters between malignant tumour tissue and the surrounding normal breast-tissue. In this paper, the detection and imaging of a malignant tumour are performed through a tomographic based microwave system and signal processing. Simulations of the proposed system are performed and postimage processing is presented. Signal processing involves the extraction of tumour information from background information and then image reconstruction through the confocal method delay-and-sum algorithms. Ultimately, the revision of time-delay and the superposition of more tumour signals are applied to improve accuracy. PMID:25379515

  7. A lossless encryption method for medical images using edge maps.

    PubMed

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2009-01-01

    Image encryption is an effective approach for providing security and privacy protection for medical images. This paper introduces a new lossless approach, called EdgeCrypt, to encrypt medical images using the information contained within an edge map. The algorithm can fully protect the selected objects/regions within medical images or the entire medical images. It can also encrypt other types of images such as grayscale images or color images. The algorithm can be used for privacy protection in the real-time medical applications such as wireless medical networking and mobile medical services. PMID:19965008

  8. Photodetectors for Nuclear Medical Imaging

    PubMed Central

    Moses, William W.

    2009-01-01

    There have been a number of recent advances in photodetector technology, notably in photomultiplier tubes with high quantum efficiency (up to ~50%), hybrid photodetectors, and silicon-based Geiger-mode photodetectors. This paper looks at the potential benefits that these technologies can bring to nuclear medicine, notably SPECT and PET. We find that while the potential benefits to SPECT are relatively small, they can bring performance improvements in many areas for PET. PMID:20161403

  9. Resource Estimation in High Performance Medical Image Computing

    PubMed Central

    Banalagay, Rueben; Covington, Kelsie Jade; Wilkes, D.M.

    2015-01-01

    Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-stage scripts) to integrate and realize advancements from image acquisition, image processing, and computational analysis. With the dramatic increase in data size for medical imaging studies (e.g., improved resolution, higher throughput acquisition, shared databases), interesting study designs are becoming intractable or impractical on individual workstations and servers. Modern pipeline environments provide control structures to distribute computational load in high performance computing (HPC) environments. However, high performance computing environments are often shared resources, and scheduling computation across these resources necessitates higher level modeling of resource utilization. Submission of ‘jobs’ requires an estimate of the CPU runtime and memory usage. The resource requirements for medical image processing algorithms are difficult to predict since the requirements can vary greatly between different machines, different execution instances, and different data inputs. Poor resource estimates can lead to wasted resources in high performance environments due to incomplete executions and extended queue wait times. Hence, resource estimation is becoming a major hurdle for medical image processing algorithms to efficiently leverage high performance computing environments. Herein, we present our implementation of a resource estimation system to overcome these difficulties and ultimately provide users with the ability to more efficiently utilize high performance computing resources. PMID:24906466

  10. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  11. An open architecture for medical image workstation

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Hu, Zhiqiang; Wang, Xiangyun

    2005-04-01

    Dealing with the difficulties of integrating various medical image viewing and processing technologies with a variety of clinical and departmental information systems and, in the meantime, overcoming the performance constraints in transferring and processing large-scale and ever-increasing image data in healthcare enterprise, we design and implement a flexible, usable and high-performance architecture for medical image workstations. This architecture is not developed for radiology only, but for any workstations in any application environments that may need medical image retrieving, viewing, and post-processing. This architecture contains an infrastructure named Memory PACS and different kinds of image applications built on it. The Memory PACS is in charge of image data caching, pre-fetching and management. It provides image applications with a high speed image data access and a very reliable DICOM network I/O. In dealing with the image applications, we use dynamic component technology to separate the performance-constrained modules from the flexibility-constrained modules so that different image viewing or processing technologies can be developed and maintained independently. We also develop a weakly coupled collaboration service, through which these image applications can communicate with each other or with third party applications. We applied this architecture in developing our product line and it works well. In our clinical sites, this architecture is applied not only in Radiology Department, but also in Ultrasonic, Surgery, Clinics, and Consultation Center. Giving that each concerned department has its particular requirements and business routines along with the facts that they all have different image processing technologies and image display devices, our workstations are still able to maintain high performance and high usability.

  12. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    NASA Astrophysics Data System (ADS)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  13. Image integrity verification in medical information systems.

    PubMed

    Lenti, Jozsef; Lovanyi, Istvan

    2003-01-01

    In nowadays it is a major objective to protect healthcare information against unauthorized access. Comparing conventional and electronic management of medical images the later one demands much more complex security measures. We propose a new scenario for watermark data buildup and embedding which is independent from the applied watermarking technology. In our proposed method the embedded watermark data is dependant on image and patient information too. The proposed watermark buildup method provides watermark information where it is small in size and represents a unique digest of the image and image related data. The embedded data can be considered unique with high probability even if the same algorithm was used in different medical information systems. Described procedures ensure new, more secure links between image and related data, offering further perspectives in smartcard implementations. PMID:14664001

  14. Perspectives of medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  15. Scale-Specific Multifractal Medical Image Analysis

    PubMed Central

    Braverman, Boris

    2013-01-01

    Fractal geometry has been applied widely in the analysis of medical images to characterize the irregular complex tissue structures that do not lend themselves to straightforward analysis with traditional Euclidean geometry. In this study, we treat the nonfractal behaviour of medical images over large-scale ranges by considering their box-counting fractal dimension as a scale-dependent parameter rather than a single number. We describe this approach in the context of the more generalized Rényi entropy, in which we can also compute the information and correlation dimensions of images. In addition, we describe and validate a computational improvement to box-counting fractal analysis. This improvement is based on integral images, which allows the speedup of any box-counting or similar fractal analysis algorithm, including estimation of scale-dependent dimensions. Finally, we applied our technique to images of invasive breast cancer tissue from 157 patients to show a relationship between the fractal analysis of these images over certain scale ranges and pathologic tumour grade (a standard prognosticator for breast cancer). Our approach is general and can be applied to any medical imaging application in which the complexity of pathological image structures may have clinical value. PMID:24023588

  16. Multiscale medical image fusion in wavelet domain.

    PubMed

    Singh, Rajiv; Khare, Ashish

    2013-01-01

    Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion methods and principal component analysis (PCA) fusion method. The comparative analysis of the fusion results has been performed with edge strength (Q), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric (BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach. PMID:24453868

  17. Nanotechnology-supported THz medical imaging

    PubMed Central

    Stylianou, Andreas; Talias, Michael A

    2013-01-01

    Over the last few decades, the achievements and progress in the field of medical imaging have dramatically enhanced the early detection and treatment of many pathological conditions. The development of new imaging modalities, especially non-ionising ones, which will improve prognosis, is of crucial importance. A number of novel imaging modalities have been developed but they are still in the initial stages of development and serious drawbacks obstruct them from offering their benefits to the medical field. In the 21 st century, it is believed that nanotechnology will highly influence our everyday life and dramatically change the world of medicine, including medical imaging. Here we discuss how nanotechnology, which is still in its infancy, can improve Terahertz (THz) imaging, an emerging imaging modality, and how it may find its way into real clinical applications. THz imaging is characterised by the use of non-ionising radiation and although it has the potential to be used in many biomedical fields, it remains in the field of basic research. An extensive review of the recent available literature shows how the current state of this emerging imaging modality can be transformed by nanotechnology. Innovative scientific concepts that use nanotechnology-based techniques to overcome some of the limitations of the use of THz imaging are discussed. We review a number of drawbacks, such as a low contrast mechanism, poor source performance and bulky THz systems, which characterise present THz medical imaging and suggest how they can be overcome through nanotechnology. Better resolution and higher detection sensitivity can also be achieved using nanotechnology techniques. PMID:24555052

  18. Bioresponsive nanosensors in medical imaging.

    PubMed

    Schellenberger, Eyk

    2010-02-01

    Superparamagnetic iron oxide nanoparticles have been established as sensitive probes for magnetic resonance imaging (MRI). While the majority of specific nanosensors are based on sterically stabilized iron oxide particles, the focus of this review is on the use of very small iron oxide particles (VSOPs) that are electrostatically stabilized by an anionic citrate acid shell. We used VSOPs to develop target-specific as well as protease-activatable nanosensors for molecular MRI. PMID:19846442

  19. Advanced femtosecond lasers enable new developments in non-linear imaging and functional studies in neuroscience, biology and medical applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Arrigoni, Marco; McCoy, Darryl

    2016-03-01

    In the last few years Multiphoton Excitation Microscopy witnessed a mutation from tool for imaging cellular structures in living animals deeper than other high-resolution techniques, into an instrument for monitoring functionality and even stimulating or inhibiting inter-cellular signalling. This paradigm shift has been enabled primarily by the development of genetically encoded probes like Ca indicators (GECI) and Opsins for optogenetics inhibition and stimulation. These developments will hopefully enable the understanding of how local network of hundreds or thousands of neurons operate in response to actual tasks or induced stimuli. Imaging, monitoring signals and activating neurons, all on a millisecond time scale, requires new laser tools providing a combination of wavelengths, higher powers and operating regimes different from the ones traditionally used for classic multiphoton imaging. The other key development in multiphoton techniques relates to potential diagnostic and clinical applications where non-linear imaging could provide all optical marker-free replacement of H and E techniques and even intra-operative guidance for procedures like cancer surgery. These developments will eventually drive the development of specialized laser sources where compact size, ease of use, beam delivery and cost are primary concerns. In this talk we will discuss recent laser product developments targeting the various applications of multiphoton imaging, as fiber lasers and other new type of lasers gradually gain popularity and their own space, side-by-side or as an alternative to conventional titanium sapphire femtosecond lasers.

  20. Medical imaging applications of amorphous silicon

    SciTech Connect

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance.

  1. Medical Advances in Child Sexual Abuse

    ERIC Educational Resources Information Center

    Alexander, Randell A.

    2011-01-01

    This volume is the first of a two-part special issue detailing state of the art practice in medical issues around child sexual abuse. The six articles in this issue explore methods for medical history evaluation, the rationale for when sexual examinations should take place, specific hymenal findings that suggest a child has been sexually abused,…

  2. Development of medical imaging technologies is the best way to advance clinical diagnostic accuracy and there is no such thing as VOMIT.

    PubMed

    McCoubrie, P; Reid, J H

    2012-01-01

    We recently published a commentary on the impact of blood biomarkers in clinical decision-making. In this issue we shift to a similar contemporary debate surrounding over-reliance on imaging technologies to make diagnoses, often without a clinical rationale other than to rule out pathology. This strategy is not without harm to patients as illustrated by both of our experienced contributors. The place and responsibility for missed or irrelevant diagnoses following imaging will often rest on little more than inept clinical targeting, although as McCoubrie points out, the skilled radiologist may have some role in tempering everything from overzealous interpretation to simple error. Given that many techniques are based on (albeit falling) X-ray exposure and involve vastly expensive (and routinely redundant) technologies operating almost continuously, the role of skilled radiological input is more essential than ever for reducing VOMIT. Can we control inadequate imaging request strategies? PMID:23240121

  3. Medical image registration using fuzzy theory.

    PubMed

    Pan, Meisen; Tang, Jingtian; Xiong, Qi

    2012-01-01

    Mutual information (MI)-based registration, which uses MI as the similarity measure, is a representative method in medical image registration. It has an excellent robustness and accuracy, but with the disadvantages of a large amount of calculation and a long processing time. In this paper, by computing the medical image moments, the centroid is acquired. By applying fuzzy c-means clustering, the coordinates of the medical image are divided into two clusters to fit a straight line, and the rotation angles of the reference and floating images are computed, respectively. Thereby, the initial values for registering the images are determined. When searching the optimal geometric transformation parameters, we put forward the two new concepts of fuzzy distance and fuzzy signal-to-noise ratio (FSNR), and we select FSNR as the similarity measure between the reference and floating images. In the experiments, the Simplex method is chosen as multi-parameter optimisation. The experimental results show that this proposed method has a simple implementation, a low computational cost, a fast registration and good registration accuracy. Moreover, it can effectively avoid trapping into the local optima. It is adapted to both mono-modality and multi-modality image registrations. PMID:21442490

  4. Quantitative imaging features: extension of the oncology medical image database

    NASA Astrophysics Data System (ADS)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  5. Medical Imaging Inspired Vertex Reconstruction at LHC

    NASA Astrophysics Data System (ADS)

    Hageböck, S.; von Toerne, E.

    2012-12-01

    Three-dimensional image reconstruction in medical applications (PET or X-ray CT) utilizes sophisticated filter algorithms to linear trajectories of coincident photon pairs or x-rays. The goal is to reconstruct an image of an emitter density distribution. In a similar manner, tracks in particle physics originate from vertices that need to be distinguished from background track combinations. In this study it is investigated if vertex reconstruction in high energy proton collisions may benefit from medical imaging methods. A new method of vertex finding, the Medical Imaging Vertexer (MIV), is presented based on a three-dimensional filtered backprojection algorithm. It is compared to the open-source RAVE vertexing package. The performance of the vertex finding algorithms is evaluated as a function of instantaneous luminosity using simulated LHC collisions. Tracks in these collisions are described by a simplified detector model which is inspired by the tracking performance of the LHC experiments. At high luminosities (25 pileup vertices and more), the medical imaging approach finds vertices with a higher efficiency and purity than the RAVE “Adaptive Vertex Reconstructor” algorithm. It is also much faster if more than 25 vertices are to be reconstructed because the amount of CPU time rises linearly with the number of tracks whereas it rises quadratically for the adaptive vertex fitter AVR.

  6. Medical advances in child sexual abuse.

    PubMed

    Alexander, Randell A

    2011-09-01

    This volume is the first of a two-part special issue detailing state of the art practice in medical issues around child sexual abuse. The six articles in this issue explore methods for medical history evaluation, the rationale for when sexual examinations should take place, specific hymenal findings that suggest a child has been sexually abused, the healing of genital injuries, approaches to interpretation of medical findings, and the neurological harm of sexual abuse. From the initial history to the process of the medical examination, the mechanics of what a genital examination might show, and the neurobiological consequences, it is demonstrated that the harm of sexual abuse is has more effect on the brain than the genital area. PMID:21970641

  7. Scalable Medical Image Understanding by Fusing Cross-Modal Object Recognition with Formal Domain Semantics

    NASA Astrophysics Data System (ADS)

    Möller, Manuel; Sintek, Michael; Buitelaar, Paul; Mukherjee, Saikat; Zhou, Xiang Sean; Freund, Jörg

    Recent advances in medical imaging technology have dramatically increased the amount of clinical image data. In contrast, techniques for efficiently exploiting the rich semantic information in medical images have evolved much slower. Despite the research outcomes in image understanding, current image databases are still indexed by manually assigned subjective keywords instead of the semantics of the images. Indeed, most current content-based image search applications index image features that do not generalize well and use inflexible queries. This slow progress is due to the lack of scalable and generic information representation systems which can abstract over the high dimensional nature of medical images as well as semantically model the results of object recognition techniques. We propose a system combining medical imaging information with ontological formalized semantic knowledge that provides a basis for building universal knowledge repositories and gives clinicians fully cross-lingual and cross-modal access to biomedical information.

  8. Research on medical image encryption in telemedicine systems.

    PubMed

    Dai, Yin; Wang, Huanzhen; Zhou, Zixia; Jin, Ziyi

    2016-04-29

    Recently, advances in computers and high-speed communication tools have led to enhancements in remote medical consultation research. Laws in some localities require hospitals to encrypt patient information (including images of the patient) before transferring the data over a network. Therefore, developing suitable encryption algorithms is quite important for modern medicine. This paper demonstrates a digital image encryption algorithm based on chaotic mapping, which uses the no-period and no-convergence properties of a chaotic sequence to create image chaos and pixel averaging. Then, the chaotic sequence is used to encrypt the image, thereby improving data security. With this method, the security of data and images can be improved. PMID:27163302

  9. Absolutely lossless compression of medical images.

    PubMed

    Ashraf, Robina; Akbar, Muhammad

    2005-01-01

    Data in medical images is very large and therefore for storage and/or transmission of these images, compression is essential. A method is proposed which provides high compression ratios for radiographic images with no loss of diagnostic quality. In the approach an image is first compressed at a high compression ratio but with loss, and the error image is then compressed losslessly. The resulting compression is not only strictly lossless, but also expected to yield a high compression ratio, especially if the lossy compression technique is good. A neural network vector quantizer (NNVQ) is used as a lossy compressor, while for lossless compression Huffman coding is used. Quality of images is evaluated by comparing with standard compression techniques available. PMID:17281110

  10. Resolution enhancement in medical ultrasound imaging

    PubMed Central

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Abstract. Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve

  11. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  12. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  13. Use of Medications of Questionable Benefit in Advanced Dementia

    PubMed Central

    Tjia, Jennifer; Briesacher, Becky A.; Peterson, Daniel; Liu, Qin; Andrade, Susan E.; Mitchell, Susan L.

    2015-01-01

    IMPORTANCE Advanced dementia is characterized by severe cognitive impairment and complete functional dependence. Patients’ goals of care should guide the prescribing of medication during such terminal illness. Medications that do not promote the primary goal of care should be minimized. OBJECTIVES To estimate the prevalence of medications with questionable benefit used by nursing home residents with advanced dementia, identify resident- and facility-level characteristics associated with such use, and estimate associated medication expenditures. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study of medication use by nursing home residents with advanced dementia using a nationwide long-term care pharmacy database linked to the Minimum Data Set (460 facilities) between October 1, 2009, and September 30, 2010. MAIN OUTCOMES AND MEASURES Use of medication deemed of questionable benefit in advanced dementia based on previously published criteria and mean 90-day expenditures attributable to these medications per resident. Generalized estimating equations using the logit link function were used to identify resident- and facility-related factors independently associated with the likelihood of receiving medications of questionable benefit after accounting for clustering within nursing homes. RESULTS Of 5406 nursing home residents with advanced dementia, 2911 (53.9%) received at least 1 medication with questionable benefit (range, 44.7% in the Mid-Atlantic census region to 65.0% in the West South Central census region). Cholinesterase inhibitors (36.4%), memantine hydrochloride (25.2%), and lipid-lowering agents (22.4%) were the most commonly prescribed. In adjusted analyses, having eating problems (adjusted odds ratio [AOR], 0.68; 95% CI, 0.59–0.78), a feeding tube (AOR, 0.58; 95% CI, 0.48–0.70), or a do-not-resuscitate order (AOR, 0.65; 95% CI, 0.57–0.75), and enrolling in hospice (AOR, 0.69; 95% CI, 0.58–0.82) lowered the likelihood of receiving these

  14. Multiple sclerosis medical image analysis and information management.

    PubMed

    Liu, Lifeng; Meier, Dominik; Polgar-Turcsanyi, Mariann; Karkocha, Pawel; Bakshi, Rohit; Guttmann, Charles R G

    2005-01-01

    Magnetic resonance imaging (MRI) has become a central tool for patient management, as well as research, in multiple sclerosis (MS). Measurements of disease burden and activity derived from MRI through quantitative image analysis techniques are increasingly being used. There are many complexities and challenges in building computerized processing pipelines to ensure efficiency, reproducibility, and quality control for MRI scans from MS patients. Such paradigms require advanced image processing and analysis technologies, as well as integrated database management systems to ensure the most utility for clinical and research purposes. This article reviews pipelines available for quantitative clinical MRI research in MS, including image segmentation, registration, time-series analysis, performance validation, visualization techniques, and advanced medical imaging software packages. To address the complex demands of the sequential processes, the authors developed a workflow management system that uses a centralized database and distributed computing system for image processing and analysis. The implementation of their system includes a web-form-based Oracle database application for information management and event dispatching, and multiple modules for image processing and analysis. The seamless integration of processing pipelines with the database makes it more efficient for users to navigate complex, multistep analysis protocols, reduces the user's learning curve, reduces the time needed for combining and activating different computing modules, and allows for close monitoring for quality-control purposes. The authors' system can be extended to general applications in clinical trials and to routine processing for image-based clinical research. PMID:16385023

  15. Medical imaging with a microwave tomographic scanner.

    PubMed

    Jofre, L; Hawley, M S; Broquetas, A; de los Reyes, E; Ferrando, M; Elias-Fusté, A R

    1990-03-01

    A microwave tomographic scanner for biomedical applications is presented. The scanner consists of a 64 element circular array with a useful diameter of 20 cm. Electronically scanning the transmitting and receiving antennas allows multiview measurements with no mechanical movement. Imaging parameters are appropriate for medical use: a spatial resolution of 7 mm and a contrast resolution of 1% for a measurement time of 3 s. Measurements on tissue-simulating phantoms and volunteers, together with numerical simulations, are presented to assess the system for absolute imaging of tissue distribution and for differential imaging of physiological, pathological, and induced changes in tissues. PMID:2329003

  16. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  17. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  18. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  19. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  20. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  1. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  2. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  3. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  4. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  5. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  6. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  7. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  8. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  9. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  10. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  11. Design patterns in medical imaging information systems

    NASA Astrophysics Data System (ADS)

    Hoo, Kent S., Jr.; Wong, Stephen T. C.; Laxer, Kenneth D.; Knowlton, Robert C.; Ching, Wan

    2000-05-01

    The purpose of this paper is to introduce a new and important conceptual framework of software design for the medical imaging community using design patterns. Use cases are created to summarize operational scenarios of clinicians using the system to complete certain tasks such as image segmentation. During design the Unified Modeling Language is used to translate the use cases into modeling diagrams that describe how the system functions. Next, design patterns are applied to build models that describe how software components interoperate to deliver that functionality. The software components are implemented using the Java language, CORBA architecture, and other web technologies. The biomedical image information system is used in epilepsy neurosurgical planning and diagnosis. This article proposes the use of proven software design models for solving medical imaging informatics design problems. Design patterns provide an excellent vehicle to leverage design solutions that have worked in the past to solve the problems we face in building user-friendly, reliable, and efficient information systems. This work introduces this new technology for building increasing complex medical image information systems. The rigorous application of software design techniques is essential in building information systems that are easy to use, rich in functionality, maintainable, reliable, and updatable.

  12. Estimating fractal dimension of medical images

    NASA Astrophysics Data System (ADS)

    Penn, Alan I.; Loew, Murray H.

    1996-04-01

    Box counting (BC) is widely used to estimate the fractal dimension (fd) of medical images on the basis of a finite set of pixel data. The fd is then used as a feature to discriminate between healthy and unhealthy conditions. We show that BC is ineffective when used on small data sets and give examples of published studies in which researchers have obtained contradictory and flawed results by using BC to estimate the fd of data-limited medical images. We present a new method for estimating fd of data-limited medical images. In the new method, fractal interpolation functions (FIFs) are used to generate self-affine models of the underlying image; each model, upon discretization, approximates the original data points. The fd of each FIF is analytically evaluated. The mean of the fds of the FIFs is the estimate of the fd of the original data. The standard deviation of the fds of the FIFs is a confidence measure of the estimate. The goodness-of-fit of the discretized models to the original data is a measure of self-affinity of the original data. In a test case, the new method generated a stable estimate of fd of a rib edge in a standard chest x-ray; box counting failed to generate a meaningful estimate of the same image.

  13. Robust retrieval from compressed medical image archives

    NASA Astrophysics Data System (ADS)

    Sidorov, Denis N.; Lerallut, Jean F.; Cocquerez, Jean-Pierre; Azpiroz, Joaquin

    2005-04-01

    Paper addresses the computational aspects of extracting important features directly from compressed images for the purpose of aiding biomedical image retrieval based on content. The proposed method for treatment of compressed medical archives follows the JPEG compression standard and exploits algorithm based on spacial analysis of the image cosine spectrum coefficients amplitude and location. The experiments on modality-specific archive of osteoarticular images show robustness of the method based on measured spectral spatial statistics. The features, which were based on the cosine spectrum coefficients' values, could satisfy different types of queries' modalities (MRI, US, etc), which emphasized texture and edge properties. In particular, it has been shown that there is wealth of information in the AC coefficients of the DCT transform, which can be utilized to support fast content-based image retrieval. The computational cost of proposed signature generation algorithm is low. Influence of conventional and the state-of-the-art compression techniques based on cosine and wavelet integral transforms on the performance of content-based medical image retrieval has been also studied. We found no significant differences in retrieval efficiencies for non-compressed and JPEG2000-compressed images even at the lowest bit rate tested.

  14. Medical physics: some recollections in diagnostic X-ray imaging and therapeutic radiology.

    PubMed

    Gray, J E; Orton, C G

    2000-12-01

    Medical physics has changed dramatically since 1895. There was a period of slow evolutionary change during the first 70 years after Roentgen's discovery of x rays. With the advent of the computer, however, both diagnostic and therapeutic radiology have undergone rapid growth and changes. Technologic advances such as computed tomography and magnetic resonance imaging in diagnostic imaging and three-dimensional treatment planning systems, stereotactic radiosurgery, and intensity modulated radiation therapy in radiation oncology have resulted in substantial changes in medical physics. These advances have improved diagnostic imaging and radiation therapy while expanding the need for better educated and experienced medical physics staff. PMID:11110920

  15. From Roentgen to magnetic resonance imaging: the history of medical imaging.

    PubMed

    Scatliff, James H; Morris, Peter J

    2014-01-01

    Medical imaging has advanced in remarkable ways since the discovery of x-rays 120 years ago. Today's radiologists can image the human body in intricate detail using computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and various other modalities. Such technology allows for improved screening, diagnosis, and monitoring of disease, but it also comes with risks. Many imaging modalities expose patients to ionizing radiation, which potentially increases their risk of developing cancer in the future, and imaging may also be associated with possible allergic reactions or risks related to the use of intravenous contrast agents. In addition, the financial costs of imaging are taxing our health care system, and incidental findings can trigger anxiety and further testing. This issue of the NCMJ addresses the pros and cons of medical imaging and discusses in detail the following uses of medical imaging: screening for breast cancer with mammography, screening for osteoporosis and monitoring of bone mineral density with dual-energy x-ray absorptiometry, screening for congenital hip dysplasia in infants with ultrasound, and evaluation of various heart conditions with cardiac imaging. Together, these articles show the challenges that must be met as we seek to harness the power of today's imaging technologies, as well as the potential benefits that can be achieved when these hurdles are overcome. PMID:24663131

  16. Medical image registration using sparse coding of image patches.

    PubMed

    Afzali, Maryam; Ghaffari, Aboozar; Fatemizadeh, Emad; Soltanian-Zadeh, Hamid

    2016-06-01

    Image registration is a basic task in medical image processing applications like group analysis and atlas construction. Similarity measure is a critical ingredient of image registration. Intensity distortion of medical images is not considered in most previous similarity measures. Therefore, in the presence of bias field distortions, they do not generate an acceptable registration. In this paper, we propose a sparse based similarity measure for mono-modal images that considers non-stationary intensity and spatially-varying distortions. The main idea behind this measure is that the aligned image is constructed by an analysis dictionary trained using the image patches. For this purpose, we use "Analysis K-SVD" to train the dictionary and find the sparse coefficients. We utilize image patches to construct the analysis dictionary and then we employ the proposed sparse similarity measure to find a non-rigid transformation using free form deformation (FFD). Experimental results show that the proposed approach is able to robustly register 2D and 3D images in both simulated and real cases. The proposed method outperforms other state-of-the-art similarity measures and decreases the transformation error compared to the previous methods. Even in the presence of bias field distortion, the proposed method aligns images without any preprocessing. PMID:27085311

  17. Magnetite Nanoparticles for Medical MR Imaging

    PubMed Central

    Stephen, Zachary R.; Kievit, Forrest M.; Zhang, Miqin

    2011-01-01

    Nanotechnology has given scientists new tools for the development of advanced materials for the detection and diagnosis of disease. Iron oxide nanoparticles (SPIONs) in particular have been extensively investigated as novel magnetic resonance imaging (MRI) contrast agents due to a combination of favorable superparamagnetic properties, biodegradability, and surface properties of easy modification for improved in vivo kinetics and multifunctionality. This review discusses the basics of MR imaging, the origin of SPION’s unique magnetic properties, recent developments in MRI acquisition methods for detection of SPIONs, synthesis and post-synthesis processes that improve SPION’s imaging characteristics, and an outlook on the translational potential of SPIONs. PMID:22389583

  18. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  19. Automatic scale selection for medical image segmentation

    NASA Astrophysics Data System (ADS)

    Bayram, Ersin; Wyatt, Christopher L.; Ge, Yaorong

    2001-07-01

    The scale of interesting structures in medical images is space variant because of partial volume effects, spatial dependence of resolution in many imaging modalities, and differences in tissue properties. Existing segmentation methods either apply a single scale to the entire image or try fine-to-coarse/coarse-to-fine tracking of structures over multiple scales. While single scale approaches fail to fully recover the perceptually important structures, multi-scale methods have problems in providing reliable means to select proper scales and integrating information over multiple scales. A recent approach proposed by Elder and Zucker addresses the scale selection problem by computing a minimal reliable scale for each image pixel. The basic premise of this approach is that, while the scale of structures within an image vary spatially, the imaging system is fixed. Hence, sensor noise statistics can be calculated. Based on a model of edges to be detected, and operators to be used for detection, one can locally compute a unique minimal reliable scale at which the likelihood of error due to sensor noise is less than or equal to a predetermined threshold. In this paper, we improve the segmentation method based on the minimal reliable scale selection and evaluate its effectiveness with both simulated and actual medical data.

  20. Hepatocellular carcinoma: Advances in diagnostic imaging.

    PubMed

    Sun, Haoran; Song, Tianqiang

    2015-10-01

    Thanks to the growing knowledge on biological behaviors of hepatocellular carcinomas (HCC), as well as continuous improvement in imaging techniques and experienced interpretation of imaging features of the nodules in cirrhotic liver, the detection and characterization of HCC has improved in the past decade. A number of practice guidelines for imaging diagnosis have been developed to reduce interpretation variability and standardize management of HCC, and they are constantly updated with advances in imaging techniques and evidence based data from clinical series. In this article, we strive to review the imaging techniques and the characteristic features of hepatocellular carcinoma associated with cirrhotic liver, with emphasis on the diagnostic value of advanced magnetic resonance imaging (MRI) techniques and utilization of hepatocyte-specific MRI contrast agents. We also briefly describe the concept of liver imaging reporting and data systems and discuss the consensus and controversy of major practice guidelines. PMID:26632539

  1. Extended query refinement for medical image retrieval.

    PubMed

    Deserno, Thomas M; Güld, Mark O; Plodowski, Bartosz; Spitzer, Klaus; Wein, Berthold B; Schubert, Henning; Ney, Hermann; Seidl, Thomas

    2008-09-01

    The impact of image pattern recognition on accessing large databases of medical images has recently been explored, and content-based image retrieval (CBIR) in medical applications (IRMA) is researched. At the present, however, the impact of image retrieval on diagnosis is limited, and practical applications are scarce. One reason is the lack of suitable mechanisms for query refinement, in particular, the ability to (1) restore previous session states, (2) combine individual queries by Boolean operators, and (3) provide continuous-valued query refinement. This paper presents a powerful user interface for CBIR that provides all three mechanisms for extended query refinement. The various mechanisms of man-machine interaction during a retrieval session are grouped into four classes: (1) output modules, (2) parameter modules, (3) transaction modules, and (4) process modules, all of which are controlled by a detailed query logging. The query logging is linked to a relational database. Nested loops for interaction provide a maximum of flexibility within a minimum of complexity, as the entire data flow is still controlled within a single Web page. Our approach is implemented to support various modalities, orientations, and body regions using global features that model gray scale, texture, structure, and global shape characteristics. The resulting extended query refinement has a significant impact for medical CBIR applications. PMID:17497197

  2. Imaging-related medications: a class overview

    PubMed Central

    2007-01-01

    Imaging-related medications (contrast agents) are commonly utilized to improve visualization of radiographic, computed tomography (CT), and magnetic resonance (MR) images. While traditional medications are used specifically for their pharmacological actions, the ideal imaging agent provides enhanced contrast with little biological interaction. The radiopaque agents, barium sulfate and iodinated contrast agents, confer “contrast” to x-ray films by their physical ability to directly absorb x-rays. Gadolinium-based MR agents enhance visualization of tissues when exposed to a magnetic field. Ferrous-ferric oxide–based paramagnetic agents provide negative contrast for MR liver studies. This article provides an overview of clinically relevant information for the imaging-related medications commonly in use. It reviews the safety improvements in new generations of drugs; risk factors and precautions for the reduction of severe adverse reactions (i.e., extravasation, contrast-induced nephropathy, metformin-induced lactic acidosis, and nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis); and the significance of diligent patient screening before contrast exposure and appropriate monitoring after exposure. PMID:17948119

  3. Microscopy imaging device with advanced imaging properties

    SciTech Connect

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  4. [Advances in musculoskeletal MR imaging].

    PubMed

    Ho, Michael; Andreisek, Gustav

    2015-09-01

    Musculoskeletal imaging is a rapidly developing field offering several new techniques. MR neurography provides an additive value with complementary and precise information about peripheral nerves. Hereby, MR neurography not only enables the radiologist to differentiate between a mononeuropathic or a polyneuropathic process, but also helps to find nerve compression syndromes by visualizing the nerve surrounding structures as well. An additional administration of contrast agent enables detection of tumors and inflammation of peripheral nerves. Whole body MRI opens new possibilities for detection and follow-up in oncological disorders, systemic diseases, in pediatric diagnostics and in preventive medicine. Guidelines are useful for an evidence-based application of this technique. MRI is generally considered to be the gold standard in diagnostic imaging of the spine. Continuous technical developments have led to a better image quality. New guidelines for standardized image interpretation and reporting have been published and should be used to avoid loss of information from high resolution imaging to effective treatment. PMID:26331202

  5. Simplified labeling process for medical image segmentation.

    PubMed

    Gao, Mingchen; Huang, Junzhou; Huang, Xiaolei; Zhang, Shaoting; Metaxas, Dimitris N

    2012-01-01

    Image segmentation plays a crucial role in many medical imaging applications by automatically locating the regions of interest. Typically supervised learning based segmentation methods require a large set of accurately labeled training data. However, thel labeling process is tedious, time consuming and sometimes not necessary. We propose a robust logistic regression algorithm to handle label outliers such that doctors do not need to waste time on precisely labeling images for training set. To validate its effectiveness and efficiency, we conduct carefully designed experiments on cervigram image segmentation while there exist label outliers. Experimental results show that the proposed robust logistic regression algorithms achieve superior performance compared to previous methods, which validates the benefits of the proposed algorithms. PMID:23286072

  6. MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING

    PubMed Central

    ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN

    2013-01-01

    In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963

  7. Advantages of semiconductor CZT for medical imaging

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Parnham, Kevin; Sundal, Bjorn; Maehlum, Gunnar; Chowdhury, Samir; Meier, Dirk; Vandehei, Thor; Szawlowski, Marek; Patt, Bradley E.

    2007-09-01

    Cadmium zinc telluride (CdZnTe, or CZT) is a room-temperature semiconductor radiation detector that has been developed in recent years for a variety of applications. CZT has been investigated for many potential uses in medical imaging, especially in the field of single photon emission computed tomography (SPECT). CZT can also be used in positron emission tomography (PET) as well as photon-counting and integration-mode x-ray radiography and computed tomography (CT). The principal advantages of CZT are 1) direct conversion of x-ray or gamma-ray energy into electron-hole pairs; 2) energy resolution; 3) high spatial resolution and hence high space-bandwidth product; 4) room temperature operation, stable performance, high density, and small volume; 5) depth-of-interaction (DOI) available through signal processing. These advantages will be described in detail with examples from our own CZT systems. The ability to operate at room temperature, combined with DOI and very small pixels, make the use of multiple, stationary CZT "mini-gamma cameras" a realistic alternative to today's large Anger-type cameras that require motion to obtain tomographic sampling. The compatibility of CZT with Magnetic Resonance Imaging (MRI)-fields is demonstrated for a new type of multi-modality medical imaging, namely SPECT/MRI. For pre-clinical (i.e., laboratory animal) imaging, the advantages of CZT lie in spatial and energy resolution, small volume, automated quality control, and the potential for DOI for parallax removal in pinhole imaging. For clinical imaging, the imaging of radiographically dense breasts with CZT enables scatter rejection and hence improved contrast. Examples of clinical breast images with a dual-head CZT system are shown.

  8. Usability Practice in Medical Imaging Application Development

    NASA Astrophysics Data System (ADS)

    Chen, Chufeng; Abdelnour-Nocera, Jose; Wells, Stephen; Pan, Nora

    Historically, development of medical imaging applications has focused on solving technical issues for small numbers of expert users. However, their use is now more mainstream and users are no longer willing to tolerate poor performance and usability. In this study we illustrate the application of user centred design methods in a medical imaging applications development company by using a usability comparative study of different regions of interest (ROI) tools. A use case analysis was used to judge usability efficiency and effectiveness of different ROI tools; and a user observation was also carried out which measured the accuracy achieved by these tools. We have found that useful results can be obtained by using these methods. We also generated some concrete suggestions that could be incorporated into future product development.

  9. Advanced Atmospheric Sounder and Imaging Radiometer (AASIR)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Design information for the Advanced Atmospheric Sounder and Imaging Radiometer is reported, which was developed to determine the configuration of a sensor for IR and visible imaging. The areas of technology reported include: systems design, optics, mechanics, electronics, detectors, radiative cooler, and radiometric calibration.

  10. Advanced Imaging Algorithms for Radiation Imaging Systems

    SciTech Connect

    Marleau, Peter

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  11. A recommender system for medical imaging diagnostic.

    PubMed

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision. PMID:25991188

  12. GPU-based Volume Rendering for Medical Image Visualization.

    PubMed

    Heng, Yang; Gu, Lixu

    2005-01-01

    During the quick advancements of medical image visualization and augmented virtual reality application, the low performance of the volume rendering algorithm is still a "bottle neck". To facilitate the usage of well developed hardware resource, a novel graphics processing unit (GPU)-based volume ray-casting algorithm is proposed in this paper. Running on a normal PC, it performs an interactive rate while keeping the same image quality as the traditional volume rendering algorithm does. Recently, GPU-accelerated direct volume rendering has positioned itself as an efficient tool for the display and visual analysis of volume data. However, for large sized medical image data, it often shows low efficiency for too large memories requested. Furthermore, it always holds a drawback of writing color buffers multi-times per frame. The proposed algorithm improves the situation by implementing ray casting operation completely in GPU. It needs only one slice plane from CPU and one 3Dtexture to store data when GPU calculates the two terminals of the ray and carries out the color blending operation in its pixel programs. So both the rendering speed and the memories consumed are improved, and the algorithm can deal most medical image data on normal PCs in the interactive speed. PMID:17281405

  13. Advanced MR Imaging of the Visual Pathway.

    PubMed

    Yu, Fang; Duong, Timothy; Tantiwongkosi, Bundhit

    2015-08-01

    Vision is one of our most vital senses, deriving from the eyes as well as structures deep within the intracranial compartment. MR imaging, through its wide selection of sequences, offers an array of structural and functional imaging tools to interrogate this intricate system. This review describes several advanced MR imaging sequences and explores their potential clinical applications as well as areas for further development. PMID:26208415

  14. Imaging of the pancreas: Recent advances

    PubMed Central

    Chaudhary, Vikas; Bano, Shahina

    2011-01-01

    A wide spectrum of anomalies of pancreas and the pancreatic duct system are commonly encountered at radiological evaluation. Diagnosing pancreatic lesions generally requires a multimodality approach. This review highlights the new advances in pancreatic imaging and their applications in the diagnosis and management of pancreatic pathologies. The mainstay techniques include computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasound (EUS), radionuclide imaging (RNI) and optical coherence tomography (OCT). PMID:21847450

  15. Secured medical imaging over the Internet.

    PubMed

    Aslan, P; Lee, B; Kuo, R; Babayan, R K; Kavoussi, L R; Pavlin, K A; Preminger, G M

    1998-01-01

    The Internet has established itself as an affordable, extremely viable and ubiquitous communications network that can be easily accessed from virtually any point in the world. This makes it ideally suited for medical image communications. Issues regarding security and confidentiality of information on the Internet, however, need to be addressed for both occasional, individual users and consistent enterprise-wide users. In addition, the limited bandwidth of most Internet connections must be factored into the development of a realistic usermodel and resulting protocol. Open architecture issues must also be considered so that images can be communicated to recipients who do not have similar programs. Further, application-specific software is required to integrate image acquisition, encryption and transmission into a single, streamlined process. Using Photomailer software provided by PhysiTel Inc., the authors investigated the use of sending secured still images over the Internet. The scope of their investigation covered the use of the Internet for communicating images for consultation, referral, mentoring and education. Photomailer software was used at several local and remote sites. The program was used for both sending and receiving images. It was also used for sending images to recipients who did not have Photomailer, but instead relied on conventional email programs. The results of the investigation demonstrated that using products such as Photomailer, images could be quickly and easily communicated from one location to another via the Internet. In addition, the investigators were able to retrieve images off of their existing email accounts, thereby providing greater flexibility and convenience than other systems which require scheduled transmission of information on dedicated systems. We conclude that Photomailer and similar products may provide a significant benefit and improve communications among colleagues, providing an inexpensive means of sending secured

  16. Advances in optical imaging for pharmacological studies

    PubMed Central

    Arranz, Alicia; Ripoll, Jorge

    2015-01-01

    Imaging approaches are an essential tool for following up over time representative parameters of in vivo models, providing useful information in pharmacological studies. Main advantages of optical imaging approaches compared to other imaging methods are their safety, straight-forward use and cost-effectiveness. A main drawback, however, is having to deal with the presence of high scattering and high absorption in living tissues. Depending on how these issues are addressed, three different modalities can be differentiated: planar imaging (including fluorescence and bioluminescence in vivo imaging), optical tomography, and optoacoustic approaches. In this review we describe the latest advances in optical in vivo imaging with pharmacological applications, with special focus on the development of new optical imaging probes in order to overcome the strong absorption introduced by different tissue components, especially hemoglobin, and the development of multimodal imaging systems in order to overcome the resolution limitations imposed by scattering. PMID:26441646

  17. ICG fluorescence imaging and its medical applications

    NASA Astrophysics Data System (ADS)

    Miwa, Mitsuharu; Shikayama, Takahiro

    2008-12-01

    This paper presents a novel optical angiography system, and introduces its medical applications. We developed the optical enhanced imaging system which can observe the blood and lymphatic vessels as the Indocyanine green (ICG) fluorescence image. The imaging system consists of 760nm light emitted diode (LED) as excite light, CCD camera as a detector, a high-pass optical filter in front of the CCD and video processing system. The advantage of ICG fluorescence method is safe (radiation free), high sensitive, real time monitoring of blood and/or lymphatic flow, small size, easy to operate and cost effective compared to conventional X-ray angiography or scintigraphy. We have applied this method to several clinical applications such as breast cancer sentinel lymph node (SLN) navigation, lymph edema diagnostic and identification of liver segmentation. In each application, ICG fluorescence method shows useful result. It's indicated that this method is promising technique as optical angiography.

  18. The quest for standards in medical imaging.

    PubMed

    Gibaud, Bernard

    2011-05-01

    This article focuses on standards supporting interoperability and system integration in the medical imaging domain. We introduce the basic concepts and actors and we review the most salient achievements in this domain, especially with the DICOM standard, and the definition of IHE integration profiles. We analyze and discuss what was successful, and what could still be more widely adopted by industry. We then sketch out a perspective of what should be done next, based on our vision of new requirements for the next decade. In particular, we discuss the challenges of a more explicit sharing of image and image processing semantics, and we discuss the help that semantic web technologies (and especially ontologies) may bring to achieving this goal. PMID:20605693

  19. Integrating Medical Imaging Analyses through a High-throughput Bundled Resource Imaging System

    PubMed Central

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-01-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists. PMID:21841899

  20. Integrating Medical Imaging Analyses through a High-throughput Bundled Resource Imaging System.

    PubMed

    Covington, Kelsie; Welch, E Brian; Jeong, Ha-Kyu; Landman, Bennett A

    2011-01-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists. PMID:21841899

  1. Advanced noninvasive imaging of spinal vascular malformations

    PubMed Central

    Eddleman, Christopher S.; Jeong, Hyun; Cashen, Ty A.; Walker, Matthew; Bendok, Bernard R.; Batjer, H. Hunt; Carroll, Timothy J.

    2010-01-01

    Spinal vascular malformations (SVMs) are an uncommon, heterogeneous group of vascular anomalies that can render devastating neurological consequences if they are not diagnosed and treated in a timely fashion. Imaging SVMs has always presented a formidable challenge because their clinical and imaging presentations resemble those of neoplasms, demyelination diseases, and infection. Advancements in noninvasive imaging modalities (MR and CT angiography) have increased during the last decade and have improved the ability to accurately diagnose spinal vascular anomalies. In addition, intraoperative imaging techniques have been developed that aid in the intraoperative assessment before, during, and after resection of these lesions with minimal and/or optimal use of spinal digital subtraction angiography. In this report, the authors review recent advancements in the imaging of SVMs that will likely lead to more timely diagnoses and treatment while reducing procedural risk exposure to the patients who harbor these uncommon spinal lesions. PMID:19119895

  2. Quantification of heterogeneity observed in medical images

    PubMed Central

    2013-01-01

    Background There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. Methods In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. Results We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. Conclusions These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity. PMID:23453000

  3. Multilayer descriptors for medical image classification.

    PubMed

    Lumini, Alessandra; Nanni, Loris; Brahnam, Sheryl

    2016-05-01

    In this paper, we propose a new method for improving the performance of 2D descriptors by building an n-layer image using different preprocessing approaches from which multilayer descriptors are extracted and used as feature vectors for training a Support Vector Machine. The different preprocessing approaches are used to build different n-layer images (n=3, n=5, etc.). We test both color and gray-level images, two well-known texture descriptors (Local Phase Quantization and Local Binary Pattern), and three of their variants suited for n-layer images (Volume Local Phase Quantization, Local Phase Quantization Three-Orthogonal-Planes, and Volume Local Binary Patterns). Our results show that multilayers and texture descriptors can be combined to outperform the standard single-layer approaches. Experiments on 10 datasets demonstrate the generalizability of the proposed descriptors. Most of these datasets are medical, but in each case the images are very different. Two datasets are completely unrelated to medicine and are included to demonstrate the discriminative power of the proposed descriptors across very different image recognition tasks. A MATLAB version of the complete system developed in this paper will be made available at https://www.dei.unipd.it/node/2357. PMID:26656952

  4. Model attraction in medical image object recognition

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Zingaretti, Primo

    1995-04-01

    This paper presents as new approach to image recognition based on a general attraction principle. A cognitive recognition is governed by a 'focus on attention' process that concentrates on the visual data subset of task- relevant type only. Our model-based approach combines it with another process, focus on attraction, which concentrates on the transformations of visual data having relevance for the matching. The recognition process is characterized by an intentional evolution of the visual data. This chain of image transformations is viewed as driven by an attraction field that attempts to reduce the distance between the image-point and the model-point in the feature space. The field sources are determined during a learning phase, by supplying the system with a training set. The paper describes a medical interpretation case in the feature space, concerning human skin lesions. The samples of the training set, supplied by the dermatologists, allow the system to learn models of lesions in terms of features such as hue factor, asymmetry factor, and asperity factor. The comparison of the visual data with the model derives the trend of image transformations, allowing a better definition of the given image and its classification. The algorithms are implemented in C language on a PC equipped with Matrox Image Series IM-1280 acquisition and processing boards. The work is now in progress.

  5. Chemical Approaches for Advanced Optical Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhixing

    Advances in optical microscopy have been constantly expanding our knowledge of biological systems. The achievements therein are a result of close collaborations between physicists/engineers who build the imaging instruments and chemists/biochemists who design the corresponding probe molecules. In this work I present a number of chemical approaches for the development of advanced optical imaging methods. Chapter 1 provides an overview of the recent advances of novel imaging approaches taking advantage of chemical tag technologies. Chapter 2 describes the second-generation covalent trimethoprim-tag as a viable tool for live cell protein-specific labeling and imaging. In Chapter 3 we present a fluorescence lifetime imaging approach to map protein-specific micro-environment in live cells using TMP-Cy3 as a chemical probe. In Chapter 4, we present a method harnessing photo-activatable fluorophores to extend the fundamental depth limit in multi-photon microscopy. Chapter 5 describes the development of isotopically edited alkyne palette for multi-color live cell vibrational imaging of cellular small molecules. These studies exemplify the impact of modern chemical approaches in the development of advanced optical microscopies.

  6. Advanced Microwave/Millimeter-Wave Imaging Technology

    NASA Astrophysics Data System (ADS)

    Shen, Zuowei; Yang, Lu; Luhmann, N. C., Jr.; Domier, C. W.; Ito, N.; Kogi, Y.; Liang, Y.; Mase, A.; Park, H.; Sakata, E.; Tsai, W.; Xia, Z. G.; Zhang, P.

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources.

  7. Twofold processing for denoising ultrasound medical images.

    PubMed

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India. PMID:26697285

  8. Medical Imaging In An Object Oriented Environment

    NASA Astrophysics Data System (ADS)

    Geist, Daniel; Vannier, Michael W.

    1988-06-01

    A workstation has been developed to evaluate computed tomographic (CT) image data in 2 and 3 dimensions. The workstation consists of an independent image display station (Independent Viewing and Analysis Station or WAS, International Imaging Systems, Inc., Milpitas, Calif.) and a VAX host computer. The WAS has 1024 X 1024 X 24 bits of image memory plus 4 bits of graphics overlay. An independent VLSI graphics processor and 1024 X 1024 X 4 bit graphics memory, independent of the image memory, are included in the self-contained WAS unit. A local microprocessor host (Motorola 68000 microprocessor) controls the IVAS from directives obtained through a direct memory access channel to the VAX host. This facilitated the creation of an object oriented software enviroment for the IVAS under control of a VAX host program written in the C language. The workstation created has an interactive user interface consisting of a mouse and pull-down menus. The workstation enables loading multiple images, typically 256 x 256 or 512 x 512, into the 1024 X 1024 frame buffer. Once loaded, the images can be manipulated by applying gray scale transforms, editing them and performing 3-D reconstructions from serial sections. Algorithms for three dimensional (3-D) reconstructions were implemented in the VAX/VMS host computer environment and are available on the workstation through special menu functions for handling these reconstructions. The functions interactively combine depth and gradient shading of surfaces to suit specific applications in craniofacial surgical planning or orthopedics. This workstation is user friendly and is very easy to handle. A workstation of this type may become a popular tool for physicians and surgeons in evalution of medical images.

  9. Medical image archive node simulation and architecture

    NASA Astrophysics Data System (ADS)

    Chiang, Ted T.; Tang, Yau-Kuo

    1996-05-01

    It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape

  10. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  11. Fingerprint verification on medical image reporting system.

    PubMed

    Chen, Yen-Cheng; Chen, Liang-Kuang; Tsai, Ming-Dar; Chiu, Hou-Chang; Chiu, Jainn-Shiun; Chong, Chee-Fah

    2008-03-01

    The healthcare industry is recently going through extensive changes, through adoption of robust, interoperable healthcare information technology by means of electronic medical records (EMR). However, a major concern of EMR is adequate confidentiality of the individual records being managed electronically. Multiple access points over an open network like the Internet increases possible patient data interception. The obligation is on healthcare providers to procure information security solutions that do not hamper patient care while still providing the confidentiality of patient information. Medical images are also part of the EMR which need to be protected from unauthorized users. This study integrates the techniques of fingerprint verification, DICOM object, digital signature and digital envelope in order to ensure that access to the hospital Picture Archiving and Communication System (PACS) or radiology information system (RIS) is only by certified parties. PMID:18178287

  12. Multimodality and nanoparticles in medical imaging

    PubMed Central

    Huang, Wen-Yen; Davis, Jason J.

    2015-01-01

    A number of medical imaging techniques are used heavily in the provision of spatially resolved information on disease and physiological status and accordingly play a critical role in clinical diagnostics and subsequent treatment. Though, for most imaging modes, contrast is potentially enhanced through the use of contrast agents or improved hardware or imaging protocols, no single methodology provides, in isolation, a detailed mapping of anatomy, disease markers or physiological status. In recent years, the concept of complementing the strengths of one imaging modality with those of another has come to the fore and been further bolstered by the development of fused instruments such as PET/CT and PET/MRI stations. Coupled with the continual development in imaging hardware has been a surge in reports of contrast agents bearing multiple functionality, potentially providing not only a powerful and highly sensitised means of co-localising physiological/disease status and anatomy, but also the tracking and delineation of multiple markers and indeed subsequent or simultaneous highly localized therapy (“theragnostics”). PMID:21409202

  13. Scalar-vector quantization of medical images.

    PubMed

    Mohsenian, N; Shahri, H; Nasrabadi, N M

    1996-01-01

    A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. The SVQ is a fixed rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation that is typical of coding schemes using variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original when displayed on a monitor. This makes our SVQ-based coder an attractive compression scheme for picture archiving and communication systems (PACS). PACS are currently under study for use in an all-digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired. PMID:18285124

  14. Advanced MR Imaging of Gliomas: An Update

    PubMed Central

    Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Fong Y.; Chen, Cheng-Yu

    2013-01-01

    Recent advances in the treatment of cerebral gliomas have increased the demands on noninvasive neuroimaging for the diagnosis, therapeutic planning, tumor monitoring, and patient outcome prediction. In the meantime, improved magnetic resonance (MR) imaging techniques have shown much potentials in evaluating the key pathological features of the gliomas, including cellularity, invasiveness, mitotic activity, angiogenesis, and necrosis, hence, further shedding light on glioma grading before treatment. In this paper, an update of advanced MR imaging techniques is reviewed, and their potential roles as biomarkers of tumor grading are discussed. PMID:23862163

  15. Advanced Imaging of Chiari 1 Malformations.

    PubMed

    Fakhri, Akbar; Shah, Manish N; Goyal, Manu S

    2015-10-01

    Type I Chiari malformations are congenital deformities involving cerebellar tonsillar herniation downward through the foramen magnum. Structurally, greater than 5 mm of tonsillar descent in adults and more than 6 mm in children is consistent with type I Chiari malformations. However, the radiographic severity of the tonsillar descent does not always correlate well with the clinical symptomatology. Advanced imaging can help clinically correlate imaging to symptoms. Specifically, cerebrospinal fluid (CSF) flow abnormalities are seen in patients with type I Chiari malformation. Advanced MRI involving cardiac-gated and phase-contrast MRI affords a view of such CSF flow abnormalities. PMID:26408061

  16. Machine learning for medical images analysis.

    PubMed

    Criminisi, A

    2016-10-01

    This article discusses the application of machine learning for the analysis of medical images. Specifically: (i) We show how a special type of learning models can be thought of as automatically optimized, hierarchically-structured, rule-based algorithms, and (ii) We discuss how the issue of collecting large labelled datasets applies to both conventional algorithms as well as machine learning techniques. The size of the training database is a function of model complexity rather than a characteristic of machine learning methods. PMID:27374127

  17. Integrated wavelets for medical image analysis

    NASA Astrophysics Data System (ADS)

    Heinlein, Peter; Schneider, Wilfried

    2003-11-01

    Integrated wavelets are a new method for discretizing the continuous wavelet transform (CWT). Independent of the choice of discrete scale and orientation parameters they yield tight families of convolution operators. Thus these families can easily be adapted to specific problems. After presenting the fundamental ideas, we focus primarily on the construction of directional integrated wavelets and their application to medical images. We state an exact algorithm for implementing this transform and present applications from the field of digital mammography. The first application covers the enhancement of microcalcifications in digital mammograms. Further, we exploit the directional information provided by integrated wavelets for better separation of microcalcifications from similar structures.

  18. Cerenkov luminescence imaging of medical isotopes

    PubMed Central

    Ruggiero, Alessandro; Holland, Jason P.; Lewis, Jason S.; Grimm, Jan

    2011-01-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. Methods In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters 18F, 64Cu, 89Zr, and 124I; β-emitter 131I; and α-particle emitter 225Ac for potential use in CLI. The novel radiolabeled monoclonal antibody 89Zr-desferrioxamine B-[DFO-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Results Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-,β-, and α-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of 89Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. Conclusion These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  19. Viewpoints on Medical Image Processing: From Science to Application

    PubMed Central

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  20. Advances of imaging for hepatocellular carcinoma.

    PubMed

    Choi, Byung Ihn

    2010-07-01

    A variety of imaging modalities, including ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine, and angiography, are currently used in evaluating patients with chronic liver disease and suspected hepatocellular carcinoma (HCC). Further technological advancement will undoubtedly have a major impact on liver tumor imaging. Increased speed of data acquisition and consequently shorter scan times in CT and MRI show further improvement in resolution by further reducing motion artifacts. Development of new contrast materials for liver tumor imaging in US and MRI improve tumor detection and characterization by increasing the contrast resolution. Currently available advanced US techniques in the evaluation of HCC are various harmonic imaging techniques with contrast agents, volume imaging, and recently, US elastography, that has been developing and might play a role in characterizing liver nodules in the future. The latest advance in CT is the multidetector (MD) CT scanner where a 256- or 320-detector CT was introduced. Recent studies describe the high sensitivity of double arterial phase imaging in hepatic tumor detection and the usefulness of CT angiography by using MD CT in a detailed assessment of hepatic arterial anatomy using a three-dimensional dataset. In addition, perfusion CT imaging is also being developed and can be used for the characterization and treatment monitoring of HCC. Dual-energy CT with new technology is also continuously progressing. Advances in MR technology, including hardware and pulse sequence implementation, allow acquisition times to be reduced to the time frame of one breathhold, providing multiphasic dynamic MRI. Functional MRI including diffusion-weighted MRI, MR elastography, and new MR contrast agent with dual function have been investigated for the clinical utility of detection and characterization of HCCs. Functional MRI has a potential to be a promising technique for assessing HCC. PMID:20616584

  1. Electronics Signal Processing for Medical Imaging

    NASA Astrophysics Data System (ADS)

    Turchetta, Renato

    This paper describes the way the signal coming from a radiation detector is conditioned and processed to produce images useful for medical applications. First of all, the small signal produce by the radiation is processed by analogue electronics specifically designed to produce a good signal-over-noise ratio. The optimised analogue signal produced at this stage can then be processed and transformed into digital information that is eventually stored in a computer, where it can be further processed as required. After an introduction to the general requirements of the processing electronics, we will review the basic building blocks that process the `tiny' analogue signal coming from a radiation detector. We will in particular analyse how it is possible to optimise the signal-over-noise ratio of the electronics. Some exercises, developed in the tutorial, will help to understand this fundamental part. The blocks needed to process the analogue signal and transform it into a digital code will be described. The description of electronics systems used for medical imaging systems will conclude the lecture.

  2. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  3. Uncooled thermal imaging sensor and application advances

    NASA Astrophysics Data System (ADS)

    Norton, Peter W.; Cox, Stephen; Murphy, Bob; Grealish, Kevin; Joswick, Mike; Denley, Brian; Feda, Frank; Elmali, Loriann; Kohin, Margaret

    2006-05-01

    BAE Systems continues to advance the technology and performance of microbolometer-based thermal imaging modules and systems. 640x480 digital uncooled infrared focal plane arrays are in full production, illustrated by recent production line test data for two thousand focal plane arrays. This paper presents a snapshot of microbolometer technology at BAE Systems and an overview of two of the most important thermal imaging sensor programs currently in production: a family of thermal weapons sights for the United States Army and a thermal imager for the remote weapons station on the Stryker vehicle.

  4. Characteristic Images Emerging From Recent Spie Medical Imaging Symposia

    NASA Astrophysics Data System (ADS)

    Wagner, Robert F.

    1987-01-01

    The purpose of this short tutorial is to highlight selected papers from recent SPIE conferences with emphasis on the areas of signal detection theory, statistical decision theory and pattern recognition, image evaluation, and image processing. The selection is biased toward the author's special areas of interest and, as is usual in reviews of this kind, a common set of threads are sought. The papers are referenced in terms of the SPIE volume number and paper number (000-00). The first common thread is that the volume numbers tend to be palindromes, namely, 454, 535, 626, and the present 767, and indicate the non-linear growth of the Society between annual Medical Imaging symposia.

  5. The conversion of synchrotron radiation biomedical and medical images into DICOM images

    NASA Astrophysics Data System (ADS)

    Wang, Yunling; Sun, Jianyong; Sun, Jianqi; Zhang, Jianguo

    2014-03-01

    With Synchrotron Radiation light source, there was a lot of imaging methods being developed to perform biomedical and medical imaging researches such as X-ray absorption imaging, phase-contrast imaging and micro-CT imaging. In this presentation, we present an approach to transform a various kinds of SR images into proper DICOM images so that to use a rich of medical processing display software to process and display SR biomedical and medical images. The new generated SR DICOM images can be transferred, stored, processed and displayed by using most of commercial medical imaging software.

  6. Advanced endoscopic imaging to improve adenoma detection

    PubMed Central

    Neumann, Helmut; Nägel, Andreas; Buda, Andrea

    2015-01-01

    Advanced endoscopic imaging is revolutionizing our way on how to diagnose and treat colorectal lesions. Within recent years a variety of modern endoscopic imaging techniques was introduced to improve adenoma detection rates. Those include high-definition imaging, dye-less chromoendoscopy techniques and novel, highly flexible endoscopes, some of them equipped with balloons or multiple lenses in order to improve adenoma detection rates. In this review we will focus on the newest developments in the field of colonoscopic imaging to improve adenoma detection rates. Described techniques include high-definition imaging, optical chromoendoscopy techniques, virtual chromoendoscopy techniques, the Third Eye Retroscope and other retroviewing devices, the G-EYE endoscope and the Full Spectrum Endoscopy-system. PMID:25789092

  7. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  8. A new database for medical images and information

    NASA Astrophysics Data System (ADS)

    Tahmoush, Dave; Samet, Hanan

    2007-03-01

    We present a medical image and medical record database for the storage, research, transmission, and evaluation of medical images, as well as tele-medicine applications. Any medical image from a source that supports the DICOM standard can be stored and accessed, as well as associated analysis and annotations. Information and image retrieval can be done based on patient info, date, doctor's annotations, features in the images, or a spatial combination of features. Secure access and transmission is addressed for tele-medicine applications. This database application follows all HIPPA regulations.

  9. Medical applications of digital image morphing.

    PubMed

    Penska, Keith; Folio, Les; Bunger, Rolf

    2007-09-01

    The authors present a unique medical technical application for illustrating the success and/or failure of the physiological healing process as a dynamically morphed video. Two examples used in this report include the healing of a severely fractured humerus from an explosion in Iraq and the other of dramatic tissue destruction from a poisonous spider bite. For the humerus, several sequential x-rays obtained throughout orthopedic surgical procedures and the healing process were morphed together representing a time-lapsed video of the healing process. The end result is a video that demonstrates the healing process in an animation that radiologists envision and report to other clinicians. For the brown recluse spider bite, a seemingly benign skin lesion transforms into a wide gaping necrotic wound with dramatic appearance within days. This novel technique is not presented for readily apparent clinical advantage, rather, it may have more immediate application in providing treatment options to referring providers and/or patients, as well as educational value of healing or disease progression over time. Image morphing is one of those innovations that is just starting to come into its own. Morphing is an image processing technology that transforms one image into another by generating a series of intermediate synthetic images. It is the same process that Hollywood uses to turn people into animals in movies, for example. The ability to perform morphing, once restricted to high-end graphics workstations, is now widely available for desktop computers. The authors describe how a series of radiographic images were morphed into a short movie clip using readily available software and an average laptop. The resultant video showed the healing process of an open comminuted humerus fracture that helped demonstrate how amazingly the human body heals in a case presentation in a time-lapse fashion. PMID:17273920

  10. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    PubMed

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. PMID:27364430

  11. Adjunct processors in embedded medical imaging systems

    NASA Astrophysics Data System (ADS)

    Trepanier, Marc; Goddard, Iain

    2002-05-01

    Adjunct processors have traditionally been used for certain tasks in medical imaging systems. Often based on application-specific integrated circuits (ASICs), these processors formed X-ray image-processing pipelines or constituted the backprojectors in computed tomography (CT) systems. We examine appropriate functions to perform with adjunct processing and draw some conclusions about system design trade-offs. These trade-offs have traditionally focused on the required performance and flexibility of individual system components, with increasing emphasis on time-to-market impact. Typically, front-end processing close to the sensor has the most intensive processing requirements. However, the performance capabilities of each level are dynamic and the system architect must keep abreast of the current capabilities of all options to remain competitive. Designers are searching for the most efficient implementation of their particular system requirements. We cite algorithm characteristics that point to effective solutions by adjunct processors. We have developed a field- programmable gate array (FPGA) adjunct-processor solution for a Cone-Beam Reconstruction (CBR) algorithm that offers significant performance improvements over a general-purpose processor implementation. The same hardware could efficiently perform other image processing functions such as two-dimensional (2D) convolution. The potential performance, price, operating power, and flexibility advantages of an FPGA adjunct processor over an ASIC, DSP or general-purpose processing solutions are compelling.

  12. A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging.

    PubMed

    Buckler, Andrew J; Bresolin, Linda; Dunnick, N Reed; Sullivan, Daniel C

    2011-03-01

    Medical imaging has seen substantial and rapid technical advances during the past decade, including advances in image acquisition devices, processing and analysis software, and agents to enhance specificity. Traditionally, medical imaging has defined anatomy, but increasingly newer, more advanced, imaging technologies provide biochemical and physiologic information based on both static and dynamic modalities. These advanced technologies are important not only for detecting disease but for characterizing and assessing change of disease with time or therapy. Because of the rapidity of these advances, research to determine the utility of quantitative imaging in either clinical research or clinical practice has not had time to mature. Methods to appropriately develop, assess, regulate, and reimburse must be established for these advanced technologies. Efficient and methodical processes that meet the needs of stakeholders in the biomedical research community, therapeutics developers, and health care delivery enterprises will ultimately benefit individual patients. To help address this, the authors formed a collaborative program-the Quantitative Imaging Biomarker Alliance. This program draws from the very successful precedent set by the Integrating the Healthcare Enterprise effort but is adapted to the needs of imaging science. Strategic guidance supporting the development, qualification, and deployment of quantitative imaging biomarkers will lead to improved standardization of imaging tests, proof of imaging test performance, and greater use of imaging to predict the biologic behavior of tissue and monitor therapy response. These, in turn, confer value to corporate stakeholders, providing incentives to bring new and innovative products to market. PMID:21339352

  13. Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications.

    PubMed

    Marro, Alessandro; Bandukwala, Taha; Mak, Walter

    2016-01-01

    The purpose of this article is to review recent innovations on the process and application of 3-dimensional (3D) printed objects from medical imaging data. Data for 3D printed medical models can be obtained from computed tomography, magnetic resonance imaging, and ultrasound using the Data Imaging and Communications in Medicine (DICOM) software. The data images are processed using segmentation and mesh generation tools and converted to a standard tessellation language (STL) file for printing. 3D printing technologies include stereolithography, selective laser sintering, inkjet, and fused-deposition modeling . 3D printed models have been used for preoperative planning of complex surgeries, the creation of custom prosthesis, and in the education and training of physicians. The application of medical imaging and 3D printers has been successful in providing solutions to many complex medical problems. As technology advances, its applications continue to grow in the future. PMID:26298798

  14. Advanced laser systems for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Klosner, Marc; Sampathkumar, Ashwin; Chan, Gary; Wu, Chunbai; Gross, Daniel; Heller, Donald F.

    2015-03-01

    We describe the ongoing development of laser systems for advanced photoacoustic imaging (PAI). We discuss the characteristics of these laser systems and their particular benefits for soft tissue imaging and next-generation breast cancer diagnostics. We provide an overview of laser performance and compare this with other laser systems that have been used for early-stage development of PAI. These advanced systems feature higher pulse energy output at clinically relevant repetition rates, as well as a novel wavelength-cycling output pulse format. Wavelength cycling provides pulse sequences for which the output repeatedly alternates between two wavelengths that provide differential imaging. This capability improves co-registration of captured differential images. We present imaging results of phantoms obtained with a commercial ultrasound detector system and a wavelength-cycling laser source providing ~500 mJ/pulse at 755 and 797 nm, operating at 25 Hz. The results include photoacoustic images and corresponding pulse-echo data from a tissue mimicking phantom containing inclusions, simulating tumors in the breast. We discuss the application of these systems to the contrast-enhanced detection of various tissue types and tumors.

  15. From the Office of the General Counsel. Advance medical directives.

    PubMed

    Orentlicher, D

    1990-05-01

    The American Medical Association's Board of Trustees recently issued a report on advance medical directives, Living Wills, Durable Powers of Attorney, and Durable Powers of Attorney for Health Care (AMA; 1989). Here Orentlicher, writing under the auspices of the AMA's Office of the General Counsel, offers an expanded version of that report. Orentlicher's article discusses the advantages and drawbacks of living wills, the appointment of a proxy decision maker through a living will, a durable power of attorney, or a durable power of attorney for health care, and the physician's role in implementing treatment preferences. PMID:2325236

  16. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    PubMed Central

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  17. Medical Image Analysis by Cognitive Information Systems - a Review.

    PubMed

    Ogiela, Lidia; Takizawa, Makoto

    2016-10-01

    This publication presents a review of medical image analysis systems. The paradigms of cognitive information systems will be presented by examples of medical image analysis systems. The semantic processes present as it is applied to different types of medical images. Cognitive information systems were defined on the basis of methods for the semantic analysis and interpretation of information - medical images - applied to cognitive meaning of medical images contained in analyzed data sets. Semantic analysis was proposed to analyzed the meaning of data. Meaning is included in information, for example in medical images. Medical image analysis will be presented and discussed as they are applied to various types of medical images, presented selected human organs, with different pathologies. Those images were analyzed using different classes of cognitive information systems. Cognitive information systems dedicated to medical image analysis was also defined for the decision supporting tasks. This process is very important for example in diagnostic and therapy processes, in the selection of semantic aspects/features, from analyzed data sets. Those features allow to create a new way of analysis. PMID:27526188

  18. Foundations of Advanced Magnetic Resonance Imaging

    PubMed Central

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B.; Krueger, Gunnar; Moseley, Michael E.; Glover, Gary H.

    2005-01-01

    Summary: During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now—within a few minutes—acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths. PMID:15897944

  19. Stochastic inverse consistency in medical image registration.

    PubMed

    Yeung, Sai Kit; Shi, Pengcheng

    2005-01-01

    An essential goal in medical image registration is, the forward and reverse mapping matrices should be inverse to each other, i.e., inverse consistency. Conventional approaches enforce consistency in deterministic fashions, through incorporation of sub-objective cost function to impose source-destination symmetric property during the registration process. Assuming that the initial forward and reverse matching matrices have been computed and used as the inputs to our system, this paper presents a stochastic framework which yields perfect inverse consistency with the simultaneous considerations of the errors underneath the registration matrices and the imperfectness of the consistent constraint. An iterative generalized total least square (GTLS) strategy has been developed such that the inverse consistency is optimally imposed. PMID:16685959

  20. Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment

    PubMed Central

    Edmunds, Kyle Joseph; Gíslason, Magnus K.; Arnadottir, Iris D.; Marcante, Andrea; Piccione, Francesco; Gargiulo, Paolo

    2016-01-01

    Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT) and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU) values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration. PMID:27478562

  1. Anniversary Paper: Image processing and manipulation through the pages of Medical Physics

    SciTech Connect

    Armato, Samuel G. III; Ginneken, Bram van

    2008-10-15

    The language of radiology has gradually evolved from ''the film'' (the foundation of radiology since Wilhelm Roentgen's 1895 discovery of x-rays) to ''the image,'' an electronic manifestation of a radiologic examination that exists within the bits and bytes of a computer. Rather than simply storing and displaying radiologic images in a static manner, the computational power of the computer may be used to enhance a radiologist's ability to visually extract information from the image through image processing and image manipulation algorithms. Image processing tools provide a broad spectrum of opportunities for image enhancement. Gray-level manipulations such as histogram equalization, spatial alterations such as geometric distortion correction, preprocessing operations such as edge enhancement, and enhanced radiography techniques such as temporal subtraction provide powerful methods to improve the diagnostic quality of an image or to enhance structures of interest within an image. Furthermore, these image processing algorithms provide the building blocks of more advanced computer vision methods. The prominent role of medical physicists and the AAPM in the advancement of medical image processing methods, and in the establishment of the ''image'' as the fundamental entity in radiology and radiation oncology, has been captured in 35 volumes of Medical Physics.

  2. Anniversary paper: image processing and manipulation through the pages of Medical Physics.

    PubMed

    Armato, Samuel G; van Ginneken, Bram

    2008-10-01

    The language of radiology has gradually evolved from "the film" (the foundation of radiology since Wilhelm Roentgen's 1895 discovery of x-rays) to "the image," an electronic manifestation of a radiologic examination that exists within the bits and bytes of a computer. Rather than simply storing and displaying radiologic images in a static manner, the computational power of the computer may be used to enhance a radiologist's ability to visually extract information from the image through image processing and image manipulation algorithms. Image processing tools provide a broad spectrum of opportunities for image enhancement. Gray-level manipulations such as histogram equalization, spatial alterations such as geometric distortion correction, preprocessing operations such as edge enhancement, and enhanced radiography techniques such as temporal subtraction provide powerful methods to improve the diagnostic quality of an image or to enhance structures of interest within an image. Furthermore, these image processing algorithms provide the building blocks of more advanced computer vision methods. The prominent role of medical physicists and the AAPM in the advancement of medical image processing methods, and in the establishment of the "image" as the fundamental entity in radiology and radiation oncology, has been captured in 35 volumes of Medical Physics. PMID:18975696

  3. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  4. Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical Therapies

    ScienceCinema

    Tijana Rajh

    2010-01-08

    Dr. Rajh will present a general talk on nanotechnology ? an overview of why nanotechnology is important and how it is useful in various fields. The specific focus will be on Solar energy conversion, environmental applications and advanced medical therapies. She has broad expertise in synthesis and characterization of nanomaterials that are used in nanotechnology including novel hybrid systems connecting semiconductors to biological molecules like DNA and antibodies. This technology could lead to new gene therapy procedures, cancer treatments and other medical applications. She will also discuss technologies made possible by organizing small semiconductor particles called quantum dots, materials that exhibit a rich variety of phenomena that are size and shape dependent. Development of these new materials that harnesses the unique properties of materials at the 1-100 nanometer scale resulted in the new field of nanotechnology that currently affects many applications in technological and medical fields.

  5. Normalized methodology for medical infrared imaging

    NASA Astrophysics Data System (ADS)

    Vargas, J. V. C.; Brioschi, M. L.; Dias, F. G.; Parolin, M. B.; Mulinari-Brenner, F. A.; Ordonez, J. C.; Colman, D.

    2009-01-01

    A normalized procedure for medical infrared imaging is suggested, and illustrated by a leprosy and hepatitis C treatment follow-up, in order to investigate the effect of concurrent treatment which has not been reported before. A 50-year-old man with indeterminate leprosy and a 20-year history of hepatitis C was monitored for 587 days, starting from the day the patient received treatment for leprosy. Standard therapy for hepatitis C started 30 days later. Both visual observations and normalized infrared imaging were conducted periodically to assess the response to leprosy treatment. The primary end points were effectiveness of the method under different boundary conditions over the period, and rapid assessment of the response to leprosy treatment. The patient achieved sustained hepatitis C virological response 6 months after the end of the treatment. The normalized infrared results demonstrate the leprosy treatment success in spite of the concurrent hepatitis C treatment, since day 87, whereas repigmentation was visually assessed only after day 182, and corroborated with a skin biopsy on day 390. The method detected the effectiveness of the leprosy treatment in 87 days, whereas repigmentation started only in 182 days. Hepatitis C and leprosy treatment did not affect each other.

  6. Covariant Image Representation with Applications to Classification Problems in Medical Imaging

    PubMed Central

    Seo, Dohyung; Ho, Jeffrey; Vemuri, Baba C.

    2016-01-01

    Images are often considered as functions defined on the image domains, and as functions, their (intensity) values are usually considered to be invariant under the image domain transforms. This functional viewpoint is both influential and prevalent, and it provides the justification for comparing images using functional Lp-norms. However, with the advent of more advanced sensing technologies and data processing methods, the definition and the variety of images has been broadened considerably, and the long-cherished functional paradigm for images is becoming inadequate and insufficient. In this paper, we introduce the formal notion of covariant images and study two types of covariant images that are important in medical image analysis, symmetric positive-definite tensor fields and Gaussian mixture fields, images whose sample values covary i.e., jointly vary with image domain transforms rather than being invariant to them. We propose a novel similarity measure between a pair of covariant images considered as embedded shapes (manifolds) in the ambient space, a Cartesian product of the image and its sample-value domains. The similarity measure is based on matching the two embedded low-dimensional shapes, and both the extrinsic geometry of the ambient space and the intrinsic geometry of the shapes are incorporated in computing the similarity measure. Using this similarity as an affinity measure in a supervised learning framework, we demonstrate its effectiveness on two challenging classification problems: classification of brain MR images based on patients’ age and (Alzheimer’s) disease status and seizure detection from high angular resolution diffusion magnetic resonance scans of rat brains. PMID:27182122

  7. Imaging Tumor Hypoxia to Advance Radiation Oncology

    PubMed Central

    Lee, Chen-Ting; Boss, Mary-Keara

    2014-01-01

    Abstract Significance: Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. Recent Advances: Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. Critical Issues: In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. Future Directions: A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices. Antioxid. Redox Signal. 21, 313–337. PMID:24329000

  8. Reverse hierarchy theory and medical image perception

    NASA Astrophysics Data System (ADS)

    Donovan, T.; Manning, D. J.

    2009-02-01

    We are unsure about what information is extracted from an image to allow a decision about pathology to be made. Our knowledge of the interplay between top down processing or bottom up, local or global perception, perceptual or cognitive processes is uncertain. However recent research has emphasised the importance of the global or holistic look in medical image perception in which recognition of abnormalities precedes search. Reverse Hierarchy Theory [1] is a useful general theory that helps to explain this. It also enables us to understand what information is extracted from an image and how this relates to expertise. Essentially the theory states that perceptual learning begins at high levels areas and progresses down to lower level areas when better signal to noise is needed. So perceptual learning, defined as an improvement in sensory abilities after training, stems from a gradual top down guided increase in usability of first high then lower level task relevant information. Evaluation of the scan paths of groups of observers with different levels of expertise when undertaking a lung nodule perception task seems to be consistent with the theory. Experts' perception is generally immediate and holistic suggesting high level representations whereas those with an intermediate level of expertise tend to be more variable in their scan paths. Interestingly naÃve observers have eye tracking metrics that are more similar to experts suggesting they take a common sense approach using perceptual skills we all have as they lack experience in being able to access the low level information from the chest radiograph.

  9. Microwave Imaging for Breast Cancer Detection: Advances in Three–Dimensional Image Reconstruction

    PubMed Central

    Golnabi, Amir H.; Meaney, Paul M.; Epstein, Neil R.; Paulsen, Keith D.

    2013-01-01

    Microwave imaging is based on the electrical property (permittivity and conductivity) differences in materials. Microwave imaging for biomedical applications is particularly interesting, mainly due to the fact that available range of dielectric properties for different tissues can provide important functional information about their health. Under the assumption that a 3D scattering problem can be reasonably represented as a simplified 2D model, one can take advantage of the simplicity and lower computational cost of 2D models to characterize such 3D phenomenon. Nonetheless, by eliminating excessive model simplifications, 3D microwave imaging provides potentially more valuable information over 2Dtechniques, and as a result, more accurate dielectric property maps may be obtained. In this paper, we present some advances we have made in three–dimensional image reconstruction, and show the results from a 3D breast phantom experiment using our clinical microwave imaging system at Dartmouth Hitchcock Medical Center (DHMC), NH. PMID:22255641

  10. Medical image fusion by wavelet transform modulus maxima

    NASA Astrophysics Data System (ADS)

    Guihong, Qu; Dali, Zhang; Pingfan, Yan

    2001-08-01

    Medical image fusion has been used to derive useful information from multimodality medical image data. In this research, we propose a novel method for multimodality medical image fusion. Using wavelet transform, we achieved a fusion scheme. Afusion rule is proposed and used for calculating the wavelet transformation modulus maxima of input images at different bandwidths and levels. To evaluate the fusion result, a metric based on mutual information (MI) is presented for measuring fusion effect. The performances of other two methods of image fusion based on wavelet transform are briefly described for comparison. The experiment results demonstrate the effectiveness of the fusion scheme.

  11. Image stabilization for SWIR advanced optoelectronic device

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Craciun, Anca-Ileana; Craciun, Alexandru; Granciu, Dana

    2015-02-01

    At long ranges and under low visibility conditions, Advanced Optoelectronic Device provides the signal-to-noise ratio and image quality in the Short-wave Infra-red - SWIR (wavelengths between 1,1 ÷2,5 μm), significantly better than in the near wave infrared - NWIR and visible spectral bands [1,2]. The quality of image is nearly independent of the polarization in the incoming light, but it is influenced by the relative movement between the optical system and the observer (the operators' handshake), and the movement towards the support system (land and air vehicles). All these make it difficult to detect objectives observation in real time. This paper presents some systems enhance which the ability of observation and sighting through the optical systems without the use of the stands, tripods or other means. We have to eliminate the effect of "tremors of the hands" and the vibration in order to allow the use of optical devices by operators on the moving vehicles on land, on aircraft, or on boats, and to provide additional comfort for the user to track the moving object through the optical system, without losing the control in the process of detection and tracking. The practical applications of stabilization image process, in SWIR, are the most advanced part of the optical observation systems available worldwide [3,4,5]. This application has a didactic nature, because it ensures understanding by the students about image stabilization and their participation in research.

  12. Medical Images Fusion with Patch Based Structure Tensor.

    PubMed

    Luo, Fen; Sun, Jiangfeng; Hou, Shouming

    2015-01-01

    Nowadays medical imaging has played an important role in clinical use, which provide important clues for medical diagnosis. In medical image fusion, the extraction of some fine details and description is critical. To solve this problem, a modified structure tensor by considering similarity between two patches is proposed. The patch based filter can suppress noise and add the robustness of the eigen-values of the structure tensor by allowing the use of more information of far away pixels. After defining the new structure tensor, we apply it into medical image fusion with a multi-resolution wavelet theory. The features are extracted and described by the eigen-values of two multi-modality source data. To test the performance of the proposed scheme, the CT and MR images are used as input source images for medical image fusion. The experimental results show that the proposed method can produce better results compared to some related approaches. PMID:26628927

  13. Optical Fourier techniques for medical image processing and phase contrast imaging

    PubMed Central

    Yelleswarapu, Chandra S.; Kothapalli, Sri-Rajasekhar; Rao, D.V.G.L.N.

    2008-01-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy. PMID:18458764

  14. Optical Fourier techniques for medical image processing and phase contrast imaging.

    PubMed

    Yelleswarapu, Chandra S; Kothapalli, Sri-Rajasekhar; Rao, D V G L N

    2008-04-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy. PMID:18458764

  15. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos, Stavros; Staggs, Michael C.

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  16. Near-infrared spectroscopic tissue imaging for medical applications

    DOEpatents

    Demos; Stavros , Staggs; Michael C.

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  17. 76 FR 48169 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Microbiology/ Medical Countermeasure Devices; Public Meeting AGENCY: Food and Drug Administration, HHS. ACTION... following public meeting: ``Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical... multiplexed microbiology/medical countermeasure (MCM) devices, their clinical application and public...

  18. Considering something 'ELSE': ethical, legal and socio-economic factors in medical imaging and medical informatics.

    PubMed

    Duquenoy, Penny; George, Carlisle; Solomonides, Anthony

    2008-12-01

    The focus on the use of existing and new technologies to facilitate advances in medical imaging and medical informatics (MIMI) is often directed to the technical capabilities and possibilities that these technologies bring. The technologies, though, in acting as a mediating agent alter the dynamics and context of information delivery in subtle ways. While these changes bring benefits in more efficient information transfer and offer the potential of better healthcare, they also disrupt traditional processes and practices which have been formulated for a different setting. The governance processes that underpin core ethical principles, such as patient confidentiality and informed consent, may no longer be appropriate in a new technological context. Therefore, in addition to discussing new methodologies, techniques and applications, there is need for a discussion of ethical, legal and socio-economic (ELSE) issues surrounding the use and application of technologies in MIMI. Consideration of these issues is especially important for the area of medical informatics which after all exists to support patients, healthcare practitioners and inform science. This paper brings to light some important ethical, legal and socio-economic issues related to MIMI with the aim of furthering an interdisciplinary approach to the increasing use of Information and Communication Technologies (ICT) in healthcare. PMID:18649968

  19. One-class kernel subspace ensemble for medical image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Yungang; Zhang, Bailing; Coenen, Frans; Xiao, Jimin; Lu, Wenjin

    2014-12-01

    Classification of medical images is an important issue in computer-assisted diagnosis. In this paper, a classification scheme based on a one-class kernel principle component analysis (KPCA) model ensemble has been proposed for the classification of medical images. The ensemble consists of one-class KPCA models trained using different image features from each image class, and a proposed product combining rule was used for combining the KPCA models to produce classification confidence scores for assigning an image to each class. The effectiveness of the proposed classification scheme was verified using a breast cancer biopsy image dataset and a 3D optical coherence tomography (OCT) retinal image set. The combination of different image features exploits the complementary strengths of these different feature extractors. The proposed classification scheme obtained promising results on the two medical image sets. The proposed method was also evaluated on the UCI breast cancer dataset (diagnostic), and a competitive result was obtained.

  20. Guideline report. Medical ultrasound imaging: progress and opportunities.

    PubMed

    Burns, M

    1989-01-01

    Utilization of medical ultrasound has expanded rapidly during the past several years. In 1988, sales of ultrasound equipment will approach $600 million, which is higher than any other individual imaging modality, including the most capital intensive, such as magnetic resonance imaging (MRI), computed tomography (CT), and cath lab angiography. This growth would have been difficult to predict previously, since ultrasound appeared to be a relatively mature imaging modality not too long ago. There are several reasons for this growth. Technological developments have been quite rapid; ultrasound has become easier to use, image quality has improved dramatically, and diagnostic accuracy has been enhanced. There has been a proliferation of new equipment at all ends of the price spectrum, allowing the user a wide choice in instrument performance, multi-function capabilities, and automated features to increase patient throughput. The DRG environment and the prospect for more pre-admission tests have also been a stimulus. Hospital buying activity has expanded, and many more ultrasound exams are now being conducted on an outpatient basis. Sales to freestanding imaging centers and individual physicians have similarly increased. The hospital user is willing to pay a large premium for advanced technical performance and is prepared to retire or replace older technology in less than three years. This replacement cycle is much shorter than the four to five year period which existed prior to 1985. By comparison, some of the more traditional imaging areas, such as radiology, have replacement rates of eight to ten years. The reason for early replacement is obvious. Ultrasound exams in hospitals generate revenues at a rate that justifies the purchase of the most advanced equipment. It also improves the referral rate and positions the hospital as a high quality provider. Even with low utilization rates, an ultrasound instrument can normally pay for itself in less than one year of regular

  1. A framework for integration of heterogeneous medical imaging networks.

    PubMed

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS. PMID:25279021

  2. A Framework for Integration of Heterogeneous Medical Imaging Networks

    PubMed Central

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS. PMID:25279021

  3. Navigation in medical Internet image databases.

    PubMed

    Frankewitsch, T; Prokosch, U

    2001-01-01

    The world wide web (WWW) changes common ideas of database access. Hypertext Markup Language allows the simultaneous presentation of information from different sources such as static pages, results of queries from) databases or dynamically generated pages. 'Therefore, the metaphor of the WWW itself as a database was proposed by Mendelzon and Nlilo in 1998. Against this background the techniques of navigation within WWW-databases and the semantic types of their queries has e been analysed. Forty eight image repositories of different types and content, but all concerning medical essence, have been found by search-engines. Many different techniques are offered to enable navigation ranging from simple HTML-link-lists to complex applets. The applets in particular promise an improvement for navigation. Within the meta-information for querying, only ACR- and UMLS-encoding were found, but not standardized vocabularies like ICD10 or Terminologia Anatomica. UMLS especially shows that a well defined thesaurus can improve navigation. However, of the analysed databases only the UMLS 'metathesaurus' is currently implemented without providing additional navigation support based on the UMLS 'semantic network'. Including the information about relationships between the concepts of the metathesaurus or using the UMLS semantic network could provide a much easier navigation within a network of concepts pointing to multimedia files stored somewhere in the WWW. PMID:11583404

  4. Boundary value problems and medical imaging

    NASA Astrophysics Data System (ADS)

    Fokas, Athanasios S.; Kastis, George A.

    2014-03-01

    The application of appropriate transform pairs, such as the Fourier, the Laplace, the sine, the cosine and the Mellin transforms, provides the most well known method for constructing analytical solutions to a large class of physically significant boundary value problems. However, this method has several limitations. In particular, it requires the given PDE, domain and boundary conditions to be separable, and also may not be applicable if the given boundary value problem is non-self-adjoint. Furthermore, it expresses the solution as either an integral or an infinite series, neither of which are uniformly convergent on the boundary of the domain (for nonvanishing boundary conditions), which renders such expressions unsuitable for numerical computations. Here, we review a method recently introduced by the first author which can be applied to certain nonseparable and non-self-adjoint problems. Furthermore, this method expresses the solution as an integral in the complex plane which is uniformly convergent on the boundary of the domain. This method, which also suggests new numerical techniques, is illustrated for both evolution and elliptic PDEs. Athough this method was first applied to certain nonlinear PDEs called integrable and was originally formulated in terms of the so-called Lax pairs, it can actually be applied to linear PDEs without the need to analyse the associated Lax pair. The existence of Lax pairs is used here in order to motivate a related development, namely the emergence of a novel formalism for analysing certain inverse problems arising in medical imaging. Examples include PET and SPECT.

  5. On the development of expertise in interpreting medical images

    NASA Astrophysics Data System (ADS)

    Krupinsky, Elizabeth A.

    2012-03-01

    Medical images represent a core portion of the information clinicians utilize to render diagnostic and treatment decisions. Fundamentally, viewing a medical image involves two basic processes - visually inspecting the image (visual perception) and rendering an interpretation (cognition). The interpretation is often followed by a recommendation. The likelihood of error in the interpretation of medical images is unfortunately not negligible. Errors occur and patients' lives are impacted. Thus we need to understand how clinicians interact with the information in an image during the interpretation process. We also need to understand how clinicians develop expertise throughout their careers and why some people are better at interpreting medical images than others. If we can better understand how expertise develops, perhaps we can develop better training programs, incorporate more effective ways of teaching image interpretation into the medical school and residency curriculums, and create new tools that would enhance and perhaps speed up the learning process. With improved understanding we can also develop ways to further improve decision-making in general and at every level of the medical imaging profession, thus improving patient care. The science of medical image perception is dedicated to understanding and improving the clinical interpretation process.

  6. Data Hiding Scheme on Medical Image using Graph Coloring

    NASA Astrophysics Data System (ADS)

    Astuti, Widi; Adiwijaya; Novia Wisety, Untari

    2015-06-01

    The utilization of digital medical images is now widely spread[4]. The medical images is supposed to get protection since it has probability to pass through unsecure network. Several watermarking techniques have been developed so that the digital medical images can be guaranteed in terms of its originality. In watermarking, the medical images becomes a protected object. Nevertheless, the medical images can actually be a medium of hiding secret data such as patient medical record. The data hiding is done by inserting data into image - usually called steganography in images. Because the medical images can influence the diagnose change, steganography will only be applied to non-interest region. Vector Quantization (VQ) is one of lossydata compression technique which is sufficiently prominent and frequently used. Generally, the VQ based steganography scheme still has limitation in terms of the data capacity which can be inserted. This research is aimed to make a Vector Quantization-based steganography scheme and graph coloring. The test result shows that the scheme can insert 28768 byte data which equals to 10077 characters for images area of 3696 pixels.

  7. [Managing digital medical imaging projects in healthcare services: lessons learned].

    PubMed

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. PMID:22944485

  8. Application of rough set for medical images data mining

    NASA Astrophysics Data System (ADS)

    Wang, Shuyan; Wang, Chunmei; Chen, Yan

    2010-08-01

    To study the application of Rough set algorithm for diagnosis breast cancer, attribute reduction strategies of rough set are applied to the data mining of the mammography classification, proposes a medical images classifier based on association rules. Attribute reduction strategies of rough set for medical image data mining are realized. The experiment results are given. The experimental results show that the system performs well in accuracy, verified the great potential of rough set in assistant medical treatment.

  9. Automatic multilevel medical image annotation and retrieval.

    PubMed

    Mueen, A; Zainuddin, R; Baba, M Sapiyan

    2008-09-01

    Image retrieval at the semantic level mostly depends on image annotation or image classification. Image annotation performance largely depends on three issues: (1) automatic image feature extraction; (2) a semantic image concept modeling; (3) algorithm for semantic image annotation. To address first issue, multilevel features are extracted to construct the feature vector, which represents the contents of the image. To address second issue, domain-dependent concept hierarchy is constructed for interpretation of image semantic concepts. To address third issue, automatic multilevel code generation is proposed for image classification and multilevel image annotation. We make use of the existing image annotation to address second and third issues. Our experiments on a specific domain of X-ray images have given encouraging results. PMID:17846834

  10. Ethics of the allocation of highly advanced medical technologies.

    PubMed

    Sass, H M

    1998-03-01

    The disproportionate distribution of financial, educational, social, and medical resources between some rich countries of the northern hemisphere and less fortunate societies creates a moral challenge of global dimension. The development of new forms of highly advanced medical technologies, including neoorgans and xenografts, as well as the promotion of health literacy and predictive and preventive medical services might reduce some problems in allocational justice. Most governments and the World Health Organization (WHO) reject financial and other rewards for living organ donors thus indirectly contributing to the development of black markets. A societal gratuity model supporting and safeguarding a highly regulated market between providers and recipients of organs might provide for better protection of those who provide organs not solely based on altruistic reasons. The moral assessment of global issues in allocation and justice in the distribution of medical technologies must be increased and will have to be based on the principles of self determination and responsibility, solidarity and subsidiarity, and respect for individual values and cultural traditions. PMID:9527289

  11. Cross-scale coefficient selection for volumetric medical image fusion.

    PubMed

    Shen, Rui; Cheng, Irene; Basu, Anup

    2013-04-01

    Joint analysis of medical data collected from different imaging modalities has become a common clinical practice. Therefore, image fusion techniques, which provide an efficient way of combining and enhancing information, have drawn increasing attention from the medical community. In this paper, we propose a novel cross-scale fusion rule for multiscale-decomposition-based fusion of volumetric medical images taking into account both intrascale and interscale consistencies. An optimal set of coefficients from the multiscale representations of the source images is determined by effective exploitation of neighborhood information. An efficient color fusion scheme is also proposed. Experiments demonstrate that our fusion rule generates better results than existing rules. PMID:22868528

  12. XEMIS: A liquid xenon detector for medical imaging

    NASA Astrophysics Data System (ADS)

    Gallego Manzano, L.; Bassetto, S.; Beaupere, N.; Briend, P.; Carlier, T.; Cherel, M.; Cussonneau, J.-P.; Donnard, J.; Gorski, M.; Hamanishi, R.; Kraeber Bodéré, F.; Le Ray, P.; Lemaire, O.; Masbou, J.; Mihara, S.; Morteau, E.; Scotto Lavina, L.; Stutzmann, J.-S.; Tauchi, T.; Thers, D.

    2015-07-01

    A new medical imaging technique based on the precise 3D location of a radioactive source by the simultaneous detection of 3γ rays has been proposed by Subatech laboratory. To take advantage of this novel technique a detection device based on a liquid xenon Compton telescope and a specific (β+, γ) emitter radionuclide, 44Sc, are required. A first prototype of a liquid xenon time projection chamber called XEMIS1 has been successfully developed showing very promising results for the energy and spatial resolutions for the ionization signal in liquid xenon, thanks to an advanced cryogenics system, which has contributed to a high liquid xenon purity with a very good stability and an ultra-low noise front-end electronics (below 100 electrons) operating at liquid xenon temperature. The very positive results obtained with XEMIS1 have led to the development of a second prototype for small animal imaging, XEMIS2, which is now under development. To study the feasibility of the 3γ imaging technique and optimize the characteristics of the device, a complete Monte Carlo simulation has been also carried out. A preliminary study shows very positive results for the sensitivity, energy and spatial resolutions of XEMIS2.

  13. Advances in Imaging for Atrial Fibrillation Ablation

    PubMed Central

    D'Silva, Andrew; Wright, Matthew

    2011-01-01

    Over the last fifteen years, our understanding of the pathophysiology of atrial fibrillation (AF) has paved the way for ablation to be utilized as an effective treatment option. With the aim of gaining more detailed anatomical representation, advances have been made using various imaging modalities, both before and during the ablation procedure, in planning and execution. Options have flourished from procedural fluoroscopy, electroanatomic mapping systems, preprocedural computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and combinations of these technologies. Exciting work is underway in an effort to allow the electrophysiologist to assess scar formation in real time. One advantage would be to lessen the learning curve for what are very complex procedures. The hope of these developments is to improve the likelihood of a successful ablation procedure and to allow more patients access to this treatment. PMID:22091384

  14. Advanced medical life support procedures in vitally compromised children by a helicopter emergency medical service

    PubMed Central

    2010-01-01

    Background To determine the advanced life support procedures provided by an Emergency Medical Service (EMS) and a Helicopter Emergency Medical Service (HEMS) for vitally compromised children. Incidence and success rate of several procedures were studied, with a distinction made between procedures restricted to the HEMS-physician and procedures for which the HEMS is more experienced than the EMS. Methods Prospective study of a consecutive group of children examined and treated by the HEMS of the eastern region of the Netherlands. Data regarding type of emergency, physiological parameters, NACA scores, treatment, and 24-hour survival were collected and subsequently analysed. Results Of the 558 children examined and treated by the HEMS on scene, 79% had a NACA score of IV-VII. 65% of the children had one or more advanced life support procedures restricted to the HEMS and 78% of the children had one or more procedures for which the HEMS is more experienced than the EMS. The HEMS intubated 38% of all children, and 23% of the children intubated and ventilated by the EMS needed emergency correction because of potentially lethal complications. The HEMS provided the greater part of intraosseous access, as the EMS paramedics almost exclusively reserved this procedure for children in cardiopulmonary resuscitation. The EMS provided pain management only to children older than four years of age, but a larger group was in need of analgesia upon arrival of the HEMS, and was subsequently treated by the HEMS. Conclusions The Helicopter Emergency Medical Service of the eastern region of the Netherlands brings essential medical expertise in the field not provided by the emergency medical service. The Emergency Medical Service does not provide a significant quantity of procedures obviously needed by the paediatric patient. PMID:20211021

  15. Advanced imaging systems programs at DARPA MTO

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Elizondo, Lee A.; Dat, Ravi; Elizondo, Shelly L.

    2013-09-01

    In this paper, we review a few selected imaging technology development programs at the Defense Advanced Research Projects Agency (DARPA) in the reflective visible to the emissive/thermal long wave infrared (LWIR) spectral bands. For the reflective visible band, results are shown for two different imagers: a gigapixel monocentric multi-scale camera design that solves the scaling issues for a high pixel count, and a wide field of view and a single photon detection camera with a large dynamic range. Also, a camera with broadband capability covering both reflective and thermal bands (0.5 μm to 5.0 μm) with >80% quantum efficiency is discussed. In the emissive/thermal band, data is presented for both uncooled and cryogenically cooled LWIR detectors with pixel pitches approaching the fundamental detection limits. By developing wafer scale manufacturing processes and reducing the pixel size of uncooled thermal imagers, it is shown that an affordable camera on a chip, capable of seeing through obscurants in day or night, is feasible. Also, the fabrication and initial performance of the world's first 5 μm pixel pitch LWIR camera is discussed. Lastly, we use an initial model to evaluate the signal to noise ratio and noise equivalent differential temperature as a function of well capacity to predict the performance for this thermal imager.

  16. A backscattered x-ray imager for medical applications

    NASA Astrophysics Data System (ADS)

    Morris, Eric Jude L.; Dibianca, Frank A.; Shukla, Hemant; Gulabani, Daya

    2005-04-01

    Conventional X-ray radiographic systems rely on transmitted photons for the production of images. Backscatter imaging makes use of the more abundant scattered photons for image formation. Specifically, incoherently (Compton) scattered X-ray photons are detected and used for image formation in this modality of medical imaging. However, additional information is obtained when the transmitted X-ray photons are also detected and used. Transmission radiography produces a two-dimensional image of a three dimensional system, therefore image information from a shallower object is often contaminated by image information from underlying objects. Backscattered x-ray imaging largely overcomes this deficiency by imaging depth selectively, which reduces corruption of shallow imaging information by information from deeper objects lying under it. Backscattered x-ray imaging may be particularly useful for examining anatomical structures at shallow depths beneath the skin. Some typical applications for such imaging might be breast imaging, middle ear imaging, imaging of skin melanomas, etc. Previous investigations, by way of theoretical calculations and computational simulations into the feasibility of this kind of imaging have uncovered high-contrast and SNR parameters. Simulations indicate that this method can be used for imaging relatively high-density objects at depths of up to approximately five centimeters below the surface. This paper presents both theoretical and experimental SNR results on this new medical imaging modality.

  17. Medical image compression algorithm based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Chen, Minghong; Zhang, Guoping; Wan, Wei; Liu, Minmin

    2005-02-01

    With rapid development of electronic imaging and multimedia technology, the telemedicine is applied to modern medical servings in the hospital. Digital medical image is characterized by high resolution, high precision and vast data. The optimized compression algorithm can alleviate restriction in the transmission speed and data storage. This paper describes the characteristics of human vision system based on the physiology structure, and analyses the characteristics of medical image in the telemedicine, then it brings forward an optimized compression algorithm based on wavelet zerotree. After the image is smoothed, it is decomposed with the haar filters. Then the wavelet coefficients are quantified adaptively. Therefore, we can maximize efficiency of compression and achieve better subjective visual image. This algorithm can be applied to image transmission in the telemedicine. In the end, we examined the feasibility of this algorithm with an image transmission experiment in the network.

  18. Nonrigid Medical Image Registration Based on Mesh Deformation Constraints

    PubMed Central

    Qiu, TianShuang; Guo, DongMei

    2013-01-01

    Regularizing the deformation field is an important aspect in nonrigid medical image registration. By covering the template image with a triangular mesh, this paper proposes a new regularization constraint in terms of connections between mesh vertices. The connection relationship is preserved by the spring analogy method. The method is evaluated by registering cerebral magnetic resonance imaging (MRI) image data obtained from different individuals. Experimental results show that the proposed method has good deformation ability and topology-preserving ability, providing a new way to the nonrigid medical image registration. PMID:23424604

  19. Application of the CCD camera in medical imaging

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Kom; Smith, Chuck; Bunting, Ralph; Knoll, Paul; Wobig, Randy; Thacker, Rod

    1999-04-01

    Medical fluoroscopy is a set of radiological procedures used in medical imaging for functional and dynamic studies of digestive system. Major components in the imaging chain include image intensifier that converts x-ray information into an intensity pattern on its output screen and a CCTV camera that converts the output screen intensity pattern into video information to be displayed on a TV monitor. To properly respond to such a wide dynamic range on a real-time basis, such as fluoroscopy procedure, are very challenging. Also, similar to all other medical imaging studies, detail resolution is of great importance. Without proper contrast, spatial resolution is compromised. The many inherent advantages of CCD make it a suitable choice for dynamic studies. Recently, CCD camera are introduced as the camera of choice for medical fluoroscopy imaging system. The objective of our project was to investigate a newly installed CCD fluoroscopy system in areas of contrast resolution, details, and radiation dose.

  20. Client-side Medical Image Colorization in a Collaborative Environment.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2015-01-01

    The paper presents an application related to collaborative medicine using a browser based medical visualization system with focus on the medical image colorization process and the underlying open source web development technologies involved. Browser based systems allow physicians to share medical data with their remotely located counterparts or medical students, assisting them during patient diagnosis, treatment monitoring, surgery planning or for educational purposes. This approach brings forth the advantage of ubiquity. The system can be accessed from a any device, in order to process the images, assuring the independence towards having a specific proprietary operating system. The current work starts with processing of DICOM (Digital Imaging and Communications in Medicine) files and ends with the rendering of the resulting bitmap images on a HTML5 (fifth revision of the HyperText Markup Language) canvas element. The application improves the image visualization emphasizing different tissue densities. PMID:25991287

  1. [Principles of medical liability and practice in medical imaging].

    PubMed

    Thibierge, M; Fournier, L; Cabanis, E A

    1999-07-01

    Radiologists are liable for all aspects of their practice, from the indication of an examination to the radiology report and follow-up, as well as for providing information and recommendations. They are liable for their decisions and actions. They are liable for their competence and continuous medical education. They are also liable for their own equipment and staff. In cases of litigation, the liability of a radiologist may be questioned. Four types of procedures must been known: penal, civil, administrative and disciplinary. PMID:10431269

  2. An information gathering system for medical image inspection

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jin; Bajcsy, Peter

    2005-04-01

    We present an information gathering system for medical image inspection that consists of software tools for capturing computer-centric and human-centric information. Computer-centric information includes (1) static annotations, such as (a) image drawings enclosing any selected area, a set of areas with similar colors, a set of salient points, and (b) textual descriptions associated with either image drawings or links between pairs of image drawings, and (2) dynamic (or temporal) information, such as mouse movements, zoom level changes, image panning and frame selections from an image stack. Human-centric information is represented by video and audio signals that are acquired by computer-mounted cameras and microphones. The short-term goal of the presented system is to facilitate learning of medical novices from medical experts, while the long-term goal is to data mine all information about image inspection for assisting in making diagnoses. In this work, we built basic software functionality for gathering computer-centric and human-centric information of the aforementioned variables. Next, we developed the information playback capabilities of all gathered information for educational purposes. Finally, we prototyped text-based and image template-based search engines to retrieve information from recorded annotations, for example, (a) find all annotations containing the word "blood vessels", or (b) search for similar areas to a selected image area. The information gathering system for medical image inspection reported here has been tested with images from the Histology Atlas database.

  3. Modified natural nanoparticles as contrast agents for medical imaging

    PubMed Central

    Cormode, David P.; Jarzyna, Peter A.; Mulder, Willem J. M.; Fayad, Zahi A.

    2009-01-01

    The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have advantages as delivery platforms such as biodegradability. In addition, our understanding of natural nanoparticles is quite advanced, allowing their adaptation as contrast agents. They can be labeled with small molecules or ions such as Gd3+ to act as contrast agents for magnetic resonance imaging, 18F to act as positron emission tomography contrast agents or fluorophores to act as contrast agents for fluorescence techniques. Additionally, inorganic nanoparticles such as iron oxide, gold nanoparticles or quantum dots can be incorporated to add further contrast functionality. Furthermore, these natural nanoparticle contrast agents can be rerouted from their natural targets via the attachment of targeting molecules. In this review, we discuss the various modified natural nanoparticles that have been exploited as contrast agents. PMID:19900496

  4. Medical image fusion based on non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Zhang, Daoming; Zhang, Xianda

    2009-10-01

    Medical image fusion is a process of obtaining a new composite image from two or more source images which are from different modalities. In this paper, we proposed a novel medical image fusion scheme based on the non-negative matrix factorization (NMF) algorithm, the only resulted basis image is just the fused image. Since the CT and MRI images have a lot of pixels which are zeros, the NMF algorithm can not be employed directly. To overcome this difficulty, we first add a positive bias to the original data matrix and remove the bias from the resulted fusion image after the NMF procedure. The experiment results show that the proposed approach outperforms the existing wavelet-based methods and Laplacian pyramid-based methods.

  5. Recent advances in imaging subcellular processes

    PubMed Central

    Myers, Kenneth A.; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  6. Recent advances in morphological cell image analysis.

    PubMed

    Chen, Shengyong; Zhao, Mingzhu; Wu, Guang; Yao, Chunyan; Zhang, Jianwei

    2012-01-01

    This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed. PMID:22272215

  7. Recent advances in imaging subcellular processes.

    PubMed

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  8. Satisfaction of search experiments in advanced imaging

    NASA Astrophysics Data System (ADS)

    Berbaum, Kevin S.

    2012-03-01

    The objective of our research is to understand the perception of multiple abnormalities in an imaging examination and to develop strategies for improved diagnostic. We are one of the few laboratories in the world pursuing the goal of reducing detection errors through a better understanding of the underlying perceptual processes involved. Failure to detect an abnormality is the most common class of error in diagnostic imaging and generally is considered the most serious by the medical community. Many of these errors have been attributed to "satisfaction of search," which occurs when a lesion is not reported because discovery of another abnormality has "satisfied" the goal of the search. We have gained some understanding of the mechanisms of satisfaction of search (SOS) traditional radiographic modalities. Currently, there are few interventions to remedy SOS error. For example, patient history that the prompts specific abnormalities, protects the radiologist from missing them even when other abnormalities are present. The knowledge gained from this programmatic research will lead to reduction of observer error.

  9. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. PMID:26403162

  10. Recent advances in human viruses imaging studies.

    PubMed

    Florian, Paula Ecaterina; Rouillé, Yves; Ruta, Simona; Nichita, Norica; Roseanu, Anca

    2016-06-01

    Microscopy techniques are often exploited by virologists to investigate molecular details of critical steps in viruses' life cycles such as host cell recognition and entry, genome replication, intracellular trafficking, and release of mature virions. Fluorescence microscopy is the most attractive tool employed to detect intracellular localizations of various stages of the viral infection and monitor the pathogen-host interactions associated with them. Super-resolution microscopy techniques have overcome the technical limitations of conventional microscopy and offered new exciting insights into the formation and trafficking of human viruses. In addition, the development of state-of-the art electron microscopy techniques has become particularly important in studying virus morphogenesis by revealing ground-braking ultrastructural details of this process. This review provides recent advances in human viruses imaging in both, in vitro cell culture systems and in vivo, in the animal models recently developed. The newly available imaging technologies bring a major contribution to our understanding of virus pathogenesis and will become an important tool in early diagnosis of viral infection and the development of novel therapeutics to combat the disease. PMID:27059598

  11. Advances in fluorescence labeling strategies for dynamic cellular imaging

    PubMed Central

    Dean, Kevin M; Palmer, Amy E

    2014-01-01

    Synergistic advances in optical physics, probe design, molecular biology, labeling techniques and computational analysis have propelled fluorescence imaging into new realms of spatiotemporal resolution and sensitivity. This review aims to discuss advances in fluorescent probes and live-cell labeling strategies, two areas that remain pivotal for future advances in imaging technology. Fluorescent protein– and bio-orthogonal–based methods for protein and RNA imaging are discussed as well as emerging bioengineering techniques that enable their expression at specific genomic loci (for example, CRISPR and TALENs). Important attributes that contribute to the success of each technique are emphasized, providing a guideline for future advances in dynamic live-cell imaging. PMID:24937069

  12. Advances in Medications and Tailoring Treatment for Alcohol Use Disorder

    PubMed Central

    Seneviratne, Chamindi; Johnson, Bankole A.

    2015-01-01

    Alcohol use disorder (AUD) is a chronic heritable brain disorder with a variable clinical presentation. This variability, or heterogeneity, in clinical presentation suggests complex interactions between environmental and biological factors, resulting in several underlying pathophysiological mechanisms in the development and progression of AUD. Classifying AUD into subgroups of common clinical or pathological characteristics would ease the complexity of teasing apart underlying molecular mechanisms. Genetic association analyses have revealed several polymorphisms—small differences in DNA—that increase a person’s vulnerability to develop AUD and other alcohol-related intermediate characteristics, such as severity of drinking, age of AUD onset, or measures of craving. They also have identified polymorphisms associated with reduced drinking. Researchers have begun utilizing these genetic polymorphisms to identify alcoholics who might respond best to various treatments, thereby enhancing the effectiveness of currently tested medications for treating AUD. This review compares the efficacy of medications tested for treatment of AUD with and without incorporating genetics. It then discusses advances in pre-clinical genetic and genomic studies that potentially could be adapted to clinical trials to improve treatment efficacy. Although a pharmacogenetic approach is promising, it is relatively new and will need to overcome many challenges, including inadequate scientific knowledge and social and logistic constraints, to be utilized in clinical practice. PMID:26259086

  13. Segmentation of medical images using explicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  14. A similarity-based data warehousing environment for medical images.

    PubMed

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. PMID:26414378

  15. Medical Image Authentication Using DPT Watermarking: A Preliminary Attempt

    NASA Astrophysics Data System (ADS)

    Wong, M. L. Dennis; Goh, Antionette W.-T.; Chua, Hong Siang

    Secure authentication of digital medical image content provides great value to the e-Health community and medical insurance industries. Fragile Watermarking has been proposed to provide the mechanism to authenticate digital medical image securely. Transform Domain based Watermarking are typically slower than spatial domain watermarking owing to the overhead in calculation of coefficients. In this paper, we propose a new Discrete Pascal Transform based watermarking technique. Preliminary experiment result shows authentication capability. Possible improvements on the proposed scheme are also presented before conclusions.

  16. Advanced illumination control algorithm for medical endoscopy applications

    NASA Astrophysics Data System (ADS)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  17. Compressive Deconvolution in Medical Ultrasound Imaging.

    PubMed

    Chen, Zhouye; Basarab, Adrian; Kouame, Denis

    2016-03-01

    The interest of compressive sampling in ultrasound imaging has been recently extensively evaluated by several research teams. Following the different application setups, it has been shown that the RF data may be reconstructed from a small number of measurements and/or using a reduced number of ultrasound pulse emissions. Nevertheless, RF image spatial resolution, contrast and signal to noise ratio are affected by the limited bandwidth of the imaging transducer and the physical phenomenon related to US wave propagation. To overcome these limitations, several deconvolution-based image processing techniques have been proposed to enhance the ultrasound images. In this paper, we propose a novel framework, named compressive deconvolution, that reconstructs enhanced RF images from compressed measurements. Exploiting an unified formulation of the direct acquisition model, combining random projections and 2D convolution with a spatially invariant point spread function, the benefit of our approach is the joint data volume reduction and image quality improvement. The proposed optimization method, based on the Alternating Direction Method of Multipliers, is evaluated on both simulated and in vivo data. PMID:26513780

  18. Reversible intraframe compression of medical images.

    PubMed

    Roos, P; Viergever, M A; van Dijke, M A; Peters, J H

    1988-01-01

    The performance of several reversible, intraframe compression methods is compared by applying them to angiographic and magnetic resonance (MR) images. Reversible data compression involves two consecutive steps: decorrelation and coding. The result of the decorrelation step is presented in terms of entropy. Because Huffman coding generally approximates these entropy measures within a few percent, coding has not been investigated separately. It appears that a hierarchical decorrelation method based on interpolation (HINT) outperforms all other methods considered. The compression ratio is around 3 for angiographic images of 8-9 b/pixel, but is considerably less for MR images whose noise level is substantially higher. PMID:18230486

  19. Tongue Tumor Detection in Medical Hyperspectral Images

    PubMed Central

    Liu, Zhi; Wang, Hongjun; Li, Qingli

    2012-01-01

    A hyperspectral imaging system to measure and analyze the reflectance spectra of the human tongue with high spatial resolution is proposed for tongue tumor detection. To achieve fast and accurate performance for detecting tongue tumors, reflectance data were collected using spectral acousto-optic tunable filters and a spectral adapter, and sparse representation was used for the data analysis algorithm. Based on the tumor image database, a recognition rate of 96.5% was achieved. The experimental results show that hyperspectral imaging for tongue tumor diagnosis, together with the spectroscopic classification method provide a new approach for the noninvasive computer-aided diagnosis of tongue tumors. PMID:22368462

  20. User Oriented Platform for Data Analytics in Medical Imaging Repositories.

    PubMed

    Valerio, Miguel; Godinho, Tiago Marques; Costa, Carlos

    2016-01-01

    The production of medical imaging studies and associated data has been growing in the last decades. Their primary use is to support medical diagnosis and treatment processes. However, the secondary use of the tremendous amount of stored data is generally more limited. Nowadays, medical imaging repositories have turned into rich databanks holding not only the images themselves, but also a wide range of metadata related to the medical practice. Exploring these repositories through data analysis and business intelligence techniques has the potential of increasing the efficiency and quality of the medical practice. Nevertheless, the continuous production of tremendous amounts of data makes their analysis difficult by conventional approaches. This article proposes a novel automated methodology to derive knowledge from medical imaging repositories that does not disrupt the regular medical practice. Our method is able to apply statistical analysis and business intelligence techniques directly on top of live institutional repositories. It is a Web-based solution that provides extensive dashboard capabilities, including complete charting and reporting options, combined with data mining components. Moreover, it enables the operator to set a wide multitude of query parameters and operators through the use of an intuitive graphical interface. PMID:27577479

  1. Student Perspectives of Imaging Anatomy in Undergraduate Medical Education

    ERIC Educational Resources Information Center

    Machado, Jorge Americo Dinis; Barbosa, Joselina Maria Pinto; Ferreira, Maria Amelia Duarte

    2013-01-01

    Radiological imaging is gaining relevance in the acquisition of competencies in clinical anatomy. The aim of this study was to evaluate the perceptions of medical students on teaching/learning of imaging anatomy as an integrated part of anatomical education. A questionnaire was designed to evaluate the perceptions of second-year students…

  2. Advanced ESPI-based medical instruments for otolaryngology

    NASA Astrophysics Data System (ADS)

    Castracane, James; Conerty, M.; Cacace, Anthony T.; Gardner, Glendon M.; Miller, Mitchell B.; Parnes, Steven M.

    1993-05-01

    Optical fibers have long been used for visual inspection inside the human body for medical diagnoses and treatment. By making use of sophisticated optical interferometric and ultra- small imaging techniques, combined with automated image processing, it is possible to extract significantly increased information for more accurate medical diagnoses. With support from NIH under the SBIR program, we have been developing a range of such instruments. One of these supported by the NIDCD is capable of providing detailed spatial information on the vibratory response of the tympanic membrane (TM). This instrument involves the examination of the TM by means of high speed electronic speckle pattern interferometry (ESPI). This provides a real time view of the vibration patterns of the TM for clinical diagnosis. This Interferometric Otoscope consists of mode conserving fiber optics, miniature diode lasers and high speed solid state detector arrays. We present the current status of the research including holography and ESPI of TM models and excised temporal bone preparations. A second instrument, also developed with support from NIDCD, is for application to the larynx. This system is also ESPI based but will incorporate features for direct vocal cord (VC) examination. By careful examination of the vibratory response of the VC during phonation, the characteristics of the mucosal wave may be examined. Adynamic regions of the cords can signal the start of lesions or cysts. Results of surgery can be evaluated in a quantitative manner. The design of a clinical prototype and preliminary electro-optic experiments on excised larynges and VC models will be presented.

  3. Multi-scale visual words for hierarchical medical image categorisation

    NASA Astrophysics Data System (ADS)

    Markonis, Dimitrios; Seco de Herrera, Alba G.; Eggel, Ivan; Müller, Henning

    2012-02-01

    The biomedical literature published regularly has increased strongly in past years and keeping updated even in narrow domains is difficult. Images represent essential information of their articles and can help to quicker browse through large volumes of articles in connection with keyword search. Content-based image retrieval is helping the retrieval of visual content. To facilitate retrieval of visual information, image categorisation can be an important first step. To represent scientific articles visually, medical images need to be separated from general images such as flowcharts or graphs to facilitate browsing, as graphs contain little information. Medical modality classification is a second step to focus search. The techniques described in this article first classify images into broad categories. In a second step the images are further classified into the exact medical modalities. The system combines the Scale-Invariant Feature Transform (SIFT) and density-based clustering (DENCLUE). Visual words are first created globally to differentiate broad categories and then within each category a new visual vocabulary is created for modality classification. The results show the difficulties to differentiate between some modalities by visual means alone. On the other hand the improvement of the accuracy of the two-step approach shows the usefulness of the method. The system is currently being integrated into the Goldminer image search engine of the ARRS (American Roentgen Ray Society) as a web service, allowing concentrating image search onto clinically relevant images automatically.

  4. A scanned beam THz imaging system for medical applications

    NASA Astrophysics Data System (ADS)

    Taylor, Zachary D.; Li, Wenzao; Suen, Jon; Tewari, Priyamvada; Bennett, David; Bajwa, Neha; Brown, Elliott; Culjat, Martin; Grundfest, Warren; Singh, Rahul

    2011-10-01

    THz medical imaging has been a topic of increased interest recently due largely to improvements in source and detector technology and the identification of suitable applications. One aspect of THz medical imaging research not often adequately addressed is pixel acquisition rate and phenomenology. The majority of active THz imaging systems use translation stages to raster scan a sample beneath a fixed THz beam. While these techniques have produced high resolution images of characterization targets and animal models they do not scale well to human imaging where clinicians are unwilling to place patients on large translation stages. This paper presents a scanned beam THz imaging system that can acquire a 1 cm2 area with 1 mm2 pixels and a per-pixel SNR of 40 dB in less than 5 seconds. The system translates a focused THz beam across a stationary target using a spinning polygonal mirror and HDPE objective lens. The illumination is centered at 525 GHz with ~ 125 GHz of response normalized bandwidth and the component layout is designed to optically co-locate the stationary source and detector ensuring normal incidence across a 50 mm × 50 mm field of view at standoff of 190 mm. Component characterization and images of a test target are presented. These results are some of the first ever reported for a short standoff, high resolution, scanned beam THz imaging system and represent an important step forward for practical integration of THz medical imaging where fast image acquisition times and stationary targets (patients) are requisite.

  5. Geographic Medical History: Advances in Geospatial Technology Present New Potentials in Medical Practice

    NASA Astrophysics Data System (ADS)

    Faruque, F. S.; Finley, R. W.

    2016-06-01

    Genes, behaviour, and the environment are known to be the major risk factors for common diseases. When the patient visits a physician, typical questions include family history (genes) and lifestyle of the patient (behaviour), but questions concerning environmental risk factors often remain unasked. It is ironic that 25 centuries ago Hippocrates, known as the father of medicine, noted the importance of environmental exposure in medical investigation as documented in his classic work, "Airs, Waters, Places", yet the practice of routinely incorporating environmental risk factors is still not in place. Modern epigenetic studies have found that unhealthy lifestyle and environmental factors can cause changes to our genes that can increase disease risk factors. Therefore, attempting to solve the puzzle of diseases using heredity and lifestyle alone will be incomplete without accounting for the environmental exposures. The primary reason why environmental exposure has not yet been a routine part of the patient's medical history is mostly due to our inability to provide clinicians useful measures of environmental exposures suitable for their clinical practices. This presentation will discuss advances in geospatial technology that show the potential to catalyse a paradigm shift in medical practice and health research by allowing environmental risk factors to be documented as the patient's "Geographic Medical History". In order to accomplish this we need information on: a) relevant spatiotemporal environmental variables, and b) location of the individual in that person's dynamic environment. Common environmental agents that are known to interact with genetic make-up include air pollutants, mold spores, pesticides, etc. Until recently, the other component, location of an individual was limited to a static representation such as residential or workplace location. Now, with the development of mobile technology, changes in an individual's location can be tracked in real time if

  6. Lossless compression of medical images using Hilbert scan

    NASA Astrophysics Data System (ADS)

    Sun, Ziguang; Li, Chungui; Liu, Hao; Zhang, Zengfang

    2007-12-01

    The effectiveness of Hilbert scan in lossless medical images compression is discussed. In our methods, after coding of intensities, the pixels in a medical images have been decorrelated with differential pulse code modulation, then the error image has been rearranged using Hilbert scan, finally we implement five coding schemes, such as Huffman coding, RLE, lZW coding, Arithmetic coding, and RLE followed by Huffman coding. The experiments show that the case, which applies DPCM followed by Hilbert scan and then compressed by the Arithmetic coding scheme, has the best compression result, also indicate that Hilbert scan can enhance pixel locality, and increase the compression ratio effectively.

  7. Do we need a national incident reporting system for medical imaging?

    PubMed

    Itri, Jason N; Krishnaraj, Arun

    2012-05-01

    The essential role of an incident reporting system as a tool to improve safety and reliability has been described in high-risk industries such as aviation and nuclear power, with anesthesia being the first medical specialty to successfully integrate incident reporting into a comprehensive quality improvement strategy. Establishing an incident reporting system for medical imaging that effectively captures system errors and drives improvement in the delivery of imaging services is a key component of developing and evaluating national quality improvement initiatives in radiology. Such a national incident reporting system would be most effective if implemented as one piece of a comprehensive quality improvement strategy designed to enhance knowledge about safety, identify and learn from errors, raise standards and expectations for improvement, and create safer systems through implementation of safe practices. The potential benefits of a national incident reporting system for medical imaging include reduced morbidity and mortality, improved patient and referring physician satisfaction, reduced health care expenses and medical liability costs, and improved radiologist satisfaction. The purposes of this article are to highlight the positive impact of external reporting systems, discuss how similar advancements in quality and safety can be achieved with an incident reporting system for medical imaging in the United States, and describe current efforts within the imaging community toward achieving this goal. PMID:22554630

  8. Utilization Of Spatial Self-Similarity In Medical Image Processing

    NASA Astrophysics Data System (ADS)

    Kuklinski, Walter S.

    1987-01-01

    Many current medical image processing algorithms utilize Fourier Transform techniques that represent images as sums of translationally invariant complex exponential basis functions. Selective removal or enhancement of these translationally invariant components can be used to effect a number of image processing operations such as edge enhancement or noise attenuation. An important characteristic of many natural phenomena, including the structures of interest in medical imaging is spatial self-similarity. In this work a filtering technique that represents images as sums of scale invariant self-similar basis functions will be presented. The decomposition of a signal or image into scale invariant components can be accomplished using the Mellin Transform, which diagonalizes changes of scale in a manner analogous to the way the Fourier Transform diagonalizes translation.

  9. Natural Language Processing Versus Content-Based Image Analysis for Medical Document Retrieval

    PubMed Central

    Névéol, Aurélie; Deserno, Thomas M.; Darmoni, Stéfan J.; Güld, Mark Oliver; Aronson, Alan R.

    2009-01-01

    One of the most significant recent advances in health information systems has been the shift from paper to electronic documents. While research on automatic text and image processing has taken separate paths, there is a growing need for joint efforts, particularly for electronic health records and biomedical literature databases. This work aims at comparing text-based versus image-based access to multimodal medical documents using state-of-the-art methods of processing text and image components. A collection of 180 medical documents containing an image accompanied by a short text describing it was divided into training and test sets. Content-based image analysis and natural language processing techniques are applied individually and combined for multimodal document analysis. The evaluation consists of an indexing task and a retrieval task based on the “gold standard” codes manually assigned to corpus documents. The performance of text-based and image-based access, as well as combined document features, is compared. Image analysis proves more adequate for both the indexing and retrieval of the images. In the indexing task, multimodal analysis outperforms both independent image and text analysis. This experiment shows that text describing images can be usefully analyzed in the framework of a hybrid text/image retrieval system. PMID:19633735

  10. Fast volume rendering for medical image.

    PubMed

    Ying, Hu; Xin-He, Xu

    2005-01-01

    In orders to improve the rendering speed of ray casting and make this technique a practical routine in medical applications, two new and improved techniques are described in this paper. First, an integrated method using "proximity clouds" technique is applied to speed up ray casting. The second technique for speeding up the 3D rendering is done through a parallel implementation based on "single computer multi CPU" model Four groups of CT data sets have been used to validate the improvement of the rendering speed. The result shown that the interactive rendering speed is up to 6-10 fps, which is almost real-time making our algorithm practical in medical visualization routine. PMID:17281409

  11. An architecture for the construction of medical image databases

    NASA Astrophysics Data System (ADS)

    Marchaukoski, Jeroniza N.; Silva, Luciano; Sunye, Marcos S.; Bellon, Olga R. P.

    2003-05-01

    Due to the large volume and density of the medical images data, it is necessary the use of suitable database systems to facilitate their storage and management, interacting with the PACS (Picture Archiving and Communication Systems). This paper presents an architecture designed for acquisition and storage of the extracted data related to medical images, emphasizing the importance of experts in acquisition of consistent data. This work also presents the division of the information contained in the medical images into levels such as: low level, segmentation level, interpretation level, semantic level and related information. The levels work as a basis to the database schema represented by ER (entity relationship). This architecture has been validated by a content-based image retrieval system for Neonatology support.

  12. Advanced Imaging Catheter: Final Project Report

    SciTech Connect

    Krulevitch, P; Colston, B; DaSilva, L; Hilken, D; Kluiwstra, J U; Lee, A P; London, R; Miles, R; Schumann, D; Seward, K; Wang, A

    2001-07-20

    Minimally invasive surgery (MIS) is an approach whereby procedures conventionally performed with large and potentially traumatic incisions are replaced by several tiny incisions through which specialized instruments are inserted. Early MIS, often called laparoscopic surgery, used video cameras and laparoscopes to visualize and control the medical devices, which were typically cutting or stapling tools. More recently, catheter-based procedures have become a fast growing sector of all surgeries. In these procedures, small incisions are made into one of the main arteries (e.g. femoral artery in the thigh), and a long thin hollow tube is inserted and positioned near the target area. The key advantage of this technique is that recovery time can be reduced from months to a matter of days. In the United States, over 700,000 catheter procedures are performed annually representing a market of over $350 million. Further growth in this area will require significant improvements in the current catheter technology. In order to effectively navigate a catheter through the tortuous vessels of the body, two capabilities must exist: imaging and positioning. In most cases, catheter procedures rely on radiography for visualization and manual manipulation for positioning of the device. Radiography provides two-dimensional, global images of the vasculature and cannot be used continuously due to radiation exposure to both the patient and physician. Intravascular ultrasound devices are available for continuous local imaging at the catheter tip, but these devices cannot be used simultaneously with therapeutic devices. Catheters are highly compliant devices, and manipulating the catheter is similar to pushing on a string. Often, a guide wire is used to help position the catheter, but this procedure has its own set of problems. Three characteristics are used to describe catheter maneuverability: (1) pushability -- the amount of linear displacement of the distal end (inside body) relative to

  13. Active index for content-based medical image retrieval.

    PubMed

    Chang, S K

    1996-01-01

    This paper introduces the active index for content-based medical image retrieval. The dynamic nature of the active index is its most important characteristic. With an active index, we can effectively and efficiently handle smart images that respond to accessing, probing and other actions. The main applications of the active index are to prefetch image and multimedia data, and to facilitate similarity retrieval. The experimental active index system is described. PMID:8954230

  14. Communication and storage of digital medical images in database.

    PubMed

    Evangelista, N; Camapum, J; Amemiya, E

    2005-01-01

    This paper presents the development of an application for communication and storage of clinical images based upon the Digital Imaging and Communications in Medicine (DICOM) protocol. The proposed solution is composed of three different databases servers, PostgreSQL, Firebird and Oracle, and a DICOM client software, that uses the protocol TCP/IP. It provides the communication services, transmission, storage and administration of medical images. PMID:17281491

  15. Review of hard copy systems for digital medical imaging

    NASA Astrophysics Data System (ADS)

    Apple, Bernard A.; Tennant, Mark H.; Thomas, Jule W., Jr.

    1996-03-01

    In this paper we review image requirements and the potential use of various printing technologies to record digital diagnostic radiographic information. An analysis of limitations and advantages of alternate imaging systems compared to current laser imager/silver halide film systems will be presented. The future move to digital radiology along with its hard copy requirements will also be discussed. The winning technologies in the market place will be determined by their ability to provide adequate image quality at low cost while meeting productivity, durability, and convenience requirements. The first technology to meet these requirements will have a tremendous advantage in the market place. Medical imaging hard copy is dominated by the use of silver halide media providing monochrome images of diagnostic image quality. As new digital medical imaging modalities have emerged they have opened the door to new hard copy technologies. These new technologies have been born and nurtured outside the medical market by small markets with high image quality requirements or by large markets with lower image quality requirements. The former have tended to provide high cost, high quality solutions and the latter low cost, low quality solutions. Silver halide media still dominates, at least in part, because it provides high image quality at a relatively low cost. Yet, the trend away from wet silver halide is evident. These new hard copy technologies are being tested to determine their applicability to the medical market and are finding niches where they provide value. A clear winner that provides the required image quality at low cost has yet to emerge.

  16. The library without walls: images, medical dictionaries, atlases, medical encyclopedias free on web.

    PubMed

    Giglia, E

    2008-09-01

    The aim of this article was to present the ''reference room'' of the Internet, a real library without walls. The reader will find medical encyclopedias, dictionaries, atlases, e-books, images, and will also learn something useful about the use and reuse of images in a text and in a web site, according to the copyright law. PMID:18762749

  17. A fuzzy optimal threshold technique for medical images

    NASA Astrophysics Data System (ADS)

    Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.

    2012-01-01

    A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.

  18. A fuzzy optimal threshold technique for medical images

    NASA Astrophysics Data System (ADS)

    Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.

    2011-12-01

    A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.

  19. Medical imaging as a contributor to today's healthcare crisis.

    PubMed

    McVey, Lynn

    2008-01-01

    At the end of 2007, Medicare reported the increase in medical imaging costs overtook increases in pharmaceutical costs for the first time. Imaging costs accounted for a 20% increase, while pharmaceuticals accounted for just 10%. There are two common areas where imaging costs impact overall healthcare spending: unnecessary exams and operational management. This article does not suggest alternatives to today's imaging management practices. It provides economic information, which may be valuable to imaging managers who want to gauge the costs of operating their own departments to what is going on in the industry. PMID:18572722

  20. Unsupervised detection of abnormalities in medical images using salient features

    NASA Astrophysics Data System (ADS)

    Alpert, Sharon; Kisilev, Pavel

    2014-03-01

    In this paper we propose a new method for abnormality detection in medical images which is based on the notion of medical saliency. The proposed method is general and is suitable for a variety of tasks related to detection of: 1) lesions and microcalcifications (MCC) in mammographic images, 2) stenoses in angiographic images, 3) lesions found in magnetic resonance (MRI) images of brain. The main idea of our approach is that abnormalities manifest as rare events, that is, as salient areas compared to normal tissues. We define the notion of medical saliency by combining local patch information from the lightness channel with geometric shape local descriptors. We demonstrate the efficacy of the proposed method by applying it to various modalities, and to various abnormality detection problems. Promising results are demonstrated for detection of MCC and of masses in mammographic images, detection of stenoses in angiography images, and detection of lesions in brain MRI. We also demonstrate how the proposed automatic abnormality detection method can be combined with a system that performs supervised classification of mammogram images into benign or malignant/premalignant MCC's. We use a well known DDSM mammogram database for the experiment on MCC classification, and obtain 80% accuracy in classifying images containing premalignant MCC versus benign ones. In contrast to supervised detection methods, the proposed approach does not rely on ground truth markings, and, as such, is very attractive and applicable for big corpus image data processing.

  1. An implementation of wireless medical image transmission system on mobile devices.

    PubMed

    Lee, SangBock; Lee, Taesoo; Jin, Gyehwan; Hong, Juhyun

    2008-12-01

    The advanced technology of computing system was followed by the rapid improvement of medical instrumentation and patient record management system. The typical examples are hospital information system (HIS) and picture archiving and communication system (PACS), which computerized the management procedure of medical records and images in hospital. Because these systems were built and used in hospitals, doctors out of hospital have problems to access them immediately on emergent cases. To solve these problems, this paper addressed the realization of system that could transmit the images acquired by medical imaging systems in hospital to the remote doctors' handheld PDA's using CDMA cellular phone network. The system consists of server and PDA. The server was developed to manage the accounts of doctors and patients and allocate the patient images to each doctor. The PDA was developed to display patient images through remote server connection. To authenticate the personal user, remote data access (RDA) method was used in PDA accessing the server database and file transfer protocol (FTP) was used to download patient images from the remove server. In laboratory experiments, it was calculated to take ninety seconds to transmit thirty images with 832 x 488 resolution and 24 bit depth and 0.37 Mb size. This result showed that the developed system has no problems for remote doctors to receive and review the patient images immediately on emergent cases. PMID:19058651

  2. Watermarking techniques used in medical images: a survey.

    PubMed

    Mousavi, Seyed Mojtaba; Naghsh, Alireza; Abu-Bakar, S A R

    2014-12-01

    The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. As a result of this, there is a need for medical image watermarking (MIW). However, MIW needs to be performed with special care for two reasons. Firstly, the watermarking procedure cannot compromise the quality of the image. Secondly, confidential patient information embedded within the image should be flawlessly retrievable without risk of error after image decompressing. Despite extensive research undertaken in this area, there is still no method available to fulfill all the requirements of MIW. This paper aims to provide a useful survey on watermarking and offer a clear perspective for interested researchers by analyzing the strengths and weaknesses of different existing methods. PMID:24871349

  3. Hybrid segmentation framework for 3D medical image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  4. [An improved medical image fusion algorithm and quality evaluation].

    PubMed

    Chen, Meiling; Tao, Ling; Qian, Zhiyu

    2009-08-01

    Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform. PMID:19813594

  5. Oncological image analysis: medical and molecular image analysis

    NASA Astrophysics Data System (ADS)

    Brady, Michael

    2007-03-01

    This paper summarises the work we have been doing on joint projects with GE Healthcare on colorectal and liver cancer, and with Siemens Molecular Imaging on dynamic PET. First, we recall the salient facts about cancer and oncological image analysis. Then we introduce some of the work that we have done on analysing clinical MRI images of colorectal and liver cancer, specifically the detection of lymph nodes and segmentation of the circumferential resection margin. In the second part of the paper, we shift attention to the complementary aspect of molecular image analysis, illustrating our approach with some recent work on: tumour acidosis, tumour hypoxia, and multiply drug resistant tumours.

  6. IRMA--content-based image retrieval in medical applications.

    PubMed

    Lehmann, Thomas M; Güld, Mark O; Thies, Christian; Plodowski, Bartosz; Keysers, Daniel; Ott, Bastian; Schubert, Henning

    2004-01-01

    The impact of content-based access to medical images is frequently reported but existing systems are designed for only a particular modality or context of diagnosis. Contrarily, our concept of image retrieval in medical applications (IRMA) aims at a general structure for semantic content analysis that is suitable for numerous applications in case-based reasoning or evidence-based medicine. Within IRMA, stepwise processing results in six layers of information modeling (raw data layer, registered data layer, feature layer, scheme layer, object layer, knowledge layer) incorporating medical expert knowledge. At the scheme layer, medical images are represented by a hierarchical structure of ellipses (blobs) describing image regions. Hence, image retrieval transforms to graph matching. The multilayer processing is implemented using a distributed system designed with only three core elements. The central database holds program sources, process-ing schemes, images, features, and blob trees; the scheduler balances distributed computing by addressing daemons running on all connected workstations; and the web server provides graphical user interfaces for data entry and retrieval.. PMID:15360931

  7. The oncology medical image database (OMI-DB)

    NASA Astrophysics Data System (ADS)

    Halling-Brown, Mark D.; Looney, P. T.; Patel, M. N.; Warren, L. M.; Mackenzie, A.; Young, K. C.

    2014-03-01

    Many projects to evaluate or conduct research in medical imaging require the large-scale collection of images (both unprocessed and processed) and associated data. This demand has led us to design and implement a flexible oncology image repository, which prospectively collects images and data from multiple sites throughout the UK. This Oncology Medical Image Database (OMI-DB) has been created to support research involving medical imaging and contains unprocessed and processed medical images, associated annotations and data, and where applicable expert-determined ground truths describing features of interest. The process of collection, annotation and storage is almost fully automated and is extremely adaptable, allowing for quick and easy expansion to disparate imaging sites and situations. Initially the database was developed as part of a large research project in digital mammography (OPTIMAM). Hence the initial focus has been digital mammography; as a result, much of the work described will focus on this field. However, the OMI -DB has been designed to support multiple modalities and is extensible and expandable to store any associated data with full anonymisation. Currently, the majority of associated data is made up of radiological, clinical and pathological annotations extracted from the UK's National Breast Screening System (NBSS). In addition to the data, software and systems have been created to allow expert radiologists to annotate the images with interesting clinical features and provide descriptors of these features. The data from OMI-DB has been used in several observer studies and more are planned. To date we have collected 34,104 2D mammography images from 2,623 individuals.

  8. Recent advances in the imaging of hepatocellular carcinoma

    PubMed Central

    You, Myung-Won; Kim, Kyoung Won; Lee, So Jung; Shin, Yong Moon; Kim, Jin Hee; Lee, Moon-Gyu

    2015-01-01

    The role of imaging is crucial for the surveillance, diagnosis, staging and treatment monitoring of hepatocellular carcinoma (HCC). Over the past few years, considerable technical advances were made in imaging of HCCs. New imaging technology, however, has introduced new challenges in our clinical practice. In this article, the current status of clinical imaging techniques for HCC is addressed. The diagnostic performance of imaging techniques in the context of recent clinical guidelines is also presented. PMID:25834808

  9. Secure and efficient health data management through multiple watermarking on medical images.

    PubMed

    Giakoumaki, A; Pavlopoulos, S; Koutsouris, D

    2006-08-01

    The landscape of healthcare delivery and medical data management has significantly changed over the last years, as a result of the significant advancements in information and communication technologies. Complementary and/or alternative solutions are needed to meet the new challenges, especially regarding security of the widely distributed sensitive medical information. Digital watermarking is a recently established research area with many applications; nevertheless, the potential of this technology to contribute value-added services to medical information management systems has only recently started to be realized by the research community. The paper presents a review of research efforts in the area of medical-oriented watermarking and proposes a wavelet-based multiple watermarking scheme; this scheme aims to address critical health information management issues, including origin and data authentication, protection of sensitive data, and image archiving and retrieval. In accordance with the strict limitations applying to medical images, the scheme allows the definition of a region of interest (ROI) whose diagnostic value is protected, since the only additional information embedded therein aims at integrity control. The robustness of the method is enhanced through a form of hybrid coding, which includes repetitive embedding of BCH encoded watermarks. The experimental results on different medical imaging modalities demonstrate the efficiency and transparency of the watermarking scheme. PMID:16937204

  10. Flexible medical image management using service-oriented architecture.

    PubMed

    Shaham, Oded; Melament, Alex; Barak-Corren, Yuval; Kostirev, Igor; Shmueli, Noam; Peres, Yardena

    2012-01-01

    Management of medical images increasingly involves the need for integration with a variety of information systems. To address this need, we developed Content Management Offering (CMO), a platform for medical image management supporting interoperability through compliance with standards. CMO is based on the principles of service-oriented architecture, implemented with emphasis on three areas: clarity of business process definition, consolidation of service configuration management, and system scalability. Owing to the flexibility of this platform, a small team is able to accommodate requirements of customers varying in scale and in business needs. We describe two deployments of CMO, highlighting the platform's value to customers. CMO represents a flexible approach to medical image management, which can be applied to a variety of information technology challenges in healthcare and life sciences organizations. PMID:22874344

  11. Oral antioxidants for radioprotection during medical imaging examinations

    NASA Astrophysics Data System (ADS)

    Velauthapillai, Nivethan

    The oncogenic effect of ionizing radiation (IR) is clearly established and occurs in response to DNA damage. Many diagnostic imaging exams make use of IR and the oncogenic risk of IR-based imaging has been calculated. We hypothesized that the DNA damage sustained from IR exposure during medical imaging exams could be reduced by pre-medicating patients with antioxidants. First, we tested and validated a method for measuring DNA double-strand breaks (DSBs) in peripheral blood mononuclear cells (PBMCs) exposed to low doses of ionizing radiation. Afterwards, we conducted a pilot clinical study in which we administered oral antioxidants to patients undergoing bone scans, prior to radiotracer injection. We showed that oral antioxidant pre-medication reduced the number of DSBs in PBMCs induced by radiotracer injection. Our study shows proof-of-principle for this simple and inexpensive approach to radioprotection in the clinical setting.

  12. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2014-07-01

    1. Medical image perception Ehsan Samei and Elizabeth Krupinski; Part I. Historical Reflections and Theoretical Foundations: 2. A short history of image perception in medical radiology Harold Kundel and Calvin Nodine; 3. Spatial vision research without noise Arthur Burgess; 4. Signal detection theory, a brief history Arthur Burgess; 5. Signal detection in radiology Arthur Burgess; 6. Lessons from dinners with the giants of modern image science Robert Wagner; Part II. Science of Image Perception: 7. Perceptual factors in reading medical images Elizabeth Krupinski; 8. Cognitive factors in reading medical images David Manning; 9. Satisfaction of search in traditional radiographic imaging Kevin Berbaum, Edmund Franken, Robert Caldwell and Kevin Schartz; 10. The role of expertise in radiologic image interpretation Calvin Nodine and Claudia Mello-Thoms; 11. A primer of image quality and its perceptual relevance Robert Saunders and Ehsan Samei; 12. Beyond the limitations of human vision Maria Petrou; Part III. Perception Metrology: 13. Logistical issues in designing perception experiments Ehsan Samei and Xiang Li; 14. ROC analysis: basic concepts and practical applications Georgia Tourassi; 15. Multi-reader ROC Steve Hillis; 16. Recent developments in FROC methodology Dev Chakraborty; 17. Observer models as a surrogate to perception experiments Craig Abbey and Miguel Eckstein; 18. Implementation of observer models Matthew Kupinski; Part IV. Decision Support and Computer Aided Detection: 19. CAD: an image perception perspective Maryellen Giger and Weijie Chen; 20. Common designs of CAD studies Yulei Jiang; 21. Perceptual effect of CAD in reading chest images Matthew Freedman and Teresa Osicka; 22. Perceptual issues in mammography and CAD Michael Ulissey; 23. How perceptual factors affect the use and accuracy of CAD for interpretation of CT images Ronald Summers; 24. CAD: risks and benefits for radiologists' decisions Eugenio Alberdi, Andrey Povyakalo, Lorenzo Strigini and

  13. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2009-12-01

    1. Medical image perception Ehsan Samei and Elizabeth Krupinski; Part I. Historical Reflections and Theoretical Foundations: 2. A short history of image perception in medical radiology Harold Kundel and Calvin Nodine; 3. Spatial vision research without noise Arthur Burgess; 4. Signal detection theory, a brief history Arthur Burgess; 5. Signal detection in radiology Arthur Burgess; 6. Lessons from dinners with the giants of modern image science Robert Wagner; Part II. Science of Image Perception: 7. Perceptual factors in reading medical images Elizabeth Krupinski; 8. Cognitive factors in reading medical images David Manning; 9. Satisfaction of search in traditional radiographic imaging Kevin Berbaum, Edmund Franken, Robert Caldwell and Kevin Schartz; 10. The role of expertise in radiologic image interpretation Calvin Nodine and Claudia Mello-Thoms; 11. A primer of image quality and its perceptual relevance Robert Saunders and Ehsan Samei; 12. Beyond the limitations of human vision Maria Petrou; Part III. Perception Metrology: 13. Logistical issues in designing perception experiments Ehsan Samei and Xiang Li; 14. ROC analysis: basic concepts and practical applications Georgia Tourassi; 15. Multi-reader ROC Steve Hillis; 16. Recent developments in FROC methodology Dev Chakraborty; 17. Observer models as a surrogate to perception experiments Craig Abbey and Miguel Eckstein; 18. Implementation of observer models Matthew Kupinski; Part IV. Decision Support and Computer Aided Detection: 19. CAD: an image perception perspective Maryellen Giger and Weijie Chen; 20. Common designs of CAD studies Yulei Jiang; 21. Perceptual effect of CAD in reading chest images Matthew Freedman and Teresa Osicka; 22. Perceptual issues in mammography and CAD Michael Ulissey; 23. How perceptual factors affect the use and accuracy of CAD for interpretation of CT images Ronald Summers; 24. CAD: risks and benefits for radiologists' decisions Eugenio Alberdi, Andrey Povyakalo, Lorenzo Strigini and

  14. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  15. [Digital scanning converter for medical endoscopic ultrasound imaging].

    PubMed

    Chen, Xiaodong; Zhang, Hongxu; Zhou, Peifan; Wen, Shijie; Yu, Daoyin

    2009-02-01

    This paper mainly introduces the design of digital scanning converter (DSC) for medical endoscopic ultrasound imaging. Fast modified vector totational CORDIC (FMVR-CORDIC) arithmetic complete coordinate conversion is used to increase the speed of ultrasonic scanning imaging. FPGA is used as the kernel module to control data transferring, related circuits and relevant chips' working, and to accomplish data preprocessing. With the advantages of simple structure, nice flexibility and convenience, it satisfies the demand for real-time displaying in this system. Finally, the original polar coordinate image is transformed to rectangular coordinate grey image through coordinate transformation. The system performances have been validated by the experimental result. PMID:19334546

  16. Seeing it through: translational validation of new medical imaging modalities

    PubMed Central

    Aldrich, Melissa B.; Marshall, Milton V.; Sevick-Muraca, Eva M.; Lanza, Greg; Kotyk, John; Culver, Joseph; Wang, Lihong V.; Uddin, Jashim; Crews, Brenda C.; Marnett, Lawrence J.; Liao, Joseph C.; Contag, Chris; Crawford, James M.; Wang, Ken; Reisdorph, Bill; Appelman, Henry; Turgeon, D. Kim; Meyer, Charles; Wang, Tom

    2012-01-01

    Medical imaging is an invaluable tool for diagnosis, surgical guidance, and assessment of treatment efficacy. The Network for Translational Research (NTR) for Optical Imaging consists of four research groups working to “bridge the gap” between lab discovery and clinical use of fluorescence- and photoacoustic-based imaging devices used with imaging biomarkers. While the groups are using different modalities, all the groups face similar challenges when attempting to validate these systems for FDA approval and, ultimately, clinical use. Validation steps taken, as well as future needs, are described here. The group hopes to provide translational validation guidance for itself, as well as other researchers. PMID:22574264

  17. Contour detect in the medical image by shearlet transform

    NASA Astrophysics Data System (ADS)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Rios, Ramiro; Simonov, Konstantin; Romanenko, Alexey

    2015-07-01

    Contour detect in the urology medical image. The investigation algorithm FFST revealed that the contours of objects can be obtained as the sum of the coefficients shearlet transform a fixed value for the last scale and the of all possible values of the shift parameter. The results of this task using a modified algorithm FFST for data processing urology image is show. In the results of the corresponding calculations for some images and a comparison with filters Sobel and Prewitt. Shows the relevant calculations for some images and a comparison with Sobel and Prewitt filters respectively.

  18. Comment on ``Perspectives of medical X-ray imaging''

    NASA Astrophysics Data System (ADS)

    Taibi, A.; Baldelli, P.; Tuffanelli, A.; Gambaccini, M.

    2002-07-01

    In the paper "Perspectives of medical X-ray imaging" (Nucl. Instr. and Meth. A 466 (2001) 99) the authors infer, from simple approximations, that the use of HOPG monochromator has no advantage in mammography compared to existing systems. We show that in order to compare imaging properties of different X-ray sources it is necessary to evaluate the spectra after the attenuation of the tissue to be imaged. Indeed, quasi-monochromatic X-ray sources have the potential to enhance image contrast and to reduce patient dose.

  19. MIRMAID: A Content Management System for Medical Image Analysis Research.

    PubMed

    Korfiatis, Panagiotis D; Kline, Timothy L; Blezek, Daniel J; Langer, Steve G; Ryan, William J; Erickson, Bradley J

    2015-01-01

    Today, a typical clinical study can involve thousands of participants, with imaging data acquired over several time points across multiple institutions. The additional associated information (metadata) accompanying these data can cause data management to be a study-hindering bottleneck. Consistent data management is crucial for large-scale modern clinical imaging research studies. If the study is to be used for regulatory submissions, such systems must be able to meet regulatory compliance requirements for systems that manage clinical image trials, including protecting patient privacy. Our aim was to develop a system to address these needs by leveraging the capabilities of an open-source content management system (CMS) that has a highly configurable workflow; has a single interface that can store, manage, and retrieve imaging-based studies; and can handle the requirement for data auditing and project management. We developed a Web-accessible CMS for medical images called Medical Imaging Research Management and Associated Information Database (MIRMAID). From its inception, MIRMAID was developed to be highly flexible and to meet the needs of diverse studies. It fulfills the need for a complete system for medical imaging research management. PMID:26284301

  20. A protocol-based evaluation of medical image digitizers.

    PubMed

    Efstathopoulos, E P; Costaridou, L; Kocsis, O; Panayiotakis, G

    2001-09-01

    Medical film digitizers play an important transitory role as digital-to-analogue bridges in radiology. Their use requires performance evaluation to assure medical image quality. A complete quality control protocol is presented, based on a set of test objects adaptable to the specification of various digitizers. The protocol includes parameters such as uniformity, input-output response, noise, geometric distortion, spatial resolution, low contrast discrimination, film slippage and light leakage, as well as associated measurement methods. The applicability of the protocol is demonstrated with two types of medical film digitizers; a charge-coupled device (CCD) digitizer and a laser digitizer. The potential value of the protocol is also discussed. PMID:11560833

  1. Secure public cloud platform for medical images sharing.

    PubMed

    Pan, Wei; Coatrieux, Gouenou; Bouslimi, Dalel; Prigent, Nicolas

    2015-01-01

    Cloud computing promises medical imaging services offering large storage and computing capabilities for limited costs. In this data outsourcing framework, one of the greatest issues to deal with is data security. To do so, we propose to secure a public cloud platform devoted to medical image sharing by defining and deploying a security policy so as to control various security mechanisms. This policy stands on a risk assessment we conducted so as to identify security objectives with a special interest for digital content protection. These objectives are addressed by means of different security mechanisms like access and usage control policy, partial-encryption and watermarking. PMID:25991144

  2. [Image-M, a tool for use in medical image analysis].

    PubMed

    Kone, T; Konate, L; Kouame, P; Bakayoko, L

    1999-12-01

    Images processing is used today in some research area like robotic, teledetection and medicine. Images processing is not taught and applied enough. The reason of this situation depends on the cost of images processing equipment. To solve this hardware problem we had developed a running on images processing software which need only one personal computer. This software is used now by our team to do some research in medical images processing. PMID:11372125

  3. A Survey of DICOM Viewer Software to Integrate Clinical Research and Medical Imaging.

    PubMed

    Haak, Daniel; Page, Charles-E; Deserno, Thomas M

    2016-04-01

    The digital imaging and communications in medicine (DICOM) protocol is the leading standard for image data management in healthcare. Imaging biomarkers and image-based surrogate endpoints in clinical trials and medical registries require DICOM viewer software with advanced functionality for visualization and interfaces for integration. In this paper, a comprehensive evaluation of 28 DICOM viewers is performed. The evaluation criteria are obtained from application scenarios in clinical research rather than patient care. They include (i) platform, (ii) interface, (iii) support, (iv) two-dimensional (2D), and (v) three-dimensional (3D) viewing. On the average, 4.48 and 1.43 of overall 8 2D and 5 3D image viewing criteria are satisfied, respectively. Suitable DICOM interfaces for central viewing in hospitals are provided by GingkoCADx, MIPAV, and OsiriX Lite. The viewers ImageJ, MicroView, MIPAV, and OsiriX Lite offer all included 3D-rendering features for advanced viewing. Interfaces needed for decentral viewing in web-based systems are offered by Oviyam, Weasis, and Xero. Focusing on open source components, MIPAV is the best candidate for 3D imaging as well as DICOM communication. Weasis is superior for workflow optimization in clinical trials. Our evaluation shows that advanced visualization and suitable interfaces can also be found in the open source field and not only in commercial products. PMID:26482912

  4. Technical challenges for the construction of a medical image database

    NASA Astrophysics Data System (ADS)

    Ring, Francis J.; Ammer, Kurt; Wiecek, Boguslaw; Plassmann, Peter; Jones, Carl D.; Jung, Anna; Murawski, Piotr

    2005-10-01

    Infrared thermal imaging was first made available to medicine in the early 1960's. Despite a large number of research publications on the clinical application of the technique, the images have been largely qualitative. This is in part due to the imaging technology itself, and the problem of data exchange between different medical users, with different hardware. An Anglo Polish collaborative study was set up in 2001 to identify and resolve the sources of error and problems in medical thermal imaging. Standardisation of the patient preparation, imaging hardware, image capture and analysis has been studied and developed by the group. A network of specialist centres in Europe is planned to work to establish the first digital reference atlas of quantifiable images of the normal healthy human body. Further processing techniques can then be used to classify abnormalities found in disease states. The follow up of drug treatment has been successfully monitored in clinical trials with quantitative thermal imaging. The collection of normal reference images is in progress. This paper specifies the areas found to be the source of unwanted variables, and the protocols to overcome them.

  5. WebMedSA: a web-based framework for segmenting and annotating medical images using biomedical ontologies

    NASA Astrophysics Data System (ADS)

    Vega, Francisco; Pérez, Wilson; Tello, Andrés.; Saquicela, Victor; Espinoza, Mauricio; Solano-Quinde, Lizandro; Vidal, Maria-Esther; La Cruz, Alexandra

    2015-12-01

    Advances in medical imaging have fostered medical diagnosis based on digital images. Consequently, the number of studies by medical images diagnosis increases, thus, collaborative work and tele-radiology systems are required to effectively scale up to this diagnosis trend. We tackle the problem of the collaborative access of medical images, and present WebMedSA, a framework to manage large datasets of medical images. WebMedSA relies on a PACS and supports the ontological annotation, as well as segmentation and visualization of the images based on their semantic description. Ontological annotations can be performed directly on the volumetric image or at different image planes (e.g., axial, coronal, or sagittal); furthermore, annotations can be complemented after applying a segmentation technique. WebMedSA is based on three main steps: (1) RDF-ization process for extracting, anonymizing, and serializing metadata comprised in DICOM medical images into RDF/XML; (2) Integration of different biomedical ontologies (using L-MOM library), making this approach ontology independent; and (3) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Initial user evaluations suggest that WebMedSA facilitates the exchange of knowledge between radiologists, and provides the basis for collaborative work among them.

  6. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Karpetas, G. E.; Fountos, G. P.; Kalyvas, N. I.; Martini, Niki; Koukou, Vaia; Valais, I. G.; Kandarakis, I. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations.

  7. Infrared medical image visualization and anomalies analysis method

    NASA Astrophysics Data System (ADS)

    Gong, Jing; Chen, Zhong; Fan, Jing; Yan, Liang

    2015-12-01

    Infrared medical examination finds the diseases through scanning the overall human body temperature and obtaining the temperature anomalies of the corresponding parts with the infrared thermal equipment. In order to obtain the temperature anomalies and disease parts, Infrared Medical Image Visualization and Anomalies Analysis Method is proposed in this paper. Firstly, visualize the original data into a single channel gray image: secondly, turn the normalized gray image into a pseudo color image; thirdly, a method of background segmentation is taken to filter out background noise; fourthly, cluster those special pixels with the breadth-first search algorithm; lastly, mark the regions of the temperature anomalies or disease parts. The test is shown that it's an efficient and accurate way to intuitively analyze and diagnose body disease parts through the temperature anomalies.

  8. Novel medical imaging technologies for disease diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Olego, Diego

    2009-03-01

    New clinical approaches for disease diagnosis, treatment and monitoring will rely on the ability of simultaneously obtaining anatomical, functional and biological information. Medical imaging technologies in combination with targeted contrast agents play a key role in delivering with ever increasing temporal and spatial resolution structural and functional information about conditions and pathologies in cardiology, oncology and neurology fields among others. This presentation will review the clinical motivations and physics challenges in on-going developments of new medical imaging techniques and the associated contrast agents. Examples to be discussed are: *The enrichment of computer tomography with spectral sensitivity for the diagnosis of vulnerable sclerotic plaque. *Time of flight positron emission tomography for improved resolution in metabolic characterization of pathologies. *Magnetic particle imaging -a novel imaging modality based on in-vivo measurement of the local concentration of iron oxide nano-particles - for blood perfusion measurement with better sensitivity, spatial resolution and 3D real time acquisition. *Focused ultrasound for therapy delivery.

  9. Adaptive predictive multiplicative autoregressive model for medical image compression.

    PubMed

    Chen, Z D; Chang, R F; Kuo, W J

    1999-02-01

    In this paper, an adaptive predictive multiplicative autoregressive (APMAR) method is proposed for lossless medical image coding. The adaptive predictor is used for improving the prediction accuracy of encoded image blocks in our proposed method. Each block is first adaptively predicted by one of the seven predictors of the JPEG lossless mode and a local mean predictor. It is clear that the prediction accuracy of an adaptive predictor is better than that of a fixed predictor. Then the residual values are processed by the MAR model with Huffman coding. Comparisons with other methods [MAR, SMAR, adaptive JPEG (AJPEG)] on a series of test images show that our method is suitable for reversible medical image compression. PMID:10232675

  10. Detectors for medical radioisotope imaging: demands and perspectives

    NASA Astrophysics Data System (ADS)

    Lopes, M. I.; Chepel, V.

    2004-10-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  11. Transmission and storage of medical images with patient information.

    PubMed

    Acharya U, Rajendra; Subbanna Bhat, P; Kumar, Sathish; Min, Lim Choo

    2003-07-01

    Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. The text data is encrypted before interleaving with images to ensure greater security. The graphical signals are interleaved with the image. Two types of error control-coding techniques are proposed to enhance reliability of transmission and storage of medical images interleaved with patient information. Transmission and storage scenarios are simulated with and without error control coding and a qualitative as well as quantitative interpretation of the reliability enhancement resulting from the use of various commonly used error control codes such as repetitive, and (7,4) Hamming code is provided. PMID:12791403

  12. Managing waiting times in diagnostic medical imaging

    PubMed Central

    Nuti, Sabina; Vainieri, Milena

    2012-01-01

    Objective This paper aims to analyse the variation in the delivery of diagnostic imaging services in order to suggest possible solutions for the reduction of waiting times, increase the quality of services and reduce financial costs. Design This study provides a logic model to manage waiting times in a regional context. Waiting times measured per day were compared on the basis of the variability in the use rates of CT and MRI examinations in Tuscany for the population, as well as on the basis of the capacity offered with respect to the number of radiologists available. The analysis was performed at the local health authority level to support the decision-making process of local managers. Setting Diagnostic imaging services, in particular the CT and MRI examinations. The study involved all the 12 local health authorities that provide services for 3.7 million inhabitants of the Italian Tuscany Region. Primary and secondary outcome measures Participants: the study uses regional administrative data on outpatients and survey data on inpatient diagnostic examinations in order to measure productivity. Primary and secondary outcome measures The study uses the volumes per 1000 inhabitants, the days of waiting times and the number of examinations per radiologist. Variability was measured using the traditional SD measures. Results A significant variation in areas considered homogeneous in terms of age, gender or mortality may indicate that the use of radiological services is not optimal and underuse or overuse occurs and that there is room for improvement in the service organisation. Conclusions Considering that there is a high level of variability among district use rates and waiting times, this study provides managers with a specific tool to find the cause of the problem, identify a possible solution, assess the financial impact and initiate the eventual reduction of waste. PMID:23242480

  13. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  14. Recent Development of Dual-Dictionary Learning Approach in Medical Image Analysis and Reconstruction

    PubMed Central

    Wang, Bigong; Li, Liang

    2015-01-01

    As an implementation of compressive sensing (CS), dual-dictionary learning (DDL) method provides an ideal access to restore signals of two related dictionaries and sparse representation. It has been proven that this method performs well in medical image reconstruction with highly undersampled data, especially for multimodality imaging like CT-MRI hybrid reconstruction. Because of its outstanding strength, short signal acquisition time, and low radiation dose, DDL has allured a broad interest in both academic and industrial fields. Here in this review article, we summarize DDL's development history, conclude the latest advance, and also discuss its role in the future directions and potential applications in medical imaging. Meanwhile, this paper points out that DDL is still in the initial stage, and it is necessary to make further studies to improve this method, especially in dictionary training. PMID:26089956

  15. Algorithms for Image Analysis and Combination of Pattern Classifiers with Application to Medical Diagnosis

    NASA Astrophysics Data System (ADS)

    Georgiou, Harris

    2009-10-01

    Medical Informatics and the application of modern signal processing in the assistance of the diagnostic process in medical imaging is one of the more recent and active research areas today. This thesis addresses a variety of issues related to the general problem of medical image analysis, specifically in mammography, and presents a series of algorithms and design approaches for all the intermediate levels of a modern system for computer-aided diagnosis (CAD). The diagnostic problem is analyzed with a systematic approach, first defining the imaging characteristics and features that are relevant to probable pathology in mammo-grams. Next, these features are quantified and fused into new, integrated radio-logical systems that exhibit embedded digital signal processing, in order to improve the final result and minimize the radiological dose for the patient. In a higher level, special algorithms are designed for detecting and encoding these clinically interest-ing imaging features, in order to be used as input to advanced pattern classifiers and machine learning models. Finally, these approaches are extended in multi-classifier models under the scope of Game Theory and optimum collective deci-sion, in order to produce efficient solutions for combining classifiers with minimum computational costs for advanced diagnostic systems. The material covered in this thesis is related to a total of 18 published papers, 6 in scientific journals and 12 in international conferences.

  16. A medical imaging and visualization toolkit in Java.

    PubMed

    Huang, Su; Baimouratov, Rafail; Xiao, Pengdong; Ananthasubramaniam, Anand; Nowinski, Wieslaw L

    2006-03-01

    Medical imaging research and clinical applications usually require combination and integration of various techniques ranging from image processing and analysis to realistic visualization to user-friendly interaction. Researchers with different backgrounds coming from diverse areas have been using numerous types of hardware, software, and environments to obtain their results. We also observe that students often build their tools from scratch resulting in redundant work. A generic and flexible medical imaging and visualization toolkit would be helpful in medical research and educational institutes to reduce redundant development work and hence increase research efficiency. This paper presents our experience in developing a Medical Imaging and Visualization Toolkit (BIL-kit) that is a set of comprehensive libraries as well as a number of interactive tools. The BIL-kit covers a wide range of fundamental functions from image conversion and transformation, image segmentation, and analysis to geometric model generation and manipulation, all the way up to 3D visualization and interactive simulation. The toolkit design and implementation emphasize the reusability and flexibility. BIL-kit is implemented in the Java language so that it works in hybrid and dynamic research and educational environments. This also allows the toolkit to extend its usage for the development of Web-based applications. Several BIL-kit-based tools and applications are presented including image converter, image processor, general anatomy model simulator, vascular modeling environment, and volume viewer. BIL-kit is a suitable platform for researchers and students to develop visualization and simulation prototypes, and it can also be used for the development of clinical applications. PMID:16323064

  17. New developments in observer performance methodology in medical imaging.

    PubMed

    Chakraborty, Dev P

    2011-11-01

    A common task in medical imaging is assessing whether a new imaging system, or a variant of an existing one, is an improvement over an existing imaging technology. Imaging systems are generally quite complex, consisting of several components-for example, image acquisition hardware, image processing and display hardware and software, and image interpretation by radiologists- each of which can affect performance. Although it may appear odd to include the radiologist as a "component" of the imaging chain, because the radiologist's decision determines subsequent patient care, the effect of the human interpretation has to be included. Physical measurements such as modulation transfer function, signal-to-noise ratio, are useful for characterizing the nonhuman parts of the imaging chain under idealized and often unrealistic conditions, such as uniform background phantoms and target objects with sharp edges. Measuring the performance of the entire imaging chain, including the radiologist, and using real clinical images requires different methods that fall under the rubric of observer performance methods or "ROC" analysis, that involve collecting rating data on images. The purpose of this work is to review recent developments in this field, particularly with respect to the free-response method, where location information is also collected. PMID:21978444

  18. Adapting smartphones for low-cost optical medical imaging

    NASA Astrophysics Data System (ADS)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  19. Digital Topology and Geometry in Medical Imaging: A Survey.

    PubMed

    Saha, Punam K; Strand, Robin; Borgefors, Gunilla

    2015-09-01

    Digital topology and geometry refers to the use of topologic and geometric properties and features for images defined in digital grids. Such methods have been widely used in many medical imaging applications, including image segmentation, visualization, manipulation, interpolation, registration, surface-tracking, object representation, correction, quantitative morphometry etc. Digital topology and geometry play important roles in medical imaging research by enriching the scope of target outcomes and by adding strong theoretical foundations with enhanced stability, fidelity, and efficiency. This paper presents a comprehensive yet compact survey on results, principles, and insights of methods related to digital topology and geometry with strong emphasis on understanding their roles in various medical imaging applications. Specifically, this paper reviews methods related to distance analysis and path propagation, connectivity, surface-tracking, image segmentation, boundary and centerline detection, topology preservation and local topological properties, skeletonization, and object representation, correction, and quantitative morphometry. A common thread among the topics reviewed in this paper is that their theory and algorithms use the principle of digital path connectivity, path propagation, and neighborhood analysis. PMID:25879908

  20. Watermarking of ultrasound medical images in teleradiology using compressed watermark.

    PubMed

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq

    2016-01-01

    The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel's least significant bits (LSBs). The watermark lossless compression and embedding at pixel's LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes. PMID:26839914

  1. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  2. Safe storage and multi-modal search for medical images.

    PubMed

    Kommeri, Jukka; Niinimäki, Marko; Müller, Henning

    2011-01-01

    Modern hospitals produce enormous amounts of data in all departments, from images, to lab results, medication use, and release letters. Since several years these data are most often produced in digital form, making them accessible for researchers to optimize the outcome of care process and analyze all available data across patients. The Geneva University Hospitals (HUG) are no exception with its daily radiology department's output of over 140'000 images in 2010, with a majority of them being tomographic slices. In this paper we introduce tools for uploading and accessing DICOM images and associated metadata in a secure Grid storage. These data are made available for authorized persons using a Grid security framework, as security is a main problem in secondary use of image data, where images are to be stored outside of the clinical image archive. Our tool combines the security and metadata access of a Grid middleware with the visual search that uses GIFT. PMID:21893790

  3. Medical Imaging for Understanding Sleep Regulation

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth

    2011-10-01

    Sleep is essential for the health of the nervous system. Lack of sleep has a profound negative effect on cognitive ability and task performance. During sustained military operations, soldiers often suffer from decreased quality and quantity of sleep, increasing their susceptibility to neurological problems and limiting their ability to perform the challenging mental tasks that their missions require. In the civilian sector, inadequate sleep and overt sleep pathology are becoming more common, with many detrimental impacts. There is a strong need for new, in vivo studies of human brains during sleep, particularly the initial descent from wakefulness. Our research team is investigating sleep using a combination of magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalography (EEG). High resolution MRI combined with PET enables localization of biochemical processes (e.g., metabolism) to anatomical structures. MRI methods can also be used to examine functional connectivity among brain regions. Neural networks are dynamically reordered during different sleep stages, reflecting the disconnect with the waking world and the essential yet unconscious brain activity that occurs during sleep.[4pt] In collaboration with Linda Larson-Prior, Washington University; Alpay Ozcan, Virginia Tech; Seong Mun, Virginia Tech; and Zang-Hee Cho, Gachon University.

  4. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    NASA Astrophysics Data System (ADS)

    Jambi, L. K.; Lees, J. E.; Bugby, S. L.; Tipper, S.; Alqahtani, M. S.; Perkins, A. C.

    2015-06-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported.

  5. Web architecture for the remote browsing and analysis of distributed medical images and data.

    PubMed

    Masseroli, M; Pinciroli, F

    2001-01-01

    To provide easy retrieval, integration and evaluation of multimodal medical images and data in a web browser environment, distributed application technologies and Java programming were used to develop a client-server architecture based on software agents. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. The client side is a Java applet running in a web browser and providing a friendly medical user interface to perform queries on patient and medical test data and integrate and visualize properly the various query results. A set of tools based on Java Advanced Imaging API enables to process and analyze the retrieved bioimages, and quantify their features in different regions of interest. The platform-independence Java technology makes the developed prototype easy to be managed in a centralized form and provided in each site where an intranet or internet connection can be located. Giving the healthcare providers effective tools for browsing, querying, visualizing and evaluating comprehensively medical images and records in all locations where they can need them - e.g. emergency, operating theaters, ward, or even outpatient clinics- the implemented prototype represents an important aid in providing more efficient diagnoses and medical treatments. PMID:11604703

  6. A Local IDW Transformation Algorithm for Medical Image Registration

    NASA Astrophysics Data System (ADS)

    Cavoretto, Roberto; De Rossi, Alessandra

    2008-09-01

    In this paper we propose the use of a modified version of the Inverse Distance Weighted (IDW) method for landmark—based registration of medical images. More precisely, we consider radial basis functions (RBFs) as nodal functions in the modified IDW method, circumventing the drawback due to RBF global support.

  7. A grid computing framework for high-performance medical imaging

    NASA Astrophysics Data System (ADS)

    Mañana Guichón, Gabriel; Romero Castro, Eduardo

    2013-11-01

    Current medical image processing has become a complex mixture of many scienti c disciplines including mathematics, statistics, physics, and algorithmics, to perform tasks such as registration, segmentation, and visualization, with the ultimate purpose of helping clinicians in their daily routine. This requires high performance computing capabilities that can be achieved in several ways, usually una ordable for most medical institutions. This paper presents a space-based computational grid that uses the otherwise wasted CPU cycles of a set of personal computers, to provide high-performance medical imaging services over the Internet. By using an existing hardware infrastructure and software of free distribution, the proposed approach is apt for university hospitals and other low-budget institutions. This will be illustrated by the use of three real case studies of services where an important speedup factor has been obtained and whose performance has become suitable for use in real clinical scenarios.

  8. SemVisM: semantic visualizer for medical image

    NASA Astrophysics Data System (ADS)

    Landaeta, Luis; La Cruz, Alexandra; Baranya, Alexander; Vidal, María.-Esther

    2015-01-01

    SemVisM is a toolbox that combines medical informatics and computer graphics tools for reducing the semantic gap between low-level features and high-level semantic concepts/terms in the images. This paper presents a novel strategy for visualizing medical data annotated semantically, combining rendering techniques, and segmentation algorithms. SemVisM comprises two main components: i) AMORE (A Modest vOlume REgister) to handle input data (RAW, DAT or DICOM) and to initially annotate the images using terms defined on medical ontologies (e.g., MesH, FMA or RadLex), and ii) VOLPROB (VOlume PRObability Builder) for generating the annotated volumetric data containing the classified voxels that belong to a particular tissue. SemVisM is built on top of the semantic visualizer ANISE.1

  9. Can Imaging Put the “Advanced” Back in Advanced Wound Care?

    PubMed Central

    DaCosta, Ralph S.; Ottolino-Perry, Kathryn; Banerjee, Jaideep

    2016-01-01

    An effective, scientifically validated, diagnostic tool helps clinicians make better, timely, and more objective medical decisions in the care of their patients. Today, the need for such tools is especially urgent in the field of wound care where patient-centric care is the goal, under ever tightening clinical budget constraints. In an era of countless “innovative” treatment options, that is, advanced dressings, negative pressure devices, and various debridement instruments available to the wound care clinical team, one area that has arguably languished in the past decade has been innovation in wound diagnostics. Whereas medical imaging is a mainstay in the diagnostic toolkit across many other medical fields (oncology, neurology, gastroenterology, orthopedics, etc.), the field of wound care has yet to realize the full potential that advances in imaging technologies have to offer the clinician. In this issue, the first of a series in wound imaging and diagnostics, four articles have been assembled, highlighting some of the recent advances in wound imaging technologies. PMID:27602251

  10. Recent Advances in Imaging Alzheimer’s Disease

    PubMed Central

    Braskie, Meredith N.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    Advances in brain imaging technology in the past five years have contributed greatly to the understanding of Alzheimer’s disease (AD). Here, we review recent research related to amyloid imaging, new methods for magnetic resonance imaging analyses, and statistical methods. We also review research that evaluates AD risk factors and brain imaging, in the context of AD prediction and progression. We selected a variety of illustrative studies, describing how they advanced the field and are leading AD research in promising new directions. PMID:22672880

  11. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  12. Medical Image Compression Using a New Subband Coding Method

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen; Tucker, Doug

    1995-01-01

    A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is generalized and applied to medical image compression. In particular, the corresponding subband coder is used to encode Computed Tomography (CT) axial slice head images, where statistical dependencies between neighboring image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression performance. The subband coder features many advantages such as relatively low complexity and operation over a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder is relatively good, both objectively and subjectively.

  13. Perceptually lossless wavelet-based compression for medical images

    NASA Astrophysics Data System (ADS)

    Lin, Nai-wen; Yu, Tsaifa; Chan, Andrew K.

    1997-05-01

    In this paper, we present a wavelet-based medical image compression scheme so that images displayed on different devices are perceptually lossless. Since visual sensitivity of human varies with different subbands, we apply the perceptual lossless criteria to quantize the wavelet transform coefficients of each subband such that visual distortions are reduced to unnoticeable. Following this, we use a high compression ratio hierarchical tree to code these coefficients. Experimental results indicate that our perceptually lossless coder achieves a compression ratio 2-5 times higher than typical lossless compression schemes while producing perceptually identical image content on the target display device.

  14. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    ... tissue, and can cause tissue death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light ... location of cavities within these light areas. The x-ray on the left clearly shows that the opacities ...

  15. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  16. Recent advances in ophthalmic molecular imaging.

    PubMed

    Ramos de Carvalho, J Emanuel; Verbraak, Frank D; Aalders, Maurice C; van Noorden, Cornelis J; Schlingemann, Reinier O

    2014-01-01

    The aim of molecular imaging techniques is the visualization of molecular processes and functional changes in living animals and human patients before morphological changes occur at the cellular and tissue level. Ophthalmic molecular imaging is still in its infancy and has mainly been used in small animals for pre-clinical research. The goal of most of these pre-clinical studies is their translation into ophthalmic molecular imaging techniques in clinical care. We discuss various molecular imaging techniques and their applications in ophthalmology. PMID:24529711

  17. Decision making on the adoption of advanced medical technology in Taiwan.

    PubMed

    Lan, C F

    1987-01-01

    This paper discusses both the current interest in and approaches to the employment of advanced medical technology in Taiwan. It describes the formation of the national policy, including funding, reimbursement, and regulatory processes, on adopting innovative and expensive medical technologies. Using the case of extracorporeal shockwave lithotripsy (ESWL), the key players who affect organizational decision making on the adoption and diffusion of medical technology have also been analyzed. Finally, it examines some of the salient features of medical technology adoption and assessment in Taiwan, and in other countries which depend heavily upon imported advanced medical technology. It is hoped that an understanding of Taiwan's attempts to use innovative medical technology wisely while incorporating the practice of technology assessment and appropriate policies, will assist other countries with similar conditions to gain maximal benefit from technological advancement. PMID:10284927

  18. The Imaging and Medical Beam Line at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  19. A review of medical image watermarking requirements for teleradiology.

    PubMed

    Nyeem, Hussain; Boles, Wageeh; Boyd, Colin

    2013-04-01

    Teleradiology allows medical images to be transmitted over electronic networks for clinical interpretation and for improved healthcare access, delivery, and standards. Although such remote transmission of the images is raising various new and complex legal and ethical issues, including image retention and fraud, privacy, malpractice liability, etc., considerations of the security measures used in teleradiology remain unchanged. Addressing this problem naturally warrants investigations on the security measures for their relative functional limitations and for the scope of considering them further. In this paper, starting with various security and privacy standards, the security requirements of medical images as well as expected threats in teleradiology are reviewed. This will make it possible to determine the limitations of the conventional measures used against the expected threats. Furthermore, we thoroughly study the utilization of digital watermarking for teleradiology. Following the key attributes and roles of various watermarking parameters, justification for watermarking over conventional security measures is made in terms of their various objectives, properties, and requirements. We also outline the main objectives of medical image watermarking for teleradiology and provide recommendations on suitable watermarking techniques and their characterization. Finally, concluding remarks and directions for future research are presented. PMID:22975883

  20. Differentiation applied to lossless compression of medical images.

    PubMed

    Nijim, Y W; Stearns, S D; Mikhael, W B

    1996-01-01

    Lossless compression of medical images using a proposed differentiation technique is explored. This scheme is based on computing weighted differences between neighboring pixel values. The performance of the proposed approach, for the lossless compression of magnetic resonance (MR) images and ultrasonic images, is evaluated and compared with the lossless linear predictor and the lossless Joint Photographic Experts Group (JPEG) standard. The residue sequence of these techniques is coded using arithmetic coding. The proposed scheme yields compression measures, in terms of bits per pixel, that are comparable with or lower than those obtained using the linear predictor and the lossless JPEG standard, respectively, with 8-b medical images. The advantages of the differentiation technique presented here over the linear predictor are: 1) the coefficients of the differentiator are known by the encoder and the decoder, which eliminates the need to compute or encode these coefficients, and 21 the computational complexity is greatly reduced. These advantages are particularly attractive in real time processing for compressing and decompressing medical images. PMID:18215936

  1. The Imaging and Medical Beam Line at the Australian Synchrotron

    SciTech Connect

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-23

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the 'Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1 - monochromatic and white - to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  2. Multimodal Medical Image Fusion by Adaptive Manifold Filter.

    PubMed

    Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images. PMID:26664494

  3. Open source tools for standardized privacy protection of medical images

    NASA Astrophysics Data System (ADS)

    Lien, Chung-Yueh; Onken, Michael; Eichelberg, Marco; Kao, Tsair; Hein, Andreas

    2011-03-01

    In addition to the primary care context, medical images are often useful for research projects and community healthcare networks, so-called "secondary use". Patient privacy becomes an issue in such scenarios since the disclosure of personal health information (PHI) has to be prevented in a sharing environment. In general, most PHIs should be completely removed from the images according to the respective privacy regulations, but some basic and alleviated data is usually required for accurate image interpretation. Our objective is to utilize and enhance these specifications in order to provide reliable software implementations for de- and re-identification of medical images suitable for online and offline delivery. DICOM (Digital Imaging and Communications in Medicine) images are de-identified by replacing PHI-specific information with values still being reasonable for imaging diagnosis and patient indexing. In this paper, this approach is evaluated based on a prototype implementation built on top of the open source framework DCMTK (DICOM Toolkit) utilizing standardized de- and re-identification mechanisms. A set of tools has been developed for DICOM de-identification that meets privacy requirements of an offline and online sharing environment and fully relies on standard-based methods.

  4. Super-resolution for medical images corrupted by heavy noise

    NASA Astrophysics Data System (ADS)

    Tran, Dai-Viet; Luong, Marie; Li-Thao-Té, Sébastien; Rocchisani, Jean-Marie; Dibos, Françoise; Le-Tien, Thuong

    2015-03-01

    Medical images often suffer from noise and low-resolution, which may compromise the accuracy of diagnosis. How to improve the image resolution in cases of heavy noise is still a challenging issue. This paper introduces a novel Examplebased Super-resolution (SR) method for medical images corrupted by heavy Poisson noise, integrating efficiently denoising and SR in the same framework. The purpose is to estimate a high-resolution (HR) image from a single noisy low-resolution (LR) image, with the help of a given set of standard images which are used as examples to construct the database. Precisely, for each patch in the noisy LR image, the idea is to find its nearest neighbor patches from the database and use them to estimate the HR patch by computing a regression function based on the construction of a reproducing kernel Hilbert space. To obtain the corresponding set of k-nearest neighbors in the database, a coarse search using the shortest Euclidean distance is first performed, followed by a refined search using a criterion based on the distribution of Poisson noise and the Anscombe transformation. This paper also evaluates the performance of the method comparing to other state-of-the-art denoising methods and SR methods. The obtained results demonstrate its efficiency, especially for heavy Poisson noise.

  5. Development of automatic hologram synthesizer for medical use III: image processing for original medical images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toshifumi; Misaki, Toshikazu; Kato, Tsutomu

    1992-05-01

    An image processing system for providing original images for synthesizing multiplex holograms is developed. This system reconstructs 3D surface rendering images of internal organs and/or bones of a patient from a series of tomograms such as computed tomography. Image processing includes interpolation, enhancement, extraction of diseased parts, selection of axis of projection, and compensation of distortions. This paper presents the features of this system, along with problems and resolutions encountered in actual test operation at hospitals.

  6. A Routing Mechanism for Cloud Outsourcing of Medical Imaging Repositories.

    PubMed

    Godinho, Tiago Marques; Viana-Ferreira, Carlos; Bastião Silva, Luís A; Costa, Carlos

    2016-01-01

    Web-based technologies have been increasingly used in picture archive and communication systems (PACS), in services related to storage, distribution, and visualization of medical images. Nowadays, many healthcare institutions are outsourcing their repositories to the cloud. However, managing communications between multiple geo-distributed locations is still challenging due to the complexity of dealing with huge volumes of data and bandwidth requirements. Moreover, standard methodologies still do not take full advantage of outsourced archives, namely because their integration with other in-house solutions is troublesome. In order to improve the performance of distributed medical imaging networks, a smart routing mechanism was developed. This includes an innovative cache system based on splitting and dynamic management of digital imaging and communications in medicine objects. The proposed solution was successfully deployed in a regional PACS archive. The results obtained proved that it is better than conventional approaches, as it reduces remote access latency and also the required cache storage space. PMID:25343773

  7. Java multi-histogram volume rendering framework for medical images

    NASA Astrophysics Data System (ADS)

    Senseney, Justin; Bokinsky, Alexandra; Cheng, Ruida; McCreedy, Evan; McAuliffe, Matthew J.

    2013-03-01

    This work extends the multi-histogram volume rendering framework proposed by Kniss et al. [1] to provide rendering results based on the impression of overlaid triangles on a graph of image intensity versus gradient magnitude. The developed method of volume rendering allows for greater emphasis to boundary visualization while avoiding issues common in medical image acquisition. For example, partial voluming effects in computed tomography and intensity inhomogeneity of similar tissue types in magnetic resonance imaging introduce pixel values that will not reflect differing tissue types when a standard transfer function is applied to an intensity histogram. This new framework uses developing technology to improve upon the Kniss multi-histogram framework by using Java, the GPU, and MIPAV, an open-source medical image processing application, to allow multi-histogram techniques to be widely disseminated. The OpenGL view aligned texture rendering approach suffered from performance setbacks, inaccessibility, and usability problems. Rendering results can now be interactively compared with other rendering frameworks, surfaces can now be extracted for use in other programs, and file formats that are widely used in the field of biomedical imaging can be visualized using this multi-histogram approach. OpenCL and GLSL are used to produce this new multi-histogram approach, leveraging texture memory on the graphics processing unit of desktops to provide a new interactive method for visualizing biomedical images. Performance results for this method are generated and qualitative rendering results are compared. The resulting framework provides the opportunity for further applications in medical imaging, both in volume rendering and in generic image processing.

  8. Advanced Imaging Optics Utilizing Wavefront Coding.

    SciTech Connect

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  9. The masked educator-innovative simulation in an Australian undergraduate Medical Sonography and Medical Imaging program

    PubMed Central

    Reid-Searl, Kerry; Bowman, Anita; McAllister, Margaret; Cowling, Cynthia; Spuur, Kelly

    2014-01-01

    Introduction Clinical learning experiences for sonography and medical imaging students can sometimes involve the practice of technical procedures with less of a focus on developing communication skills with patients. Whilst patient-based simulation scenarios have been widely reported in other health education programmes, there is a paucity of research in sonography and medical imaging. The aim of this study was to explore the effectiveness of Mask-Ed™ (KRS Simulation) in the learning and teaching of clinical communication skills to undergraduate medical sonography and medical imaging students. Mask-Ed™ (KRS Simulation) is a simulation technique where the educator is hidden behind wearable realistic silicone body props including masks. Methods Focus group interviews were conducted with 11 undergraduate medical sonography and medical imaging students at CQUniversity, Australia. The number of participants was limited to the size of the cohort of students enrolled in the course. Prior to these interviews participants were engaged in learning activities that featured the use of the Mask-Ed™ (KRS Simulation) method. Thematic analysis was employed to explore how the introduction of Mask-Ed™ (KRS Simulation) contributed to students' learning in relation to clinical communication skills. Results Key themes included: benefits of interacting with someone real rather than another student, learning made fun, awareness of empathy, therapeutic communication skills, engaged problem solving and purposeful reflection. Conclusions Mask-Ed™ (KRS Simulation) combined with interactive sessions with an expert facilitator, contributed positively to students' learning in relation to clinical communication skills. Participants believed that interacting with someone real, as in the Mask-Ed characters was beneficial. In addition to the learning being described as fun, participants gained an awareness of empathy, therapeutic communication skills, engaged problem solving and

  10. An active learning approach to the physics of medical imaging.

    PubMed

    Wilhjelm, Jens E; Pihl, Michael Johannes; Lonsdale, Markus Nowak; Jensen, Mikael

    2008-06-01

    This paper describes an experimentally oriented medical imaging course where the students record, process and analyse 3D data of an unknown piece of formalin fixed porcine tissue hidden in agar in order to estimate the tissue types present in a selected 2D slice. The recorded planar X-ray, CT, MRI, ultrasound and SPECT images show the tissue in very different ways. The students can only estimate the tissue type by studying the physical principles of the imaging modalities. The true answer is later revealed by anatomical photographs obtained from physical slicing. The paper describes the phantoms and methods used in the course. Sample images recorded with the different imaging modalities are provided. Challenges faced by the students are outlined. Results of the course show high increase in competencies as judged from graded reports, low course drop-out rate, high pass-rate at the exam, high student participation and large student satisfaction. PMID:17716937

  11. Advances in hyperspectral LWIR pushbroom imagers

    NASA Astrophysics Data System (ADS)

    Holma, Hannu; Mattila, Antti-Jussi; Hyvärinen, Timo; Weatherbee, Oliver

    2011-06-01

    Two long-wave infrared (LWIR) hyperspectral imagers have been under extensive development. The first one utilizes a microbolometer focal plane array (FPA) and the second one is based on an Mercury Cadmium Telluride (MCT) FPA. Both imagers employ a pushbroom imaging spectrograph with a transmission grating and on-axis optics. The main target has been to develop high performance instruments with good image quality and compact size for various industrial and remote sensing application requirements. A big challenge in realizing these goals without considerable cooling of the whole instrument is to control the instrument radiation. The challenge is much bigger in a hyperspectral instrument than in a broadband camera, because the optical signal from the target is spread spectrally, but the instrument radiation is not dispersed. Without any suppression, the instrument radiation can overwhelm the radiation from the target even by 1000 times. The means to handle the instrument radiation in the MCT imager include precise instrument temperature stabilization (but not cooling), efficient optical background suppression and the use of background-monitoring-on-chip (BMC) method. This approach has made possible the implementation of a high performance, extremely compact spectral imager in the 7.7 to 12.4 μm spectral range. The imager performance with 84 spectral bands and 384 spatial pixels has been experimentally verified and an excellent NESR of 14 mW/(m2srμm) at 10 μm wavelength with a 300 K target has been achieved. This results in SNR of more than 700. The LWIR imager based on a microbolometer detector array, first time introduced in 2009, has been upgraded. The sensitivity of the imager has improved drastically by a factor of 3 and SNR by about 15 %. It provides a rugged hyperspectral camera for chemical imaging applications in reflection mode in laboratory and industry.

  12. Applications of terahertz (THz) technology to medical imaging

    NASA Astrophysics Data System (ADS)

    Arnone, Donald D.; Ciesla, Craig M.; Corchia, Alessandra; Egusa, S.; Pepper, Michael; Chamberlain, J. Martyn; Bezant, C.; Linfield, Edmund H.; Clothier, R.; Khammo, N.

    1999-09-01

    An imaging system has been developed based on pulses of Terahertz (THz) radiation generated and detected using all- optical effects accessed by irradiating semiconductors with ultrafast pulses of visible laser light. This technique, commonly referred to as T-Ray Imaging or THz Pulse Imaging (TPI), holds enormous promise for certain aspects of medical imaging. We have conducted an initial survey of possible medical applications of TPI and demonstrated that TPI images show good contrast between different animal tissue types. Moreover, the diagnostic power of TPI has been elicidated by the spectra available at each pixel in the image, which are markedly different for the different tissue types. This suggests that the spectral information inherent in TPI might be used to identify the type of soft and hard tissue at each pixel in an image and provide other diagnostic information not afforded by conventional imagin techniques. Preliminary TPI studies of pork skin show that 3D tomographic imaging of the skin surface and thickness is possible, and data from experiments on models of the human dermis are presented which demonstrate that different constituents of skin have different refractive indices. Lastly, we present the first THz image of human tissue, namely an extracted tooth. The time of flight of THz pulses through the tooth allows the thickness of the enamel to be determined, and is used to create an image showing the enamel and dentine regions. Absorption of THz pulses in the tooth allows the pulp cavity region to be identified. Initial evidence strongly suggests that TPI my be used to provide valuable diagnostic information pertaining to the enamel, dentine, and the pump cavity.

  13. On the Opportunities and Challenges in Microwave Medical Sensing and Imaging.

    PubMed

    Chandra, Rohit; Zhou, Huiyuan; Balasingham, Ilangko; Narayanan, Ram M

    2015-07-01

    Widely used medical imaging systems in clinics currently rely on X-rays, magnetic resonance imaging, ultrasound, computed tomography, and positron emission tomography. The aforementioned technologies provide clinical data with a variety of resolution, implementation cost, and use complexity, where some of them rely on ionizing radiation. Microwave sensing and imaging (MSI) is an alternative method based on nonionizing electromagnetic (EM) signals operating over the frequency range covering hundreds of megahertz to tens of gigahertz. The advantages of using EM signals are low health risk, low cost implementation, low operational cost, ease of use, and user friendliness. Advancements made in microelectronics, material science, and embedded systems make it possible for miniaturization and integration into portable, handheld, mobile devices with networking capability. MSI has been used for tumor detection, blood clot/stroke detection, heart imaging, bone imaging, cancer detection, and localization of in-body RF sources. The fundamental notion of MSI is that it exploits the tissue-dependent dielectric contrast to reconstruct signals and images using radar-based or tomographic imaging techniques. This paper presents a comprehensive overview of the active MSI for various medical applications, for which the motivation, challenges, possible solutions, and future directions are discussed. PMID:25993698

  14. Visualization index for image-enabled medical records

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Zheng, Weilin; Sun, Jianyong; Zhang, Jianguo

    2011-03-01

    With the widely use of healthcare information technology in hospitals, the patients' medical records are more and more complex. To transform the text- or image-based medical information into easily understandable and acceptable form for human, we designed and developed an innovation indexing method which can be used to assign an anatomical 3D structure object to every patient visually to store indexes of the patients' basic information, historical examined image information and RIS report information. When a doctor wants to review patient historical records, he or she can first load the anatomical structure object and the view the 3D index of this object using a digital human model tool kit. This prototype system helps doctors to easily and visually obtain the complete historical healthcare status of patients, including large amounts of medical data, and quickly locate detailed information, including both reports and images, from medical information systems. In this way, doctors can save time that may be better used to understand information, obtain a more comprehensive understanding of their patients' situations, and provide better healthcare services to patients.

  15. Total variation minimization-based multimodality medical image reconstruction

    NASA Astrophysics Data System (ADS)

    Cui, Xuelin; Yu, Hengyong; Wang, Ge; Mili, Lamine

    2014-09-01

    Since its recent inception, simultaneous image reconstruction for multimodality fusion has received a great deal of attention due to its superior imaging performance. On the other hand, the compressed sensing (CS)-based image reconstruction methods have undergone a rapid development because of their ability to significantly reduce the amount of raw data. In this work, we combine computed tomography (CT) and magnetic resonance imaging (MRI) into a single CS-based reconstruction framework. From a theoretical viewpoint, the CS-based reconstruction methods require prior sparsity knowledge to perform reconstruction. In addition to the conventional data fidelity term, the multimodality imaging information is utilized to improve the reconstruction quality. Prior information in this context is that most of the medical images can be approximated as piecewise constant model, and the discrete gradient transform (DGT), whose norm is the total variation (TV), can serve as a sparse representation. More importantly, the multimodality images from the same object must share structural similarity, which can be captured by DGT. The prior information on similar distributions from the sparse DGTs is employed to improve the CT and MRI image quality synergistically for a CT-MRI scanner platform. Numerical simulation with undersampled CT and MRI datasets is conducted to demonstrate the merits of the proposed hybrid image reconstruction approach. Our preliminary results confirm that the proposed method outperforms the conventional CT and MRI reconstructions when they are applied separately.

  16. The fuzzy Hough Transform-feature extraction in medical images

    SciTech Connect

    Philip, K.P.; Dove, E.L.; Stanford, W.; Chandran, K.B. ); McPherson, D.D.; Gotteiner, N.L. . Dept. of Internal Medicine)

    1994-06-01

    Identification of anatomical features is a necessary step for medical image analysis. Automatic methods for feature identification using conventional pattern recognition techniques typically classify an object as a member of a predefined class of objects, but do not attempt to recover the exact or approximate shape of that object. For this reason, such techniques are usually not sufficient to identify the borders of organs when individual geometry varies in local detail, even though the general geometrical shape is similar. The authors present an algorithm that detects features in an image based on approximate geometrical models. The algorithm is based on the traditional and generalized Hough Transforms but includes notions from fuzzy set theory. The authors use the new algorithm to roughly estimate the actual locations of boundaries of an internal organ, and from this estimate, to determine a region of interest around the organ. Based on this rough estimate of the border location, and the derived region of interest, the authors find the final estimate of the true borders with other image processing techniques. The authors present results that demonstrate that the algorithm was successfully used to estimate the approximate location of the chest wall in humans, and of the left ventricular contours of a dog heart obtained from cine-computed tomographic images. The authors use this fuzzy Hough Transform algorithm as part of a larger procedures to automatically identify the myocardial contours of the heart. This algorithm may also allow for more rapid image processing and clinical decision making in other medical imaging applications.

  17. A patient positioning system for the ESRF medical imaging facility

    NASA Astrophysics Data System (ADS)

    Dabin, Y.; Draperi, A.; Elleaume, H.; Charvet, A.-M.; Brochard, T.; Perez, M.; Nemoz, C.; Blattmann, G.; Renier, M.; Fournier, F.; Dupuy, J.-L.; Lemoine, B.; Bouhaniche, P.; Thomlinson, W.; Suortti, P.

    2001-07-01

    The medical imaging facility of the ESRF is devoted to human coronary angiography, computed tomography, diffraction enhanced imaging (DEI), bronchography, and also radiation therapy programs. Most of the imaging is performed in a satellite building located at 150 m from the wiggler source (H. Elleaume et al., Nucl. Instr. and Meth. A 428 (1999) 513). A multi-purpose device known as the Patient Positioning System (PPS or medical chair) has been designed to perform in different modes of research on patients. This device operates in the angiography mode, with alternating up and down movements in 1.6 s cycles over a period of about 30 s. The tomography mode is used mainly for the imaging of the brain. It consists of turning the patient around an axis perfectly perpendicular to the beam plane. A dual-energy scan involves two rotations with one image recorded each turn at a different energy (Phys. Med. Biol. 45 (2000) L39). The first angiography imaging on patients was undertaken in January 2000 after successful pre-clinical tests on animals.

  18. Texture Analysis of Medical Images Using the Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Fernández, Margarita; Mavilio, Adriana

    2002-08-01

    Texture analysis of images can contribute to a better interpretation of medical images. This type of analysis provides not only qualitative but also quantitative information about tissue affection degree. In this work an algorithm is developed which uses the wavelet transform to carry out the supervised segmentation of echographic images corresponding to injured Achilles tendon of athletes. To construct the pattern, the image corresponding to healthy tendon tissue of the athlete, is taken as a reference based upon the duplicity of this structure. Texture features are calculated on the expansion wavelet coefficients of the images. The Mahalanobis distance between texture samples of the injured tissue and pattern texture is computed and used as the discriminating function. It is concluded that this distance, after appropriate medical calibrations, can offer quantitative information about the injury degree in every point along the damaged tissue. Further, its behavior along the segmented image can serve as a measure of the degree of change in tissue properties. The parameter, similarity degree, is defined and obtained by taking into account the correlation between distance histograms for the healthy tissue and the damaged one. It is also shown that this parameter, when properly calibrated, can offer a quantitative global evaluation of the state of the injured tissue.

  19. A cryptologic based trust center for medical images.

    PubMed Central

    Wong, S T

    1996-01-01

    OBJECTIVE: To investigate practical solutions that can integrate cryptographic techniques and picture archiving and communication systems (PACS) to improve the security of medical images. DESIGN: The PACS at the University of California San Francisco Medical Center consolidate images and associated data from various scanners into a centralized data archive and transmit them to remote display stations for review and consultation purposes. The purpose of this study is to investigate the model of a digital trust center that integrates cryptographic algorithms and protocols seamlessly into such a digital radiology environment to improve the security of medical images. MEASUREMENTS: The timing performance of encryption, decryption, and transmission of the cryptographic protocols over 81 volumetric PACS datasets has been measured. Lossless data compression is also applied before the encryption. The transmission performance is measured against three types of networks of different bandwidths: narrow-band Integrated Services Digital Network, Ethernet, and OC-3c Asynchronous Transfer Mode. RESULTS: The proposed digital trust center provides a cryptosystem solution to protect the confidentiality and to determine the authenticity of digital images in hospitals. The results of this study indicate that diagnostic images such as x-rays and magnetic resonance images could be routinely encrypted in PACS. However, applying encryption in teleradiology and PACS is a tradeoff between communications performance and security measures. CONCLUSION: Many people are uncertain about how to integrate cryptographic algorithms coherently into existing operations of the clinical enterprise. This paper describes a centralized cryptosystem architecture to ensure image data authenticity in a digital radiology department. The system performance has been evaluated in a hospital-integrated PACS environment. PMID:8930857

  20. An open medical imaging workstation architecture for platform-independent 3-D medical image processing and visualization.

    PubMed

    Cosić, D

    1997-12-01

    A need for an entirely new medical workstation design was identified to increase the deployment of 3-D medical imaging and multimedia communication. Recent wide acceptance of the Word Wide Web (WWW) as a general communication service within the global network has shown how big the impact of standards and open systems can be. Information is shared among heterogeneous systems and diverse applications on various hardware platforms only by agreeing on a common format for information distribution. For medical image communications, the Digital Imaging and Communication in Medicine (DICOM) standard is possibly anticipating such a role. Logically, the next step is open software: platform-independent tools, which can as easily be transferred and used on multiple platforms. Application of the platform-independent programming language Java enables creation of plug-in tools, which can easily extend the basic system. Performance problems inherent to all interpreter systems can be circumvented by using a hybrid approach. Computationally intensive functions like image processing functions can be integrated into a natively implemented optimized image processing kernel. Plug-in tools implemented in Java can utilize the kernel functions via a Java-wrapper library. This approach is comparable to the implementation of computationally intensive operations in hardware. PMID:11020831

  1. Combining advanced imaging processing and low cost remote imaging capabilities

    NASA Astrophysics Data System (ADS)

    Rohrer, Matthew J.; McQuiddy, Brian

    2008-04-01

    Target images are very important for evaluating the situation when Unattended Ground Sensors (UGS) are deployed. These images add a significant amount of information to determine the difference between hostile and non-hostile activities, the number of targets in an area, the difference between animals and people, the movement dynamics of targets, and when specific activities of interest are taking place. The imaging capabilities of UGS systems need to provide only target activity and not images without targets in the field of view. The current UGS remote imaging systems are not optimized for target processing and are not low cost. McQ describes in this paper an architectural and technologic approach for significantly improving the processing of images to provide target information while reducing the cost of the intelligent remote imaging capability.

  2. Weighted medical image registration with automatic mask generation

    NASA Astrophysics Data System (ADS)

    Schumacher, Hanno; Franz, Astrid; Fischer, Bernd

    2006-03-01

    Registration of images is a crucial part of many medical imaging tasks. The problem is to find a transformation which aligns two given images. The resulting displacement fields may be for example described as a linear combination of pre-selected basis functions (parametric approach), or, as in our case, they may be computed as the solution of an associated partial differential equation (non-parametric approach). Here, the underlying functional consists of a smoothness term ensuring that the transformation is anatomically meaningful and a distance term describing the similarity between the two images. To be successful, the registration scheme has to be tuned for the problem under consideration. One way of incorporating user knowledge is the employment of weighting masks into the distance measure, and thereby enhancing or hiding dedicated image parts. In general, these masks are based on a given segmentation of both images. We present a method which generates a weighting mask for the second image, given the mask for the first image. The scheme is based on active contours and makes use of a gradient vector flow method. As an example application, we consider the registration of abdominal computer tomography (CT) images used for radiation therapy. The reference image is acquired well ahead of time and is used for setting up the radiation plan. The second image is taken just before the treatment and its processing is time-critical. We show that the proposed automatic mask generation scheme yields similar results as compared to the approach based on a pre-segmentation of both images. Hence for time-critical applications, as intra-surgery registration, we are able to significantly speed up the computation by avoiding a pre-segmentation of the second image.

  3. Advances in cardiac magnetic resonance imaging of congenital heart disease.

    PubMed

    Driessen, Mieke M P; Breur, Johannes M P J; Budde, Ricardo P J; van Oorschot, Joep W M; van Kimmenade, Roland R J; Sieswerda, Gertjan Tj; Meijboom, Folkert J; Leiner, Tim

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. PMID:25552386

  4. Radiation oncology physicists will need to better understand medical imaging.

    PubMed

    Li, X Allen; Hendee, William R

    2007-01-01

    Imaging is affecting radiation oncology at a dramatically advancing pace and scale and is likely to create a transformation to individualized, biologically conformal radiation therapy. Deploying and improving imaging technologies and ensuring their correct uses in treatment planning and delivery are the responsibilities of radiation oncology physicists. The potential magnitude of errors arising from the incorrect use of imaging may be far greater than that resulting from typical errors in dose calibration. A major effort is required for radiation oncology physicists to raise the quality assurance of image guidance to a level comparable with that achieved in the maintenance of dosimetric performance. Most radiation oncology physicists lack adequate knowledge to assume this emerging responsibility. Their knowledge of imaging must be enhanced, in most cases through on-the-job training and self-learning. Effective learning strategies include routine interactions with diagnostic radiology and nuclear medicine physicists and physicians and the use of educational opportunities provided by professional organizations and vendors. PMID:17412223

  5. Advances in Small Animal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  6. Advances in Small Animal Imaging Systems

    SciTech Connect

    Loudos, George K.

    2007-11-26

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  7. BIRAM: a content-based image retrieval framework for medical images

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Furuie, Sergio S.

    2006-03-01

    In the medical field, digital images are becoming more and more important for diagnostics and therapy of the patients. At the same time, the development of new technologies has increased the amount of image data produced in a hospital. This creates a demand for access methods that offer more than text-based queries for retrieval of the information. In this paper is proposed a framework for the retrieval of medical images that allows the use of different algorithms for the search of medical images by similarity. The framework also enables the search for textual information from an associated medical report and DICOM header information. The proposed system can be used for support of clinical decision making and is intended to be integrated with an open source picture, archiving and communication systems (PACS). The BIRAM has the following advantages: (i) Can receive several types of algorithms for image similarity search; (ii) Allows the codification of the report according to a medical dictionary, improving the indexing of the information and retrieval; (iii) The algorithms can be selectively applied to images with the appropriated characteristics, for instance, only in magnetic resonance images. The framework was implemented in Java language using a MS Access 97 database. The proposed framework can still be improved, by the use of regions of interest (ROI), indexing with slim-trees and integration with a PACS Server.

  8. Advanced Image Search: A Strategy for Creating Presentation Boards

    ERIC Educational Resources Information Center

    Frey, Diane K.; Hines, Jean D.; Swinker, Mary E.

    2008-01-01

    Finding relevant digital images to create presentation boards requires advanced search skills. This article describes a course assignment involving a technique designed to develop students' literacy skills with respect to locating images of desired quality and content from Internet databases. The assignment was applied in a collegiate apparel…

  9. Edge detection in medical images using a genetic algorithm.

    PubMed

    Gudmundsson, M; El-Kwae, E A; Kabuka, M R

    1998-06-01

    An algorithm is developed that detects well-localized, unfragmented, thin edges in medical images based on optimization of edge configurations using a genetic algorithm (GA). Several enhancements were added to improve the performance of the algorithm over a traditional GA. The edge map is split into connected subregions to reduce the solution space and simplify the problem. The edge-map is then optimized in parallel using incorporated genetic operators that perform transforms on edge structures. Adaptation is used to control operator probabilities based on their participation. The GA was compared to the simulated annealing (SA) approach using ideal and actual medical images from different modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound. Quantitative comparisons were provided based on the Pratt figure of merit and on the cost-function minimization. The detected edges were thin, continuous, and well localized. Most of the basic edge features were detected. Results for different medical image modalities are promising and encourage further investigation to improve the accuracy and experiment with different cost functions and genetic operators. PMID:9735910

  10. Advanced Medical Technology Capacity Building and the Medical Mentoring Event: A Unique Application of SOF Counterinsurgency Medical Engagement Strategies.

    PubMed

    Irizarry, Dan; Tate, Charmaine; Wey, Pierre-Francois; Batjom, Emmanuel; Nicholas, Thomas A; Boedeker, Ben H

    2012-01-01

    Background The Medical Civic Assistance Program (MEDCAP) is a military commander?s tool developed during the Vietnam War to gain access to and positively influence an indigenous population through the provision of direct medical care provided by military medical personnel, particularly in Counter Insurgency Operations (COIN). An alternative to MEDCAPs is the medical seminar (MEDSEM). The MEDSEM uses a Commander?s military medical assets to share culturally appropriate medical information with a defined indigenous population in order to create a sustainable training resource for the local population?s health system. At the heart of the MEDSEM is the ?train the trainer? concept whereby medical information is passed to indigenous trainers who then pass that information to an indigenous population. The MEDSEM achieves the Commander?s objectives of increasing access and influence with the population through a medical training venue rather than direct patient care. Previous MEDSEMS conducted in Afghanistan by military forces focused on improvement of rural healthcare through creation of Village Health Care Workers. This model can also be used to engage host nation (HN) medical personnel and improve medical treatment capabilities in population centers. The authors describe a modification of the MEDSEM, a Medical Mentorship (MM), conducted in November 2010 in Kabul, Afghanistan, at the Afghan National Army (ANA) National Medical Hospital. This training was designed to improve intubation skills in Afghan National Army Hospitals by ANA medical providers, leave residual training capability, and build relationships within the institution that not only assist the institution, but can also be leveraged to foster Commanders? objectives, such as health and reconstruction initiatives and medical partnering for indigenous corps and medical forces described below. Methods We, the authors, developed a culturally appropriate endotracheal intubation training package including a Dari and

  11. A patient-centric distribution architecture for medical image sharing.

    PubMed

    Constantinescu, Liviu; Kim, Jinman; Kumar, Ashnil; Haraguchi, Daiki; Wen, Lingfeng; Feng, Dagan

    2013-01-01

    Over the past decade, rapid development of imaging technologies has resulted in the introduction of improved imaging devices, such as multi-modality scanners that produce combined positron emission tomography-computed tomography (PET-CT) images. The adoption of picture archiving and communication systems (PACS) in hospitals have dramatically improved the ability to digitally share medical image studies via portable storage, mobile devices and the Internet. This has in turn led to increased productivity, greater flexibility, and improved communication between hospital staff, referring physicians, and outpatients. However, many of these sharing and viewing capabilities are limited to proprietary vendor-specific applications. Furthermore, there are still interoperability and deployment issues which reduce the rate of adoption of such technologies, thus leaving many stakeholders, particularly outpatients and referring physicians, with access to only traditional still images with no ability to view or interpret the data in full. In this paper, we present a distribution architecture for medical image display across numerous devices and media, which uses a preprocessor and an in-built networking framework to improve compatibility and promote greater accessibility of medical data. Our INVOLVE2 system consists of three main software modules: 1) a preprocessor, which collates and converts imaging studies into a compressed and distributable format; 2) a PACS-compatible workflow for self-managing distribution of medical data, e.g. via CD USB, network etc; 3) support for potential mobile and web-based data access. The focus of this study was on cultivating patient-centric care, by allowing outpatient users to comfortably access and interpret their own data. As such, the image viewing software included on our cross-platform CDs was designed with a simple and intuitive user-interface (UI) for use by outpatients and referring physicians. Furthermore, digital image access via

  12. Revolutionary advances in medical waste management. The Sanitec system.

    PubMed

    Edlich, Richard F; Borel, Lise; Jensen, H Gordon; Winters, Kathryne L; Long, William B; Gubler, K Dean; Buschbacher, Ralph M; Becker, Daniel G; Chang, Dillon E; Korngold, Jonathan; Chitwood, W Randolph; Lin, Kant Y; Nichter, Larry S; Berenson, Susan; Britt, L D; Tafel, John A

    2006-01-01

    It is the purpose of this collective review to provide a detailed outline of a revolutionary medical waste disposal system that should be used in all medical centers in the world to prevent pollution of our planet from medical waste. The Sanitec medical waste disposal system consists of the following seven components: (1) an all-weather steel enclosure of the waste management system, allowing it to be used inside or outside of the hospital center; (2) an automatic mechanical lift-and-load system that protects the workers from devastating back injuries; (3) a sophisticated shredding system designed for medical waste; (4) a series of air filters including the High Efficiency Particulate Air (HEPA) filter; (5) microwave disinfection of the medical waste material; (6) a waste compactor or dumpster; and (7) an onboard microprocessor. It must be emphasized that this waste management system can be used either inside or outside the hospital. From start to finish, the Sanitec Microwave Disinfection system is designed to provide process and engineering controls that assure complete disinfection and destruction, while minimizing the operator's exposure to risk. There are numerous technologic benefits to the Sanitec systems, including environmental, operational, physical, and disinfection efficiency as well as waste residue disinfection. Wastes treated through the Sanitec system are thoroughly disinfected, unrecognizable, and reduced in volume by approximately 80% (saving valuable landfill space and reducing hauling requirements and costs). They are acceptable in any municipal solid waste program. Sanitec's Zero Pollution Advantage is augmented by a complete range of services, including installation, startup, testing, training, maintenance, and repair, over the life of this system. The Sanitec waste management system has essentially been designed to provide the best overall solution to the customer, when that customer actually looks at the total cost of dealing with the

  13. The National Alliance for Medical Image Computing, a roadmap initiative to build a free and open source software infrastructure for translational research in medical image analysis.

    PubMed

    Kapur, Tina; Pieper, Steve; Whitaker, Ross; Aylward, Stephen; Jakab, Marianna; Schroeder, Will; Kikinis, Ron

    2012-01-01

    The National Alliance for Medical Image Computing (NA-MIC), is a multi-institutional, interdisciplinary community of researchers, who share the recognition that modern health care demands improved technologies to ease suffering and prolong productive life. Organized under the National Centers for Biomedical Computing 7 years ago, the mission of NA-MIC is to implement a robust and flexible open-source infrastructure for developing and applying advanced imaging technologies across a range of important biomedical research disciplines. A measure of its success, NA-MIC is now applying this technology to diseases that have immense impact on the duration and quality of life: cancer, heart disease, trauma, and degenerative genetic diseases. The targets of this technology range from group comparisons to subject-specific analysis. PMID:22081219

  14. Center for Advanced Signal and Imaging Sciences Workshop 2004

    SciTech Connect

    McClellan, J H; Carrano, C; Poyneer, L; Palmer, D; Baker, K; Chen, D; London, R; Weinert, G; Brase, J; Paglieroni, D; Lopez, A; Grant, C W; Wright, W; Burke, M; Miller, W O; DeTeresa, S; White, D; Toeppen, J; Haugen, P; Kamath, C; Nguyen, T; Manay, S; Newsam, S; Cantu-Paz, E; Pao, H; Chang, J; Chambers, D; Leach, R; Paulson, C; Romero, C E; Spiridon, A; Vigars, M; Welsh, P; Zumstein, J; Romero, K; Oppenheim, A; Harris, D B; Dowla, F; Brown, C G; Clark, G A; Ong, M M; Clance, T J; Kegelmeyer, l M; Benzuijen, M; Bliss, E; Burkhart, S; Conder, A; Daveler, S; Ferguson, W; Glenn, S; Liebman, J; Norton, M; Prasad, R; Salmon, T; Kegelmeyer, L M; Hafiz, O; Cheung, S; Fodor, I; Aufderheide, M B; Bary, A; Martz, Jr., H E; Burke, M W; Benson, S; Fisher, K A; Quarry, M J

    2004-11-15

    Welcome to the Eleventh Annual C.A.S.I.S. Workshop, a yearly event at the Lawrence Livermore National Laboratory, presented by the Center for Advanced Signal & Image Sciences, or CASIS, and sponsored by the LLNL Engineering Directorate. Every November for the last 10 years we have convened a diverse set of engineering and scientific talent to share their work in signal processing, imaging, communications, controls, along with associated fields of mathematics, statistics, and computing sciences. This year is no exception, with sessions in Adaptive Optics, Applied Imaging, Scientific Data Mining, Electromagnetic Image and Signal Processing, Applied Signal Processing, National Ignition Facility (NIF) Imaging, and Nondestructive Characterization.

  15. Multimodality medical image fusion: probabilistic quantification, segmentation, and registration

    NASA Astrophysics Data System (ADS)

    Wang, Yue J.; Freedman, Matthew T.; Xuan, Jian Hua; Zheng, Qinfen; Mun, Seong K.

    1998-06-01

    Multimodality medical image fusion is becoming increasingly important in clinical applications, which involves information processing, registration and visualization of interventional and/or diagnostic images obtained from different modalities. This work is to develop a multimodality medical image fusion technique through probabilistic quantification, segmentation, and registration, based on statistical data mapping, multiple feature correlation, and probabilistic mean ergodic theorems. The goal of image fusion is to geometrically align two or more image areas/volumes so that pixels/voxels representing the same underlying anatomical structure can be superimposed meaningfully. Three steps are involved. To accurately extract the regions of interest, we developed the model supported Bayesian relaxation labeling, and edge detection and region growing integrated algorithms to segment the images into objects. After identifying the shift-invariant features (i.e., edge and region information), we provided an accurate and robust registration technique which is based on matching multiple binary feature images through a site model based image re-projection. The image was initially segmented into specified number of regions. A rough contour can be obtained by delineating and merging some of the segmented regions. We applied region growing and morphological filtering to extract the contour and get rid of some disconnected residual pixels after segmentation. The matching algorithm is implemented as follows: (1) the centroids of PET/CT and MR images are computed and then translated to the center of both images. (2) preliminary registration is performed first to determine an initial range of scaling factors and rotations, and the MR image is then resampled according to the specified parameters. (3) the total binary difference of the corresponding binary maps in both images is calculated for the selected registration parameters, and the final registration is achieved when the

  16. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    SciTech Connect

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  17. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  18. Radiation risks of medical imaging: separating fact from fantasy.

    PubMed

    Hendee, William R; O'Connor, Michael K

    2012-08-01

    During the past few years, several articles have appeared in the scientific literature that predict thousands of cancers and cancer deaths per year in the U.S. population caused by medical imaging procedures that use ionizing radiation. These predictions are computed by multiplying small and highly speculative risk factors by large populations of patients to yield impressive numbers of "cancer victims." The risk factors are acquired from the Biological Effects of Ionizing Radiation (BEIR) VII report without attention to the caveats about their use presented in the BEIR VII report. The principal data source for the risk factors is the ongoing study of survivors of the Japanese atomic explosions, a population of individuals that is greatly different from patients undergoing imaging procedures. For the purpose of risk estimation, doses to patients are converted to effective doses, even though the International Commission on Radiological Protection warns against the use of effective dose for epidemiologic studies or for estimation of individual risks. To extrapolate cancer incidence to doses of a few millisieverts from data greater than 100 mSv, a linear no-threshold model is used, even though substantial radiobiological and human exposure data imply that it is not an appropriate model. The predictions of cancers and cancer deaths are sensationalized in electronic and print public media, resulting in anxiety and fear about medical imaging among patients and parents. Not infrequently, patients are anxious about a scheduled imaging procedure because of articles they have read in the public media. In some cases, medical imaging examinations may be delayed or deferred as a consequence, resulting in a much greater risk to patients than that associated with imaging examinations. © RSNA, 2012. PMID:22821690

  19. Advances in noninvasive imaging of melanoma.

    PubMed

    Menge, Tyler D; Pellacani, Giovanni

    2016-03-01

    Melanoma is the most dangerous type of skin cancer and its incidence has risen sharply in recent decades. Early detection of disease is critical for improving patient outcomes. Any pigmented lesion that is clinically concerning must be removed by biopsy for morphologic investigation on histology. However, biopsies are invasive and can cause significant morbidity, and their accuracy in detecting melanoma may be limited by sampling error. The advent of noninvasive imaging devices has allowed for assessment of intact skin, thereby minimizing the need for biopsy; and these technologies are increasingly being used in the diagnosis and management of melanoma. Reflectance confocal microscopy, optical coherence tomography, ultrasonography, and multispectral imaging are noninvasive imaging techniques that have emerged as diagnostic aids to physical exam and/or conventional dermoscopy. This review summarizes the current knowledge about these techniques and discusses their practical applications and limitations. PMID:26963113

  20. Functional knee assessment with advanced imaging.

    PubMed

    Amano, Keiko; Li, Qi; Ma, C Benjamin

    2016-06-01

    The purpose of anterior cruciate ligament (ACL) reconstruction is to restore the native stability of the knee joint and to prevent further injury to meniscus and cartilage, yet studies have suggested that joint laxity remains prevalent in varying degrees after ACL reconstruction. Imaging can provide measurements of translational and rotational motions of the tibiofemoral joint that may be too small to detect in routine physical examinations. Various imaging modalities, including fluoroscopy, computed tomography (CT), and magnetic resonance imaging (MRI), have emerged as powerful methods in measuring the minute details involved in joint biomechanics. While each technique has its own strengths and limitations, they have all enhanced our understanding of the knee joint under various stresses and movements. Acquiring the knowledge of the complex and dynamic motions of the knee after surgery would help lead to improved surgical techniques and better patient outcomes. PMID:27052009

  1. SHG nanoprobes: advancing harmonic imaging in biology.

    PubMed

    Dempsey, William P; Fraser, Scott E; Pantazis, Periklis

    2012-05-01

    Second harmonic generating (SHG) nanoprobes have recently emerged as versatile and durable labels suitable for in vivo imaging, circumventing many of the inherent drawbacks encountered with classical fluorescent probes. Since their nanocrystalline structure lacks a central point of symmetry, they are capable of generating second harmonic signal under intense illumination - converting two photons into one photon of half the incident wavelength - and can be detected by conventional two-photon microscopy. Because the optical signal of SHG nanoprobes is based on scattering, rather than absorption as in the case of fluorescent probes, they neither bleach nor blink, and the signal does not saturate with increasing illumination intensity. When SHG nanoprobes are used to image live tissue, the SHG signal can be detected with little background signal, and they are physiologically inert, showing excellent long-term photostability. Because of their photophysical properties, SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues with unmatched sensitivity and temporal resolution. PMID:22392481

  2. Advanced MEMS-based infrared imager

    NASA Astrophysics Data System (ADS)

    Chen, Ming

    2003-04-01

    Infrared radiation imager is of important for a wide range of applications. IR infrared imagers have not been widely available due to cost and complexity issues. A major cost of IR imager is associated with the requirements of cooling and pixel-level integration with electronic amplifier and read-out circuitry that are often incompatible with the detector materials. Recent research activities have lead to a new class of IR imager based on thermally isolated MEMS (micro-electromechanical systems) arrays whose bending can be directly detected by optical means. This approach eliminates the need for cooling and complex electronic multiplexers, holding the potential to drastically reduce IR imager cost. However, MEMS based IR imaging devices demonstrated to date are less sensitive than the commercially available ones. We have established a comprehensive finite element model (FEM) using Ansys tool. An accurate computer model for the proposed MEME IR detector is critical for the device development and fabrication. The model greatly enhanced our capability to cost effectively optimize the design from concept to fabrication layout. Our model predicts the deformation of this pixel structure under a surface stress for both thermal and photo-induced effects under various conditions. This simulation model provided a design base for new generation of optical MEMS IR sensors that has higher sensitivity and the potential of incorporating passive thermal amplification. Our simple MEMS design incorporates optical read-out, which eliminates the drawback of electronic means that inevitably introduce additional signal loss due to thermal contact made to the detector element. When packaged under vacuum environment, significant sensitivity improvement is anticipated. The deflection of a cantilever as a function of a rise in its temperature is determined by the classical thermomechanical governing equation for a bimaterial cantilever beam. Our finite element model is established using

  3. Advanced Optical Imaging Techniques for Neurodevelopment

    PubMed Central

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-01-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1 mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy. PMID:23831260

  4. The IRMA code for unique classification of medical images

    NASA Astrophysics Data System (ADS)

    Lehmann, Thomas M.; Schubert, Henning; Keysers, Daniel; Kohnen, Michael; Wein, Berthold B.

    2003-05-01

    Modern communication standards such as Digital Imaging and Communication in Medicine (DICOM) include non-image data for a standardized description of study, patient, or technical parameters. However, these tags are rather roughly structured, ambiguous, and often optional. In this paper, we present a mono-hierarchical multi-axial classification code for medical images and emphasize its advantages for content-based image retrieval in medical applications (IRMA). Our so called IRMA coding system consists of four axes with three to four positions, each in {0,...9,a,...,z}, where "0" denotes "unspecified" to determine the end of a path along an axis. In particular, the technical code (T) describes the imaging modality; the directional code (D) models body orientations; the anatomical code (A) refers to the body region examined; and the biological code (B) describes the biological system examined. Hence, the entire code results in a character string of not more than 13 characters (IRMA: TTTT - DDD - AAA - BBB). The code can be easily extended by introducing characters in certain code positions, e.g., if new modalities are introduced. In contrast to other approaches, mixtures of one- and two-literal code positions are avoided which simplifies automatic code processing. Furthermore, the IRMA code obviates ambiguities resulting from overlapping code elements within the same level. Although this code was originally designed to be used in the IRMA project, other use of it is welcome.

  5. Wideband Optical Detector of Ultrasound for Medical Imaging Applications

    PubMed Central

    Rosenthal, Amir; Kellnberger, Stephan; Omar, Murad; Razansky, Daniel; Ntziachristos, Vasilis

    2014-01-01

    Optical sensors of ultrasound are a promising alternative to piezoelectric techniques, as has been recently demonstrated in the field of optoacoustic imaging. In medical applications, one of the major limitations of optical sensing technology is its susceptibility to environmental conditions, e.g. changes in pressure and temperature, which may saturate the detection. Additionally, the clinical environment often imposes stringent limits on the size and robustness of the sensor. In this work, the combination of pulse interferometry and fiber-based optical sensing is demonstrated for ultrasound detection. Pulse interferometry enables robust performance of the readout system in the presence of rapid variations in the environmental conditions, whereas the use of all-fiber technology leads to a mechanically flexible sensing element compatible with highly demanding medical applications such as intravascular imaging. In order to achieve a short sensor length, a pi-phase-shifted fiber Bragg grating is used, which acts as a resonator trapping light over an effective length of 350 µm. To enable high bandwidth, the sensor is used for sideway detection of ultrasound, which is highly beneficial in circumferential imaging geometries such as intravascular imaging. An optoacoustic imaging setup is used to determine the response of the sensor for acoustic point sources at different positions. PMID:24895083

  6. Evaluation of various speckle reduction filters on medical ultrasound images.

    PubMed

    Wu, Shibin; Zhu, Qingsong; Xie, Yaoqin

    2013-01-01

    At present, ultrasound is one of the essential tools for noninvasive medical diagnosis. However, speckle noise is inherent in medical ultrasound images and it is the cause for decreased resolution and contrast-to-noise ratio. Low image quality is an obstacle for effective feature extraction, recognition, analysis, and edge detection; it also affects image interpretation by doctor and the accuracy of computer-assisted diagnostic techniques. Thus, speckle reduction is significant and critical step in pre-processing of ultrasound images. Many speckle reduction techniques have been studied by researchers, but to date there is no comprehensive method that takes all the constraints into consideration. In this paper we discuss seven filters, namely Lee, Frost, Median, Speckle Reduction Anisotropic Diffusion (SRAD), Perona-Malik's Anisotropic Diffusion (PMAD) filter, Speckle Reduction Bilateral Filter (SRBF) and Speckle Reduction filter based on soft thresholding in the Wavelet transform. A comparative study of these filters has been made in terms of preserving the features and edges as well as effectiveness of de-noising.We computed five established evaluation metrics in order to determine which despeckling algorithm is most effective and optimal for real-time implementation. In addition, the experimental results have been demonstrated by filtered images and statistical data table. PMID:24109896

  7. HIPPA's compliant Auditing System for Medical Imaging System.

    PubMed

    Chen, Xiaomeng; Zhang, Jianguo; Wu, Dongjing; Han, Ruoling

    2005-01-01

    As an official rule for healthcare privacy and security, Health Insurance Portability and Accountability Act (HIPAA) requires security services supporting implementation features: Access control; Audit controls; Authorization control; Data authentication; and Entity authentication. Audit controls proposed by HIPPA Security Standards are audit trails, which audit activities, to assess compliance with a secure domain's policies, to detect instances of non-compliant behavior, and to facilitate detection of improper creation, access, modification and deletion of Protected Health Information (PHI). Although current medical imaging systems generate activity logs, there is a lack of regular description to integrate these large volumes of log data into generating HIPPA compliant auditing trails. The paper outlines the design of a HIPAA's compliant auditing system for medical imaging system such as PACS and RIS and discusses the development of this security monitoring system based on the Supplement 95 of the DICOM standard: Audit Trail Messages. PMID:17282242

  8. Watermarking medical images with anonymous patient identification to verify authenticity.

    PubMed

    Coatrieux, Gouenou; Quantin, Catherine; Montagner, Julien; Fassa, Maniane; Allaert, François-André; Roux, Christian

    2008-01-01

    When dealing with medical image management, there is a need to ensure information authenticity and dependability. Being able to verify the information belongs to the correct patient and is issued from the right source is a major concern. Verification can help to reduce the risk of errors when identifying documents in daily practice or when sending a patient's Electronic Health Record. At the same time, patient privacy issues may appear during the verification process when the verifier accesses patient data without appropriate authorization. In this paper we discuss the combination of watermarking with different identifiers ranging from DICOM standard UID to an Anonymous European Patient Identifier in order to improve medical image protection in terms of authenticity and maintainability. PMID:18487808

  9. Overview of nuclear medical imaging instrumentation and techniques

    SciTech Connect

    Moses, W.W.

    1998-11-01

    Nuclear medical imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of two commonly used methods, namely SPECT (single photon emission computed tomography) and PET (positron emission tomography), as well as the emerging method of intraoperative probes with imaging capability. The discussion concentrates on the instrumentation requirements for these systems and on the potential for incorporating scintillating, wavelength-shifting, and fiber optic light guides into them. {copyright} {ital 1998 American Institute of Physics.}

  10. Correlation model for a class of medical images

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Qin; Loew, Murray H.; Pickholtz, Raymond L.

    1991-06-01

    In this paper, correlation properties of a class of chest X-ray medical images are examined and different 1-D and 2-D correlation models are applied to this class of image sources. Correlation structures for different scanning methods including row-by-row, column-by- column, diagonal and Peano are compared. It is suggested that the Peano scanning best reserves the inter-pixel correlation, which coincides with an earlier observation made by Lempel and Ziv. The rate-distortion properties are also discussed in terms of different 1-D and 2-D correlation models.

  11. Magnetic Resonance Imaging: From Spin Physics to Medical Diagnosis

    NASA Astrophysics Data System (ADS)

    Nacher, Pierre-Jean

    Two rather similar historical evolutions are evoked, each one originating in fundamental spin studies by physicists, and ending as magnetic resonance imaging (MRI), a set of invaluable tools for clinical diagnosis in the hands of medical doctors. The first one starts with the early work on nuclear magnetic resonance, the founding stone of the usual proton-based MRI, of which the basic principles are described. The second one starts with the optical pumping developments made to study the effects of spin polarization in various fundamental problems. Its unexpected outcome is a unique imaging modality, also based on MRI, for the study of lung physiology and pathologies.

  12. Holography and the virtual patient: the holographic medical image

    NASA Astrophysics Data System (ADS)

    Ko, Kathryn; Erickson, Ronald R.; Webster, John M.

    1996-12-01

    Practical holographic systems utilizing the pulsed laser are finding potential applications in medicine. Exploiting both the hologram's true 3D image and holographic interferometry these techniques enhance the physician's vision beyond the 2D radiological imaging of even the best CT and MRI. The authors describe the use of pulsed laser holography as applied to the morphological specialties: anatomy, pathology, and surgery. The authors report on the Holographic Brain Anatomy Atlas for medical education; pathologic documentation with holography, and the use of holographic interferometry in surgical planning. The techniques are outlined and a discussion on the interpretation of holographic interferometry with living subjects is provided.

  13. Expectation-Driven Text Extraction from Medical Ultrasound Images.

    PubMed

    Reul, Christian; Köberle, Philipp; Üçeyler, Nurcan; Puppe, Frank

    2016-01-01

    In this study an expectation-driven approach is proposed to extract data stored as pixel structures in medical ultrasound images. Prior knowledge about certain properties like the position of the text and its background and foreground grayscale values is utilized. Several open source Java libraries are used to pre-process the image and extract the textual information. The results are presented in an Excel table together with the outcome of several consistency checks. After manually correcting potential errors, the outcome is automatically stored in the main database. The proposed system yielded excellent results, reaching an accuracy of 99.94% and reducing the necessary human effort to a minimum. PMID:27577478

  14. [Medical tele-imaging: a good chance for the future].

    PubMed

    Bonnin, A

    1999-01-01

    Tele-imaging is an important part of telemedicine: it includes the transmission of medical digital images and plays a role in all fields of telemedicine, such as expertise, consultation, teaching and research. Tele-imaging has been made possible through the digitalization of medical imaging. There are two possibilities: either digitalization of conventional radiological film or direct acquisition of digital images. The transmission of medical imaging requires a high data rate so as to obtain a good quality transmission of the initial images in a reasonable delay. In order to deal with the great amount of information to be stocked and transmitted, a compression of the data, without loss of information, is usually necessary. Interactivity is very important in all these types of transmissions. These tele-transmission techniques are already used world wide, especially in Japan and in the United States, to help in therapeutic or diagnostic decisions. In France, we have been performing real time interactive tele-imaging sessions between radiology and endocrinology departments of Hotel Dieu in Montréal and Hôpital Cochin in Paris. This experimental device includes a visual-conference link between the medical teams and a real time link between two CT scanners. The CT scanner slices appear simultaneously both CT scanner screens; it is even possible to guide a CT scanner examination using remote control from the other hospital. We have successfully repeated the experiment between Cochin and a private hospital in Paris. In the case of the "Prison de la Santé", we have been using telemedicine in order to reduce problematic transfers of prison inmates. Moreover, access to doctors in the prison is sometimes difficult. The system ensures the daily transmission of X-rays, which are immediately read by radiologists at Cochin. In the past, 50 to 70 X-rays had to be read during one weekly visit. Medical tele-imaging raises certain legal, ethical and economic issues, such as

  15. INVITED REVIEW-IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    PubMed

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-03-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. PMID:26777133

  16. [Application of advanced engineering technologies to medical and rehabilitation fields].

    PubMed

    Fujie, Masakatsu

    2012-07-01

    The words "Japan syndrome" can now be heard increasingly through the media. Facing the approach of an elderly-dominated society, Robot Technology(RT)is expected to play an important role in Japan's medical, rehabilitation, and daily support fields. The industrial robot, which has already spread through the world with a great success in certain isolated environments by doing the work which is specialized for the thing with the hard known characteristic. By comparison, in the medical and rehabilitation fields, environments always change intricately, and individual characteristics differ from person to person. Furthermore, there are many times when a robot will be asked to directly interact with people. Moreover, the relation between a robot and a person turns into a relation which should involve contact flexibly according to a situation, and also turns into a relation which should avoid contact. In our group, we have so far developed practical rehabilitation and medical robots which can respond to difficulties such as environmental change and individual specificity. In developing rehabilitation robots, it is especially important to consider intuitive operability and individual differences. In addition, in developing medical robots, it is important to replace the experimental knowledge of surgeons to the mechanical quantitative properties. In this article, we introduce some practical examples of rehabilitation and medical robots interweaving several detailed technologies we have so far developed. PMID:22790039

  17. Medical image security in a HIPAA mandated PACS environment.

    PubMed

    Cao, F; Huang, H K; Zhou, X Q

    2003-01-01

    Medical image security is an important issue when digital images and their pertinent patient information are transmitted across public networks. Mandates for ensuring health data security have been issued by the federal government such as Health Insurance Portability and Accountability Act (HIPAA), where healthcare institutions are obliged to take appropriate measures to ensure that patient information is only provided to people who have a professional need. Guidelines, such as digital imaging and communication in medicine (DICOM) standards that deal with security issues, continue to be published by organizing bodies in healthcare. However, there are many differences in implementation especially for an integrated system like picture archiving and communication system (PACS), and the infrastructure to deploy these security standards is often lacking. Over the past 6 years, members in the Image Processing and Informatics Laboratory, Childrens Hospital, Los Angeles/University of Southern California, have actively researched image security issues related to PACS and teleradiology. The paper summarizes our previous work and presents an approach to further research on the digital envelope (DE) concept that provides image integrity and security assurance in addition to conventional network security protection. The DE, including the digital signature (DS) of the image as well as encrypted patient information from the DICOM image header, can be embedded in the background area of the image as an invisible permanent watermark. The paper outlines the systematic development, evaluation and deployment of the DE method in a PACS environment. We have also proposed a dedicated PACS security server that will act as an image authority to check and certify the image origin and integrity upon request by a user, and meanwhile act also as a secure DICOM gateway to the outside connections and a PACS operation monitor for HIPAA supporting information. PMID:12620309

  18. Advances in Lymphatic Imaging and Drug Delivery

    SciTech Connect

    Nune, Satish K.; Gunda, Padmaja; Majeti, Bharat K.; Thallapally, Praveen K.; Laird, Forrest M.

    2011-09-10

    Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.

  19. Advances in image registration and fusion

    NASA Astrophysics Data System (ADS)

    Steer, Christopher; Rogers, Jeremy; Smith, Moira; Heather, Jamie; Bernhardt, Mark; Hickman, Duncan

    2008-03-01

    Many image fusion systems involving passive sensors require the accurate registration of the sensor data prior to performing fusion. Since depth information is not readily available in such systems, all registration algorithms are intrinsically approximations based upon various assumption about the depth field. Although often overlooked, many registration algorithms can break down in certain situations and this may adversely affect the image fusion performance. In this paper, we discuss a framework for quantifying the accuracy and robustness of image registration algorithms which allows a more precise understanding of their shortcomings. In addition, some novel algorithms have been investigated that overcome some of these limitations. A second aspect of this work has considered the treatment of images from multiple sensors whose angular and spatial separation is large and where conventional registration algorithms break down (typically greater than a few degrees of separation). A range of novel approaches is reported which exploit the use of parallax to estimate depth information and reconstruct a geometrical model of the scene. The imagery can then be combined with this geometrical model to render a variety of useful representations of the data. These techniques (which we term Volume Registration) show great promise as a means of gathering and presenting 3D and 4D scene information for both military and civilian applications.

  20. Multispectral laser imaging for advanced food analysis

    NASA Astrophysics Data System (ADS)

    Senni, L.; Burrascano, P.; Ricci, M.

    2016-07-01

    A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.

  1. Laser-wakefield accelerators for medical phase contrast imaging: Monte Carlo simulations and experimental studies

    NASA Astrophysics Data System (ADS)

    Cipiccia, S.; Reboredo, D.; Vittoria, Fabio A.; Welsh, G. H.; Grant, P.; Grant, D. W.; Brunetti, E.; Wiggins, S. M.; Olivo, A.; Jaroszynski, D. A.

    2015-05-01

    X-ray phase contrast imaging (X-PCi) is a very promising method of dramatically enhancing the contrast of X-ray images of microscopic weakly absorbing objects and soft tissue, which may lead to significant advancement in medical imaging with high-resolution and low-dose. The interest in X-PCi is giving rise to a demand for effective simulation methods. Monte Carlo codes have been proved a valuable tool for studying X-PCi including coherent effects. The laser-plasma wakefield accelerators (LWFA) is a very compact particle accelerator that uses plasma as an accelerating medium. Accelerating gradient in excess of 1 GV/cm can be obtained, which makes them over a thousand times more compact than conventional accelerators. LWFA are also sources of brilliant betatron radiation, which are promising for applications including medical imaging. We present a study that explores the potential of LWFA-based betatron sources for medical X-PCi and investigate its resolution limit using numerical simulations based on the FLUKA Monte Carlo code, and present preliminary experimental results.

  2. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    NASA Astrophysics Data System (ADS)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  3. Future Directions In Image Management: Medical And Practical Considerations

    NASA Astrophysics Data System (ADS)

    Erickson, J. J.; Eikman, E. A.; Shaff, M. I.; James, A. E.

    1983-05-01

    The volume of data produced by new imaging modalities has far outstripped the ability of most departments to effectively utilize the images produced. The problem is further exacerbated by the fact that the diagnostic procedures have become progressively less invasive and traumatic and are being applied to an ever larger patient population. The decrease in cost and the rise in technological capability of computer systems in recent years has provided imaging specialists with the opportunity to create network systems for the storage and recall of diagnostic images. This paper examines the philosophy of image storage from the standpoint of the medical, legal, and practical questions. A proposal is made that not all images are equal and that some deserve to be archived for longer periods than others. The practical problem of using a video display for diagnostic readout, aside from the classical questions of resolution and response time, is discussed. A proposal is also made that two data bases might be created; one which provides rapid access to the clinically relevant images (i.e., the two or three that demonstrate pathology) and one which may require much longer to access, but which contains all the archived data.

  4. Motion tracking in infrared imaging for quantitative medical diagnostic applications

    PubMed Central

    Cheng, Tze-Yuan; Herman, Cila

    2014-01-01

    In medical applications, infrared (IR) thermography is used to detect and examine the thermal signature of skin abnormalities by quantitatively analyzing skin temperature in steady state conditions or its evolution over time, captured in an image sequence. However, during the image acquisition period, the involuntary movements of the patient are unavoidable, and such movements will undermine the accuracy of temperature measurement for any particular location on the skin. In this study, a tracking approach using a template-based algorithm is proposed, to follow the involuntary motion of the subject in the IR image sequence. The motion tacking will allow to associate a temperature evolution to each spatial location on the body while the body moves relative to the image frame. The affine transformation model is adopted to estimate the motion parameters of the template image. The Lucas–Kanade algorithm is applied to search for the optimized parameters of the affine transformation. A weighting mask is incorporated into the algorithm to ensure its tracking robustness. To evaluate the feasibility of the tracking approach, two sets of IR image sequences with random in-plane motion were tested in our experiments. A steady-state (no heating or cooling) IR image sequence in which the skin temperature is in equilibrium with the environment was considered first. The thermal recovery IR image sequence, acquired when the skin is recovering from 60-s cooling, was the second case analyzed. By proper selection of the template image along with template update, satisfactory tracking results were obtained for both IR image sequences. The achieved tracking accuracies are promising in terms of satisfying the demands imposed by clinical applications of IR thermography. PMID:24587692

  5. Motion tracking in infrared imaging for quantitative medical diagnostic applications

    NASA Astrophysics Data System (ADS)

    Cheng, Tze-Yuan; Herman, Cila

    2014-01-01

    In medical applications, infrared (IR) thermography is used to detect and examine the thermal signature of skin abnormalities by quantitatively analyzing skin temperature in steady state conditions or its evolution over time, captured in an image sequence. However, during the image acquisition period, the involuntary movements of the patient are unavoidable, and such movements will undermine the accuracy of temperature measurement for any particular location on the skin. In this study, a tracking approach using a template-based algorithm is proposed, to follow the involuntary motion of the subject in the IR image sequence. The motion tacking will allow to associate a temperature evolution to each spatial location on the body while the body moves relative to the image frame. The affine transformation model is adopted to estimate the motion parameters of the template image. The Lucas-Kanade algorithm is applied to search for the optimized parameters of the affine transformation. A weighting mask is incorporated into the algorithm to ensure its tracking robustness. To evaluate the feasibility of the tracking approach, two sets of IR image sequences with random in-plane motion were tested in our experiments. A steady-state (no heating or cooling) IR image sequence in which the skin temperature is in equilibrium with the environment was considered first. The thermal recovery IR image sequence, acquired when the skin is recovering from 60-s cooling, was the second case analyzed. By proper selection of the template image along with template update, satisfactory tracking results were obtained for both IR image sequences. The achieved tracking accuracies are promising in terms of satisfying the demands imposed by clinical applications of IR thermography.

  6. Advanced image analysis for the preservation of cultural heritage

    NASA Astrophysics Data System (ADS)

    France, Fenella G.; Christens-Barry, William; Toth, Michael B.; Boydston, Kenneth

    2010-02-01

    The Library of Congress' Preservation Research and Testing Division has established an advanced preservation studies scientific program for research and analysis of the diverse range of cultural heritage objects in its collection. Using this system, the Library is currently developing specialized integrated research methodologies for extending preservation analytical capacities through non-destructive hyperspectral imaging of cultural objects. The research program has revealed key information to support preservation specialists, scholars and other institutions. The approach requires close and ongoing collaboration between a range of scientific and cultural heritage personnel - imaging and preservation scientists, art historians, curators, conservators and technology analysts. A research project of the Pierre L'Enfant Plan of Washington DC, 1791 had been undertaken to implement and advance the image analysis capabilities of the imaging system. Innovative imaging options and analysis techniques allow greater processing and analysis capacities to establish the imaging technique as the first initial non-invasive analysis and documentation step in all cultural heritage analyses. Mapping spectral responses, organic and inorganic data, topography semi-microscopic imaging, and creating full spectrum images have greatly extended this capacity from a simple image capture technique. Linking hyperspectral data with other non-destructive analyses has further enhanced the research potential of this image analysis technique.

  7. Advanced Imaging Among Health Maintenance Organization Enrollees With Cancer

    PubMed Central

    Loggers, Elizabeth T.; Fishman, Paul A.; Peterson, Do; O'Keeffe-Rosetti, Maureen; Greenberg, Caprice; Hornbrook, Mark C.; Kushi, Lawrence H.; Lowry, Sarah; Ramaprasan, Arvind; Wagner, Edward H.; Weeks, Jane C.; Ritzwoller, Debra P.

    2014-01-01

    Purpose: Fee-for-service (FFS) Medicare expenditures for advanced imaging studies (defined as computed tomography [CT], magnetic resonance imaging [MRI], positron emission tomography [PET] scans, and nuclear medicine studies [NM]) rapidly increased in the past two decades for patients with cancer. Imaging rates are unknown for patients with cancer, whether under or over age 65 years, in health maintenance organizations (HMOs), where incentives may differ. Materials and Methods: Incident cases of breast, colorectal, lung, prostate, leukemia, and non-Hodgkin lymphoma (NHL) cancers diagnosed in 2003 and 2006 from four HMOs in the Cancer Research Network were used to determine 2-year overall mean imaging counts and average total imaging costs per HMO enrollee by cancer type for those under and over age 65. Results: There were 44,446 incident cancer patient cases, with a median age of 75 (interquartile range, 71-81), and 454,029 imaging procedures were performed. The mean number of images per patient increased from 7.4 in 2003 to 12.9 in 2006. Rates of imaging were similar across age groups, with the exception of greater use of echocardiograms and NM studies in younger patients with breast cancer and greater use of PET among younger patients with lung cancer. Advanced imaging accounted for approximately 41% of all imaging, or approximately 85% of the $8.7 million in imaging expenditures. Costs were nearly $2,000 per HMO enrollee; costs for younger patients with NHL, leukemia, and lung cancer were nearly $1,000 more in 2003. Conclusion: Rates of advanced imaging appear comparable among FFS and HMO participants of any age with these six cancers. PMID:24844241

  8. Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images

    SciTech Connect

    Kimmel, R.; Malladi, R.; Sochen, N.

    1997-02-01

    A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as a surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.

  9. Live minimal path for interactive segmentation of medical images

    NASA Astrophysics Data System (ADS)

    Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.

    2015-03-01

    Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..

  10. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  11. Adapting content-based image retrieval techniques for the semantic annotation of medical images.

    PubMed

    Kumar, Ashnil; Dyer, Shane; Kim, Jinman; Li, Changyang; Leong, Philip H W; Fulham, Michael; Feng, Dagan

    2016-04-01

    The automatic annotation of medical images is a prerequisite for building comprehensive semantic archives that can be used to enhance evidence-based diagnosis, physician education, and biomedical research. Annotation also has important applications in the automatic generation of structured radiology reports. Much of the prior research work has focused on annotating images with properties such as the modality of the image, or the biological system or body region being imaged. However, many challenges remain for the annotation of high-level semantic content in medical images (e.g., presence of calcification, vessel obstruction, etc.) due to the difficulty in discovering relationships and associations between low-level image features and high-level semantic concepts. This difficulty is further compounded by the lack of labelled training data. In this paper, we present a method for the automatic semantic annotation of medical images that leverages techniques from content-based image retrieval (CBIR). CBIR is a well-established image search technology that uses quantifiable low-level image features to represent the high-level semantic content depicted in those images. Our method extends CBIR techniques to identify or retrieve a collection of labelled images that have similar low-level features and then uses this collection to determine the best high-level semantic annotations. We demonstrate our annotation method using retrieval via weighted nearest-neighbour retrieval and multi-class classification to show that our approach is viable regardless of the underlying retrieval strategy. We experimentally compared our method with several well-established baseline techniques (classification and regression) and showed that our method achieved the highest accuracy in the annotation of liver computed tomography (CT) images. PMID:26890880

  12. Integration of Medical Imaging Including Ultrasound into a New Clinical Anatomy Curriculum

    ERIC Educational Resources Information Center

    Moscova, Michelle; Bryce, Deborah A.; Sindhusake, Doungkamol; Young, Noel

    2015-01-01

    In 2008 a new clinical anatomy curriculum with integrated medical imaging component was introduced into the University of Sydney Medical Program. Medical imaging used for teaching the new curriculum included normal radiography, MRI, CT scans, and ultrasound imaging. These techniques were incorporated into teaching over the first two years of the…

  13. Navigating solid medical images by pencils of sectioning planes

    NASA Astrophysics Data System (ADS)

    Bookstein, Fred L.; Athey, Brian D.; Green, William D. K.; Wetzel, Arthur W.

    2000-10-01

    Beyond their involvement in ordinary surface rendering, the boundaries of organs in medical images have differential properties that make them quite useful for quantitative understanding. In particular, their geometry affords a framework for navigating the original solid, representing its R3 contents quite flexibility as multiple pseudovolumes R2 x T, where T is ar eal-valued parameter standing for screen time. A navigation is a smoothly parameterized series of image sections characterized by normal direction, centerpoint, scale and orientation. Such filmstrips represent a radical generalization of conventional medical image dynamics. The lances encountered in these navigations can be represented by constructs from classic differential geometry. Sequences of plane sections can be formalized as continuous pencils of planes, sets of cardinality (infinity) 1 that are sometimes explicitly characterized by a real-value parameter and sometimes defined implicitly as the intersection (curve of common elements) of a pair of bundles of (infinity) 2 planes. An example of the first type of navigation is the pencil of planes through the tangent line at one point of a curve; of the second type, the cone of planes through a point tangent to a surface. The further enhancements of centering, orienting, and rescaling in the medical context are intended to leave landmark points or boundary intersections invariant on the screen. Edgewarp, a publicly available software package, allows free play with pencils of planes like these as they section one single enormous medical data resource, the Visible Human data sets from the National Library of Medicine. This paper argues the relative merits of such visualizations over conventional surface-rendered flybys for understanding and communication of associated anatomical knowledge.

  14. Web-based platform for collaborative medical imaging research

    NASA Astrophysics Data System (ADS)

    Rittner, Leticia; Bento, Mariana P.; Costa, André L.; Souza, Roberto M.; Machado, Rubens C.; Lotufo, Roberto A.

    2015-03-01

    Medical imaging research depends basically on the availability of large image collections, image processing and analysis algorithms, hardware and a multidisciplinary research team. It has to be reproducible, free of errors, fast, accessible through a large variety of devices spread around research centers and conducted simultaneously by a multidisciplinary team. Therefore, we propose a collaborative research environment, named Adessowiki, where tools and datasets are integrated and readily available in the Internet through a web browser. Moreover, processing history and all intermediate results are stored and displayed in automatic generated web pages for each object in the research project or clinical study. It requires no installation or configuration from the client side and offers centralized tools and specialized hardware resources, since processing takes place in the cloud.

  15. Medical Image Processing Using Real-Time Optical Fourier Technique

    NASA Astrophysics Data System (ADS)

    Rao, D. V. G. L. N.; Panchangam, Appaji; Sastry, K. V. L. N.; Material Science Team

    2001-03-01

    Optical Image Processing Techniques are inherently fast in view of parallel processing. A self-adaptive Optical Fourier Processing system using photo induced dichroism in a Bacteriorhodopsin film was experimentally demonstrated for medical image processing. Application of this powerful analog all-optical interactive technique for cancer diagnostics is illustrated with mammograms and Pap smears. Micro calcification clusters buried in surrounding tissue showed up clearly in the processed image. By playing with one knob, which rotates the analyzer in the optical system, either the micro calcification clusters or the surrounding dense tissue can be selectively displayed. Bacteriorhodopsin films are stable up to 140^oC and environmental friendly. As no interference is involved in the experiments, vibration isolation and even a coherent light source are not required. It may be possible to develop a low-cost rugged battery operated portable signal-enhancing magnifier.

  16. [An algorithm of a wavelet-based medical image quantization].

    PubMed

    Hou, Wensheng; Wu, Xiaoying; Peng, Chenglin

    2002-12-01

    The compression of medical image is the key to study tele-medicine & PACS. We have studied the statistical distribution of wavelet subimage coefficients and concluded that the distribution of wavelet subimage coefficients is very much similar to that of Laplacian distribution. Based on the statistical properties of image wavelet decomposition, an image quantization algorithm is proposed. In this algorithm, we selected the sample-standard-deviation as the key quantization threshold in every wavelet subimage. The test has proved that, the main advantages of this algorithm are simple computing and the predictability of coefficients in different quantization threshold range. Also, high compression efficiency can be obtained. Therefore, this algorithm can be potentially used in tele-medicine and PACS. PMID:12561372

  17. Hyperspectral imaging applied to medical diagnoses and food safety

    NASA Astrophysics Data System (ADS)

    Carrasco, Oscar; Gomez, Richard B.; Chainani, Arun; Roper, William E.

    2003-08-01

    This paper analyzes the feasibility and performance of HSI systems for medical diagnosis as well as for food safety. Illness prevention and early disease detection are key elements for maintaining good health. Health care practitioners worldwide rely on innovative electronic devices to accurately identify disease. Hyperspectral imaging (HSI) is an emerging technique that may provide a less invasive procedure than conventional diagnostic imaging. By analyzing reflected and fluorescent light applied to the human body, a HSI system serves as a diagnostic tool as well as a method for evaluating the effectiveness of applied therapies. The safe supply and production of food is also of paramount importance to public health illness prevention. Although this paper will focus on imaging and spectroscopy in food inspection procedures -- the detection of contaminated food sources -- to ensure food quality, HSI also shows promise in detecting pesticide levels in food production (agriculture.)

  18. Medical workstations for applied imaging and graphics research.

    PubMed

    Ehricke, H H; Grunert, T; Buck, T; Kolb, R; Skalej, M

    1994-01-01

    We present a medical workstation for the efficient implementation of research ideas related to image processing and computer graphics. Based on standard hardware platforms the software system encompasses two major components: A turnkey application system provides a functionally kernel for a broad community of clinical users working with digital imaging devices, including methods of noise suppression, interactive and automatic segmentation, 3D surface reconstruction and multi-modal registration. A development toolbox allows new algorithms and applications to be efficiently implemented and consistently integrated with the common framework of the turnkey system. The platform is based on an elaborate object class structure describing objects for image processing, computer graphics, study handling and user interface control. Thus expertise of computer scientists familiar with this application domain is brought into the hospital and can be readily used by clinical researchers. PMID:7850734

  19. Medical ultrasound imager based on time delay spectrometry.

    PubMed

    Heyser, R C; Hestenes, J D; Rooney, J A; Gammell, P M; Le Croissette, D H

    1989-01-01

    A reflection mode proof-of-concept medical ultrasound imager based on time delay spectrometry has been developed and tested. The system uses a broad band swept-frequency signal operating up to 10 MHz. Signal processing using a fast Fourier transform (FFT) permits extraction of range information. The imager has a higher signal-to-noise ratio than pulse-echo systems which allows high resolution at greater depths. The time delay spectrometry (TDS) spread spectrum operates at lower peak intensities than pulse-echo and permits more control of the spectral content and amplitude of the signal. At present, the system is non-real time which degrades in vivo imaging because of averaging over several cardiac cycles and tissue movement. PMID:2643838

  20. Contemporary issues for experimental design in assessment of medical imaging and computer-assist systems

    NASA Astrophysics Data System (ADS)

    Wagner, Robert F.; Beiden, Sergey V.; Campbell, Gregory; Metz, Charles E.; Sacks, William M.

    2003-05-01

    The dialog among investigators in academia, industry, NIH, and the FDA has grown in recent years on topics of historic interest to attendees of these SPIE sub-conferences on Image Perception, Observer Performance, and Technology Assessment. Several of the most visible issues in this regard have been the emergence of digital mammography and modalities for computer-assisted detection and diagnosis in breast and lung imaging. These issues appear to be only the "tip of the iceberg" foreshadowing a number of emerging advances in imaging technology. So it is timely to make some general remarks looking back and looking ahead at the landscape (or seascape). The advances have been facilitated and documented in several forums. The major role of the SPIE Medical Imaging Conferences i well-known to all of us. Many of us were also present at the Medical Image Perception Society and co-sponsored by CDRH and NCI in September of 2001 at Airlie House, VA. The workshops and discussions held at that conference addressed some critical contemporary issues related to how society - and in particular industry and FDA - approach the general assessment problem. A great deal of inspiration for these discussions was also drawn from several workshops in recent years sponsored by the Biomedical Imaging Program of the National Cancer Institute on these issues, in particular the problem of "The Moving Target" of imaging technology. Another critical phenomenon deserving our attention is the fact that the Fourth National Forum on Biomedical Imaging in Oncology was recently held in Bethesda, MD., February 6-7, 2003. These forums are presented by the National Cancer Institute (NCI), the Food and Drug Administration (FDA), the Centers for Medicare and Medicaid Services (CMS), and the National Electrical Manufacturers Association (NEMA). They are sponsored by the National Institutes of Health/Foundation for Advanced Education in the Sciences (NIH/FAES). These forums led to the development of the NCI

  1. Dyslexia: advances in clinical and imaging studies.

    PubMed

    Koeda, Tatsuya; Seki, Ayumi; Uchiyama, Hitoshi; Sadato, Norihiro

    2011-03-01

    The aim of this report is to describe the characteristics of Japanese dyslexia, and to demonstrate several of our studies about the extraction of these characteristic and their neurophysiological and neuroimaging abnormalities, as well as advanced studies of phonological awareness and the underlying neural substrate. Based on these results, we have proposed a 2-step approach for remedial education (e-learning web site: http://www.dyslexia-koeda.jp/). The first step is decoding, which decreases reading errors, and the second is vocabulary learning, which improves reading fluency. This 2-step approach is designed to serve first grade children. In addition, we propose the RTI (response to intervention) model as a desirable system for remedial education. PMID:21146943

  2. Automated semantic indexing of imaging reports to support retrieval of medical images in the multimedia electronic medical record.

    PubMed

    Lowe, H J; Antipov, I; Hersh, W; Smith, C A; Mailhot, M

    1999-12-01

    This paper describes preliminary work evaluating automated semantic indexing of radiology imaging reports to represent images stored in the Image Engine multimedia medical record system at the University of Pittsburgh Medical Center. The authors used the SAPHIRE indexing system to automatically identify important biomedical concepts within radiology reports and represent these concepts with terms from the 1998 edition of the U.S. National Library of Medicine's Unified Medical Language System (UMLS) Metathesaurus. This automated UMLS indexing was then compared with manual UMLS indexing of the same reports. Human indexing identified appropriate UMLS Metathesaurus descriptors for 81% of the important biomedical concepts contained in the report set. SAPHIRE automatically identified UMLS Metathesaurus descriptors for 64% of the important biomedical concepts contained in the report set. The overall conclusions of this pilot study were that the UMLS metathesaurus provided adequate coverage of the majority of the important concepts contained within the radiology report test set and that SAPHIRE could automatically identify and translate almost two thirds of these concepts into appropriate UMLS descriptors. Further work is required to improve both the recall and precision of this automated concept extraction process. PMID:10805018

  3. TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging

    SciTech Connect

    Badal, A; Zbijewski, W; Bolch, W; Sechopoulos, I

    2014-06-15

    Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the

  4. Work-Family Balance and Academic Advancement in Medical Schools

    ERIC Educational Resources Information Center

    Fox, Geri; Schwartz, Alan; Hart, Katherine M.

    2006-01-01

    Objective: This study examines various options that a faculty member might exercise to achieve work-family balance in academic medicine and their consequences for academic advancement. Method: Three data sets were analyzed: an anonymous web-administered survey of part-time tenure track-eligible University of Illinois College of Medicine (UI-COM)…

  5. Advanced Respite Care: Medically Challenged. Teacher Edition. Respite Care Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide is designed to help teachers to provide advanced-level training for care providers who want to work with individuals who are chronically or terminally ill and require specialized care. The curriculum contains seven units. Each of the instructional units includes some or all of these basic components: performance objectives,…

  6. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus.

    PubMed

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  7. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus

    PubMed Central

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  8. Integrated ultrasound and gamma imaging probe for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; De Vincentis, G.

    2016-03-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures.

  9. Proposal for DICOM multiframe medical image integrity and authenticity.

    PubMed

    Kobayashi, Luiz O M; Furuie, Sergio S

    2009-03-01

    This paper presents a novel algorithm to successfully achieve viable integrity and authenticity addition and verification of n-frame DICOM medical images using cryptographic mechanisms. The aim of this work is the enhancement of DICOM security measures, especially for multiframe images. Current approaches have limitations that should be properly addressed for improved security. The algorithm proposed in this work uses data encryption to provide integrity and authenticity, along with digital signature. Relevant header data and digital signature are used as inputs to cipher the image. Therefore, one can only retrieve the original data if and only if the images and the inputs are correct. The encryption process itself is a cascading scheme, where a frame is ciphered with data related to the previous frames, generating also additional data on image integrity and authenticity. Decryption is similar to encryption, featuring also the standard security verification of the image. The implementation was done in JAVA, and a performance evaluation was carried out comparing the speed of the algorithm with other existing approaches. The evaluation showed a good performance of the algorithm, which is an encouraging result to use it in a real environment. PMID:18266035

  10. A Novel Technique for Prealignment in Multimodality Medical Image Registration

    PubMed Central

    Zhou, Wu; Zhang, Lijuan; Xie, Yaoqin; Liang, Changhong

    2014-01-01

    Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was proposed to determine the rotational differences between two images based on orientation histogram matching accumulated from local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the orientation angle between two unregistered images with advantages over the existed method based on edge-map in multimodalities. Applying the orientation detection into the registration of CT/MR, T1/T2 MRI, and monomadality images with respect to rigid and nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of optimization. PMID:25162024

  11. Classification of similar medical images in the lifting domain

    NASA Astrophysics Data System (ADS)

    Sallee, Chad W.; Tashakkori, Rahman

    2002-03-01

    In this paper lifting is used for similarity analysis and classification of sets of similar medical images. The lifting scheme is an invertible wavelet transform that maps integers to integers. Lifting provides efficient in-place calculation of transfer coefficients and is widely used for analysis of similar image sets. Images of a similar set show high degrees of correlation with one another. The inter-set redundancy can be exploited for the purposes of prediction, compression, feature extraction, and classification. This research intends to show that there is a higher degree of correlation between images of a similar set in the lifting domain than in the pixel domain. Such a high correlation will result in more accurate classification and prediction of images in a similar set. Several lifting schemes from Calderbank-Daubechies-Fauveue's family were used in this research. The research shows that some of these lifting schemes decorrelates the images of similar sets more effectively than others. The research presents the statistical analysis of the data in scatter plots and regression models.

  12. Assessment of medical imaging and computer-assist systems: lessons from recent experience.

    PubMed

    Wagner, Robert F; Beiden, Sergey V; Campbell, Gregory; Metz, Charles E; Sacks, William M

    2002-11-01

    In the last 2 decades major advances have been made in the field of assessment methods for medical imaging and computer-assist systems through the use of the paradigm of the receiver operating characteristic (ROC) curve. In the most recent decade this methodology was extended to embrace the complication of reader variability through advances in the multiple-reader, multiple-case (MRMC) ROC measurement and analysis paradigm. Although this approach has been widely adopted by the imaging research community, some investigators appear averse to it, possibly from concern that it could place a greater burden on the scarce resources of patient cases and readers compared to the requirements of alternative methods. The present communication argues, however, that the MRMC ROC approach to assessment in the context of reader variability may be the most resource-efficient approach available. Moreover, alternative approaches may also be statistically uninterpretable with regard to estimated summary measures of performance and their uncertainties. The authors propose that the MRMC ROC approach be considered even more widely by the larger community with responsibilities for the introduction and dissemination of medical imaging technologies to society. General principles of study design are reviewed, and important contemporary clinical trials are used as examples. PMID:12449359

  13. Advances in CT imaging for urolithiasis

    PubMed Central

    Andrabi, Yasir; Patino, Manuel; Das, Chandan J.; Eisner, Brian; Sahani, Dushyant V.; Kambadakone, Avinash

    2015-01-01

    Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT) is highly sensitive (>95%) and specific (>96%) in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT) and technological innovations in CT such as dual-energy CT (DECT) has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice. PMID:26166961

  14. Advances in CT imaging for urolithiasis.

    PubMed

    Andrabi, Yasir; Patino, Manuel; Das, Chandan J; Eisner, Brian; Sahani, Dushyant V; Kambadakone, Avinash

    2015-01-01

    Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT) is highly sensitive (>95%) and specific (>96%) in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT) and technological innovations in CT such as dual-energy CT (DECT) has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice. PMID:26166961

  15. ADVANCES IN MOLECULAR IMAGING OF PANCREATIC BETA CELLS

    PubMed Central

    Lin, Mai; Lubag, Angelo; McGuire, Michael J.; Seliounine, Serguei Y.; Tsyganov, Edward N.; Antich, Peter P.; Sherry, A. Dean; Brown, Kathlynn C.; Sun, Xiankai

    2009-01-01

    The development of non-invasive imaging methods for early diagnosis of the beta cell associated metabolic diseases, including type 1 and type 2 diabetes (T1D and T2D), has recently drawn considerable interest from the molecular imaging community as well as clinical investigators. Due to the challenges imposed by the location of the pancreas, the sparsely dispersed beta cell population within the pancreas, and the poor understanding of the pathogenesis of the diseases, clinical diagnosis of beta cell abnormalities is still limited. Current diagnostic methods are invasive, often inaccurate, and usually performed post-onset of the disease. Advances in imaging techniques for probing beta cell mass and function are needed to address this critical health care problem. A variety of currently available imaging techniques have been tested for the assessment of the pancreatic beta cell islets. Here we discuss the current advances in magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging for the study of beta cell diseases. Spurred by early successes in nuclear imaging techniques for beta cells, especially positron emission tomography (PET), the need for beta cell specific ligands has expanded. Progress in the field for obtaining such ligands is presented. Additionally, we report our preliminary efforts of developing such a peptidic ligand for PET imaging of the pancreatic beta cells. PMID:18508529

  16. Managing medical images and clinical information: InCor's experience.

    PubMed

    Furuie, Sergio S; Rebelo, Marina S; Moreno, Ramon A; Santos, Marcelo; Bertozzo, Nivaldo; Motta, Gustavo H M B; Pires, Fabio A; Gutierrez, Marco A

    2007-01-01

    Patients usually get medical assistance in several clinics and hospitals during their lifetime, archiving vital information in a dispersed way. Clearly, a proper patient care should take into account that information in order to check for incompatibilities, avoid unnecessary exams, and get relevant clinical history. The Heart Institute (InCor) of São Paulo, Brazil, has been committed to the goal of integrating all exams and clinical information within the institution and other hospitals. Since InCor is one of the six institutes of the University of São Paulo Medical School and each institute has its own information system, exchanging information among the institutes is also a very important aspect that has been considered. In the last few years, a system for transmission, archiving, retrieval, processing, and visualization of medical images integrated with a hospital information system has been successfully created and constitutes the InCor's electronic patient record (EPR). This work describes the experience in the effort to develop a functional and comprehensive EPR, which includes laboratory exams, images (static, dynamic, and three dimensional), clinical reports, documents, and even real-time vital signals. A security policy based on a contextual role-based access control model was implemented to regulate user's access to EPR. Currently, more than 10 TB of digital imaging and communications in medicine (DICOM) images have been stored using the proposed architecture and the EPR stores daily more than 11 GB of integrated data. The proposed storage subsystem allows 6 months of visibility for rapid retrieval and more than two years for automatic retrieval using a jukebox. This paper addresses also a prototype for the integration of distributed and heterogeneous EPR. PMID:17249400

  17. Advanced terahertz imaging system performance model for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Redman, Brian; Espinola, Richard L.; Franck, Charmaine C.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.; Griffin, Steven T.; Halford, Carl E.; Reynolds, Joe

    2007-04-01

    The U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) and the U.S. Army Research Laboratory (ARL) have developed a terahertz-band imaging system performance model for detection and identification of concealed weaponry. The details of this MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security and Defence Symposium. The focus of this paper is to report on recent advances to the base model which have been designed to more realistically account for the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system. The advanced terahertz-band imaging system performance model now also accounts for target and background thermal emission, and has been recast into a user-friendly, Windows-executable tool. This advanced THz model has been developed in support of the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will describe the advanced THz model and its new radiometric sub-model in detail, and provide modeling and experimental results on target observability as a function of target and background orientation.

  18. I-SPINE: a software package for advances in image-guided and minimally invasive spine procedures

    NASA Astrophysics Data System (ADS)

    Choi, Jae Jeong; Cleary, Kevin R.; Zeng, Jianchao; Gary, Kevin A.; Freedman, Matthew T.; Watson, Vance; Lindisch, David; Mun, Seong K.

    2000-05-01

    While image guidance is now routinely used in the brain in the form of frameless stereotaxy, it is beginning to be more widely used in other clinical areas such as the spine. At Georgetown University Medical Center, we are developing a program to provide advanced visualization and image guidance for minimally invasive spine procedures. This is a collaboration between an engineering-based research group and physicians from the radiology, neurosurgery, and orthopaedics departments. A major component of this work is the ISIS Center Spine Procedures Imaging and Navigation Engine, which is a software package under development as the base platform for technical advances.

  19. An advanced image fusion algorithm based on wavelet transform: incorporation with PCA and morphological processing

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Essock, Edward A.; Hansen, Bruce C.

    2004-05-01

    There are numerous applications for image fusion, some of which include medical imaging, remote sensing, nighttime operations and multi-spectral imaging. In general, the discrete wavelet transform (DWT) and various pyramids (such as Laplacian, ratio, contrast, gradient and morphological pyramids) are the most common and effective methods. For quantitative evaluation of the quality of fused imagery, the root mean square error (RMSE) is the most suitable measure of quality if there is a "ground truth" image available; otherwise, the entropy, spatial frequency or image quality index of the input images and the fused images can be calculated and compared. Here, after analyzing the pyramids" performance with the four measures mentioned, an advanced wavelet transform (aDWT) method that incorporates principal component analysis (PCA) and morphological processing into a regular DWT fusion algorithm is presented. Specifically, at each scale of the wavelet transformed images, a principle vector was derived from two input images and then applied to two of the images" approximation coefficients (i.e., they were fused by using the principal eigenvector). For the detail coefficients (i.e., three quarters of the coefficients), the larger absolute values were chosen and subjected to a neighborhood morphological processing procedure which served to verify the selected pixels by using a "filling" and "cleaning" operation (this operation filled or removed isolated pixels in a 3-by-3 local region). The fusion performance of the advanced DWT (aDWT) method proposed here was compared with six other common methods, and, based on the four quantitative measures, was found to perform the best when tested on the four input image types. Since the different image sources used here varied with respect to intensity, contrast, noise, and intrinsic characteristics, the aDWT is a promising image fusion procedure for inhomogeneous imagery.

  20. [Research advances on medical genetics in China in 2015].

    PubMed

    Li, Yuanfeng; Han, Yubo; Cao, Pengbo; Meng, Jinfeng; Li, Haibei; Qin, Geng; Zhang, Feng; Jin, Guangfu; Yang, Yong; Wu, Lingqian; Ping, Jie; Zhou, Gangqiao

    2016-05-01

    Steady progress has been achieved in the medical genetics in China in 2015, as numerous original researches were published in the world's leading journals. Chinese scientists have made significant contributions to various fields of medical genetics, such as pathogenicity of rare diseases, predisposition of common diseases, somatic mutations of cancer, new technologies and methods, disease-related microRNAs (miRNAs), disease-related long non-coding RNAs (lncRNAs), disease-related competing endogenous RNAs (ceRNAs), disease-related RNA splicing and molecular evolution. In these fields, Chinese scientists have gradually formed the tendency, from common variants to rare variants, from single omic analyses to multipleomics integration analyses, from genetic discovery to functional confirmation, from basic research to clinical application. Meanwhile, the findings of Chinese scientists have been drawn great attentions of international peers. This review aims to provide an overall picture of the front in Chinese medical genetics, and highlights the important findings and their research strategy. PMID:27232486

  1. Advances in information technology. Implications for medical education.

    PubMed Central

    Masys, D R

    1998-01-01

    Few kinds of technology have had as broad an impact on the recent affairs of humanity as have information technologies. The appearance and rapid spread in the past several years of innovations such as the Internet's World Wide Web and the emergence of computer networks connecting tens to hundreds of millions of people worldwide have occurred with startling rapidity. These global events portend substantial changes in the delivery of health care, the conduct of biomedical research, and the undergraduate, graduate, and continuing education of health professionals. This report will attempt to succinctly review the following: (1) the characteristics of modern information technologies and recent trends that are most relevant to medical education and to the world in which future practitioners, researchers, and educators will live and work; (2) the implications of these technologies for the development of educational goals (in other words, the specific information technology skills that future health professionals will need); (3) the issues associated with the use of these technologies in the process of education; and (4) implications for near-term action by University of California medical schools and academic medical centers. PMID:9614791

  2. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  3. [Interventional MR imaging: state of the art and technological advances].

    PubMed

    Viard, R; Rousseau, J

    2008-01-01

    Due to its excellent soft tissue contrast and lack of ionizing radiation, MR imaging is well suited for interventional procedures. MRI is being increasingly used for guidance during percutaneous procedures or surgery. Technical advances in interventional MR imaging are reviewed in this paper. Ergonomical factors with improved access to patients as well as advances in informatics, electronics and robotics largely explain this increasing role. Different elements are discussed from improved access to patients in the scanners to improved acquisition pulse sequences. Selected clinical applications and recent publications will be presented to illustrate the current status of this technique. PMID:18288022

  4. [Adverse events and near misses in medical imaging].

    PubMed

    Brandão, Paulo; Rodrigues, Susana; Nelas, Luís; Neves, José; Alves, Vítor

    2011-01-01

    In 2000, the Institute of Medicine's report, To Err Is Human: Building a Safer Health System, caught the public attention documenting the magnitude of the medical error problem and the inherent patient safety: medical errors cause between 44,000 and 98,000 deaths annually in the United States. Currently, there is a growing interest in risk management on the medical field, particularly in the management of adverse events. It has been mainly due to the commitment of the World Health Organization, that this field of research has gained increasing the attention it deserves. Medical imaging is one of the high risk fields for the occurrence of errors, especially due to the multiplicity of techniques, the several stakeholders and the complexity of the whole circuit that involves the conduct of studies. Many of the methods used to analyze patient safety were adapted from risk-management techniques in high-risk industries (e.g. chemical, nuclear power and aviation industry). It is recognized that we can learn more from our mistakes than from our successes and the reporting systems in these industries have provided a valuable contribution to error prevention and risk management techniques. At a minimum, adverse events reporting systems can help to identify hazards and risks, providing important information on the system aspects that should be improved. However, the accumulation of potentially relevant data contributes little to healthcare services improvement. It is crucial to apply models to identify the underlying system failures, the root causes, and enhance the sharing of knowledge and experience. In this paper, it is suggested a solution to reduce adverse events, by identifying and eliminating the root causes that are in their source. How the Eindhoven Classification Model was adapted and extended specifically for the Medical Imaging field is also presented. The proposed approach includes the root causes analysis and introduces incomplete information concepts through

  5. A Large State Medicaid Outpatient Advanced Imaging Utilization Management Program: Substantial Savings Without the Need for Denials.

    PubMed

    Rapoport, Robert J; Parker, Laurence; Levin, David C; Hiatt, Mark D

    2016-06-01

    A decade of rapidly rising outpatient advanced imaging utilization ended toward the end of the past decade, with slow growth since. This has been attributed to repetitive reimbursement cuts, medical radiation exposure concerns, increasing deductibles and patient copayments, and the influence of radiology benefit management companies. State Medicaid programs have been reluctant to institute radiology benefit management preauthorization programs since the time burden for obtaining test approval could cause providers to drop out. Also, these patients may lack the knowledge to appeal denials, and medically necessary tests could be denied with adverse outcomes. Little data exist demonstrating the efficacy of such programs in decreasing utilization and cost. We report a 2-year experience with an outpatient advanced imaging prior notification program for a large state Medicaid fee-for-service population. The program did not allow any denials, but nevertheless the data reveal a large, durable decrease in advanced imaging utilization and cost. PMID:26416792

  6. Characterization of various tissue mimicking materials for medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Thouvenot, Audrey; Poepping, Tamie; Peters, Terry M.; Chen, Elvis C. S.

    2016-04-01

    Tissue mimicking materials are physical constructs exhibiting certain desired properties, which are used in machine calibration, medical imaging research, surgical planning, training, and simulation. For medical ultrasound, those specific properties include acoustic propagation speed and attenuation coefficient over the diagnostic frequency range. We investigated the acoustic characteristics of polyvinyl chloride (PVC) plastisol, polydimethylsiloxane (PDMS), and isopropanol using a time-of-light technique, where a pulse was passed through a sample of known thickness contained in a water bath. The propagation speed in PVC is approximately 1400ms-1 depending on the exact chemical composition, with the attenuation coefficient ranging from 0:35 dB cm-1 at 1MHz to 10:57 dB cm-1 at 9 MHz. The propagation speed in PDMS is in the range of 1100ms-1, with an attenuation coefficient of 1:28 dB cm-1 at 1MHz to 21:22 dB cm-1 at 9 MHz. At room temperature (22 °C), a mixture of water-isopropanol (7:25% isopropanol by volume) exhibits a propagation speed of 1540ms-1, making it an excellent and inexpensive tissue-mimicking liquid for medical ultrasound imaging.

  7. Imaging spectrometer technologies for advanced Earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kuperfman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced Earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from Earth Orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s.

  8. Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging

    PubMed Central

    Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan

    2014-01-01

    Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070

  9. Imaging spectrometer technologies for advanced earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from earth orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s. Previously announced in STAR as N83-28542

  10. Advanced digital detectors for neutron imaging.

    SciTech Connect

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  11. Medical image processing using novel wavelet filters based on atomic functions: optimal medical image compression.

    PubMed

    Landin, Cristina Juarez; Reyes, Magally Martinez; Martin, Anabelem Soberanes; Rosas, Rosa Maria Valdovinos; Ramirez, Jose Luis Sanchez; Ponomaryov, Volodymyr; Soto, Maria Dolores Torres

    2011-01-01

    The analysis of different Wavelets including novel Wavelet families based on atomic functions are presented, especially for ultrasound (US) and mammography (MG) images compression. This way we are able to determine with what type of filters Wavelet works better in compression of such images. Key properties: Frequency response, approximation order, projection cosine, and Riesz bounds were determined and compared for the classic Wavelets W9/7 used in standard JPEG2000, Daubechies8, Symlet8, as well as for the complex Kravchenko-Rvachev Wavelets ψ(t) based on the atomic functions up(t),  fup (2)(t), and eup(t). The comparison results show significantly better performance of novel Wavelets that is justified by experiments and in study of key properties. PMID:21431590

  12. A framework for optimal kernel-based manifold embedding of medical image data.

    PubMed

    Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma

    2015-04-01

    Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. PMID:25008538

  13. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging

    NASA Astrophysics Data System (ADS)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher

    2013-06-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  14. Evaluation of two thermoluminescent detection systems for medical imaging environments.

    PubMed

    Kearfott, K J; Nabelssi, B K; Rucker, R H; Klingler, G W

    1990-12-01

    Thermoluminescent detectors (TLDs) can provide accurate and precise measurements for both patient and personnel dosimetry in the medical imaging environment. They have the advantages of tissue equivalency, an excellent dynamic range, and dose rate independence. In the work reported here, experiments with planar x-ray, fluoroscopy, and a 57Co source were conducted to test the repeatability and energy dependence of an LiF TL ribbon/automatic reader system and a four-element CaSO2 and Li2B4O7 badge/automatic reader system for diagnostic radiology and nuclear medicine dosimetry. The results indicate the usefulness and appropriateness of the TLD systems tested for both personnel and patient dosimetry in the medical diagnostic environment. PMID:2228610

  15. Evaluation of two thermoluminescent detection systems for medical imaging environments

    SciTech Connect

    Kearfott, K.J.; Nabelssi, B.K.; Rucker, R.H.; Klingler, G.W. )

    1990-12-01

    Thermoluminescent detectors (TLDs) can provide accurate and precise measurements for both patient and personnel dosimetry in the medical imaging environment. They have the advantages of tissue equivalency, an excellent dynamic range, and dose rate independence. In the work reported here, experiments with planar x-ray, fluoroscopy, and a 57Co source were conducted to test the repeatability and energy dependence of an LiF TL ribbon/automatic reader system and a four-element CaSO2 and Li2B4O7 badge/automatic reader system for diagnostic radiology and nuclear medicine dosimetry. The results indicate the usefulness and appropriateness of the TLD systems tested for both personnel and patient dosimetry in the medical diagnostic environment.

  16. Monte Carlo PENRADIO software for dose calculation in medical imaging

    NASA Astrophysics Data System (ADS)

    Adrien, Camille; Lòpez Noriega, Mercedes; Bonniaud, Guillaume; Bordy, Jean-Marc; Le Loirec, Cindy; Poumarede, Bénédicte

    2014-06-01

    The increase on the collective radiation dose due to the large number of medical imaging exams has led the medical physics community to deeply consider the amount of dose delivered and its associated risks in these exams. For this purpose we have developed a Monte Carlo tool, PENRADIO, based on a modified version of PENELOPE code 2006 release, to obtain an accurate individualized radiation dose in conventional and interventional radiography and in computed tomography (CT). This tool has been validated showing excellent agreement between the measured and simulated organ doses in the case of a hip conventional radiography and a coronography. We expect the same accuracy in further results for other localizations and CT examinations.

  17. Images of health and medical science conveyed by television

    PubMed Central

    Garland, Ruth

    1984-01-01

    Content analysis was carried out on medical programmes on BBC television over a three-month period. Television medical programmes were shown to concentrate on hospital-based, technological and expert-dependent issues at the expense of primary care and community health. Images of technology, the hospital and the hospital specialist were found to predominate. Issues such as the family, preventive care, housing and the environment were rarely raised. Doctors appeared and spoke in 94 per cent of programmes, whereas nurses were seen (although not necessarily heard) in 30 per cent. Of 70 doctors interviewed on television, nearly three quarters were hospital doctors or scientists. Only one doctor was explicitly referred to as a general practitioner. PMID:6747932

  18. Self-Aligning Manifolds for Matching Disparate Medical Image Datasets.

    PubMed

    Baumgartner, Christian F; Gomez, Alberto; Koch, Lisa M; Housden, James R; Kolbitsch, Christoph; McClelland, Jamie R; Rueckert, Daniel; King, Andy P

    2015-01-01

    Manifold alignment can be used to reduce the dimensionality of multiple medical image datasets into a single globally consistent low-dimensional space. This may be desirable in a wide variety of problems, from fusion of different imaging modalities for Alzheimer's disease classification to 4DMR reconstruction from 2D MR slices. Unfortunately, most existing manifold alignment techniques require either a set of prior correspondences or comparability between the datasets in high-dimensional space, which is often not possible. We propose a novel technique for the 'self-alignment' of manifolds (SAM) from multiple dissimilar imaging datasets without prior correspondences or inter-dataset image comparisons. We quantitatively evaluate the method on 4DMR reconstruction from realistic, synthetic sagittal 2D MR slices from 6 volunteers and real data from 4 volunteers. Additionally, we demonstrate the technique for the compounding of two free breathing 3D ultrasound views from one volunteer. The proposed method performs significantly better for 4DMR reconstruction than state-of-the-art image-based techniques. PMID:26221687

  19. Quantitative Medical Image Analysis for Clinical Development of Therapeutics

    NASA Astrophysics Data System (ADS)

    Analoui, Mostafa

    There has been significant progress in development of therapeutics for prevention and management of several disease areas in recent years, leading to increased average life expectancy, as well as of quality of life, globally. However, due to complexity of addressing a number of medical needs and financial burden of development of new class of therapeutics, there is a need for better tools for decision making and validation of efficacy and safety of new compounds. Numerous biological markers (biomarkers) have been proposed either as adjunct to current clinical endpoints or as surrogates. Imaging biomarkers are among rapidly increasing biomarkers, being examined to expedite effective and rational drug development. Clinical imaging often involves a complex set of multi-modality data sets that require rapid and objective analysis, independent of reviewer's bias and training. In this chapter, an overview of imaging biomarkers for drug development is offered, along with challenges that necessitate quantitative and objective image analysis. Examples of automated and semi-automated analysis approaches are provided, along with technical review of such methods. These examples include the use of 3D MRI for osteoarthritis, ultrasound vascular imaging, and dynamic contrast enhanced MRI for oncology. Additionally, a brief overview of regulatory requirements is discussed. In conclusion, this chapter highlights key challenges and future directions in this area.

  20. Fabrication and characterization of silica aerogel as synthetic tissues for medical imaging phantoms

    NASA Astrophysics Data System (ADS)

    In, Eunji; Naguib, Hani

    2015-05-01

    Medical imaging plays an important role in the field of healthcare industry both in clinical settings and in research and development. It is used in prevention, early detection of disease, in choosing the optimal treatment, during surgical interventions and monitoring of the treatment effects. Despite much advancement in the last few decades, rapid change on its technology development and variety of imaging parameters that differ with the manufacturer restrict its further development. Imaging phantom is a calibrating medium that is scanned or imaged in the field of medical imaging to evaluate, analyze and tune the performance of various imaging devices. A phantom used to evaluate an imaging device should respond in a similar manner to how human tissue and organs would act in that specific imaging modality. There has been many research on the phantom materials; however, there has been no attempt to study on the material that mimics the structure of lung or fibrous tissue. So with the need for development of gel with such structure, we tried to mimic this structure with aerogel. Silica aerogels have unique properties that include low density (0.003g/cm) and mesoporosity (pore size 2-50nm), with a high thermal insulation value (0.005W/mK) and high surface area (500-1200m-2/g).] In this study, we cross-linked with di-isocyanate, which is a group in polyurethane to covalently bond the polymer to the surface of silica aerogel to enhance the mechanical properties. By formation of covalent bonds, the structure can be reinforced by widening the interparticle necks while minimally reducing porosity.