Science.gov

Sample records for advanced metal oxide

  1. Advanced metal oxide varistor concepts. Final report

    SciTech Connect

    Philipp, H.R.; Mahan, G.D.; Levinson, L.M.

    1984-07-01

    Zinc oxide varistors are ZnO-based ceramic semiconductor devices with highly nonlinear current-voltage characteristics similar to back-to-back Zener diodes but with much greater current, voltage, and energy-handling capabilities. Zinc oxide varistors have proven useful in a variety of applications, particularly as high-quality voltage suppression devices for the protection of ac and dc electric power transmission systems against the effects of transient overvoltages due to switching surges and lightning strikes. In the work described in this report, we have chosen to study simple varistor systems that use Bi or Pr as the varistor-forming additive and Co or Mn as the varistor-performance ingredient. Commercial varistor materials generally use Bi as the varistor-forming ingredient, and the sintering process in such material probably proceeds in the liquid phase. Varistor materials that use Pr as the varistor-forming ingredient are also produced commercially. However, owing to the high melting point of Pr/sub 2/O/sub 3/ compared to Bi/sub 2/O/sub 3/, sintering in these materials probably takes place in the solid state. The performance ingredients Co and Mn are present in almost all commercial mixes. Co is an interesting choice because it is known to introduce a deep level into ZnO, giving such varistors a green color.

  2. Rational design of metal oxide nanocomposite anodes for advanced lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yong; Yu, Shenglan; Yuan, Tianzhi; Yan, Mi; Jiang, Yinzhu

    2015-05-01

    Metal-oxide anodes represent a significant future direction for advanced lithium ion batteries. However, their practical applications are still seriously hampered by electrode disintegration and capacity fading during cycling. Here, we report a rational design of 3D-staggered metal-oxide nanocomposite electrode directly fabricated by pulsed spray evaporation chemical vapor deposition, where various oxide nanocomponents are in a staggered distribution uniformly along three dimensions and across the whole electrode. Such a special design of nanoarchitecture combines the advantages of nanoscale materials in volume change and Li+/electron conduction as well as uniformly staggered and compact structure in atom migration during lithiation/delithiation, which exhibits high specific capacity, good cycling stability and excellent rate capability. The rational design of metal-oxide nanocomposite electrode opens up new possibilities for high performance lithium ion batteries.

  3. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-01

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. PMID:22912066

  4. Modeling of Total Ionizing Dose Effects in Advanced Complementary Metal-Oxide-Semiconductor Technologies

    NASA Astrophysics Data System (ADS)

    Sanchez Esqueda, Ivan

    2011-12-01

    The increased use of commercial complementary metal-oxide-semiconductor (CMOS) technologies in harsh radiation environments has resulted in a new approach to radiation effects mitigation. This approach utilizes simulation to support the design of integrated circuits (ICs) to meet targeted tolerance specifications. Modeling the deleterious impact of ionizing radiation on ICs fabricated in advanced CMOS technologies requires understanding and analyzing the basic mechanisms that result in buildup of radiation-induced defects in specific sensitive regions. Extensive experimental studies have demonstrated that the sensitive regions are shallow trench isolation (STI) oxides. Nevertheless, very little work has been done to model the physical mechanisms that result in the buildup of radiation-induced defects and the radiation response of devices fabricated in these technologies. A comprehensive study of the physical mechanisms contributing to the buildup of radiation-induced oxide trapped charges and the generation of interface traps in advanced CMOS devices is presented in this dissertation. The basic mechanisms contributing to the buildup of radiation-induced defects are explored using a physical model that utilizes kinetic equations that captures total ionizing dose (TID) and dose rate effects in silicon dioxide (SiO2). These mechanisms are formulated into analytical models that calculate oxide trapped charge density (Not) and interface trap density (Nit) in sensitive regions of deep-submicron devices. Experiments performed on field-oxide-field-effect-transistors (FOXFETs) and metal-oxide-semiconductor (MOS) capacitors permit investigating TID effects and provide a comparison for the radiation response of advanced CMOS devices. When used in conjunction with closed-form expressions for surface potential, the analytical models enable an accurate description of radiation-induced degradation of transistor electrical characteristics. In this dissertation, the incorporation

  5. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Liu, X. Y.; Yang, G. W.

    2016-02-01

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV

  6. Advances in Homogeneous Catalysis Using Secondary Phosphine Oxides (SPOs): Pre-ligands for Metal Complexes.

    PubMed

    Achard, Thierry

    2016-01-01

    The secondary phosphine oxides are known to exist in equilibrium between the pentavalent phosphine oxides (SPO) and the trivalent phosphinous acids (PA). This equilibrium can be displaced in favour of the trivalent tautomeric form upon coordination to late transition metals. This tutorial review provides the state of the art of the use of secondary phosphine oxides as pre-ligands in transition metal-catalysed reactions. Using a combination of SPOs and several metals such as Pd, Pt, Ru, Rh and Au, a series of effective and original transformations have been obtained and will be discussed here. PMID:26931212

  7. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.

    PubMed

    Gao, Y Q; Liu, X Y; Yang, G W

    2016-03-01

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm(-2) at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec(-1), while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts. PMID:26864279

  8. Recent Advances in Modeling Transition Metal Oxides for Photo-electrochemistry

    NASA Astrophysics Data System (ADS)

    Caspary Toroker, Maytal

    Computational research offers a wide range of opportunities for materials science and engineering, especially in the energy arena where there is a need for understanding how material composition and structure control energy conversion, and for designing materials that could improve conversion efficiency. Potential inexpensive materials for energy conversion devices are metal oxides. However, their conversion efficiency is limited by at least one of several factors: a too large band gap for efficiently absorbing solar energy, similar conduction and valence band edge characters that may lead to unfavorably high electron-hole recombination rates, a valence band edge that is not positioned well for oxidizing water, low stability, low electronic conductivity, and low surface reactivity. I will show how we model metal oxides with ab-initio methods, primarily DFT +U. Our previous results show that doping with lithium, sodium, or hydrogen could improve iron (II) oxide's electronic properties, and alloying with zinc or nickel could improve iron (II) oxide's optical properties. Furthermore, doping nickel (II) oxide with lithium could improve several key properties including solar energy absorption. In this talk I will highlight new results on our understanding of the mechanism of iron (III) oxide's surface reactivity. Our theoretical insights bring us a step closer towards understanding how to design better materials for photo-electrochemistry. References: 1. O. Neufeld and M. Caspary Toroker, ``Pt-doped Fe2O3 for enhanced water splitting efficiency: a DFT +U study'', J. Phys. Chem. C 119, 5836 (2015). 2. M. Caspary Toroker, ``Theoretical Insights into the Mechanism of Water Oxidation on Non-stoichiometric and Ti - doped Fe2O3 (0001)'', J. Phys. Chem. C, 118, 23162 (2014). This research was supported by the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science

  9. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Srivastava, Manish; Singh, Jay; Kuila, Tapas; Layek, Rama K.; Kim, Nam Hoon; Lee, Joong Hee

    2015-03-01

    Today, one of the major challenges is to provide green and powerful energy sources for a cleaner environment. Rechargeable lithium-ion batteries (LIBs) are promising candidates for energy storage devices, and have attracted considerable attention due to their high energy density, rapid response, and relatively low self-discharge rate. The performance of LIBs greatly depends on the electrode materials; therefore, attention has been focused on designing a variety of electrode materials. Graphene is a two-dimensional carbon nanostructure, which has a high specific surface area and high electrical conductivity. Thus, various studies have been performed to design graphene-based electrode materials by exploiting these properties. Metal-oxide nanoparticles anchored on graphene surfaces in a hybrid form have been used to increase the efficiency of electrode materials. This review highlights the recent progress in graphene and graphene-based metal-oxide hybrids for use as electrode materials in LIBs. In particular, emphasis has been placed on the synthesis methods, structural properties, and synergetic effects of metal-oxide/graphene hybrids towards producing enhanced electrochemical response. The use of hybrid materials has shown significant improvement in the performance of electrodes.

  10. Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances.

    PubMed

    Cassier-Chauvat, Corinne; Chauvat, Franck

    2015-01-01

    Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk. PMID:25561236

  11. Responses to Oxidative and Heavy Metal Stresses in Cyanobacteria: Recent Advances

    PubMed Central

    Cassier-Chauvat, Corinne; Chauvat, Franck

    2014-01-01

    Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk. PMID:25561236

  12. Advances in Molten Oxide Electrolysis for the Production of Oxygen and Metals from Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Sadoway, Donald R.; Sirk, Aislinn; Sibille, Laurent; Melendez, Orlando; Lueck, Dale; Curreri, Peter; Dominquez, Jesus; Whitlow, Jonathan

    2008-01-01

    As part of an In-Situ Resource Utilization infrastructure to sustain long term-human presence on the lunar surface, the production of oxygen and metals by electrolysis of lunar regolith has been the subject of major scrutiny. There is a reasonably large body of literature characterizing the candidate solvent electrolytes, including ionic liquids, molten salts, fluxed oxides, and pure molten regolith itself. In the light of this information and in consideration of available electrolytic technologies, the authors have determined that direct molten oxide electrolysis at temperatures of approx 1600 C is the most promising avenue for further development. Results from ongoing studies as well as those of previous workers will be presented. Topics include materials selection and testing, electrode stability, gas capture and analysis, and cell operation during feeding and tapping.

  13. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  14. A new class of solid oxide metal-air redox batteries for advanced stationary energy storage

    NASA Astrophysics Data System (ADS)

    Zhao, Xuan

    Cost-effective and large-scale energy storage technologies are a key enabler of grid modernization. Among energy storage technologies currently being researched, developed and deployed, rechargeable batteries are unique and important that can offer a myriad of advantages over the conventional large scale siting- and geography- constrained pumped-hydro and compressed-air energy storage systems. However, current rechargeable batteries still need many breakthroughs in material optimization and system design to become commercially viable for stationary energy storage. This PhD research project investigates the energy storage characteristics of a new class of rechargeable solid oxide metal-air redox batteries (SOMARBs) that combines a regenerative solid oxide fuel cell (RSOFC) and hydrogen chemical-looping component. The RSOFC serves as the "electrical functioning unit", alternating between the fuel cell and electrolysis mode to realize discharge and charge cycles, respectively, while the hydrogen chemical-looping component functions as an energy storage unit (ESU), performing electrical-chemical energy conversion in situ via a H2/H2O-mediated metal/metal oxide redox reaction. One of the distinctive features of the new battery from conventional storage batteries is the ESU that is physically separated from the electrodes of RSOFC, allowing it to freely expand and contract without impacting the mechanical integrity of the entire battery structure. This feature also allows an easy switch in the chemistry of this battery. The materials selection for ESU is critical to energy capacity, round-trip efficiency and cost effectiveness of the new battery. Me-MeOx redox couples with favorable thermodynamics and kinetics are highly preferable. The preliminary theoretical analysis suggests that Fe-based redox couples can be a promising candidate for operating at both high and low temperatures. Therefore, the Fe-based redox-couple systems have been selected as the baseline for this

  15. Metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    NASA Technical Reports Server (NTRS)

    Hart, Joan M.; Borghese, Joseph B.; Chang, Craig H.; Stonesifer, Greg T.

    1991-01-01

    Recent studies of Allied Signal metal oxide based absorbents demonstrated that these absorbents offer a unique capability to regeneratively remove both metabolic carbon dioxide and water vapor from breathing air; previously, metal oxides were considered only for the removal of CO2. The concurrent removal of CO2 and H2O vapor can simplify the astronaut Portable Life Support System (PLSS) by combining the CO2 and humidity control functions into one regenerative component. The use of metal oxide absorbents for removal of both CO2 ad H2O vapor in the PLSS is the focus of an ongoing program. The full scale Metal Oxide Carbon dioxide and Humidity Remover (MOCHR) and regeneration unit is described.

  16. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  17. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  18. Channel Strain in Advanced Complementary Metal-Oxide-Semiconductor Field Effect Transistors Measured Using Nano-Beam Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Toda, Akio; Nakamura, Hidetatsu; Fukai, Toshinori; Ikarashi, Nobuyuki

    2008-04-01

    Using high-precision nano-beam electron diffraction (NBD), we clarified the influences of stress liner and the stress of shallow trench isolation on channel strain in advanced metal-oxide-semiconductor field effect transistors (MOSFETs). For systematic strain measurements, we improved the precision of NBD by observing large reciprocal lattice vectors under appropriate diffraction conditions. The absolute value of the channel strain increases by stress liner as gate length decreases, although the drive current increase due to stress liner saturates at a shorter channel length. The normal strain in the gate length direction is inversely proportional to the distance from the gate electrode to the shallow trench isolation (STI). Furthermore, the relationship between measured channel strain induced by STI and drive current change was shown. The drive current of n- and p-MOSFET changes about 5% with 2×10-3 channel strain variation. This result suggests that reducing the shallow trench isolation stress is effective for controlling the drive current change, depending on the active region layout. We conclude that the experimental measurement of channel strain is necessary for device and circuit design.

  19. Monolithic metal oxide transistors.

    PubMed

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics. PMID:25777338

  20. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  1. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  2. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  3. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  4. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    . Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  5. Novel Photocatalytic Metal Oxides

    SciTech Connect

    Smith, Robert W.; Mei, Wai-Ning; Sabirianov, Renat; Wang, Lu

    2012-08-31

    The principal short-term objective is to develop improved solid-state photocatalysts for the decomposition of water into hydrogen gas using ultraviolet and visible solar radiation. We will pursue our objective by modeling candidate metal oxides through computer simulations followed by synthesis of promising candidates. We will characterize samples through standard experimental techniques. The long-term objective is to provide a more efficient source of hydrogen gas for fixed-site hydrogen fuel cells, particularly for energy users in remote locations.

  6. ADVANCED OXIDATION PROCESS

    SciTech Connect

    Dr. Colin P. Horwitz; Dr. Terrence J. Collins

    2003-11-04

    The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

  7. Metal oxides for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Yu, Xinge; Marks, Tobin J.; Facchetti, Antonio

    2016-04-01

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

  8. Metal oxides for optoelectronic applications.

    PubMed

    Yu, Xinge; Marks, Tobin J; Facchetti, Antonio

    2016-04-01

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories. PMID:27005918

  9. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    DOEpatents

    Quinby, Thomas C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.

  10. ADVANCED OXIDATION PROCESS

    SciTech Connect

    Colin P. Horwitz; Terrence J. Collins

    2003-10-22

    The design of new, high efficiency and cleaner burning engines is strongly coupled with the removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from fuels. Oxidative desulfurization (ODS) wherein these dibenzothiophene derivatives are oxidized to their corresponding sulfoxides and sulfones is an approach that has gained significant attention. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) convert in a catalytic process dibenzothiophene and its derivatives to the corresponding sulfoxides and sulfones rapidly at moderate temperatures (60 C) and ambient pressure. The reaction can be performed in both an aqueous system containing an alcohol (methanol, ethanol, or t-butanol) to solubilize the DBT and in a two-phase hydrocarbon/aqueous system where the alcohol is present in both phases and facilitates the oxidation. Under a consistent set of conditions using the FeBF{sub 2} TAML activator, the degree of conversion was found to be t-butanol > methanol > ethanol. In the cases of methanol and ethanol, both the sulfoxide and sulfone were observed while for t-butanol only the sulfone was detected. In the two-phase system, the alcohol may function as an inverse phase transfer agent. The oxidation was carried out using two different TAML activators. In homogeneous solution, approximately 90% oxidation of the DBT could be achieved using the prototype TAML activator, FeB*, by sonicating the solution at near room temperature. In bi-phasic systems conversions as high as 50% were achieved using the FeB* TAML activator and hydrogen peroxide at 100 C. The sonication method yielded only {approx}6% conversion but this may have been due to mixing.

  11. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  12. METAL OXIDE NANOPARTICLES

    SciTech Connect

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  13. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  14. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  15. Process for fabrication of metal oxide films

    SciTech Connect

    Tracy, C.E.; Benson, D.; Svensson, S.

    1990-07-17

    This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

  16. SINTERING METAL OXIDES

    DOEpatents

    Roake, W.E.

    1960-09-13

    A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.

  17. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  18. The synergistic effect of inert oxide and metal fluoride dual coatings on advanced cathode materials for lithium ion battery applications.

    PubMed

    Park, Kwangjin; Lee, Byoung-Sun; Park, Jun-Ho; Hong, Suk-Gi

    2016-06-21

    The effect of Al2O3/LiF dual coatings on the electrochemical performance of over-lithiated layered oxide (OLO) has been investigated. A uniform coating of Al2O3 and LiF is obtained on the surface of the layered pristine material. The OLO with a dual Al2O3/LiF coating with a ratio of 1 : 1.5 exhibits excellent electrochemical performance. An initial discharge capacity of 265.66 mA h g(-1) is obtained at a C-rate of 0.1C. This capacity is approximately 15 mA h g(-1) higher than that of pristine OLO. The capacity retention (92.8% at the 50th cycle) is also comparable to that of pristine OLO (91.4% at the 50th cycle). Coating the cathode with a dual layer comprising Al2O3 and LiF leads to improved charging and discharging kinetics, and prevents direct contact between the cathode and the electrolyte. PMID:27233109

  19. Soft breakdown characteristics of ultralow-k time-dependent dielectric breakdown for advanced complementary metal-oxide semiconductor technologies

    NASA Astrophysics Data System (ADS)

    Chen, Fen; Shinosky, Michael

    2010-09-01

    During technology development, the study of ultralow-k (ULK) time-dependent dielectric breakdown (TDDB) is important for assuring robust reliability. As the technology advances, the increase in ULK leakage current noise level and reversible current change induced by soft breakdown (SBD) during stress has been observed. In this paper, the physical origin of SBD and reversible breakdown, and its correlation to conventional hard breakdowns (HBDs) were extensively studied. Based on constant voltage stress (CVS) and constant current stress (CCS) results, it was concluded that SBD in ULK is an intrinsic characteristic for ULK material, and all first breakdown events most likely are soft instead of hard. Therefore, a unified understanding of SBD and HBD for low-k TDDB was established. Furthermore, the post-SBD and HBD breakdown conduction characteristics were explored and their impacts on circuit operation were discussed. Based on current limited constant voltage stress studies, it was found that the power dissipation, not the stored energy, determined the severity of ULK dielectric breakdown, and the postbreakdown conduction properties. A percolation-threshold controlled, variable-range-hopping (VRH) model was proposed to explain all postbreakdown aspects of SBD and HBD of ULK material.

  20. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  1. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  2. Method for plating with metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  3. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  4. Fundamentals of metal oxide catalysis

    NASA Astrophysics Data System (ADS)

    Nair, Hari

    The properties of metal oxide catalysts and hence, catalytic activity are highly dependent on the composition and structure of these oxides. This dissertation has 3 parts -- all directed towards understanding relationships between structure, composition and activity in metal oxide catalysts. The first part of this dissertation focuses on supported metal oxide catalysts of tungsten, vanadium and molybdenum. Mechanisms are proposed for ethanol oxidative dehydrogenation which is used to probe the acidity and reducibility of these oxide catalysts. These studies are then used to develop a novel method to quantify active redox sites and determine the nature of the active site on these catalysts -- our results show that the intrinsic redox turn-over frequency is independent of the nature of the metal oxide and its loading and that the actual rate obtained over an oxide is only a function of the number of removable oxygen atoms linking the metal to the support. The extension of Ultraviolet-visible Diffuse Reflectance Spectroscopy (UV-vis DRS) to the study of active oxide domains in binary oxide catalysts is demonstrated for distinguishing between interacting and non-interacting domains in binary MoO x-WOx catalysts on alumina. We show also how the rigorous analysis of pre-edge features, absorption white-line intensity and the full width at half maximum of the white-line in X-ray Absorption Spectra provide determinants for metal atom coordination and domain size in supported metal oxide catalysts. The second part of this work looks at effects of structure variations on the activity of polyoxometalate catalysts that are promising for the production of Methacrylic Acid from Isobutane. The use of these catalysts is limited by structural changes that impact their performance -- an "activation" period is required before the catalysts become active for methacrylic acid production and structural changes also lead to degradation of the catalyst, which are also seen during thermal

  5. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  6. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  7. Method for preparing hollow metal oxide microsphere

    DOEpatents

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  8. An in situ oxidation route to fabricate graphene nanoplate-metal oxide composites

    SciTech Connect

    Chen Sheng; Zhu Junwu; Wang Xin

    2011-06-15

    We report our studies on an improved soft chemical route to directly fabricate graphene nanoplate-metal oxide (Ag{sub 2}O, Co{sub 3}O{sub 4}, Cu{sub 2}O and ZnO) composites from the in situ oxidation of graphene nanoplates. By virtue of H{sup +} from hydrolysis of the metal nitrate aqueous solution and NO{sub 3}{sup -}, only a small amount of functional groups were introduced, acting as anchor sites and consequently forming the graphene nanoplate-metal oxide composites. The main advantages of this approach are that it does not require cumbersome oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree. The microstructures of as-obtained metal oxides on graphene nanoplates can be dramatically controlled by changing the reaction parameters, opening up the possibility for processing the optical and electrochemical properties of the graphene-based nanocomposites. - graphical abstract: An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites is reported from the in situ oxidation of graphene nanoplates. Highlights: > An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites. > The microstructures can be controlled by changing the reaction parameters. > It does not require oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree.

  9. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis.

    PubMed

    Pal, Jaya; Pal, Tarasankar

    2015-09-14

    The review addresses new advances in metal, bimetallic, metal oxide, and composite particles in their nanoregime for facet-selective catalytic applications. The synthesis and growth mechanisms of the particles have been summarized in brief in this review with a view to develop critical examination of the faceted morphology of the particles for catalysis. The size, shape and composition of the particles have been found to be largely irrelevant in comparison to the nature of facets in catalysis. Thus selective high- and low-index facets have been found to selectively promote adsorption, which eventually leads to an effective catalytic reaction. As a consequence, a high density of atoms rest at the corners, steps, stages, kinks etc on the catalyst surface in order to host the adsorbate efficiently and catalyze the reaction. Again, surface atomic arrangement and bond length have been found to play a dominant role in adsorption, leading to effective catalysis. PMID:26255749

  10. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis

    NASA Astrophysics Data System (ADS)

    Pal, Jaya; Pal, Tarasankar

    2015-08-01

    The review addresses new advances in metal, bimetallic, metal oxide, and composite particles in their nanoregime for facet-selective catalytic applications. The synthesis and growth mechanisms of the particles have been summarized in brief in this review with a view to develop critical examination of the faceted morphology of the particles for catalysis. The size, shape and composition of the particles have been found to be largely irrelevant in comparison to the nature of facets in catalysis. Thus selective high- and low-index facets have been found to selectively promote adsorption, which eventually leads to an effective catalytic reaction. As a consequence, a high density of atoms rest at the corners, steps, stages, kinks etc on the catalyst surface in order to host the adsorbate efficiently and catalyze the reaction. Again, surface atomic arrangement and bond length have been found to play a dominant role in adsorption, leading to effective catalysis.

  11. Preparing oxidizer coated metal fuel particles

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Simmons, G. M. (Inventor)

    1974-01-01

    A solid propellant composition of improved efficiency is described which includes an oxidizer containing ammonium perchlorate, and a powered metal fuel, preferably aluminum or beryllium, in the form of a composite. The metal fuel is contained in the crystalline lattice framework of the oxidizer, as well as within the oxidizer particles, and is disposed in the interstices between the oxidizer particles of the composition. The propellant composition is produced by a process comprising the crystallization of ammonium perchlorate in water, in the presence of finely divided aluminum or beryllium. A suitable binder is incorporated in the propellant composition to bind the individual particles of metal with the particles of oxidizer containing occluded metal.

  12. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  13. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  14. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  15. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan; Mendoza, Daniel; Chen, Chun-Ku

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  16. Recent advances of lanthanum-based perovskite oxides for catalysis

    SciTech Connect

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.

  17. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGESBeta

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  18. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  19. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes.

    PubMed

    Jiang, Hao; Ma, Jan; Li, Chunzhong

    2012-08-01

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed. PMID:23030034

  20. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  1. Nanoionic switching in metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Ielmini, Daniele

    2013-03-01

    Ion migration in oxide nanostructures is a key process in information storage technologies, where the logic data are stored as nanoscale conductive filaments. Due to the inherently nanoscale size of the ionic switching location (few cubic nanometers), the local electric field and current density induce extremely high temperatures as a result of Joule heating. To develop and design advanced nanoionic materials and devices with improved performance and reliability, the ion migration phenomena in metal oxides must be carefully understood and modeled. This talk will address the modeling of ionic migration and the consequent switching in HfOx layers of RRAM devices. The model solves drift/diffusion equations for thermally-activated hopping of positive ion, such as oxygen vacancies (VO+)and metal cations (Hf+) , in presence of intense Joule heating and electric field. The impact of the ion distribution on the local conductivity is described physics-based models of defect-assisted electronic conduction in semiconductors. Microscopic parameters, such as the energy barrier for ion hopping, are directly inferred from the experimental switching kinetics at variable voltages. The simulation results picture the filament growth/depletion with time and account for the observed switching characteristics, such as the progressive opening of a depleted gap and the possibility of electrode-to-electrode migration of ions. Finally, new phenomena, such as switching variability at atomic-size filaments and stress-induced symmetric switching, will be discussed.

  2. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  3. Photodegradation of chlorofluorocarbon alternatives on metal oxide

    SciTech Connect

    Tanaka, K.; Hisanaga, T. )

    1994-05-01

    HCFC and HFC were photodegraded on metal oxides. Degradation rate on several metal oxides was in the order: TiO[sub 2] > ZnO > Fe[sub 2]O[sub 3] > kaolin [ge] SiO[sub 2] [ge] Al[sub 2]O[sub 3]. Principal degradation products were CO[sub 2], Cl[sup [minus

  4. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  5. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  6. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  7. Interaction of nanostructured metal overlayers with oxide surfaces

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Wagner, Thomas

    2007-11-01

    Interactions between metals and oxides are key factors to determine the performance of metal/oxide heterojunctions, particularly in nanotechnology, where the miniaturization of devices down to the nanoregime leads to an enormous increase in the density of interfaces. One central issue of concern in engineering metal/oxide interfaces is to understand and control the interactions which consist of two fundamental aspects: (i) interfacial charge redistribution — electronic interaction, and (ii) interfacial atom transport — chemical interaction. The present paper focuses on recent advances in both electronic and atomic level understanding of the metal-oxide interactions at temperatures below 1000 ∘C, with special emphasis on model systems like ultrathin metal overlayers or metal nanoclusters supported on well-defined oxide surfaces. The important factors determining the metal-oxide interactions are provided. Guidelines are given in order to predict the interactions in such systems, and methods to desirably tune them are suggested. The review starts with a brief summary of the physics and chemistry of heterophase interface contacts. Basic concepts for quantifying the electronic interaction at metal/oxide interfaces are compared to well-developed contact theories and calculation methods. The chemical interaction between metals and oxides, i.e., the interface chemical reaction, is described in terms of its thermodynamics and kinetics. We review the different chemical driving forces and the influence of kinetics on interface reactions, proposing a strong interplay between the chemical interaction and electronic interaction, which is decisive for the final interfacial reactivity. In addition, a brief review of solid-gas interface reactions (oxidation of metal surfaces and etching of semiconductor surfaces) is given, in addition to a comparison of a similar mechanism dominating in solid-solid and solid-gas interface reactions. The main body of the paper reviews

  8. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  9. Oxidation of advanced steam turbine alloys

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  10. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  11. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  12. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  13. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  14. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  15. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  16. Metal Nitrite: A Powerful Oxidizing Reagent

    PubMed Central

    Baidya, Mahiuddin; Yamamoto, Hisashi

    2011-01-01

    An efficient and simple source of nitroso reagents and their oxidation reactions are described. The combination of a Lewis acid and a metal nitrite is applied to the oxidation of silyl enol ethers. Amino acid and peptide derivatives were easily accessed through in situ C-C bond cleavage of fully substituted silyl enol ethers upon oxidation. PMID:21830770

  17. Reinforcement of metals with advanced filamentary composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Davis, J. G.; Dexter, H. B.

    1974-01-01

    This paper reviews some recent applications of the concept of reinforcing metal structures with advanced filamentary composites, and presents some results of an experimental investigation of the tensile behavior of aluminum and titanium reinforced with unidirectional boron/epoxy. Results are given for tubular and flat specimens, bonded at either room temperature or elevated temperature. The composite reinforced metals showed increased stiffness over the all-metal counterpart, as predicted by the rule of mixtures, and the results were independent of specimen geometry. The tensile strength of the born/epoxy reinforced metals is shown to be a function of the geometry of the test specimen and the method of bonding the composite to the metal.

  18. Au/metal oxides for low temperature CO oxidation

    SciTech Connect

    Srinivas, G.; Wright, J.; Bai, C.S.; Cook, R.

    1996-12-31

    Oxidation of carbon monoxide is important for several operations including fuel cells and carbon dioxide lasers. Room temperature CO oxidation has been investigated on a series of Au/metal oxide catalysts at conditions typical of spacecraft atmospheres; CO = 50 ppm, CO{sub 2} = 7,000 ppm, H{sub 2}O = 40% (RH) at 25{degrees}C, balance = air, and gas hourly space velocities of 7,000-60,000 hr{sup -1}. The addition of Au increases the room temperature CO oxidation activity of the metal oxides dramatically. All the Au/metal oxides deactivate during the CO oxidation reaction, especially in the presence of CO{sub 2} in the feed. The stability of the Au/metal oxide catalysts decreases in the following order: TiO{sub 2} > Fe{sub 2}O{sub 3} > NiO > Co{sub 3}O{sub 4}. The stability appears to decrease with an increase in the basicity of the metal oxides. In situ FTIR of CO adsorption on Au/TiO{sub 2} at 25{degrees}C indicates the formation of adsorbed CO, carboxylate, and carbonate species on the catalyst surface.

  19. Processing and properties of advanced metallic foams

    NASA Astrophysics Data System (ADS)

    Brothers, Alan Harold

    Since the development of the first aluminum foams in the middle of the 20th century [178], great advances have been made in the processing and fundamental understanding of metallic foams. As a result of these advances, metallic foams are now penetrating a number of applications where their unique suite of properties makes them superior to solid materials, such as lightweight structures, packaging and impact protection, and filtration and catalysis [3]. The purpose of this work is to extend the use of metallic foams in such applications by expanding their processing to include more sophisticated base alloys and architectures. The first four chapters discuss replacement of conventional crystalline metal foams with ones made from high-strength, low-melting amorphous metals, a substitution that offers potential for achieving mechanical properties superior to those of the best crystalline metal foams, without sacrificing the simplicity of processing methods made for low-melting crystalline alloys. Three different amorphous metal foams are developed in these chapters, and their structures and properties characterized. It is shown for the first time that amorphous metal foams, due to stabilization of shear bands during bending of their small strut-like features, are capable of compressive ductility comparable to that of ductile crystalline metal foams. A two-fold improvement in mechanical energy absorption relative to crystalline aluminum foams is shown experimentally to result from this stabilization. The last two chapters discuss modifications in foam processing that are designed to introduce controllable and continuous gradients in local foam density, which should improve mass efficiency by mimicking the optimized structures found in natural cellular materials [64], as well as facilitate the bonding and joining of foams with solid materials in higher-order structures. Two new processing methods are developed, one based on replication of nonuniformly-compressed polymer

  20. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  1. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  2. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  3. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  4. Oxidation of alloys for advanced steam turbines

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  5. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  6. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  7. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  8. High surface area, electrically conductive nanocarbon-supported metal oxide

    SciTech Connect

    Worsley, Marcus A.; Han, Thomas Yong-Jin; Kuntz, Joshua D.; Cervantes, Octavio; Gash, Alexander E.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2015-07-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  9. High surface area, electrically conductive nanocarbon-supported metal oxide

    SciTech Connect

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  10. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  11. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  12. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  13. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  14. Method for making monolithic metal oxide aerogels

    SciTech Connect

    Coronado, P.R.

    1999-09-28

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  15. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  16. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  17. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  18. Dynamics and Control in Complex Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Averitt, R. D.

    2014-07-01

    Advances in the synthesis, growth, and characterization of complex transition metal oxides coupled with new experimental techniques in ultrafast optical spectroscopy have ushered in an exciting era of dynamics and control in these materials. Experiments utilizing femtosecond optical pulses can initiate and probe dynamics of the spin, lattice, orbital, and charge degrees of freedom. Major goals include (a) determining how interaction and competition between the relevant degrees of freedom determine macroscopic functionality in transition metal oxides (TMOs) and (b) searching for hidden phases in TMOs by controlling dynamic trajectories in a complex and pliable energy landscape. Advances in creating intense pulses from the far-IR spectrum through the visible spectrum enable mode-selective excitation to facilitate exploration of these possibilities. This review covers recent developments in this emerging field and presents examples that include the cuprates, manganites, and vanadates.

  19. Step-Edge Directed Metal Oxidation.

    PubMed

    Zhu, Qing; Saidi, Wissam A; Yang, Judith C

    2016-07-01

    Metal surface oxidation is governed by surface mass transport processes. Realistic surfaces have many defects such as step edges, which often dictate the oxide growth dynamics and result in novel oxide nanostructures. Here we present a comprehensive and systematic study of the oxidation of stepped (100), (110) and (111) Cu surfaces using a multiscale approach employing density functional theory (DFT) and reactive force field molecular dynamics (MD) simulations. We show that the early stages of oxidation of these stepped surfaces can be qualitatively understood from the potential energy surface of single oxygen adatoms, namely, adsorption energies and Ehrlich-Schwöbel barriers. These DFT predictions are then validated using classical MD simulations with a newly optimized ReaxFF force field. In turn, we show that the DFT results can be explained using a simple bond-counting argument that makes our results general and transferable to other metal surfaces. PMID:27299380

  20. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  1. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    PubMed

    Luc, Wesley; Jiao, Feng

    2016-07-19

    metal oxides with bimodal pore size distributions can be obtained. Combining nanocasting with chemical etching, a cobalt oxide with a hierarchical porous structure was synthesized, which possessed a surface area up to 250 m(2) g(-1), representing the highest surface area reported to date for nanoporous cobalt oxides. Lastly, this Account also covers the syntheses of nanoporous metal carbides and sulfides. The combination of in situ carburization and nanocasting enabled the syntheses of two ordered nanoporous metal carbides, Mo2C and W2C. For nanoporous metal sulfides, an "oxide-to-sulfide" synthetic strategy was proposed to address the large volume change issue of converting metal nitrate precursors to metal sulfide products in nanocasting. The successful syntheses of ordered nanoporous FeS2, CoS2, and NiS2 demonstrated the feasibility of the "oxide-to-sulfide" method. Concluding remarks include a summary of recent advances in the syntheses of nanoporous metal-based solids and a brief discussion of future opportunities in the hope of stimulating new interests and ideas. PMID:27294847

  2. Metal fires and their implications for advanced reactors.

    SciTech Connect

    Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean; Hewson, John C.; Blanchat, Thomas K.

    2010-10-01

    This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in these areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety

  3. The mechanism of electroforming of metal oxide memristive switches.

    PubMed

    Joshua Yang, J; Miao, Feng; Pickett, Matthew D; Ohlberg, Douglas A A; Stewart, Duncan R; Lau, Chun Ning; Williams, R Stanley

    2009-05-27

    Metal and semiconductor oxides are ubiquitous electronic materials. Normally insulating, oxides can change behavior under high electric fields--through 'electroforming' or 'breakdown'--critically affecting CMOS (complementary metal-oxide-semiconductor) logic, DRAM (dynamic random access memory) and flash memory, and tunnel barrier oxides. An initial irreversible electroforming process has been invariably required for obtaining metal oxide resistance switches, which may open urgently needed new avenues for advanced computer memory and logic circuits including ultra-dense non-volatile random access memory (NVRAM) and adaptive neuromorphic logic circuits. This electrical switching arises from the coupled motion of electrons and ions within the oxide material, as one of the first recognized examples of a memristor (memory-resistor) device, the fourth fundamental passive circuit element originally predicted in 1971 by Chua. A lack of device repeatability has limited technological implementation of oxide switches, however. Here we explain the nature of the oxide electroforming as an electro-reduction and vacancy creation process caused by high electric fields and enhanced by electrical Joule heating with direct experimental evidence. Oxygen vacancies are created and drift towards the cathode, forming localized conducting channels in the oxide. Simultaneously, O(2-) ions drift towards the anode where they evolve O(2) gas, causing physical deformation of the junction. The problematic gas eruption and physical deformation are mitigated by shrinking to the nanoscale and controlling the electroforming voltage polarity. Better yet, electroforming problems can be largely eliminated by engineering the device structure to remove 'bulk' oxide effects in favor of interface-controlled electronic switching. PMID:19423925

  4. Inverse Oxide/Metal Catalysts in Fundamental Studies and Practical Applications: A Perspective of Recent Developments.

    PubMed

    Rodriguez, José A; Liu, Ping; Graciani, Jesús; Senanayake, Sanjaya D; Grinter, David C; Stacchiola, Dario; Hrbek, Jan; Fernández-Sanz, Javier

    2016-07-01

    Inverse oxide/metal catalysts have shown to be excellent systems for studying the role of the oxide and oxide-metal interface in catalytic reactions. These systems can have special structural and catalytic properties due to strong oxide-metal interactions difficult to attain when depositing a metal on a regular oxide support. Oxide phases that are not seen or are metastable in a bulk oxide can become stable in an oxide/metal system opening the possibility for new chemical properties. Using these systems, it has been possible to explore fundamental properties of the metal-oxide interface (composition, structure, electronic state), which determine catalytic performance in the oxidation of CO, the water-gas shift and the hydrogenation of CO2 to methanol. Recently, there has been a significant advance in the preparation of oxide/metal catalysts for technical or industrial applications. One goal is to identify methods able to control in a precise way the size of the deposited oxide particles and their structure on the metal substrate. PMID:27327114

  5. Oxidation of Alloys for Advanced Steam Turbines

    SciTech Connect

    Holcomb, G.R.; Ziomek-Moroz, M.E.; Alman, D.E.

    2006-09-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam temperatures of up to 760°C. This research examines the steam oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

  6. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  7. Advances in Mechanisms of Anti-oxidation

    PubMed Central

    Ma, Qiang

    2016-01-01

    Reactive oxygen species (ROS) are a family of molecules that are continuously produced from oxygen consumption in aerobic cells. Controlled generation of ROS in normal cells serves useful purposes to regulate important cellular processes such as cell proliferation, inflammation, and immune response, but overproduction of ROS causes oxidative stress that contributes to the development of cancer, chronic disease, and aging. These hugely different consequences of ROS exposure demand a carefully balanced control of ROS production and disposition, which is largely achieved through the body’s elaborate antioxidant system. The human antioxidant system consists of small antioxidants, antioxidant proteins, ROS-metabolizing enzymes, as well as many regulator proteins that mediate adaptive responses to oxidant stress. How such a complex system reacts with oxidants and achieves the required specificity and sensitivity for proper anti-oxidation is incompletely understood. In this respect, new advances in the understanding of the chemistry that determines the reaction of a given oxidant or antioxidant with a protein target provide considerable insights into these and related questions. The findings hold certain promise for new drug development for preventing and treating diseases associated with oxidant tissue damage. PMID:24641954

  8. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  9. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  10. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  11. Electronic doping of transition metal oxide perovskites

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James M.

    2016-05-01

    CaFeO3 is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO3. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  12. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  13. Characterization of advanced oxidation regenerated GACs

    SciTech Connect

    Singh, J.; Cannon, F.S.

    1995-11-01

    Industrial and manufacturing processes that employ organic solvents, such as pharmaceutical production, spray booth coating applications, and petrochemical processing, constitute a major source of airborne volatile organic contaminants (VOCs) and hazardous air pollutants (HAPs). VOCs released into the atmosphere react with sunlight to create photochemical smog, oxidants and other pollutants, all of which are considered harmful to animal and plant life. There is thus a need for effective air pollution remediation technologies for such facilities. This paper explores the effects of regeneration by means of advanced oxidation involving UV and ozone, on several properties of granular activated carbons (GACs). The effects of reduction in surface areas and pore volumes, and surface oxidation due to this process of regeneration, on adsorption capacities of some model VOCs is investigated.

  14. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  15. Role of metal oxides in chemical evolution

    NASA Astrophysics Data System (ADS)

    Kamaluddin

    2013-06-01

    Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Formation of small molecules like amino acids, organic bases, sugar etc. could have occurred in the reducing atmosphere of the primitive Earth. Polymerization of these small molecules could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.

  16. Reduction of metal oxides through mechanochemical processing

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Senkov, Oleg N.

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  17. Oxidative decomposition of formaldehyde by metal oxides at room temperature

    NASA Astrophysics Data System (ADS)

    Sekine, Yoshika

    Formaldehyde (HCHO) is still a major indoor air pollutant in Japanese air-tight houses and is the subject of numerous complaints regarding health disorders. Authors have developed a passive-type air-cleaning material and an air cleaner using manganese oxide (77% MnO 2) as an active component and successfully reduced indoor HCHO concentrations in newly built multi-family houses. In this study, the reactivity between manganese oxide and HCHO was discussed. We tested the removal efficiencies of several metal oxides for HCHO in a static reaction vessel and found manganese oxide could react with HCHO and release carbon dioxide even at room temperature. The reactivity and mechanisms were discussed for the proposed chemical reactions. A mass balance study proved that a major product through the heterogeneous reaction between manganese oxide and HCHO was carbon dioxide. Harmful by-products (HCOOH and CO) were not found.

  18. Novel imazethapyr detoxification applying advanced oxidation processes.

    PubMed

    Stathis, Ioannis; Hela, Dimitra G; Scrano, Laura; Lelario, Filomena; Emanuele, Lucia; Bufo, Sabino A

    2011-01-01

    Different degradation methods have been applied to assess the suitability of advanced oxidation process (AOPs) to promote mineralization of imazethapyr [(RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)nicotinic acid], a widely used imidazolinone class herbicide, the persistence of which has been demonstrated in surface and ground waters destined to human uses. Independent of the oxidation process assessed, the decomposition of imazethapyr always followed a pseudo-first order kinetic. The direct UV-irradiation (UV) of the herbicide as well as its oxidation with ozone (O₃), and hydrogen peroxide tied to UV-irradiation (H₂O₂/UV) were sufficiently slow to permit the identification of intermediate products, the formation pathway of which has been proposed. Ozonation joined to UV-irradiation (O₃/UV), ozonation joined to titanium dioxide photo-catalysis (TiO₂/UV+O₃), sole photo-catalysis (TiO₂/UV), and photo-catalysis reinforced with hydrogen peroxide-oxidation (TiO₂/UV+H₂O₂) were characterized by a faster degradation and rapid formation of a lot of small molecules, which were quickly degraded to complete mineralization. The most effective oxidation methods were those using titanium dioxide photo-catalysis enhanced either by ozonation or hydrogen peroxide. Most of all, these last processes were useful to avoid the development of dangerous by-products. PMID:21726140

  19. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  20. Metal microstructures in advanced CMOS devices

    SciTech Connect

    Gignac, L.M.; Rodbell, K.P.

    1996-12-31

    As advanced semiconductor device features shrink, grain boundaries and interfaces become increasingly more important to the properties of thin metal film. With film thickness decreasing to the range of 10 nm and the corresponding features also decreasing to sub-micrometer sizes, interface and grain boundary properties become dominant. In this regime the details of the surface and grain boundaries dictate the interactions between film layers and the subsequent electrical properties. Therefore it is necessary to accurately characterize these materials on the proper length scale in order to first understand and then to improve the device effectiveness. In this talk we will examine the importance of microstructural characterization of thin metal films used in semiconductor devices and show how microstructure can influence the electrical performance. Specifically, we will review Co and Ti silicides for silicon contact and gate conductor applications, Ti/TiN liner films used for adhesion and diffusion barriers in chemical vapor deposited (CVD) tungsten vertical wiring (vias) and Ti/AlCu/Ti-TiN films used as planar interconnect metal lines.

  1. Multi-metal oxide ceramic nanomaterial

    DOEpatents

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  2. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    PubMed Central

    Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell

    2010-01-01

    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672

  3. Microbial-mediated method for metal oxide nanoparticle formation

    SciTech Connect

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  4. Complexity in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Dagotto, Elbio; Alvarez, Gonzalo; Moreo, Adriana

    2004-03-01

    Recent computational results in the context of models for manganites and cuprates will be briefly discussed. It is argued that correlations in quenched disorder -- needed to mimic cooperative Jahn-Teller effects -- are important to have colossal magnetoresistance in 3D. A related recently discussed metal-insulator transition induced by disorder in a one-orbital model with cooperative phonons is intuitively explained [1]. In addition, it is argued that colossal effects should be far more common than currently known, and they may appear in cuprate superconductors as well [2]. [1] J. Burgy et al., cond-mat/0308456; C. Sen, G. Alvarez, and E. Dagotto, preprint. [2] See also Adriana Moreo, invited talk, March APS 04; G. Alvarez, M. Mayr et al., preprint.

  5. Method for producing nanostructured metal-oxides

    DOEpatents

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  6. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  7. Induced effects of advanced oxidation processes

    PubMed Central

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-01-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715

  8. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  9. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  10. Advanced Metal Foam Structures for Outer Space

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Johnson, William; Peker, Atakan

    2005-01-01

    A document discusses a proposal to use advanced materials especially bulk metallic glass (BMG) foams in structural components of spacecraft, lunar habitats, and the like. BMG foams, which are already used on Earth in some consumer products, are superior to conventional metal foams: BMG foams have exceptionally low mass densities and high strength-to-weight ratios and are more readily processable into strong, lightweight objects of various sizes and shapes. These and other attractive properties of BMG foams would be exploited, according to the proposal, to enable in situ processing of BMG foams for erecting and repairing panels, shells, containers, and other objects. The in situ processing could include (1) generation of BMG foams inside prefabricated deployable skins that would define the sizes and shapes of the objects thus formed and (2) thermoplastic deformation of BMG foams. Typically, the generation of BMG foams would involve mixtures of precursor chemicals that would be subjected to suitable pressure and temperature schedules. In addition to serving as structural components, objects containing or consisting of BMG foams could perform such functions as thermal management, shielding against radiation, and shielding against hypervelocity impacts of micrometeors and small debris particles.

  11. Polymorphism Control in Nanostructured Metal Oxides

    NASA Astrophysics Data System (ADS)

    Sood, Shantanu

    Polymorphic phase transformations are common to all nanocrystalline binary metal oxides. The polymorphic nature of such metal oxides makes available a large number of phases with differing crystal structures, each stable under certain conditions of temperature, pressure, and/or particle size. These different crystal structures translate to unique physical and chemical properties for each structural class of polymorphs. Thus predicting when polymorphic phase transitions are likely to occur becomes important to the synthesis of stable functional materials with desired properties. Theoretical calculations using a heuristic approach have resulted in an accurate estimation of the critical particle size predicting metastable to stable phase transitions. This formula is applied to different case studies: for anatase to rutile titania; gamma-Alumina to alpha-Alumina; and tetragonal to monoclinic zirconia. The theoretical values calculated have been seen to be very close to the experimental results from the literature. Manifestation of the effect of phase transitions in nanostructured metal oxides was provided in the study of metastable to stable phase transitions in WO3. Nanowires of tungsten trioxide have been synthesized in-situ inside an electron microscope. Such structure of tungsten trioxide result due to a metastable to stable phase transformation, from the cubic to the monoclinic phase. The transformation is massive and complete. The structures formed are unique one-dimensional nanowires. Such a method can be scaled inside any equipment equipped with an electron gun, for example lithography systems either using STEM or E-beam lithography. Another study on nanowire formation in binary metal oxides involved the synthesis of stable orthorhombic MoO3 by means of blend electrospinning. Both a traditional single jet electrospinning set up and a novel high-throughput process to get high aspect ratio nanowires. The latter is a jet-controlled and flow controlled

  12. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation.

    PubMed

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-01-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation. PMID:27030159

  13. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-03-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation.

  14. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    PubMed Central

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-01-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation. PMID:27030159

  15. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  16. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  17. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  18. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  19. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  20. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  1. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  2. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  3. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  4. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  5. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  6. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  7. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  8. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  9. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  10. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  11. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  12. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  13. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  14. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  15. Reactor vessel using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  16. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-03-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg-1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents.

  17. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    PubMed Central

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-01-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg−1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents. PMID:25761448

  18. Metal oxide nanoparticles with low toxicity.

    PubMed

    Ng, Alan Man Ching; Guo, Mu Yao; Leung, Yu Hang; Chan, Charis M N; Wong, Stella W Y; Yung, Mana M N; Ma, Angel P Y; Djurišić, Aleksandra B; Leung, Frederick C C; Leung, Kenneth M Y; Chan, Wai Kin; Lee, Hung Kay

    2015-10-01

    A number of different nanomaterials produced and incorporated into various products are rising. However, their environmental hazards are frequently unknown. Here we consider three different metal oxide compounds (SnO2, In2O3, and Al2O3), which have not been extensively studied and are expected to have low toxicity. This study aimed to comprehensively characterize the physicochemical properties of these nanomaterials and investigate their toxicity on bacteria (Escherichia coli) under UV illumination and in the dark, as well as on a marine diatom (Skeletonema costatum) under ambient illumination/dark (16-8h) cycles. The material properties responsible for their low toxicity have been identified based on comprehensive experimental characterizations and comparison to a metal oxide exhibiting significant toxicity under illumination (anatase TiO2). The metal oxide materials investigated exhibited significant difference in surface properties and interaction with the living organisms. In order for a material to exhibit significant toxicity, it needs to be able to both form a stable suspension in the culture medium and to interact with the cell walls of the test organism. Our results indicated that the observed low toxicities of the three nanomaterials could be attributed to the limited interaction between the nanoparticles and cell walls of the test organisms. This could occur either due to the lack of significant attachment between nanoparticles and cell walls, or due to their tendency to aggregate in solution. PMID:26143160

  19. Hydrous metal oxide catalysts for oxidation of hydrocarbons

    SciTech Connect

    Miller, J.E.; Dosch, R.G.; McLaughlin, L.I.

    1993-07-01

    This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.

  20. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  1. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, Thomas M.; Poco, John F.; Hrubesh, Lawrence W.; Thomas, Ian M.

    1995-01-01

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  2. Removal of Metallic Iron on Oxide Slags

    NASA Astrophysics Data System (ADS)

    Shannon, George N.; Fruehan, R. J.; Sridhar, Seetharaman

    2009-10-01

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere ({p_{O2}} of approximately 10-4 atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400 °C and in 160 seconds at 1600 °C.

  3. Removal of metallic iron on oxide slags

    SciTech Connect

    Shannon, G.N.; Fruehan, R.J.; Sridhar, S.

    2009-10-15

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (pO{sub 2}) of approximately 10{sup -4} atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400{sup o}C and in 160 seconds at 1600{sup o}C.

  4. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  5. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

  6. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  7. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  8. Graphene oxide-based flexible metal-insulator-metal capacitors

    NASA Astrophysics Data System (ADS)

    Bag, A.; Hota, M. K.; Mallik, S.; Maiti, C. K.

    2013-05-01

    This work explores the fabrication of graphene oxide (GO)-based metal-insulator-metal (MIM) capacitors on flexible polyethylene terephthalate (PET) substrates. Electrical properties are studied in detail. A high capacitance density of ˜4 fF µm-2 measured at 1 MHz and permittivity of ˜6 have been obtained. A low voltage coefficient of capacitance, VCC-α, and a low dielectric loss tangent indicate the potential of GO-based MIM capacitors for RF applications. The constant voltage stressing study has shown a high reliability against degradation up to a projected period of 10 years. Degradation in capacitance of the devices on flexible substrates has been studied by bending radius down to 1 cm even up to 6000 times of repeated bending.

  9. Metal oxide semiconductors for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Thimsen, Elijah James

    The correlation between energy consumption and human development illustrates the importance of this societal resource. We will consume more energy in the future. In light of issues with the status quo, such as climate change, long-term supply and security, solar energy is an attractive source. It is plentiful, virtually inexhaustible, and can provide more than enough energy to power society. However, the issue with producing electricity and fuels from solar energy is that it is expensive, primarily from the materials (silicon) used in building the cells. Metal oxide semiconductors are an attractive class of materials that are extremely low cost and can be produced at the scale needed to meet widespread demand. An industrially attractive thin film synthesis process based on aerosol deposition was developed that relies on self-assembly to afford rational control over critical materials parameters such as film morphology and nanostructure. The film morphology and nanostructure were found to have dramatic effects on the performance of TiO2-based photovoltaic dye-sensitized solar cells. Taking a cue from nature, to overcome the spatial and temporal mismatch between the supply of sunlight and demand for energy consumption, it is desirable to produce solar fuels such as hydrogen from photoelectrochemical water splitting. The source of water is important---seawater is attractive. The fundamental reaction mechanism for TiO2-based cells is discussed in the context of seawater splitting. There are two primary issues with producing hydrogen by photoelectrochemical water splitting using metal-oxide semiconductors: visible light activity and spontaneous activity. To address the light absorption issue, a combined theory-experiment approach was taken to understand the fundamental role of chemical composition in determining the visible light absorption properties of mixed metal-oxide semiconductors. To address the spontaneous activity issue, self-biasing all oxide p/n bulk

  10. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-01

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga2O3, In2O3, and SnO2 on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga2O, In2O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO2, somewhat lower for In2O3, and the lowest for Ga2O3. Our findings can be generalized to further oxides that possess related sub-oxides.

  11. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    SciTech Connect

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-23

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga{sub 2}O{sub 3}, In{sub 2}O{sub 3}, and SnO{sub 2} on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga{sub 2}O, In{sub 2}O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO{sub 2}, somewhat lower for In{sub 2}O{sub 3}, and the lowest for Ga{sub 2}O{sub 3}. Our findings can be generalized to further oxides that possess related sub-oxides.

  12. Sorption mechanisms of metals to graphene oxide

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Duster, Thomas A.; Szymanowski, Jennifer E. S.; Na, Chongzheng; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    Environmental toxic metal contamination remediation and prevention is an ongoing issue. Graphene oxide is highly sorptive for many heavy metals over a wide pH range under different ionic strength conditions. We present x-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Pb(II), Cd(II) and U(VI) ions onto multi-layered graphene oxide (MLGO). Analysis indicates that the dominant sorption mechanism of Pb to MLGO changes as a function of pH, with increasing inner sphere contribution as pH increases. In contrast, the sorption mechanism of Cd to MLGO remains constant under the studied pH range. This adsorption mechanism is an electrostatic attraction between the hydrated Cd+2 ion and the MLGO surface. The U(VI), present as the uranyl ion, changes only subtly as a function of pH and is bound to the surface via an inner sphere bond. Knowledge of the binding mechanism for each metal is necessary to help in optimizing environmental remediation or prevention in filtration systems.

  13. Thermally stable crystalline mesoporous metal oxides with substantially uniform pores

    SciTech Connect

    Wiesner, Ulrich; Orilall, Mahendra Christopher; Lee, Jinwoo; DiSalvo, Jr., Francis J

    2015-01-27

    Highly crystalline metal oxide-carbon composites, as precursors to thermally stable mesoporous metal oxides, are coated with a layer of amorphous carbon. Using a `one-pot` method, highly crystalline metal oxide-carbon composites are converted to thermally stable mesoporous metal oxides, having highly crystalline mesopore walls, without causing the concomitant collapse of the mesostructure. The `one-pot` method uses block copolymers with an sp or sp 2 hybridized carbon containing hydrophobic block as structure directing agents which converts to a sturdy, amorphous carbon material under appropriate heating conditions, providing an in-situ rigid support which maintains the pores of the oxides intact while crystallizing at temperatures as high as 1000 deg C. A highly crystalline metal oxide-carbon composite can be heated to produce a thermally stable mesoporous metal oxide consisting of a single polymorph.

  14. Process for Producing Metal Compounds From Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be fiber processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  15. Process for Producing Metal Compounds from Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  16. Process for producing metal compounds from graphite oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  17. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan; Jia, Quanxi

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  18. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  19. Synthesis and electronic applications of oxide-metal eutectic composites

    SciTech Connect

    Holder, J.D.; Cochran, J.K.; Hill, D.N.; Chapman, A.T.; Clark, G.W.

    1980-01-01

    A review is given of important developments in the synthesis of oxide-metal eutectic composites and the composite application in the continuing development of field emitters. Known metal oxide-metal binary and ternary eutectic systems are listed. The synthesis, electrical conductivity, thermodynamics, and applications are discussed. (FS)

  20. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  1. Metallic oxide switches using thick film technology

    NASA Technical Reports Server (NTRS)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  2. Preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0

  3. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  4. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  5. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGESBeta

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; Naalla, Mahesh

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  6. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.

    PubMed

    Runnerstrom, Evan L; Bergerud, Amy; Agrawal, Ankit; Johns, Robert W; Dahlman, Clayton J; Singh, Ajay; Selbach, Sverre M; Milliron, Delia J

    2016-05-11

    Defects may tend to make crystals interesting but they do not always improve performance. In doped metal oxide nanocrystals with localized surface plasmon resonance (LSPR), aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons. Such electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near-field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, we report the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3). Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm(2)V(-1) s(-1) are measured optically, well above the optical mobility for tin-doped indium oxide (ITO) nanocrystals. We investigate the microscopic mechanisms underlying this enhanced mobility with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. From the absorption spectra of single Ce:In2O3 nanocrystals, we determine the dielectric function and by simulation predict strong near-field enhancement of mid-IR light, especially around the vertices of our synthesized nanocubes. PMID:27111427

  7. Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

    PubMed

    Ramaraju, Bendi; Li, Cheng-Hung; Prakash, Sengodu; Chen, Chia-Chun

    2016-01-18

    A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF. PMID:26587567

  8. Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements

    PubMed Central

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-01-01

    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices. PMID:24841244

  9. Method of making controlled morphology metal-oxides

    DOEpatents

    Ozcan, Soydan; Lu, Yuan

    2016-05-17

    A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor to metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.

  10. Advanced oxidation technologies for chemical demilitarization

    SciTech Connect

    Rosocha, L.A.; Korzekwa, R.A.; Monagle, M.; Coogan, J.J.; Tennant, R.A.; Brown, L.F.; Currier, R.P.

    1996-12-31

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. The main project objective was to establish a technical basis for future program development in the area of chemical warfare agent destruction using a Los Alamos-developed advanced oxidation process: a two-stage device consisting of thermal packed-bed reactor (PBR) and a nonthermal plasma (NTP) reactor. Various compounds were evaluated as potential surrogates for chemical warfare (CW) agents. Representative effluent mass balances were projected for future comparisons with incinerators. The design and construction of lab-scale PBR/NTP reactors (consisting of a liquid injection and metering system, electric furnace, condensers, chemical traps, plasma reactors, power supplies, and chemical diagnostics) has been completed. This equipment, the experience gained from chemical-processing experiments, process modeling, and an initial demonstration of the feasibility of closed-loop operation, have provided a technical basis for further demonstrations and program development efforts.

  11. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    SciTech Connect

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides.

  12. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  13. Laser Processing of Metal Oxides for Plasmonic Applications

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Breckenfeld, Eric; Charipar, Nicholas; Pique, Alberto

    Noble metals such as Au and Ag have been used traditionally for plasmonic devices. However, conventional metals are not suitable for near infrared (IR) plasmonic applications due to their relatively large optical losses at these wavelengths. Metal oxides, on the other hand, have been considered for low loss metallic components in the near IR because they can provide a tunable carrier density by doping. The zero-cross-over permittivity values of these metal oxides, for example, can easily be tuned from 1.0 µm to 3 µm by adjusting doping levels. Optical losses in devices made from these metal oxide materials are generally found to be much lower than those obtained with conventional metals. We have investigated various laser processing techniques for synthesizing several types of metal oxides. First, pulsed laser deposition was used to grow metal oxide thin films such as, Al-doped ZnO, Sn-doped In2O3 and VO2. Second, a laser sintering technique was used to improve the properties of solution-processed VO2 coatings. Third, a laser printing technique was used to produce metal oxide films. We will present details on the use of laser processing techniques for synthesizing these metal oxides along with their electrical, optical, and structural properties. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  14. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  15. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  16. Reactive metal-oxide interfaces: A microscopic view

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-03-01

    Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.

  17. Advanced Metals (Industrial Arts) Curriculum Guide. Bulletin 1750.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide contains materials for a 13-unit course in advanced metals, the second metals course in the industrial arts curriculum for grades 10-12. It is intended for use by industrial arts teachers, supervisors, counselors, administrators, and teacher educators. A two-page course overview provides a brief course description; indicates…

  18. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrorm, EL; Llordes, A; Milliron, DJ

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  19. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    NASA Astrophysics Data System (ADS)

    Torres Sevilla, G. A.; Almuslem, A. S.; Gumus, A.; Hussain, A. M.; Cruz, M. E.; Hussain, M. M.

    2016-02-01

    Thinned silicon based complementary metal oxide semiconductor (CMOS) electronics can be physically flexible. To overcome challenges of limited thinning and damaging of devices originated from back grinding process, we show sequential reactive ion etching of silicon with the assistance from soft polymeric materials to efficiently achieve thinned (40 μm) and flexible (1.5 cm bending radius) silicon based functional CMOS inverters with high-κ/metal gate transistors. Notable advances through this study shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using excimer laser. The impact of various mechanical bending and bending cycles show undeterred high performance of flexible silicon CMOS inverters. Future work will include transfer of diced silicon chips to destination site, interconnects, and packaging to obtain fully flexible electronic systems in CMOS compatible way.

  20. Prediction of electron energies in metal oxides.

    PubMed

    Walsh, Aron; Butler, Keith T

    2014-02-18

    The ability to predict energy levels in metal oxides is paramount to developinguseful materials, such as in the development of water photolysis catalysts and efficient photovoltaic cells. The binding energy of electrons in materials encompasses a wealth of information concerning their physicochemistry. The energies control the optical and electrical properties, dictating for which kinds of chemistry and physics a particular material is useful. Scientists have developed theories and models for electron energies in a variety of chemical systems over the past century. However, the prediction of quantitative energy levels in new materials remains a major challenge. This issue is of particular importance in metal oxide research, where novel chemistries have opened the possibility of a wide range of tailored systems with applications in important fields including light-emitting diodes, energy efficient glasses, and solar cells. In this Account, we discuss the application of atomistic modeling techniques, covering the spectrum from classical to quantum descriptions, to explore the alignment of electron energies between materials. We present a number of paradigmatic examples, including a series of oxides (ZnO, In2O3, and Cu2O). Such calculations allow the determination of a "band alignment diagram" between different materials and can facilitate the prediction of the optimal chemical composition of an oxide for use in a given application. Throughout this Account, we consider direct computational solutions in the context of heuristic models, which are used to relate the fundamental theory to experimental observations. We review a number of techniques that have been commonly applied in the study of electron energies in solids. These models have arisen from different answers to the same basic question, coming from solid-state chemistry and physics perspectives. We highlight common factors, as well as providing a critical appraisal of the strengths and weaknesses of each

  1. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed. PMID:26549729

  2. Task-specific ionic liquid for solubilizing metal oxides.

    PubMed

    Nockemann, Peter; Thijs, Ben; Pittois, Stijn; Thoen, Jan; Glorieux, Christ; Van Hecke, Kristof; Van Meervelt, Luc; Kirchner, Barbara; Binnemans, Koen

    2006-10-26

    Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations. PMID:17048916

  3. Lipid advanced glycosylation: pathway for lipid oxidation in vivo.

    PubMed Central

    Bucala, R; Makita, Z; Koschinsky, T; Cerami, A; Vlassara, H

    1993-01-01

    To address potential mechanisms for oxidative modification of lipids in vivo, we investigated the possibility that phospholipids react directly with glucose to form advanced glycosylation end products (AGEs) that then initiate lipid oxidation. Phospholipid-linked AGEs formed readily in vitro, mimicking the absorbance, fluorescence, and immunochemical properties of AGEs that result from advanced glycosylation of proteins. Oxidation of unsaturated fatty acid residues, as assessed by reactive aldehyde formation, occurred at a rate that paralleled the rate of lipid advanced glycosylation. Aminoguanidine, an agent that prevents protein advanced glycosylation, inhibited both lipid advanced glycosylation and oxidative modification. Incubation of low density lipoprotein (LDL) with glucose produced AGE moieties that were attached to both the lipid and the apoprotein components. Oxidized LDL formed concomitantly with AGE-modified LDL. Of significance, AGE ELISA analysis of LDL specimens isolated from diabetic individuals revealed increased levels of both apoprotein- and lipid-linked AGEs when compared to specimens obtained from normal, nondiabetic controls. Circulating levels of oxidized LDL were elevated in diabetic patients and correlated significantly with lipid AGE levels. These data support the concept that AGE oxidation plays an important and perhaps primary role in initiating lipid oxidation in vivo. PMID:8341651

  4. Synthesis and characterization of hierarchically porous metal, metal oxide, and carbon monoliths with highly ordered nanostructure

    NASA Astrophysics Data System (ADS)

    Grano, Amy Janine

    Hierarchically porous materials are of great interest in such applications as catalysis, separations, fuel cells, and advanced batteries. One such way of producing these materials is through the process of nanocasting, in which a sacrificial template is replicated and then removed to form a monolithic replica. This replica consists of mesopores, which can be ordered or disordered, and bicontinuous macropores, which allow flow throughout the length of the monolith. Hierarchically porous metal oxide and carbon monoliths with an ordered mesopores system are synthesized for the first time via nanocasting. These replicas were used as supports for the deposition of silver particles and the catalytic efficiency was evaluated. The ordered silica template used in producing these monoliths was also used for an in-situ TEM study involving metal nanocasting, and an observation of the destruction of the silica template during nanocasting made. Two new methods of removing the silica template were developed and applied to the synthesis of copper, nickel oxide, and zinc oxide monoliths. Finally, hollow fiber membrane monoliths were examined via x-ray tomography in an attempt to establish the presence of this structure throughout the monolith.

  5. Enhanced electrochemical supercapacitance of binder-free nanoporous ternary metal oxides/metal electrode.

    PubMed

    Gao, J J; Qiu, H-J; Wen, Y R; Chiang, F-K; Wang, Y

    2016-07-15

    Free-standing nanoporous Ni-Cu-Mn mixed metal oxides on metal with a high surface area was fabricated by chemically dealloying a Ni8Cu12Mn80 single-phase precursor, followed by electrochemical oxidation in an alkaline solution. Electrochemical analysis shows that first Cu and Mn-based metal oxides formed by the electrochemical oxidation. Ni-based oxides grow later with the increase of electrochemical CV cycles and mix with the Cu/Mn oxides, forming a relatively stable mixed metal oxides thin film on metal ligament network. Due to the different electrochemical properties of each metal and the synergetic effect between them, the mixed ternary metal oxides formed on metal nano-ligament can operate stably between a wide potential window (1.5V) in 1.0M KOH aqueous solution when tested as a free-standing supercapacitor electrode. Due to the high volumetric surface area, wide operating potential window and excellent conductivity, the nanoporous metal oxides@metal composite exhibits a high volumetric capacitance (∼500Fcm(-3)), high energy density (∼38mWhcm(-3)) and good cycling stability. PMID:27089016

  6. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue.

    PubMed

    Chen, Jie; Feng, Jiangtao; Yan, Wei

    2016-08-01

    In this paper, the pure PPy and PPy/metal oxide composites including PPy/SiO2, PPy/Al2O3, and PPy/Fe3O4 as well as PPy coated commercial SiO2 and Al2O3 (PPy/SiO2(C) and PPy/Al2O3(C)) were successfully synthetized via chemical oxidative polymerization in acid aqueous medium to investigate the influence of metal oxides on adsorption capacity and their adsorption characteristics for Methylene Blue (MB). The composites were characterized by Zeta potential analysis, BET analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The results indicate that the metal oxides have great impact on textural properties, morphology, Zeta potential and PPy polymerization on their surface, further influence the adsorption capacity of their composites. The PPy/Al2O3(C) composite owns the highest specific surface area, rougher surface and most PPy content, and show the highest monolayer adsorption capacity reaching 134.77mg/g. In the adsorption characteristic studies, isotherm investigation shows an affinity order of PPy/metal oxides of PPy/Al2O3(C)>PPy/Al2O3>PPy/SiO2(C)>PPy/SiO2>PPy/Fe3O4>PPy, stating the affinity between PPy and MB was greatly improved by metal oxide, and Al2O3 owns high affinity for MB, followed by SiO2 and Fe3O4. Kinetic data of the composites selected (PPy/SiO2(C), PPy/Al2O3(C) and PPy/Fe3O4) were described more appropriately by the pseudo-second-order model, and the order of K2 is PPy/Al2O3>PPy/SiO2>PPy/Fe3O4, further showing a fast adsorption and good affinity of PPy/Al2O3(C) for MB. The regeneration method by HCl-elution and NaOH-activation was available, and the composites selected still owned good adsorption and desorption efficiency after six adsorption-desorption cycles. PMID:27149689

  7. Polarization-Mediated Thermal Stability of Metal/Oxide Heterointerface.

    PubMed

    Zhang, Qintong; You, Lu; Shen, Xi; Wan, Caihua; Yuan, Zhonghui; Zhang, Xuan; Huang, Li; Kong, Wenjie; Wu, Hao; Yu, Richeng; Wang, Junling; Han, Xiufeng

    2015-11-18

    A polarization-mediated heterointerface is designed to research the thermal stability of magnetic metal/oxide interfaces. Using polarization engineering, the thermal stability of the interface between BiFeO3 and CoFeB can be improved by about 100°C. This finding provides new insight into the chemistry of the metal/oxide heterointerface. PMID:26421975

  8. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  9. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  10. Oxidation and electrical conductivity of metal chain dioximes

    NASA Astrophysics Data System (ADS)

    Oza, A. T.

    1993-08-01

    Metal chain dioximes having uninterrupted metal chain systems were prepared and oxidized with halogens. Resistivities were found to be lowered because of oxidation. Two new complexes, phenathra-quinone-dioxime and ClS2 substituted Ni(Hdmg)2 [Ni(dad)2], were also prepared. A.c. resistivities were also measured.

  11. Laser-assisted formation of metallic oxide microtubes

    SciTech Connect

    Nanai, L.; George, T.F.

    1997-01-01

    The fabrication of metallic oxide microtubes is possible directly, without any support structure, by continuous wave infrared laser-assisted oxidation of the metal in air. The particular case presented is the growth of tube-like vanadium pentoxide microcrystals grown in our laboratories. {copyright} {ital 1997 Materials Research Society.}

  12. Laboratory studies of refractory metal oxide smokes

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Nelson, R. N.; Donn, Bertram

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs.

  13. ADVANCED OXIDATION PROCESSES (AOP'S FOR THE TREATMENT OF CCL CHEMICALS

    EPA Science Inventory

    Research on treatment of Contaminant Candidate List (CCL) chemicals is being conducted. Specific groups of contaminants on the CCL will be evaluated using numerous advanced oxidation processes (AOPs). Initially, these CCL contaminants will be evaluated in groups based on chemical...

  14. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    EPA Science Inventory

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  15. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  16. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  17. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points.

    PubMed

    Kou, Rong; Shao, Yuyan; Mei, Donghai; Nie, Zimin; Wang, Donghai; Wang, Chongmin; Viswanathan, Vilayanur V; Park, Sehkyu; Aksay, Ilhan A; Lin, Yuehe; Wang, Yong; Liu, Jun

    2011-03-01

    Carbon-supported precious metal catalysts are widely used in heterogeneous catalysis and electrocatalysis, and enhancement of catalyst dispersion and stability by controlling the interfacial structure is highly desired. Here we report a new method to deposit metal oxides and metal nanoparticles on graphene and form stable metal-metal oxide-graphene triple junctions for electrocatalysis applications. We first synthesize indium tin oxide (ITO) nanocrystals directly on functionalized graphene sheets, forming an ITO-graphene hybrid. Platinum nanoparticles are then deposited, forming a unique triple-junction structure (Pt-ITO-graphene). Our experimental work and periodic density functional theory (DFT) calculations show that the supported Pt nanoparticles are more stable at the Pt-ITO-graphene triple junctions. Furthermore, DFT calculations suggest that the defects and functional groups on graphene also play an important role in stabilizing the catalysts. These new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity. PMID:21302925

  18. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.

    PubMed

    Jeong, Gyoung Hwa; Baek, Seungmin; Lee, Seungyeol; Kim, Sang-Wook

    2016-04-01

    Graphene composites with metal or metal oxide nanoparticles have been extensively investigated owing to their potential applications in the fields of fuel cells, batteries, sensing, solar cells, and catalysis. Among them, much research has focused on supercapacitor applications and have come close to realization. Composites include monometal oxides of cobalt, nickel, manganese, and iron, as well as their binary and ternary oxides. In addition, their morphological control and hybrid systems of carbon nanotubes have also been investigated. This review presents the current trends in research on metal oxide/graphene composites for supercapacitors. Furthermore, methods are suggested to improve the properties of electrochemical capacitor electrodes. PMID:27061763

  19. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  20. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  1. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices

    PubMed Central

    Comini, Elisabetta

    2013-01-01

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436

  2. Integration of metal oxide nanowires in flexible gas sensing devices.

    PubMed

    Comini, Elisabetta

    2013-01-01

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436

  3. The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1979-01-01

    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.

  4. Exciton-Plasmon Coupling Enhancement via Metal Oxidation.

    PubMed

    Todisco, Francesco; D'Agostino, Stefania; Esposito, Marco; Fernández-Domínguez, Antonio I; De Giorgi, Milena; Ballarini, Dario; Dominici, Lorenzo; Tarantini, Iolena; Cuscuná, Massimo; Della Sala, Fabio; Gigli, Giuseppe; Sanvitto, Daniele

    2015-10-27

    In this paper, we report on the effect of metal oxidation on strong coupling interactions between silver nanostructures and a J-aggregated cyanine dye. We show that metal oxidation can sensibly affect the plexcitonic system, inducing a change in the coupling strength. In particular, we demonstrate that the presence of oxide prevents the appearance of Rabi splitting in the extinction spectra for thick spacers. In contrast, below a threshold percentage, the oxide layer results in an higher coupling strength between the plasmon and the Frenkel exciton. Contrary to common belief, a thin oxide layer seems thus to act, under certain conditions, as a coupling mediator between an emitter and a localized surface plasmon excited in a metallic nanostructure. This suggests that metal oxidation can be exploited as a means to enhance light-matter interactions in strong coupling applications. PMID:26378956

  5. Popping of graphite oxide: application in preparing metal nanoparticle catalysts.

    PubMed

    Gao, Yongjun; Chen, Xi; Zhang, Jiaguang; Asakura, Hiroyuki; Tanaka, Tsunehiro; Teramura, Kentaro; Ma, Ding; Yan, Ning

    2015-08-26

    A popcorn-like transformation of graphite oxide (GO) is reported and used to synthesize metal nanoparticle catalysts. The popping step is unique and essential, not only generating a high-surface-area support but also partially decomposing the metal precursors to form well-separated metal oxide nuclei, which would further evolve into highly dispersed and uniform-sized nanoparticles in the subsequent reduction. PMID:26179983

  6. Oxidation-Reduction Resistance of Advanced Copper Alloys

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.; Humphrey, D. L.; Setlock, J. A.

    2003-01-01

    Resistance to oxidation and blanching is a key issue for advanced copper alloys under development for NASA's next generation of reusable launch vehicles. Candidate alloys, including dispersion-strengthened Cu-Cr-Nb, solution-strengthened Cu-Ag-Zr, and ODS Cu-Al2O3, are being evaluated for oxidation resistance by static TGA exposures in low-p(O2) and cyclic oxidation in air, and by cyclic oxidation-reduction exposures (using air for oxidation and CO/CO2 or H2/Ar for reduction) to simulate expected service environments. The test protocol and results are presented.

  7. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  8. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  9. Metal-oxide-semiconductor photocapacitor for sensing surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Khalilzade-Rezaie, Farnood; Peale, Robert E.; Panjwani, Deep; Smith, Christian W.; Nath, Janardan; Lodge, Michael; Ishigami, Masa; Nader, Nima; Vangala, Shiva; Yannuzzi, Mark; Cleary, Justin W.

    2015-09-01

    An electronic detector of surface plasmon polaritons (SPP) is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-semiconductor capacitor. Semitransparent metal and graphene gates function similarly. We report the dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing.

  10. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  11. Advanced Metallic Thermal Protection System Development

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.; Chen, R. R.; Schmidt, I. H.; Dorsey, J. T.; Poteet, C. C.; Bird, R. K.

    2002-01-01

    A new Adaptable, Robust, Metallic, Operable, Reusable (ARMOR) thermal protection system (TPS) concept has been designed, analyzed, and fabricated. In addition to the inherent tailorable robustness of metallic TPS, ARMOR TPS offers improved features based on lessons learned from previous metallic TPS development efforts. A specific location on a single-stage-to-orbit reusable launch vehicle was selected to develop loads and requirements needed to design prototype ARMOR TPS panels. The design loads include ascent and entry heating rate histories, pressures, acoustics, and accelerations. Additional TPS design issues were identified and discussed. An iterative sizing procedure was used to size the ARMOR TPS panels for thermal and structural loads as part of an integrated TPS/cryogenic tank structural wall. The TPS panels were sized to maintain acceptable temperatures on the underlying structure and to operate under the design structural loading. Detailed creep analyses were also performed on critical components of the ARMOR TPS panels. A lightweight, thermally compliant TPS support system (TPSS) was designed to connect the TPS to the cryogenic tank structure. Four 18-inch-square ARMOR TPS panels were fabricated. Details of the fabrication process are presented. Details of the TPSS for connecting the ARMOR TPS panels to the externally stiffened cryogenic tank structure are also described. Test plans for the fabricated hardware are presented.

  12. Advanced atom chips with two metal layers.

    SciTech Connect

    Stevens, James E.; Blain, Matthew Glenn; Benito, Francisco M.; Biedermann, Grant

    2010-12-01

    A design concept, device layout, and monolithic microfabrication processing sequence have been developed for a dual-metal layer atom chip for next-generation positional control of ultracold ensembles of trapped atoms. Atom chips are intriguing systems for precision metrology and quantum information that use ultracold atoms on microfabricated chips. Using magnetic fields generated by current carrying wires, atoms are confined via the Zeeman effect and controllably positioned near optical resonators. Current state-of-the-art atom chips are single-layer or hybrid-integrated multilayer devices with limited flexibility and repeatability. An attractive feature of multi-level metallization is the ability to construct more complicated conductor patterns and thereby realize the complex magnetic potentials necessary for the more precise spatial and temporal control of atoms that is required. Here, we have designed a true, monolithically integrated, planarized, multi-metal-layer atom chip for demonstrating crossed-wire conductor patterns that trap and controllably transport atoms across the chip surface to targets of interest.

  13. Progress in spin-on metal oxide hardmask materials for filling applications

    NASA Astrophysics Data System (ADS)

    Yao, Huirong; Dioses, Alberto D.; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Her, YoungJun; Cao, Yi

    2015-03-01

    It is well known that metal oxide films are useful as hard mask material in semiconductor industry for their excellent etch resistance against plasma etches. In the advanced lithography processes, in addition to good etch resistance, they also need to possess good wet removability, fill capability, in high aspect ratio contacts or trenches. Conventional metal containing materials can be applied by chemical vapor deposition (CVD) or atomic layer deposition (ALD). Films derived from these techniques have difficulty in controlling wet etch, have low throughput and need special equipment. This leads to high costs. Therefore it is desirable to develop simple spin-on coating materials to generate metal oxide hard masks that have good trench or via filling performances using spin track friendly processing conditions. In this report, novel spin-on type inorganic formulations providing Ti, W, Hf and Zr oxide hard masks will be described. The new materials have demonstrated high etch selectivity, good filling performances, wet removal capability, low trace metals and good shelf-life stability. These novel AZ® Spin-on metal hard mask formulations can be used in several new applications and can potentially replace any metal, metal oxide, metal nitride or silicon-containing hard mask films currently deposited using CVD process in the semiconductor manufacturing process.

  14. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  15. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  16. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, James A.

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  17. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  18. Biomimetic metal oxides for the extraction of nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-03-01

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications.Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial

  19. Metal-containing Monomers: Advances in Polymerisation and Copolymerisation

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.; Savost'yanov, V. S.

    1983-10-01

    The main advances in and problems of polymerisation, copolymerisation, as well as graft polymerisation of metal-containing monomers (MCM) are analysed. These are classified in terms of the type of bond between the metal and the organic component of the molecule into three principal groups, namely MCM with σ-, nv-, and π-bonded metal, are analysed. Attention is concentrated on the influence of the nature of the metal (both transition and non-transition) on the polymerisation process and on the properties of the products. A systematic account is given of the principal data for the polycondensation of metal-containing compounds. The applications of the metal polymer synthesised are considered. The bibliography includes 215 references.

  20. Metal hydride hydrogen compression: Recent advances and future prospects

    DOE PAGESBeta

    Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman

    2016-03-17

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS andmore » the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.« less

  1. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  2. Formation of metal oxides by cathodic arc deposition

    SciTech Connect

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  3. Preparation, Functionality, and Application of Metal Oxide-coated Noble Metal Nanoparticles.

    PubMed

    Liu, Shuhua; Regulacio, Michelle D; Tee, Si Yin; Khin, Yin Win; Teng, Choon Peng; Koh, Leng Duei; Guan, Guijian; Han, Ming-Yong

    2016-08-01

    With their remarkable properties and wide-ranging applications, nanostructures of noble metals and metal oxides have been receiving significantly increased attention in recent years. The desire to combine the properties of these two functional materials for specific applications has naturally prompted research in the design and synthesis of novel nanocomposites, consisting of both noble metal and metal-oxide components. In this review, particular attention is given to core-shell type metal oxide-coated noble metal nanostructures (i.e., metal@oxide), which display potential utility in applications, including photothermal therapy, catalytic conversions, photocatalysis, molecular sensing, and photovoltaics. Emerging research directions and areas are envisioned at the end to solicit more attention and work in this regard. PMID:27291595

  4. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  5. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  6. Metallic fuels: The EBR-II legacy and recent advances

    SciTech Connect

    Douglas L. Porter; Steven L. Hayes; J. Rory Kennedy

    2012-09-01

    Experimental Breeder Reactor – II (EBR-II) metallic fuel was qualified for high burnup to approximately 10 atomic per cent. Subsequently, the electrometallurgical treatment of this fuel was demonstrated. Advanced metallic fuels are now investigated for increased performance, including ultra-high burnup and actinide burning. Advances include additives to mitigate the fuel/cladding chemical interaction and uranium alloys that combine Mo, Ti and Zr to improve alloy performance. The impacts of the advances—on fabrication, waste streams, electrorefining, etc.—are found to be minimal and beneficial. Owing to extensive research literature and computational methods, only a modest effort is required to complete their development.

  7. Development of a regenerable metal oxide CO removal system

    NASA Technical Reports Server (NTRS)

    Cusick, Robert J.

    1990-01-01

    A regenerable metal oxide carbon dioxide (CO2) removal system was developed to replace the current means of a nonreusable chemical, lithium hydroxide, for removing the metabolic CO2 of an astronaut in a space suit. Testing indicates that a viable low-volume metal oxide concept can be used in the portable life support system for CO2 removal during Space Station extravehicular activity (EVA). A canister of nearly the same volume as that used for the Space Shuttle, containing 0.10 cu ft of silver-oxide-based pellets, was tested; test data analysis indicates that 0.18 cu ft of the metal oxide will result in an 8-hour EVA capability. The testing suggests that the metal oxide technology offers a low-volume approach for a reusable CO2 removal concept applicable for at least 40 EVA missions. The development and testing of the breadboard regeneration package is also described.

  8. Advanced metal-membrane technology-commercialization

    SciTech Connect

    Edlund, D.J.

    1995-06-01

    The gasification of coal offers a potentially significant source of hydrogen for use in clean power generation and as a primary chemical feedstock. However, hydrogen derived from coal continues to be more expensive than hydrogen derived from natural gas or petroleum, due in large part to the expense of separating hydrogen from the mixture of gases produced during gasification. At Bend Research, we have been developing a novel hydrogen-permeable metal membrane that promises to be economical for hydrogen separation and purification, including the purification of hydrogen derived from gasifying coal. Furthermore, the membrane is ideally suited for use at high temperatures (200{degrees} to 500{degrees}C), making it feasible to produce pure hydrogen directly from hot gas streams. Through a partnership with Teledyne Wah Chang, we are proceeding with scale-up of prototype membrane modules and field tests to demonstrate the technology to potential users. Additionally, we are working with potential customers to estimate capital savings and operating costs for integrated systems. In this paper, we present some of the operating characteristics of the metal membrane, including its use to drive equilibrium-limited reactions toward complete conversion (e.g., the water-gas-shift reaction). We also describe our activities for commercializing this technology for a variety of applications.

  9. Improving Metal-Oxide-Metal (MOM) Diode Performance Via the Optimization of the Oxide Layer

    NASA Astrophysics Data System (ADS)

    Dodd, Linzi E.; Shenton, Samantha A.; Gallant, Andrew J.; Wood, David

    2015-05-01

    Small area metal-oxide-metal (MOM) diodes are being investigated in many research groups for the detection of THz frequency radiation. In order to create a high-speed rectifying device, the central oxide layer of the MOM structure must be thin and have known physical characteristics. The thickness, structure and uniformity of the oxide can be controlled during the fabrication process. In the work presented here, the effects of both oxygen plasma concentration and annealing temperature during fabrication of MOM diodes have been explored. It has been found that, by reducing the oxygen gas concentration from previous work, the layer can be more repeatable and uniform. Furthermore, for an anneal temperature up to a threshold temperature in the to range, the performance of the diodes is excellent, with a value of zero-bias curvature coefficient (CCZB) that can be up to . For higher temperature treatments, the value of CCZB decreases to a maximum of . Similar trends in AC tests can be seen for voltage and current responsivity values.

  10. Reactive sputter deposition of metal oxide nanolaminates

    NASA Astrophysics Data System (ADS)

    Rubin Aita, Carolyn

    2008-07-01

    We discuss the reactive sputter deposition of metal oxide nanolaminates on unheated substrates using four archetypical examples: ZrO2 Al2O3, HfO2 Al2O3, ZrO2 Y2O3, and ZrO2 TiO2. The pseudobinary bulk phase diagrams corresponding to these nanolaminates represent three types of interfaces. I. Complete immiscibility (ZrO2 Al2O3 and HfO2 Al2O3). II. Complete miscibility (ZrO2 Y2O3). III. Limited miscibility without a common end-member lattice (ZrO2 TiO2). We found that, although reactive sputter deposition is a far-from-equilibrium process, thermodynamic considerations strongly influence both phase formation within layers and at interfaces. We show that pseudobinary phase diagrams can be used to predict interfacial cation mixing in the nanolaminates. However, size effects must be considered to predict specific structures. In the absence of pseudoepitaxy, size effects play a significant role in determining the nanocrystalline phases that form within a layer (e.g. tetragonal ZrO2, tetragonal HfO2, and orthorhombic HfO2) and at interfaces (e.g. monoclinic (Zr,Ti)O2). These phases are not bulk standard temperature and pressure phases. Their formation is understood in terms of self-assembly into the lowest energy structure in individual critical nuclei.

  11. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  12. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  13. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  14. Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production

    PubMed Central

    Michalsky, Ronald; Botu, Venkatesh; Hargus, Cory M; Peterson, Andrew A; Steinfeld, Aldo

    2015-01-01

    The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemical splitting of CO2 and H2O via an isothermal redox cycle are examined. A volcano-type correlation is developed from available experimental data and density functional theory. It is found that the energy of the oxygen-vacancy formation at the most stable surfaces of TiO2, Ti2O3, Cu2O, ZnO, ZrO2, MoO3, Ag2O, CeO2, yttria-stabilized zirconia, and three perovskites scales with the Gibbs free energy of formation of the bulk oxides. Analogously, the experimental oxygen self-diffusion constants correlate with the transition-state energy of oxygen conduction. A simple descriptor is derived for rapid screening of oxygen-diffusion trends across a large set of metal oxide compositions. These general trends are rationalized with the electronic charge localized at the lattice oxygen and can be utilized to predict the surface activity, the free energy of complex bulk metal oxides, and their oxygen conductivity. PMID:26855639

  15. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    PubMed Central

    Wang, Chengxiang; Yin, Longwei; Zhang, Luyuan; Xiang, Dong; Gao, Rui

    2010-01-01

    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above. PMID:22294916

  16. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  17. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L. Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr{sub 2}O{sub 3}. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl{sub 2}O{sub 4}. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr{sub 2}O{sub 3} has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl{sub 2}O{sub 4} has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular

  18. Multiscale model of metal alloy oxidation at grain boundaries.

    PubMed

    Sushko, Maria L; Alexandrov, Vitaly; Schreiber, Daniel K; Rosso, Kevin M; Bruemmer, Stephen M

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen

  19. Multiscale model of metal alloy oxidation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen

  20. Electromagnetic modes of the asymmetric metal-oxide-metal tunnel junction

    NASA Technical Reports Server (NTRS)

    Kurdi, B. N.; Hall, D. G.

    1984-01-01

    The characteristics of the modes of an Al-Al2O3-Ag tunnel junction are analyzed, and the way in which the field profiles, the propagation constant, and the attenuation depend on the thickness of the oxide layer is described. The significance of these results for investigations of light emission from metal-oxide-metal tunnel junctions is discussed.

  1. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  2. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  3. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Astrophysics Data System (ADS)

    1993-10-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  4. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  5. Can we judge an oxide by its cover? The case of the metal/oxide interface from first principles

    NASA Astrophysics Data System (ADS)

    Caspary Toroker, Maytal

    Metal/metal-oxide interfaces appear in a wide variety of disciplines including electronics, corrosion, electrochemistry, and catalysis. Specifically, covering a metal-oxide with a metal is often thought to enhance solar energy absorption and to improve photocatalytic activity. For example, the platinum/hematite (Pt/ α-Fe2O3) interface has demonstrated improved functionality. In order to advance our understanding of how metal coverage over an oxide helps performance, we characterize the geometry and electronic structure of the Pt/ α-Fe2O3 interface. We investigate the interface using density functional theory +U, and find a stable crystallographic orientation relationship that agrees with experiment. Furthermore, there are significant changes in the electronic structure of α-Fe2O3 as a result of Pt coverage. We therefore suggest the concept of ``judging'' the electronic properties of an oxide only with its cover. Specifically, covering Fe2O3 with Pt reduces carrier effective mass and creates a continuum of states in the band gap. The former could be beneficial for catalytic activity, while the latter may cause surface recombination. In order to circumvent this problem, we suggest putting metal coverage behind the oxide and far from the electrolyte in a photoelectrochemical device in order to quickly collect electron carriers and avoid recombination with vulnerable holes accumulating as a result of catalysis at the surface. Reference: O. Neufeld and M. Caspary Toroker, ``Can we judge an oxide by its cover? The case of platinum over alpha-Fe2O3 from first principles'', Phys. Chem. Chem. Phys. 17, 24129 (2015). This research was supported by the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science Foundation (Grant No. 152/11).

  6. Metal oxide semiconductor structure using oxygen-terminated diamond

    NASA Astrophysics Data System (ADS)

    Chicot, G.; Maréchal, A.; Motte, R.; Muret, P.; Gheeraert, E.; Pernot, J.

    2013-06-01

    Metal-oxide-semiconductor structures with aluminum oxide as insulator and p-type (100) mono-crystalline diamond as semiconductor have been fabricated and investigated by capacitance versus voltage and current versus voltage measurements. The aluminum oxide dielectric was deposited using low temperature atomic layer deposition on an oxygenated diamond surface. The capacitance voltage measurements demonstrate that accumulation, depletion, and deep depletion regimes can be controlled by the bias voltage, opening the route for diamond metal-oxide-semiconductor field effect transistor. A band diagram is proposed and discussed.

  7. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  8. Surface Stabilization Mechanisms in Metal Oxides

    NASA Astrophysics Data System (ADS)

    Becerra Toledo, Andres Enrique

    2011-07-01

    Metal oxide surfaces play a central role in modern applications, ranging from heterogeneous catalysis to electronic devices, yet little is known about the processes determining their structural stabilization. Several such stabilization mechanisms are explored via a combination of theoretical and experimental methods. The processes of periodic reconstruction, adsorption and segregation are studied through case studies of model material systems. The evaluation of structural models of periodic SrTiO3(001) reconstructions via bonding analysis and simulated scanning tunneling microscopy images supports the family of "DL" models terminating in two consecutive layers of TiO2 composition, and discards alternative proposals such as the models based on periodic Sr adatoms. Experimental and simulated scanning tunneling microscopy images and complementary spectroscopic data are used to determine the structure of linear Ti-rich SrTiO 3(001) nanostructures. The structural solution exemplifies the recurrence of locally stable motifs across numerous surfaces. In particular, the arrangement of edge-sharing TiO5 surface polyhedra is a trait is shared by (001) nanostructures and DL reconstructions. This is a flexible framework which allows for optimal bonding in surface atoms. Modeling of water adsorption on reconstructed SrTiO3(001) surfaces reveals that water plays two major roles in the stabilization of oxide surfaces: it may mediate the formation of certain ordered structures, or it may be part of the ultimately stable structures themselves. This can be understood in terms of the inevitable presence of chemisorbed water on defective surfaces. Since the surface mobility of cationic species is relatively low, the kinetics associated to water diffusion and desorption dominate the surface ordering process. High-temperature annealing of SrLaAlO4 single crystals leads to the segregation of SrO to the surfaces, in the form of islands. This process is in fact a bulk stabilization

  9. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  10. Advanced optical interference filters based on metal and dielectric layers.

    PubMed

    Begou, Thomas; Lemarchand, Fabien; Lumeau, Julien

    2016-09-01

    In this paper, we investigate the design and the fabrication of an advanced optical interference filter based on metal and dielectric layers. This filter respects the specifications of the 2016 OIC manufacturing problem contest. We study and present all the challenges and solutions that allowed achieving a low deviation between the fabricated prototype and the target. PMID:27607695

  11. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  12. Electrolytic separation of crystals of transition-metal oxides

    NASA Technical Reports Server (NTRS)

    Arnott, R. J.; Feretti, A.; Kunnamann, W.

    1969-01-01

    Versatile flux system grows large, well-formed, stoichiometric single crystals of mixed oxides of the transition-metal elements. These crystals have important uses in the microwave field, and applications as lasers and masers in communications.

  13. Fabrication and characterization of metal oxide nanowire sensors.

    PubMed

    Shen, Guozhen

    2008-01-01

    Trace detection of chemicals and biological species like industrial gases, proteins, drug molecules, and chemical warfare agents, is an important issue to human health and safety. Central to this issue is the development of high sensitivity, high selectivity, high stability and rapid detection chemical and bio-sensors. With special geometry and chemical and physical properties, one-dimensional (1-D) metal oxide nanostructures have become the promising candidates for chemical and biosensing applications in recent years. Here, we intend to provide an overview on this interesting and important field. In the first part, the patents for rational synthesis of 1-D metal oxide nanostructures on a large scale will be introduced. The patents on chemical and biosensors built on 1-D metal oxide nanostructures are then introduced in the second part. Finally, we provide a review of the recent development of electronic nose systems using 1-D metal oxide nanostructures, which show great potential for the improvement of sensing abilities. PMID:19076050

  14. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  15. Cryochemical method for forming spherical metal oxide particles from metal salt solutions

    DOEpatents

    Tinkle, M.C.

    1973-12-01

    A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)

  16. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOEpatents

    Morrell; Jonathan S. , Ripley; Edward B.

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  17. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Zhao

    Noble metal nanoparticles/nanocrystals have attracted much attention as catalysts due to their unique characteristics, including high surface areas and well-controlled facets, which are not often possessed by their bulk counterparts. To avoid the loss of their catalytic activities brought about by their size and shape changes during catalytic reactions, noble metal nanoparticles/nanocrystals are usually dispersed and supported finely on solid oxide supports to prevent agglomeration, nanoparticle growth, and therefore the decrease in the total surface area. Moreover, metal oxide supports can also play important roles in catalytic reactions through the synergistic interactions with loaded metal nanoparticles/nanocrystals. In this thesis, I use ultrasonic aerosol spray to produce hybrid microspheres that are composed of noble metal nanoparticles/nanocrystals embedded in mesoporous metal oxide matrices. The mesoporous metal oxide structure allows for the fast diffusion of reactants and products as well as confining and supporting noble metal nanoparticles. I will first describe my studies on noble metal-loaded mesoporous oxide microspheres as catalysts. Three types of noble metals (Au, Pt, Pd) and three types of metal oxide substrates (TiO2, ZrO2, Al 2O3) were selected, because they are widely used for practical catalytic applications involved in environmental cleaning, pollution control, petrochemical, and pharmaceutical syntheses. By considering every possible combination of the noble metals and oxide substrates, nine types of catalyst samples were produced. I characterized the structures of these catalysts, including their sizes, morphologies, crystallinity, and porosities, and their catalytic performances by using a representative reduction reaction from nitrobenzene to aminobenzene. Comparison of the catalytic results reveals the effects of the different noble metals, their incorporation amounts, and oxide substrates on the catalytic abilities. For this particular

  18. Oxidation Reactions with Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes.

    PubMed

    Engelmann, Xenia; Monte-Pérez, Inés; Ray, Kallol

    2016-06-27

    The selective functionalization of strong C-H bonds and the oxidation of water by cheap and nontoxic metals are some of the key targets of chemical research today. It has been proposed that high-valent iron-, manganese-, and copper-oxo cores are involved as reactive intermediates in important oxidation reactions performed by biological systems, thus making them attractive targets for biomimetic synthetic studies. The generation and characterization of metal-oxo model complexes of iron, manganese, and copper together with detailed reactivity studies can help in understanding how the steric and electronic properties of the metal centers modulate the reactivity of the metalloenzymes. This Review provides a focused overview of the advances in the chemistry of biomimetic high-valent metal-oxo complexes from the last 5-10 years that can be related to our understanding of biological systems. PMID:27311082

  19. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    PubMed Central

    2015-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide–metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp2-derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network. PMID:25152800

  20. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  1. Plutonium metal and oxide container weld development and qualification

    SciTech Connect

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  2. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-01

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers. PMID:23539180

  3. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  4. Heavy metal removal from water/wastewater by nanosized metal oxides: a review.

    PubMed

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-04-15

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs' preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance. PMID:22018872

  5. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L.; Alexandrov, Vitali Y.; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model at experimentally relevant length scales is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2 - 1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular

  6. A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors

    PubMed Central

    Zhai, Tianyou; Fang, Xiaosheng; Liao, Meiyong; Xu, Xijin; Zeng, Haibo; Yoshio, Bando; Golberg, Dmitri

    2009-01-01

    One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area. PMID:22454597

  7. STEM characterization of metal clusters in/on oxides

    NASA Astrophysics Data System (ADS)

    Mehraeen, Shareghe

    Dispersed metal clusters in or on a support matrix are key phenomenons in many technological fields. Two widely used examples of them which are investigated in this thesis are supported-metal clusters in heterogeneous catalysis and transition metal clusters in diluted magnetic semiconductors (DMS) applied in spintronics. The catalytic activity and selectivity of catalysts often depend sensitively on structure parameters, such as particles size and shape. With the same analogy, the magnetic properties of DMS oxides are sensitively related to the crystal defects of the host material as a consequence of doping the transition metal. Therefore it is essential to develop and understand the correlation between nanostructure and function of these materials. STEM Z-contrast imaging is the best candidate for this type of study because of a high degree of resolution it provides and the unique ability it offers to detect and differentiate between the clusters and oxide matrix due to the large difference between their atomic numbers. Moreover the technique development in the STEM field fosters the conjugation of electron energy Loss Spectroscopy (EELS) and Z-contrast imaging and their widespread use for nearly atomic level chemical analysis at interface, second phases, and isolated defects. The advanced preparation method of supported clusters catalysts which is by carbonyl ligands offers a controlled cluster size and shape. MgO-supported Os clusters and SiO2-supported Ta clusters prepared by this method are adsorbed on oxide to convert into single-sized supported metal aggregates. The last step of preparation method is by removal of the ligands (decarbonylation) which is very important because it determines the final size distribution and shape of such clusters. Reaching carbonylated decaosmium clusters with the size of theoretically 0.295 nm and the tetrahedral-shape geometry are the aim of the preparation method. The size distribution measurements of sub-nanoclusters of

  8. Thermochemical analyses of the oxidative vaporization of metals and oxides by oxygen molecules and atoms

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Leisz, D. M.; Fryburg, G. C.; Stearns, C. A.

    1977-01-01

    Equilibrium thermochemical analyses are employed to describe the vaporization processes of metals and metal oxides upon exposure to molecular and atomic oxygen. Specific analytic results for the chromium-, platinum-, aluminum-, and silicon-oxygen systems are presented. Maximum rates of oxidative vaporization predicted from the thermochemical considerations are compared with experimental results for chromium and platinum. The oxidative vaporization rates of chromium and platinum are considerably enhanced by oxygen atoms.

  9. Selective Growth of Noble Gases at Metal/Oxide Interface.

    PubMed

    Takahashi, Keisuke; Oka, Hiroshi; Ohnuki, Somei

    2016-02-17

    The locations and roles of noble gases at an oxide/metal interface in oxide dispersed metal are theoretically and experimentally investigated. Oxide dispersed metal consisting of FCC Fe and Y2Hf2O7 (Y2Ti2O7) is synthesized by mechanical alloying under a saturated Ar gas environment. Transmission electron microscopy and density functional theory observes the strain field at the interface of FCC Fe {111} and Y2Hf2O7 {111} whose physical origin emerges from surface reconstruction due to charge transfer. Noble gases are experimentally observed at the oxide (Y2Ti2O7) site and calculations reveal that the noble gases segregate the interface and grow toward the oxide site. In general, the interface is defined as the trapping site for noble gases; however, transmission electron microscopy and density functional theory found evidence which shows that noble gases grow toward the oxide, contrary to the generally held idea that the interface is the final trapping site for noble gases. Furthermore, calculations show that the inclusion of He/Ar hardens the oxide, suggesting that material fractures could begin from the noble gas bubble within the oxides. Thus, experimental and theoretical results demonstrate that noble gases grow from the interface toward the oxide and that oxides behave as a trapping site for noble gases. PMID:26840881

  10. Sol-gel metal oxide and metal oxide/polymer multilayers applied by meniscus coating

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1993-10-01

    We are developing a meniscus coating process for manufacturing large-aperture dielectric multilayer high reflectors (HR`s) at ambient conditions from liquid suspensions. Using a lab-scale coater capable of coating 150 mm square substrates, we have produced several HR`s which give 99% + reflection with 24 layers and with edge effects confined to about 10 mm. In calendar 1993 we are taking delivery of an automated meniscus coating machine capable of coating substrates up to 400 mm wide and 600 mm long. The laser-damage threshold and failure stress of sol-gel thin films can be substantially increased through the use of soluble polymers which act as binders for the metal oxide particles comprising the deposited film. Refractive index control of the film is also possible through varying the polymer/oxide ratio. Much of our present effort present is in optimizing oxide particle/binder/solvent formulations for the high-index material. Films from colloidal zirconia strengthened with polyvinylpyrollidone (PVP) have given best results to date. An increase in the laser damage threshold (LDT) for single layers has been shown to significantly increase with increased polymer loading, but as yet the LDT for multilayer stacks remains low.

  11. Complexed metals in hazardous waste: Limitations of conventional chemical oxidation

    SciTech Connect

    Diel, B.N.; Kuchynka, D.J.; Borchert, J.

    1994-12-31

    In the management of hazardous waste, more is known regarding the treatment of metals than about the fixation, destruction and/or immobilization of any other hazardous constituent group. Metals are the only hazardous constituents which cannot be destroyed, and so must be converted to their least soluble and/or reactive form to prevent reentry into the environment. The occurrence of complexed metals, e.g., metallocyanides, and/or chelated metals, e.g., M{center_dot}EDTA in hazardous waste streams presents formidable challenges to conventional waste treatment practices. This paper presents the results of extensive research into the destruction (chemical oxidation) of metallocyanides and metal-chelates, defines the utility and limitations of conventional chemical oxidation approaches, illustrates some of the waste management difficulties presented by such species, and presents preliminary data on the UV/H{sub 2}O{sub 2} photodecomposition of chelated metals.

  12. The atomic level journey from aqueous polyoxometalate to metal oxide

    SciTech Connect

    Hou, Yu; Fast, Dylan B.; Ruther, Rose E.; Amador, Jenn M.; Fullmer, Lauren B.; Decker, Shawn R.; Zakharov, Lev N.; Dolgos, Michelle R. Nyman, May

    2015-01-15

    Aqueous precursors tailored for the deposition of thin film materials are desirable for sustainable, simple, low energy production of advanced materials. Yet the simple practice of using aqueous precursors is complicated by the multitude of interactions that occur between ions and water during dehydration. Here we use lithium polyoxoniobate salts to investigate the fundamental interactions in the transition from precursor cluster to oxide film. Small-angle X-ray scattering of solutions, total X-ray scattering of intermediate gels, and morphological and structural characterization of the lithium niobate thin films reveal the atomic level transitions between these states. The studies show that (1) lithium–[H{sub 2}Nb{sub 6}O{sub 19}]{sup 6−} has drastically different solution behaviour than lithium–[Nb{sub 6}O{sub 19}]{sup 8−}, linked to the precursor salt structure (2) in both compositions, the intermediate gel preserves the polyoxoniobate clusters and show similar local order and (3) the morphology and phases of deposited films reflect the ions behaviour throughout the journey from cluster solution to metal oxide. - Graphical abstract: Aqueous lithium polyoxoniobate salts were used to prepare lithium niobate (LiNbO{sub 3}) thin films. Fundamental studies were performed to investigate the interactions in the transition from precursor cluster to the oxide film. It was found that acid–base and ion-association chemistries of the aqueous and gel systems significantly affect the key processes in this atom-level journey. - Highlights: • Lithium polyoxoniobate clusters were synthesized with control over Li:Nb ratio as precursors for LiNbO{sub 3} films. • X-ray scattering studies in solution and the solid-state revealed differences controlled by Li:Nb ratio. • Film deposition studies revealed phase, composition and morphology is controlled by Li:Nb ratio. • Cluster to film transformation was revealed using total X-ray scattering and TGA.

  13. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. , Simpson; Randall L.; Hrubesh, Lawrence W.

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  14. Integrated photo-responsive metal oxide semiconductor circuit

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban D. (Inventor); Dargo, David R. (Inventor); Lyons, John C. (Inventor)

    1987-01-01

    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation.

  15. Generation of singlet oxygen on the surface of metal oxides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Kislyakov, I. M.; Burchinov, A. N.

    2016-04-01

    Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron-hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

  16. Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers

    PubMed Central

    Koedrith, Preeyaporn; Seo, Young Rok

    2011-01-01

    Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression. PMID:22272150

  17. FUNCTIONALIZED METAL OXIDE NANOPARTICLES: ENVIRONMENTAL TRANSFORMATIONS AND ECOTOXICITY

    EPA Science Inventory

    This study will provide fundamental information on alterations in the surface chemistry of commercially important functionalized metal oxide NPs under environmentally relevant oxidative and reductive conditions, as well as needed data on the inherent and photo-enhanced toxicit...

  18. Reductive mobilization of oxide-bound metals

    SciTech Connect

    Stone, A.T.

    1991-01-01

    We have completed a large number of experiments which examine the release of MnO{sub 2}-bound Co, Ni, and Cu. Our work has focused upon the following areas: (1) competitive adsorption among the three toxic metals and Mn(II); (2) toxic metal release upon addition of low MW organic reductants and complexants; and (3) toxic metal release upon addition of natural organic matter-rich surface waters and IHSS organic matter reference material.

  19. Metal-oxide-metal point contact junction detectors. [detection mechanism and mechanical stability

    NASA Technical Reports Server (NTRS)

    Baird, J.; Havemann, R. H.; Fults, R. D.

    1973-01-01

    The detection mechanism(s) and design of a mechanically stable metal-oxide-metal point contact junction detector are considered. A prototype for a mechanically stable device has been constructed and tested. A technique has been developed which accurately predicts microwave video detector and heterodyne mixer SIM (semiconductor-insulator-metal) diode performance from low dc frequency volt-ampere curves. The difference in contact potential between the two metals and geometrically induced rectification constitute the detection mechanisms.

  20. Field-assisted nanopatterning of metals, metal oxides and metal salts.

    PubMed

    Liu, Jun-Fu; Miller, Glen P

    2009-02-01

    The tip-based nanofabrication method called field-assisted nanopatterning or FAN has now been extended to the transfer of metals, metal oxides and metal salts onto various receiving substrates including highly ordered pyrolytic graphite, passivated gold and indium-tin oxide. Standard atomic force microscope tips were first dip-coated using suspensions of inorganic compounds in solvent. The films prepared in this manner were non-uniform and contained inorganic nanoparticles. Tip-based nanopatterning on chosen substrates was conducted under high electric field conditions. The same tip was used for both nanofabrication and imaging. Arbitrary patterns were formed with dimensions that ranged from tens of microns to sub-20 nm and were controlled by tuning the tip bias during fabrication. Most tip-based nanopatterning techniques are limited in terms of the type of species that can be deposited and the type of substrates onto which the deposition occurs. With the successful deposition of inorganic species reported here, FAN is demonstrated to be a truly versatile tip-based nanofabrication technique that is useful for the deposition of a wide variety of both organic and inorganic species including small molecules, large molecules and polymers. PMID:19417344

  1. Synthesis of supported metal oxide nanoparticles with narrow size distribution

    NASA Astrophysics Data System (ADS)

    Salem, Diana; Smolyakov, Georgiy; Schosseler, François; Petit, Pierre

    2012-06-01

    We report a versatile synthetic route allowing the formation of transition metal oxide nanoparticles supported on solid surfaces. Basically, the method lies on the complexation of metal cations with both anionic surfactant and hydroxilated surfaces, which results in the formation of small aggregates onto the surface. At thermodynamical equilibrium, the resulting balance between the loss of entropy due to the aggregation and the gain in enthalpy due to hydrophobic interactions between the alkyl chains of the surfactant governs the size of these aggregates. After calcination in air, metal oxide nanoparticles with very narrow size distribution are obtained.

  2. A Modified Capacitance-Voltage Method Used for Leff Extraction and Process Monitoring in Advanced 0.15 μm Complementary Metal-Oxide-Semiconductor Technology and Beyond

    NASA Astrophysics Data System (ADS)

    Huang, Heng-Sheng; Shiu, Jen-Shiuan; Lin, Shyh-Jye; Chou, Jih-Wen; Lee, Ryan; Chen, Coming; Hong, Gary

    2001-03-01

    In this paper, an alternative approach for the extraction of effective channel length, Leff, using a modified capacitance-voltage (C-V) method [the capacitance-ratio (C-R) method], which considers depletion effect compensation is proposed. In general, we define Leff=Lmask-Δ L, where Δ L is the sum of the polysilicon gate lithography bias and two times the overlap length of the polysilicon gate and source/drain (S/D) extension (Δ L=Lpb+2Lovlap). Using the modified C-V method, more consistent and reasonable Leff data can be extracted as compared to those obtained using the newest current-voltage (I-V) method (shift and ratio method). In using the proposed C-R method, we can electrically measure the exact Lpb and Lovlap numbers that can both be used as process monitor parameters. The within-wafer uniformities of Leff (or Δ L), Lpb and Lovlap have also been checked among devices of various sizes. After the Leff is extracted, a stable S/D resistance Rsd, with Vg independence, is determined and verified using the I-V method. The parasitic capacitance Cgd is another extracted parameter that is as important as Rsd in SPICE modeling for RF complementary metal-oxide-semiconductor (CMOS) applications.

  3. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  4. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    SciTech Connect

    Glen R. Longhurst

    2008-08-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results.

  5. Infrared Photodissociation Spectroscopy of Metal Oxide Carbonyl Cations.

    NASA Astrophysics Data System (ADS)

    Brathwaite, Antonio D.; Duncan, Michael A.

    2013-06-01

    Mass selected metal oxide-carbonyl cations of the form MO_{m}(CO)_{n}^{+} are studied via infrared laser photodissociation spectroscopy, in the 600-2300cm^{1} region. Insight into the structure and bonding of these complexes is obtained from the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations are carried out in support of the experimental data. Insight into the bonding of CO ligands to metal oxides is obtained and the effect of oxidation on the carbonyl stretching frequency is revealed.

  6. Interactions of hydrogen isotopes and oxides with metal tubes

    SciTech Connect

    Longhurst, G. R.; Cleaver, J.

    2008-07-15

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  7. Functional Metal Oxide Nanostructures: Their Synthesis, Characterization, and Energy Applications

    NASA Astrophysics Data System (ADS)

    Iyer, Aparna

    This research focuses on studying metal oxides (MnO 2, Co3O4, MgO, Y2O3) for various applications including water oxidation and photocatalytic oxidation, developing different synthesis methodologies, and presenting detailed characterization studies of these metal oxides. This research consists of three major parts. The first part is studying novel applications and developing a synthesis method for manganese oxide nanomaterials. Manganese oxide materials were studied for renewable energy applications by using them as catalysts for water oxidation reactions. In this study, various crystallographic forms of manganese oxides (amorphous, 2D layered, 1D 2 x 2 tunnel structures) were evaluated for water oxidation catalysis. Amorphous manganese oxides (AMO) were found to be catalytically active for chemical and photochemical water oxidation compared to cryptomelane type tunnel manganese oxides (2 x 2 tunnels; OMS2) or layered birnessite (OL-1) materials. Detailed characterization was done to establish a correlation between the properties of the manganese oxide materials and their catalytic activities in water oxidation. The gas phase photocatalytic oxidation of 2-propanol under visible light was studied using manganese oxide 2 x 2 tunnel structures (OMS-2) as catalysts (Chapter 3). The reaction is 100% selective to acetone. As suggested by the photocatalytic and characterization data, important factors for the design of active OMS-2 photocatalysts are synthesis methodology, morphology, mixed valency and the release of oxygen from the OMS-2 structure. Manganese oxide octahedral molecular sieves (2 x 2 tunnels; OMS-2) with self-assembled dense or hollow sphere morphologies were fabricated via a room temperature ultrasonic atomization assisted synthesis (Chapter 4). The properties and catalytic activities of these newly developed materials were compared with that of OMS-2 synthesized by conventional reflux route. These materials exhibit exceptionally high catalytic activities

  8. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  9. The base metal of the oxide-coated cathode

    NASA Astrophysics Data System (ADS)

    Poret, F.; Roquais, J. M.

    2005-09-01

    The oxide-coated cathode has been the most widely used electron emitter in vacuum electronic devices. From one manufacturing company to another the emissive oxide is either a double—Ba, Sr—or a triple—Ba, Sr, Ca—oxide, having always the same respective compositions. Conversely, the base metal composition is very often proprietary because of its importance in the cathode emission performances. The present paper aims at explaining the operation of the base metal through a review. After a brief introduction, the notion of activator is detailed along with their diffusivities and their associated interfacial compounds. Then, the different cathode life models are described prior to few comments on the composition choice of a base metal. Finally, the specificities of the RCA/Thomson "bimetal" base metal are presented with a discussion on the optimized composition choice illustrated by a long-term life-test of five different melts.

  10. Emerging Applications of Liquid Metals Featuring Surface Oxides

    PubMed Central

    2014-01-01

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide “skin” enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  11. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    PubMed

    Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces. PMID:26423076

  12. Fabrication, Characterization and Application of Metal-oxide Tunnel Junctions by Anodization

    NASA Astrophysics Data System (ADS)

    Fan, Wenbin

    Metal oxides have become of significant interest due to their wide range of electrical properties showing potential applications to next generation memory and logic devices. Recent advances in oxide growth technology and the discovery of some unique properties of metal oxides have led to a renewed potential for novel device functionality. Electrochemical anodization offers an effective means to produce oxides in terms of cost, convenience and purity. In this dissertation, Reactive Bias Target Ion Beam Deposition (RBTIBD) system and electrochemical anodization have been used to fabricate granular nano-structured metal-oxide lateral junctions based on the transition metals, particularly, vanadium (V) and tantalum (Ta). The electrical transport properties of anodized V and Ta metal-oxide junctions were investigated at various temperatures. The results turned out that these junctions all had very non-linear I-V characteristics indicating tunneling-like behaviors. Anodized Ta junction shown an appreciable non- linear behavior of the temperature-dependent I-V characteristic with a resistance change of nearly two orders of magnitude at T-300K at currents between 0 and 0.1 mA (˜ 1.3x104 A/cm2 or 104 V/cm). The metal-insulator-transition (MIT) was observed in both wire and bulk V junctions at ˜ 80°C. The microstructure of these anodized transition metal films was characterized by Transmission Electron Microscope (TEM), which was consistent with metallic grains embedded in an oxide matrix. Therefore an anodized granular metal film could be treated as a tunnel junction network. Two dominant electron conduction mechanisms were clearly identified by fitting the I(V, T) data of a Ta oxide- metal junction. The first mechanism was a temperature-independent tunneling including F-N and direct tunneling. The second mechanism was the modified temperature-dependent 2-dimentional Mott's variable-range hopping (VRH) model. The classical Simmons' equation was used to quantify the

  13. Advanced oxidation processes with coke plant wastewater treatment.

    PubMed

    Krzywicka, A; Kwarciak-Kozłowska, A

    2014-01-01

    The aim of this study was to determine the most efficient method of coke wastewater treatment. This research examined two processes - advanced oxidation with Fenton and photo-Fenton reaction. It was observed that the use of ultraviolet radiation with Fenton process had a better result in removal of impurities. PMID:24804662

  14. Advanced materials for solid oxide fuel cells

    SciTech Connect

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  15. Internal zone growth method for producing metal oxide metal eutectic composites

    DOEpatents

    Clark, Grady W.; Holder, John D.; Pasto, Arvid E.

    1980-01-01

    An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.

  16. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation.

    PubMed

    Chen, Wei; Wang, Haotian; Li, Yuzhang; Liu, Yayuan; Sun, Jie; Lee, Sanghan; Lee, Jang-Soo; Cui, Yi

    2015-08-26

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt-nickel-iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm(-2), small Tafel slope of 37.6 mV dec(-1), and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  17. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

    PubMed Central

    2015-01-01

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  18. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    PubMed Central

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  19. Metal oxide nanostructures and their gas sensing properties: a review.

    PubMed

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  20. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    PubMed

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-12-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products. PMID:27295259

  1. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    NASA Astrophysics Data System (ADS)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  2. Nanostructuring of metals by severe plastic deformation for advanced properties

    NASA Astrophysics Data System (ADS)

    Valiev, Ruslan

    2004-08-01

    Despite rosy prospects, the use of nanostructured metals and alloys as advanced structural and functional materials has remained controversial until recently. Only in recent years has a breakthrough been outlined in this area, associated both with development of new routes for the fabrication of bulk nanostructured materials and with investigation of the fundamental mechanisms that lead to the new properties of these materials. Although a deep understanding of these mechanisms is still a topic of basic research, pilot commercial products for medicine and microdevices are coming within reach of the market. This progress article discusses new concepts and principles of using severe plastic deformation (SPD) to fabricate bulk nanostructured metals with advanced properties. Special emphasis is laid on the relationship between microstructural features and properties, as well as the first applications of SPD-produced nanomaterials.

  3. Recent Advances in Transition Metal-Catalyzed Glycosylation

    PubMed Central

    McKay, Matthew J.; Nguyen, Hien M.

    2012-01-01

    Having access to mild and operationally simple techniques for attaining carbohydrate targets will be necessary to facilitate advancement in biological, medicinal, and pharmacological research. Even with the abundance of elegant reports for generating glycosidic linkages, stereoselective construction of α- and β-oligosaccharides and glycoconjugates is by no means trivial. In an era where expanded awareness of the impact we are having on the environment drives the state-of-the-art, synthetic chemists are tasked with developing cleaner and more efficient reactions for achieving their transformations. This movement imparts the value that prevention of waste is always superior to its treatment or cleanup. This review will highlight recent advancement in this regard by examining strategies that employ transition metal catalysis in the synthesis of oligosaccharides and glycoconjugates. These methods are mild and effective for constructing glycosidic bonds with reduced levels of waste through utilization of sub-stoichiometric amounts of transition metals to promote the glycosylation. PMID:22924154

  4. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  5. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles

  6. Environment assisted degradation mechanisms in advanced light metals

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Stoner, G. E.; Swanson, R. E.

    1989-01-01

    A multifaceted research program on the performance of advanced light metallic alloys in aggressive aerospace environments, and associated environmental failure mechanisms was initiated. The general goal is to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability.

  7. Metal-oxide Nanowires for Toxic Gas Detection

    SciTech Connect

    Devineni, D. P.; Stormo, S.; Kempf, W.; Schenkel, J.; Behanan, R.; Lea, Alan S.; Galipeau, David W.

    2007-01-02

    The feasibility of using Electric field enhanced oxidation (EFEO) to fabricate metal-oxide nanowires for sensing toxic gases was investigated. The effects of fabrication parameters such as film thickness, ambient relative humidity, atomic force microscope (AFM) tip bias voltage, force, scan speed and number of scans on the growth of nanowires were determined. The chemical composition of indium-oxide nanowires was verified using Auger electron spectroscopy. It was found that oxygen to indium ration was 1.69, 1.72, 1.71 and 1.84 at depths of 0, 1.3, 2.5, and 3.8 nm, which was near the 1.5:1 expected for stoichiometric indium-oxide film. Future work will include characterizing the electrical and gas sensing properties of the metal-oxide nanowires.

  8. Surface oxidability of pure liquid metals and alloys

    NASA Astrophysics Data System (ADS)

    Arato, E.; Bernardi, M.; Giuranno, D.; Ricci, E.

    2012-01-01

    The analysis of the oxygen-liquid metal interaction is a topic of particular technological interest. A deep knowledge of the kinetics and transport mechanisms involved in the oxidation phenomena is necessary: the effect of oxidation reactions taking place in the gas phase and the evaporation of oxides must be considered. This paper aims to review our works in order to provide a systematic analysis of the oxidation of pure metals and determine the most likely to keeping oxygen-free the surface in a binary alloy. In addition, the upgrading of this theoretical approach, here briefly described, is addressed to give a contribution to a better understanding of the evolution of oxidation phenomena close to the solid-liquid-gas interfaces.

  9. Formation of metallic and metal hydrous oxide dispersions

    NASA Technical Reports Server (NTRS)

    Matijevic, E.; Sapieszko, R. S.

    1979-01-01

    The formation, via hydrothermally induced precipitation from homogeneous solution, of a variety of well-defined dispersions of metallic and hydrous metal in the conditions under which the particles are produced (e.g., pH and composition of the growth medium, aging temperature, rate of heating, or degree of agitation) can be readily discerned by following changes in the mass, composition, and morphology of the final solid phase. The generation of colloidal dispersions in the absence of gravity convection or sedimentation effects may result in the appearance of morphological modifications not previously observed in terrestrially formed hydrosols.

  10. Oxidative Lipidomics Coming of Age: Advances in Analysis of Oxidized Phospholipids in Physiology and Pathology

    PubMed Central

    Pitt, Andrew R.

    2015-01-01

    Abstract Significance: Oxidized phospholipids are now well recognized as markers of biological oxidative stress and bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization, and it is responsible for the expansion of oxidative lipidomics. Recent Advances: Studies of oxidized phospholipids in biological samples, from both animal models and clinical samples, have been facilitated by the recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual compounds or groups of compounds with common features, which greatly improves the sensitivity and specificity of detection. Application of these methods has enabled important advances in understanding the mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy, and cystic fibrosis, and it offers potential for developing biomarkers of molecular aspects of the diseases. Critical Issues and Future Directions: The future in this field will depend on development of improved MS technologies, such as ion mobility, novel enrichment methods and databases, and software for data analysis, owing to the very large amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional exciting direction emerging that can be expected to advance understanding of physiology and disease. Antioxid. Redox Signal. 22, 1646–1666. PMID:25694038

  11. Metal-Catalyzed Oxidation and Photo-oxidation of Glucagon.

    PubMed

    Zhang, Jian

    2016-08-01

    The oxidation of glucagon by the H2O2/Cu(2+) system and by simulated sunlight was studied using HPLC-MS methodologies. It was found that copper ion-catalyzed oxidation is much faster in the residue 1-12 region than in photo-oxidation, but it is slower than photo-oxidation in the residue 18-29 region. This difference is due to the unique feature of the primary sequence of glucagon. The residue 1-12 region contains His-1 and Asp-9 that can bind to Cu(2+) ions and catalyze the oxidation of His-1 and Tyr-10, while the residue 18-29 region lacks these charged residues near the liable Met-27 and Trp-25 and hence no catalysis by the neighboring groups occurs. Fragment (residue 13-17) was more stable than the other regions of the peptide toward photo-oxidation because it contains only one oxidizable residue, Tyr-13. These findings may help explain the mechanism of action of glucagon and provide some hints for the development of effective anti-diabetic drug molecules and stable glucagon formulations. PMID:27435200

  12. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  13. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  14. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOEpatents

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  15. Biomimetic metal oxides for the extraction of nanoparticles from water.

    PubMed

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-04-21

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications. PMID:23471156

  16. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  17. Metal hydride hydrogen compression: recent advances and future prospects

    NASA Astrophysics Data System (ADS)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  18. Metal fire implications for advanced reactors. Part 1, literature review.

    SciTech Connect

    Nowlen, Steven Patrick; Radel, Ross F.; Hewson, John C.; Olivier, Tara Jean; Blanchat, Thomas K.

    2007-10-01

    Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. This report presents an extensive literature review that captures past experiences, new advanced reactor designs, and the current state-of-knowledge related to liquid sodium combustion behavior.

  19. CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1990-01-01

    Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  20. Metal ion adsorption to complexes of humic acid and metal oxides: Deviations from the additivity rule

    SciTech Connect

    Vermeer, A.W.P.; McCulloch, J.K.; Van Riemsdijk, W.H.; Koopal, L.K.

    1999-11-01

    The adsorption of cadmium ions to a mixture of Aldrich humic acid and hematite is investigated. The actual adsorption to the humic acid-hematite complex is compared with the sum of the cadmium ion adsorptivities to each of the isolated components. It is shown that the sum of the cadmium ion adsorptivities is not equal to the adsorption to the complex. In general, the adsorption of a specific metal ion to the complex can be understood and qualitatively predicted using the adsorptivities to each of the pure components and taking into account the effect of the pH on the interaction between humic acid and iron oxide on the metal ion adsorption. Due to the interaction between the negatively charged humic acid and the positively charged iron oxide, the adsorption of metal ions on the mineral oxide in the complex will increase as compared to that on the isolated oxide, whereas the adsorption to the humic acid will decrease as compared to that on the isolated humic acid. As a result, the overall adsorption of a specific metal ion to the complex will be smaller than predicted by the additivity rule when this metal ion has a more pronounced affinity for the humic acid than for the mineral oxide, whereas it will be larger than predicted by the additivity rule when the metal ion has a higher affinity for the oxide than for the humic acid.

  1. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    NASA Astrophysics Data System (ADS)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  2. Variation of the shape and morphological properties of silica and metal oxide powders by electro homogeneous precipitation

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Sisson, Warren G.; Brunson, Ronald R.

    1997-01-01

    The present invention provides a method for preparing irreversible linear aggregates (fibrils) of metal oxide powders by utilizing static or pulsed DC electrical fields across a relatively non-conducting liquid solvent in which organometal compounds or silicon alkoxides have been dissolved. The electric field is applied to the relatively non-conducting solution throughout the particle formation and growth process promoting the formation of either linear aggregates (fibrils) or spherical shaped particles as desired. Thus the present invention provides a physical method for altering the size, shape and porosity of precursor hydrous metal oxide or hydrous silicon oxide powders for the development of advanced ceramics with improved strength and insulating capacity.

  3. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  4. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed. PMID:26517790

  5. Anaerobic Nitrate-Dependent Metal Bio-Oxidation

    NASA Astrophysics Data System (ADS)

    Weber, K.; Knox, T.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Direct biological oxidation of reduced metals (Fe(II) and U(IV)) coupled to nitrate reduction at circumneutral pH under anaerobic conditions has been recognized in several environments as well as pure culture. Several phylogentically diverse mesophilic bacteria have been described as capable of anaerobic, nitrate-dependent Fe(II) oxidation (NFOx). Our recent identification of a freshwater mesophilic, lithoautotroph, Ferrutens nitratireducens strain 2002, capable of growth through NFOx presents an opportunity to further study metal bio- oxidation. Continuing physiological studies revealed that in addition to Fe(II) oxidation, strain 2002 is capable of oxidizing U(IV) (4 μM) in washed cell suspensions with nitrate serving as the electron acceptor. Pasteurized cultures exhibited abiotic oxidation of 2 μM U(IV). Under growth conditions, strain 2002 catalyzed the oxidation of 12 μM U(IV) within a two week period. Cultures amended with sodium azide, an electron transport inhibitor, demonstrated limited oxidation (7 μM) similar to pasteurized cultures, supporting the direct role of electron transport in U(IV) bio-oxidation. The oxidation of U(IV) coupled denitrification at circumneutral pH would yield enough energy to support anaerobic microbial growth (ΔG°'= -460.36 kJ/mole). It is currently unknown whether or not strain 2002 can couple this metabolism to growth. The growth of F. nitratireducens strain 2002 utilizing Fe(II) as the sole electron donor was previously demonstrated. The amount of U(IV) (~12 μM) that strain 2002 oxidized under similar autotrophic growth conditions yields 0.0019 kJ, enough energy for the generation of ATP (5.3 x 10-20 kJ ATP-1), but not enough energy for cell replication as calculated for nitrate-dependent Fe(II) oxidizing conditions (0.096 kJ) assuming a similar metabolism. In addition to F. nitratireducens strain 2002, a nitrate-dependent Fe(II) oxidizing bacterium isolated from U contaminated groundwater, Diaphorobacter sp. strain

  6. Lipidic nanovesicles stabilize suspensions of metal oxide nanoparticles.

    PubMed

    Jiménez-Rojo, Noemi; Lete, Marta G; Rojas, Elena; Gil, David; Valle, Mikel; Alonso, Alicia; Moya, Sergio E; Goñi, Félix M

    2015-10-01

    We have studied the effect of adding lipid nanovesicles (liposomes) on the aggregation of commercial titanium oxide (TiO2), zinc oxide (ZnO), or cerium oxide (CeO2) nanoparticles (NPs) suspensions in Hepes buffer. Liposomes were prepared with pure phospholipids or mixtures of phospholipids and/or cholesterol. Changes in turbidity were recorded as a function of time, either of metal nanoparticles alone, or for a mixture of nanoparticles and lipidic nanovesicles. Lipid nanovesicles markedly decrease the NPs tendency to sediment irrespective of size or lipid compositions, thus keeping the metal oxide NPs in suspension. Cryo-electron microscopy, fluorescence anisotropy of TMA-DPH and general polarization of laurdan failed to reveal any major effect of the NPs on the lipid bilayer structure or phase state of the lipids. The above data may help in developing studies of the interaction of inhaled particles with lung surfactant lipids and alveolar macrophages. PMID:26301898

  7. A case of strong metal-support interactions: combining advanced microscopy and model systems to elucidate the atomic structure of interfaces.

    PubMed

    Willinger, Marc G; Zhang, Wei; Bondarchuk, Oleksandr; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schlögl, Robert

    2014-06-01

    A symbiosis of advanced scanning probe and electron microscopy and a well-defined model system may provide a detailed picture of interfaces on nanostructured catalytic systems. This was demonstrated for Pt nanoparticles supported on iron oxide thin films which undergo encapsulation by supporting oxide as a result of strong metal-support interactions. PMID:24840397

  8. Metal current collect protected by oxide film

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2004-05-25

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

  9. The Strength of the Metal. Aluminum Oxide Interface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1984-01-01

    The strength of the interface between metals and aluminum oxide is an important factor in the successful operation of devices found throughout modern technology. One finds the interface in machine tools, jet engines, and microelectronic integrated circuits. The strength of the interface, however, should be strong or weak depending on the application. The diverse technological demands have led to some general ideas concerning the origin of the interfacial strength, and have stimulated fundamental research on the problem. Present status of our understanding of the source of the strength of the metal - aluminum oxide interface in terms of interatomic bonds are reviewed. Some future directions for research are suggested.

  10. Method for continuous synthesis of metal oxide powders

    SciTech Connect

    Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.

    2015-09-08

    A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.

  11. Large Lateral Photovoltaic Effect in Metal-(Oxide-) Semiconductor Structures

    PubMed Central

    Yu, Chongqi; Wang, Hui

    2010-01-01

    The lateral photovoltaic effect (LPE) can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures. PMID:22163463

  12. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECT OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...

  13. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1990-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra-efficient and low-emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttria based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  14. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra efficient and low emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttna based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  15. Oxidation stress evolution and relaxation of oxide film/metal substrate system

    NASA Astrophysics Data System (ADS)

    Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih

    2012-07-01

    Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.

  16. Galvanic Exchange in Colloidal Metal/Metal-Oxide Core/Shell Nanocrystals

    PubMed Central

    2016-01-01

    While galvanic exchange is commonly applied to metallic nanoparticles, recently its applicability was expanded to metal-oxides. Here the galvanic exchange is studied in metal/metal-oxide core/shell nanocrystals. In particular Sn/SnO2 is treated by Ag+, Pt2+, Pt4+, and Pd2+. The conversion dynamics is monitored by in situ synchrotron X-ray diffraction. The Ag+ treatment converts the Sn cores to the intermetallic AgxSn (x ∼ 4) phase, by changing the core’s crystal structure. For the analogous treatment by Pt2+, Pt4+, and Pd2+, such a galvanic exchange is not observed. This different behavior is caused by the semipermeability of the naturally formed SnO2 shell, which allows diffusion of Ag+ but protects the nanocrystal cores from oxidation by Pt and Pd ions.

  17. Evaluation of advanced oxidation process for the treatment of groundwater

    SciTech Connect

    Garland, S.B. II ); Peyton, G.R. ); Rice, L.E. . Kansas City Div.)

    1990-01-01

    An advanced oxidation process utilizing ozone, ultraviolet radiation, and hydrogen peroxide was selected for the removal of chlorinated hydrocarbons, particularly trichlorethene and 1,2-dichlorethene, from groundwater underlying the US Department of Energy Kansas City Plant. Since the performance of this process for the removal of organics from groundwater is not well-documented, an evaluation was initiated to determine the performance of the treatment plant, document the operation and maintenance costs experience, and evaluate contaminant removal mechanisms. 11 refs., 3 figs.

  18. Oxidation of alloys targeted for advanced steam turbines

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

    2006-03-12

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

  19. Modifying the catalytic and adsorption properties of metals and oxides

    NASA Astrophysics Data System (ADS)

    Yagodovskii, V. D.

    2015-11-01

    A new approach to interpreting the effect of promoters (inhibitors) of nonmetals and metals added to a host metal (catalyst) is considered. Theoretical calculations are based on a model of an actual two-dimensional electron gas and adsorbate particles. An equation is derived for the isotherm of induced adsorption on metals and semiconductors with respect to small fillings of θ ~ 0.1-0.15. The applicability of this equation is verified experimentally for metals (Ag, Pd, Cu, Fe, and Ni), graphitized ash, and semiconductor oxides Ta2O5, ZnO, and Ni. The applicability of the theoretical model of promotion is verified by the hydrogenation reaction of CO on ultradispersed nickel powder. The use of plasmachemical surface treatments of metals and oxides, accompanied by an increase in activity and variation in selectivity, are investigated based on the dehydrocyclization reactions of n-hexane and the dehydrogenation and dehydration of alcohols. It is established that such treatments for metals (Pt, Cu, Ni, and Co) raise their activity due to the growth of the number of active centers upon an increase in the activation energy. Applying XPES and XRD methods to metallic catalysts, it is shown that the rise in activity is associated with a change in their surface states (variation in the structural characteristics of metal particles and localization of certain forms of carbon in catalytically active centers). It is shown that plasmachemical treatments also alter their surface composition, surface activity, and raise their activity when used with complex phosphate oxides of the NASICON type. It is shown by the example of conversion of butanol-2 that abrupt variations in selectivity (prevalence of dehydration over dehydrogenation and vice versa) occur, depending on the type of plasma. It is concluded that plasmachemical treatments of metals and ZnO and NiO alter the isosteric heats and entropies of adsorption of isopropanol.

  20. A green strategy to prepare metal oxide superstructure from metal-organic frameworks.

    PubMed

    Song, Yonghai; Li, Xia; Wei, Changting; Fu, Jinying; Xu, Fugang; Tan, Hongliang; Tang, Juan; Wang, Li

    2015-01-01

    Metal or metal oxides with diverse superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, a novel metal-organic frameworks (MOFs)-directed method to prepare metal or metal oxide superstructure was proposed. In this strategy, nodes (metal ions) in MOFs as precursors to form ordered building blocks which are spatially separated by organic linkers were transformed into metal oxide micro/nanostructure by a green method. Two kinds of Cu-MOFs which could reciprocally transform by changing solvent were prepared as a model to test the method. Two kinds of novel CuO with three-dimensional (3D) urchin-like and 3D rods-like superstructures composed of nanoparticles, nanowires and nanosheets were both obtained by immersing the corresponding Cu-MOFs into a NaOH solution. Based on the as-formed CuO superstructures, a novel and sensitive nonenzymatic glucose sensor was developed. The small size, hierarchical superstructures and large surface area of the resulted CuO superstructures eventually contribute to good electrocatalytic activity of the prepared sensor towards the oxidation of glucose. The proposed method of hierarchical superstructures preparation is simple, efficient, cheap and easy to mass production, which is obviously superior to pyrolysis. It might open up a new way for hierarchical superstructures preparation. PMID:25669731

  1. Dextran templating for the synthesis of metallic and metal oxide sponges

    NASA Astrophysics Data System (ADS)

    Walsh, Dominic; Arcelli, Laura; Ikoma, Toshiyuki; Tanaka, Junzo; Mann, Stephen

    2003-06-01

    Silver or gold-containing porous frameworks have been used extensively in catalysis, electrochemistry, heat dissipation and biofiltration. These materials are often prepared by thermal reduction of metal-ion-impregnated porous insoluble supports (such as alumina and pumice), and have surface areas of about 1 m2 g-1, which is typically higher than that obtained for pure metal powders or foils prepared electrolytically or by infiltration and thermal decomposition of insoluble cellulose supports. Starch gels have been used in association with zeolite nanoparticles to produce porous inorganic materials with structural hierarchy, but the use of soft sacrificial templates in the synthesis of metallic sponges has not been investigated. Here we demonstrate that self-supporting macroporous frameworks of silver, gold and copper oxide, as well as composites of silver/copper oxide or silver/titania can be routinely prepared by heating metal-salt-containing pastes of the polysaccharide, dextran, to temperatures between 500 and 900 °C. Magnetic sponges were similarly prepared by replacing the metal salt precursor with preformed iron oxide (magnetite) nanoparticles. The use of dextran as a sacrificial template for the fabrication of metallic and metal oxide sponges should have significant benefits over existing technologies because the method is facile, inexpensive, environmentally benign, and amenable to scale-up and processing.

  2. A Green Strategy to Prepare Metal Oxide Superstructure from Metal-Organic Frameworks

    PubMed Central

    Song, Yonghai; Li, Xia; Wei, Changting; Fu, Jinying; Xu, Fugang; Tan, Hongliang; Tang, Juan; Wang, Li

    2015-01-01

    Metal or metal oxides with diverse superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, a novel metal-organic frameworks (MOFs)-directed method to prepare metal or metal oxide superstructure was proposed. In this strategy, nodes (metal ions) in MOFs as precursors to form ordered building blocks which are spatially separated by organic linkers were transformed into metal oxide micro/nanostructure by a green method. Two kinds of Cu-MOFs which could reciprocally transform by changing solvent were prepared as a model to test the method. Two kinds of novel CuO with three-dimensional (3D) urchin-like and 3D rods-like superstructures composed of nanoparticles, nanowires and nanosheets were both obtained by immersing the corresponding Cu-MOFs into a NaOH solution. Based on the as-formed CuO superstructures, a novel and sensitive nonenzymatic glucose sensor was developed. The small size, hierarchical superstructures and large surface area of the resulted CuO superstructures eventually contribute to good electrocatalytic activity of the prepared sensor towards the oxidation of glucose. The proposed method of hierarchical superstructures preparation is simple, efficient, cheap and easy to mass production, which is obviously superior to pyrolysis. It might open up a new way for hierarchical superstructures preparation. PMID:25669731

  3. Container Prevents Oxidation Of Metal Powder

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Power, Christopher A.; Mckechnie, Timothy N.; Burns, David H.

    1992-01-01

    Sealed high-vacuum container holds metal powder required free of contamination by oxygen from point of manufacture to point of use at vacuum-plasma-spraying machine. Container protects powder from air during filling, storage, and loading of spraying machine. Eliminates unnecessary handling and transfer of powder from one container to another. Stainless-steel container sits on powder feeder of vacuum-plasma-spraying machine.

  4. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  5. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy.

    PubMed

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  6. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    PubMed Central

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  7. Ultralight Interconnected Metal Oxide Nanotube Networks.

    PubMed

    Stano, Kelly L; Faraji, Shaghayegh; Hodges, Ryan; Yildiz, Ozkan; Wells, Brian; Akyildiz, Halil I; Zhao, Junjie; Jur, Jesse; Bradford, Philip D

    2016-05-01

    Record-breaking ultralow density aluminum oxide structures are prepared using a novel templating technique. The alumina structures are unique in that they are comprised by highly aligned and interconnected nanotubes yielding anisotropic behavior. Large-scale network structures with complex form-factors can easily be made using this technique. The application of the low density networks as humidity sensing materials as well as thermal insulation is demonstrated. PMID:26969860

  8. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides.

    PubMed

    Placencia-Gómez, Edmundo; Slater, Lee; Ntarlagiannis, Dimitrios; Binley, Andrew

    2013-05-01

    Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e., pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total chargeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe(2+) and Fe(3+) in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe(2+) and Fe(3+)), particularly for the case of pyrrhotite minerals. PMID:23531431

  9. All-alkoxide synthesis of strontium-containing metal oxides

    DOEpatents

    Boyle, Timothy J.

    2001-01-01

    A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.

  10. Dissolution of metal and metal oxide nanoparticles in aqueous media.

    PubMed

    Odzak, Niksa; Kistler, David; Behra, Renata; Sigg, Laura

    2014-08-01

    The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media. PMID:24832924

  11. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    SciTech Connect

    Jernigan, G G

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu{sub 2}O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu{sub 2}O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu{sub 2}O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N{sub 2} and CO{sub 2}. At the end of each reaction, the catalyst was found to be Cu{sub 2}O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  12. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Ni, and where M' is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  13. Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, J.; Elam, S.

    2001-01-01

    The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.

  14. Extended Frenkel pairs and band alignment at metal-oxide interfaces

    NASA Astrophysics Data System (ADS)

    Sharia, O.; Tse, K.; Robertson, J.; Demkov, Alexander A.

    2009-03-01

    We show how oxygen vacancies in metal oxides next to high-work-function metals are stabilized by an oxygen exchange reaction with the metal, and by a charge transfer from the vacancy energy level to the metal Fermi level. The results help explain some of the Fermi-level pinning problems in high- k dielectric gate stacks in complimentary metal oxide semiconductor technology and also explain the driving force behind the strong metal-support interaction in oxide-supported catalysts.

  15. Alloys for advanced steam turbines--Oxidation behavior

    SciTech Connect

    Holcomb, G.R.

    2007-10-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy (DOE) include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. Current research on the oxidation of candidate materials for advanced steam turbines is presented with a focus on a methodology for estimating chromium evaporation rates from protective chromia scales. The high velocities and pressures of advanced steam turbines lead to evaporation predictions as high as 5 × 10-8 kg m-2s-1 of CrO2(OH)2(g) at 760°C and 34.5 MPa. This is equivalent to 0.077 mm per year of solid Cr loss.

  16. Tuning carrier density at complex oxide interface with metallic overlayer

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Shi, Y. J.; Jiang, S. W.; Yue, F. J.; Wang, P.; Ding, H. F.; Wu, D.

    2016-06-01

    We have systematically investigated the electronic transport properties of the LaAlO3/SrTiO3 interfaces with several different metal capping layers. The sheet carrier density can be tuned in a wide range by the metallic overlayer without changing the carrier mobility. The sheet carrier density variation is found to be linearly dependent on the size of metal work function. This behavior is explained by the mechanism of the charge transfer between the oxide interface and the metal overlayer across the LaAlO3 layer. Our results confirm the existence of a built-in electric field in LaAlO3 film with an estimated value of 67.7 eV/Å. Since the metallic overlayer is essential for devices, the present phenomena must be considered for future applications.

  17. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    SciTech Connect

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  18. Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride

    NASA Astrophysics Data System (ADS)

    Squires, Leah N.; Lessing, Paul

    2016-04-01

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can be easily removed upon cooling. The direct reduction technique consistently produces high purity (98%-99% pure) neptunium metal.

  19. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  20. Fate, behavior, and bioavailability of metal and metal oxide nanomaterials in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Bertsch, P. M.; Unrine, J. M.; Judy, J.; Tsyusko, O.

    2012-12-01

    Despite the benefits that are currently being manifested and those transformative breakthroughs that will undoubtedly result from advances in nanotechnology, concerns surrounding the potential negative impacts to the environment and human health and welfare continue to emerge. Information on the transport and fate of manufactured nanomaterials (MNMs) in the environment and on their potential effects to human and ecological receptors is emerging at an increasing rate. Notwithstanding these developments, the research enterprise focused on the environmental implications of nanotechnology is in its infancy and few unifying principles have yet to emerge. This lack of unanimity is related to many factors including, the vast diversity in chemical composition, size, shape, and surface chemical properties of MNMs, as well as the range of receptor species and cell lines investigated. Additionally, the large variation in exposure methodologies employed by various investigators as well as the discrepancies in the amount and quality of characterization data collected to support specific conclusions, provide major challenges for developing unifying concepts and principles. As the utilization of MNMs for a large variety of applications is currently in an exponential growth phase, there is great urgency to develop information that can be used to identify priority areas for assessing risks to humans and the environment, as well as in developing potential mitigation strategies. We have been investigating the fate, behavior, and potential impacts of MNMs released into terrestrial ecosystems by examining the bioavailability and toxicity as well as the trophic transfer of a range of metal and metal oxide nanoparticles (Ag, Au, Cu, TiO2, ZnO, CeO2) to microorganisms, detritivores, and plants. Interdisciplinary studies include the characterization of the nanoparticles and aged nanoparticles in complex media, the distribution of nanoparticles in biological tissues, nanoparticle toxicity

  1. Metal-accelerated oxidation in plant cell death

    SciTech Connect

    Czuba, M. )

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  2. ELECTROCHEMICAL ADVANCED OXIDATION PROCESS UTILIZING NB-DOPED TIO2 ELECTRODES

    EPA Science Inventory

    An electrochemical advanced oxidation process has been developed utilizing electrodes which generate hydroxyl free radical (HO) by oxidizing water. All substrates tested are oxidized, mostly with reaction rates proportional to the corresponding rate constants for reaction with hy...

  3. ELECTROCHEMICAL ADVANCED OXIDATION PROCESS UTILIZING NB-DOPED TIO2 ELECTRODES

    EPA Science Inventory

    An electrochemical advanced oxidation process has been developed, utilizing electrodes which generate hydroxyl free radical (HO) by oxidizing water. All substrates tested are oxidized, mostly with reaction rates proportional to the corresponding rate constants for reaction with h...

  4. Fundamentals of electrochromism in metal oxide bronzes

    SciTech Connect

    Haas, T.E.; Goldner, R.B.

    1990-12-31

    The phenomenon of electrochromism as described here is clearly a property to be associated with a material. The material must be capable of reversible oxidation and reduction, and have an accompanying spectral change. However, since it requires a chemical change of oxidation state to occur, there must be a corresponding second material to serve as the source/sink of electrons and charge compensating ions. In short, electrochromism is observable only in a device, not in an isolated material. In its essence an electrochromic device is simply a reversible electrochemical cell, consisting of electronic conductors (the wires for an external electronic pathway), two electrodes at which the electron transfer, the oxidation and reduction, takes place, and an ion conducting and electron blocking electrolyte separating the electrode materials. There are numerous ways to combine these fundamental components and the phenomenon of electrochromism into practical devices, several of which will be described in this book. The structure of the so-called smart window has the components of the electrochemical cell assembled in the form of thin films on a transparent substrate, and is intended to be viewed in transmission. The electronic conductors in this case must be transparent, thus are labeled TC (transparent conductor). The electrochromic layer, EC, consists of a material which undergoes the color change giving rise to the electrochromic designation. The ionic conductor, IC, serves as the electrolyte to allow ion transfer and block electron transfer, preventing shorting out of the device and permitting the memory feature of retaining the coloration state upon opening the external circuit of the device. The counterelectrode layer may be either optically passive or may behave in a complementary fashion to the EC layer, e.g., be anodically coloring to the EC layer that cathodically colors. The authors study WO{sub 3} as the electrochromatic material in a smart window application.

  5. High-temperature Complementary Metal Oxide Semiconductors (CMOS)

    NASA Technical Reports Server (NTRS)

    Mcbrayer, J. D.

    1981-01-01

    The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.

  6. The Extraction of Metals from Their Oxides and Sulphides.

    ERIC Educational Resources Information Center

    Price, Alun H.

    1980-01-01

    Briefly describes the application of thermodynamics (system at equilibrium) to the study of the extraction of metals from their oxides (dynamic situation). It is more relevant to study the temperature variation of the equilibrium constants of the reaction than to study the free energy approach. (Author/SK)

  7. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  8. CMOS array design automation techniques. [metal oxide semiconductors

    NASA Technical Reports Server (NTRS)

    Ramondetta, P.; Feller, A.; Noto, R.; Lombardi, T.

    1975-01-01

    A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed.

  9. Molten-Metal Electrodes for Solid Oxide Fuel Cells

    SciTech Connect

    Jayakumar, A.; Vohs, J. M.; Gorte, R. J.

    2010-11-03

    Molten In, Pb, and Sb were examined as anodes in solid oxide fuel cells (SOFC) that operate between 973 and 1173 K. The results for these metals were compared with those reported previously for molten Sn electrodes. Cells were operated under “battery” conditions, with dry He or N2 flow in the anode compartment, to characterize the electrochemical oxidation of the metals at the yttria-stabilized zirconia (YSZ)-electrolyte interface. In most cases, the open-circuit voltages (OCVs) were close to that based on equilibrium between the metals and their oxides. With Sn and In, the cell impedances increased dramatically at all temperatures after drawing current due to formation of insulating, oxide barriers at the electrolyte interface. Similar results were observed for Pb at 973 and 1073 K, but the impedance remained low even after PbO formation at 1173 K because this is above the melting temperature of PbO. Similarly, the impedances of molten Sb electrodes at 973 K were low and unaffected by current flow because of the low melting temperature of Sb{sub 2}O{sub 3}. The potential of using molten-metal electrodes for direct-carbon fuel cells and for energy-storage systems is discussed.

  10. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  11. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGESBeta

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore » when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  12. Oxidation resistant filler metals for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  13. Growth of metal oxide nanoparticles using pulsed laser ablation technique

    NASA Astrophysics Data System (ADS)

    Gondal, M. A.; Drmosh, Q. A.; Saleh, Tawfik A.; Yamani, Z. H.

    2011-02-01

    Nano particles exhibit physical and chemical properties distinctively different from that of bulk due to high number of surface atoms, surface energy and surface area to volume ratio. Laser is a unique source of radiation and has been applied in the synthesis of nano structured metal oxides. The pulsed laser ablation (PLA) technique in liquid medium has been proven an effective and simple technique for preparing nanoparticles of high purity. Pulsed laser deposition (PLD) is another way to fabricate nano structured single crystal thin films of metal oxides. PLA technique has been applied in our laboratory for the growth of metal oxides such as nano-ZnO, nano-ZnO2 nano- SnO2, nano-Bi2O3, nano-NiO and nano-MnO2. Different techniques such as AFM, UV, FT-IR, PL and XRD were applied to characterize these materials. We will present our latest development in the growth of nano metal oxides using PLA and PLD.

  14. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  15. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  16. OXIDATION-RESISTANT COATING ON ARTICLES OF YTTRIUM METAL

    DOEpatents

    Wilder, D.R.; Wirkus, C.D.

    1963-11-01

    A process for protecting yttrium metal from oxidation by applying thereto and firing thereon a liquid suspension of a fritted ground silicate or phosphate glass plus from 5 to 35% by weight of CeO/sub 2/ is presented. (AEC)

  17. Platinum redispersion on metal oxides in low temperature fuel cells.

    PubMed

    Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan

    2013-03-01

    We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes. PMID:23358311

  18. Investigation of Switching Phenomenon in Metal-Tantalum Oxide Interface.

    PubMed

    Yawar, Abbas; Park, Mi Ra; Hu, Quanli; Song, Woo Jin; Yoon, Tae-Sik; Choi, Young Jin; Kang, Chi Jung

    2015-10-01

    To investigate the nature of the switching phenomenon at the metal-tantalum oxide interface, we fabricated a memory device in which a tantalum oxide amorphous layer acted as a switching medium. Different metals were deposited on top of the tantalum oxide layer to ensure that they will react with some of the oxygen contents already present in the amorphous layer of the tantalum oxide. This will cause the formation of metal oxide (MOx) at the interface. Two devices with Ti and Cu as the top electrodes were fabricated for this purpose. Both devices showed bipolar switching characteristics. The SET and RESET voltages for the Ti top electrode device were ~+1.7 V and ~-2 V, respectively, whereas the SET and RESET voltages for the Cu top electrode device were ~+0.9 V and ~-0.9 V, respectively. In the high-resistance state (HRS) conduction, the mechanisms involved in the devices with Ti and Cu top electrodes were space-charge limited conduction (SCLC) and ohmic, respectively. On the other hand, in the low-resistance state (LRS), the Ti top electrode device undergoes SCLC at a high voltage and ohmic conduction at a low voltage, and the Cu top electrode again undergoes ohmic conduction. From the consecutive sweep cycles, it was observed that the SET voltage gradually decreased with the sweeps for the Cu top electrode device, whereas for the Ti top electrode device, the set voltage did not vary with the sweeps. PMID:26726372

  19. Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes.

    PubMed

    Rettie, Alexander J E; Chemelewski, William D; Emin, David; Mullins, C Buddie

    2016-02-01

    Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed. PMID:26758715

  20. Comparative study of metal adsorption on the metal and the oxide surfaces

    NASA Astrophysics Data System (ADS)

    Magkoev, T. T.; Vladimirov, G. G.; Remar, D.; Moutinho, A. M. C.

    2002-05-01

    Adsorption of Ti, Cr, Fe, Ni and Cu atoms at coverage not exceeding two monolayers on the surface of ultrathin (10-15 Å) alumina and magnesia films (γ-Al 2O 3(111) or α-Al 2O 3(1000) and MgO(111) grown on Mo(110) were studied in ultrahigh vacuum by means of electron spectroscopy techniques (Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS), high resolution electron energy loss spectroscopy (HREELS), low energy electron diffraction (LEED), work function measurements and reflection absorption infrared spectroscopy (RAIRS)). At very low metal coverage and low substrate temperature (85 K) when the film can be viewed as consisting of separate adatoms and/or very small clusters the electronic properties of adatoms on the oxide films, on one hand, and on Mo(110) surface, on the other hand, are quite different. With increasing metal coverage, the properties on both the oxide and the metallic substrates change becoming similar at the coverage close to monolayer. On the Mo(110) surface the electronic properties change gradually with the metal coverage, whereas on the oxide there is a critical coverage of about 0.15 ML separating ionic and metallic adsorption of the metal species. It is shown that the lateral interaction of adatoms on the oxide surface plays a dominant role in the formation of the band-like structure of the adsorbed 2D film.

  1. Metal-Organic Frameworks as Catalysts for Oxidation Reactions.

    PubMed

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; Garcia, Hermenegildo

    2016-06-01

    This Concept is aimed at describing the current state of the art in metal-organic frameworks (MOFs) as heterogeneous catalysts for liquid-phase oxidations, focusing on three important substrates, namely, alkenes, alkanes and alcohols. Emphases are on the nature of active sites that have been incorporated within MOFs and on future targets to be set in this area. Thus, selective alkene epoxidation with peroxides or oxygen catalyzed by constitutional metal nodes of MOFs as active sites are still to be developed. Moreover, no noble metal-free MOF has been reported to date that can act as a general catalyst for the aerobic oxidation of primary and secondary aliphatic alcohols. In contrast, in the case of alkanes, a target should be to tune the polarity of MOF internal pores to control the outcome of the autooxidation process, resulting in the selective formation of alcohol/ketone mixtures at high conversion. PMID:27113486

  2. Acute tellurium toxicity from ingestion of metal-oxidizing solutions.

    PubMed

    Yarema, Mark C; Curry, Steven C

    2005-08-01

    Tellurium is an element used in the vulcanization of rubber and in metal-oxidizing solutions to blacken or tarnish metals. Descriptions of human toxicity from tellurium ingestion are rare. We report the clinical course of 2 children who ingested metal-oxidizing solutions containing substantial concentrations of tellurium. Clinical features included vomiting, black discoloration of the oral mucosa, and a garlic odor to the breath. One patient developed corrosive injury to the esophagus secondary to the high concentration of hydrochloric acid in the solution. Both patients recovered without serious sequelae, which is typical of tellurium toxicity. An awareness of situations in which children may be exposed to tellurium and its clinical presentation may assist clinicians in the diagnosis of this rare poisoning. PMID:15995006

  3. Phisicochemistry of alkaline-earth metals oxides surface

    NASA Astrophysics Data System (ADS)

    Ekimova, Irina; Minakova, Tamara; Ogneva, Tatyana

    2016-01-01

    The surface state of alkaline-earth metals and magnesium oxides obtained by means of commercial and laboratory ways has been studied in this paper. A complex of methods has been used for identification, determination of a phase composition and morphology of the samples. The high basic character of surface centres has been shown with the help of pH-metry and adsorption of indicators methods. Acid-basic parameters (pHt, pHiis, etc.) can be used for the estimation of a general acid-basic state of metal oxides samples surface and for the supposition about different nature and strength of acid-basic centres as well as for the initial control in the process of acid basic properties of solid oxides surface properties evaluation.

  4. Advanced technologies for decomtamination and conversion of scrap metal

    SciTech Connect

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-05-27

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting

  5. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future. PMID:26996438

  6. Charge trapping in low temperature MOS (Metal-Oxide-Silicon) oxides

    NASA Astrophysics Data System (ADS)

    Zvanut, M. E.; Feigl, F. J.; Butler, S. R.; Vogel, R. H.

    1984-08-01

    Metal-oxide-silicon (MOS) capacitors were fabricated on silicon dioxide films produced at 700 C by either low pressure chemical vapor deposition (LPCVD) or high pressure thermal oxidation (HIPOX). The LPCVD process involved reaction of dichlorosilane with nitrous oxide. The HIPOX process involved dry oxygen. The LPCVD and HIPOX films were subjected to a variety of annealing treatments. We have systematically investigated the effects of these treatments by measurement of oxide charge and interface trap density before and after electron current transport across films, grown and annealed at 700 C, were comparable to those of standard dry thermal oxides grown and annealed at 1000 C. However, charge trapping in the HIPOX films was an order of magnitude larger than in the standard oxides, although well-prepared HIPOX films exhibited specific electron traps characteristics of standard dry oxides.

  7. Advanced oxidation of alkylphenol ethoxylates in aqueous systems.

    PubMed

    Nagarnaik, Pranav M; Boulanger, Bryan

    2011-10-01

    Alkylphenols and alkylphenol ethoxylates are ubiquitous wastewater contaminants. In this study the oxidation of nonylphenol ethoxylates (NPEO) and octylphenol ethoxylates (OPEO) by oxidant systems generating hydroxide radicals was evaluated. The reaction of each oxidant with a technical mixture of NPEO (Tergitol™) and OPEO (Triton X-100™) in ultrapure laboratory water and four aqueous environmental matrices was carried out in order to develop an understanding of reaction kinetics. The oxidation of APEOs was evaluated by hydroxyl radical generated by (1) hydrogen peroxide in the presence of ultraviolet light, (2) Fenton's reagent, and (3) a photo-Fenton's process. The second order kinetic rate constant for both NPEO and OPEO with hydroxyl radical was calculated to be 1.1×10¹⁰ M⁻¹ s⁻¹. The efficacy of the AOPs within an aqueous environmental matrix was dependent on the rate of formation of hydroxyl radical and the scavenging capacity of the matrix. A model based on the hydroxyl radical formation, scavenging capacity and the kinetic rate constant of target APEO was developed from the existing literature and applied to predict the concentration of APEOs in solution during advanced oxidation in different aqueous environmental matrices. PMID:21784502

  8. Solvated Electrons on Metal Oxide Surfaces

    SciTech Connect

    Zhao, Jin; Li, Bin; Onda, Ken; Feng, Min; Petek, Hrvoje

    2006-09-13

    An electron added to a solvent polarizes its surrounding medium to minimize the free energy. Such an electron with its polarization cloud, which we refer to as the solvated electron, is one of the most fundamental chemical reagents of significant experimental and theoretical interest. The structure and dynamics of solvated electrons in protic solvents have been explored ever since the discovery of intense blue coloration in solutions of alkali metals in ammonia.1-3 Because solvated electrons are the most fundamental chemical reagents as well as carriers of negative charge, substantial experimental and theoretical efforts have focused on elucidating their equilibrium structure and solvation dynamics in a variety of neat liquids.4,5 One of the most important but least explored environments for solvated electrons, namely, the two-dimensional liquid/solid and liquid/vacuum interfaces, is the subject of this review.

  9. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. PMID:26351175

  10. The growth of one-dimensional oxide nanostructures by thermal oxidation of metals

    NASA Astrophysics Data System (ADS)

    Yuan, Lu

    Fundamental understanding of metals and alloys oxidation and reduction is important for the next generation technology. A detailed study on the oxide nanostructures growth from the oxidation of model metal systems, Cu, Fe, Zn and brass has been investigated to bridge the information gap between the oxidation mechanisms of buck metals and alloys to metal oxide nanostructures. It is observed that CuO nanowires have a bicrystal structure and form directly on top of underlying CuO grains. The driving force for the oxide nanowire growth is attributed to the compressive stresses generated during the oxidation. To verify this growth mechanism, Cu foils are bent or sandblasted to create stresses. We show that the oxide nanowire formation can be effectively promoted by surface bending tensile stresses or surface roughening via sandblasting. The formation of alpha-Fe2O3 nanowires by oxidation of Fe also follows the same stress driven mechanism as Cu. It is also found that decreasing the oxygen pressure or modifying the surface roughness by sandblasting can be employed to tune the hematite nanostructures from nanowires to nanobelts or nanoblades. The growth of ZnO nanowires by direct oxidation of pure Zn follows different mechanisms depending on the temperatures: the oxidation below the melting point of Zn is dominated by a solid-solid transformation process, a liquid-solid process between the melting and boiling points of Zn, and a vapor-solid process above the boiling point of Zn. ZnO nanowires can also be synthesized by thermal oxidation of brass (Cu0.7Zn0.3). With increasing the oxidation temperature or exerting sandblasting onto brass, the formation of ZnO nanowires can be effectively suppressed. The thermally induced reduction of CuO nanowires are studied by in situ transmission electron microscopy. Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the lower oxide (Cu2O) nanoparticles partially embedded into the

  11. Oxidized Metal Powders for Mechanical Shock and Crush Safety Enhancers

    SciTech Connect

    GARINO, TERRY J.

    2002-01-01

    The use of oxidized metal powders in mechanical shock or crush safety enhancers in nuclear weapons has been investigated. The functioning of these devices is based on the remarkable electrical behavior of compacts of certain oxidized metal powders when subjected to compressive stress. For example, the low voltage resistivity of a compact of oxidized tantalum powder was found to decrease by over six orders of magnitude during compaction between 1 MPa, where the thin, insulating oxide coatings on the particles are intact, to 10 MPa, where the oxide coatings have broken down along a chain of particles spanning the electrodes. In this work, the behavior of tantalum and aluminum powders was investigated. The low voltage resistivity during compaction of powders oxidized under various conditions was measured and compared. In addition, the resistivity at higher voltages and the dielectric breakdown strength during compaction were also measured. A key finding was that significant changes in the electrical properties persist after the removal of the stress so that a mechanical shock enhancer is feasible. This was verified by preliminary shock experiments. Finally, conceptual designs for both types of enhancers are presented.

  12. Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides.

    SciTech Connect

    Shkrob, I. A.; Marin, T. M.; Sevilla, M. D.; Chemerisov, S.

    2011-03-24

    Polyhydroxylated molecules, including natural carbohydrates, are known to undergo photooxidation on wide-gap transition-metal oxides irradiated by ultraviolet light. In this study, we examine mechanistic aspects of this photoreaction on aqueous TiO{sub 2}, {alpha}-FeOOH, and {alpha}-Fe{sub 2}O{sub 3} particles using electron paramagnetic resonance (EPR) spectroscopy and site-selective deuteration. We demonstrate that the carbohydrates are oxidized at sites involved in the formation of oxo bridges between the chemisorbed carbohydrate molecule and metal ions at the oxide surface. This bridging inhibits the loss of water (which is the typical reaction of the analogous free radicals in bulk solvent) promoting instead a rearrangement that leads to elimination of the formyl radical. For natural carbohydrates, the latter reaction mainly involves carbon-1, whereas the main radical products of the oxidation are radical arising from H atom loss centered on carbon-1, -2, and -3 sites. Photoexcited TiO{sub 2} oxidizes all of the carbohydrates and polyols, whereas {alpha}-FeOOH oxidizes some of the carbohydrates, and {alpha}-Fe{sub 2}O{sub 3} is unreactive. These results serve as a stepping stone for understanding the photochemistry on mineral surfaces of more complex biomolecules such as nucleic acids.

  13. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOEpatents

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  14. Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes.

    PubMed

    Huang, Zongyu; Zhang, Zhen; Qi, Xiang; Ren, Xiaohui; Xu, Guanghua; Wan, Pengbo; Sun, Xiaoming; Zhang, Han

    2016-07-21

    Recently, considerable efforts have been made to satisfy the future requirements of electrochemical energy storage using novel functional electrode materials. Binary transition metal oxides (BTMOs) possess multiple oxidation states that enable multiple redox reactions, showing higher supercapacitive properties than single component metal oxides. In this work, a facile hydrothermal method is provided for the synthesis of wall-like hierarchical metal oxide MMoO4 (M = Ni, Co) nanosheet arrays, which are directly grown on flexible carbon cloth for use as advanced binder-free electrodes for supercapacitors. By virtue of their intriguing structure, the resulted active material nanosheets with a high specific surface area can provide a large electroactive region, which could facilitate easy accession of electrolyte ions and fast charge transport, resulting in an enhanced electrochemical performance. Separately, the as-synthesized MMoO4 (M = Ni, Co) samples have exhibited superior specific capacitances (1483 F g(-1) of NiMoO4 and 452 F g(-1) of CoMoO4 at a current density of 2 A g(-1)), as well as excellent cycling stability (93.1% capacitance retention of NiMoO4 and 95.9% capacitance retention of CoMoO4 after 2000 cycles). The results show that the binder-free electrodes constructed by deposition of MMoO4 (M = Ni, Co) nanosheets on carbon cloth are promising candidates for the application of supercapacitors. PMID:27336591

  15. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  16. Impurity diffusion in transition-metal oxides

    SciTech Connect

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe/sub 3/O/sub 4/. Tracer impurity diffusion in these materials and TiO/sub 2/, together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO/sub 2/ whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures.

  17. Comprehensive study and design of scaled metal/high-k/Ge gate stacks with ultrathin aluminum oxide interlayers

    NASA Astrophysics Data System (ADS)

    Asahara, Ryohei; Hideshima, Iori; Oka, Hiroshi; Minoura, Yuya; Ogawa, Shingo; Yoshigoe, Akitaka; Teraoka, Yuden; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2015-06-01

    Advanced metal/high-k/Ge gate stacks with a sub-nm equivalent oxide thickness (EOT) and improved interface properties were demonstrated by controlling interface reactions using ultrathin aluminum oxide (AlOx) interlayers. A step-by-step in situ procedure by deposition of AlOx and hafnium oxide (HfOx) layers on Ge and subsequent plasma oxidation was conducted to fabricate Pt/HfO2/AlOx/GeOx/Ge stacked structures. Comprehensive study by means of physical and electrical characterizations revealed distinct impacts of AlOx interlayers, plasma oxidation, and metal electrodes serving as capping layers on EOT scaling, improved interface quality, and thermal stability of the stacks. Aggressive EOT scaling down to 0.56 nm and very low interface state density of 2.4 × 1011 cm-2eV-1 with a sub-nm EOT and sufficient thermal stability were achieved by systematic process optimization.

  18. Sulfur polymer cement encapsulation of RCRA toxic metals and metal oxides

    SciTech Connect

    Calhoun, C.L. Jr.; Nulf, N.E.

    1995-12-31

    A series of bench-scale experiments were conducted to study the effects of sodium sulfide additions to sulfur polymer cement (SPC) and hazardous wastes containing heavy metals. Each SPC mixture was analyzed by modified Toxicity Characteristic Leaching Procedure. Experiments conducted with no additives indicated that, for waste streams with small quantities of lead(IV) oxide and aresenic, SPC may be a sufficient encapsulant. The addition of sodium sulfide to the waste mixture yielded metal concentrations below regulatory values only for lead. However, a significant improvement in leaching performance was observed for oxides of arsenic, barium, cadmium, and lead.

  19. Erratum: “Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point” [AIP Advances 5, 077132 (2015)

    SciTech Connect

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.; Lee, M. H.

    2015-12-30

    In the original manuscript, M. H. Lee’s affiliation number was incorrectly listed as 1. M. H. Lee’s correct affiliation number is 2 (Rare Metals R&D Group, Korea Institute of Industrial Technology, Incheon 406-840, South Korea). Furthermore, this change affects no other part of the paper.

  20. Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 microns

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Gustafson, T. K.; Izawa, T.

    1975-01-01

    Direct detection experiments have demonstrated the coherent coupling of 10.6 micrometer radiation into photolithographically fabricated metal-oxide-metal tunnel junctions. A CO2 laser beam mechanically chopped at 1 KHz was focused at a variable angle of incidence with a power density of about 10 W/sq cm at the diodes. Diodes in which the junction resistance was much greater than the lead resistance displayed angular characteristics dominated by coherent antenna coupling.

  1. Surface plasmon dispersion analysis in the metal-oxide-metal tunnel diode

    NASA Technical Reports Server (NTRS)

    Donohue, J. F.; Wang, E. Y.

    1987-01-01

    A detailed model of surface plasmon dispersion in the metal-oxide-metal tunnel diode is presented in order to clarify the spectral emission from this diode. The model predicts the location of the spectral peaks and the emission between the peaks by considering the effects of retardation on the surface plasmon. A nonradiative mode is found to play a major role in the transition from the visible to UV peaks in the diode spectra.

  2. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  3. Chemical Reactivity at Metal Oxide-Aqueous Solution Interfaces

    NASA Astrophysics Data System (ADS)

    Brown, Gordon E., Jr.

    2005-03-01

    The chemical reactivity of metal oxide surfaces in contact with aqueous solutions, with respect to cations and anions, is controlled by the composition, structure, and charging properties of the surface, the dielectric properties of the bulk oxide, and the stability of the aqueous cation or anion complex versus its sorption complex. These points will be illustrated for selected cations, anions, and metal oxides using macroscopic uptake and EXAFS spectroscopy results, x-ray standing wave data, and crystal truncation rod diffraction data. The reactivity of metal oxide surfaces with respect to low molecular weight (LMW) carboxylic acids is also dependent on the types of ring structures formed between surface functional groups and the LMW organic molecules. These types of interactions will be illustrated using ATR-FTIR data and dissolution measurements as a function of pH for oxalate, maleate, phthalate, and pyromellitate interacting with boehmite (AlOOH). Co-Authors are Tae Hyun Yoon, Stephen B. Johnson, Dept. of Geological & Environmental Sciences, Stanford University, Stanford CA 94305-2115; Thomas P. Trainor, Dept. of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK 99775; Anne M. Chaka, National Institute of Standards and Technology, Gaithersburg, MD 20899

  4. Carbon formation and metal dusting in advanced coal gasification processes

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  5. Ferrous iron sorption by hydrous metal oxides.

    PubMed

    Nano, Genevieve Villaseñor; Strathmann, Timothy J

    2006-05-15

    Ferrous iron is critical to a number of biogeochemical processes that occur in heterogeneous aquatic environments, including the abiotic reductive transformation of subsurface contaminants. The sorption of Fe(II) to ubiquitous soil minerals, particularly iron-free mineral phases, is not well understood. Colloidal TiO2, gamma-AlOOH, and gamma-Al2O2 were used as model hydrous oxides to investigate Fe(II) sorption to iron-free mineral surfaces. Rapid Fe(II) sorption during the first few hours is followed by a much slower uptake process that continues for extended periods (at least 30 days). For equivalent solution conditions, the extent of Fe(II) sorption decreases in the order TiO2 >gamma-Al2O3 >gamma-AlOOH. Short-term equilibrium sorption data measured over a wide range of conditions (pH, ionic strength, Fe(II)-to-sorbent ratio) are well described by the diffuse double layer model. Fe(II) sorption to TiO2 is best described by a single-site model that considers formation of two surface complexes, SOFe+ and SOFeOH0. For gamma-AlOOH and gamma-Al2O3, sorption data are best described by a two-site model that considers formation of SOFe+ complexes at weak- and strong-binding surface sites. Accurate description of sorption data for higher Fe(II) concentrations at alkaline pH conditions requires the inclusion of a Fe(II) surface precipitation reaction in the model formulation. The presence of common groundwater constituents (calcium, sulfate, bicarbonate, or fulvic acid) had no significant effect on Fe(II) sorption. These results demonstrate that iron-free soil minerals can exert a significant influence on Fe(II) sorption and speciation in heterogeneous aquatic systems. PMID:16337955

  6. Catalytic activity of metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide

    SciTech Connect

    Marshneva, V.I.; Mokrinskii, V.V.

    1989-02-01

    Separate investigations have been made of the catalytic activities of a wide range of oxides by groups I-VIII metals in the Claus reaction and oxidation of H/sub 2/S by oxygen. Only 9 of 21 oxides used in the Claus reaction exhibit stable activity. The remaining oxides are deactivated, mainly by absorbing H/sub 2/S and being converted into sulfides. There are similar tendencies in the changes of sulfur formation specific velocities in both processes in the series of stable oxides V/sub 2/O/sub 5/, TiO/sub 2/, Mn/sub 2/O/sub 3/, Al/sub 2/O/sub 3/, MgO, Cr/sub 2/O/sub 3/. Vanadium pentoxide is the most active catalyst in the total and partial oxidations of H/sub 2/S and the Claus reaction.

  7. A molecular catalyst for water oxidation that binds to metal oxide surfaces

    PubMed Central

    Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich; Crabtree, Robert H.; Brudvig, Gary W.; Schmuttenmaer, Charles A.

    2015-01-01

    Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425

  8. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  9. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  10. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  11. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  12. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  13. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  14. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  15. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  16. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  17. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  18. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  19. Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques

    NASA Astrophysics Data System (ADS)

    Gannon, Paul Edward

    High energy conversion efficiency, decreased environmentally-sensitive emissions and fuel flexibility have attracted increasing attention toward solid oxide fuel cell (SOFC) systems for stationary, transportation and portable power generation. Critical durability and cost issues, however, continue to impede wide-spread deployment. Many intermediate temperature (600-800°C) planar SOFC systems employ metallic alloy interconnect components, which physically connect individual fuel cells into electric series, facilitate gas distribution to appropriate SOFC electrode chambers (fuel/anode and oxidant[air]/cathode) and provide SOFC stack mechanical support. These demanding multifunctional requirements challenge commercially-available and inexpensive metallic alloys due to corrosion and related effects. Many ongoing investigations are aimed at enabling inexpensive metallic alloys (via bulk and/or surface modifications) as SOFC interconnects (SOFC(IC)s). In this study, two advanced physical vapor deposition (PVD) techniques: large area filtered vacuum arc deposition (LAFAD), and filtered arc plasma-assisted electron beam PVD (FA-EBPVD) were used to deposit a wide-variety of protective nanocomposite (amorphous/nanocrystalline) ceramic thin-film (<5microm) coatings on commercial and specialty stainless steels with different surface finishes. Both bare and coated steel specimens were subjected to SOFC(IC)-relevant exposures and evaluated using complimentary surface analysis techniques. Significant improvements were observed under simulated SOFC(IC) exposures with many coated specimens at ˜800°C relative to uncoated specimens: stable surface morphology; low area specific resistance (ASR <100mO·cm 2 >1,000 hours); and, dramatically reduced Cr volatility (>30-fold). Analyses and discussions of SOFC(IC) corrosion, advanced PVD processes and protective coating behavior are intended to advance understanding and accelerate the development of durable and commercially-viable SOFC

  20. Nearly free electrons in a 5d delafossite oxide metal

    PubMed Central

    Kushwaha, Pallavi; Sunko, Veronika; Moll, Philip J. W.; Bawden, Lewis; Riley, Jonathon M.; Nandi, Nabhanila; Rosner, Helge; Schmidt, Marcus P.; Arnold, Frank; Hassinger, Elena; Kim, Timur K.; Hoesch, Moritz; Mackenzie, Andrew P.; King, Phil D. C.

    2015-01-01

    Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit–assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5d iridium-based oxides. We instead consider the Pt-based delafossite oxide PtCoO2. Our transport measurements, performed on single-crystal samples etched to well-defined geometries using focused ion beam techniques, yield a room temperature resistivity of only 2.1 microhm·cm (μΩ-cm), establishing PtCoO2 as the most conductive oxide known. From angle-resolved photoemission and density functional theory, we show that the underlying Fermi surface is a single cylinder of nearly hexagonal cross-section, with very weak dispersion along kz. Despite being predominantly composed of d-orbital character, the conduction band is remarkably steep, with an average effective mass of only 1.14me. Moreover, the sharp spectral features observed in photoemission remain well defined with little additional broadening for more than 500 meV below EF, pointing to suppressed electron-electron scattering. Together, our findings establish PtCoO2 as a model nearly-free–electron system in a 5d delafossite transition-metal oxide. PMID:26601308

  1. Cyclic Catalytic Upgrading of Chemical Species Using Metal Oxide Materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schutte, Erick J. (Inventor); Rolfe, Sara L. (Inventor)

    2013-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce(sub x)B(sub y)B'(sub z)B''O(sub gamma; wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01metal oxides.

  2. Reaction of ethanol on oxidized and metallic cobalt surfaces

    NASA Astrophysics Data System (ADS)

    Hyman, Matthew P.; Vohs, John M.

    2011-02-01

    The reaction of ethanol on metallic and oxidized cobalt surfaces was studied using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) in order to determine the dependence of the reaction pathways on the cobalt oxidation state. The primary reaction for ethoxide species on metallic cobalt surfaces was decarbonylation producing CO, H 2 and carbon. This reaction was facile and occurred below 400 K. In contrast, CoO x surfaces which predominantly contained Co 2+ were selective for the dehydrogenation of ethoxide groups to produce acetaldehyde at 400 K. A fraction of the acetaldehyde molecules produced by this pathway were further oxidized to acetate which decomposed to produce CO 2 at 495 K. More highly oxidized Co surfaces that contained both CO 2+ and Co 3+ were active for the complete oxidation of ethanol producing CO, CO 2, and H 2O as the primary products. The insights that these results provide for understanding the mechanism of the steam reforming of ethanol on cobalt catalysts is discussed.

  3. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01metal oxides.

  4. Morphological Control of Metal Oxide-Doped Zinc Oxide and Application to Cosmetics

    NASA Astrophysics Data System (ADS)

    Goto, Takehiro; Yin, Shu; Sato, Tsugio; Tanaka, Takumi

    2012-06-01

    Zinc oxide shows excellent transparency and ultraviolet radiation shielding ability, and is used for various cosmetics.1-3 However, it possesses high catalytic activity and lower dispersibility. Therefore, spherical particles of zinc oxide have been synthesized by soft solution reaction using zinc nitrate, ethylene glycol, sodium hydroxide and triethanolamine as starting materials. After dissolving these compounds in water, the solution was heated at 90°C for 1 h to form almost mono-dispersed spherical zinc oxide particles. The particle size changed depending on zinc ion concentration, ethylene glycol concentration and so on. Furthermore, with doping some metal ions, the phtocatalytic activity could be decreased. The obtained monodispersed metal ion-doped spherical zinc oxides showed excellent UV shielding ability and low photocatalytic activity. Therefore, they are expected to be used as cosmetics ingredients.

  5. Effect of metal catalyzed oxidation in recombinant viral protein assemblies

    PubMed Central

    2014-01-01

    Background Protein assemblies, such as virus-like particles, have increasing importance as vaccines, delivery vehicles and nanomaterials. However, their use requires stable assemblies. An important cause of loss of stability in proteins is oxidation, which can occur during their production, purification and storage. Despite its importance, very few studies have investigated the effect of oxidation in protein assemblies and their structural units. In this work, we investigated the role of in vitro oxidation in the assembly and stability of rotavirus VP6, a polymorphic protein. Results The susceptibility to oxidation of VP6 assembled into nanotubes (VP6NT) and unassembled VP6 (VP6U) was determined and compared to bovine serum albumin (BSA) as control. VP6 was more resistant to oxidation than BSA, as determined by measuring protein degradation and carbonyl content. It was found that assembly protected VP6 from in vitro metal-catalyzed oxidation. Oxidation provoked protein aggregation and VP6NT fragmentation, as evidenced by dynamic light scattering and transmission electron microscopy. Oxidative damage of VP6 correlated with a decrease of its center of fluorescence spectral mass. The in vitro assembly efficiency of VP6U into VP6NT decreased as the oxidant concentration increased. Conclusions Oxidation caused carbonylation, quenching, and destruction of aromatic amino acids and aggregation of VP6 in its assembled and unassembled forms. Such modifications affected protein functionality, including its ability to assemble. That assembly protected VP6 from oxidation shows that exposure of susceptible amino acids to the solvent increases their damage, and therefore the protein surface area that is exposed to the solvent is determinant of its susceptibility to oxidation. The inability of oxidized VP6 to assemble into nanotubes highlights the importance of avoiding this modification during the production of proteins that self-assemble. This is the first time that the role of

  6. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electron–hole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electron–hole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  7. Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration.

    PubMed

    Saxena, Ina; Shekhawat, G S

    2013-08-01

    Nitric oxide (NO) is recognized as a biological messenger in various tissues to regulate diverse range of physiological process including growth, development and response to abiotic and biotic factors. The NO emission from plants is known since the 1970s, and there is copious information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. Heavy metal toxicity is one of the major abiotic stresses leading to hazardous effects in plants and its toxicity is based on chemical and physical property. A common consequence of heavy metal toxicity is the uncontrolled and excessive accumulation of reactive oxygen species (ROS) which leads to peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Recently, an increasing number of articles have reported the effects of exogenous NO on alleviating heavy metal toxicity in plants but knowledge of physiological mechanisms of NO in alleviating heavy metal toxicity is quite limited, and some results contradict one another. Therefore, to help clarify the roles of NO in heavy metal tolerance, it is important to review and discuss the recent advances on this area of research. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in the plant cells. NO alleviates the harmfulness of the ROS, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions. This manuscript includes, the latest advances in understanding the effects of endogenous NO on heavy metal toxicity and the mechanisms and role of NO as an antioxidant as well as in protein nitration are highlighted. PMID:23545403

  8. Microelectronic components and metallic oxide studies and applications

    NASA Technical Reports Server (NTRS)

    Williams, L., Jr.

    1976-01-01

    The project involved work in two basic areas: (1) Evaluation of commercial screen printable thick film conductors, resistors, thermistors and dielectrics as well as alumina substrates used in hybird microelectronics industries. Results of tests made on materials produced by seven companies are presented. (2) Experimental studies on metallic oxides of copper and vanadium, in an effort to determine their electrochemical properties in crystalline, powder mixtures and as screen printable thick films constituted the second phase of the research effort. Oxide investigations were aimed at finding possible applications of these materials as switching devices memory elements and sensors.

  9. Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Transistors on Flexible Conducting Graphene Substrates.

    PubMed

    Wan, Chang Jin; Liu, Yang Hui; Feng, Ping; Wang, Wei; Zhu, Li Qiang; Liu, Zhao Ping; Shi, Yi; Wan, Qing

    2016-07-01

    Flexible metal oxide/graphene oxide hybrid multi-gate neuromorphic transistors are fabricated on flexible conducting graphene substrates. Dendritic integrations in both spatial and temporal modes are emulated, and spatiotemporal correlated logics are obtained. A proof-of-principle visual system model for emulating Lobula Giant Motion Detector neuron is also investigated. The results are of great significance for flexible sensors and neuromorphic cognitive systems. PMID:27159546

  10. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks

    PubMed Central

    Jones, J. Graham; Warner, C. G.

    1972-01-01

    Graham Jones, J., and Warner, C. G. (1972).Brit. J. industr. Med.,29, 169-177. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks. Occupational and medical histories, smoking habits, respiratory symptoms, chest radiographs, and ventilatory capacities were studied in 14 steelworkers employed as deseamers of steel ingots for periods of up to 16 years. The men were exposed for approximately five hours of each working shift to fume concentrations ranging from 1·3 to 294·1 mg/m3 made up mainly of iron oxide with varying proportions of chromium oxide and nickel oxide. Four of the men, with 14 to 16 years' exposure, showed radiological evidence of pneumoconiosis classified as ILO categories 2 or 3. Of these, two had pulmonary function within the normal range and two had measurable loss of function, moderate in one case and mild in the other. Many observers would diagnose these cases as siderosis but the authors consider that this term should be reserved for cases exposed to pure iron compounds. The correct diagnosis is mixed-dust pneumoconiosis and the loss of pulmonary function is caused by the effects of the mixture of metallic oxides. It is probable that inhalation of pure iron oxide does not cause fibrotic pulmonary changes, whereas the inhalation of iron oxide plus certain other substances obviously does. Images PMID:5021996

  11. Advanced Photon Source Activity Report 2002 at Argonne National Laboratory, Argonne, IL, December 2003 - contribution title:"Microdiffraction Study of Epitaxial Growth and Lattice Tilts in Oxide Films on Polycrystalline Metal Substrates"

    SciTech Connect

    Budai, J.D.

    2004-03-18

    Texture, the preference for a particular crystallographic orientation in polycrystalline materials, plays an important role in controlling such diverse materials properties as corrosion resistance, recording density in magnetic media and electrical transport in superconductors [1]. Without texture, polycrystalline oxide superconductors contain many high-angle, weak-linked grain boundaries which reduce critical current densities by several orders of magnitude [2]. One approach for inducing texture in oxide superconductors has been the epitaxial growth of films on rolling-assisted biaxially-textured substrates (RABiTS) [3]. In this approach, rolled Ni foils are recrystallized under conditions that lead to a high degree of biaxial {l_brace}001{r_brace}<100> cube texture. Subsequent deposition of epitaxial oxide buffer layers (typically CeO{sub 2} and YSZ as chemical barriers) and superconducting YBCO preserves the lattice alignment, eliminating high-angle boundaries and enabling high critical current densities, J{sub c} > 10{sup 6}/cm{sup 2}. Conventional x-ray diffraction using {omega}- and {phi}-scans typically shows macroscopic biaxial texture to within {approx}5{sup o}-10{sup o} FWHM for all layers, but does not describe the local microstructural features that control the materials properties. Understanding and controlling the local texture and microstructural evolution of processes associated with heteroepitaxial growth, differential thermal contraction and cracking remain significant challenges in this complex system [4], as well as in many other technologically important thin-film applications.

  12. Ball lightning from atmospheric discharges via metal nanosphere oxidation: from soils, wood or metals.

    PubMed

    Abrahamson, John

    2002-01-15

    The slow (diffusion-limited) oxidation of metal nanoparticles has previously been proposed as the mechanism for ball lightning energy release, and argued to be the result of a normal lightning strike on soil. Here this basic model of networked nanoparticles is detailed further, and extended to lightning strikes on metal structures, and also to the action of other storm-related discharges or man-made discharges. The basic model predicted the important properties of "average" observed ball lightning, and the extension in this paper also covers high-energy examples of ball lightning. Laboratory checks of the theory are described, and predictions given of what conditions are necessary for observing ball lightning in the laboratory. Key requirements of the model are a sheltered region near the strike foot and starting materials which can generate a metal vapour under intensive heating, including soil, wood or a metal structure. The evolution of hydrocarbons (often plastics) along with metal vapour can ensure the local survival of the metal vapour even in an oxidizing atmosphere. Subsequent condensation of this vapour to metallic nanoparticles in networks provides the coherence of a ball structure, which also releases light over an extended time. Also discussed is the passage of ball lightning through a sheet of building material, including glass, and its occasional charring of flesh on close contact. PMID:16210171

  13. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  14. A metallic fuel cycle concept from spent oxide fuel to metallic fuel

    SciTech Connect

    Fujita, Reiko; Kawashima, Masatoshi; Yamaoka, Mitsuaki; Arie, Kazuo; Koyama, Tadafumi

    2007-07-01

    A Metallic fuel cycle concept for Self-Consistent Nuclear Energy System (SCNES) has been proposed in a companion papers. The ultimate goal of the SCNES is to realize sustainable energy supply without endangering the environment and humans. For future transition period from LWR era to SCNES era, a new metallic fuel recycle concept from LWR spent fuel has been proposed in this paper. Combining the technology for electro-reduction of oxide fuels and zirconium recovery by electrorefining in molten salts in the nuclear recycling schemes, the amount of radioactive waste reduced in a proposed metallic fuel cycle concept. If the recovery ratio of zirconium metal from the spent zirconium waste is 95%, the cost estimation in zirconium recycle to the metallic fuel materials has been estimated to be less than 1/25. (authors)

  15. Non-volatile memory based on transition metal perovskite oxide resistance switching

    NASA Astrophysics Data System (ADS)

    Nian, Yibo

    Driven by the non-volatile memory market looking for new advanced materials, this dissertation focuses on the study of non-volatile resistive random access memory (RRAM) based on transition metal perovskite oxides. Pr0.7Ca0.3MnO3 (PCMO), one of the representative materials in this family, has demonstrated a large range of resistance change when short electrical pulses with different polarity are applied. Such electrical-pulse-induced resistance (EPIR), with attractive features such as fast response, low power, high-density and non-volatility, makes PCMO and related materials promising candidates for non-volatile RRAM application. The objective of this work is to investigate, optimize and understand the properties of this universal EPIR behavior in transition metal perovskite oxide, represented by PCMO thin film devices. The research work includes fabrication of PCMO thin film devices, characterization of these EPIR devices as non-volatile memories, and investigation of their resistive switching mechanisms. The functionality of this perovskite oxide RRAM, including pulse magnitude/width dependence, power consumption, retention, endurance and radiation-hardness has been investigated. By studying the "shuttle tail" in hysteresis switching loops of oxygen deficient devices, a diffusion model with oxygen ions/vacancies as active agents at the metal/oxide interface is proposed for the non-volatile resistance switching effect in transition metal perovskite oxide thin films. The change of EPIR switching behavior after oxygen/argon ion implantation also shows experiment support for the proposed model. Furthermore, the universality, scalability and comparison with other non-volatile memories are discussed for future application.

  16. Custom-designed nanomaterial libraries for testing metal oxide toxicity.

    PubMed

    Pokhrel, Suman; Nel, André E; Mädler, Lutz

    2013-03-19

    Advances in aerosol technology over the past 10 years have enabled the generation and design of ultrafine nanoscale materials for many applications. A key new method is flame spray pyrolysis (FSP), which produces particles by pyrolyzing a precursor solution in the gas phase. FSP is a highly versatile technique for fast, single-step, scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology, including variations in precursor chemistry, have enabled flexible, dry synthesis of loosely agglomerated, highly crystalline ultrafine powders (porosity ≥ 90%) of binary, ternary, and mixed-binary-and-ternary oxides. FSP can fulfill much of the increasing demand, especially in biological applications, for particles with specific material composition, high purity, and high crystallinity. In this Account, we describe a strategy for creating nanoparticle libraries (pure or Fedoped ZnO or TiO₂) utilizing FSP and using these libraries to test hypotheses related to the particles' toxicity. Our innovation lies in the overall integration of the knowledge we have developed in the last 5 years in (1) synthesizing nanomaterials to address specific hypotheses, (2) demonstrating the electronic properties that cause the material toxicity, (3) understanding the reaction mechanisms causing the toxicity, and (4) extracting from in vitro testing and in vivo testing in terrestrial and marine organisms the essential properties of safe nanomaterials. On the basis of this acquired knowledge, we further describe how the dissolved metal ion from these materials (Zn²⁺ in this Account) can effectively bind with different cell constituents, causing toxicity. We use Fe-S protein clusters as an example of the complex chemical reactions taking place after free metal ions migrate into the cells. As a second example, TiO₂ is an active material in the UV range that exhibits photocatalytic behavior. The induction of electron-hole (e⁻/h⁺) pairs followed by

  17. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping

    NASA Astrophysics Data System (ADS)

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-11-01

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings

  18. Understanding Organic Film Behavior on Alloy and Metal Oxides

    PubMed Central

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash

    2010-01-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides namely, nickel, chromium, molybdenum, manganese, iron and titanium were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid and octadecylsulfonic acid on these substrates was examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy and matrix assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  19. Understanding organic film behavior on alloy and metal oxides.

    PubMed

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash; Gawalt, Ellen S

    2010-02-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides, namely nickel, chromium, molybdenum, manganese, iron, and titanium, were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid, and octadecylsulfonic acid on these substrates were examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy, and matrix-assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  20. Fabrication of porous materials (metal, metal oxide and semiconductor) through an aerosol-assisted route

    NASA Astrophysics Data System (ADS)

    Sohn, Hiesang

    Porous materials have gained attraction owing to their vast applications in catalysts, sensors, energy storage devices, bio-devices and other areas. To date, various porous materials were synthesized through soft and hard templating approaches. However, a general synthesis method for porous non-oxide materials, metal alloys and semiconductors with tunable structure, composition and morphology has not been developed yet. To address this challenge, this thesis presents an aerosol method towards the synthesis of such materials and their applications for catalysis, hydrogen storage, Li-batteries and photo-catalysis. The first part of this thesis presents the synthesis of porous metals, metal oxides, and semiconductors with controlled pore structure, crystalline structure and morphology. In these synthesis processes, metal salts and organic ligands were employed as precursors to create porous metal-carbon frameworks. During the aerosol process, primary metal clusters and nanoparticles were formed, which were coagulated/ aggregated forming the porous particles. Various porous particles, such as those of metals (e.g., Ni, Pt, Co, Fe, and Ni xPt(1-x)), metal oxides (e.g., Fe3O4 and SnO2) and semiconductors (e.g., CdS, CuInS2, CuInS 2x-ZnS(1-x), and CuInS2x-TiO2(1-x)) were synthesized. The morphology, porous structure and crystalline structure of the particles were regulated through both templating and non-templating methods. The second part of this thesis explores the applications of these materials, including propylene hydrogenation and H2 uptake capacity of porous Ni, NiPt alloys and Ni-Pt composites, Li-storage of Fe3O4 and SnO2, photodegradation of CuInS2-based semiconductors. The effects of morphology, compositions, and porous structure on the device performance were systematically investigated. Overall, this dissertation work unveiled a simple synthesis approach for porous particles of metals, metal alloys, metal oxides, and semiconductors with controlled

  1. Advanced in aerospace lubricant and wear metal analysis

    SciTech Connect

    Saba, C.S.; Centers, P.W.

    1995-09-01

    Wear metal analysis continues to play an effective diagnostic role for condition monitoring of gas turbine engines. Since the early 1960s the United States` military services have been using spectrometric oil analysis program (SOAP) to monitor the condition of aircraft engines. The SOAP has proven to be effective in increasing reliability, fleet readiness and avoiding losses of lives and machinery. Even though historical data have demonstrated the success of the SOAP in terms of detecting imminent engine failure verified by maintenance personnel, the SOAP is not a stand-alone technique and is limited in its detection of large metallic wear debris. In response, improved laboratory, portable, in-line and on-line diagnostic techniques to perfect SOAP and oil condition monitoring have been sought. The status of research and development as well as the direction of future developmental activities in oil analysis due to technological opportunities, advanced in engine development and changes in military mission are reviewed and discussed. 54 refs.

  2. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping.

    PubMed

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-12-21

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species. PMID:26575987

  3. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOEpatents

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  4. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  5. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  6. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  7. Imaging metal oxide nanoparticles in biological structures with CARS microscopy.

    PubMed

    Moger, Julian; Johnston, Blair D; Tyler, Charles R

    2008-03-01

    Metal oxide nanomaterials are being used for an increasing number of commercial applications, such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and as drug delivery vehicles. The effects of these nanoparticles on the physiology of animals and in the environment are largely unknown and their potential associated health risks are currently a topic of hot debate. Information regarding the entry route of nanoparticles into exposed organisms and their subsequent localization within tissues and cells in the body are essential for understanding their biological impact. However, there is currently no imaging modality available that can simultaneously image these nanoparticles and the surrounding tissues without disturbing the biological structure. Due to their large nonlinear optical susceptibilities, which are enhanced by two-photon electronic resonance, metal oxides are efficient sources of coherent anti-Stokes Raman Scattering (CARS). We show that CARS microscopy can provide localization of metal oxide nanoparticles within biological structures at the cellular level. Nanoparticles of 20 - 70 nm in size were imaged within the fish gill; a structure that is a primary site of pollutant uptake into fish from the aquatic environment. PMID:18542432

  8. Voltage oxide removal for plating: A new method of electroplating oxide coated metals in situ

    SciTech Connect

    Gutfeld, R. J. von; West, A. C.

    2007-03-15

    A novel in situ method for electroplating oxide coated metals is described. Termed VORP, for voltage oxide removal for plating, the process utilizes a voltage pulse {approx}20-200 V, {approx}2 ms in duration, applied between working and counterelectrodes while both are immersed in a copper electrolyte. The pulse is almost immediately followed by galvanostatic plate-up. Adherent copper deposits up to {approx}4 {mu}m in height on stainless steel 316 coupons have been obtained. Temperature testing up to 260 deg. C in air does not affect the copper adhesion. A preliminary model for oxide removal is proposed utilizing concepts of dielectric breakdown.

  9. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    DOEpatents

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows the dye molecules to remain electrochemically addressable.

  10. Oxidative deamination by hydrogen peroxide in the presence of metals.

    PubMed

    Akagawa, Mitsugu; Suyama, Kyozo

    2002-01-01

    Various amines, including lysine residue of bovine serum albumin, were oxidatively deaminated to form the corresponding aldehydes by a H2O2/Cu2+ oxidation system at physiological pH and temperature. The resulting aldehydes were measured by high-performance liquid chromatography. We investigated the effects of metal ions, pH, inhibitors, and O2 on the oxidative deamination of benzylamine by H202. The formation of benzaldehyde was the greatest with Cu2+, and catalysis occurred with Co2+, VO2+, and Fe3+. The reaction was greatly accelerated as the pH value rose and was markedly inhibited by EDTA and catalase. Dimethyl sulfoxide and thiourea, which are hydroxyl radical scavengers, were also effective in inhibiting the generation of benzaldehyde, indicating that the reaction is a hydroxyl radical-mediated reaction. Superoxide dismutase greatly stimulated the reaction, probably due to the formation of hydroxyl radicals. O2 was not required in the oxidation, and instead slightly inhibited the reaction. We also examined several oxidation systems. Ascorbic acid/O2/Cu2+ and hemoglobin/H2O2 systems also converted benzylamine to benzaldehyde. The proposed mechanism of the oxidative deamination by H2O2/Cu2+ system is discussed. PMID:11999699

  11. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.

    2016-02-01

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentials to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results also compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.

  12. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE PAGESBeta

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  13. Molecular-level assemblies on metal oxide surfaces

    SciTech Connect

    Schoonover, J.R.; Bignozzi, C.; Meyer, T.

    1996-07-01

    This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). The objective of this project was to explore molecular-level assemblies based on polypyridyl transition metal complexes attached to metal oxide surfaces to provide the basis for applications such as energy conversion and electricity generation, photoremediation of hazardous waste, chemical sensors, and optical storage and photorefractive devices for communications and optical computing. We have elucidated the fundamental factors that determine the photochemistry and photophysics of a series of these photoactive inorganic complexes in solution and on metal oxide substrates by exploiting our unique transient laser capabilities. This data is being utilized to design and fabricate molecular-level photonic devices. The rich chemistry of transition metal polypyridyl complexes can be utilized to prepare molecular assemblies having well-defined redox or excited-state properties that can be finely tuned to produce desired materials properties. We plan to explore other novel applications such as photorefractive switches and optical sensors using this molecular engineering approach.

  14. Ellipsometric study of oxide films formed on LDEF metal samples

    NASA Technical Reports Server (NTRS)

    Franzen, W.; Brodkin, J. S.; Sengupta, L. C.; Sagalyn, P. L.

    1992-01-01

    The optical constants of samples of six different metals (Al, Cu, Ni, Ta, W, and Zr) exposed to space on the Long Duration Exposure Facility (LDEF) were studied by variable angle spectroscopic ellipsometry. Measurements were also carried out on portions of each sample which were shielded from direct exposure by a metal bar. A least-squares fit of the data using an effective medium approximation was then carried out, with thickness and composition of surface films formed on the metal substrates as variable parameters. The analysis revealed that exposed portions of the Cu, Ni, Ta, and Zr samples are covered with porous oxide films ranging in thickness from 500 to 1000 A. The 410 A thick film of Al2O3 on the exposed Al sample is practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin non-porous oxide films characteristic of exposure to air. The shielded part of the Cu sample has a much thicker porous coating of Cu2O. The tungsten data could not be analyzed.

  15. Irradiaton of Metallic and Oxide Fuels for Actinide Transmutation in the ATR

    SciTech Connect

    Heather J. MacLean; Steven L. Hayes

    2007-09-01

    Metallic fuels containing minor actinides and rare earth additions have been fabricated and are prepared for irradiation in the ATR, scheduled to begin during the summer of 2007. Oxide fuels containing minor actinides are being fabricated and will be ready for irradiation in ATR, scheduled to begin during the summer of 2008. Fabrication and irradiation of these fuels will provide detailed studies of actinide transmutation in support of the Global Nuclear Energy Partnership. These fuel irradiations include new fuel compositions that have never before been tested. Results from these tests will provide fundamental data on fuel irradiation performance and will advance the state of knowledge for transmutation fuels.

  16. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  17. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    PubMed Central

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  18. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers.

    PubMed

    Bogdanov, Nikolay A; Katukuri, Vamshi M; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  19. Promoting Photochemical Water Oxidation with Metallic Band Structures.

    PubMed

    Liu, Hongfei; Moré, René; Grundmann, Henrik; Cui, Chunhua; Erni, Rolf; Patzke, Greta R

    2016-02-10

    The development of economic water oxidation catalysts is a key step toward large-scale water splitting. However, their current exploration remains empirical to a large extent. Elucidating the correlations between electronic properties and catalytic activity is crucial for deriving general and straightforward catalyst design principles. Herein, strongly correlated electronic systems with abundant and easily tunable electronic properties, namely La(1-x)Sr(x)BO3 perovskites and La(2-x)Sr(x)BO4 layered perovskites (B = Fe, Co, Ni, or Mn), were employed as model systems to identify favorable electronic structures for water oxidation. We established a direct correlation between the enhancement of catalytic activity and the insulator to metal transition through tuning the electronic properties of the target perovskite families via the La(3+)/Sr(2+) ratio. Their improved photochemical water oxidation performance was clearly linked to the increasingly metallic character. These electronic structure-activity relations provide a promising guideline for constructing efficient water oxidation catalysts. PMID:26771537

  20. Phenomenological theory of bulk diffusion in metal oxides

    NASA Astrophysics Data System (ADS)

    Chuvil'deev, V. N.; Smirnova, E. S.

    2016-07-01

    Phenomenological description of bulk diffusion in oxide ceramics has been proposed. Variants of vacancy and vacancy-free diffusion models have been considered. In the vacancy models, ion migration is described as a fluctuation with the formation of a "liquid corridor," along which the diffusion ion transport in a "melt" is performed, or, as a fluctuation with the formation of an "empty corridor," in which the ion motion proceeds without activation. The vacancy-free model considers a fluctuation with the formation of a spherical liquid region whose sizes correspond to the first coordination sphere. It has been shown that both the vacancy models work in cubic metal oxides and the vacancy-free model is effective for describing diffusion in oxides having a noncubic structure. Detailed comparison of the models developed has been performed. It has been shown that the values of the activation energies for diffusion of metal and oxygen ions agree with the published data on bulk diffusion in stoichiometric oxide ceramics.

  1. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-04-01

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W-1) and detectivity (2.75 × 1015 Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxide devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.

  2. The Development of Metal Oxide Chemical Sensing Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; VanderWal,R. L.; Xu, J. C.; Evans, L. J.; Berger, G. M.; Kulis, M. J.

    2008-01-01

    This paper discusses sensor development based on metal oxide nanostructures and microsystems technology. While nanostructures such as nanowires show significant potential as enabling materials for chemical sensors, a number of significant technical challenges remain. This paper discusses development to address each of these technical barriers: 1) Improved contact and integration of the nanostructured materials with microsystems in a sensor structure; 2) Control of nanostructure crystallinity to allow control of the detection mechanism; and 3) Widening the range of gases that can be detected by fabricating multiple nanostructured materials. A sensor structure composed of three nanostructured oxides aligned on a single microsensor has been fabricated and tested. Results of this testing are discussed and future development approaches are suggested. It is concluded that while this work lays the foundation for further development, these are the beginning steps towards realization of repeatable, controlled sensor systems using oxide based nanostructures.

  3. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  4. Thermodynamic properties of some metal oxide-zirconia systems

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1989-01-01

    Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.

  5. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  6. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  7. Dual-environment effects on the oxidation of metallic interconnects

    SciTech Connect

    Holcomb, G.R.; Ziomek-Moroz, M.; Covino, B.S., Jr.; Bullard, S.J.

    2006-08-01

    Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e., H2 gas) and oxidizer on the other side (i.e., air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual-environment scales are flaky and more friable than the single-environment scales. The H2 disrupts the scale on the air side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air-air, H2-air, and H2-Ar environments are reported in support of the model.

  8. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  9. Importance of glycolysis and oxidative phosphorylation in advanced melanoma

    PubMed Central

    2012-01-01

    Serum lactate dehydrogenase (LDH) is a prognostic factor for patients with stage IV melanoma. To gain insights into the biology underlying this prognostic factor, we analyzed total serum LDH, serum LDH isoenzymes, and serum lactate in up to 49 patients with metastatic melanoma. Our data demonstrate that high serum LDH is associated with a significant increase in LDH isoenzymes 3 and 4, and a decrease in LDH isoenzymes 1 and 2. Since LDH isoenzymes play a role in both glycolysis and oxidative phosphorylation (OXPHOS), we subsequently determined using tissue microarray (TMA) analysis that the levels of proteins associated with mitochondrial function, lactate metabolism, and regulators of glycolysis were all elevated in advanced melanomas compared with nevic melanocytes. To investigate whether in advanced melanoma, the glycolysis and OXPHOS pathways might be linked, we determined expression of the monocarboxylate transporters (MCT) 1 and 4. Analysis of a nevus-to-melanoma progression TMA revealed that MCT4, and to a lesser extend MCT1, were elevated with progression to advanced melanoma. Further analysis of human melanoma specimens using the Seahorse XF24 extracellular flux analyzer indicated that metastatic melanoma tumors derived a large fraction of energy from OXPHOS. Taken together, these findings suggest that in stage IV melanomas with normal serum LDH, glycolysis and OXPHOS may provide metabolic symbiosis within the same tumor, whereas in stage IV melanomas with high serum LDH glycolysis is the principle source of energy. PMID:23043612

  10. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  11. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECTS OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...

  12. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    SciTech Connect

    Vladimir Gorokhovsky

    2008-03-31

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

  13. Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications

    SciTech Connect

    Ohodnicki, Paul R; Wang, Congjun; Andio, Mark

    2013-07-31

    The ability to monitor gas species selectively, sensitively, and reliably in extreme temperatures and harsh conditions is critically important for more efficient energy production using conventional fossil energy based production technologies, enabling advanced technologies for fossil based power plants of the future, and improving efficiency in domestic manufacturing industries. Optical waveguide based sensing platforms have become increasingly important but a need exists for materials that exhibit useful changes in optical properties in response to changing gas atmospheres at high temperatures. In this manuscript, the onset of a near-IR absorption associated with an increase in free carrier density in doped metal oxide nanoparticles to form so-called conducting metal oxides is discussed in the context of results obtained for undoped and Al-doped ZnO nanoparticle based films. Detailed film characterization results are presented along with measured changes in optical absorption resulting from various high temperature treatments in a range of gas atmospheres. Optical property changes are also discussed in the context of a simple model for optical absorption in conducting metal oxide nanoparticles and thin films. The combination of experimental results and theoretical modeling presented here suggests that such materials have potential for high temperature optical gas sensing applications. Simulated sensing experiments were performed at 500 °C and a useful, rapid, and reproducible near-IR optical sensing response to H{sub 2} confirms that this class of materials shows great promise for optical gas sensing.

  14. Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects

    NASA Astrophysics Data System (ADS)

    Grover, Valerie Ann

    The presence of metals in natural waters is becoming a critical environmental and public health concern. Emerging nanotechnology and the use of metal oxide nanoparticles has been identified as a potential remediation technique in removing metals from water. However, practical applications are still being explored to determine how to apply their unique chemical and physical properties for full scale remediation projects. This thesis investigates the sorption properties of Cd(II), Cu(II), Pb(II) and Zn(II) to hematite (alpha-Fe2O3) and titanium dioxide (TiO2) nanoparticles in single- and binary-adsorbate systems. Competitive sorption was evaluated in 1L batch binary-metal systems with 0.05g/L nano-hematite at pH 8.0 and pH 6.0. Results indicate that the presence of a secondary metal can affect the sorption process depending upon the molar ratios, such as increased or reduced adsorption. Thermodynamic properties were also studied in order to better understand the effects of temperature on equilibrium and kinetic adsorption capabilities. Understanding the thermodynamic properties can also give insight to determine if the sorption process is a physical, chemical or ion exchange reaction. Thermodynamic parameters such as enthalpy (DeltaH), entropy (DeltaS), and Gibbs free energy (DeltaG) were evaluated as a function of temperature, pH, and metal concentration. Results indicate that Pb(II) and Cu(II) adsorption to nano-hematite was an endothermic and physical adsorption process, while Zn(II) and Cd(II) adsorption was dependent upon the adsorbed concentration evaluated. However, metal adsorptions to nano-titanium dioxide were all found to be endothermic and physical adsorption processes; the spontaneity of metal adsorption was temperature dependent for both metal oxide nanoparticles.

  15. Unveiling the complex electronic structure of amorphous metal oxides

    PubMed Central

    Århammar, C.; Pietzsch, Annette; Bock, Nicolas; Holmström, Erik; Araujo, C. Moyses; Gråsjö, Johan; Zhao, Shuxi; Green, Sara; Peery, T.; Hennies, Franz; Amerioun, Shahrad; Föhlisch, Alexander; Schlappa, Justine; Schmitt, Thorsten; Strocov, Vladimir N.; Niklasson, Gunnar A.; Wallace, Duane C.; Rubensson, Jan-Erik; Johansson, Börje; Ahuja, Rajeev

    2011-01-01

    Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5–10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.

  16. Metallic Seal Development for Advanced Docking/Berthing System

    NASA Technical Reports Server (NTRS)

    Oswald, Jay; Daniels, Christopher; Dunlap, Patrick, Jr.; Steinetz, Bruce

    2006-01-01

    Feasibility of metal-to-metal androgenous seals has been demonstrated. Techniques to minimize surface irregularities must be examined. Two concepts investigated: 1) Flexible metal interface with elastomeric preloader; 2) Flexibility will accommodate any surface irregularities from the mating surface. Rigid metal interface with elastomeric preloader. Rigidity of the metal surface will prevent irregularities (waves) from occurring.

  17. Characterization, sorption, and exhaustion of metal oxide nanoparticles as metal adsorbents

    NASA Astrophysics Data System (ADS)

    Engates, Karen Elizabeth

    Safe drinking water is paramount to human survival. Current treatments do not adequately remove all metals from solution, are expensive, and use many resources. Metal oxide nanoparticles are ideal sorbents for metals due to their smaller size and increased surface area in comparison to bulk media. With increasing demand for fresh drinking water and recent environmental catastrophes to show how fragile water supplies are, new approaches to water conservation incorporating new technologies like metal oxide nanoparticles should be considered as an alternative method for metal contaminant adsorbents from typical treatment methods. This research evaluated the potential of manufactured iron, anatase, and aluminum nanoparticles (Al2O3, TiO2, Fe2O3) to remove metal contaminants (Pb, Cd, Cu, Ni, Zn) in lab-controlled and natural waters in comparison to their bulk counterparts by focusing on pH, contaminant and adsorbent concentrations, particle size, and exhaustive capabilities. Microscopy techniques (SEM, BET, EDX) were used to characterize the adsorbents. Adsorption experiments were performed using 0.01, 0.1, or 0.5 g/L nanoparticles in pH 8 solution. When results were normalized by mass, nanoparticles adsorbed more than bulk particles but when surface area normalized the opposite was observed. Adsorption was pH-dependent and increased with time and solid concentration. Aluminum oxide was found to be the least acceptable adsorbent for the metals tested, while titanium dioxide anatase (TiO2) and hematite (alpha-Fe2O3) showed great ability to remove individual and multiple metals from pH 8 and natural waters. Intraparticle diffusion was likely part of the complex kinetic process for all metals using Fe2O3 but not TiO 2 nanoparticles within the first hour of adsorption. Adsorption kinetics for all metals tested were described by a modified first order rate equation used to consider the diminishing equilibrium metal concentrations with increasing metal oxides, showing faster

  18. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    DOEpatents

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    2001-01-01

    A method of cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO.sub.2, HfO.sub.2, TiO.sub.2 and SnO.sub.2, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn & Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO.sub.4, WO.sub.3, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  19. Biological activity of ellagitannins: Effects as anti-oxidants, pro-oxidants and metal chelators.

    PubMed

    Moilanen, Johanna; Karonen, Maarit; Tähtinen, Petri; Jacquet, Rémi; Quideau, Stéphane; Salminen, Juha-Pekka

    2016-05-01

    Ellagitannins are a subclass of hydrolysable tannins that have been suggested to function as defensive compounds of plants against herbivores. However, it is known that the conditions in the digestive tracts of different herbivores are variable, so it seems reasonable to anticipate that the reactivities and modes of actions of these ingested defensive compounds would also be different. A previous study on a few ellagitannins has shown that these polyphenolic compounds are highly oxidizable at high pH and that their bioactivity can be attributed to certain structural features. Herein, the activities of 13 ellagitannins using the deoxyribose assay were measured. The results provided information about the anti-oxidant, pro-oxidant and metal chelating properties of ellagitannins. Surprisingly, many of the tested ellagitannins exhibited pro-oxidant activities even at neutral pH and only moderate to low radical scavenging activities, although the metal chelating capacities of all tested ellagitannins were relatively high. PMID:26899362

  20. Development of structure-activity relationship for metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram

    2013-05-01

    Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were